PebblesDB: Building Key-Value
Stores using Fragmented Log
Structured Merge Trees

Pandian Raju', Rohan Kadekodi', Vijay Chidambaram'*, Ittai Abraham®
'"The University of Texas at Austin
“VMware Research

vmware @ TEXAS

s

What is a key-value store?

e Store any arbitrary value for a given key
Keys Values

{“name”: “John Doe”, “age”: 25}

{“name”: “Ross Gel”, “age”: 28}

What is a key-value store?

e Store any arbitrary value for a given key
Keys Values

{“name”: “John Doe”, “age”: 25}

{“name”: “Ross Gel”, “age”: 28}

* Insertions:
 Point lookups:
- Range Queries:

What is a key-value store?

e Store any arbitrary value for a given key
Keys Values

{“name”: “John Doe”, “age”: 25}

{“name”: “Ross Gel”, “age”: 28}

* Insertions: put(key, value)
 Point lookups:
- Range Queries:

What is a key-value store?

e Store any arbitrary value for a given key
Keys Values

123

{“name”: “John Doe”, “age”: 25}

124

{“name”: “Ross Gel”, “age”: 28}

* Insertions: put(key, value)
 Point lookups: get(key)
- Range Queries:

What is a key-value store?

e Store any arbitrary value for a given key
Keys Values

123

{“name”: “John Doe”, “age”: 25}

124

{“name”: “Ross Gel”, “age”: 28}

* Insertions: put(key, value)
 Point lookups: get(key)
- Range Queries: get_range(key1, key2)

Key-Value Stores - widely used

« Google's BigTable powers Search, Analytics, Maps and Gmail

» Facebook's RocksDB is used as storage engine in production
systems of many companies

(® Pinterest NETFLIX UBER /g\airbnb
Google @8 Microsoft S aMmazon

@ Expedia Quora Linked [T}

Write-optimized data structures

 Log Structured Merge Tree (LSM) is a write-optimized data structure
used in key-value stores

 Provides high write throughput with good read throughput, but
suffers high write amplification

“HF’B‘“HCEZEA W eveos oy ,nﬂuxDB

BigTable

Write-optimized data structures

 Log Structured Merge Tree (LSM) is a write-optimized data structure
used in key-value stores

 Provides high write throughput with good read throughput, but
suffers high write amplification

« Write amplification - Ratio of amount of write IO to amount of user
data

R
N

10GB If total write 1/0O is 200 GB
Client KV-store
User data Write amplification = 20

N~

Write amplification in LSM based KV stores

* Inserted 500M key-value pairs
« Key: 16 bytes, Value: 128 bytes
« Total user data: ~45 GB

2100
1800

1500

[aa]
S

o 1200
2

< 900
=

600

300
45

0 I

RocksDB LevelDB PebblesDB User Data

Write amplification in LSM based KV stores

* Inserted 500M key-value pairs
« Key: 16 bytes, Value: 128 bytes
« Total user data: ~45 GB

2100

1868 (42x)

1800

1500

1222 (27x)

Write 10 (GB)
[ER
N
o
o)

900 756 (17x)
600
300
45

0

RocksDB LevelDB PebblesDB User Data

11

Why is write amplification bad?

« Reduces the write throughput
* Flash devices wear out after limited write cycles

(Intel SSD DC P4600 - can last ~5 years assuming ~5 TB write per day)

RocksDB can write ~500 GB of user data per day to a SSD to last 1.25 years

Data source: https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4600-series/dc-p4600-1-6tb-2-5inch-3d1.html

PebblesDB

High performance write-optimized key-value store

Built using new data structure
Fragmented Log-Structured Merge Tree

Achieves 3-6.7x higher write throughput and 2.4-3x
lesser write amplification compared to RocksDB

Gets the highest write throughput and least write
amplification as a backend store to MongoDB

Outline

 Log-Structured Merge Tree (LSM)

* Fragmented Log-Structured Merge Tree (FLSM)
* Building PebblesDB using FLSM

* Evaluation

« Conclusion

Outline

 Log-Structured Merge Tree (LSM)

* Fragmented Log-Structured Merge Tree (FLSM)
* Building PebblesDB using FLSM

* Evaluation

 Conclusion

15

Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

Data is stored both in memory and storage

Log Structured Merge Tree (LSM)

Write (key, value

)
) [N
Memory

Storage

Writes are directly put to memory

Log Structured Merge Tree (LSM)

Storage

D
Memory

In-memory data is periodically written as files to storage (sequential 1/0)

18

Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

[
[[]

Files on storage are logically arranged in different levels

Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

[
[[]

Compaction pushes data to higher numbered levels

Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

Search using

binary search
Level 1 1...12 1519 25 ... 75 79 99

Files are sorted and have non-overlapping key ranges

21

Log Structured Merge Tree (LSM)

Limit on number
of level O files

In-memory
Memory

Storage
Level O 23....78

[
[[]

Level O can have files with overlapping (but sorted) key ranges

22

Write amplification: Illustration

Level 1 re-write counter: 1

5868 emory

Storage
Level O 237 2348

Level 1 1...12 15 25 39...62 77 95

Max files in level O is configured to be 2

23

Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 237 2348 5868

Level 1 1...12 15 25 39...62 77 95

Level 0 has 3 files (> 2), which triggers a compaction

24

Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 237 2348 5868

Level 1 1...12 15 25 39...62 77 95

* Files are immutable * Sorted non-overlapping files

25

Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 2...37 2348 5868

Level 1 1...12 15.... 25 3962 7795

Set of overlapping files between levels 0 and 1

26

Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 237 2348 5868

Level 1 1...12 15.... 25 3962 77 95

Set of overlapping files between levels 0 and 1

27

Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 2....37 2348 58 68

Level 1 1...12 15 25 39...62 77 95

Set of overlapping files between levels 0 and 1

28

Write amplification: Illustration

Level 1 re-write counter: 2

Memory

Storage
Level O 2....37 2348 5868

Level 1 1...12 15 25 39...62 77 95

Compacting level 0 with level 1

29

Write amplification: Illustration

Level 1 re-write counter: 2

In-memory

Level O

[
[[]

Level 0 is compacted

30

Write amplification: Illustration

Level 1 re-write counter: 2

Level O

Data is being flushed as level O files after some Write operations

31

Write amplification: Illustration

Level 1 re-write counter: 2

Storage
Level O 10 33 1753 1...121

Level 1 1...23 24 46 47 68 7795

Compacting level 0 with level 1

32

Write amplification: Illustration

Level 1 re-write counter: 3

Level O

Level 1

Compacting level 0 with level 1

33

Write amplification: Illustration

Level 1 re-write counter: 3

Level O

Level 1 31....60 6290 92 ...121

Existing data is re-written to the same level (1) 3 times

34

Root cause of write amplification

Rewriting data to the same level
multiple times

To maintain sorted non-overlapping
files in each level

Outline

 Log-Structured Merge Tree (LSM)

* Fragmented Log-Structured Merge Tree (FLSM)
* Building PebblesDB using FLSM

* Evaluation

 Conclusion

36

Naive approach to reduce write amplification

* Just append the file to the end of next level
« Many (possibly all) overlapping files within a level

(all files have overlapping key ranges)

* Affects the read performance

37

Partially sorted levels

« Hybrid between all non-overlapping files and all overlapping files
* Inspired from Skip-List data structure
« Concrete boundaries (guards) to group together overlapping files

13 35

70
Level i 13...34 18 ... 31 40 47 45 56 42 65 7287

(files of same color can have overlapping key ranges)

38

Fragmented Log-Structured Merge Tree
Novel modification of LSM data structure
Uses guards to maintain partially sorted levels

Writes data only once per level in most cases

FLSM structure

Storage
Level O

70

Level 1 1...

1559
1 4
Level 2 1632 15 23

Note how files are logically grouped within guards

77 87 8295

5 0

40

FLSM structure

Storage

Level O

Level 1

Level 2

Guards get more fine grained deeper into the tree

How does FLSM reduce write amplification?

How does FLSM reduce write amplification?

Storage
Level O

Level 1 1...

70 95

Max files in level O is configured to be 2

43

How does FLSM reduce write amplification?

In-memory
Memory

Level O

Level 1 R 15....59

5_ 40

16 32 15 23 45 65

Compacting level O

70 95

-

1

44

How does FLSM reduce write amplification?

In-memory
Memory

Storage

Level O

15 70

Level 1 1...12 15....59 77 87 8295

\

40 V70 95

5
-’ \.t

15 -7 TT~~l
Level 2 16...32 l 15...23 45 65

Fragmented files are just appended to next level

45

How does FLSM reduce write amplification?

In-memory
Memory

Storage

Level O

Level 1

\70

Guard 15in Level 1 is to be compacted

46

How does FLSM reduce write amplification?

In-memory

Storage
Level O

15 7

15 _ 40 v 70 95

0
77 87 8295

\

16 32 1523 45 65 7090

Files are combined, sorted and fragmented

47

How does FLSM reduce write amplification?

In-memory
Memory

Level O

70

Level 1

V70 T~ L 95

Fragmented files are just appended to next level

48

How does FLSM reduce write amplification?

FLSM doesn't re-write data to the same level
IN MoOst cases

How does FLSM maintain read performance?

FLSM maintains partially sorted levels to efficiently
reduce the search space

49

Selecting Guards

« Guards are chosen randomly and dynamically
* Dependent on the distribution of data

Selecting Guards

« Guards are chosen randomly and dynamically
* Dependent on the distribution of data

Keyspace

1 le+9

Selecting Guards

« Guards are chosen randomly and dynamically
* Dependent on the distribution of data

1 Keyspace

le+9

52

Selecting Guards

« Guards are chosen randomly and dynamically
* Dependent on the distribution of data

1 Keyspace

le+9

53

Operations: Write

Write (key, value) Put(1, “abc”)

—
Memory

Storage

Level 1 1...

70 95

15 40
Level 2 16 32 15 23 45 ... 65 70 90 96 ... 99

FLSM structure

54

Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1...12 15....59 77 87 8295

70 95

15 40
Level 2 16 32 15 23 45 ... 65 70....90 9699

FLSM structure

55

Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 15....59 77 87 8295

5 40 70 95

1
Level 2 16 32 15 23 45 65

Search level by level starting from memory

7090 96 99

Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 15....59 77 87 8295

5 40 70 95

1
Level 2 16 32 15 23 45 65

All level O files need to be searched

7090 96 99

57

Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 1559 77 87 8295

5 40 70 95

1
Level 2 16 32 15 23 45 65

Level 1: File under guard 15 is searched

7090 96 99

Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 15....59 77 87 8295
15 40 70 95
Level 2 16 32 15 23 45 ... 65 7090 96 99

Level 2: Both the files unc

er guard 15 are searched

59

High write throughput in FLSM

« Compaction from memory to level 0O is stalled
 Writes to memory is also stalled

Write (key, value)

Zx:> In-memory

If rate of insertion is higher than rate of compaction, write throughput
depends on the rate of compaction

60

High write throughput in FLSM

« Compaction from memory to level 0O is stalled
 Writes to memory is also stalled

FLSM has faster compaction because of lesser 1/0 and

hence higher write throughput

If rate of insertion is higher than rate of compaction, write throughput
depends on the rate of compaction

Challenges in FLSM

 Every read/range query operation needs to examine multiple

files per level

« For example, if every guard has 5 files, read latency is
increased by 5x (assuming no cache hits)

Trade-off between write I/0O and read performance

62

Outline

 Log-Structured Merge Tree (LSM)

* Fragmented Log-Structured Merge Tree (FLSM)
 Building PebblesDB using FLSM

* Evaluation

 Conclusion

63

PebblesDB

e Built by modifying HyperLevelDB (+9100 LOC) to use FLSM

« HyperLevelDB, built over LevelDB, to provide improved
parallelism and compaction

» API compatible with LevelDB, but not with RocksDB

Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
» Get() performance is improved using file level bloom filter

Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
« Get() performance is improved using file level bloom filter

>

Possibly yes

Is key 25
I

present?

> Definitely not

66

Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
« Get() performance is improved using file level bloom filter

15 70
Level 1 1...12 15 39

7797 8295

Maintained
in-memory

Bloom Filter Bloom Filter

Bloom Filter Bloom Filter

67

Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
« Get() performance is improved using file level bloom filter

15 70
Level 1 1...12 15 39

7797 8295

Maintained
in-memory

Bloom Filter Bloom Filter

Bloom Filter Bloom Filter

PebblesDB reads same number of files as any LSM based store

68

Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
» Get() performance is improved using file level bloom filter

« Range query performance is improved using parallel threads
and better compaction

Outline

 Log-Structured Merge Tree (LSM)

* Fragmented Log-Structured Merge Tree (FLSM)
* Building PebblesDB using FLSM

 Evaluation

 Conclusion

70

Fvaluation

Real world workloads - YCSB

Micro-benchmarks

Low memory

Small dataset

NoSQL applications

Crash recovery

CPU and memory
usage

Aged file system

71

Fvaluation

|

J Real world workloads - YCSB

-

NoSQL applications {

72

Real world workloads - YCSB

« Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
* Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

2.5

2
=
; (aa]
o 7‘\‘
E % - H HyperlLevelDB
: g M RocksDB
27
28 ! LevelDB
oy
s > |
=" B PebblesDB
i
- 0.5

o

Load A Run A Run B Run C Run D Load E Run E Run F Total IO
Load A - 100 % writes Run D -95% reads (latest), 5% writes

Run A -50% reads, 50% writes Load E - 100% writes

Run B -95% reads, 5% writes Run E - 95% range queries, 5% writes

Run C -100% reads Run F - 50% reads, 50% read-modify-writes

73

Real world workloads - YCSB

« Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
* Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

2.5
2
£ © o @ X X X XQ
3 8 = 8 8 2 2 o 2 o
o8 N S S o o 2 & 2 < ® HyperLevelDB
R - 2 e S 2 g 2 2
- 2 A LA ™ ~ ~ < o9 N A B RocksDB
> :| on (@] o (@] LN (9p] Lﬂ (90 (@)
£33 1 LevelDB
oy
5 >
o T B PebblesDB
I-E 0.5
0
Load A Run A Run B Run C Run D Load E Run E Run F Total IO
Load A - 100 % writes Run D -95% reads (latest), 5% writes
Run A -50% reads, 50% writes Load E - 100% writes
Run B -95% reads, 5% writes Run E -95% range queries, 5% writes
Run C -100% reads Run F - 50% reads, 50% read-modify-writes

74

Real world workloads - YCSB

« Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
* Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

2.5
2
£ © o @ @ X XQ XQ
3 8 = 2 a 2 a © 2 o
o8 g 5 g g g g 2 g © = HyperLevelDB
5% | & = 2 5 3 3 < 2 2
s v A o N ~ < % o~ S ® RocksDB
> :| on (@] o (@] [Tp] (9p] [Tp] (90 (@)
£33 1 LevelDB
oy
5 >
o T B PebblesDB
',E 0.5
0
Load A Run A Run B Run C Run D Load E Run E Run F Total IO
Load A - 100 % writes Run D -95% reads (latest), 5% writes
Run A -50% reads, 50% writes Load E - 100% writes
Run B -95% reads, 5% writes Run E -95% range queries, 5% writes
Run C -100% reads Run F - 50% reads, 50% read-modify-writes

75

Real world workloads - YCSB

« Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
* Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

2.5
2
£ X o @ @ X XQ XQ
3 8 = 2 2 2 a © 2 o
o8 g 5 g g g g 2 g © = HyperLevelDB
gz 7| 8 = 3 g 5 2 < 2 2
s v A o N ~ < % o~ S ® RocksDB
> :I on (@] o (@] [Tp] (9p] [Tp] (90 (@)
£33 1 LevelDB
oy
5 >
o T B PebblesDB
',E 0.5
0
Load A Run A Run B Run C Run D Load E Run E Run F Total IO
Load A - 100 % writes Run D -95% reads (latest), 5% writes
- 50% reads, 50% writes Load E - 100% writes
Run B -95% reads, 5% writes Run E - 95% range queries, 5% writes
Run C -100% reads Run F - 50% reads, 50% read-modify-writes

76

Real world workloads - YCSB

« Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
* Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

2.5
2
£ © o @ @ X X XQ
3 8 = 2 8 2 2 © 2 o
° 8 S & S S S 2 a 2 < u HyperlevelDB
gz 7| 8 = 3 g 5 2 < 2 2
-: a))) ~ ~N < Q ~ A B RocksDB
> 1' on (@] o (@] [Tp] (9p] [Tp] (90 (@)
£33 1 LevelDB
oy
5 >
oT W PebblesDB
',E 0.5
0
Load A Run A Run B Run C Run D Load E Run E Run F Total IO
Load A - 100 % writes Run D -95% reads (latest), 5% writes
Run A -50% reads, 50% writes - 100% writes
Run B -95% reads, 5% writes Run E - 95% range queries, 5% writes
Run C -100% reads Run F - 50% reads, 50% read-modify-writes

77

Real world workloads - YCSB

« Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
* Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

2.5
2
£ X o @ @ X XQ XQ
3 8 = 2 8 2 2 © 2 o
° 8 S & S S S 2 a 2 < u HyperlevelDB
gz 7| 8 = 3 g 5 2 < 2 2
-: a))) ~ ~N < Q ~ A B RocksDB
> :| on (@] o (@] LN (9p] [Tp] (90 (@)
£33 1 LevelDB
oy
5 >
o T B PebblesDB
',E 0.5
0
Load A Run A Run B Run C Run D Load E Run E Run F Total IO
Load A - 100 % writes Run D -95% reads (latest), 5% writes
Run A -50% reads, 50% writes Load E - 100% writes
Run B -95% reads, 5% writes - 95% range queries, 5% writes
Run C -100% reads Run F - 50% reads, 50% read-modify-writes

78

NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

Throughput ratio wrt

WiredTiger

2.5

2

1.5

1

0.5

0

Load A Run A

Run B

Run C

Run D Load E Run E Run F Total 10

WiredTiger
H RocksDB

H PebblesDB

Load A - 100 % writes

Run A -50% reads, 50% writes

Run B -95% reads, 5% writes

Run C

- 100% reads

Run D -95% reads (latest), 5% writes
Load E - 100% writes
Run E -95% range queries, 5% writes

Run F - 50% reads, 50% read-modify-writes

79

NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

2.5
g 2 %) %) %) (%) %)
— S~ wn S~ wn %)
3 a) 3 a a a) \ m
o (e} o (@) (@] (@) O
= S A4 g h4 A4 ~ h4 Q Q o0
5 & 1.5 0 > o 2 3 %3 " pos @ u WiredTiger
5% R 2 4 2 3 R = & 3 ,
2 9 1 = RocksDB
i —
%” = m PebblesDB
= 0.5

0
Load A Run A Run B Run C Run D Load E Run E Run F Total IO

Load A - 100 % writes Run D -95% reads (latest), 5% writes

Run A -50% reads, 50% writes Load E - 100% writes

Run B -95% reads, 5% writes Run E -95% range queries, 5% writes

Run C - 100% reads Run F - 50% reads, 50% read-modify-writes

NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

Throughput ratio wrt

WiredTiger

2.5

2

1.5

1

0.5

0

20.73 Kops/s

9.95 Kops/s

Load A Run A

15.52 Kops/s

Run B

19.69 Kops/s

Run C

~ 2
(%] (%]
a 3 %) n [aa]
(@] (@] O
> > g g @
A 3 i 0 o = WiredTiger
™ o © ™~ ~)
N ™ © @ < H RocksDB
B PebblesDB
Run D Load E Run E Run F Total 10

Load A - 100 % writes

Run A -50% reads, 50% writes

Run B -95% reads, 5% writes

Run C

- 100% reads

Run D -95% reads (latest), 5% writes

Load E - 100% writes

Run E - 95% range queries, 5% writes

Run F - 50% reads, 50% read-modify-writes

81

NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

2.5
g 2 %) %) %) (%) %)
S S~ wn S~ wn %)
3 3) a a a 3) \ m
o (e} (e} (@) (@] (@) O
— S A4 O h4 A4 A4 A4 o (o] ™
® Y 1.5 N X< ~ o) o o) X X o0
- X ~ Ln N © Ln © L @ O
- = o N e} o] %) o Qo ™ ~
5 O ~N (o)) — — ~ ~ o (o)) <
o o Ve
c = 1
%D 3 m PebblesDB
= 0.5

0
Load A Run A Run B Run C Run D Load E Run E Run F Total IO

Load A - 100 % writes Run D -95% reads (latest), 5% writes

Run A -50% reads, 50% writes Load E - 100% writes

Run B -95% reads, 5% writes Run E -95% range queries, 5% writes

Run C - 100% reads Run F - 50% reads, 50% read-modify-writes

82

NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

Throughput ratio wrt

WiredTiger

2.5

2

1.5

1

0.5

0

20.73 Kops/s
9.95 Kops/s

Load A Run A

15.52 Kops/s

Run B

19.69 Kops/s

Run C

N 2
(%] (%]
a 3 M > o)
o o Q o G)
z Z g 9 7 ,
o 3 0 0 o u WiredTiger
™ o Qo ™ ~N
~ ~N o o)) < ® RocksDB
B PebblesDB
Run D Load E Run E Run F Total 10

Load A - 100 % writes

Run A -50% reads, 50% writes
Run B -95% reads, 5% writes

Run C

- 100% reads

Run D -95% reads (latest), 5% writes

Load E - 100% writes

Run E -95% range queries, 5% writes

Run F - 50% reads, 50% read-modify-writes

83

NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

2.5

2

iowrt

B Kops/s
Kops/s
Kops/s

B Kops/s
Kops/s

Kops/s

Kops/s
3GB

PebblesDB combines low write 10 of WiredTiger with

high performance of RocksDB

Load A - 100 % writes Run D -95% reads (latest), 5% writes
Run A -50% reads, 50% writes Load E - 100% writes
Run B -95% reads, 5% writes Run E -95% range queries, 5% writes

Run C - 100% reads Run F - 50% reads, 50% read-modify-writes

Outline

 Log-Structured Merge Tree (LSM)

* Fragmented Log-Structured Merge Tree (FLSM)
* Building PebblesDB using FLSM

* Evaluation

« Conclusion

85

Conclusion

« PebblesDB: key-value store built on Fragmented Log-Structured
Merge Trees

* Increases write throughput and reduces write 10 at the same time
« Obtains 6X the write throughput of RocksDB

* As key-value stores become more widely used, there have been
several attempts to optimize them

» PebblesDB combines algorithmic innovation (the FLSM data
structure) with careful systems building

https://github.com/utsaslab/pebblesdb

[utsaslab / pebblesdb @uUnwatch~ 9 Unstar 45 YFork 7

<> Code (© Issues 1 i') Pull requests 0 1"l Projects 0 = Wiki Ll Insights

The PebblesDB write-optimized key-value store (SOSP 17)

sosp17 key-value-store flsm leveldb

D 26 commits ¥ 1 branch © 0 releases 22 3 contributors sfs BSD-3-Clause
.

Branch: master v New pull request Create new file = Upload files = Find file Clone or download ~

Latest commit d90182d 3 days ago

- pandiandgithub Commenting bloom filter test temporarily

i} db Commenting bloom filter test temporarily 3 days ago
i doc Adding initial version of PebblesDB code 23 days ago
@ graphs Adding benchmark graphs 21 days ago

U l A ustin The University of Texas at Austin

vmwa re@ ‘ ' Systems and Storage Lab TE)(AS

https://github.com/utsaslab/pebblesdb

L] utsaslab / pebblesdb ® Unwatch~v 9 W Unstar 45 otk 7
<> Code (© Issues 1 (') Pull requests 0 1"l Projects 0 =5 Wiki Ll Insights

The PebblesDB write-optimized key-value store (SOSP 17)

sosp17 key-value-store flsm leveldb \
|
D 26 commits ¥ 1 branch sfs BSD-3-Clause
“ e 0=

Branch: master v New pull re~ .«w file = Upload files = Find file Clone or download ¥

. pandi- Latest commit d90182d 3 days ago
i filter test temporarily 3 days ago

_wing initial version of PebblesDB code 23 days ago

Adding benchmark graphs 21 days ago

U l A ustin The University of Texas at Austin

vmwa re@ " Systems and Storage Lab TE)(AS

Backup slides

Operations: Seek

- Seek(target): Returns the smallest key in the database
which is >= target

« Used for range queries (for example, return all entries
between 5 and 18)

evel0 - 1,2,100, 1000 Get(1)
Levell - 1,5,10, 2000
Level 2 - 5,300, 500

Operations: Seek

- Seek(target): Returns the smallest key in the database
which is >= target

« Used for range queries (for example, return all entries
between 5 and 18)

Llevel0 - 1, 2,100, 1000 Seek(200)
levell - 1,5,10, 2000
Level2 - 5,300, 500

Operations: Seek

- Seek(target): Returns the smallest key in the database
which is >= target

« Used for range queries (for example, return all entries
between 5 and 18)

Operations: Seek

Level O

Level 1

Level 2

In-memory

Seek(23)

1

5

70

15....59
16 32 15 23 45 65

FLSM structure

40

70

77 87 8295

70

Storage

95

96 99

93

Operations: Seek

Seek(23)
Memory
Storage
Level O
70
Level 1 1559 77 87 8295

5 40 70 95

1
Level 2 16 32 1523 45 65

All levels and memtable need to be searched

7090 96 99

Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set

>

Possibly yes

Is key 25

» Definitely not

present?

95

Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set

Level 1

1...12

Bloom Filter Bloom Filter

Get(97)

Bloom Filter

True

Bloom Filter |:>

Maintained
in-memory

96

Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set

7797 8295
Bloom Filter Bloom Filter

False True

15 70
Level 1 1...12 15 39
Bloom Filter Bloom Filter

Get(97)

97

Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set

Level 1 1...12 1539 7797 8295

Bloom Filter Bloom Filter Bloom Filter Bloom Filter

PebblesDB reads at most one file per guard with high probability

98

Optimizations in PebblesDB

* Challenge with seeks: Multiple sstable reads per level
 Parallel seeks: Parallel threads to seek() on files in a guard

Thread 1 Thread 2
| |
\ \

15 70))

Level 1 1...12 1539 7797 8295

Seek(85)

99

Optimizations in PebblesDB

* Challenge with seeks: Multiple sstable reads per level
 Parallel seeks: Parallel threads to seek() on files in a guard

* Seek based compaction: Triggers compaction for a level
during a seek-heavy workload
« Reduce the average number of sstables per guard
« Reduce the number of active levels

Seek based compaction increases write /O but as a trade-off
to improve seek performance

Tuning PebblesDB

* PebblesDB characteristics like
* Increase in write throughput,
 decrease in write amplification and
« overhead of read/seek operation

all depend on one parameter, maxFilesPerGuard (default
2 in PebblesDB)

« Setting this to a very high value favors write throughput
e Setting this to a very low value favors read throughput

Horizontal compaction

* Files compacted within the same level for the last two levels
in PebblesDB

« Some optimizations to prevent huge increase in write 10

Experimental setup

* Intel Xeon 2.8 GHz processor

« 16 GB RAM

* Running Ubuntu 16.04 LTS with the Linux 4.4 kernel
« Software RAIDO over 2 Intel 750 SSDs (1.2 TB each)
 Datasets in experiments 3x bigger than DRAM size

Write amplification

* Inserted different number of keys with key size 16 bytes and value size

128 bytes

Werite 10 ratio wrt PebblesDB

4.5

3.5

2.5

1.5

0.5

10M

2]
O
™~
o
S
i

100M

Number of keys inserted

756 GB

500M

= HyperLevelDB

™ RocksDB
LevelDB

W PebblesDB

104

Micro-benchmarks

« Used db_bench tool that ships with LevelDB
 Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB

« Number of read/seek operations: 10M

2.5

1.5

w)
S~
[%)
o
(@)
4
o~
I~

(%]
S~
(%]
Q.
o
h4
@)
[e0]

7.5 Kops/s

11
6

B PebblesDB

0.5

Throughput ratio wrt HyperLevelDB

Random-Writes Reads Range-Queries

Benchmark
105

Micro-benchmarks

« Used db_bench tool that ships with LevelDB
 Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB

« Number of read/seek operations: 10M

Seq-Writes Random-Writes Reads Range-Queries Deletes

2.5

239.05 Kops/s
11.72 Kops/s
6.2 Kops/s

(%]
S~
(%]
Q.
o
A4
(@)
o¢}
o

7.5 Kops/s

12

Throughput ratio wrt HyperLevelDB

Benchmark
106

Multi threaded micro-benchmarks

« Writes - 4 threads each writing 10M

« Reads - 4 threads each reading 10M
« Mixed - 2 threads writing and 2 threads reading (each 10M)

Writes Reads Mixed

2.5

2

1.5

(%2]
S~
(%]
Q.
(@]
V4
o0
0
o

40.2 Kops/s

(2]
S~
(%]
Q.
(@]
V4
<
<
<

1

B PebblesDB

0.5

Throughput ratio wrt HyperLevelDB

Benchmark 107

Small cached dataset

* Insert 1M key-value pairs with 16 bytes key and 1 KB value

 Total data set (~1 GB) fits within memory
» PebblesDB-1: with maximum one file per guard

2.5

B HyperlLevelDB
m PebblesDB

H o

Writes Reads Range-Queries

45.25 Kops/s
205.76 Kops/s
205.34 Kops/s

Throughput ratio wrt HyperLevelDB
[EEY

Benchmark

108

Small key-value pairs

* Inserted 300M key-value pairs
« Key 16 bytes and 128 bytes value

3.5
o
)
% 3
>
Q
-
o 25
Q.
£ 2 0 0
g 5 2z Z
3 > kS g ® HyperLevelDB
o (o0]
= L 3 & ™ m PebblesDB
— < O (o}
5 1
Q.
N =
S 05 - -
3 0
S
=

0

Writes Reads Range-Queries

Benchmark 109

Aged FS and KV store

* File system aging: Fill up 89% of the file system
« KV store aging: Insert 50M, delete 20M and update 20M key-value
pairs in random order

2.5

m HyperlLevelDB
B RocksDB

E"\

Writes Reads Range-Queries

1.5

17.37 Kops/s

(%] (%2]
S~ S~
(%] (%]
Q. Q.
©] ©]
V4 V4
LN (e)]
(\o] (@]
LN

6

0.5

Throughput ratio wrt HyperLevelDB

Benchmark 110

Low memory micro-benchmark

* 100M key-value pairs with 1KB (~65 GB data set)
« DRAM was limited to 4 GB

2.5

(@] o o
1.5 °¥° S S ® HyperlLevelDB
~ (o] ~ _
~) g} ® RocksDB
oV @V <
LevelDB
B PebblesDB

Throughput ratio wrt HyperLevelDB

1
0
rites

Reads
Benchmark 111

Impact of empty guards

* Inserted 20M key-value pairs (0 to 20M) in random order
with value size 512 bytes

 Incrementally inserted new 20M keys after deleting the older
keys

« Around 9000 empty guards at the start of the last iteration

« Read latency did not reduce with the increase in empty
guards

NoSQL stores - HyperDex

« HyperDex - distributed key-value store from Cornell
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

Throughput ratio wrt

HyperLevelDB

1.8
<L <L <L <L <L L
(%) (%]
1.6 g g g g g > > g @
(@) (@) (@] (@] (@] o o o (U]
1 4 ~ ~ ~ e ~ (@] (@] 4 LN
: 1) o) I~ LN ~ < ~ — :
o 00 — ~ o ~ ~ — [SA]
1.2 ~ - i ~ o © ™ ™ S
' ~ ~ m [32) ™M ~ o — —
1
B HyperlLevelDB
0.8
H PebblesDB
0.6
0.4
0.2

Load A Run A Run B Run C

RunD Load E Run E Run F Total 10

Load A - 100 % writes

Run A -50% reads, 50% writes
Run B -95% reads, 5% writes
Run C -100% reads

Run D -95% reads (latest), 5% writes
Load E - 100% writes

Run E - 95% range queries, 5% writes
Run F -50% reads, 50% read-modify-writes 113

CPU usage

» Median CPU usage by inserting 30M keys and reading 10M keys
* PebblesDB: ~171%
« Other key-value stores: 98-110%

* Due to aggressive compaction, more CPU operations due to
merging multiple files in a guard

Memory usage

« T00M records (16 bytes key, 1 KB value) - 106 GB data set

« 300 MB memory space
* 0.3% of data set size

« Worst case: 100M records (16 bytes key, 16 bytes value)
~3.2 GB

9% of data set size

Bloom filter calculation cost

1.2 sec per GB of sstable
3200 files - 52 GB - 62 seconds

Impact of different optimizations

e Sstable level bloom filter improve read performance by 63%
« PebblesDB without optimizations for seek - 66%

Thank you!

Questions?

