
PebblesDB: Building Key-Value Stores using
Fragmented Log-Structured Merge Trees

Pandian Raju
University of Texas at Austin

Rohan Kadekodi
University of Texas at Austin

Vijay Chidambaram
University of Texas at Austin and VMware Research

Ittai Abraham
VMware Research

ABSTRACT

Key-value stores such as LevelDB and RocksDB offer excel-
lent write throughput, but suffer high write amplification.
The write amplification problem is due to the Log-Structured
Merge Trees data structure that underlies these key-value
stores. To remedy this problem, this paper presents a novel
data structure that is inspired by Skip Lists, termed Frag-
mented Log-Structured Merge Trees (FLSM). FLSM intro-
duces the notion of guards to organize logs, and avoids
rewriting data in the same level. We build PebblesDB, a high-
performance key-value store, by modifying HyperLevelDB
to use the FLSM data structure. We evaluate PebblesDB us-
ing micro-benchmarks and show that for write-intensive
workloads, PebblesDB reduces write amplification by 2.4-3×
compared to RocksDB, while increasing write throughput by
6.7×. We modify two widely-used NoSQL stores, MongoDB
and HyperDex, to use PebblesDB as their underlying storage
engine. Evaluating these applications using the YCSB bench-
mark shows that throughput is increased by 18-105% when
using PebblesDB (compared to their default storage engines)
while write IO is decreased by 35-55%.

CCS CONCEPTS

• Information systems→ Key-value stores; Record and
block layout;

KEYWORDS

key-value stores, log-structuredmerge trees, write-optimized
data structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP’17, Oct 28-31, Shanghai, China
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132765

Figure 1: Write Amplification. The figure shows the

total write IO (in GB) for different key-value stores

when 500 million key-value pairs (totaling 45 GB) are

inserted or updated. The write amplification is indi-

cated in parenthesis.

ACM Reference Format:

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. 2017. PebblesDB: Building Key-Value Stores using Fragmented
Log-Structured Merge Trees. In Proceedings of ACM Symposium
on Operating Systems Principles (SOSP’17). ACM, New York, NY,
USA, Article 4, 18 pages. https://doi.org/10.1145/3132747.
3132765

1 INTRODUCTION

Key-value stores have become a fundamental part of the
infrastructure for modern systems. Much like how file sys-
tems are an integral part of operating systems, distributed
systems today depend on key-value stores for storage. For
example, key-value stores are used to store state in graph
databases [21, 31], task queues [5, 54], stream processing
engines [7, 50], application data caching [35, 43], event track-
ing systems [46], NoSQL stores [18, 40], and distributed
databases [30]. Improving the performance of key-value
stores has the potential to impact a large number of widely-
used data intensive services.
Great progress has been made in improving different as-

pects of key-value stores such as memory efficiency [9, 17,
34, 42, 58] and energy efficiency [6]. One fundamental prob-
lem that remains is the high write amplification of key-value
stores for write-intensive workloads. Write amplification is
the ratio of total write IO performed by the store to the total
user data. High write amplification increases the load on stor-
age devices such as SSDs, which have limited write cycles be-
fore the bit error rate becomes unacceptable [3, 26, 39]. With

https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/3132747.3132765

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

the increasing size of user data sets (e.g,. Pinterest’s stateful
systems process tens of petabytes of data every day [46]),
high write amplification results in frequent device wear out
and high storage costs [41]. Write amplification also reduces
write throughput: in the RocksDB [20] key-value store, it
results in write throughput being reduced to 10% of read
throughput [53]. Thus, reducing write amplification will
both lower storage costs and increase write throughput.

Figure 1 shows the high write amplification (ratio of total
IO to total user data written) that occurs in several widely-
used key-value stores when 500 million key-value pairs
are inserted or updated in random order. Techniques from
prior research tackling write amplification have not been
widely adopted since they either require specialized hard-
ware [38, 55] or sacrifice other aspects such as search (range
query) performance [57]. Conventional wisdom is that reduc-
ing write amplification requires sacrificing either write or
read throughput [34]. In today’s low-latency, write-intensive
environments [27], users are not willing to sacrifice either.
Key-value stores such as LevelDB [25] and RocksDB are

built on top of the log-structured merge trees [44] (LSM) data
structure, and their high write amplification can be traced
back to the data structure itself (§2). LSM stores maintain
data in sorted order on storage, enabling efficient querying
of data. However, when new data is inserted into an LSM-
store, existing data is rewritten to maintain the sorted order,
resulting in large amounts of write IO.

This paper presents a novel data structure, the Fragmented
Log-Structured Merge Trees (FLSM), which combines ideas
from the Skip List [47, 48] and Log-Structured Merge trees
data structures along with a novel compaction algorithm.
FLSM strikes at the root of write amplification by drastically
reducing (and in many cases, eliminating) data rewrites, in-
stead fragmenting data into smaller chunks that are orga-
nized using guards on storage (§3). Guards allow FLSM to
find keys efficiently. Write operations on LSM stores are of-
ten stalled or blocked while data is compacted (rewritten
for better read performance); by drastically reducing write
IO, FLSM makes compaction significantly faster, thereby in-
creasing write throughput.
Building a high-performance key-value store on top of

the FLSM data structure is not without challenges; the de-
sign of FLSM trades read performance for write throughput.
This paper presents PebblesDb, a modification of the Hyper-
LevelDB [29] key-value store that achieves the trifecta of low
write amplification, high write throughput, and high read
throughput. PebblesDb employs a collection of techniques
such as parallel seeks, aggressive seek-based compaction, and
sstable-level bloom filters to reduce the overheads inherent
to the FLSM data structure (§4). Although many of the tech-
niques PebblesDb employs are well-known, together with
the FLSM data structure, they allow PebblesDb to achieve

excellent performance on both read-dominated and write-
dominated workloads.

PebblesDb outperforms mature, carefully engineered key-
value stores such as RocksDB and LevelDB on several work-
loads (§5) . On the db_benchmicro-benchmarks, PebblesDb
obtains 6.7× thewrite throughput of RocksDB and 27% higher
read throughput, while doing 2.4-3× less write IO. When the
NoSQL store MongoDB [40] is configured to use PebblesDb
instead of RocksDB as its storage engine, MongoDB obtains
the same overall performance on the YCSB benchmark [16]
while doing 37% less IO (§5).

While the FLSM data structure is useful in many scenar-
ios, it is not without its limitations. On a fully compacted
key-value store, PebblesDb incurs a 30% overhead for small
range queries. While the overhead drops to 11% for large
range queries, the FLSM data structure is not the best fit
for workloads which involve a lot of range queries after an
initial burst of writes. Note that PebblesDb does not incur an
overhead if the range queries are interspersed with writes.

In summary, the paper makes the following contributions:

• The design of the novel Fragmented Log-Structured
Merge Trees data structure, which combines ideas from
skip lists and log-structured merge trees (§3).
• The design and implementation of PebblesDb, a key-
value store built using fragmented log-structuredmerge
trees and several important optimizations (§4). We
have made PebblesDb publicly available at https:
//github.com/utsaslab/pebblesdb.
• Experimental results demonstrating that PebblesDb
dominates LSM-based stores such as RocksDB in many
workloads, showing that it is possible to achieve low
write amplification, high write throughput, and high
read throughput simultaneously (§5).

2 BACKGROUND

This section provides some background on key-values stores
and log-structured merge trees. It first describes common
operations on key-values stores (§2.1) and discusses why
log-structured merge trees are used to implement key-value
stores in write-intensive environments (§2.2). It shows that
the log-structured merge tree data structure fundamentally
leads to large write amplification.

2.1 Key-Value Store Operations

Get. The get(key) operation returns the latest value asso-
ciated with key.

Put. The put(key, value) operation stores the mapping
from key to value in the store. If key was already present
in the store, its associated value is updated.

https://github.com/utsaslab/pebblesdb
https://github.com/utsaslab/pebblesdb

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

Iterators. Some key-value stores such as LevelDB provide
an iterator over the entire key-value store. it.seek(key)
positions the iterator it at the smallest key ≥ key. The
it.next() call moves it to the next key in sequence. The
it.value() call returns the value associated with the key
at the current iterator position. Most key-value stores allow
the user to provide a function for ordering keys.

Range Query. The range_query(key1, key2) operation
returns all key-value pairs falling within the given range.
Range queries are often implemented by doing a seek() to
key1 and doing next() calls until the iterator passes key2.

2.2 Log-Structured Merge Trees

Embedded databases such as KyotoCabinet [32] and Berke-
leyDB [45] are typically implemented using B+ Trees [14].
However, B+ Trees are a poor fit for write-intensive work-
loads since updating the tree requires multiple randomwrites
(10-100× slower than sequential writes). Inserting 100million
key-value pairs into KyotoCabinet writes 829 GB to storage
(61× write amplification). Due to the low write throughput
and high write amplification of B+ Trees, developers turned
to other data structures for write-intensive workloads.

The log-structured merge trees (LSM) data structure [44]
takes advantage of high sequential bandwidth by only writ-
ing sequentially to storage. Writes are batched together in
memory and written to storage as a sequential log (termed
an sstable). Each sstable contains a sorted sequence of keys.
Sstables on storage are organized as hierarchy of levels.

Each level contains multiple sstables, and has a maximum
size for its sstables. In a 5-level LSM, Level 0 is the lowest
level and Level 5 is the highest level. The amount of data (and
the number of sstables) in each level increases as the levels
get higher. The last level in an LSM may contain hundreds
of gigabytes. Application data usually flows into the lower
levels and is then compacted into the higher levels. The lower
levels are usually cached in memory.
LSM maintains the following invariant at each level: all

sstables contain disjoint sets of keys. For example, a level
might contain three sstables: {1..6}1, {8..12}, and {100..105}.
Each key will be present in exactly one sstable on a given
level. As a result, locating a key requires only two binary
searches: one binary search on the starting keys of sstables
(maintained separately) to locate the correct sstable and an-
other binary search inside the sstable to find the key. If the
search fails, the key is not present in that level.

LSM Operations. The get() operation returns the latest
value of the key. Since the most recent data will be in lower
levels, the key-value store searches for the key level by level,
starting from Level 0; if it finds the key, it returns the value.
1Let {x..y} indicate a sstable with keys ranging from x to y

Each key has a sequence number that indicates its version.
Finding the key at each level requires reading and searching
exactly one sstable.
The seek() and next() operations require positioning

an iterator over the entire key-value store. This is imple-
mented using multiple iterators (one per level); each iterator
is first positioned inside the appropriate sstable in each level,
and the iterator results are merged. The seek() operation
requires finding the appropriate sstables on each level, and
positioning the sstable iterators. The results of the sstable
iterators are merged (by identifying the smallest key) to po-
sition the key-value store iterator. The next() operation
simply advances the correct sstable iterator, merges the iter-
ators again, and re-positions the key-value store iterator.
The put() operation writes the key-value pair, along

with a monotonically increasing sequence number, to an
in-memory skip list [48] called the memtable. When the
memtable reaches a certain size, it is written to storage as
a sstable at Level 0. When each level contains a threshold
number of files, it is compacted into the next level. Assume
Level 0 contains {2, 3} and {10, 12} sstables. If Level 1 contains
{1,4} and {9, 13} sstables, then during compaction, Level 1
sstables are rewritten as {1, 2, 3, 4} and {9, 10, 12, 13}, merging
the sstables from Level 0 and Level 1. Compacting sstables
reduces the total number of sstables in the key-value store
and pushes colder data into higher levels. The lower levels
are usually cached in memory, thus leading to faster reads
of recent data.
Updating or deleting keys in LSM-based stores does not

update the key in place, since all write IO is sequential. In-
stead, the key is inserted once again into the database with
a higher sequence number; a delete key is inserted again
with a special flag (often called a tombstone flag). Due to the
higher sequence number, the latest version of the flag will
be returned by the store to the user.

WriteAmplification:RootCause. Figure 2 illustrates com-
paction in a LSM key-value store. The key-value store con-
tains two sstables in Level 1 initially. Let us assume that
Level 0 is configured to hold only one sstable at a time; when
this limit is reached, compaction is triggered. At time t1, one
sstable is added, and a compaction is triggered is at t2. Sim-
ilarly, sstables are added at t3 and t5 and compactions are
triggered at t4 and t6. When compacting a sstable, all sstables
in the next level whose key ranges intersect with the sstable
being compacted are rewritten. In this example, since the key
ranges of all Level 0 sstables intersect with key ranges of all
Level 1 sstables, the Level 1 sstables are rewritten every time
a Level 0 sstable is compacted. In this worst-case example,
Level 1 sstables are rewritten three times while compacting
a single upper level. Thus, the high write amplification of

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

Level 1

Level 0 10 210

1 100 200 400

Level 1

Level 0

1 10 100 200 210 400

Level 1

Level 0

30 330

1 10 20 100 200 210 220 400

20 220

Time: t1

Level 1

Level 0

1 10 100 200 210 400After compacting
 Level 0 into Level 1

Level 1

Level 0

1 10 20 100 200 210 220 400

New sstable in Level 0

New sstable
 in Level 0

Time: t2

Time: t3

After compacting
 Level 0 into Level 1

Time: t4

New sstable
in Level 0

Time: t5

Level 1

Level 0

1 10 20 30 100 200 210 220 330 400
After compacting

 Level 0 into Level 1

Time: t6

Figure 2: LSM Compaction. The figure shows sstables

being inserted and compacted over time in a LSM.

LSM key-value stores can be traced to multiple rewrites

of sstables during compaction.

The Challenge. A naive way to reduce write amplification
in LSM is to simply not merge sstables during compaction
but add new sstables to each level [19, 22]. However, read
and range query performance will drop significantly due
to two reasons. First, without merge, the key-value store
will end up containing large number of sstables. Second, as
multiple sstables can now contain the same key and can have
overlapping key ranges in the same level, read operations
will have to examine multiple sstables (since binary search
to find the sstable is not possible), leading to large overhead.

3 FRAGMENTED LOG-STRUCTURED

MERGE TREES

The challenge is to achieve three goals simultaneously: low
write amplification, high write throughput, and good read
performance. This section presents our novel data struc-
ture, Fragmented Log-structured Merge Trees (FLSM), and
describes how it tackles this challenge.
FLSM can be seen as a blend of an LSM data structure

with a Skip List along with a novel compaction algorithm
that overall reduces write amplification and increases write
throughput. The fundamental problem with log-structured
merge trees is that sstables are typically re-written multiple
times as new data is compacted into them. FLSM counters
this by fragmenting sstables into smaller units. Instead of
rewriting the sstable, FLSM’s compaction simply appends
a new sstable fragment to the next level. Doing so ensures
that data is written exactly once in most levels; a different
compaction algorithm is used for the the last few highest

levels. FLSM achieves this using a novel storage layout and
organizing data using guards (§3.1). This section describes
how guards are selected (§3.2), how guards are inserted and
deleted (§3.3), how FLSM operations are performed (§3.4),
how FLSM can be tuned for different performance/write-IO
trade-offs (§3.5), and its limitations (§3.6).

3.1 Guards

In the classical LSM, each level contains sstables with dis-
joint key ranges (i.e., each key will be present in exactly one
sstable). The chief insight in this work is that maintaining
this invariant is the root cause of write amplification, as it
forces data to be rewritten in the same level. The FLSM data
structure discards this invariant: each level can contain mul-
tiple sstables with overlapping key ranges, so that a key may
be present in multiple sstables. To quickly find keys in each
level, FLSM organizes the sstables into guards (inspired from
the Skip-List data structure [47, 48]).
Each level contains multiple guards. Guards divide the

key space (for that level) into disjoint units. Each guard Gi
has an associated key Ki , chosen from among keys inserted
into the FLSM. Each level in the FLSM contains more guards
than the level above it; the guards get progressively more
fine-grained as the data gets pushed deeper and deeper into
the FLSM. As in a skip-list, if a key is a guard at a given level
i , it will be a guard for all levels > i .

Each guard has a set of associated sstables. Each sstable is
sorted. If guard Gi is associated with key Ki and guard Gi+1
with Ki+1, an sstable with keys in the range [Ki ,Ki+1) will
be attached to Gi . Sstables with keys smaller than the first
guard are stored in a special sentinel guard in each level. The
last guard Gn in the level stores all sstables with keys ≥ Kn .
Guards within a level never have overlapping key ranges.
Thus, to find a key in a given level, only one guard will have
to be examined.
In FLSM compaction, the sstables of a given guard are

(merge) sorted and then fragmented (partitioned), so that
each child guard receives a new sstable that fits into the key
range of that child guard in the next level.

Example. Figure 3 shows the state of the FLSM data struc-
ture after a few put() operations. We make several observa-
tions based on the figure:

• A put() results in keys being added to the in-memory
memtable (not shown). Eventually, the memtable be-
comes full, and is written as an sstable to Level 0. Level
0 does not have guards, and collects together recently
written sstables.
• The number of guards increases as the level number
increases. The number of guards in each level does not
necessarily increase exponentially.

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

Level 0 (no guards)

Level 1

Level 2

Level 3

1 50 26 800 104 203 1024

Guard: 5

Sentinel

3 10 400 3000 200

Guard: 375

525 2750

Guard: 5

Guard: 5 Guard: 100 Guard: 375 Guard: 1023

2 5 35 40 7 101 125 380 400 1050

Figure 3: FLSM Layout on Storage. The figure illus-

trates FLSM’s guards across different levels. Each box

with dotted outline is an sstable, and the numbers rep-

resent keys.

• Each level has a sentinel guard that is responsible for
sstables with keys < than the first guard. In Figure 3,
sstables with keys < 5 are attached to the sentinel
guard.
• Data inside an FLSM level is partially sorted: guards do
not have overlapping key ranges, but the sstables at-
tached to each guard can have overlapping key ranges.

3.2 Selecting Guards

FLSM performance is significantly impacted by how guards
are selected. In the worst case, if one guard contains all ssta-
bles, reading and searching such a large guard (and all its
constituent sstables) would cause an un-acceptable increase
in latency for reads and range queries. For this reason, guards
are not selected statically; guards are selected probabilisti-
cally from inserted keys, preventing skew.

GuardProbability.When a key is inserted into FLSM, guard
probability determines if it becomes a guard. Guard probabil-
ity gp(key,i) is the probability that key becomes a guard
at level i. For example, if the guard probability is 1/10, one
in every 10 inserted keys will be randomly selected to be a
guard. The guard probability is designed to be lowest at Level
1 (which has the fewest guards), and it increases with the
level number (as higher levels have more guards). Selecting
guards in this manner distributes guards across the inserted
keys in a smooth fashion that is likely to prevent skew.
Much like skip lists, if a key K is selected as a guard in

level i , it becomes a guard for all higher levels i + 1, i + 2 etc.
The guards in level i + 1 are a strict superset of the guards in
level i . Choosing guards in this manner allows the interval
between each guard to be successively refined in each deeper

level. For example, in Figure 3, key 5 is chosen as a guard for
Level 1; therefore it is also a guard for levels 2 and 3.
FLSM selects guards out of inserted keys for simplicity;

FLSMdoes not require that guards correspond to keys present
in the key-value store.

Other schemes for selecting guards. The advantage of
the current method for selecting guards is that it is simple,
cheap to compute, and fairly distributes guards over inserted
keys. However, it does not take into account the amount of IO
that will result from partitioning sstables during compaction
(this section will describe how compaction works shortly).
FLSM could potentially select new guards for each level at
compaction time such that sstable partitions are minimized;
however, this could introduce skew. We leave exploring al-
ternative selection schemes for future work.

3.3 Inserting and Deleting Guards

Guards are not inserted into FLSM synchronously when
they are selected. Inserting a guard may require splitting
an sstable or moving an sstable. If a guard is inserted on
multiple levels, work is generated on all those levels. For this
reason, guards are inserted asynchronously into FLSM.

When guards are selected, they are added to an in-memory
set termed the uncommitted guards. Sstables are not parti-
tioned on storage based on (as of yet) uncommitted guards; as
a result, FLSM reads are performed as if these guards did not
exist. At the next compaction cycle, sstables are partitioned
and compacted based on both old guards and uncommitted
guards; any sstable that needs to be split due to an uncom-
mitted guard is compacted to the next level. At the end of
compaction, the uncommitted guards are persisted on stor-
age and added to the full set of guards. Future reads will be
performed based on the full set of guards.
We note that in many of the workloads that were tested,

guard deletion was not required. A guard could become
empty if all its keys are deleted, but empty guards do not
cause noticeable performance degradation as get() and
range query operations skip over empty guards. Neverthe-
less, deleting guards is useful in two scenarios: when the
guard is empty or when data in the level is spread unevenly
among guards. In the second case, consolidating data among
fewer guards can improve performance.

Guard deletion is also performed asynchronously similar
to guard insertion. Deleted guards are added to an in-memory
set. At the next compaction cycle, sstables are re-arranged
to account for the deleted guards. Deleting a guard G at
level i is done lazily at compaction time. During compaction,
guard G is deleted and sstables belonging to guard G will be
partitioned and appended to either the neighboring guards
in the same level i or child guards in level i + 1. Compaction
from level i to i + 1 proceeds as normal (since G is still a

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

guard in level i + 1). At the end of compaction, FLSM persists
metadata indicatingG has been deleted at level i . If required,
the guard is deleted in other levels in a similar manner. Note
that if a guard is deleted at level i , it should be deleted at all
levels < i; FLSM can choose whether to delete the guard at
higher levels > i .

3.4 FLSM Operations

Get Operations. A get() operation first checks the in-
memory memtable. If the key is not found, the search contin-
ues level by level, starting with level 0. During the search, if
the key is found, it is returned immediately; this is safe since
updated keys will be in lower levels that are searched first.
To check if a key is present in a given level, binary search
is used to find the single guard that could contain the key.
Once the guard is located, its sstables are searched for the
key. Thus, in the worst case, a get() requires reading one
guard from each level, and all the sstables of each guard.

Range Queries. Range queries require collecting all the
keys in the given range. FLSM first identifies the guards at
each level that intersect with the given range. Inside each
guard, there may be multiple sstables that intersect with the
given range; a binary search is performed on each sstable
to identify the smallest key overall in the range. Identifying
the next smallest key in the range is similar to the merge
procedure in merge sort; however, a full sort does not need
to be performed. When the end of range query interval is
reached, the operation is complete, and the result is returned
to the user. Key-value stores such as LevelDB provide related
operations such as seek() and next(); a seek(key) posi-
tions an iterator at the smallest key larger than or equal to
key, while next() advances the iterator. In LSM stores, the
database iterator is implemented via merging level iterators;
in FLSM, the level iterators are themselves implemented by
merging iterators on the sstables inside the guard of interest.

Put Operations. A put() operation adds data to an in-
memorymemtable.When thememtable gets full, it is written
as a sorted sstable to Level 0. When each level reaches a cer-
tain size, it is compacted into the next level. In contrast to
compaction in LSM stores, FLSM avoids sstable rewrites in
most cases by partitioning sstables and attaching them to
guards in the next level.

Key Updates and Deletions. Similar to LSM, updating or
deleting a key involves inserting the key into the store with
an updated sequence number or a deletion flag respectively.
Reads and range queries will ignore keys with deletion flags.
If the insertion of a key resulted in a guard being formed, the
deletion of the key does not result in deletion of the related

guard; deleting a guard will involve a significant amount of
compaction work. Thus, empty guards are possible.

Compaction. When a guard accumulates a threshold num-
ber of sstables, it is compacted into the next level. The sstables
in the guard are first (merge) sorted and then partitioned into
new sstables based on the guards of the next level; the new
sstables are then attached to the correct guards. For example,
assume a guard at Level 1 contains keys {1, 20, 45, 101, 245}.
If the next level has guards 1, 40, and 200, the sstable will be
partitioned into three sstables containing {1, 20}, {45, 101},
and {245} and attached to guards 1, 40, and 200 respectively.

Note that inmost cases, FLSM compaction does not rewrite
sstables. This is the main insight behind how FLSM reduces
write amplification. New sstables are simply added to the
correct guard in the next level. There are two exceptions to
the no-rewrite rule. First, at the highest level (e.g,. Level 5) of
FLSM, the sstables have to be rewritten during compaction;
there is no higher level for the sstables to be partitioned and
attached to. Second, for the second-highest level (e.g,. Level
4), FLSM will rewrite an sstable into the same level if the
alternative is to merge into a large sstable in the highest
level (since we cannot attach new sstables in the last level
if the guard is full). The exact heuristic is rewrite in second-
highest-level if merge causes 25× more IO.
FLSM compaction is trivially parallelizable because com-

pacting a guard only involves its descendants in the next
level; the way guards are chosen in FLSM guarantees that
compacting one guard never interferes with compacting an-
other guard in the same level. For example, in Figure 3 if
guard 375 in Level 2 is split into guards 375 and 1023 in Level
3, only these three guards are affected. Compacting guard
5 (if it had data) will not affect the on-going compaction of
guard 375 in any way. Thus, the compaction process can be
carried out in parallel for different guard files at the same
time. Parallel IO from compaction can be efficiently han-
dled by devices such as flash SSDs that offer high random
write throughput with multiple flash channels. Such parallel
compaction can reduce the total time taken to compact sig-
nificantly. A compacted key-value store has lower latency
for reads; since parallel compaction gets the store to this
state faster, it also increases read throughput.

3.5 Tuning FLSM

FLSM performance for reads and range queries depends
upon a single parameter: the number of sstables inside each
guard. If guards contain a large number of sstables, read and
range query latencies become high. Therefore, FLSM provide
users a knob to tune behavior, max_sstables_per_guard,
which caps the maximum number of sstables present in-
side each guard in FLSM. When any guard accumulates

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

max_sstables_per_guard number of sstables, the guard is
compacted into the next level.

Tuning max_sstables_per_guard allows the user to trade-
off more write IO (due to more compaction) for lower read
and range query latencies. Interestingly, if this parameter
is set to one, FLSM behaves like LSM and obtains similar
read and write performance. Thus, FLSM can be viewed as a
generalization of the LSM data structure.

3.6 Limitations

The FLSM data structure significantly reduces write ampli-
fication and has faster compaction (as compaction in FLSM
requires lower read and write IO). By virtue of faster com-
paction, write throughput increases as well. However, the
FLSM data structure is not without limitations.

Since get() and range query operations need to examine
all sstables within a guard, the latency of these operations
is increased in comparison to LSM. Section 4 describes how
this limitation can be overcome; using a combination of well-
known techniques can reduce or eliminate the overheads in-
troduced by the FLSM data structure, resulting in a key-value
store that achieves the trifecta of low write amplification,
high write throughput, and high read throughput.

3.7 Asymptotic Analysis

This section provides an analysis of FLSM operations using
a theoretical model.

Model. We use the standard Disk Access Model (DAM) [2]
and assume that each read/write operation can access a block
of size B in one unit cost. To simplify the model, we will
assume a total of n data items are stored.

FLSM Analysis. Consider a FLSM where the guard prob-
ability is 1/B (so the number of guards in level i + 1 is in
expectation B times more than the number of guards in level
i). Since the expected fan-out of FLSM is B, with high prob-
ability, an FLSM with n data items will have H = logB n
levels. It is easy to see that each data item is written just
once per level (it is appended once and never re-written to
the same level), resulting in a write cost ofO (H) = O (logB n).
Since in the DAM model, FLSM writes a block of B items at
unit cost, the total amortized cost of any put operation is
O (H/B) = O ((logB n)/B) over its entire compaction lifetime.
However, FLSM compaction in the last level does re-write
data. Since this last level re-write will occur with high prob-
ability O (B) times then the final total amortized cost of any
put operation is O ((B + logB n)/B).

The guards in FLSM induce a degree B Skip List. A detailed
theoretical analysis of the B-Skip List data structure shows
that with high probability each guardwill haveO (B) children,
each guard will have at most O (B) sstables, and each sstable

will have at mostO (B) data items [1, 12, 24]. Naively, search-
ing for an item would require finding the right guard at each
level (via binary search), and then searching inside all sstables
inside the guard. Since the last level has the most guards (BH),
binary search cost would be dominated by the cost for the
last level: O (log2 BH) = O (H log2 B) = O (logB n ∗ log2 B) =
O (log2 n). Since there are O (H) = O (loдBn) levels to search,
this yields a total cost of O (log2 n logB n) in-memory opera-
tions for finding the right guards at each level.
However, in FLSM, the guards and bloom filters are all

stored inmemory. FLSMperformsO (log2 n logB n) in-memory
operations during the binary search for the right guard in
each level. Then, for each of the H = logB n guards found,
FLSM does a bloom filter query on each of the O (B) ssta-
bles associated with the guard, with each query costing
O (log(1/ϵ)) in memory operations. In the DAM model all
this in-memory work has no cost.
Finally, on average, the bloom filter will indicate only

1 + o(1) sstables to be read (with high probability). Reading
these sstables will cost 1+o(1) in the DAMmodel. Therefore,
the total read cost of a get operation (assuming sufficient
memory to store guards and bloom filters) is justO (1) in the
DAM model.

FLSM cannot leverage bloom filters for range queries. The
binary search per level is still done in memory. For each level,
the binary search outputs one guard and FLSM needs to read
all the O (B) associated sstables. So the total cost for a range
query returning k elements is O (B logB n + k/B).

4 BUILDING PEBBLESDB OVER FLSM

This section presents the design and implementation of Peb-
blesDb, a high-performance key-value store built using frag-
mented log-structured merge trees. This section describes
how PebblesDb offsets FLSM overheads for reads (§4.1) and
range queries (§4.2), different PebblesDb operations (§4.3),
how PebblesDb recovers from crashes (§4.4), its implemen-
tation (§4.5), and its limitations (§4.6).

4.1 Improving Read Performance

Overhead Cause. A get() operation in FLSM causes all
the sstables of one guard in each level to be examined. In
contrast, in log-structured merge trees, exactly one sstable
per level needs to be examined. Thus, read operations incur
extra overhead in FLSM-based key-value stores.

Sstable Bloom Filters. A Bloom filter is a space-efficient
probabilistic data structure used to test whether an element is
present in a given set in constant time [13]. A bloom filter can
produce false positives, but not false negatives. PebblesDb
attaches a bloom filter to each sstable to efficiently detect
if a given key could be present in the sstable. The sstable

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

bloom filters allow PebblesDb to avoid reading unnecessary
sstables off storage and greatly reduces the read overhead
due to the FLSM data structure.
RocksDB also employs sstable-level bloom filters. Many

key-value stores (including RocksDB and LevelDB) employ
bloom filters for each block of the sstable. If sstable-level
bloom filters are used, block-level filters are not required.

4.2 Improving Range Query Performance

OverheadCause. Similar to get() operations, range queries
(implemented using seek() and next() calls) also require
examining all the sstables of a guard for FLSM. Since LSM
stores examine only one sstable per level, FLSM stores have
significant overhead for range queries.

Seek-Based Compaction. Similar to LevelDB, PebblesDb
implements compaction triggered by a threshold number of
consecutive seek() operations (default: 10). Multiple ssta-
bles inside a guard are merged and written to the guards in
the next level. The goal is to decrease the average number of
sstables within a guard. PebblesDb also aggressively com-
pacts levels: if the size of level i is within a certain threshold
ratio (default: 25%) of level i+1, level i is compacted into level
i + 1. Such aggressive compaction reduces the number of
active levels that need to be searched for a seek(). Although
such compaction increases write IO, PebblesDb still does
significantly lower amount of IO overall (§5).

Parallel Seeks. A unique optimization employed by Peb-
blesDb is using multiple threads to search sstables in parallel
for a seek(). Each thread reads one sstable off storage and
performs a binary search on it. The results of the binary
searches are then merged and the iterator is positioned cor-
rectly for the seek() operation. Due to this optimization,
even if a guard contains multiple sstables, FLSM seek() la-
tency incurs only a small overhead compared to LSM seek()
latency.
Parallel seeks must not be carelessly used: if the sstables

being examined are cached, the overhead of using multiple
threads is higher than the benefit obtained from doing par-
allel seeks. Given that there is no way to know whether a
given sstable has been cached or not (since the operating
system may drop a cached sstable under memory pressure),
PebblesDb employs a simple heuristic: parallel seeks are
used only in the last level of the key-value store. The rea-
son to choose this heuristic is that the last level contains
the largest amount of data; furthermore, the data in the last
level is not recent, and therefore not likely to be cached. This
simple heuristic seems to work well in practice.

4.3 PebblesDb Operations

This section briefly describes how various operations are
implemented in PebblesDb, and how they differ from doing
the same operations on the FLSM data structure. The put()
operation in PebblesDb is handled similar to puts in FLSM.

Get. PebblesDb handles get() operations by locating the ap-
propriate guard in each level (via binary search) and search-
ing the sstables within the guard. PebblesDb get() differs
from FLSM get() in the use of sstable-level bloom filters to
avoid reading unnecessary sstables off storage.

RangeQuery. PebblesDb handles range queries by locating
the appropriate guard in each level and placing the iterator at
the right position for each sstable in the guard by performing
binary searches on the sstables. PebblesDb optimizes this by
reading and searching sstables in parallel, and aggressively
compacting the levels if a threshold number of consecutive
seek() requests are received.

Deleting Keys. PebblesDb deletes a key by inserting the
key into the store with a flag marking it as deleted. The
sequence number of inserted key identifies it as the most
recent version of the key, instructing PebblesDb to discard
the previous versions of the key for read and range query
operations. Note that bloom filters are created over sstables;
since sstables are never updated in place, existing bloom
filters do not need to be modified during key deletions. Keys
marked for deletion are garbage collected during compaction.

4.4 Crash Recovery

By only appending data, and never over-writing any data
in place, PebblesDb builds on the same foundation as LSM
to provide strong crash-consistency guarantees. PebblesDb
builds on the LevelDB codebase, and LevelDB already pro-
vides a well-tested crash-recovery mechanism for both data
(the sstables) and the metadata (the MANIFEST file). Peb-
blesDb simply adds more metadata (guard information) to
be persisted in the MANIFEST file. PebblesDb sstables use
the same format as LevelDB sstables. Crash-recovery tests
(testing recovered data after crashing at randomly picked
points) confirm that PebblesDb recovers inserted data and
associated guard-related metadata correctly after crashes.

4.5 Implementation

PebblesDb is implemented as a variant of the LevelDB family
of key-value stores. PebblesDb was built by modifying Hy-
perLevelDB [29], a variant of LevelDB that was engineered
to have improved parallelism and better write throughput
during compaction. We briefly examined the RocksDB code
base, but found that the HyperLevelDB code base was smaller,
better documented (as it derives from LevelDB), and easier

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

to understand. Thus, HyperLevelDB was chosen as the base
for PebblesDb.
We added/modified 9100 LOC in C++ to HyperLevelDB.

Most of the changes involved introducing guards in Hyper-
LevelDB andmodifying compaction. Since guards are built on
top of sstables, PebblesDb was able to take advantage of the
mature, well-tested code that handled sstables. PebblesDb
is API-compatible with HyperLevelDB since all changes are
internal to the key-value store.

Selecting Guards. Similar to skip lists, PebblesDb picks
guards randomly out of the inserted keys. When a key is
inserted, a random number is selected to decide if the key is
a guard. However, obtaining a random number for every key
insertion is computationally expensive; instead, PebblesDb
hashes every incoming key, and the last few bits of the hash
determine if the key will be a guard (and at which level).
The computationally cheap MurmurHash [8] algorithm is

used to hash each inserted key. A configurable parameter
top_level_bits determines how many consecutive Least
Significant Bits (LSBs) in the bit representation of the hashed
key should be set for the key to be selected as a guard key
in Level 1. Another parameter bit_decrement determines
the number of bits by which the constraint (number of LSBs
to be set) is relaxed going each level higher. For example, if
top_level_bits is set to 17, and bit_decrement is set to
2, then a guard key in level 1 should have 17 consecutive
LSBs set in its hash value, a guard key in level 2 should
have 15 consecutive LSBs set in its hash value and so on.
The top_level_bits and bit_decrement parameters need
to be determined empirically; based on our experience, a
value of two seems reasonable for bit_decrement, but the
top_level_bits may need to be increased from our default
of 27 if the users expect more than 100 million keys to be
inserted into PebblesDb. Over-estimating the number of
keys in the store is harmless (leads to many empty guards);
under-estimating could lead to skewed guards.

Implementing Guards. Each guard stores metadata about
the number of sstables it has, the largest and smallest key
present across the sstables, and the list of sstables. Each
sstable is represented by a unique 64-bit integer. Guards are
persisted to storage along with metadata about the sstables
in the key-value store. Guards are recovered after a crash
from the MANIFEST log and the asynchronous write-ahead
logs. Recovery of guard data is woven into the key-value
store recovery of keys and sstable information. We have not
implemented guard deletion in PebblesDb yet since extra
guards did not cause significant performance degradation
for reads in our experiments and the cost of persisting empty
guards is relatively insignificant.We plan to implement guard
deletion in the near future.

Multi-threaded Compaction. Similar to RocksDB, Peb-
blesDb uses multiple threads for background compaction.
Each thread picks one level and compacts it into the next
level. Picking which level to compact is based on the amount
of data in each level. When a level is compacted, only guards
containingmore than a threshold number of sstables are com-
pacted. We have not implemented guard-based parallel com-
paction in PebblesDb yet; even without parallel compaction,
compaction in PebblesDb is much faster than compaction
in LSM-based stores such as RocksDB (§5.2).

4.6 Limitations

This section describes three situations where a traditional
LSM-based store may be a better choice over PebblesDb.
First, if the workload data will fit entirely in memory,

PebblesDb has higher read and range query latency than
LSM-based stores. In such a scenario, read or range query
requests will not involve storage IO and the computational
overhead of locating the correct guard and processing ssta-
bles inside a guard will contribute to higher latency. Given
the increasing amount of data being generated and pro-
cessed every day [49], most datasets will not fit in mem-
ory. For the rare cases where the data size is small, setting
max_sstables_per_guard to one configures PebblesDb to
behave similar to HyperLevelDB, reducing the latency over-
head for reads and range queries.
Second, for workloads where data with sequential keys

is being inserted into the key-value store, PebblesDb has
higher write IO than LSM-based key value stores. If data
is inserted sequentially, sstables don’t overlap with each
other. LSM-based stores handle this case efficiently by simply
moving an sstable from one level to the next by modifying
only the metadata (and without performing write IO); in
the case of PebblesDb, the sstable may be partitioned when
moving to the next level, leading to write IO. We believe that
real-world workloads that insert data sequentially are rare
since most workloads are multi-threaded; in such rare cases,
we advocate the use of LSM-based stores such as RocksDB.

Third, if the workload involves an initial burst of writes fol-
lowed by a large number of small range queries, PebblesDb
may not be the best fit. For such range queries over a com-
pacted key-value store, PebblesDb experiences a significant
overhead (30%) compared to LSM-based stores. However,
the overhead drops as the range queries get bigger and en-
tirely disappears if the range queries are interspersed with
insertions or updates (as in YCSB Workload E).

5 EVALUATION

This section evaluates the performance of PebblesDb by
answering the following questions:

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

• What is the write amplification of PebblesDb? (§5.2)
What is the performance of various PebblesDb key-
value store operations? (§5.2) What are the strengths
and weaknesses of PebblesDb?
• How does PebblesDb perform on workloads resem-
bling access patterns in various applications? (§5.3)
• How do NoSQL applications perform when they use
PebblesDb as their storage engine? (§5.4)
• How much memory and CPU does PebblesDb con-
sume? (§5.5)

5.1 Experimental Setup

Our experiments are run on a Dell Precision Tower 7810 with
an Intel Xeon 2.8 GHz processor, 16 GB RAM, and running
Ubuntu 16.04 LTS with the Linux 4.4 kernel. The ext4 file
system is run on top of a software RAID0 array used over
two high-performance Intel 750 SSDs (each 1.2 TB).

All workloads use datasets 3× larger than the main mem-
ory on test machine. All reported numbers are the mean of
at least five runs. The standard deviation in all cases was less
than 5% of the mean. PebblesDb performance is compared
with widely-used key-value stores LevelDB, RocksDB and
HyperLevelDB. To simplify results, compression is turned
off in all stores. We have verified that compression does not
change any of our performance results; it simply leads to a
smaller dataset. HyperLevelDB does not employ bloom fil-
ters for sstables; to make a fair comparison (and to show our
results do not derive just from sstable bloom filters), this op-
timization is added to HyperLevelDB: all numbers presented
for HyperLevelDB are with bloom filters for sstables.

Key-Value Store Configurations. The key-value stores
being evaluated have three parameters that affect perfor-
mance: memtable-size, level0-slowdown, level0-stop.
Note that Level 0 can have sstables with overlapping ranges;
new sstables are simply appended to Level 0 (otherwise
adding an sstable to Level 0 would trigger compaction, affect-
ing write throughput). However, letting Level 0 growwithout
bounds will reduce read and range query throughput. The
memtable-size parameter controls how big the memtable
can grow before being written to storage. The other two
parameters are used to slow down or stop writes to Level 0.
HyperLevelDB and RocksDB have different default val-

ues for these parameters. HyperLevelDB uses 4 MB memta-
bles with level0-slowdown of 8 and level0-stop of 12.
RocksDB uses 64 MB memtables with level0-slowdown of
20 and level0-stop of 24. When comparing PebblesDb
with these systems, the default HyperLevelDB parameters
are used. Certain experiments also report performance under
RocksDB parameters.

PebblesDB HyperLevelDB

Average 17.23 13.33
Median 5.29 16.59
90th percentile 51.06 16.60
95th percentile 68.31 16.60

Table 1: SSTable Size. The table shows the distribu-

tion of sstable size (in MB) for PebblesDB and Hyper-

LevelDB when 50 million key-value pairs totaling 33

GB were inserted.

5.2 Micro-benchmarks

This section evaluates PebblesDb performance using differ-
ent single-threaded and multi-threaded micro-benchmarks
and in various conditions. The single-threaded benchmarks
help us understand the performance of different PebblesDb
operations. The multi-threaded benchmark evaluates how
PebblesDb performs in the more realistic setting of multiple
readers and writers. PebblesDb is evaluated in different con-
ditions such as when the dataset fits in memory, with small
key-value pairs, with an aged file system and key-value store,
and finally under extremely low memory conditions.

Write Amplification. We measure write amplification for
workloads that insert or update keys in random order (key:16
bytes, value:128 bytes). Figure 4 (a) presents the results. Peb-
blesDb write IO (in GB) is shown over the bars. PebblesDb
consistently writes the least amount of IO, and the difference
in write amplification between PebblesDb and other stores
goes up as the number of keys increases. For 500M keys,
PebblesDb lowers write amplification by 2.5× compared to
RocksDB and HyperLevelDB and 1.6× compared to LevelDB.

Single-threaded Workloads. We use db_bench (a suite of
micro-benchmarks that comes bundled with LevelDB) [33] to
evaluate PebblesDb performance on various operations: 50M
sequential writes, 50M random writes, 10M random reads
and 10M random seeks. Reads and seeks were performed on
the previously (randomly) inserted 50M keys. Each key was
16 bytes and the value was 1024 bytes. The results, presented
in Figure 4 (b), show both the strengths and weaknesses of
PebblesDb.

Random Writes and Reads. PebblesDb outperforms all
other key-value stores in random writes due to the under-
lying FLSM data structure. PebblesDb throughput is 2.7×
that of HyperLevelDB, the closest competitor. PebblesDb
compaction finishes 2.5× faster than HyperLevelDB com-
paction. Random reads perform better in PebblesDb due to
the larger sstables of PebblesDb (as shown in Table 1). The
index blocks of all PebblesDb sstables are cached, whereas

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

Figure 4: Micro-benchmarks. The figure compares the throughput of several key-value stores on various micro-

benchmarks. Values are shown relative to HyperLevelDB, and the absolute value (in KOps/s or GB) of the baseline

is shown above the bar. For (a), lower is better. In all other graphs, higher is better. PebblesDb excels in random

writes, achieving 2.7× better throughput, while performing 2.5× lower IO.

there are cache misses for the index blocks of the many Hy-
perLevelDB sstables. With larger caches for index blocks,
PebblesDb read performance is similar to HyperLevelDB.

Sequential Writes. PebblesDb obtains 3× less throughput
than HyperLevelDB on the sequential write workload; this
is because sequential workloads result in disjoint sstables
naturally (e.g,. first 100 keys go to the first sstable, second
100 keys go to the second sstable, etc.), LSM-based stores
can just move the sstable from one level to another without
doing any IO. On the other hand, PebblesDb always has to
partition sstables based on guards (and therefore perform
write IO) whenmoving sstables from one level to the next. As
a result, PebblesDb performs poorly when keys are inserted
sequentially. Many real-world workloads are multi-threaded,

resulting in random writes; for example, in the YCSB work-
load suite which reflects real-world access patterns, none of
the workloads insert keys sequentially [16].

Range Queries. A range query is comprised of an seek()
operation followed by a number of next() operations. Range-
query performance depends mainly on two factors: the num-
ber of levels in the key-value store on storage, and the num-
ber of next() operations. Figure 4 (b) shows key-value store
performance for range queries comprising of only seek() op-
erations, performed after allowing the key-value store time
to perform compaction. As such, it represents a worst case for
PebblesDB: the expensive seek() operation is not amortized
by successive next() operations, and other key-value stores
compact more aggressively than PebblesDB, since they do

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

PebblesDB HyperLevelDB LevelDB RocksDB

Insert 50M values 56.18 40.00 22.42 14.12
Update Round 1 47.85 24.55 12.29 7.60
Update Round 2 42.55 19.76 11.99 7.36

Table 2: Update Throughput. The table shows the

throughput in KOps/s for inserting and updating 50M

key-value pairs in different key-value stores.

not seek to minimize write IO. In this worst-case scenario,
PebblesDB has a 30% overhead compared to HyperLevelDB,
due to the fact that a seek() in PebblesDb requires reading
multiple sstables from storage in each level. We note that in
real-world workloads such as YCSB, there are many next()
operations following a seek() operation.
Next, we measure range query performance in a slightly

different setting. We insert 50M key-value pairs (key: 16
bytes, value: 1 KB), and immediately perform 10M range
queries (each range query involves 50 next() operations). In
this more realistic scenario, we find that PebblesDb overhead
(as compared to HyperLevelDB) reduces to 15% from the
previous 30%. If we increase range query size to 1000, the
overhead reduces to 11%.
Unfortunately, even with many next() operations, Peb-

blesDb range-query performance will be lower than that of
LSM key-value stores. This is because PebblesDb pays both
an IO cost (reads more sstables) and a CPU cost (searches
through more sstables in memory, merges more iterators)
for range queries. While the overhead will drop when the
number of next() operations increase (as described above),
it is difficult to eliminate both IO cost and CPU cost.

To summarize range-query performance, PebblesDb has
significant overhead (30%) for range queries when the key-
value store has been fully compacted. This overhead derives
both from the fact that PebblesDb has to examine more
sstables for a seek() operation, and that PebblesDb does
not compact as aggressively as other key-value stores as it
seeks to minimize write IO. The overhead is reduced for large
range queries, and when range queries are interspersed with
writes (such as in YCSB workload E).

Deletes and Updates. Deletes and Updates are handled sim-
ilar to writes in LSM-based key-value stores. Updates do not
check for the previous value of the key, so updates and new
writes are handled identically. Deletes are simply writes with
a zero-sized value and a special flag. We ran an experiment
where we inserted 200M key-value pairs (key: 16 bytes, value:
128 bytes) into the database and deleted all inserted keys. We
measure the deletion throughput. The results are presented
in Figure 4 (b) and follow a pattern similar to writes: Peb-
blesDb outperforms the other key-value stores due to its
faster compaction.

We ran another experiment to measure update through-
put. We inserted 50M keys (value: 1024 bytes) into the store,
and then updated all keys twice. The results are presented in
Table 2. We find that as the database becomes larger, inser-
tion throughput drops since insertions are stalled by com-
pactions and compactions involve more data in larger stores.
While the other key-value stores drop to 50% of the initial
write throughput, PebblesDB drops to only 75% of original
throughput; we attribute this difference to the compaction
used by the different key-value stores. The update through-
put of PebblesDB is 2.15× that of HyperLevelDB, the closest
competitor.

SpaceAmplification. The storage space used by PebblesDb
is not significantly higher compared to LSM-based stores.
LSM-based stores only reclaim space if the key has been
updated or deleted. For a workload with only insertions of
unique keys, the space used by RocksDB and PebblesDB will
be identical. For workloads with updates and deletions, Peb-
blesDB will have a slight overhead due to delay in merging.
We inserted 50M unique key-value pairs. The storage-space
consumption of RocksDB, LevelDB, and PebblesDb were
within 2% of each other (52 GB). We performed another ex-
periment where we inserted 5M unique keys, and updated
each key 10 times (total 50M writes). Since the keys aren’t
compacted yet, PebblesDb consumes 7.9 GB while RocksDB
consumes 7.1 GB. LevelDB consumed 7.8 GB of storage space.

Multi-threaded Reads and Writes. We use four threads
to perform 10M read and 10M write operations (each) on the
evaluated key-value stores. The reads are performed on the
store after the write workload finishes. We use the default
RocksDB configuration (64 MB memtable, large Level 0).
Figure 4 (c) presents the results. PebblesDb performs the
best on both workloads, obtaining 3.3× the write throughput
of RocksDB (1.7× over baseline).

Concurrent Reads and Writes. In this experiment, two
threads perform 10M reads each, while two other threads
perform 10M writes each. Figure 4 (c) reports the combined
throughput of reads and writes (mixed). PebblesDb outper-
forms the other stores. The lower write amplification leads to
higher write throughput. Since compaction in PebblesDb is
faster than the other stores, PebblesDb reaches a compacted
state earlier with larger (and fewer) sstables, resulting in
lower read latency and higher read throughput. Note that
PebblesDb outperforms HyperLevelDB even when Hyper-
LevelDB uses sstable-level bloom filters, thus demonstrating
the gains are due to the underlying FLSM data structure.

Small Workloads on Cached Datasets. We run an exper-
iment to determine the performance of PebblesDb on data

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

sets that are likely to be fully cached. We insert 1M ran-
dom key-value pairs (key:16 bytes, value: 1KB) into Hyper-
LevelDB and PebblesDb. The total dataset size is 1 GB, so
it is comfortably cached by the test machine (RAM: 16 GB).
We do 1M random reads and seeks. Figure 4 (d) presents the
results. Even for small datasets, PebblesDb gets better write
throughput than HyperLevelDB due to the FLSM data struc-
ture. Due to extra CPU overhead of guards, there is a small
7% overhead on reads and 47% overhead on seeks. When Peb-
blesDb is configured to run with max_sstables_per_guard
(§3.5) set to one so that it behaves more like an LSM store
(PebblesDB-1), PebblesDb achieves 11% higher read through-
put and the seek overhead drops to 13%.

Performance for Small Sized Key-Value Pairs. We in-
sert 300M key-value pairs into the database (key: 16 bytes,
value: 128 bytes). As shown in Figure 4 (e), PebblesDb ob-
tains higher write throughput and equivalent read and seek
throughputs (similar to results with large keys).

Impact of Empty Guards. We run an experiment to mea-
sure the performance impact of empty guards. We insert
20M key-value pairs (with keys from 0 to 20M, value size:
512B, dataset size: 10 GB), perform 10M read operations on
the data, and delete all keys. We then repeat this, but with
keys from 20M to 40M. We do twenty iterations of this ex-
periment. Since we are always reading the currently inserted
keys, empty guards due to old deleted keys will accumulate
(there are 9000 empty guards at the beginning of the last iter-
ation). Throughout the experiment, read throughput varied
between 70 and 90 KOps/s. Read throughput did not reduce
with more empty guards.

Impact of File-System and Key-Value Store Aging. Re-
cent work has shown that file-system aging has a significant
impact on performance [15]. To assess the impact of file-
system and key-value store aging on PebblesDB, we run the
following experiment. File-system Aging: We create a new
file system on a 1.1 TB SSD, then use sequential key-value
pair insertion to fill up the file system. We then delete all
data in the file system, and fill the file system using the same
process again until 130 GB of free space (11% of the file-
system size) is left. Key-Value Store Aging: We then age the
key-value store under evaluation by using four threads to
each insert 50M key-value pairs, delete 20M key-value pairs,
and update 20M key-value pairs in random order. Once both
file-system and key-value store aging is done, we then run
micro-benchmarks for writes, reads, and seeks (all in random
order). The results are presented in Figure 4 (f). We find that
the absolute performance numbers drop: 18% for reads and
16% for range queries (mainly because there is more data
in the key-value store from the aging). As with a fresh file
system, PebblesDB outperforms the other key-value stores

Workload Description Represents

Load A 100% writes Insert data for workloads
A–D and F

A 50% reads, 50% writes Session recording recent
actions

B 95% reads, 5% writes Browsing and tagging
photo album

C 100% reads Caches
D 95% reads (latest values),

5% writes
News feed or status feed

Load E 100% writes Insert data for Workload
E

E 95% Range queries, 5%
writes

Threaded conversation

F 50% reads, 50% Read-
modify-writes

Database workload

Table 3: YCSB Workloads. The table describes the six

workloads in the YCSB suite.WorkloadsA–D and F are

preceded by Load A, while E is preceded by Load E.

on writes (although the throughput speedup reduces to 2×
from 2.7×). Similarly, PebblesDB outperforms HyperLevelDB
by 8% (down from 20% on a fresh file system) on reads, and
incurs a 40% penalty on range queries (as compared to 30%
on a fresh file system) compared to HyperLevelDB.

Performance Under Low Memory. We evaluate the per-
formance of PebblesDb when the total available memory
is a small percentage of the dataset size. We insert 100M
key-value pairs (key:16 bytes, value: 1K) for a total dataset
size of 65 GB. We restrict the RAM on our machine using the
mem kernel boot parameter to 4 GB. Thus, the total available
DRAM is only 6% of the total dataset size (in our previous
experiments, it was 30%). We evaluate the performance of
PebblesDb under these conditions using micro-benchmarks.
The results are presented in Figure 4 (g). All key-values
stores evaluated use a 64 MB memtable and a large Level
0. We find that PebblesDb still outperforms the other key-
value stores at random writes, although the margin (with
respect to HyperLevelDB) reduces to 64%. PebblesDb out-
performs HyperLevelDB on random reads by 63%. On the
range query micro-benchmark, PebblesDb experiences a
40% penalty compared to HyperLevelDB. Thus, PebblesDb
still achieves good performance in reads and writes when
memory is scarce, although range queries experience more
performance degradation.

Impact of Different Optimizations. We describe how the
different optimizations described in the paper affect Peb-
blesDb performance. If PebblesDb doesn’t use any opti-
mizations for range queries, range query throughput drops
by 66% (48 GB dataset). The overhead drops to 48% if parallel

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

Figure 5: YCSB Performance. The figure shows the

throughput (bigger is better except for Total-IO bars)

of different key-value stores on the YCSB Benchmark

suite run with four threads. PebblesDb gets higher

throughput than RocksDB on almost all workloads,

while performing 2× lower IO than RocksDB.

seeks are used, and only 7% if only seek-based compaction
is used. Using sstable-level bloom filters improves read per-
formance by 63% (53 GB dataset).

5.3 Yahoo Cloud Serving Benchmark

The industry standard in evaluating key-value stores is the
Yahoo Cloud Serving Benchmark [16]. The suite has six work-
loads (described in Table 3), each representing a different
real-world scenario. We modify db_bench [33] to run the
YCSB benchmark with 4 threads (one per core) and using de-
fault RocksDB parameters (64MB memtable and large Level
0). We run RocksDB with 4 background compaction threads
to further boost its performance. Load-A and Load-E do 50M
operations each, all other workloads do 10M operations each.
Figure 5 presents the results: PebblesDb outperforms both
RocksDB and HyperLevelDB on write workloads, while ob-
taining nearly equal performance on all other workloads.
Overall, PebblesDb writes 50% less IO than RocksDB.
On write-dominated workloads like Load A and Load E,

PebblesDb achieves 1.5–2× better throughput due to the
faster writes offered by the underlying FLSM data structure.
For the read-only Workload C, PebblesDb read perfor-

mance is better than other key-value stores due to the larger
sstables of PebblesDb. The key-value stores cache a lim-
ited number of sstable index blocks (default: 1000): since
PebblesDb has fewer, larger files, most of its sstable-index-
blocks are cached. The cache misses for the other key-value
stores result in reduced read performance. When we increase
the number of index blocks cached, PebblesDb read perfor-
mance becomes similar to the other key-value stores. Note
that the larger sstables of PebblesDb result from compaction:
in workloads such as B and D, the constant stream of writes
adds new sstables that are not compacted; as a result, Peb-
blesDb throughput is similar to the other key-value stores.

For the range-query-dominated Workload E, PebblesDb
surprisingly has performance close (6% overhead) to the
other key-value stores. When we analyzed this, we found
that the small amount of writes in the workload (Workload E
has 5%writes) prevent any key-value store from full compact-
ing; as a result, every key-value store has to examinemultiple
levels, which reduces the performance impact of the extra
sstables examined by PebblesDb. When the YCSB work-
load is modified to contain only range queries, PebblesDb
throughput is 18% lower than HyperLevelDB as expected.
Each range query in this workload doesN next() operations
(N picked randomly from 1 to 100), and the next() opera-
tions also contribute in reducing range-query overhead.

InWorkload F, all writes are read-modify-writes: the work-
load does a get() before every put() operation. As a result,
the full write throughput of PebblesDb is not utilized, result-
ing in performance similar to that of other key-value stores.
We see similar read-modify-write behavior in applications
such as HyperDex and MongoDB.

5.4 NoSQL Applications

We evaluate the performance of two real-world applications,
the HyperDex and MongoDB NoSQL stores, when they use
PebblesDb as the underlying storage engine. We use the Java
clients provided by HyperDex and MongoDB for running the
YCSB benchmark, with both the server and client running
on the same machine (no network involved).

HyperDex. HyperDex is a high-performance NoSQL store
that uses HyperLevelDB as it storage engine by default [18].
We evaluate the performance impact of using PebblesDb as
the storage engine by running the YCSB benchmark with
4 threads. Load-A inserts 20M values, Load-E inserts 30M
values, A–D and F perform 10M operations each, and E per-
forms 250K operations (lower number of ops as HyperDex
range-query latency is very high). We use the same setup
used by HyperDex developers to benchmark their system
using YCSB [28]. Both HyperLevelDB and PebblesDb are
configured with the default HyperDex parameters (16 MB
memtable size).
Figure 6 (a) presents the results. In every workload, us-

ing PebblesDb improves HyperDex throughput, with the
highest gain of 59% coming when inserting 30M key-value
pairs in the Load-E workload. HyperDex adds significant
latency to operations done by YCSB. For example, the aver-
age latency to insert a key in HyperDex is 151 µs , of which
PebblesDb accounts for only 22.3 µs (14.7%). Furthermore,
HyperDex checks whether a key already exists before insert-
ing, turning every put() operation in the Load workloads
into a get() and a put(). This behavior of HyperDex re-
duces the performance gain from PebblesDb, because Peb-
blesDb can handle much higher rate of insertions. Despite

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

(a) HyperDex Throughput (b) MongoDB Throughput

Figure 6: Application Throughput. The figure shows the YCSB throughput (bigger is better except last bar) of

the HyperDex document store and MongoDB NoSQL store when using different key-value stores as the storage

engine. The throughput is shown relative to the default storage option (HyperLevelDB for HyperDex,WiredTiger

for MongoDB). The raw throughput in KOps/s or total IO in GB of the default option is shown above the bars.

this, PebblesDb increases HyperDex throughput while si-
multaneously reducing write IO.

When we increase the value size from the YCSB default of
1 KB to 16 KB, the speedup HyperDex achieves from using
PebblesDb drastically increases: the geometric mean of the
speedup is 105% (not shown). As the value size increases,
more IO is required for all operations, making the extra
CPU overhead of PebblesDb negligent, and highlighting the
benefits of the FLSM data structure.

MongoDB. We configure MongoDB [40], a widely-used
NoSQL store, to use PebblesDb as the storage engine. Mon-
goDB can natively run with either theWired Tiger key-value
store (default) or RocksDB. We evaluate all three options
using the YCSB Benchmark suite. All three stores are con-
figured to use 8 MB cache and a 16 MB memtable. Since
Wired Tiger is not a LSM-based store (it uses checkpoints
+ journaling), it does not use memtables; instead, it collects
entries in a log in memory. We configure the max size of
this log to be 16 MB. Figure 6 (b) presents the results. We
find that both RocksDB and PebblesDb significantly out-
perform Wired Tiger on all workloads, demonstrating why
LSM-based stores are so popular. While RocksDB performs
40% more IO than Wired Tiger, PebblesDb writes 4% lesser
IO than Wired Tiger.

We investigated why PebblesDb write throughput is not
2× higher than RocksDB as in the YCSB benchmark. As in
HyperDex, MongoDB itself adds a lot of latency to each
write (PebblesDb write constitutes only 28% of latency of
MongoDB write) and provides requests to PebblesDb at a
much lower rate than PebblesDb can handle. The slower
request rate allows RocksDB’s compaction to keep up with
the inserted data; thus, PebblesDb’s faster compaction is
not utilized, and the two key-value stores have similar write

Workload HyperLevelDB RocksDB PebblesDb

Writes (100M) 159 896 434
Reads (10M) 154 36 500
Seeks (10M) 111 34 430

Table 4: Memory Consumption. The table shows the

memory consumed (inMB) by key-value stores for dif-

ferent workloads.

throughput. Note that PebblesDb still writes 40% lesser IO
then RocksDB, providing lower write amplification.

Summary. PebblesDb does not increase performance on
HyperDex and MongoDB as significantly as in the YCSB
macro-benchmark. This is both due to PebblesDb latency
being a small part of overall application latency, and due to
application behavior such as doing a read before every write.
If the application is optimized for PebblesDb, we believe
the performance gains would be more significant. Despite
this, PebblesDb reduces write amplification, providing either
equal (MongoDB) or better performance (HyperDex).

5.5 Memory and CPU Consumption

Memory Consumption. We measure memory used during
the insertion of 100M keys (key size: 16 bytes, value size: 1024
bytes, total: 106 GB) followed by 10M reads and range queries.
The results are shown in Table 4. PebblesDb consumes about
300 MB more than HyperLevelDB. PebblesDb uses 150 MB
for storing sstable bloom filters, and 150 MB for temporary
storage for constructing the bloom filters.

CPU Cost. We measured the median CPU usage during
the insertion of 30M keys, followed by reads of 10M keys.
The median CPU usage of PebblesDb is 170.95%, while the

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

median for the other key-value stores ranged from 98.3–
110%. The increased CPU usage is due to the PebblesDb
compaction thread doing more aggressive compaction.

Bloom Filter Construction Cost. Bloom filters are calcu-
lated over all the keys present in an sstable. The overhead
of calculating the bloom filter is incurred only the first time
the sstable is accessed. The time taken to calculate depends
on the size of sstable. We observed the rate of calculation to
be 1.2 s per GB of sstable. For 3200 sstables totaling 52 GB,
bloom filter calculation took 62 seconds.

6 RELATEDWORK

The work in this paper builds on extensive prior work in
building and optimizing key-value stores. The key contribu-
tion relative to prior work is the FLSM data structure and
demonstrating that a high performance key-value store that
drastically reduces write amplification can be built on top
of FLSM. This section briefly describe prior work and places
the work in this paper in context.

Reducing Write Amplification. Various data structures
have been proposed for implementing key-value stores. Frac-
tal Index trees [11] (see TokuDB [36]) were suggested to
reduce the high IO cost associated with traditional B-Trees.
While FLSM and Fractal index trees share the same goal of
reducing write IO costs, Fractal index trees do not achieve
high write throughput by taking advantage of large sequen-
tial writes, and do not employ in-memory indexes such as
bloom filters to improve performance like PebblesDb.

NVMKV [38] uses a hashing-based design to reduce write
amplification and deliver close to raw-flash performance.
NVMKV is tightly coupled to the SSD’s Flash Translation
Layer (FTL) and cannot function without using FTL features
such as atomic multi-block write. Similarly, researchers have
proposed building key-value stores based on vector inter-
faces (that are not currently available) [55]. In contrast, Peb-
blesDb is device-agnostic and reduces write amplification
on both commodity hard drives and SSDs. We should note
that we have not tested PebblesDb on hard-drives yet; we
believe the write behavior will be similar, although range
query performance may be affected.
The HB+-trie data structure is used in ForestDB [4] to

efficiently index long keys and reduce space overhead of
internal nodes. FLSM and HB+trie target different goals re-
sulting in different design decisions; FLSM is designed to
reduce write amplification, not space amplification.
The LSM-trie [57] data structure uses tries to organize

keys, thereby reducing write amplification; however, it does
not support range queries. Similarly, RocksDB’s universal
compaction reduces write amplification by sacrificing read

and range query performance [22]. PebblesDb employs ad-
ditional techniques over FLSM to balance reducing write
amplification with reasonable range query performance.
TRIAD [10] uses a combination of different techniques

such as separating hot and cold keys, using commit logs as
sstables, and delaying compaction to reduce write IO and
improve performance. The TRIAD techniques are orthogonal
to our work and can be incorporated into PebblesDb.

ImprovingKey-Value store Performance. Both academia
and industry have worked on improving the performance
of key-value stores based on log-structured merge trees.
PebblesDb borrows optimizations such as sstable bloom
filters and multi-threaded compaction from RocksDB. Hyper-
LevelDB [29] introduces fine-grained locking and a new com-
paction algorithm that increaseswrite throughput. bLSM [51]
introduces a new merge scheduler to minimize write latency
and maintain write throughput, and uses bloom filters to
improve performance. VT-Tree [52] avoids unnecessary data
copying for data that is already sorted using an extra level of
indirection. WiscKey [37] improves performance by not stor-
ing the values in the LSM structure. LOCS [56] improves LSM
compaction using the internal parallelism of open-channel
SSDs. cLSM [23] introduces a new algorithm for increasing
concurrency in LSM-based stores. We have a different focus
from these work: rather than making LSM-based stores bet-
ter, we introduce a better data structure, FLSM, and demon-
strate that it can be used to build high performance key-value
stores. Many of the techniques in prior work can be readily
adapted for FLSM and PebblesDb.

7 CONCLUSION

This paper presents PebblesDb, a high-performance key-
value store that achieves low write amplification, high write
throughput, and high read throughput simultaneously. Peb-
blesDb outperforms widely-used stores such as RocksDB on
several workloads. PebblesDb is built on top of a novel data
structure, Fragmented Log-StructuredMerge Trees, that com-
bines ideas from skip lists and log-structured merge trees.
PebblesDb is publicly available at https://github.com/
utsaslab/pebblesdb. Since it shares the same API as Lev-
elDB, we hope this will aid in adoption by applications.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Frans Kaashoek, the
anonymous reviewers, and members of the LASR group and
the Systems and Storage Lab for their feedback and guid-
ance. This work was supported by generous donations from
VMware and Facebook. Any opinions, findings, and conclu-
sions, or recommendations expressed herein are those of
the authors and do not necessarily reflect the views of other
institutions.

https://github.com/utsaslab/pebblesdb
https://github.com/utsaslab/pebblesdb

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees SOSP’17, Oct 28-31, Shanghai, China

REFERENCES

[1] Ittai Abraham, James Aspnes, and Jian Yuan. 2005. Skip B-trees. In Pro-
ceedings of the 9th International Conference on Principles of Distributed
Systems (OPODIS 2005). 366–380.

[2] Alok Aggarwal, Jeffrey Vitter, et al. 1988. The input/output complexity
of sorting and related problems. Commun. ACM 31, 9 (1988), 1116–
1127.

[3] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,
Mark S. Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for
SSD Performance. In Proceedings of the 2008 USENIX Annual Technical
Conference. 57–70.

[4] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim Yaseen, Jin-Soo
Kim, and Seungryoul Maeng. 2016. ForestDB: A Fast Key-Value Storage
System for Variable-Length String Keys. IEEE Trans. Comput. 65, 3
(2016), 902–915.

[5] Reed Allman. 2014. Rock Solid Queues @ Iron.io. https://www.
youtube.com/watch?v=HTjt6oj-RL4. (2014).

[6] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast
Array Of Wimpy Nodes. In Poceedings of the ACM SIGOPS 22nd Sym-
posium On Operating Systems Principles (SOSP 09). ACM, 1–14.

[7] Apache. 2017. Search Results Apache Flink: Scalable Stream and Batch
Data Processing. https://flink.apache.org. (2017).

[8] Austin Appleby. 2016. SMHasher test suite for MurmurHash family of
hash functions. https://github.com/aappleby/smhasher. (2016).

[9] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and Larry L Peterson.
2009. HashCache: Cache Storage for the Next Billion. In Proceed-
ings of the 6th USENIX Symposium on Network Systems Design and
Implementation (NSDI 09). 123–136.

[10] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel,
Huapeng Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017.
TRIAD: Creating Synergies Between Memory, Disk and Log in Log
Structured Key-Value Stores. In Proceedings of the 2017 USENIX Annual
Technical Conference (USENIX ATC 17). Santa Clara, CA, 363–375.

[11] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman,
Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani Nelson. 2007. Cache-
Oblivious Streaming B-trees. In Proceedings of the 19th Annual ACM
Symposium on Parallel Algorithms and Architectures. ACM, 81–92.

[12] Michael A. Bender, Martín Farach-Colton, Rob Johnson, SimonMauras,
Tyler Mayer, Cynthia A. Phillips, and Helen Xu. 2017. Write-Optimized
Skip Lists. In Proceedings of the 36th ACM Symposium on Principles of
Database Systems (PODS ’17). ACM, New York, NY, USA, 69–78.

[13] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[14] Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys
(CSUR) 11, 2 (1979), 121–137.

[15] Alexander Conway, Ainesh Bakshi, Yizheng Jiao,William Jannen, Yang
Zhan, Jun Yuan, Michael A. Bender, Rob Johnson, Bradley C. Kuszmaul,
Donald E. Porter, Jun Yuan, and Martin Farach-Colton. 2017. File
Systems Fated for Senescence? Nonsense, Says Science!. In Proceedings
of the 15th USENIX Conference on File and Storage Technologies (FAST
17). 45–58.

[16] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SOCC 10). ACM, 143–154.

[17] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM
Space Skimpy Key-Value Store on Flash-Based Storage. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of
Data. ACM, 25–36.

[18] Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2012. HyperDex:
a distributed, searchable key-value store. In Proceedings of the ACM
SIGCOMM 2012 Conference. 25–36.

[19] Facebook. 2017. FIFO compaction style. https://github.com/
facebook/rocksdb/wiki/FIFO-compaction-style. (2017).

[20] Facebook. 2017. RocksDB | A persistent key-value store. http://
rocksdb.org. (2017).

[21] Facebook. 2017. RocksDB Users. https://github.com/facebook/
rocksdb/blob/master/USERS.md. (2017).

[22] Facebook. 2017. Universal Compaction. https://github.com/
facebook/rocksdb/wiki/Universal-Compaction. (2017).

[23] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar.
2015. Scaling Concurrent Log-structured Data Stores. In Proceedings
of the Tenth European Conference on Computer Systems (Eurosys 15).
ACM, 32.

[24] Daniel Golovin. 2010. The B-Skip-List: A Simpler Uniquely Repre-
sented Alternative to B-Trees. CoRR abs/1005.0662 (2010).

[25] Google. 2017. LevelDB. https://github.com/google/leveldb.
(2017).

[26] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson,
Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf. 2009. Characteriz-
ing Flash Memory: Anomalies, Observations, and Applications. In
Proceedings of 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-42). IEEE, 24–33.

[27] James Hamilton. 2009. The Cost of Latency. http://perspectives.
mvdirona.com/2009/10/the-cost-of-latency/. (2009).

[28] HyperDex. 2016. HyperDex Benchmark Setup. http://hyperdex.
org/performance/setup/. (2016).

[29] HyperDex. 2017. HyperLevelDB Performance Benchmarks. http:
//hyperdex.org/performance/leveldb/. (2017).

[30] Cockroach Labs. 2017. CockroachDB. https://github.com/
cockroachdb/cockroach. (2017).

[31] Dgraph labs. 2017. Dgraph: Graph database for production environ-
ment. https://dgraph.io. (2017).

[32] FAL Labs. 2011. Kyoto Cabinet: a straightforward implementation of
DBM. http://fallabs.com/kyotocabinet/. (2011).

[33] LevelDB. 2016. LevelDB db_bench benchmark. https://github.
com/google/leveldb/blob/master/db/db_bench.cc. (2016).

[34] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky.
2011. SILT: A memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP 11). ACM, 1–13.

[35] LinkedIn. 2016. FollowFeed: LinkedIn’s Feed Made Faster and Smarter.
http://bit.ly/2onMQwN. (2016).

[36] Percona LLC. 2017. Percona TokuDB. https://www.percona.com/
software/mysql-database/percona-tokudb. (2017).

[37] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating
Keys from Values in SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies (FAST 16). 133–148.

[38] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and
Raju Rangaswami. 2015. NVMKV: a Scalable, Lightweight, FTL-aware
Key-Value Store. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15). 207–219.

[39] Neal Mielke, Todd Marquart, NingWu, Jeff Kessenich, Hanmant Belgal,
Eric Schares, Falgun Trivedi, Evan Goodness, and Leland R. Nevill.
2008. Bit Error Rate in NAND Flash Memories. In Proceedings of the
IEEE International Reliability Physics Symposium, (IRPS 08). IEEE, 9–19.

[40] MongoDB. 2017. MongoDB. https://www.mongodb.com. (2017).
[41] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh El-

nikety, and Antony Rowstron. 2009. Migrating server storage to SSDs:
analysis of tradeoffs. In Proceedings of the 4th ACM European conference

https://www.youtube.com/watch?v=HTjt6oj-RL4
https://www.youtube.com/watch?v=HTjt6oj-RL4
https://flink.apache.org
https://github.com/aappleby/smhasher
https://github.com/facebook/rocksdb/wiki/FIFO-compaction-style
https://github.com/facebook/rocksdb/wiki/FIFO-compaction-style
http://rocksdb.org
http://rocksdb.org
https://github.com/facebook/rocksdb/blob/master/USERS.md
https://github.com/facebook/rocksdb/blob/master/USERS.md
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/google/leveldb
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://hyperdex.org/performance/setup/
http://hyperdex.org/performance/setup/
http://hyperdex.org/performance/leveldb/
http://hyperdex.org/performance/leveldb/
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach
https://dgraph.io
http://fallabs.com/kyotocabinet/
https://github.com/google/leveldb/blob/master/db/db_bench.cc
https://github.com/google/leveldb/blob/master/db/db_bench.cc
http://bit.ly/2onMQwN
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.mongodb.com

SOSP’17, Oct 28-31, Shanghai, China P. Raju et al.

on Computer Systems (Eurosys 09). ACM, 145–158.
[42] Suman Nath and Aman Kansal. 2007. FlashDB: Dynamic Self-tuning

Database for NAND flash. In Proceedings of the 6th International Con-
ference on Information Processing in Sensor Networks. ACM, 410–419.

[43] Netflix. 2016. Application Data Caching using
SSDs. http://techblog.netflix.com/2016/05/
application-data-caching-using-ssds.html. (May 2016).

[44] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The log-structured merge-tree (LSM-tree). Acta Informatica 33,
4 (1996), 351–385.

[45] Oracle. 2017. Oracle Berkeley DB. http://www.oracle.com/
technetwork/database/database-technologies/berkeleydb/
overview/index.html. (2017).

[46] Pinterest. 2016. Open-sourcing Rocksplicator, a real-time RocksDB
data replicator. http://bit.ly/2pv5nZZ. (2016).

[47] William Pugh. 1989. Skip lists: A probabilistic alternative to balanced
trees. Algorithms and Data Structures (1989), 437–449.

[48] William Pugh. 1990. A Skip List Cookbook. Technical Report CS-TR-
2286.1. University of Maryland.

[49] Parthasarathy Ranganathan. 2011. From Microprocessors to Nanos-
tores: Rethinking Data-Centric Systems. Computer 44, 1 (2011), 39–48.

[50] Apache Samza. 2017. State Management. http://samza.apache.
org/learn/documentation/0.8/container/state-management.
html. (2017).

[51] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: a General Purpose
Log Structured Merge Tree. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. ACM, 217–228.

[52] Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Malpani, Binesh
Andrews, Justin Seyster, and Erez Zadok. 2013. Building Workload-
Independent Storage with VT-trees. In Proceedings of the 11th USENIX
Conference on File and Storage Technologies (FAST 13). 17–30.

[53] RocksDB Issue Tracker. 2014. Strategies to ReduceWrite Amplification
19. https://github.com/facebook/rocksdb/issues/19. (2014).

[54] Uber. 2016. Cherami: Uber Engineering’s Durable and Scalable Queue
in Go. https://eng.uber.com/cherami/. (2016).

[55] Vijay Vasudevan, Michael Kaminsky, and David G. Andersen. 2012.
Using Vector Interfaces ToDeliverMillions Of IOPS FromANetworked
Key-Value Storage Server. In Proceedings of the Third ACM Symposium
on Cloud Computing (SOCC 12). ACM, 8.

[56] PengWang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen
Zhang, and Jason Cong. 2014. An Efficient Design And Implementa-
tion Of LSM-Tree Based Key-Value Store On Open-Channel SSD. In
Proceedings of the Ninth European Conference on Computer Systems
(Eurosys 14). ACM, 16.

[57] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An
LSM-Tree-Based Ultra-Large Key-Value Store for Small Data Items. In
Proceedings of the 2015 USENIX Annual Technical Conference (USENIX
ATC 15). 71–82.

[58] Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogeraki, Dimitrios
Gunopulos, and Walid A. Najjar. 2005. MicroHash: An Efficient Index
Structure for Flash-Based Sensor Devices. In Proceedings of the 4th
USENIX Conference on File and Storage Technologies (FAST ’05).

http://techblog.netflix.com/2016/05/application-data-caching-using-ssds.html
http://techblog.netflix.com/2016/05/application-data-caching-using-ssds.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://bit.ly/2pv5nZZ
http://samza.apache.org/learn/documentation/0.8/container/state-management.html
http://samza.apache.org/learn/documentation/0.8/container/state-management.html
http://samza.apache.org/learn/documentation/0.8/container/state-management.html
https://github.com/facebook/rocksdb/issues/19
https://eng.uber.com/cherami/

	Abstract
	1 Introduction
	2 Background
	2.1 Key-Value Store Operations
	2.2 Log-Structured Merge Trees

	3 Fragmented Log-Structured Merge Trees
	3.1 Guards
	3.2 Selecting Guards
	3.3 Inserting and Deleting Guards
	3.4 FLSM Operations
	3.5 Tuning FLSM
	3.6 Limitations
	3.7 Asymptotic Analysis

	4 Building PebblesDb over FLSM
	4.1 Improving Read Performance
	4.2 Improving Range Query Performance
	4.3 PebblesDb Operations
	4.4 Crash Recovery
	4.5 Implementation
	4.6 Limitations

	5 Evaluation
	5.1 Experimental Setup
	5.2 Micro-benchmarks
	5.3 Yahoo Cloud Serving Benchmark
	5.4 NoSQL Applications
	5.5 Memory and CPU Consumption

	6 Related Work
	7 Conclusion
	References

