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Abstract
Ethereum provides authenticated storage: each read

returns a value and a proof that allows the client to verify
the value returned is correct. We experimentally show
that such authentication leads to high read and write am-
plification (64× in the worst case). We present a novel
data structure, Merkelized LSM (mLSM), that signifi-
cantly reduces the read and write amplification while still
allowing client verification of reads. mLSM significantly
increases the performance of the storage subsystem in
Ethereum, thereby increasing the performance of a wide
range of Ethereum applications.

1 Introduction
Modern crypto-currencies such as Bitcoin [21] and
Ethereum [26] seek to provide a decentralized,
cryptographically-secure currency built upon the
blockchain [25]. Ethereum provides a distributed
platform on which decentralized applications can be
built. While ethereum’s cryptocurrency ether is widely
used and adopted, having the notion of a platform opens
the opportunities for a wide range of decentralized
applications apart from just crypto-currencies. Ethereum
has a market cap of 64 billion dollars at the time of
writing this paper, with over 1.5 billion dollars being
traded over the last 24 hours. Thus, improving the
performance of Ethereum will have significant impact.

In this work, we view Ethereum as a distributed stor-
age system, and seek to improve the performance of
its reads and writes. Ethereum is especially interest-
ing because it provides authenticated storage. Reads in
Ethereum return both the value and a Merkle proof that
the value is indeed the correct value. Each key being read
is part of a Merkle tree [19]; the inner nodes of the tree
are simply hashes of their children. The proof consists
of the hashes of each node along the path from the root
to the leaf containing the key. The root is globally pub-
lished, and thus any client receiving a value for a key can
independently determine that the value it received is cor-
rect. Each write changes the hashes of all nodes along
the path from the root to the leaf. Thus, reads and writes
are expensive operations in Ethereum.

We examine the overhead of Ethereum reads using
carefully designed experiments based on real-world pub-
lic Ethereum blockchain data. Ethereum stores its data in

the LevelDB [15] key-value store. We show that reading
a single key (e.g., the amount of ether in a given account)
can result in 64 LevelDB reads, while writing a single
key can lead to a similar number of LevelDB writes. In-
ternally, LevelDB induces extra write amplification [23],
further increasing overall amplification. Such write and
read amplification reduces throughput (storage band-
width is wasted by the amplification), and write ampli-
fication in particular significantly reduces the lifetime of
devices such as Solid State Drives (SSDs) which wear
out after a limited number of write cycles [1, 16, 20].
Thus, reducing the read and write amplification can both
increase Ethereum throughput and reduce hardware re-
placement costs.

We trace the read and write amplification in Ethereum
to the fact that it provides authenticated storage. The
challenge then becomes: is it possible to design an
authenticated storage system which minimizes read
and write amplification? To overcome this chal-
lenge, we design a novel data structure called Merke-
lized LSM (mLSM) which combines merkle trees and
log-structured merge trees [22], resulting in a write-
optimized data structure for authenticated reads and
writes. The key insights behind mLSM are maintaining
multiple independent tries and decoupling the two cur-
rent uses of tries in Ethereum: lookup and authentication.
Similar to a log-structured merge tree, mLSM has multi-
ple levels. Each level contains a number of immutable
merkle trees, with merkle trees becoming bigger with
higher-numbered levels. Updates to mLSM are batched
in memory, and written to Level 0 as a new merkle tree.
When each level has a threshold number of merkle trees,
they are compacted into a single merkle tree in the next
level. mLSM introduces several challenges unique to au-
thenticated storage, such as the need for deterministic
compaction.

Log-structured merge trees have been widely used in
key-value stores [2, 3, 7, 13–15, 18, 23, 24, 27]; mLSM
demonstrates a novel application of the ideas behind this
data structure in a new domain. By adopting such ideas
into Ethereum, we hope to increase the performance of
reads and writes, and therefore increase the performance
of multiple Ethereum applications. The ideas behind
mLSM are not limited to Ethereum, and are broadly ap-
plicable to any authenticated storage.



2 Background

This section provides some background on blockchain
and Ethereum. It first provides a high level overview of
the blockchain technology on which Ethereum is built
(§2.1). Then, it describes the Merkle patricia tree (§2.2)
and how it is used as an authenticated data structure
in blockchain. Finally, it provides an overview of how
Ethereum works (§2.3).

2.1 Blockchain

A blockchain is a continuously growing list of blocks
which are chained together. Each block consists of a set
of transactions which happened during some particular
time interval. A blockchain is also cryptographically se-
cured using authenticated data structures such that the
data cannot be silently altered. Each block is linked to
the previous block by a cryptographic hash. We arrive at
the current state of the system by processing transactions
in order from the first block to the latest block.

The blockchain data (list of blocks and transactions) is
distributed across thousands of nodes across the world.
This is a powerful property because the data is no longer
controlled by any single authority. There are consensus
protocols for different nodes to agree upon the blocks
that should be added to the chain. To keep the data cryp-
tographically secure, hashes are extensively used in the
blockchain to store values. For example, every block,
every transaction, every account etc. is identified by a
unique hash.

The process of adding a new block to the blockchain
is called mining. Mining requires solving a cryptograph-
ically complex puzzle, commonly called the proof of
work algorithm [21]. Other nodes on the network will
validate the block that gets added. Typically multiple
miners compete to mine a block at any point in time
and the miner who succeeds is awarded some amount
of cryptocurrency (as a reward for adding data to the
blockchain). Some crypto-currencies also use a proof-
of-stake algorithm [17] to verify the blocks.

2.2 Merkle tree

The data in a blockchain is securely stored using a
Merkle tree [19]. A merkle tree is a tree where every
parent stores the combined hash of all of its children; the
values are stored in the leaves. Each node contains a list
of the hashes of its children. This also means that if the
value of any node N in the tree changes, the hash of every
node in the path from that node N to the root of the tree
will change. This allows us to detect if any piece of data
in the tree has been modified in which case the root hash
will not match. The root of the tree is publicly available
to clients, and clients can use this to verify reads.

Figure 1: Update in Merkle tree. This figure shows an
update in a merkle tree where leaf nodes are represented
by numbers. The non-leaf nodes Ha, Hb, Ha’ and Hb’,
store the hash of their children. When a value 3 in the
merkle tree is updated to 2, the hash of its parent node
changes from Hb to Hb’ and so the hash of the root node
from Ha to Ha’. Any update to a node changes the hashes
of all nodes in the path from that node to the root.

2.3 Ethereum protocol

The Ethereum nodes connect to each other through re-
mote procedure calls (RPC) to exchange block informa-
tion. Each block header consists of a monotonously in-
creasing unique block number and a cryptographic hash
of the previous block in the chain (this chains the blocks
together). Ethereum uses Keccak-256 [4] for generat-
ing cryptographic hashes. It uses a Merkle Patricia tree
(§3.1) to store the data. There are two local tries (data
from each block) and a global state trie. The global state
trie tracks the state of each account, and stores details
such as account id and balance.

ETH and LES protocols. There are different types of
nodes in an ethereum network - fullNode, fastNode
and lightNode. A fullNode downloads the en-
tire history of blockchain from the beginning while a
lightNode downloads only the block headers and gets
the block bodies on demand from a fullNode through
RPC calls. Ethereum runs ETH protocol between two
fullNode in the cluster, and LES protocol [9] to manage
the interaction between a lightNode and a fullNode in
the cluster. A fullNode returns a merkle proof along
with the requested data to a lightNode. A merkle
proof is simply the list of hash values in the tree on the
path from the requested value node to the root node. A
lightNode can verify if the data is cryptographically
correct or not using the merkle proof.

3 Storage in Ethereum
LSM-based key-value stores like LevelDB [15],
RocksDB [13], and PebblesDB [23] provide high write
throughput and reasonable read throughput. They excel
at random reads and writes. Ethereum uses crypto-
graphic hashes as identifiers for its data; hence it uses
LevelDB as its data store, storing the hash as the key,
and the data as the value. Ethereum uses Recursive
Length Prefix encoding [12] to encode its data.



3.1 Merkle Patricia Trie

Ethereum uses a Merkle Patricia trie [11] to store the
data, where the keys are stored in hexadecimal format.
A merkle patricia trie in Ethereum consists of four types
of nodes; fullNode, which branches out into 17 child
nodes (16 children one each for each character of hex
and 1 child if there’s a value terminating at that node);
shortNode, an optimization which uses a prefix as the key
if there’s no branching at that prefix; hashNode, which is
used to convert a hash to a node doing a LevelDB lookup;
valueNode, which is the leaf node which contains the
value stored for that key. Ethereum trie maintains both
in-memory trie and on-disk trie. On doing a commit, the
in-memory trie is committed to the disk by writing key-
value pairs to LevelDB, by introducing hash nodes.

3.2 LevelDB

Ethereum uses LevelDB extensively to store all of its
data. For example, a key would be the hash of a block
header, and the value would be the encoded value of
the block header. Transaction data is also stored as key-
value pairs with the transaction ID as the key. Ethereum
uses a number of merkle patricia tries to store state; each
node of the trie is also stored in LevelDB. As a result,
Ethereum does a significant number of reads and writes
to LevelDB during normal operation.

3.3 State trie

The State trie is a global trie which contains the state
of all the accounts in the public network. Each account
id in Ethereum is a randomly generated 20 bytes address.
Ethereum uses the 256-bit hash of the account ID to store
its data: the hash becomes the path through the patri-
cia trie, with the data at the end of the path. Each node
in the patricia trie is 4 bits; thus, resolving 256 bits re-
quires traversing 64 nodes (each of which requires read-
ing a LevelDB key) to get to the data. To improve per-
formance, Ethereum uses a shortNode in the patricia
trie to compact many nodes along a path into a single
node. Even with this optimization, reading a single value
in Ethereum requires tens of LevelDB reads.

4 The Ethereum Storage Bottleneck
Ethereum’s authenticated storage has an IO amplification
problem: every Ethereum read requires a large number of
LevelDB reads, and every Ethereum write requires mul-
tiple LevelDB writes. Attackers have capitalized on this
storage bottleneck to mount a DOS attack on the public
network [8].

The root cause of the storage bottleneck is the design
of the authenticated storage. Just building a patricia trie
on top of LevelDB leads to significant amplification. In
the worst case, an Ethereum read can lead to 64 LevelDB
get() requests, which internally can each lead to multi-

Figure 2: Extensive use of LevelDB. This figure shows a
single account value lookup. The account is encoded as
a byte (here, 0x2f), the lookup on the account translates
to 2 LevelDB lookups, one at each FullNode (FN) be-
fore reaching the ValueNode (VN). Thus, for accounts en-
coded using keccak 256 hash (32 bytes), a lookup on the
value of the account translates to 64 LevelDB lookups.

ple storage reads.

Experimental setup. We started a private ethereum net-
work in which we imported the initial 1.6M blocks of the
real-world public Ethereum blockchain [6]. We used the
go Ethereum client (geth) [10] to start a fullNode that
imports the blockchain data. We ran this setup on a ma-
chine with 16 GB of RAM and the block chain data was
stored on a 2TB Intel 750 series SSD (using a software
raid0). The following section provides some preliminary
results on the number of storage reads.

Results. Our experiment processes all 1.6M blocks,
parsing the transactions in each block, extracting the
unique account IDs and obtaining the balance for each
account. We augmented internal metrics provided by
geth with our own to obtain the following results:

getBlock: getBlock(blockNum) returns the block
body of the block with the number blockNum. We found
that it resulted in roughly 8M LevelDB get calls for 1.6M
blocks (around 5 LevelDB gets per block).

getTransaction: getTx(txHash) returns the details of
the transaction with the hash txHash. Retrieving 5.2M
transactions resulted in 10.4M LevelDB gets (2 LevelDB
gets per transaction). The number of LevelDB gets per
transaction is low because the transactions are retrieved
from local transaction tries rather than global state trie.

getBalance: getBalance(addr) returns the amount of
ether balance present in the account addr. The experi-
ment resulted in around 1.4M LevelDB gets for 0.22M
account addresses. The observed amplification is 7× in-
stead of the worst-case 64× as the total amount of data
is small, leading to a depth of only seven in the patricia
trie. As the amount of data in the blockchain increases,
the depth of the patricia trie will also increase, leading to
higher amplification.

Interaction with light nodes. An Ethereum lightNode

sends data request to a fullNode and the fullNode per-



Metric Value Metric Value

# blocks 1.6M # account lookups 0.22M
# transactions 5.2M # leveldb gets 1.4M (7×)
# accounts 0.22M depth of state trie 7
Total time 562 s Time in storage 527 s

Table 1: Preliminary metrics. The table shows some
metrics from the Ethereum public main network for the
first 1.6M blocks. Looking up ether balance for 0.22M
accounts results in 1.4M leveldb gets, with a read ampli-
fication of 7×. 93.8% of the overall time taken is spent
in the storage layer.

forms the IO to retrieve the data, and sends it back to the
lightNode along with the merkle proof. A fullNode

that is responding to many lightNode requests will be
under significant IO pressure.

Latency metrics. To gauge the influence of storage
layer in the overall latency of normal operations, we
measure the overall time taken to read 1.6M block de-
tails, and count the number of transactions and accounts
within those blocks, and the corresponding amount of
time spent in the storage layer. Table 1 shows the num-
bers. For this experiment, we by-passed the javascript
console provided by ethereum in order to eliminate the
overhead of RPC calls, and we directly interact with the
geth client (with the golang layer). We see that around
96.2% of the time is spent in the storage layer (to read
from LevelDB).

Note that we have analyzed the worst case where sus-
tained reads are being serviced by a single node, and
networking and RPC overhead are eliminated. In a real-
world deployment, a node could experience similar stress
on its storage if it is serving hundreds or thousands of
light nodes which are each requesting blocks. This is
possible for workloads such as analytics or auditing.

Thus from Table 1, we can see that Ethereum’s authen-
ticated storage design significantly amplifies (by 7×) the
number of high-level reads and writes to LevelDB, re-
ducing throughput and increasing latency. The problem
will only get worse over time, as more and more data is
added to the Ethereum blockchain.

5 Proposed solution: Merkelized LSM
The challenge is to design an authenticated storage sys-
tem that reduces the IO amplification, yet allows reads to
be authenticated. To address this challenge, we present a
novel data structure called Merkelized LSM (mLSM).

mLSM combines techniques from merkle trees and
log-structured merge trees. We will first describe a trivial
solution to optimize the reads and then explain the short-
comings of the trivial approach. We will then explain
the intuition behind mLSM and then discuss its design.

We will then analyze mLSM and show that it improves
storage performance.

5.1 Caching merkle proofs

The main problem is that each Ethereum read results in
multiple LevelDB reads. A straightforward solution is
to just cache the value and the merkle proof for each
Ethereum read in LevelDB, and just use the cache to
serve Ethereum reads. For a read-only workload, this
works great; the problem arises with writes. Each write
updates several nodes in the Patricia Trie, including the
root. As a result, all the cached merkle proofs are in-
validated. The entire cache being invalidated on every
write makes this an impractical approach, and demon-
strates the unique challenges of authenticated storage.

5.2 Merkelized LSM

Insight. The key insight behind mLSM follows directly
from the shortcoming of the trivial solution. The trivial
solution did not work because there was tight coupling
between any two nodes in the tree (since all the nodes
formed a single tree under a single root). So, mLSM
strikes at that invariant to maintain multiple independent
tries such that a change of value in one tree doesn’t affect
other trees. When a write happens, only the cached val-
ues of the affected tree have to be invalidated. Another
key insight derived from the trivial solution is to decou-
ple lookup of value from the trie itself. The main purpose
of the trie is to provide authentication, but it is not nec-
essarily the only source for lookups. Decoupling lookup
and authentication can reduce the number of LevelDB
gets during a lookup.

Design. We combine the Merkle Tree and Log-
Structured Merge Trees data structures in Merkelized
LSM (mLSM). The shortest way to describe mLSM is
to take LSM and replace immutable sstables with im-
mutable patricia trees. In mLSM, we envision multi-
ple levels similar to log-structured merge trees. Each
level will have multiple immutable patricia tries. mLSM
also contains a lookup cache per level; looking up a key
would return its value and its merkle proof. To connect
all the patricia tries together (so that reads can be veri-
fied), mLSM introduces a master root node. The merkle
proofs in each level do not contain the master root hash;
this way, we make sure that the tries are independent of
each other. mLSM replaces merkle patricia tries with
static binary merkle trees (fan out of 2 instead of 16)
since the binary trees balance data better.

mLSM Writes. Similar to log-structured merge trees,
writes and updates are buffered in memory and then writ-
ten to storage as a large batch. mLSM does not update
the binary merkle trees in place; instead, it writes new bi-
nary merkle trees to Level 0. When the number of binary
merkle trees in Level 0 reaches a certain threshold, they



Figure 3: Merklized LSM Design. mLSM has many binary merkle trees in every level (L0, L1, ..., Ln) and a LevelDB
Cache, that maps a key in each level (key, level) to its value and the associated MerkleProof (value, proof). Insertions
are performed to Level0 (L0) and the data in every level is periodically compacted to the higher indexed levels.

are compacted (merged to form a larger binary merkle
tree), and written as large batched I/O to the next level.
Note that a write only affects the new merkle binary trees
and the master root node; nothing else in the storage sys-
tem is affected, avoiding one of the big problems in the
trivial solution. The key to our solution is having multi-
ple patricia trees that are independent of each other, ex-
cept for the root node.

mLSM Reads. Similar to an LSM read, an mLSM read
might require inspecting data in multiple levels. In Level
0, there might be multiple tries containing the key we are
searching for; in all other levels, mLSM maintains the
invariant that there is a single trie containing the required
key. Once the right merkle binary tree is identified, it is
queried to get the value and the merkle proof. The merkle
proof is then extended to include the master node, and the
value and the merkle proof are returned to the user.

Caching. mLSM caches both the values and authenti-
cation for each key. mLSM uses LevelDB for caching,
with the key being the original key, and the value being
a combination of the data and the merkle proof. mLSM
reads inspect the different levels one by one starting with
the lowest level and returning once the key is found in a
level. There is a cache for each level in mLSM and reads
which hit the cache do not need to traverse through the
merkle tree to read the value and merkle proof. The Level
0 cache needs to handle multiple copies of the same key
using something like a version number.

Challenges. Note that mLSM introduces read and write
amplification of its own, due to the multiple levels. We
propose to handle the read amplification with Bloom
Filters [5]. Bloom filters can be used to optimize the
lookups efficiently such that we only read the trie which
can possibly contain the key. With such optimizations,
on an average, we will read only one trie for a Get re-
quest and the value and merkle proof can be retrieved
with a single LevelDB get from the corresponding cache.

The write amplification introduced by the mLSM
structure is another challenge. We could potentially bor-
row ideas from our previous work, Fragmented Log-
Structured Merge Trees [23], to reduce the write ampli-
fication while maintaining read performance.

Another subtle challenge is that since the mLSM struc-
ture is used to verify reads, different nodes should reflect
the same mLSM state at any point in time. This means
that the compaction of tries should be deterministic and
should have the same behavior in all the nodes – this
is not the case with LSM-based key-value stores today,
where compaction is triggered in the background in a
non-deterministic way. Deterministic compaction could
possibly be enforced by using an opcode for compaction
which forces compaction of the state rather than triggers
from the thresholds. Other challenges include efficiently
storing bloom filters in memory and limiting the number
of level-0 tries.

Cost Analysis. When bloom filters are added to each trie
in mLSM, each mLSM read will only need to read one
trie with high probability. Thus, on a cache miss, the cost
of the mLSM read will be O(D) where D is the depth
of the merkle binary tree where the key is located. We
believe this will be significantly smaller than the depth
of the merkle patricia trie used in Ethereum today. For
all consecutive reads of a key (during a cache hit), the
cost of the read is O(1) since it can be served with just
one LevelDB lookup.

Each mLSM write will be buffered in memory, and
written as an immutable merkle binary tree to Level 0.
Each key will be written only once to each level, so the
write cost will be O(H) where H is the height of mLSM.
We believe this will also be significantly lower than the
write cost in Ethereum today, which has to update all
nodes on the path from the leaf to the root. Additionally,
since the writes are buffered in memory and written as a
batch, the write cost is amortized among all the keys.

6 Conclusion
We show that Ethereum suffers from read and write
amplification due to its authenticated storage system.
We present a novel data structure, Merkelized LSM
(mLSM), that lowers read and write amplification while
still providing authenticated reads. mLSM is applica-
ble to any authenticated storage. We plan to modify
Ethereum to introduce the mLSM structure and evaluate
the potential increase in storage performance.
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