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What is a key-value store?

e Store any arbitrary value for a given key
Keys Values

123

{“name”: “John Doe”, “age”: 25}

124

{“name”: “Ross Gel”, “age”: 28}

* Insertions: put(key, value)
 Point lookups: get(key)
- Range Queries: get_range(key1, key2)



Key-Value Stores - widely used

« Google's BigTable powers Search, Analytics, Maps and Gmail

» Facebook's RocksDB is used as storage engine in production
systems of many companies
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Write-optimized data structures

 Log Structured Merge Tree (LSM) is a write-optimized data structure
used in key-value stores

 Provides high write throughput with good read throughput, but
suffers high write amplification
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Write-optimized data structures

 Log Structured Merge Tree (LSM) is a write-optimized data structure
used in key-value stores

 Provides high write throughput with good read throughput, but
suffers high write amplification

« Write amplification - Ratio of amount of write IO to amount of user
data
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Write amplification in LSM based KV stores

* Inserted 500M key-value pairs
« Key: 16 bytes, Value: 128 bytes
« Total user data: ~45 GB
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Write amplification in LSM based KV stores

* Inserted 500M key-value pairs
« Key: 16 bytes, Value: 128 bytes
« Total user data: ~45 GB
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Why is write amplification bad?

« Reduces the write throughput
* Flash devices wear out after limited write cycles

(Intel SSD DC P4600 - can last ~5 years assuming ~5 TB write per day)

RocksDB can write ~500 GB of user data per day to a SSD to last 1.25 years

Data source: https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4600-series/dc-p4600-1-6tb-2-5inch-3d1.html



PebblesDB

High performance write-optimized key-value store

Built using new data structure
Fragmented Log-Structured Merge Tree

Achieves 3-6.7x higher write throughput and 2.4-3x
lesser write amplification compared to RocksDB

Gets the highest write throughput and least write
amplification as a backend store to MongoDB
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Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

Data is stored both in memory and storage



Log Structured Merge Tree (LSM)

Write (key, value

)
) [N
Memory

Storage

Writes are directly put to memory



Log Structured Merge Tree (LSM)

Storage

D
Memory

In-memory data is periodically written as files to storage (sequential 1/0)
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Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

[
[ [ ]

Files on storage are logically arranged in different levels



Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

[
[ [ ]

Compaction pushes data to higher numbered levels



Log Structured Merge Tree (LSM)

In-memory
Memory

Storage

Search using

binary search
Level 1 1...12 15 ....19 25 ... 75 79 .... 99

Files are sorted and have non-overlapping key ranges
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Log Structured Merge Tree (LSM)

Limit on number
of level O files

In-memory
Memory

Storage
Level O 23....78

[
[ [ ]

Level O can have files with overlapping (but sorted) key ranges
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Write amplification: Illustration

Level 1 re-write counter: 1

58 ....68 emory

Storage
Level O 2 ....37 23 ....48

Level 1 1...12 15 .... 25 39...62 77 .... 95

Max files in level O is configured to be 2
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Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 2 ....37 23 ....48 58 ....68

Level 1 1...12 15 .... 25 39...62 77 .... 95

Level 0 has 3 files (> 2), which triggers a compaction
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Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 2 ....37 23 ....48 58 ....68

Level 1 1...12 15 .... 25 39...62 77 .... 95

* Files are immutable * Sorted non-overlapping files
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Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 2...37 23 ....48 58 ....68

Level 1 1...12 15.... 25 39 ....62 77 ....95

Set of overlapping files between levels 0 and 1
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Write amplification: Illustration

Level 1 re-write counter: 1

In-memory
Memory

Storage
Level O 2....37 23 ....48 58 .... 68

Level 1 1...12 15 .... 25 39...62 77 .... 95

Set of overlapping files between levels 0 and 1
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Write amplification: Illustration

Level 1 re-write counter: 2

Memory

Storage
Level O 2....37 23 ....48 58 ....68

Level 1 1...12 15 .... 25 39...62 77 .... 95

Compacting level 0 with level 1
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Write amplification: Illustration

Level 1 re-write counter: 2

In-memory

Level O

[
[ [ ]

Level 0 is compacted

30




Write amplification: Illustration

Level 1 re-write counter: 2

Level O

Data is being flushed as level O files after some Write operations
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Write amplification: Illustration

Level 1 re-write counter: 2

Storage
Level O 10 .... 33 17 ....53 1...121

Level 1 1...23 24 .... 46 47 .... 68 77 ....95

Compacting level 0 with level 1

32



Write amplification: Illustration

Level 1 re-write counter: 3

Level O

Level 1

Compacting level 0 with level 1
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Write amplification: Illustration

Level 1 re-write counter: 3

Level O

Level 1 31....60 62 ....90 92 ...121

Existing data is re-written to the same level (1) 3 times
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Root cause of write amplification

Rewriting data to the same level
multiple times

To maintain sorted non-overlapping
files in each level
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Naive approach to reduce write amplification

* Just append the file to the end of next level
« Many (possibly all) overlapping files within a level

(all files have overlapping key ranges)

* Affects the read performance
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Partially sorted levels

« Hybrid between all non-overlapping files and all overlapping files
* Inspired from Skip-List data structure
« Concrete boundaries (guards) to group together overlapping files

13 35

70
Level i 13...34 18 ... 31 40 .... 47 45 .... 56 42 .... 65 72 ....87

(files of same color can have overlapping key ranges)
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Fragmented Log-Structured Merge Tree
Novel modification of LSM data structure
Uses guards to maintain partially sorted levels

Writes data only once per level in most cases



FLSM structure

Storage
Level O

70

Level 1 1...

15 ....59
1 4
Level 2 16 ....32 15 .... 23

Note how files are logically grouped within guards

77 .... 87 82 ....95

5 0
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FLSM structure

Storage

Level O

Level 1

Level 2

Guards get more fine grained deeper into the tree



How does FLSM reduce write amplification?



How does FLSM reduce write amplification?

Storage
Level O

Level 1 1...

70 95

Max files in level O is configured to be 2
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How does FLSM reduce write amplification?

In-memory
Memory

Level O

Level 1 R 15....59

5_ 40

16 .... 32 15 .... 23 45 .... 65

Compacting level O

70 95

-

1
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How does FLSM reduce write amplification?

In-memory
Memory

Storage

Level O

15 70

Level 1 1...12 15....59 77 .... 87 82 ....95

\

40 V70 95

5
-’ \.t

15 -7 TT~~l
Level 2 16...32 l 15...23 45 .... 65

Fragmented files are just appended to next level
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How does FLSM reduce write amplification?

In-memory
Memory

Storage

Level O

Level 1

\70

Guard 15in Level 1 is to be compacted
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How does FLSM reduce write amplification?

In-memory

Storage
Level O

15 7

15 _ 40 v 70 95

0
77 .... 87 82 ....95

\

16 .... 32 15 ....23 45 .... 65 70 ....90

Files are combined, sorted and fragmented
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How does FLSM reduce write amplification?

In-memory
Memory

Level O

70

Level 1

V70 T~ L 95

Fragmented files are just appended to next level
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How does FLSM reduce write amplification?

FLSM doesn't re-write data to the same level
IN MoOst cases

How does FLSM maintain read performance?

FLSM maintains partially sorted levels to efficiently
reduce the search space
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Selecting Guards

« Guards are chosen randomly and dynamically
* Dependent on the distribution of data
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1 Keyspace
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Selecting Guards

« Guards are chosen randomly and dynamically
* Dependent on the distribution of data

1 Keyspace

le+9
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Operations: Write

Write (key, value) Put(1, “abc”)

—
Memory

Storage

Level 1 1...

70 95

15 40
Level 2 16 .... 32 15 .... 23 45 ... 65 70 .... 90 96 ... 99

FLSM structure
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Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1...12 15....59 77 .... 87 82 ....95

70 95

15 40
Level 2 16 .... 32 15 .... 23 45 ... 65 70....90 96 ....99

FLSM structure
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Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 15....59 77 .... 87 82 ....95

5 40 70 95

1
Level 2 16 .... 32 15 .... 23 45 .... 65

Search level by level starting from memory

70 ....90 96 .... 99




Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 15....59 77 .... 87 82 ....95

5 40 70 95

1
Level 2 16 .... 32 15 .... 23 45 .... 65

All level O files need to be searched

70 ....90 96 .... 99
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Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 15 ....59 77 .... 87 82 ....95

5 40 70 95

1
Level 2 16 .... 32 15 .... 23 45 .... 65

Level 1: File under guard 15 is searched

70 ....90 96 .... 99




Operations: Get

Get(23)
Memory
Storage
Level O
70
Level 1 1... 15....59 77 .... 87 82 ....95
15 40 70 95
Level 2 16 .... 32 15 .... 23 45 ... 65 70 ....90 96 .... 99

Level 2: Both the files unc

er guard 15 are searched
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High write throughput in FLSM

« Compaction from memory to level 0O is stalled
 Writes to memory is also stalled

Write (key, value)

Zx:> In-memory

If rate of insertion is higher than rate of compaction, write throughput
depends on the rate of compaction
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High write throughput in FLSM

« Compaction from memory to level 0O is stalled
 Writes to memory is also stalled

FLSM has faster compaction because of lesser 1/0 and

hence higher write throughput

If rate of insertion is higher than rate of compaction, write throughput
depends on the rate of compaction




Challenges in FLSM

 Every read/range query operation needs to examine multiple

files per level

« For example, if every guard has 5 files, read latency is
increased by 5x (assuming no cache hits)

Trade-off between write I/0O and read performance
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PebblesDB

e Built by modifying HyperLevelDB (+9100 LOC) to use FLSM

« HyperLevelDB, built over LevelDB, to provide improved
parallelism and compaction

» API compatible with LevelDB, but not with RocksDB



Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
» Get() performance is improved using file level bloom filter
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« Challenge (get/range query): Multiple files in a guard
« Get() performance is improved using file level bloom filter

>

Possibly yes

Is key 25
I

present?

> Definitely not
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Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
« Get() performance is improved using file level bloom filter

15 70
Level 1 1...12 15 .... 39

77 ....97 82 ....95

Maintained
in-memory

Bloom Filter Bloom Filter

Bloom Filter Bloom Filter
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Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
« Get() performance is improved using file level bloom filter

15 70
Level 1 1...12 15 .... 39

77 ....97 82 ....95

Maintained
in-memory

Bloom Filter Bloom Filter

Bloom Filter Bloom Filter

PebblesDB reads same number of files as any LSM based store
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Optimizations in PebblesDB

« Challenge (get/range query): Multiple files in a guard
» Get() performance is improved using file level bloom filter

« Range query performance is improved using parallel threads
and better compaction



Outline

 Log-Structured Merge Tree (LSM)

* Fragmented Log-Structured Merge Tree (FLSM)
* Building PebblesDB using FLSM

 Evaluation
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Fvaluation

Real world workloads - YCSB

Micro-benchmarks

Low memory

Small dataset

NoSQL applications

Crash recovery

CPU and memory
usage

Aged file system
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J Real world workloads - YCSB
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NoSQL applications {
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Real world workloads - YCSB

« Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
* Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB
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Load A Run A Run B Run C Run D Load E Run E Run F Total IO
Load A - 100 % writes Run D -95% reads (latest), 5% writes

Run A -50% reads, 50% writes Load E - 100% writes

Run B -95% reads, 5% writes Run E - 95% range queries, 5% writes

Run C -100% reads Run F - 50% reads, 50% read-modify-writes

73



Real world workloads - YCSB
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NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

Throughput ratio wrt

WiredTiger
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Load A - 100 % writes

Run A -50% reads, 50% writes

Run B -95% reads, 5% writes

Run C

- 100% reads

Run D -95% reads (latest), 5% writes
Load E - 100% writes
Run E -95% range queries, 5% writes

Run F - 50% reads, 50% read-modify-writes
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NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations
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NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations
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NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations
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NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations
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NoSQL stores - MongoDB

« YCSB on MongoDB, a widely used key-value store
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

2.5

2

iowrt

B Kops/s
Kops/s
Kops/s

B Kops/s
Kops/s

Kops/s

Kops/s
3GB

PebblesDB combines low write 10 of WiredTiger with

high performance of RocksDB

Load A - 100 % writes Run D -95% reads (latest), 5% writes
Run A -50% reads, 50% writes Load E - 100% writes
Run B -95% reads, 5% writes Run E -95% range queries, 5% writes

Run C - 100% reads Run F - 50% reads, 50% read-modify-writes
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Conclusion

« PebblesDB: key-value store built on Fragmented Log-Structured
Merge Trees

* Increases write throughput and reduces write 10 at the same time
« Obtains 6X the write throughput of RocksDB

* As key-value stores become more widely used, there have been
several attempts to optimize them

» PebblesDB combines algorithmic innovation (the FLSM data
structure) with careful systems building
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Backup slides



Operations: Seek

- Seek(target): Returns the smallest key in the database
which is >= target

« Used for range queries (for example, return all entries
between 5 and 18)

evel0 - 1,2,100, 1000 Get(1)
Levell - 1,5,10, 2000
Level 2 - 5,300, 500




Operations: Seek

- Seek(target): Returns the smallest key in the database
which is >= target

« Used for range queries (for example, return all entries
between 5 and 18)

Llevel0 - 1, 2,100, 1000 Seek(200)
levell - 1,5,10, 2000
Level2 - 5,300, 500




Operations: Seek

- Seek(target): Returns the smallest key in the database
which is >= target

« Used for range queries (for example, return all entries
between 5 and 18)



Operations: Seek
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Operations: Seek

Seek(23)
Memory
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Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set

>
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Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set
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Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set
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Optimizations in PebblesDB

« Challenge with reads: Multiple sstable reads per level
« Optimized using sstable level bloom filters
» Bloom filter: determine if an elementisin a set

Level 1 1...12 15 ....39 77 ....97 82 ....95

Bloom Filter Bloom Filter Bloom Filter Bloom Filter

PebblesDB reads at most one file per guard with high probability
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Optimizations in PebblesDB

* Challenge with seeks: Multiple sstable reads per level
 Parallel seeks: Parallel threads to seek() on files in a guard

Thread 1 Thread 2
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Optimizations in PebblesDB

* Challenge with seeks: Multiple sstable reads per level
 Parallel seeks: Parallel threads to seek() on files in a guard

* Seek based compaction: Triggers compaction for a level
during a seek-heavy workload
« Reduce the average number of sstables per guard
« Reduce the number of active levels

Seek based compaction increases write /O but as a trade-off
to improve seek performance




Tuning PebblesDB

* PebblesDB characteristics like
* Increase in write throughput,
 decrease in write amplification and
« overhead of read/seek operation

all depend on one parameter, maxFilesPerGuard (default
2 in PebblesDB)

« Setting this to a very high value favors write throughput
e Setting this to a very low value favors read throughput



Horizontal compaction

* Files compacted within the same level for the last two levels
in PebblesDB

« Some optimizations to prevent huge increase in write 10



Experimental setup

* Intel Xeon 2.8 GHz processor

« 16 GB RAM

* Running Ubuntu 16.04 LTS with the Linux 4.4 kernel
« Software RAIDO over 2 Intel 750 SSDs (1.2 TB each)
 Datasets in experiments 3x bigger than DRAM size



Write amplification

* Inserted different number of keys with key size 16 bytes and value size

128 bytes

Werite 10 ratio wrt PebblesDB
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Micro-benchmarks

« Used db_bench tool that ships with LevelDB
 Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB

« Number of read/seek operations: 10M
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Micro-benchmarks

« Used db_bench tool that ships with LevelDB
 Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB

« Number of read/seek operations: 10M
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Multi threaded micro-benchmarks

« Writes - 4 threads each writing 10M

« Reads - 4 threads each reading 10M
« Mixed - 2 threads writing and 2 threads reading (each 10M)

Writes Reads Mixed
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Small cached dataset

* Insert 1M key-value pairs with 16 bytes key and 1 KB value

 Total data set (~1 GB) fits within memory
» PebblesDB-1: with maximum one file per guard
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Small key-value pairs

* Inserted 300M key-value pairs
« Key 16 bytes and 128 bytes value
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Aged FS and KV store

* File system aging: Fill up 89% of the file system
« KV store aging: Insert 50M, delete 20M and update 20M key-value
pairs in random order
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Low memory micro-benchmark

* 100M key-value pairs with 1KB (~65 GB data set)
« DRAM was limited to 4 GB
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Impact of empty guards

* Inserted 20M key-value pairs (0 to 20M) in random order
with value size 512 bytes

 Incrementally inserted new 20M keys after deleting the older
keys

« Around 9000 empty guards at the start of the last iteration

« Read latency did not reduce with the increase in empty
guards



NoSQL stores - HyperDex

« HyperDex - distributed key-value store from Cornell
* Inserted 20M key-value pairs with 1 KB value size and 10M operations

Throughput ratio wrt

HyperLevelDB
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Load E - 100% writes

Run E - 95% range queries, 5% writes
Run F -50% reads, 50% read-modify-writes 113




CPU usage

» Median CPU usage by inserting 30M keys and reading 10M keys
* PebblesDB: ~171%
« Other key-value stores: 98-110%

* Due to aggressive compaction, more CPU operations due to
merging multiple files in a guard



Memory usage

« T00M records (16 bytes key, 1 KB value) - 106 GB data set

« 300 MB memory space
* 0.3% of data set size

« Worst case: 100M records (16 bytes key, 16 bytes value)
~3.2 GB

9% of data set size



Bloom filter calculation cost

1.2 sec per GB of sstable
3200 files - 52 GB - 62 seconds



Impact of different optimizations

e Sstable level bloom filter improve read performance by 63%
« PebblesDB without optimizations for seek - 66%



Thank you!

Questions?



