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What is a key-value store?

• Store any arbitrary value for a given key
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What is a key-value store?

• Store any arbitrary value for a given key

• Insertions: put(key, value)
• Point lookups:
• Range Queries:
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What is a key-value store?

• Store any arbitrary value for a given key

• Insertions: put(key, value)
• Point lookups: get(key)
• Range Queries: get_range(key1, key2)
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Key-Value Stores - widely used

• Google’s BigTable powers Search, Analytics, Maps and Gmail
• Facebook’s RocksDB is used as storage engine in production 

systems of many companies
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Write-optimized data structures
• Log Structured Merge Tree (LSM) is a write-optimized data structure 

used in key-value stores
• Provides high write throughput with good read throughput, but 

suffers high write amplification
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• Log Structured Merge Tree (LSM) is a write-optimized data structure 
used in key-value stores 
• Provides high write throughput with good read throughput, but 

suffers high write amplification
• Write amplification - Ratio of amount of write IO to amount of user 

data

KV-storeClient
10	GB

User	data

If	total	write	I/O	is	200	GB

Write	amplification	=	20

9

Write-optimized data structures



• Inserted 500M key-value pairs
• Key: 16 bytes, Value: 128 bytes
• Total user data: ~45 GB
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• Inserted 500M key-value pairs
• Key: 16 bytes, Value: 128 bytes
• Total user data: ~45 GB
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Why is write amplification bad?

• Reduces the write throughput
• Flash devices wear out after limited write cycles

(Intel SSD DC P4600 – can last ~5 years assuming ~5 TB write per day)

RocksDB can write ~500 GB of user data per day to a SSD to last 1.25 years

Data source: https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4600-series/dc-p4600-1-6tb-2-5inch-3d1.html
12



PebblesDB

Built using new data structure 
Fragmented Log-Structured Merge Tree

High performance write-optimized key-value store

Achieves 3-6.7x higher write throughput and 2.4-3x
lesser write amplification compared to RocksDB

Gets the highest write throughput and least write 
amplification as a backend store to MongoDB
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Outline

• Log-Structured Merge Tree (LSM)
• Fragmented Log-Structured Merge Tree (FLSM)
• Building PebblesDB using FLSM
• Evaluation
• Conclusion
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Log Structured Merge Tree (LSM)

Data is stored both in memory and storage

Memory

Storage

In-memory
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Writes	are	directly	put	to	memory

In-memory
Memory

Storage

Write	(key,	value)

17

File	1

Log Structured Merge Tree (LSM)



Memory

File	1

File	2

In-memory data is periodically written as files to storage (sequential I/O)

In-memory
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Files on storage are logically arranged in different levels

In-memory
Memory

Level	0

Level	1

Level	n
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Compaction pushes data to higher numbered levels

In-memory
Memory

Level	0

Level	1

Level	n
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Files are sorted and have non-overlapping key ranges

In-memory
Memory

1	.…	12 15	….	19 25	….	75 79	….	99

Search	using	
binary	search

Level	0

Level	1

Level	n
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Level 0 can have files with overlapping (but sorted) key ranges

In-memory
Memory

2	….	57 23	….	78Level	0

Level	1

Level	n

Limit	on	number	
of	level	0	files
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Write amplification: Illustration

Max files in level 0 is configured to be 2
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In-memory58	….	68

Level	1	re-write	counter:	1
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Write amplification: Illustration

Level 0 has 3 files (> 2), which triggers a compaction
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Write amplification: Illustration

* Files are immutable * Sorted non-overlapping files
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Write amplification: Illustration

Set of overlapping files between levels 0 and 1

Memory

2	….	37 23	….	48

1	….	12 15	….	25 39	….	62 77	….	95

Level	0

Level	1

Level	n

58	….	68

In-memory

Level	1	re-write	counter:	1

26

Storage



Write amplification: Illustration
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Write amplification: Illustration
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1	….	2347	….	6824	….	461	….	68

Write amplification: Illustration

Compacting level 0 with level 1
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Write amplification: Illustration

Level 0 is compacted
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Level	n
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Write amplification: Illustration

Data is being flushed as level 0 files after some Write operations
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Write amplification: Illustration

Compacting level 0 with level 1
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92	….	12162	….	9031	….	601	….	30

Write amplification: Illustration

Memory

Level	0

Level	1

Level	n

1	….	121 Level	1	re-write	counter:	2Level	1	re-write	counter:	3
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Write amplification: Illustration

Existing data is re-written to the same level (1) 3 times
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Root cause of write amplification

Rewriting data to the same level
multiple times

To maintain sorted non-overlapping 
files in each level
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Outline

• Log-Structured Merge Tree (LSM)
• Fragmented Log-Structured Merge Tree (FLSM)
• Building PebblesDB using FLSM
• Evaluation
• Conclusion
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Naïve approach to reduce write amplification

• Just append the file to the end of next level
• Many (possibly all) overlapping files within a level

• Affects the read performance

1	….	89 6	….	915	….	65 9	….	99 1	….	102 1	…	2718	….	95Level	i

(all files have overlapping key ranges)

37



Partially sorted levels

• Hybrid between all non-overlapping files and all overlapping files
• Inspired from Skip-List data structure
• Concrete boundaries (guards) to group together overlapping files

1	….	12 18	….	3113	….	34 42	….	65 72	….	8745	….	5640	….	47Level	i

(files	of	same	color	can	have	overlapping	key	ranges)
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Fragmented Log-Structured Merge Tree

Novel modification of LSM data structure

Uses guards to maintain partially sorted levels

Writes data only once per level in most cases
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FLSM structure

Note how files are logically grouped within guards
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Guards get more fine grained deeper into the tree
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How does FLSM reduce write amplification?
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In-memory

How does FLSM reduce write amplification?
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Fragmented files are just appended to next level

Memory

1	….	12

2	….	8 15	….	2316	….	32 70	….	90 96	….	9945	….	65

Level	0

Level	1

Level	2

In-memory

15

40 7015 95

77	….	87 82	….	95

70

45

15

Storage

How does FLSM reduce write amplification?
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Guard 15 in Level 1 is to be compacted
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Files are combined, sorted and fragmented
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FLSM maintains partially sorted levels to efficiently 
reduce the search space

How does FLSM reduce write amplification?

FLSM doesn’t re-write data to the same level
in most cases

How does FLSM maintain read performance?
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Selecting Guards
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51

1 1e+9Keyspace

• Guards are chosen randomly and dynamically
• Dependent on the distribution of data



Selecting Guards
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Selecting Guards

• Guards are chosen randomly and dynamically
• Dependent on the distribution of data
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Operations: Write

FLSM structure
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FLSM structure
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Search level by level starting from memory
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All level 0 files need to be searched
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Level 1: File under guard 15 is searched
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Level 2: Both the files under guard 15 are searched
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High write throughput in FLSM
• Compaction from memory to level 0 is stalled
• Writes to memory is also stalled

Memory

Storage
1	….	37 18	….	48Level	0

In-memory

2	….	98 23	….	48

Write	(key,	value)

If	rate	of	insertion	is	higher	than	rate	of	compaction,	write	throughput	
depends	on	the	rate	of	compaction
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High write throughput in FLSM
• Compaction from memory to level 0 is stalled
• Writes to memory is also stalled

Memory

Storage
1	….	37 18	….	48Level	0

In-memory
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Write	(key,	value)

If	rate	of	insertion	is	higher	than	rate	of	compaction,	write	throughput	
depends	on	the	rate	of	compaction
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FLSM	has	faster	compaction because	of	lesser	I/O	and	
hence	higher	write	throughput



Challenges in FLSM

• Every read/range query operation needs to examine multiple 
files per level
• For example, if every guard has 5 files, read latency is 

increased by 5x (assuming no cache hits)

Trade-off between write I/O and read performance
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Outline

• Log-Structured Merge Tree (LSM)
• Fragmented Log-Structured Merge Tree (FLSM)
• Building PebblesDB using FLSM
• Evaluation
• Conclusion
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PebblesDB

• Built by modifying HyperLevelDB (±9100 LOC) to use FLSM
• HyperLevelDB, built over LevelDB, to provide improved 

parallelism and compaction
• API compatible with LevelDB, but not with RocksDB
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Optimizations in PebblesDB

• Challenge (get/range query): Multiple files in a guard
• Get() performance is improved using file level bloom filter
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Optimizations in PebblesDB

• Challenge (get/range query): Multiple files in a guard
• Get() performance is improved using file level bloom filter
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Optimizations in PebblesDB
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Optimizations in PebblesDB
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• Challenge (get/range query): Multiple files in a guard
• Get() performance is improved using file level bloom filter

PebblesDB	reads same	number	of	files	as	any	LSM	based	store



Optimizations in PebblesDB

• Challenge (get/range query): Multiple files in a guard
• Get() performance is improved using file level bloom filter
• Range query performance is improved using parallel threads 

and better compaction
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• Fragmented Log-Structured Merge Tree (FLSM)
• Building PebblesDB using FLSM
• Evaluation
• Conclusion
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Evaluation

Micro-benchmarks
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Real world workloads - YCSB
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• Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
• Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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Load	E - 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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Real world workloads - YCSB
• Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
• Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB
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Load	E		- 100%	writes
Run	E - 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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• Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
• Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB



NoSQL stores - MongoDB
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• YCSB on MongoDB, a widely used key-value store
• Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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• YCSB on MongoDB, a widely used key-value store
• Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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• YCSB on MongoDB, a widely used key-value store
• Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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• YCSB on MongoDB, a widely used key-value store
• Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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• YCSB on MongoDB, a widely used key-value store
• Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes

83

NoSQL stores - MongoDB



20
.7
3	
Ko

ps
/s

9.
95
	K
op

s/
s

15
.5
2	
Ko

ps
/s

19
.6
9	
Ko

ps
/s

23
.5
3	
Ko

ps
/s

20
.6
8	
Ko

ps
/s

0.
65
	K
op

s/
s

9.
78
	K
op

s/
s

42
6.
33
	G
B

0

0.5

1

1.5

2

2.5

Load	A Run	A Run	B Run	C Run	D Load	E Run	E Run	F Total	IO

Th
ro
ug

hp
ut
	ra

tio
	w
rt

W
ire

dT
ig
er

• YCSB on MongoDB, a widely used key-value store
• Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes
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NoSQL stores - MongoDB

PebblesDB	combines	low	write	IO	of	WiredTiger	with
high	performance	of	RocksDB



Outline

• Log-Structured Merge Tree (LSM)
• Fragmented Log-Structured Merge Tree (FLSM)
• Building PebblesDB using FLSM
• Evaluation
• Conclusion
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Conclusion

• PebblesDB: key-value store built on Fragmented Log-Structured 
Merge Trees
• Increases write throughput and reduces write IO at the same time
• Obtains 6X the write throughput of RocksDB

• As key-value stores become more widely used, there have been 
several attempts to optimize them
• PebblesDB combines algorithmic innovation (the FLSM data 

structure) with careful systems building 
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https://github.com/utsaslab/pebblesdb



https://github.com/utsaslab/pebblesdb



Backup slides
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Operations: Seek

• Seek(target): Returns the smallest key in the database 
which is >= target
• Used for range queries (for example, return all entries 

between 5 and 18)

Get(1)Level 0    – 1, 2, 100, 1000
Level 1    – 1, 5, 10, 2000
Level 2    – 5, 300, 500
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Operations: Seek

• Seek(target): Returns the smallest key in the database 
which is >= target
• Used for range queries (for example, return all entries 

between 5 and 18)

Seek(200)Level 0    – 1, 2, 100, 1000
Level 1    – 1, 5, 10, 2000
Level 2    – 5, 300, 500
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Operations: Seek

• Seek(target): Returns the smallest key in the database 
which is >= target
• Used for range queries (for example, return all entries 

between 5 and 18)
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Operations: Seek

FLSM structure

Memory

2	….	37 23	….	48

1	….	12 15	….	59 77	….	87 82	….	95

2	….	8 15	….	2316	….	32 70	….	90 96	….	9945	….	65

Level	0

Level	1

Level	2

In-memory

15 70

40 7015 95

Seek(23)
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Operations: Seek

All levels and memtable need to be searched

Memory

2	….	37 23	….	48

1	….	12 15	….	59 77	….	87 82	….	95

2	….	8 15	….	2316	….	32 70	….	90 96	….	9945	….	65

Level	0

Level	1

Level	2

In-memory

15 70

40 7015 95

Seek(23)
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Optimizations in PebblesDB

• Challenge with reads: Multiple sstable reads per level
• Optimized using sstable level bloom filters
• Bloom filter: determine if an element is in a set

Bloom	filter
Is	key	25

present?
Definitely	not

Possibly	yes
95



Optimizations in PebblesDB

• Challenge with reads: Multiple sstable reads per level
• Optimized using sstable level bloom filters
• Bloom filter: determine if an element is in a set

1	….	12 15	….	39 82	….	95Level	1

15 70

Get(97)
True

Bloom	FilterBloom	FilterBloom	FilterBloom	Filter

77	….	97 Maintained	
in-memory
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Optimizations in PebblesDB

• Challenge with reads: Multiple sstable reads per level
• Optimized using sstable level bloom filters
• Bloom filter: determine if an element is in a set

1	….	12 15	….	39 82	….	95Level	1

15 70

Get(97)
False True

Bloom	FilterBloom	FilterBloom	FilterBloom	Filter

77	….	97
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Optimizations in PebblesDB

• Challenge with reads: Multiple sstable reads per level
• Optimized using sstable level bloom filters
• Bloom filter: determine if an element is in a set

1	….	12 15	….	39 82	….	95Level	1

15 70

Bloom	FilterBloom	FilterBloom	FilterBloom	Filter

77	….	97

PebblesDB	reads at	most	one	file	per	guard	with	high	probability
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Optimizations in PebblesDB
• Challenge with seeks: Multiple sstable reads per level
• Parallel seeks: Parallel threads to seek() on files in a guard

1	….	12 15	….	39 77	….	97 82	….	95Level	1

15 70

Seek(85)

Thread	1 Thread	2
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Optimizations in PebblesDB
• Challenge with seeks: Multiple sstable reads per level
• Parallel seeks: Parallel threads to seek() on files in a guard
• Seek based compaction: Triggers compaction for a level 

during a seek-heavy workload
• Reduce the average number of sstables per guard
• Reduce the number of active levels

Seek	based	compaction	increases	write	I/O but	as	a	trade-off
to	improve	seek	performance
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Tuning PebblesDB

• PebblesDB characteristics like
• Increase in write throughput,
• decrease in write amplification and
• overhead of read/seek operation
all depend on one parameter, maxFilesPerGuard (default 
2 in PebblesDB)

• Setting this to a very high value favors write throughput
• Setting this to a very low value favors read throughput
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Horizontal compaction

• Files compacted within the same level for the last two levels 
in PebblesDB
• Some optimizations to prevent huge increase in write IO
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Experimental setup

• Intel Xeon 2.8 GHz processor
• 16 GB RAM
• Running Ubuntu 16.04 LTS with the Linux 4.4 kernel
• Software RAID0 over 2 Intel 750 SSDs (1.2 TB each)
• Datasets in experiments 3x bigger than DRAM size
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Write amplification
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• Inserted different number of keys with key size 16 bytes and value size 
128 bytes
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Micro-benchmarks
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Benchmark

• Used db_bench tool that ships with LevelDB
• Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB
• Number of read/seek operations: 10M 
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Micro-benchmarks
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Benchmark

• Used db_bench tool that ships with LevelDB
• Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB
• Number of read/seek operations: 10M 
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Multi threaded micro-benchmarks
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Benchmark

• Writes – 4 threads each writing 10M
• Reads – 4 threads each reading 10M
• Mixed – 2 threads writing and 2 threads reading (each 10M)
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Small cached dataset
• Insert 1M key-value pairs with 16 bytes key and 1 KB value
• Total data set (~1 GB) fits within memory
• PebblesDB-1: with maximum one file per guard
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Small key-value pairs
• Inserted 300M key-value pairs
• Key 16 bytes and 128 bytes value
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Aged FS and KV store
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Benchmark

• File system aging: Fill up 89% of the file system
• KV store aging: Insert 50M, delete 20M and update 20M key-value 

pairs in random order
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Low memory micro-benchmark
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• 100M key-value pairs with 1KB (~65 GB data set)
• DRAM was limited to 4 GB
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Impact of empty guards

• Inserted 20M key-value pairs (0 to 20M) in random order 
with value size 512 bytes
• Incrementally inserted new 20M keys after deleting the older 

keys
• Around 9000 empty guards at the start of the last iteration
• Read latency did not reduce with the increase in empty 

guards
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• HyperDex – distributed key-value store from Cornell
• Inserted 20M key-value pairs with 1 KB value size and 10M operations

Load	A	- 100	%	writes
Run	A			- 50%	reads,	50%	writes
Run	B			- 95%	reads,	5%	writes
Run	C			- 100%	reads

Run	D			- 95%	reads	(latest),	5%	writes
Load	E		- 100%	writes
Run	E			- 95%	range	queries,	5%	writes
Run	F			- 50%	reads,	50%	read-modify-writes 113
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CPU usage

• Median CPU usage by inserting 30M keys and reading 10M keys
• PebblesDB: ~171%
• Other key-value stores: 98-110%
• Due to aggressive compaction, more CPU operations due to 

merging multiple files in a guard
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Memory usage

• 100M records (16 bytes key, 1 KB value) – 106 GB data set
• 300 MB memory space
• 0.3% of data set size

• Worst case: 100M records (16 bytes key, 16 bytes value) 
~3.2 GB
• 9% of data set size
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Bloom filter calculation cost

• 1.2 sec per GB of sstable
• 3200 files – 52 GB – 62 seconds
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Impact of different optimizations

• Sstable level bloom filter improve read performance by 63%
• PebblesDB without optimizations for seek – 66% 
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Thank you!
Questions?
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