Experimental Evaluation and Comparison of Algorithms
for Incremental Graph Biconnectivity”

Ramgopal Mettu Yuke Zhao Vijaya Ramachandran

Department of Computer Sciences
University of Texas at Austin, Austin TX 78712

June 9, 1997

Abstract. We describe our implementation of an algorithm to maintain the connected components
and the biconnected components of a graph where vertex and edge insertions are allowed.
Algorithms for this problem can be applied to task decomposition in engineering design. Connected
components are maintained using a disjoint set data structure and the biconnected components are
maintained by a block forest. We implemented an incremental biconnectivity algorithm presented
in Westbrook and Tarjan [8] which runs in O(nlogn + m) time, where n is the number of vertices
and m is the number of operations. However, the algorithm in [8] does not address the issue of
deletions in disjoint sets, which seem to be needed in order to implement the algorithm correctly.
Hence we develop the concepts of dynamic holes and static holes to support variations of the
standard disjoint set structure that allow the deletion of certain elements. We present four different
implementations of the incremental biconnectivity algorithm which utilize these variants of the
standard disjoint set structure, and analyze their performance. We present extensive timing
information for each of these implementations.

1. Introduction

An incremental graph algorithm is an algorithm that maintains certain graph properties
while new vertices and edges are inserted into the graph. In this paper, we consider incremental
graph algorithms that maintain graph connectivity and biconnectivity information. The partitions of
a graph G according to these properties are called its connected components and biconnected
components, respectively. Two vertices are in the same connected component of G if and only if there
is a path connecting them. A biconnected component is a maximal subgraph of G where after the
removal of any one vertex, the subgraph is still connected. Hence the biconnected components within
a connected component are connected by vertices whose removal disconnect the connected
component. These vertices lie in more than one biconnected components and are called cu¢-vertices.

Incremental graph algorithms that maintain connectivity and biconnectivity can be applied
to task decomposition in engineering design. The need for maintaining biconnectivity incrementally
also comes up in problems relating to networks, CAD/CAM, and distributed computing [8].

In this paper, we describe an incremental biconnectivity implementation design that uses an
algorithm presented in Westbrook and Tarjan [8] which runs in O(nlogn + m) time, where n is the
number of vertices and m is the number of operations. In order to implement the algorithm, we
found the need to delete certain elements from disjoint sets. This issue is not addressed in [8],
however. Hence we developed the concepts of dynamic holes and static holes to support variations of
the standard disjoint set structure that allow the deletion of certain elements. These variants of
the standard disjoint set structure are used to maintain the connected components and enables
efficient block tree operations in the block forest.

Westbrook and Tarjan [8] also describe another algorithm that uses dynamic trees to
maintain the block forest, which runs in O(m o (m, n)) time. For the data sets we consider, the first
algorithm is likely to be faster in practice due to a smaller constant factor in the running time.
Hence it is the one that we describe in this paper.

Throughout this paper, n refers to the total number of vertices created; m refers to the total
number of operations (new_vertex, insert_edge, and find_block); k refers to the total number of find
and merge operations performed on disjoint sets. In Section 2, we describe the standard version

* This research is part of an undergraduate honors thesis project undertaken by Ramgopal Mettu and Yuke Zhao and
was partially supported by NSF grant CCR/GER-90-23059 and Structural Dynamics Research Corporation.

and a modified version of the disjoint set data structure and the basic block tree data structure. In
Sections 3 through 6, we present four implementations of incremental biconnectivity, utilizing the
two versions of disjoint set data structure and the concepts of dynamic and static holes. In Section
7, we present the experimental evaluation of the four implementations described in previous four
sections. Finally, we conclude the paper with some remarks in Section 8.

2. Basic Data Structures for Connected Components and Block Tree

In this section, we describe two basic data structures used in our implementations, the
standard disjoint set and block tree data structures. We also present the concept of a dynamic hole
and describe how it is used in a modified version of the disjoint set data structure to allow
deletions.

The basic data structure for connected components is the disjoint set. The data structure for
biconnected components is a data structure called block tree. In block tree data structure, we need a
disjoint set data structure that allows deletions.

In Section 2.1, we present the standard disjoint set data structure, the definition of
dynamic holes, and a modified version of the disjoint set data structure which allows deletions. In
Section 2.2, we give an overview of the data structure for the block tree. Later, in Section 5, we
define static holes and a modified disjoint set data structure that supports deletions using static
holes.

2.1 Disjoint Set Data Structure

Disjoint sets are used to maintain both connected components and the children of nodes in
the block forest in our implementation. We first present the standard disjoint set structure which
supports find and merge operations [6]. Then we present a variation of the disjoint set data
structure that allows selective deletion of elements.
2.1.1 Standard Disjoint Set Structure

A disjoint set structure is a group of x objects such that each of them is a member of exactly
one set at any given time. Each set has a unique label which identifies it. Initially the x objects
are in x different sets, each containing exactly one object. In order to handle set unions, we
represent each disjoint set using a tree, where each node in the tree represents a distinct object.
The trees are bottom-up trees, which means each node knows its parent but not its children. If a
node's parent pointer points to itself, it is the root of that tree. The root of each tree also serves as
the label of the set that particular tree represents.

The standard disjoint set structure supports the following operations:

> @ O <>
e @ > > oD
> SO D <> B
SOD> oD

(i) disjoint sets (ii) after ds_merge(a, g) (iii) after ds_find(f)

Figure 1. Disjoint set structure

® given some object, we find which set contains it, and return the label of set;

e given two different labels, we merge the contents of the two corresponding sets, and choose a
label for the combined set.

To support these operations as well as some customized features needed by the usage,
each object in the disjoint set structure must have the following fields:

e parent: a pointer to the parent of the node in forest representation.

e rank or size: rank is an upper bound on the height of the current tree, whereas size is the
number of elements in the tree.

It is interesting to note that the use of either size or rank along with path compression
yields an optimal running time of O(k ¢ (k, n)) for k find and merge operations on sets with a total of
n elements [7]. We show in Lemma 2 that size must be used for block tree eversion.

The following functions are supported as the encapsulation of the disjoint set data
structure (see Figure 1):

ds_new(): create a new object as the root node and the only node of a new tree with size of one,
return the object.

ds_find(obj): trace for the root of 0bj in its tree, then relink obj and all of its ancestors to point
to the root if they don't point to it already, return the root as the label of the set.

ds_merge(obj1, 0bj2): if one of the two inputs is an empty set, return the other one, otherwise
both 0bj1 and 0552 must be roots in their corresponding trees. If the two trees have the
same size, let any one of the two point to the other, which will be the root of the combined
tree. If the two trees differ in size, let the one with smaller size point to the one with larger
size, which will be the new root. The size of the combined tree is 0bj1.size+0bj2.size.
Return the combined set/tree.

Although the work done by find to relink elements to point to the root seems excessive, it
has been proven that the work done reduces the cost of future find operations [6]. In addition, the
use of size to merge trees bounds the height of the tree to log x, where x is the number of elements in
the set. Thus, the path compression performed by the find operation and the use of size for merging
two disjoint set trees allows a running time of O(k & (%, x)) as described in [6].

2.1.2 Dynamic holes in the Disjoint Set Data Structure

In order to manipulate the children sets of nodes in our block forest, we need to both merge
two sets together, as well as delete certain elements in a given set efficiently. The disjoint set data
structure was chosen to allow fast merging. In order to quickly delete elements from the disjoint
set data structure, we developed the concept of dynamic holes.

< S O
element_ptr

<> is the element in the disjoint set that represents @
Figure 2. Additional fields

A dynamic hole is a node in a tree in the disjoint set data structure which does not
represent any element of the set. Its only purpose is to maintain the internal tree structure of the
disjoint set data structure. If we do not use such nodes, in order to delete an element in the
disjoint set structure we would have to relink all of the children of that element, which would often
be a very expensive operation. We describe the deletion process in the following section.

<> () ey
parent P Parent<> - @ <><_@
<< < <)
D <> <> S)OO () Oe()

(ia) standard disjoint (ib) disjoint set structure with
set structure selected deletion

<> Sa() ()
parent <1> parent0<_ @ <>4_@
< (9>
1RO S IO () e()

(iia) the deletion of ¢ (iib) in the disjoint set structure
would destroy the with selected deletion, simply
standard disjoint set point the element_ptr of "c"
structure elsewhere

Figure 3. Disjoint set structure that allows deletions
2.1.3 Disjoint Set Structure that allows Deletions

We need a disjoint set data structure that allows deletions in order to maintain the children
sets in the block tree data structure. This modified disjoint set data structure is maintained even
when a node is removed from the set since the elements act as virtual copies of the actual nodes. It
is this abstraction that makes the existence of the dynamic holes, and thus their future use,
possible.

Using the above representation, we delete a child ¢ from a children set of a node v by making
¢ —>element_ptr point elsewhere. The element in the children set of v that used to represent c is
now a dynamic hole, since it no longer represents any child node of v (see Figure 3). We may reuse
this dynamic hole when another node is to be added to the children set of v, so that the sizes of the
disjoint sets are kept small enough to preserve the time bounds (see Lemma 3). These dynamic
holes are not removed, since they do not affect the asymptotic running time of the algorithm and
their removal could be very time consuming.

Since we will use disjoint set structure extensively in this paper, we will often express the
running time of an algorithm in terms of pointer steps. A pointer step is the amortized time taken
by a find or merge operation in the disjoint set structure. This time bound is a(k, n), where & in
the number of find and merge operations and n is the number of elements in the set.

. block node
vertex node

(ii) block tree T of G
Figure 4. Block tree data structure

(i) a simple graph G

2.2 Block Tree Data Structure

In order to maintain the biconnected components of a graph incrementally, we make use of a
tree structure of the blocks and vertices of a connected graph called the block tree [8]. The collection
of block trees given by the components of a graph G = (V, E) is called the block forest. The block tree
has two types of nodes: vertex (square) nodes, which represent the vertices of G; and block (round)
nodes, which represent the blocks. A block is equivalent to a biconnected component in the graph,
where two vertices are in the same biconnected component if and only if there are two vertex disjoint
paths between them or the component is a single edge. The children of the block nodes represent
the vertices that are contained in that block. If a vertex belongs to more than one block, it will be
the child of one block node and have the other block nodes as its children. Such a vertex is called a
cut vertex since its removal disconnects a component into two or more components.

All terms such as parent, child, siblings and grandparent that appear hereafter refer to the
relationships within the block forest, unless otherwise specified. Hence all vertex nodes have parent
and children of block node type only, and vice versa; also, all siblings are of the same node type.

The children set of a block node are the vertex nodes contained in that block except its
parent cut-vertex. The children set of a vertex node are the blocks in which it is contained, except for
its parent block. The children sets of block nodes in all of our implementations are maintained
using a disjoint set data structure. In Implementation I, children sets of vertex nodes are
maintained in disjoint sets as well, while direct pointers are used in the other implementations (see
Section 4).

The need for the disjoint set data structure that allows deletions arises in the maintenance
of the block tree data structure. Since the children sets of the block nodes are always organized in
disjoint sets, changing the block to which a vertex belongs means removing it from one set and
merging it into another. Hence the creation of dynamic holes is needed when the parent-child
relationship changes within the block tree data structure.

In the next four sections, we present four different implementations of incremental
biconnectivity. We classify an implementation as "homogeneous" when both block nodes and vertex
nodes use disjoint sets to maintain their children sets, and "mixed" when block nodes use disjoint
sets and vertex nodes use direct pointers. We also classify the implementations based on whether
they use dynamic holes or static holes. Dynamic holes are defined in Section 2.1.2; static holes are
created when a newly created block only has a cut vertex as its child (see Section 5). Dynamic holes
can only be created with the modified disjoint set data structure, whereas static holes can be created
with both the standard and modified disjoint set data structure.

In Section 3, we present a homogeneous implementation of the block forest which uses
dynamic holes. In Section 4, we present the second implementation, which uses a mixed block tree

(i) a block tree T

4y
* parent_ptr . block node <> * @ <> ¢%
‘ children vertex node <> <4

(ii) representation of
< element_ptr T in our data structure

or parent (in disjoint set)

<> element in disjoint set

Figure 5. Block tree data structure in the first implementation
Each block node or vertex node may have two diamonds linked to it; the diamond
directly under it is the root of the disjoint set that represents its children; the one on
its immediate left represents itself in the children set of its parent (i.e. the disjoint
set that represents its siblings).

data structure with dynamic holes. In Section 5, we present another mixed block tree data
structure, which uses static holes instead of dynamic holes to deal with deletions. In Section 6, we
describe a fourth implementation which uses mixed block tree, static holes and the standard disjoint
set data structure. In each of these sections, we analyze the running time for the respective
implementations. Section 7 concludes the discussion of biconnectivity with an experimental
evaluation and analysis of all four of the implementations. The first of our four implementations is
described in [3], and hence Section 3 is very brief.

3. Implementation I: Homogeneous Block Tree with Dynamic holes

In this implementation we make use of the modified disjoint set structure of Section 2.1.3 to
maintain the children of the block tree nodes, since we have to deal with deletions in the disjoint
sets. The details of this implementation are discussed in [3]. A minor difference in the current
implementation with the one described in [3] is that the node_ptr field in the elements of the
disjoint set structure is removed.

Children sets of nodes in a block tree are maintained using the disjoint set data structure,
so that merging the children of two nodes can be done in one pointer step. Each node is doubly
linked to its children set, that is, the node contains a pointer to the root of its children set, and that
root in turn contains a pointer back to the node (see Figure 5). This implementation is labeled
"homogeneous" since the children set of every node in a block tree is maintained by a disjoint set.

4. Implementation II: Mixed Block Tree with Dynamic holes

Our second implementation does not use disjoint sets to represent block nodes (see Figure
6). At the expense of uniformity throughout the data structure, it is possible to eliminate the
disjoint set representation of block nodes and use direct pointers from block nodes to their parent
vertex nodes. With this change, every traversal from a block node to a vertex node is reduced to
constant time instead of one pointer step. Additionally, dynamic holes caused by block_condense are
eliminated. We now describe this implementation in detail.

4.1 Maintaining Connected Components On-line

The data structure used to maintain connected components is exactly the disjoint set
structure detailed in Section 2.1.1. The functions used to represent, update and answer queries of
connected components have a one-to-one correspondence with the disjoint set implementation:

cc_new_vertex(): create a new vertex and put it in a new set as a new connected component,
return the new vertex.

cc_find(vertex): given a vertex, return its disjoint set name and do a path compression along the
way.

cc_merge(setl, set2): merge the two disjoint sets into one, and return the combined set.

(i) a block tree T

% parent_pitr ‘ block node

‘ children vertex node <> «

element_ptr (ii) representation of

‘\ T in implementation II
parent_vtx

or parent (in disjoint set)

<> element in disjoint set

Figure 6. Block tree data structure in the second implementation

4.2 Organization of the Block Forest

The set of children vertex nodes of any block node is implemented using the disjoint set
structure presented in Section 2.1.3. Each block node, with the exception of the root, has a direct
pointer to its parent vertex node.

Each block node B has the following fields:
e Jabel: used to identify the block B
® parent_vtx: a pointer to the parent cut-vertex node of B, NULL B is the root
¢ children: a disjoint set which contains the children vertices in B, some of these vertices may be
cut vertices.
e child_cnt: the number of children in the children set, counts cut vertices twice.

Each vertex node v has the following fields:
e Jabel: used to identify the vertex node v
e cc_ptr: a pointer to the disjoint set which represents the connected component to which v
belongs.
® clement_ptr: a pointer into the children set of v's parent.

4.3 Functions for the Block Tree

The operations on a block tree are:

block_new(u: vertex node): create a new block for the vertex which will be the root and only
element of the disjoint set representing the vertices of this block; return a pointer to the new
block. Running time: O(1).

block_parent(u: vertex node): access the object in the disjoint set which represents the children of
the parent of u; traverse this object to the root of the disjoint set; access and return the
parent (see Figure 7). Running time: O(1).

block_find(u, v: vertex node): given two vertices u and v, if both are in the same block return that
block, return null otherwise. Running time: O(1).

block_evert(v: vertex node): given a vertex node v, traverse the tree from v to the root, reversing
parent pointers along the way. Running time: O(P), where P is the length of the path from v
to the root node.

block_link(u, v: vertex node): combine the two block trees containing v and v, where v is the root
of the smaller tree. Running time: O(1).

block_condense(u, v: vertex node): given two vertices, condense all block nodes in the path from u
to v into a single block node. Running time: O(P), where P is the length of the path between
v and v.

The details of the last four functions above are described in the following subsections.

@

parent _ptr%#

<<

@
by

element_ptr

Figure 7. block_parent(4) = A

4.3.1 Finding Blocks

The find_block operation is used to answer the user queries and also to determine how to
change the block tree upon edge insertion.

LEMMA 1. Two vertices are in the same block iff they are siblings or one is the grandparent of the
other in the block tree.

PROOF. In the block tree structure, the parent and children nodes of any block node are vertex
nodes, and they are the only vertices contained in that block node. Hence two vertices are in the
same block iff either they are siblings, i.e., they have the same parent block, or if one is the
grandparent of the other (see Figure 8). []

The lemma above establishes that the following procedure correctly returns the block (if any) which
contains two given vertices:

procedure block_find(u, v: vertex node):
{if u and v are siblings, return their parent; else if one is the grandparent of the other, return
the block node between them; else return null }
if block_parent(u)= block_parent(v) then
return block_parent(u)
else if u = block_parent(block_parent(v)) then
return block_parent(v)
else if v = block_parent(block_parent(u)) then
return block_parent(u)
else return null;

end. { block_find }

Since block_parent takes one pointer step, and block_parent takes O(1l) pointer steps,
block_find runs in O(1) pointer steps.

(1) siblings (i1) grandparent and
grandchild

Figure 8. Vertices in the same block
4.3.2 Everting a Tree

In this section we specify the block_evert operation, which is used to re-root a block tree at a
given vertex. When an edge is inserted into the graph, it may link two connected components
together. In this case, the two connected components are also represented as two distinct block

trees in the block forest, where the trees need to be combined. To do so, we must re-root one of the
trees at one endpoint of the new edge, then make it a child of the other vertex in the other block
tree.

In order to re-root a tree at a given node x, for every node in the path from x to the root, we
must reverse the parent-child relationship (see Figure 9). To do so in our data structure, for every
vertex node u along the path from x to the root, we must remove u from block_parent(u).children,
and then make block_parent(u).parent_vitx point to u. We remove u from the disjoint set of its
siblings by creating a dynamic hole that can be reused as described Section 2.1.3. This dynamic
hole is later reused by u's grandparent unless u has no grandparent (see Figure 10).

Given a vertex node x which is to be the new root of the block tree, the following procedure
describes how the block tree data structure is re-rooted at x:

Figure 9. Eversion reverses the parent-child relationship along the
path from the given vertex to the root.

procedure block_evert(x: vertex node)
{/initialize pointers to process first node }

curr :=x;
parent := block_parent(curr);
grandparent := block_parent(parent);

{if the tree contains one vertex, eversion produces just a vertex node }
if (parent —>child_cnt = 1) && (grandparent = null)

curr —>element_ptr := null;

free parent

return;

{ sever the current node from its set and save its element as a hole to prime the loop }
hole := curr —element_ptr;
curr —>element_ptr := null;

while grandparent # null
{ update the parent node to point to its child }
parent —>parent_vtx := curr;

{ update parent before severing grandparent }
parent := block_parent(grandparent);

{ swap the current hole with the next node to be made a child }
swap(&hole, &(grandparent —>element_ptr));

{ update the other pointers }
curr := grandparent;

10

grandparent := parent —>parent_vtx;
end {while}

{ reverse the parent child relationship for the original root }
parent —>parent_vix := curr;

{ the original root node will have one less child }

parent —>child_cnt := parent —>child_cnt - 1;

end. { block_evert }

h g %

<0 <0 <<+
S O Tl e T OB
Sl Sem SeB
ty 4y
Sm 9 @ o o o
i
S0 Keq N oh
(i) the original representation of T (ii) break it into three pieces <> <> -«
<T@
@ (iii) add B to the children set of 5
iy
N ® 6]
(®
S o & &
@<« <<
S+ .
e @ ﬁ 0 current "holes"
\© 0¢ n . the "hole" just reused
ﬁ« Q g« @ ’ <>« . the "hole" left in the
<> <O structure
<T@
(iv) add 2 to the children set of B (v) add A to the children set of 2

Figure 10. block_evert(5)

This algorithm will produce one dynamic hole (saved in the variable hole) per block_evert
operation. It is important to recognize that the number of dynamic holes generated by eversion
could not have been bounded by the number of vertices without the mechanism that fills the parent
of a node into the dynamic hole left by its child. This optimization preserves the performance of the
disjoint set structure by preventing any significant increase in the size of these sets. More
importantly, this optimization could not have been performed without the disjoint set data
structure of Section 2.1.3.

The running time of block_evert is linear in the length of the path; since the number of vertex
nodes in a block tree is at least the number of block nodes, block_evert takes at most O(k) pointer
steps in the block tree of & vertices. By defining the size of a block tree to be the same as the size of
its corresponding connected component, Westbrook and Tarjan [8] show that everting the smaller

11

block tree ensures O(nlogn) performance. This and the lemma below justify the use of size instead of
rank in our modified disjoint set data structure.

LEMMA 2. The connected component with smaller rank does not necessarily have smaller size.

PROOF. We establish the claim by a counter-example. If we start with a singleton set and only
merge singleton sets to it, the rank will always remain 2 for the resulting set, since the first merge
increases the rank by one and subsequent merges do not. We can merge singleton sets until we get
a set S of rank 2 with & elements for any 2. Then, we can obtain another set T of rank 3 which
contains only 4 elements by merging two pairs of singleton sets and then merging these pairs

together. Above, we've shown that although S.rank<T.rank , we know |S| > |T| for k>4. Therefore a
disjoint set with smaller rank in the disjoint set structure does not guarantee a smaller size. []

4.3.3 Linking Two Trees

When we insert an edge between two connected components, we evert the smaller block tree;
after the eversion is done as in Section 4.3.2, we link it to the bigger block tree.

The function block_link takes two vertex nodes, u and v, as its arguments, where u is the
endpoint of the new edge that resides in the bigger block tree and v is the end point of the edge that
resides in the smaller block tree. At this point the eversion has already been done on v, hence v is
temporarily the root of the smaller block tree. Also, in the block forest insert_edge(u, v) creates a new
block where the only vertices contained in it are u and v. Hence in order to link the two block trees
together, we need to create a new block with v as its only child and make u its parent:

procedure block_link(u, v: vertex node)
{if u and v belong to trees with only one vertex, then they can belong to the same block }
if both u and v belong to trees with only one vertex then
put vin a new disjoint set, new_set;
B := block_parent(u);
(B —children) -> parent_node = null;
B —children = ds_merge(u -> children, new_set);
B —child_cnt := B—>child_cnt + 1;

B := block_new(v);
B->parent_vtx := u;
end. { block_link }

Adding a block to a children set is merely a merge of two disjoint sets, which runs in one
pointer step, plus some pointer manipulations. Since block_new also takes a constant time,
block_link runs in O(1) pointer steps.

4.3.4 Condensing a Path

Another possible scenario of inserting a new edge occurs when the new edge links two
vertices that are in the same connected component but different blocks. Its effect on the block tree is
that all the block nodes along the path between them collapse into a single block node, while all the
vertex nodes contained in these blocks and along the path will belong to the new block node (see
Figure 11).

In order to condense these blocks, we first introduce two subroutines: findlcav and
condense_path. The findlcav algorithm proceeds by walking up the tree simultaneously from its two
vertex node arguments, until the paths intersect at their least common ancestor vertex node, which
is returned by the function:

12

condense(3, 7)

Figure 11. Condensation collapses all the blocks along the path
between the two vertices into a single block.

subroutine findlcav(vl, v2: vertex node): vertex node
{ find the least common ancestor vertex node of vI and v2 by walking up the tree
simultaneously from both of them, until the paths intersect at their lcav }
leav :=vl;
save := v2;
while lcav.visited = false
lcav.visited := true;
if one of the paths has reached the root already then
{ignore the path that has reached the root from now on }
lcav := block_parent(lcav)->parent_uvtx;
if the current path reaches the root, get out of the while loop
else
{ advance to the next node on the current path, and switch to the other path }
tmp := block_parent(lcav)->parent_vtx;
leav := save;
save = tmp;
unmark all the nodes that were marked;

return lcav;
end. { findlcav }

The function condense_path takes two arguments, x and y, where x and y are both vertex
nodes and y is an ancestor of x. All of the block nodes along the path from x to y are combined into
the child block node of y which is on the path. The intermediate blocks along the path are deleted,
and their children are merged to the children set of the final block. This can be done in our data
structure since each block has a pointer to the root of its children set.

subroutine condense_path(x: vertex node, y: vertex node): block node
{ start with the parent block of x, initialize }
b := block_parent(x);
v := b->parent_vix;
u := empty set;
{ process the blocks along the path one by one, until we reach the lcav if it is a block, or until its
child if it is vertex }
whilev = y
add the children set of b to u;
free(b);
b := block_parent(v);
v := b->parent_vtx;
add u into the children set of b;
return b;
end. { condense_path }

13

©
« SSown /
V\ AL
T E ® e
Ly <+ <) < <>¢ e D
<5 @ TR S0
<@

the least common
ancestor

Figure 12. block_condense(3, 7)

Two vertex nodes that are in the same connected component and different blocks are given
as the arguments to block_condense. Using findlcav and condense_path, the algorithm is the
following (also see Figure 12):

procedure block_condense(vl, v2: vertex node)
lcav := findlcav(vl, v2);
{ condense along the paths to lcav, the least common ancestor }
if lcav = one of the two vertices
condense_path(the other vertex, lcav);
else
b1 := condense_path(vl, lcav);
b2 := condense_path(v2, lcav);
if b1 = b2 then {bl = b2 = lcav, which is a block node }
do nothing;
else {b1 and b2 are children of Icav, a vertex }
add the children set of b2 to the children set of bl;
remove b2 from the children set of its parent, lcav;
free(b2);
end. { block_condense }

Subroutine findlcav takes O(P) pointer steps, where P is the length of the path between the
two given vertices (see findpath, [8]), and condense_path is a sequence of pointer operations along
the path, hence it runs in O(P) pointer steps as well. All other operations involved in
block_condense are merely pointer manipulations, therefore block_condense also runs in O(P) pointer
steps.

4.4 Exported Functions to Maintain Connectivity and Biconnectivity

The data structures presented above maintain graph connectivity and biconnectivity
properties separately. To combine these operations, we will describe a set of functions: new_vertex,
find_block, and insert_edge, which update both connectivity and biconnectivity when called. The
functions are as follows:

14

1) new_vertex():
create a new vertex and a new block which contains it.

2) find_block(u, v: vertex):
call block_find(u, v) and return the result.

3) insert_edge(u, v: vertex):
if u and v are in the same block, do nothing.
otherwise if they are in the same connected component, call block_condense(u, v)
otherwise they are in different connected components, in which case we combine the two
block trees by calling block_evert() with the vertex in the smaller tree, and make the root of
the resulting tree a child of the vertex in the larger tree. Then merge the two connected
components by calling cc_merge().

Both cc_new_vertex and block_new take O(1) time, so new_vertex also runs in O(1) time.
Since find_block is merely a call to block_find, find_block also runs in O(1) pointer steps. In order to
analyze the running time for insert_edge, we prove the following lemma:

LEMMA 3. In any sequence of insert_edge operations, there can be at most n-1 dynamic holes caused
by eversions in a graph of n vertices.

PROOF. After each eversion, two block trees are combined into one, hence for a graph of n vertices,
there can be at most n-1 evert operations before all n vertices are combined into a single block.
Since each eversion creates at most one dynamic hole in the children set of the root node, there can
be at most n-1 such dynamic holes in the block forest. []

To calculate the running time of find and merge operations in our modified disjoint set data
structure, we must first determine how many elements are in all the disjoint sets in the block forest.
There will be n elements which represent vertex nodes in the block forest; lemma 3 shows that there
will be at most n-1 dynamic holes created by eversions. Hence, there will be at most 2n-1 elements
in all the disjoint sets in the block forest. This means the running time of k find and merge
operations will be O(k a (k, 2n-1)), and the amortized time per operation will be O(a(k, 2n-1)). The
proof given below is similar to the one for implementation I [3].

THEOREM 1. The data structure above can maintain the graph connectivity and biconnectivity
incrementally in O(nlogn + m) time and O(n) space.

PROOF. Westbrook and Tarjan [8] show that the total number of pointer steps taken by
block_evert and block_condense is O(nlogn). For a sequence of m insert_edge, find_block, and
new_vertex operations where m is in Q(n), it is shown in [8] that the total number of pointer steps
required is O(m + nlogn). However, this analysis does not take into account the dynamic holes that
need to be created in the block tree data structure by block_evert .

By the analysis given in [8], our data structures support a sequence of m operations in O(m
+ n'logn') time, where n' represents the total number of elements in the disjoint sets of the block
tree including dynamic holes. From Lemma 3 it follows that n'<2n-1, hence n'is O(n). Hence, our
data structures can be maintained in O(m + nlogn) time. []

5. Implementation III: Mixed Block Tree with Static Holes

In this implementation, we have no dynamic holes. Instead, we make use of static holes,
which are created when newly created blocks have only cut vertices as their children. In Section 5.1,
we describe the new block tree data structure, and in Section 5.2 we give descriptions of each of the
functions needed to maintain the block forest. In Section 5.3 we prove the overall running time of
this implementation.

15

<

(i) a block tree T %‘

‘ block node <> < @\ <5>
vertex node \

inactive vertex node (i) representation of T %‘

in implementation III

<< ([
cut-vertex node
<> element in disjoint set K hole_pir

% vnode_ptr and cvnode_ptr
parent_ptr ‘\(

+ children <4 clement_ptr

\ parent_vtx or parent (in disjoint set)

Figure 13. Block tree data structure in the third implementation

5.1 Data Structure

The data structure for the block tree in this implementation consists of block nodes, vertex
nodes and cut-vertex nodes. The vertex nodes are organized into disjoint sets that represent
children sets of different block nodes as in previous implementations. A cut-vertex node is a virtual
copy of and doubly linked to its correspondent vertex node. A cut-vertex has a pointer to one of the
elements in the children set of its parent block. This way its parent can be accessed while the
merging of children sets of different blocks can be done efficiently. A cut-vertex node is created and
deleted dynamically, while a vertex node is never deleted once it is created, instead it goes into an
obsolete state when a cut-vertex node representing it exists. Block nodes, then, point to their parent
cut-vertex nodes, not vertex nodes (see Figure 13).

Cut-vertex nodes can only be created when two distinct components are linked together.
When these cut-vertex nodes are created, their corresponding vertex nodes become obsolete in the
data structure. For example, if u becomes a cut vertex in the graph, the corresponding vertex node
in the block tree will point to the newly created cut-vertex node. From that point on, all operations
which take u as an argument will use the cut-vertex node instead of the vertex node for information
about u, unless u ceases to be a cut-vertex.

16

In the linking process, it is also possible that a new block B needs to be created between the
two cut-vertices, u and v. B will be the parent of one of these cut-vertices, say u, so u must point to
an element in the children set of B. Since B has no children at this point, a static hole is created as
a singleton element to represent the empty children set of B. Then, v can be linked to this static
hole to complete the linking process.

Each block node B has the following fields:
e Jabel: used to identify the block B
® parent_vtx: a pointer to the parent cut-vertex node of B, NULL B is the root
e children: a disjoint set which contains the children vertices in B, some of these vertices may be
cut vertices.
e child_cnt: the number of children in the children set, counts cut vertices twice.

Each vertex node v has the following fields:
e Jabel: used to identify the vertex node v
e cc_ptr: a pointer to the disjoint set which represents the connected component to which v
belongs.
® clement_ptr: a pointer into the children set of v's parent.
* cunode_ptr: a pointer to a cut-vertex node iff v is a cut-vertex, NULL otherwise.
e block_cnt: the number of blocks to which v belongs, used to check if v has a cut-vertex.

Each cut-vertex node ¢ has the following fields:
* vnode_ptr: a pointer back to the vertex node to which c is attached
® hole_ptr: a pointer to a disjoint set element which gives ¢ membership in another block.
e visited: a boolean variable to indicate whether v has been visited, used in block_condense

5.2 Functions for the Block Tree

The functions described below manipulate the block tree data structure in the same way as
previous implementations. A minor difference in this implementation is that eversion and linking
are done in the same function, block_evert&link, this change is inconsequential since an eversion is
always followed by a link.

5.2.1 block_new

The operation block_new allows us to create a new block node in the block tree and initialize
that block with a vertex node v. However, block_new can also be called with a NULL argument,
which creates an empty block node with one static hole. The need for this is shown in Section 5.2.4.
This function is executed as follows:

procedure block_new(v: vertex node): block node
{ create a new singleton disjoint set for the new block }
new_set := ds_new();

{ create the new block node }

new_block — label := get_next_block_label();
new_block — parent_vtx := NULL;
new_block — child_cnt := 0;

{ attach the new set to the new block }
new_block — children := new_set;
new_set —> parent_node := new_block;

{ attach v to the disjoint set if appropriate}
if (v # NULL) then

attach vertex node v to new_set

v — block_cnt = 1;

new_block — child_cnt :=1;

17

return(new_block)
end. {block_new}

The function block_new takes O(1) time since all the operations it performs take constant
time.

5.2.2 block_parent

The block_parent operation is used in the implementation to access the parent in the block
tree of a vertex node v. Ifv is a cut-vertex, then its corresponding cut-vertex node is used to access
the parent block node. It executes as follows:

procedure block_parent(v: vertex node): block node
{if v belongs to more than one block, it is a cut-vertex, so we access its cut-vertex node to find
the block parent }
if (v — block_cnt > 1)
root := ds_find(v — cvnode_ptr — hole_ptr);
{ otherwise we access the sibling disjoint set of v for the block parent }
else
root :=ds_find(v — element_ptr);

return(root —> parent_node);
end.

The function block_parent takes O(1) pointer steps since ds_find is called only once.

5.2.3 block_find

The function block_find is used to check whether two vertex nodes, u, and v, are in the same
biconnected component, i.e., belong to the same block in the block tree. We need this information in
the exported function insert_edge so that we know how to modify the block tree upon an insertion of
an edge to the graph.

First we check if u or v have the same block parent, if so, we simply return the common
block node. Note that either u or v can be cut vertices yet still have the same parent. If u and v do
not have the same parent, then one must be a cut vertex if they belong to a common block at all. So
if either u or v is a cut vertex, we check if one the grandparent of the other, and if so, return the
common block. Otherwise, we return NULL. The function is as follows:

procedure block_find(u, v: vertex node): block node
{ block_parent always returns the true parent of its argument, regardless of whether it is a cut
vertex or not }
parent_u := block_parent(u);
parent_v := block_parent(v);

{if u and v are siblings, return their parent; else if one is the grandparent of the other, return
the block node between them; else return null }

if (parent_u = parent_v) then
return(parent_u);

elseif (u — block_cnt > 1) && (u — cvnode_ptr = parent_v — parent_vtx)
return(parent_v);

else if (v — block_cnt > 1) && (v — cvnode_ptr = parent_u —> parent_vtx)
return(parent_u);

else
return(NULL)

end. {block_find}

18

The function block_find takes O(1) pointer steps since ds_find is called only twice.

5.2.4 block_evert&link

As input, block_evert&link takes the vertex nodes s and [/, where s is the vertex node in the
smaller block tree and [is the vertex node in the larger tree. After the eversion and linking are
done, block_evert&link returns a single block tree in which the vertices s and / are linked.

procedure block_evert&link(s, I: vertex node): block node
{ s is a vertex node in the smaller tree and [is a vertex node in the larger tree }
parent_l := block_parent(l);
parent_s := block_parent(s);
grandparent_s := parent_s — parent_uvtx;
grandparent_l := parent_l — parent_uvtx;

{if [is the only vertex in the tree, then both trees are single vertex trees and we can merge their
disjoint sets to create the new tree }
if (parent_l — child_cnt = 1) && (grandparent_l = NULL)
(parent_l — children) —> parent_node := NULL;
(parent_s — children) — parent_node := NULL;
parent_lL — children := ds_merge(parent_L — children, parent_s — children);
(parent_l — children) — parent_node := parent_l;
free(parent_s);
return(parent_l);

{if [does not already have a cut-vertex, then make a cut-vertex for it }
if (I — block_cnt=1)

create a new cut-vertex node

[— cvnode_ptr := new_cvnode;

new_cvnode —> vnode_ptr = [;

new_cvnode —> hole_ptr := parent_l — children;

{if the smaller tree is a one vertex tree, then we need not evert the tree, it can be directly linked
to the larger tree }
if (parent_s — child_cnt = 1) && (grandparent_s = NULL)
parent_s — parent_vtx := | —> cvnode_ptr;
I — block_cnt :=1 — block_cnt + 1;
return(parent_s);

{if s does not already have a cut-vertex, create a cut-vertex node for it }
if (s — block_cnt =1)

create a new cut-vertex node

s — cvnode_ptr := new_cvnode;

new_cvnode — vnode_ptr :=s;

new_cvnode — hole_ptr := NULL;

{ if neither tree is a single vertex tree, we must evert the smaller tree and link it to the larger
tree by creating a new block}
curr := s —> cvnode_ptr;

{ evert the tree from s to the root }

while (grandparent_s = NULL)
{ make parent_s a child of curr and save parent_s }
parent_s —> parent_vix := curr;
temp := parent_s;

19

{ update parent_s }
parent_s := block_parent(grandparent_s — vnode_ptr);

{ reverse grandparent_s and old parent_s, i.e., temp }
grandparent_s — hole_ptr := temp —> children;
curr := grandparent_s;
grandparent_s := parent_s — parent_vtx;

end {while}

{ original root loses one child due to eversion }
parent —> child_cnt := parent — child_cnt - 1;

{ relink the original root to the everted tree }
parent_s —> parent_vix := curr;

{link the everted tree to the larger tree by creating an empty block in between }
new_block := block_new(NULL);

(s — cvnode_ptr) —> hole_ptr := new_block — children;

new_block — parent_vtx := | — cvnode_ptr;

new_block — child_cnt := 1;

[— block_cnt := 1 — block_cnt + 1;
end. {block_evert}

The block_evert&link operation takes O(P) pointer steps, where P is the length of the path
from x to the root. All operations outside of the eversion loop take at most a constant number of
pointer steps, hence we must show that the loop runs in O(P) time. Each iteration of the loop takes
a constant number of pointer steps then advances to the next node up the tree by modifying curr,
parent_s, and grandparent_s. Then there are P -1 iterations of the loop since grandparent will be
NULL when parent is the original root of the tree. Hence block_evert&link takes O(P) pointer steps.

5.2.5 block_condense

The function block_condense condenses all the nodes into a single block node along the path
between its two argument vertex nodes.

The function findlcav is an auxiliary function which is used to find the least common
ancestor vertex of two vertices, vl and v2. We define the least common ancestor vertex of vl and v2
to be either the least common ancestor itself of v1 and v2 or the parent of the least common ancestor
of v1 and v2.

subroutine findlcav(vl, v2: vertex node): vertex node
{ find the least common ancestor vertex of vI and v2 by walking up the tree simultaneously
from both of them, until the paths intersect at their lcav vertex }
lcav := v1 —>cvnode_ptr;
save := v2 —>cvnode_ptr;
while lcav.visited = false
leav.visited := true;
if (save = NULL) then
{ignore the path that has reached the root from now on }
lcav := block_parent(lcav —>vnode_ptr) —> parent_vtx;
if (lcav = NULL)
break;
else
{ advance to the next cut vertex node on the current path, and switch to the other path }
tmp := block_parent(lcav —>vnode_ptr) —> parent_vtx;
leav := save;

20

save = tmp;
unmark all the nodes that were marked;
return lcav —>vnode_ptr;

end. { findlcav }

The other auxiliary function is condense_path, which takes two vertex nodes, x and one of
its ancestors, y, and condenses the path from x to y into a single block whose children set contains
all the vertices along that path, including x and y.

subroutine condense_path(x, y: vertex node): block node
{ start with the parent block of x, initialize }
b := block_parent(x);
{v is the current vertex node during the loop}
if b is not the root
v := (b — parent_vtx) —> vnode_ptr;
else
v := NULL;
u := empty set;

{ process the blocks along the path one by one, until we reach y }
whilev = y

add the children set of b to u;

free(b);

{update the variables for the next iteration}
b := block_parent(v);
ifv # NULL

v — block_cnt := v — block_cnt - 1;
if b is not the root

v := (b — parent_vtx) — vnode_ptr;
else

v:=NULL;

end {while }

add u into the children set of b;
return b;
end. { condense_path }

Using findlcav and condense_path, block_condense is as follows:

procedure block_condense(vl, v2: vertex node)
{ find the least common ancestor vertex of v and v2 }
lcav := findlcav(vl, v2);

{ condense along the paths to lcav, the least common ancestor }
if lcav = one of the two vertices
condense_path(the other vertex, lcav);
else
b1 := condense_path(vl, lcav);
b2 := condense_path(v2, lcav);
if bl = b2 then {b1 = b2 = lcav, which is a block node }
do nothing;
else {b1 and b2 are children of lcav}
add the children set of b2 to the children set of bl;
remove b2 from the children set of its parent, lcav;
free(b2);

end. { block_condense }

21

The cost of executing block_condense is proportional to the cost of executing find_Ilcav and
condense_path since block_condense calls these functions a constant number of times. The find_Ilcav
subroutine takes at most 2P pointer steps, where P is the length of the path from either of the
vertices to the root. This is because each iteration advances up the tree, and can only advance as
far as the root. The condense_path also takes at most 2P pointer steps since it merges sets from
both vertices to the lcav. Hence, the total cost of block_condense is O(P).

5.3 Running Time Analysis

There is one important difference between dynamic holes and static holes. The fact that
dynamic holes are reused is crucial in establishing a bound for the total number of holes in the first
two implementations, i.e., we reuse dynamic holes so that only one remains each time block_evert is
called. In Implementation III, once we create a static hole in a disjoint set, it is never removed from
its parent block. We need a different analysis to establish a bound on the number of static holes, as
the following lemma shows:

LEMMA 5. In any sequence of insert_edge operations, there can be at most n static holes created in the
block tree data structure.

PROOF. Eversion does not create static holes, since we simply reverse the parent pointers of block
nodes and cut-vertex nodes without having to manipulate elements in disjoint sets. The
block_condense operation only merges together disjoint sets, so it too does not create static holes.
The only static holes created are in the block_evert&link operation when two trees are being linked
together, since vertices which were not previously cut vertices may now become cut vertices.
However, block_evert&link occurs at most n-1 times since there are at most n block trees, i.e.,
distinct connected components, at any time. []

With this lemma, Theorem 1 in Section 4.4 still holds since total number of elements in the
disjoint sets of the block tree including static holes is in O(n) where n is the total number of vertices
in the graph. Hence the overall running time of this implementation is in O(n log n + m), where m is
number of updates and queries to the graph.

6. Implementation IV: A Mixed Block Tree with Static Holes and Standard Disjoint Set
Data Structure

In this implementation, instead of using the disjoint set data structure that allows deletions
in Section 2.1.3, we use the standard disjoint set data structure described in Section 2.1.1. Then,
instead of using an abstract representation of the elements of a disjoint set, a vertex node itself is
an element of the disjoint set (see Figure 14). This implementation is exactly the same as
Implementation III, except for the use of the standard disjoint set data structure. This was not
possible in Implementations I and II, since they used dynamic holes for deletions in the disjoint set
data structure. Since Implementation IV uses the standard disjoint set structure, separate sets of
functions are used to maintain the disjoint sets used for connectivity and in the block tree.

6.1 Data Structure

Each block node B has the following fields:
label: used to identify the block B
® parent_vtx: a pointer to the parent cut-vertex node of B, NULL B is the root
e children: a disjoint set which contains the children vertices in B, some of these vertices may be
cut vertices.
e child_cnt:: the number of children in the children set, counts cut vertices twice.

22

(i) a block tree T
\ parent_vix @\

. block node ‘\ hole_ptr 4> @
vertex node parent (in disjoint set) \©

inactive vertex node * parent_blk and children_ptr *
7
<5> cut-vertex node

(ii) representation of T
in implementation IV
<> vnode_ptr and cvnode_ptr P

Figure 14. Block tree data structure in the fourth implementation

Each vertex node v has the following fields:
e Jabel: used to identify the vertex node v
e cc_ptr: a pointer to the disjoint set which represents the connected component to which v
belongs.
cc_size: the size of the connected components that the current vertex represents.
bee_ptr: a pointer to the parent element of v in the disjoint set representing its block.
bee_size: the size of the block in which v belongs.
parent_blk: a pointer to v's parent block node.
cvnode_ptr: a pointer to a cut-vertex node iff v is a cut-vertex, NULL otherwise.
block_cnt: the number of blocks to which v belongs.

Each cut-vertex node ¢ has the following fields:
* vnode_ptr: a pointer back to the vertex node to which c is attached
e hole_ptr: a pointer to a disjoint set element which gives ¢ membership in another block.
e vyisited: a boolean variable to indicate whether v has been visited, used in block_condense

6.2 Functions to maintain the Connected Components
The standard disjoint set data structure of Section 2.1.1 is used, i.e., the vertex nodes are
used as actual elements in the disjoint sets representing the connected components. As a result,

separate disjoint set functions need to be implemented using the vertex nodes as the elements. The
pseudo code below closely resembles the functions ds_new, ds_find, and ds_merge.

23

procedure cc_new_vertex(label): vertex node
{ create and initialize the new vertex node}
v = new vertex node;
v—>label := label;
vertices[v —>label] := v;
v —>cc_ptr :=v;
v—>cc_size :=1;
v —>bce_ptr :=v;
v—>bcc_size ;= 1;
v—parent_blk := NULL,
v —cvnode_ptr .= NULL;
v—block_cnt := 0;
return v,

procedure cc_find(v: vertex node): vertex node
{ find the root of the set }
root := v,
while (root —>cc_ptr != root)
root := root —>cc_ptr;
tmp = v;

{ path compression }

while (tmp = root)
parent := tmp —>cc_ptr;
tmp —>cc_ptr := root;
tmp := parent;

{ return the root of the set as its label }
return(root);

procedure cc_merge(u, v: vertex node): vertex node
{ check for empty sets }
if u=NULL
return v;
ifv=NULL;
return u;

{ make the smaller connected components a child branch of the larger one }
if u —>cc_size >= v —>cc_size

v —>cc_pir = u;

u—>cc_size = u —>cc_size + v —>cc_size;

return u;
else

u—>cc_ptr =v;,

U —>cc_Size = U —>cc_size + u —>cc_size;

return v;

6.3 Functions to maintain the disjoint set of vertices in a block

As in the previous section, separate disjoint set functions are needed to maintain children
sets of the block nodes in the block forest:

procedure bce_find(v: vertex node): vertex node
{ find the root of the set }
root := v;
while (root —bcc_ptr I= root)
root := root —>bcc_ptr;

24

tmp = v,

{ path compression }

while (tmp != root)
parent := tmp —>bcc_ptr;
tmp —>bcce_ptr := root;
tmp := parent,

{ return the root of the set as its label }
return(root);

procedure bcc_merge(u, v: vertex node): vertex node
{ check for empty sets }
ifu=NULL
return v;
ifv=NULL;
return u,

{ make the smaller connected components a child branch of the larger one }
if u —>bcc_size >= v —>bcc_size

v—>bce_ptr = u;

u —>bcc_size = u —>bce_size + v —>bcee_size;

return u,
else

u—>bcc_ptr = v;

v —>bce_size = v —>bece_size + u —>bece_size;

return v;

6.4 Functions for the Block Tree

In this implementation, the only block tree functions that changed due the use of the
standard disjoint set structure are block_new and block_parent. This is because the disjoint set
functions are only invoked by these functions, and all other functions access the disjoint sets through
block_new and block_parent.

procedure block_new(v: vertex node): block node
{ create the new block node }
new_block — label := get_next_block_label();
new_block — parent_vtx := NULL;
new_block — child_cnt = 0;

{ create a static hole vertex node if requested }
if (v=NULL) then
v = cc_new_vertex(0);

v —>parent_blk := new_block;
v—block_cnt := 1;

new_block — children :=v;
new_block — child_cnt := 1;

return(new_block)
end. {block_new}

procedure block_parent(v: vertex node): block node
{if v belongs to more than one block, it is a cut-vertex, so we access its cut-vertex node to find
the block parent }

25

vertices | # edges # updts. |[init. time | std dev updt time | std dev time/op

500 250 50 0.020464 | 0.000971 [0.001564 [0.000315 | 0.000031
500 250 500 0.02027210.000293 [0.008950 [0.000198 [0.000018
500 250 2000 0.020719]0.001827]0.016133 | 0.000544 { 0.000008
500 500 50 0.028000 | 0.000420 | 0.000968 | 0.000199 | 0.000019
500 500 500 0.02768910.000250 | 0.004154 [0.000348 [0.000008
500 500 2000 0.02772810.000279]0.008876 | 0.000488 | 0.000004
1000 500 100 0.039076 1 0.000356 | 0.002244 [0.000170 [0.000022
1000 500 1000 0.03898110.000691[0.017091 | 0.000618 [0.000017
1000 500 5000 0.039031] 0.000525 | 0.035871 | 0.000513 [0.000007
1000 1000 100 0.0540430.0004750.001803 | 0.000249 [0.000018
1000 1000 1000 0.053866 | 0.000439 [0.009110 | 0.000266 [0.000009
1000 1000 5000 0.05379910.000307 | 0.021395] 0.000326 | 0.000004
5000 2500 500 0.19287510.001209(0.010901 [0.000601 [0.000022
5000 2500 5000 0.1926400.000652 [0.090828 [0.001638 [0.000018
5000 2500 30000 0.192216 { 0.000802 | 0.220937] 0.002157] 0.000007
5000 5000 500 0.27309710.001267 | 0.006852 | 0.000396 | 0.000014
5000 5000 5000 0.27291310.0013920.048924 | 0.000757 [0.000010
5000 5000 30000 0.273021 {0.002219[0.145002 | 0.000960] 0.000005
10000 5000 1000 0.391531(0.009111 | 0.023026 | 0.000671 | 0.000023
10000 5000 10000 0.38783110.000783 10.186746 |1 0.002713 | 0.000019
10000 5000 70000 0.387806 |1 0.000580] 0.498349 1 0.007722] 0.000007
10000 10000 1000 0.548439 10.002044 10.014015 | 0.000501 | 0.000014
10000 10000 10000 0.548296 |10.002217 1 0.101678 [0.001047 [0.000010
10000 10000 70000 0.547809 10.002050 | 0.340697 | 0.002272 [0.000005
20000 10000 2000 0.790035 | 0.003252 1 0.044760 | 0.000798 | 0.000022
20000 10000 20000 0.783890 |10.001780 [0.364341 [0.007040 [0.000018
20000 10000 150000 [0.782605 [0.001146 [1.064185 {0.009208 | 0.000007
20000 20000 2000 1.094907 [0.003345 [0.025839 [0.000611 | 0.000013
20000 20000 20000 1.094131 {0.003331 |0.203280 | 0.002425 | 0.000010
20000 20000 150000 [1.093537 [0.003425 [0.770003 {0.007984 |0.000005

Table 1. Statistics for test data run with first implementation

if (v — block_cnt > 1)
root := bcc_find(v — cvnode_ptr — hole_ptr);
{ otherwise we access the sibling disjoint set of v for the block parent }

else

root := bee_find(v — bee_ptr);

return(root —> parent_blk);

end.

We note that the running time for this implementation is the same as for Implementation
III to within a constant factor. One would expect Implementation IV to be faster than III since the
former uses the standard disjoint set structure; however III has a more elegant representation.

7. Experimental Results and Analysis

To evaluate the performance of the algorithms above, we ran all four implementations
described above with a variety of initial graphs and update/query sequences. In Section 7.1, we
describe the test environment and the test data that we used; in Section 7.2, we show the timing
results for all four implementations. Finally in Section 7.3, we analyze the timing results and make
relative comparisons among them.

26

vertices | # edges # updts. |[init. time | std dev updt time | std dev time/op.

500 250 50 0.01699810.001288 | 0.000979 | 0.000056 | 0.000020
500 250 500 0.016363 | 0.000262 | 0.005697 [0.000091 | 0.000011
500 250 2000 0.016993]0.001585]0.011722] 0.000106 | 0.000006
500 500 50 0.020954 1 0.000151 | 0.000825 | 0.000080 [0.000017
500 500 500 0.0210300.000303 | 0.003498 | 0.000165 [0.000007
500 500 2000 0.020948 1 0.000185] 0.007481 | 0.000114 | 0.000004
1000 500 100 0.03157610.000140 [0.001520 [0.000080 [0.000015
1000 500 1000 0.03143210.000148[0.011349 0.000446 | 0.000011
1000 500 5000 0.031463]0.000179]0.025890 | 0.000299 [0.000005
1000 1000 100 0.04101210.0003620.001257 [0.000087 [0.000013
1000 1000 1000 0.04074110.000197 [0.006737 | 0.000224 [0.000007
1000 1000 5000 0.04077410.00027210.017208 | 0.000206 { 0.000003
5000 2500 500 0.154736 1 0.000856 [0.007270 [0.000415 | 0.000015
5000 2500 5000 0.15592410.004701 | 0.060193 [0.000668 [0.000012
5000 2500 30000 0.154294 [0.000353 [0.164520 | 0.002684 | 0.000005
5000 5000 500 0.206186 | 0.000688 | 0.004985 | 0.000200 | 0.000010
5000 5000 5000 0.2062200.000433 [0.035827 | 0.000464 | 0.000007
5000 5000 30000 0.206190 {0.000442] 0.117246] 0.000672] 0.000004
10000 5000 1000 0.313044 (0.000584 [0.014899 | 0.000496 | 0.000015
10000 5000 10000 0.310812 10.000694 |1 0.122622 | 0.000787 | 0.000012
10000 5000 70000 0.311011 |0.000516]0.373678 10.001498 | 0.000005
10000 10000 1000 0.414716 10.000971 |1 0.009844 |1 0.000169 | 0.000010
10000 10000 10000 0.414532 10.001922 [0.074317 [0.000552 [0.000007
10000 10000 70000 0.414045 10.000900 |0.279543 | 0.000624 [0.000004
20000 10000 2000 0.631166 | 0.002251 1 0.029004 | 0.000594 | 0.000015
20000 10000 20000 0.626562 |0.007333 10.242678 [0.001349 [0.000012
20000 10000 150000 [0.624115 [0.000466 [{0.815021 {0.005805 |0.000005
20000 20000 2000 0.828986 |10.003636 |1 0.018631 | 0.000606 | 0.000009
20000 20000 20000 0.826884 |10.001654 [0.149229 [0.001146 [0.000007
20000 20000 150000 [0.827888 [0.002935 [0.632414 {0.002091 | 0.000004

Table 2. Statistics for test data run with second implementation

7.1 Test Environment and Test Data

Our implementations were run on a Sun SPARCstation 5/110 with a 110MHz CPU and 32
MB of RAM running the Solaris operating system. The algorithms and data structures were written

in the C programming language. The UNIX library function getrusage() was used for all time

measurements.

We tested each implementation on graphs with 500, 1000, 5000, 10000 and 20000
vertices, respectively. The initial graphs are very sparse (with exactly n/2 edges) or sparse (with
exactly n edges) and are randomly generated. They are loaded using new_vertex and insert_edge
operations. Ten such graphs are generated for each category, then 3 random test sequences of
different sizes are run on each graph. The test sequences are uniformly mixed with 50% insert_edge
operations and 50% find_block operations. The sizes of sequences are approximately n/10, n and
2((nlnn)/2 - n), respectively. The largest sequence size was chosen as 2((nlnn)/2 - n) since a random
graph is very likely to become connected (and in fact, contain a Hamiltonian cycle, -- i.e. become
biconnected) when the number of its edges reaches nlnn/2+o(nlnn) [5], after which every operation
will be within one block. At this stage the performance of the algorithm speeds up substantially
from O(logn) amortized time per step to 8(at(m, n)) amortized time. Hence we take the length of
the update/query sequence to be nlnn/2, minus the number of edges in the initial graph, and

multiply it by two since half of the test sequence operations are find_block queries.

27

vertices | # edges # updts. |[init. time | std dev updt time | std dev time/op.

500 250 50 0.01357810.000132 [0.000802 | 0.000065 | 0.000016
500 250 500 0.013564 |1 0.000117 | 0.005277 [0.000509 | 0.000011
500 250 2000 0.013591]0.000110]0.011365] 0.000403 | 0.000006
500 500 50 0.01798710.000338 | 0.000814 | 0.000080 | 0.000016
500 500 500 0.01807010.0003890.003435 | 0.000188 [0.000007
500 500 2000 0.018002] 0.000343]0.007703] 0.000247 | 0.000004
1000 500 100 0.0266200.0002250.001177 [0.000082 [0.000012
1000 500 1000 0.0264600.000114 [0.010139 | 0.000516 | 0.000010
1000 500 5000 0.026591] 0.000180 | 0.025115 | 0.000361 [0.000005
1000 1000 100 0.034901 | 0.000557 [0.001194 [0.000108 [0.000012
1000 1000 1000 0.03471010.000508 [0.006615 | 0.000249 [0.000007
1000 1000 5000 0.03457510.00049710.017706 | 0.000236 | 0.000004
5000 2500 500 0.1326370.000950 | 0.006164 [0.000543 [0.000012
5000 2500 5000 0.13324910.0038790.056099 | 0.000915 | 0.000011
5000 2500 30000 0.132014 [0.000680 | 0.167698 1 0.001471] 0.000006
5000 5000 500 0.17928510.001052 [0.004927 | 0.000270 | 0.000010
5000 5000 5000 0.1791110.000998 [0.036958 | 0.001320 [0.000007
5000 5000 30000 0.179918 {0.001705(0.127410]0.003708] 0.000004
10000 5000 1000 0.269621 (0.001014 {0.013017 | 0.000582 | 0.000013
10000 5000 10000 0.266987 10.001407 |1 0.116186 | 0.002028 | 0.000012
10000 5000 70000 0.268687 |10.004644 1 0.395005 1 0.014894 | 0.000006
10000 10000 1000 0.362262 10.000762 1 0.009963 | 0.000326 | 0.000010
10000 10000 10000 0.360480 |0.000671 | 0.077466 [0.000772 [0.000008
10000 10000 70000 0.360594 1 0.000537 10.307112 | 0.000796 [0.000004
20000 10000 2000 0.54673210.010076 1 0.027107 | 0.002289 | 0.000014
20000 10000 20000 0.541567 1 0.008510 [0.229329 [0.003906 [0.000011
20000 10000 150000 [0.539566 [0.002051 [{0.842906 [{0.005191 | 0.000006
20000 20000 2000 0.726126 10.001899 | 0.018541 | 0.000450 | 0.000009
20000 20000 20000 0.724298 10.001673 | 0.152558 [0.001412 [0.000008
20000 20000 150000 [0.724630 [(0.001912 [0.683555 [0.002264 | 0.000005

Table 3. Statistics for test data run with third implementation

7.2 Test Results

The times (given in seconds) obtained from our tests are listed in Tables 1-4 in ascending
order of vertices and edges. A data point in the table consists of a number of vertices in the graph,
an initial number of edges, and an update/query sequence size. For each data point, we give an
initialization time and an update time, along with their respective standard deviations. We also

give the time per operation for each update/query sequence.

7.3 Comparison and Analysis

In the course of our experiments, we examined if there was a clear difference in
implementations with dynamic holes versus static holes. We knew that there would be fewer static
holes than dynamic holes, but were not sure if the overhead of maintaining static holes would lead to
slower performance. Similarly, we knew that mixed block tree data structures should be faster than
homogeneous ones due to direct pointers, but did not know if maintaining certain nodes in the block

tree differently would be too expensive.

After running all of the implementations, we plotted the results by initial graph density and
update/query sequence size (see below). The results show that Implementation IV has the fastest
performance and Implementation I is the slowest (see Table 1-4). From the plots, we found that for
smaller update/query sequence sizes, the use of static holes with the modified disjoint set structure
(Implementation III) led to slightly faster performance than Implementation II. However, for larger
update/query sequence sizes, the overhead of maintaining both static holes and the modified
disjoint sets structure caused Implementation II to overtake Implementation III. As noted above,

28

vertices | # edges # updts. |init time | std dev updt time | std dev time/op.

500 250 50 0.01042110.000963 [0.000763 | 0.000069 [0.000015
500 250 500 0.00994310.000104 | 0.005125 | 0.000398 | 0.000010
500 250 2000 0.00988710.000063]0.010624 | 0.000266 [0.000005
500 500 50 0.01413910.000211 | 0.000780 | 0.000065 | 0.000016
500 500 500 0.014256 1 0.000445 | 0.003096 | 0.000124 | 0.000006
500 500 2000 0.014150] 0.000245] 0.006925 | 0.000190 { 0.000003
1000 500 100 0.018086 | 0.000283 [0.001995 | 0.000314 | 0.000020
1000 500 1000 0.0181780.000320 [0.009936 | 0.000402 | 0.000010
1000 500 5000 0.018324]0.000863 | 0.023959 [0.001627 [0.000005
1000 1000 100 0.02663210.0005550.001212 | 0.000193 [0.000012
1000 1000 1000 0.026218 | 0.000295|0.006112 | 0.000454 | 0.000006
1000 1000 5000 0.02637210.0005520.016491 [0.001790 { 0.000003
5000 2500 500 0.0896380.001414 | 0.005675 | 0.000289 | 0.000011
5000 2500 5000 0.088896 | 0.000327 | 0.052272 | 0.000981 | 0.000010
5000 2500 30000 0.089720({0.001942[0.146142 | 0.001224] 0.000005
5000 5000 500 0.13457910.000701 | 0.004271 | 0.000201 [0.000009
5000 5000 5000 0.133818 | 0.000544 | 0.032419 | 0.000461 | 0.000006
5000 5000 30000 0.133976 [0.000567 | 0.105393]0.000609] 0.000004
10000 5000 1000 0.181467 [0.000858 | 0.012411 | 0.000806 | 0.000012
10000 5000 10000 0.17975110.000733 10.108466 | 0.001768 | 0.000011
10000 5000 70000 0.179690 10.000819] 0.339014 |1 0.001950 | 0.000005
10000 10000 1000 0.271756 10.001902 | 0.008997 | 0.000464 | 0.000009
10000 10000 10000 0.270138 | 0.001372 | 0.068564 [0.000962 [0.000007
10000 10000 70000 0.270128 10.000890 |0.257652 [0.004300 [0.000004
20000 10000 2000 0.366658 10.001150 | 0.024595 |1 0.000615 | 0.000012
20000 10000 20000 0.363703 |0.001468 [0.216970 [0.004684 [0.000011
20000 10000 150000 [0.368074 [0.014541 {0.733604 {0.003733 | 0.000005
20000 20000 2000 0.544021 10.002629 1 0.017049 | 0.000381 | 0.000009
20000 20000 20000 0.541997 10.002191 | 0.135053 [0.001765 [0.000007
20000 20000 150000 |0.542366 [0.002044 [0.575943 [0.003541 | 0.000004

Table 4. Statistics for test data run with fourth implementation

the use of static holes with the standard disjoint set structure in Implementation IV led to the best
performance. However, Implementation II presents a better abstraction of data structures than
Implementation IV, since its representation and maintenance of connectivity and biconnectivity is
clearly separate.

We also noticed that in Implementation IV, the initialization time improved much more
significantly than the update time. With profiling information obtained from the software Program
Quantify 2.1 [4], we observed that this discrepancy is explained by the differences in the cost of
new_vertex operations across implementations. The use of the standard disjoint set structure in
Implementation IV meant that within each new_vertex call, a single memory allocation is made for
the vertex node. In the other implementations, each new_vertex call makes three memory
allocations, one for the vertex node itself, and two for its disjoint set representations. Since
new_vertex operation is only invoked during the initialization, this explanation shows why the
initialization time was improved much more than the update time in Implementation IV.

We also made a comparison between our implementations and those of Alberts et al. [1],
the only other experimental study of dynamic graph algorithms that we knew of (see Table 5). Our
implementations run significantly faster as expected theoretically, since we have shown that our
implementation runsin O(log n) amortized time per update, whereas the asymptotically fastest
algorithm tested by Alberts et al. runs in O(log2n) expected time per operation. Alberts et al.
maintain only connectivity, while our implementation maintains both connectivity and
biconnectivity. However, the algorithms we implemented were incremental, whereas the algorithms
tested by Alberts et al., are fully dynamic, and therefore handle edge deletions, which are harder to
deal with. Hence it is not surprising that our algorithm runs much faster than the ones tested by
Alberts et al.

29

vertices edges #updt Alberts Imp. IV
500 250 500 0.276* 0.005125
500 500 500 0.3588%* 0.003096

Table 5. Common data points between Alberts et. al and Implementation IV
(* normalized time [2])

Plots of Test Results

The plots on the following pages were made from the test data given in Tables 1-4; all
graphs have n vertices. On each page, we compare Implementations I-IV for one update/query
sequence size (n/10, n, nlnn - 2n) on very sparse and sparse initial graphs.

8. Conclusion

In this paper, we have described four implementations of an algorithm for the maintenance
of incremental biconnectivity. The algorithm allows insertions of edges and vertices and answers
biconnectivity queries, i.e., "given two vertices of a graph, are they in the same biconnected
component ?" In the course of implementing the algorithm given by [8], we discovered an issue that
was not addressed in [8]: the need for deletions in disjoint sets to preserve the efficiency of the
algorithm. We modified the standard disjoint set data structure and developed two new concepts in
dealing with deletions: dynamic holes and static holes. We have implemented two versions of the
algorithm which use dynamic holes and two which use static holes. With both static and dynamic
holes, we prove that the performance of the overall block tree data structure with our disjoint set
structure is still O(nlogn + m), where n is the number of vertices in the graph and m is the total
number of queries and updates. We tested the four implementations extensively and presented the
experimental results and analysis.

Acknowledgment. We would like to thank Madhukar Korupolu for extensive discussions in the
early stages of this project. This paper is part of an undergraduate honors thesis project undertaken
by Ramgopal Mettu and Yuke Zhao.

References

[1] D. Alberts, G. Cattaneo, and G. F. Italiano. An Empirical Study of Dynamic Graph
Algorithms. Proc. ACM-SIAM SODA (1996): 192-201.

[2] dJ. Dimarco. SPEC list. http:/hpwww.epfl.ch/bench/SPEC.html

[3] M. Korupolu, R. Mettu, V. Ramachandran, and Y. Zhao. Experimental Evaluation of
Algorithms for Incremental Graph Connectivity and Biconnectivity. Presented at the Fifth
DIMACS Implementation Challenge, 1996.

[4] Quantify 2.1. Version 2.1, Pure Corporation, 1996.

[5] J. H. Spencer. Ten Lectures on the Probabilistic Method. Capital City Press, 1994, 2nd
edition.

[6] R. E. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. Journal of the
Association for Computing Machinery, 22 (1975), 215-225.

[7] R. E. Tarjan and J. van Leeuwen. Worst-Case Analysis of Set Union Algorithms. Journal of
the Association for Computing Machinery, 31 (1984), 245-281.

[8] J. Westbrook and R. E. Tarjan. Maintaining Bridge-Connected and Biconnected
Components On-Line. Algorithmica (1992) 7: 433-464

30

