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Abstract. This paper presents a new solution to the expression problem
(EP) that works in OO languages with simple generics (including Java
or C#). A key novelty of this solution is that advanced typing features,
including F-bounded quantification, wildcards and variance annotations,
are not needed. The solution is based on object algebras, which are an
abstraction closely related to algebraic datatypes and Church encodings.
Object algebras also have much in common with the traditional forms
of the Visitor pattern, but without many of its drawbacks: they are
extensible, remove the need for accept methods, and do not compromise
encapsulation. We show applications of object algebras that go beyond
toy examples usually presented in solutions for the expression problem.
In the paper we develop an increasingly more complex set of features for
a mini-imperative language, and we discuss a real-world application of
object algebras in an implementation of remote batches. We believe that
object algebras bring extensibility to the masses: object algebras work in
mainstream OO languages, and they significantly reduce the conceptual
overhead by using only features that are used by everyday programmers.

1 Introduction

The “expression problem” (EP) [38, 10, 46] is now a classical problem in program-
ming languages. It refers to the difficulty of writing data abstractions that can
be easily extended with both new operations and new data variants. Tradition-
ally the kinds of data abstraction found in functional languages can be extended
with new operations, but adding new data variants is difficult. The traditional
object-oriented approach to data abstraction facilitates adding new data variants
(classes), while adding new operations is more difficult. The Visitor Pattern [13]
is often used to allow operations to be added to object-oriented data abstractions,
but the common approach to visitors prevents adding new classes. Extensible
visitors can be created [43, 50, 31], but so far solutions in the literature require
complex and unwieldy types, or advanced programming languages.

In this paper we present a new approach to the EP based on object algebras.
An object algebra is a class that implements a generic abstract factory inter-
face, which corresponds to a particular kind of algebraic signature [18]. Object



algebras are closely related to the Abstract Factory, Builder and Visitor
patterns and can offer improvements on those patterns. Object algebras have
strong theoretical foundations, inspired by earlier work on the relation between
Church encodings and the Visitor pattern [5, 30, 35, 31].

Object algebras use simple, intuitive generic types that work in languages
such as Java or C#. They do not need the most advanced and difficult features
of generics available in those languages, e.g. F-bounded quantification [6], wild-
cards [44] or variance annotations. As a result, object algebras are applicable to
a wide range of programming languages that have basic support for generics.

An important advantage of object algebras over traditional visitors is that
there is no need for accept methods. As a consequence object algebras support
retroactive implementations [47] of interfaces or operations without preparation
of existing source code. This is unlike the Visitor pattern, which can only pro-
vide retroactive implementations if the original classes include accept methods.

We discuss applications of object algebras that go beyond toy examples usu-
ally presented in solutions for the EP. In the paper an increasingly more complex
set of features for a mini-imperative language and a real-world application of ob-
ject algebras in an implementation of remote batches [22, 48] are described.

Object algebras have benefits beyond the basic extensibility of the EP. They
can address harder related problems, including the expression families problem
(EFP) [31], family polymorphism [12] and independent extensibility [50].

Programming with object algebras does require learning new design strate-
gies. Rather than creating generic objects and then visiting them to perform
operations, object algebras encourage that object creation is done relative to a
factory, so that specialized factories can be defined to create objects with the
required operations in them. Programming against factories has some cost to
it because it requires parametrization of code by factories and uses of generic
types. However there are significant benefits in terms of flexibility and extensi-
bility and, in comparison with other solutions to the EP using generic types [46,
3, 43, 50, 31], the additional cost is significantly smaller.

In summary, our contributions are:

– A solution to the EP using simple generic types. The solution can be used
in mainstream languages such as Java or C#. We use Java in this paper.

– An alternative to the Visitor pattern that avoids many of the disadvantages
of that pattern: it eliminates the need for accept methods; does not require
preparation of the “visited” classes; and it supports extensibility.

– Various techniques for dealing with challenges that arise in realistic applica-
tions. For example, multi-sorted object algebras deal with multiple recursive
types and generic combinator classes deal with independent extensibility.

– Insights on the relation between the Abstract Factory and Visitor pat-
terns. In some sense, factories and visitors are two faces of object algebras.

– Case study using remote batches. The Java implementation is available on-
line at batches.wikidot.com. Code for the smaller Java examples, as well
as solutions to the expression problem in other languages, is available at
http://ropas.snu.ac.kr/~bruno/oa.
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interface Exp {
Value eval();

}
class Lit implements Exp {
int x;
public Lit(int x) { this.x = x; }

public Value eval() {
return new VInt(x);

}}
class Add implements Exp {
Exp l, r;
public Add(Exp l, Exp r) { this.l = l; this.r = r; }

public Value eval() {
return new VInt(l.eval().getInt() + r.eval().getInt());

}}

Fig. 1. An object-oriented encoding of integer expressions.

2 Background

While there is extensive literature on the expression problem and abstract alge-
bra in programming languages, we summarize the required background here.

2.1 The Expression Problem

Wadler’s [46] formulation of the expression problem prescribes four requirements
for potential solutions. Zenger and Odersky [50] add an extra requirement (in-
dependent extensibility) to that list. These requirements are summarized here:

– Extensibility in both dimensions: A solution must allow the addition of new
data variants and new operations and support extending existing operations.

– Strong static type safety : A solution must prevent applying an operation to
a data variant which it cannot handle using static checks.

– No modification or duplication: Existing code must not be modified nor du-
plicated.

– Separate compilation and type-checking : Safety checks or compilation steps
must not be deferred until link or runtime.

– Independent extensibility : It should be possible to combine independently
developed extensions so that they can be used jointly.

To illustrate the difficulty of solving the expression problem, we review two
standard forms of extensibility in object-oriented languages and show how they
fail to solve the problem.

Figure 1 shows an attempt to solve the EP using polymorphism. The basic
idea is to define an interface Exp for expressions with an evaluation operation
in it, and then define concrete implementations (data variants) of that interface
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for particular types of expressions. Note that evaluation returns a value of type
Value. For the purposes of this paper we assume the following definitions of
Value and its subclasses:
interface Value {
Integer getInt();
Boolean getBool();

}
class VInt implements Value {...}
class VBool implements Value {...}

It is easy to add new data variants to the code in Figure 1, but adding new
operations is hard. For example, supporting pretty printing requires modifying
the Exp interface and its implementations to add a new method. However this vi-
olates “no modification” requirement. While inheritance can be used to add new
operations, the changes must be made to the interface and all classes simulta-
neously, to ensure static type safety. Doing so is possible, but requires advanced
typing features.

An alternative attempt uses the Visitor pattern [13]. The Visitor pattern
makes adding new operations easy, although a different interface for expressions
is required:
interface Exp {
<A> A accept(IntAlg<A> vis);

}

The IntAlg visitor interface, defined in Figure 2, has a (visit) method for each
concrete implementation of Exp. These visit methods are used in the definitions
of the accept methods. For example, the definition of the Add class would be:
class Add implements Exp {
Exp left, right;
public Add(Exp left, Exp right) { this.left = left; this.right = right; }

public <A> A accept(IntAlg<A> vis) {
return vis.add(left.accept(vis), right.accept(vis));

}}

There are several kinds of visitors in the literature [35]. We use a (functional)
internal visitor [5, 35] for our example since this type of visitors will be important
later in Section 5.1. An internal visitor is a visitor that produces a value by
processing the nodes of a composite structure, where the control flow is controlled
by the infrastructure rather than the visitor itself.

With visitors, new operations are defined in concrete implementations of vis-
itor interfaces like IntAlg. Figure 5 shows a concrete visitor for pretty printing.
Unlike the first solution, adding new operations can be done without modifying
Exp and its implementations. This is especially important when dealing with
objects created by library classes, because it is often impossible to change the
code of the library. From a software engineering viewpoint, Visitors localize code
for operations in one place, while conventional OO designs scatter code for op-
erations across multiple classes. Visitors also provide a nice way to have state
that is local to an operation (rather than to a class).
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interface IntAlg<A> {
A lit(int x);
A add(A e1, A e2);

}

Fig. 2. Visitor interface for arithmetic expressions (also an object algebra interface).

Unfortunately, traditional visitors trade one type of extensibility for another:
adding new data variants is hard with visitors. The problem is the concrete
references to visitor interfaces IntAlg in the accept method. Adding new data
variants requires modifying IntAlg and all its implementations with new visit
methods to deal with the new variants. Another drawback of visitors is that
some initial preparation is required: the visited classes need to provide an accept
method. This can be a problem when the source code of the classes that we want
to visit is not available: if the classes have no accept method it is impossible to
use the Visitor pattern.

2.2 Algebraic Signatures, F-Algebras, and Church Encodings

An algebraic signature Σ [18] defines the names and types of functions that
operate over one or more abstract types, called sorts. We assume the existence
of some primitive built-in sorts for integers and booleans.

signature E
lit: Int → E
add: E × E → E

A general algebraic signature can contain constructors that return values of
the abstract set, as well as observations that return other kinds of values. In
this paper we restrict signatures to only contain constructors, as in the example
given above. We call such signatures constructive.

An Σ-algebra is a set together with a collection of functions whose type is
specified in the signature Σ. A given signature can have many algebras. For
example, one valid E-algebra has a set of two values and simple constant oper-
ations: (E={x, y}, lit=λn.x, add=λ(a, b).x), where x, y are arbitrary constants.
This algebra seems unsatisfying because it is degenerate, in that it ignores the
inputs of its functions, and messy, in that its set includes extra values that are
never used. A special algebra, called the initial or free algebra, is neither messy
nor degenerate. One way to create the initial algebra is to use a set that contains
expressions, which are applications of functions in all legal ways according to the
signature, and to define the functions simply as constructors. The initial algebra
looks like this:

E = { lit(0), lit(1), ..., add(lit(0), lit(0)), add(lit(0), lit(1)), ... }
lit = λn.lit(n)
add = λ(a, b).add(a, b)
The concept of a constructive signature defined above is a syntactic character-

ization of a class of algebras. A more fundamental approach comes from merging
the signature’s constructor functions f1 : T1 → A, ..., fn : Tn → A into a single
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function f : F (A)→ A where F is a functor given by F (A) = T1+ ...+Tn. This
transformation is based on the isomorphism (S+T )→ A ≈ (S → A)×(T → A).
The function f : F (A) → A is called an F -algebra. When F is a functor
built of sums and products, it can be used to give a (categorical) semantics
to algebraic datatypes [26]. For example, the functor for integer expressions is
F (E) = Int + (E × E). The free algebra is then the initial algebra in the cat-
egory of F-algebras. Because F-Algebras provide a nice framework to formalize
and reason about algebraic datatypes, they have been widely explored by the
functional programming community.

It is also possible to define free algebras in a complete different way, by using
Church encodings. Church encodings involve converting the algebra signature
into a particular kind of polymorphic type [17]. For example, given a signature
Σ with with sort A and functions f1 : T1 → A, ..., fn : Tn → A, the Church
encoding is given by the type

ChurchΣ = ∀A.(T1 → A)× ...× (Tn → A)→ A
A Church encoding works by taking an algebra (sort and functions) as input

and using it to create an element of the sort. Thus a Church “value” is not really a
value, but rather a recipe for creating a value. The recipes in a Church encoding
are isomorphic to the free algebra because of parametericity [15]. As a concrete
example, the signature E defined above has the Church encoding:

ChurchE = ∀E.(Int→ E)× (E × E → E)→ E
When interpreted in object-oriented programming, Church encodings corre-

spond to internal visitors [5, 35]. From a functional programming point of view,
Church encodings represent data as folds [15].

3 Object Algebras

Algebraic signatures can be defined in statically typed object-oriented languages
by creating a generic interface whose parameter is the abstract type. We call
an interface representing an algebraic signature an object algebra interface. An
example of an object algebra interface representing the abstract syntax of simple
expressions is given in Figure 2, which was previously introduced as the type of
an internal visitor. Object algebra interfaces correspond closely to Abstract
Factory interfaces [13]. The difference is that a factory interface typically uses
a specific concrete class or interface as the result type for the factory methods,
while the object algebra interface has a generic type. The factory interface can
be derived by instantiating the abstract type to the specific object interface of
the objects being created.

An object algebra is a class that implements an object algebra interface.
Figure 3 defines an object algebra that plays the role of a factory for expressions.
The factory defines how to create each kind of object in the composite structure.

To create an actual object, some part of the code will instantiate the factory
and then invoke its methods repeatedly to create a specific instance. This object
construction process may also be parameterized by the factory itself, allowing the
process to create specific objects using different factories. The result is similar to
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class IntFactory implements IntAlg<Exp> {
public Exp lit(int x) {
return new Lit(x);

}
public Exp add(Exp e1, Exp e2) {
return new Add(e1, e2);

}}

Fig. 3. Using an object algebra as a factory.

a Church encoded value. For example, a function to create an expression object,
and an example test function that uses it, are given below.

<A> A make3Plus5(IntAlg<A> f) {
return f.add( f.lit(3), f.lit(5) );

}
void test() {
Exp e = make3Plus5(new IntFactory());

}

Note that a similar function could be written to parse expressions or load
them from a binary representation. For example, the following function parses
an integer expression from a string.

<A> A parseExp(IntAlg<A> f, String s) {
if (s.equals("0"))

return f.lit(0);
else {... /* more interesting parsing cases */}

}

4 Retroactive Interface Implementations

This section shows one of the key advantages of object algebras: support for
retroactive interface implementations without requiring initial preparation of
code.

To illustrate retroactive implementations consider the simple object-oriented
implementation of arithmetic expressions in Figure 1. These expressions support
evaluation, but not pretty printing. Suppose that we now wanted to support
pretty printing. Normally, as discussed in Section 2.1, we would either:

1. change the definition of the interface Exp to support a printing operation and
change all the implementors of that interface to implement the operation; or

2. use the Visitor pattern, which would also require modifications in the class
hierarchy to introduce accept methods.

Both options require pervasive changes to existing code. Furthermore, these
changes are only an option if the source code is available. If the hierarchy is part
of a library or framework, then these solutions are not options.
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interface IPrint {
String print();

}
class IntPrint implements IntAlg<IPrint> {
public IPrint lit(final int x) {
return new IPrint() {
public String print() {
return new Integer(x).toString();

}};
}
public IPrint add(final IPrint e1, final IPrint e2) {
return new IPrint() {
public String print() {
return e1.print() + " + " + e2.print();

}};
}}

Fig. 4. A retroactive implementation of printing for arithmetic expressions.

What we would like is a mechanism that allowed us to retroactively imple-
ment interfaces for existing class hierarchies, without need for changes to existing
implementations.

As it turns out object algebras enable us to simulate such retroactive imple-
mentations of interfaces. To use object algebras to provide retroactive implemen-
tations we proceed very much like an implementation of internal visitors. The
idea is illustrated in Figure 4. To provide the retroactive implementation of the
interface, we create an implementation of the object algebra with the abstract
type instantiated to the interface type. In this case IPrint is the interface that
the arithmetic expressions should implement. The interface implementations are
done by creating a class IntPrint that implements the object algebra interface
IntAlg<IPrint>. The implementations of the two methods lit and add provide
the implementation of the interface for literals and addition.

The difference to the Visitor pattern is that we do not add accept methods
to Exp. Instead, following the approach presented in Section 3, we replace uses
of concrete constructors in the client code by the corresponding methods in the
object algebra. For example, instead of creating an expression
Exp exp = new Add(new Lit(3), new Lit(4));

we would abstract uses of the constructors as follows:
<A> A exp(IntAlg<A> v) {
return v.add(v.lit(3), v.lit(4));

}

With this transformation in place we could then write the following code:
void test() {
IntFactory base = new IntFactory();
IntPrint print = new IntPrint();

int x = exp(base).eval(); // int x = exp.eval();
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String s = exp(print).print();
}

Compared to the conventional object-oriented style, uses of exp.m() are replaced
by exp(mFactory).m(), where mFactory is a factory that creates objects with
the required m method.

By using this simple pattern we can provide retroactive implementations of
interfaces to existing code. In comparison to Java extensions such as JavaGI [47],
which provide native language support for retroactive implementations, there is
of course some overhead in terms of additional code. On the other hand, no new
compiler is needed. One difficulty of using this pattern arises when the operations
in the retroactive interface implementations depend on existing operations in the
base classes or other retroactive implementations. The simple pattern presented
in this section is insufficient to allow such dependencies. However, with a bit
more work, we can get around this restriction as we shall see in Section 7.3.

Finally, note that this style of retroactive implementations is quite powerful:
it still allows us to simulate dynamically dispatched methods and open classes [9].
This is unlike approaches such as C# extension methods [1] or conventional
object-oriented encodings of type classes [34] which can only provide static dis-
patching in their retroactive implementations. Although the programming style
required by object algebras (and retroactive interface implementations) is simi-
lar to the use of object-oriented encodings of type classes, the key difference is
that object algebras overload constructors instead of regular methods.

5 Extensibility

There are two ways in which we may want to extend our expressions: adding
new variants; or adding new operations. The previous section has already shown
one way in which we can add new operations: via retroactive interface imple-
mentations. In this section we show another alternative way to define operations
and illustrate the addition of new variants. We also show how object algebras
go beyond many solutions to the EP and also provide solution to the expression
families problem [31].

5.1 Internal Visitors as Object Algebras

Object algebras provide a direct implementation of (functional) internal visi-
tors [35] (see also Section 2.1) since constructive algebraic signatures correspond
exactly to internal visitor interfaces. As such we can use object algebras to de-
fine new operations using concrete internal visitor implementations. As Figure 5
shows this offers an alternative way to implement pretty printing. Instead of
creating a new interface like IPrint and defining a retroactive implementation
for that type, we can directly define the printing operation. In this case it is the
IntAlg interface that is interpreted as an internal visitor interface.

Printing is used as follows:
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class Print2 implements IntAlg<String> {
public String lit(int x) {
return new Integer(x).toString();

}

public String add(String e1, String e2) {
return e1 + " + " + e2;

}
}

Fig. 5. Adding a printing operation.

interface IntBoolAlg<A> extends IntAlg<A> {
A bool(Boolean b);
A iff(A e1, A e2, A e3);

}

Fig. 6. Adding boolean expression variants.

Print2 p = new Print2();
String s = exp(p);

This object algebra visitor style avoids the creation of an intermediate object,
just to immediately invoke the print method afterwards. Unlike traditional visi-
tor implementations, this visitor style using object algebras supports data variant
extensibility and does not need accept methods.

Using internal visitors is best when the computation in the operation happens
bottom-up: essentially operations that could be defined as folds in functional pro-
gramming. This stems, of course, from the fact that internal visitors are basically
Church encodings and Church encodings encode data as folds. For operations
that do not naturally fit this bottom-up style of computation, or mutually depend
on other operations, the factory-oriented approach using retroactive implemen-
tations of interfaces is better.

5.2 Adding New Variants and Updating Operations

Adding new data variants is easy. The first step is to create new classes Bool
and Iff in the usual object-oriented style (like Lit and Add):

class Bool implements Exp {...}
class Iff implements Exp {...}

The second step, shown in Figure 6, is to create an extended algebra interface
with two new methods for the new boolean expressions. Finally the last step,
shown in Figure 7, is to provide extension for the new boolean expressions cases
for both the factory IntFactory and the retroactive implementation for printing.
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/* Extended Expression Factory */
class IntBoolFactory extends IntFactory implements IntBoolAlg<Exp> {
public Exp bool(Boolean b) {return new Bool(b);}

public Exp iff(Exp e1, Exp e2, Exp e3) {return new Iff(e1,e2,e3);}
}

/* Extended Retroactive Implementation for Printing */
class IntBoolPrint extends IntPrint implements IntBoolAlg<IPrint> {
public IPrint bool(final Boolean b) {
return new IPrint() {
public String print() {return new Boolean(b).toString();}

};
}

public IPrint iff(final IPrint e1, final IPrint e2, final IPrint e3) {
return new IPrint() {
public String print() {
return "if (" + e1.print() + ") then " + e2.print() + " else " + e3.

print();
}

};
}

}

Fig. 7. Supporting boolean expression variants.

5.3 Subtyping Relations

There are two interesting subtyping relations when we talk about the EP: sub-
typing between extended and base terms; and subtyping between the operations
on those terms. Object algebras support both types of subtyping.

Not many other solutions to the EP support such subtyping relations. Even
using advanced features like virtual classes [25] and similar mechanisms [4, 27,
29], the extended terms and operations are incompatible with the base terms
and operations: only subtyping relations between classes in the same family are
preserved. Oliveira [31] recognized this problem and suggested a variant of the
EP: the expression families problem, which requires solutions to preserve the
subtyping relations across different families. There are two solutions that we are
aware of that do support such subtyping relations [43, 31]. Still both of them
require variance annotations or wildcards.

Subtyping between object algebra interfaces follows from standard OO sub-
typing: an extension of an object algebra interface is a subtype of the original
interface. A consequence of this subtyping relation is that if we have some term
constructed using a certain object algebra, we can always use an operation de-
fined over an extension of that object algebra to process the term. For example:

IntBoolPrint p2 = new IntBoolPrint();
exp(p2).print();
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In this case we can use p2 (which supports integer and boolean expressions)
in an integer expression. However, the following code would be rejected:

IntPrint p = new IntPrint();
exp2(p).print(); // type-error

Here, we create a printing implementation p for integer expressions and try
to use it on an expression exp2 (see the definition below) defined for integer and
boolean expressions. As expected, this fails to type-check.

The subtyping relation between terms is induced by the subtyping relation
between object algebra interfaces. However, it follows the opposite direction: an
extended term type (that is, with more constructors) is a supertype of a base
term type. This subtyping relation is useful, for example, to build complex terms
using an extended set of constructors from simpler terms:

<A> A exp(IntAlg<A> v) {
return v.add(v.lit(3), v.lit(4));

}
<A> A exp2(IntBoolAlg<A> v) {
return v.iff(v.bool(false),exp(v),v.lit(0));

}

In this case exp is a type of terms which can only be built using integer
expressions, whereas exp2 is type of terms which can use boolean expressions as
well. Since terms for integer expressions are a subtype of terms for integer and
boolean expressions, we can call exp in the definition of exp2 with the object
algebra argument v of type IntBoolAlg<A>.

Finally, note that there is an important difference to solutions to the EP
using open classes [9]. In those solutions, there is a single expression type which is
incrementally extended. So, once expressions are extended it becomes impossible
to distinguish the extended expressions from more basic expressions. Thus, unlike
a solution with object algebras, type distinctions between multiple variations of
expressions are lost.

6 Multiple Types and Multi-sorted Object Algebras

In larger programs, it is often the case that we need multiple (potentially mu-
tually) recursive types and operations evolving as a family. When the need for
multiple types arises, we need to generalize from simple object algebras to multi-
sorted object algebras. Multi-sorted object algebras also illustrate the relation-
ship with the Abstract Factory pattern better, since this pattern is normally
used with complex hierarchies with multiple types.

Multi-sorted object algebras are closely related to family polymorphism [12]
which allow a variation EP where multiple types evolve as a family. Normally,
without mechanisms like virtual types or classes, family polymorphism tends to
be extremely heavyweight (and impractical) to encode [40]. However, as we shall
see object algebras still scale well to the multiple type case.
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interface StmtAlg<E, S> extends IntBoolAlg<E> {
E var(String x);
E assign(String x, E e);
S expr(E e);
S comp(S e1, S e2);

}

Fig. 8. Statements and expressions as a multi-sorted object algebra.

6.1 Multiple Types

The need for multiple types appears, for example, when we want to have a lan-
guage with expressions and statements. Figure 8 shows how to add statements
to our little language of boolean and integers expressions. In order to introduce a
new syntactic sort (statements) in the language, we need to add a new type pa-
rameter S. This corresponds effectively to having a multi-sorted (object) algebra,
with E and S as the carrier types.1

As part of the statements object algebra interface we introduce two new forms
of expressions: variables (var) and assignments (assign). We also introduce two
forms of statements: sequential composition (comp) and liftings of expressions
into statements (expr).

6.2 Evaluation of statements: Algebras with Local State

Evaluation of statements is interesting for two reasons. Firstly it illustrates the
definition of multi-sorted object algebras. Secondly it also illustrates an operation
with local state: namely, the mapping between variables and values associated
with those variables. If we would design the evaluation of statements using a more
conventional OO style, with independent classes for variables and assignments,
then we would have to coordinate the mapping of variables between those two
classes. This could be done, for example, by explicit passing the variable mapping
between those two classes. However, because this mapping is basically local to
evaluation, this design is a bit unfortunate as it loses some encapsulation.

With the Visitor pattern we could solve this problem more elegantly be-
cause we could create state that is local to an operation. Because object algebras
also offer some of the same benefits as visitors, we can also exploit this design in
our case. To do so, we use a design that is similar to retroactive interface imple-
mentations. This design is illustrated in Figure 9. Instead of creating individual
classes, we use inner anonymous classes directly in the factory. The variable map
keeps the mapping between variables and values. In the case of variables, we
use map to retrieve the value associated with that variable. Assignments update
the variable in the map with the value of the assigned expression. Composi-
tion evaluates the two expressions sequentially. Finally, expr simply returns the
corresponding expression.
1 Note that, more generally, we can encode sets of n (potentially mutually) recursive
types by creating multi-sorted algebras with n type parameters (one for each type).
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interface Stmt {
void eval();

}
class StmtFactory extends IntBoolFactory implements StmtAlg<Exp, Stmt> {
HashMap<String, Value> map = new HashMap<String, Value>();

public Exp var(final String x) {
return new Exp() {
public Value eval() {
return map.get(x);

}};
}
public Exp assign(final String x, final Exp e) {
return new Exp() {
public Value eval() {
Value v = e.eval();
map.put(x, v);
return v;

}};
}
public Stmt comp(final Stmt s1, final Stmt s2) {
return new Stmt() {
public void eval() {
s1.eval();
s2.eval();

}};
}
public Stmt expr(final Exp e) {
return new Stmt() {
public void eval() {
e.eval();

}};
}}

Fig. 9. An abstract factory for expressions and statements.

Note that the object algebra in Figure 9 can also be interpreted as a con-
crete builder object from the Builder pattern [13]. The Builder pattern, like
the Abstract Factory pattern, is a creational pattern. The main difference
between the Builder pattern and the Abstract Factory pattern is that
builders tend to have complex object construction processes. For example fac-
tories are typically stateless, while builders can maintain a state. In this case,
StmtFactory is stateful, which would justify calling that class a concrete builder.

Client code: The extended object algebra of expressions and statements can be
used as before. For example we can create values for expressions and statements
as follows:
<E,S> E exp(StmtAlg<E,S> v) {
return v.assign("x", v.add(v.lit(3), v.lit(4)));

}
<E,S> S stmt(StmtAlg<E,S> v) {
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interface BoolAlg<A> {
A bool(boolean x);
A iff(A b, A e1, A e2);

}

interface ExpIntBool<A> extends BoolAlg<A>, IntAlg<A> {}

Fig. 10. Composing algebra interfaces with interface inheritance.

return v.comp(v.expr(exp(v)), v.expr(v.var("x")));
}

Note that the syntactic restrictions which dictate where expressions and state-
ments can occur are preserved. As such code like:

<E,S> S badStmt(StmtAlg<E,S> v) {
return v.comp(exp(v), v.var("x")); //type-error

}

is rejected by the type-checker since it tries to use two expressions as arguments
for sequential composition.

The evaluator is run as before: a factory is created, passed to exp and stmt
and eval is invoked in the resulting objects.

StmtFactory factory = new StmtFactory();
exp(factory).eval();
stmt(factory).eval();

7 Modularity and Object Algebra Combinators

This section shows techniques to modularly define and compose independent
components using object algebra combinator classes. One of the problems ad-
dressed in this section is how to achieve independent extensibility [50] in Java
(Section 7.2). It is easy to have independent extensibility if a language supports
traits [41] or mixin composition [2], but this is not as trivial in a language with
single inheritance like Java. Another problem that is addressed in this section
is the problem of defining retroactive implementations that depend on existing
operations in the base classes or other retroactive implementations (Section 7.3).

7.1 Modular Combination of Algebra Interfaces

Interface inheritance can be used to combine algebra interfaces. For example,
lets consider again the problem of developing boolean and integer expressions.
In Figure 6 we opted to make the algebra interface for boolean expression ex-
tend that of integer expressions. However, there’s nothing intrinsic to boolean
expressions that depends on integer expressions. A more modular alternative
implementation, shown in Figure 10, is to define integer and boolean algebras
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class Union<A> implements IntBoolAlg<A> {
BoolAlg<A> v1;
IntAlg<A> v2;
Union(BoolAlg<A> v1, IntAlg<A> v2) { this.v1 = v1; this.v2 = v2; }

public A lit(int x) { return v2.lit(x); }
public A add(A e1, A e2) { return v2.add(e1, e2); }
public A bool(Boolean b) { return v1.bool(b); }
public A iff(A e1, A e2, A e3) { return v1.iff(e1, e2, e3); }

}

Fig. 11. Composing operations with OO composition.

as separate interfaces. Because most languages support multiple interface inheri-
tance, this mechanism can compose the two algebra interfaces. The new interface
IntBoolAlg illustrates this idea and shows how to compose IntAlg with BoolAlg
through interface inheritance.

7.2 Modular Combination of Algebras

Unfortunately modular combinations of algebras themselves is not as easy as
modular combination of algebra interfaces. The problem is that while languages
like Java support multiple interface inheritance, they only support single im-
plementation inheritance. As such we cannot use implementation inheritance in
Java to compose two independent extensions.

However, OO composition offers an alternative way to combine modular ex-
tensions, although it takes some manual work to set up the composition. For-
tunately it is possible to write fairly generic composition classes which allow
composing different types of interpretations. At the high-level what we want is
to define a combinator:

union ∈ V1 A× V2 A→ (V1 ⊗ V2) A
which takes two object algebras of type V1 A and V2 A and it returns the
union of those algebras. In Java we can write union for two specific object
algebras interfaces V1 A and V2 A. Figure 11 illustrates the definition of union
for the object algebras interfaces BoolAlg and IntAlg. We can use Java’s multiple
interface inheritance to approximate the union of two object algebras interfaces
(that is the type-level operator ⊗). The actual implementation of the methods
of Union is straightforward: each method simply delegates to the corresponding
method in either v1 or v2.

Union can be used to define the factory for boolean and arithmetic expressions
from two independent extensions:
class IntBoolFactory2 extends Union<Exp> {
IntBoolFactory2() { super(new BoolFactory(), new IntFactory()); }

}

Essentially all we have to do is to instantiate factories for boolean and integer
expressions and invoke the constructor in Union. For retroactive implementations
such as pretty printing we would proceed in the same way.
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class Pair<A, B> {
A a; B b;
Pair(A a, B b) { this.a = a; this.b = b; }

A a() { return a; }
B b() { return b; }

}

class Combine<A, B> implements IntAlg<Pair<A, B>> {
IntAlg<A> v1;
IntAlg<B> v2;

Combine(IntAlg<A> v1, IntAlg<B> v2) { this.v1 = v1;this.v2 = v2; }

public Pair<A, B> lit(int x) {
return new Pair<A, B>(v1.lit(x), v2.lit(x));

}
public Pair<A, B> add(Pair<A, B> e1, Pair<A, B> e2) {
return new Pair<A, B>(v1.add(e1.a(), e2.a()), v2.add(e1.b(), e2.b()));

}
}

Fig. 12. Combining operations in parallel.

7.3 Combining Operations in Parallel

Sometimes it is useful to compose multiple operations together in such a way
that they are executed in parallel to the same input. Abstractly speaking what
we want is a combinator:

combine ∈ V A× V B → V (A×B)
That is given two object algebras with types V A and V B we want to derive a

third object algebra which combines the results of the two object algebras. This
combinator is analogous to the zip function in functional programming, and it
has been well-studied in the context of F-algebras [21].

Figure 12 shows how to define combine for integer expressions. Essentially,
combine becomes an class (Combine) that is parametrized by two other object
algebras v1 and v2. The implementation of each method (lit and add) basically
forwards the input to the corresponding cases in v1 and v2 and returns a pair
with both results.

Combine is useful, for example, when we need to define operations that de-
pend on multiple independent extensions. For example, consider adding some
debugging information to the evaluator. In order to do this it is helpful to have
a pretty printer. However, evaluation and pretty printing have been defined sep-
arately. By inheriting from Combine we can create a new class Debug that allows
us to use evaluation and pretty printing at the same time.

class Debug extends Combine<Exp, IPrint> {
Debug() { super(new IntFactory(), new IntPrint()); }
Pair<Exp, IPrint> add(Pair<Exp, IPrint> e1, Pair<Exp, IPrint> e2) {
System.out.println("The first expression " + e1.b().print() +
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" evaluates to " + e1.a().eval().toString());
System.out.println("The second expression " + e2.b().print() +

" evaluates to " + e2.a().eval().toString());
return super.add(e1,e2);

}}

all we have to do is to invoke the constructor of the super class (Combine) with
the integer expressions factory and pretty printer. Then to access the pretty
printer and the evaluator, we just select the right component of the combined
pair.

7.4 Some Final Notes on Extensibility

The attentive reader may have noticed two additional extensibility challenges
that were left unaddressed. The first challenge is that the algebra class com-
binators that were just introduced are not extensible. The second challenge is
that while expressions (and statements) are extensible the values computed by
evaluation are not.

Both problems can be solved, but they require the most advanced use of
generics in this paper: bounded polymorphism. However, we are still able to
avoid F-bounded polymorphism since there is no need for recursive F-bounds.

We describe the key ideas of the solutions next, but refer the reader to our
online implementation for the full code.

Extensible algebra combinators: Both Union and Combine cannot be easily ex-
tended. This is because these classes require concrete classes like IntAlg or
BoolAlg in order to refer to the types of the object algebra parameters. It would
be quite unfortunate if those algebra combinator classes could not be extended,
because this would mean that each extension would have to create new algebra
combinator classes from scratch.

To make such algebra combinator classes extensible we first observe that in
Union and Combine there is no need to know about the concrete classes of the
object algebra parameters. Rather only the upper bounds matter. Exploiting this
observation we can define generalized versions of Union and Combine as follows:

class GUnion<A, V1 extends BoolAlg<A>, V2 extends IntAlg<A>> implements
IntBoolAlg<A> {

V1 v1; V2 v2;
GUnion(V1 v1, V2 v2) { this.v1 = v1; this.v2 = v2; }
...

}
class GCombine<A, B, V1 extends IntAlg<A>, V2 extends IntAlg<B>>

implements IntAlg<Pair<A, B>> {
V1 v1; V2 v2;
GCombine(V1 v1, V2 v2) { this.v1 = v1;this.v2 = v2; }
...

}
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Unlike Union and Combine these classes allow extensibility because the bounds
can be refined when the classes are extended. Therefore when defining combi-
nators for extensions we can extend the classes GUnion and GCombine to inherit
the cases for literals and addition.

Extensible values: A similar idea is used to allow extensible values as well as
extensible expressions.
interface IntVal<A> {
A lit(int x);

}
interface IntExp<A> extends IntVal<A> {
A add(A x, A y);

}
interface IntValue {
int getInt();

}
class Eval<A extends IntValue,V extends IntVal<A>> implements IntExp<A> {
protected V valFact;
public Eval(V valFact) { this.valFact = valFact; }
public A lit(int x) { return valFact.lit(x); }
public A add(A x, A y) { return valFact.lit(x.getInt() + y.getInt()); }

}

Integer value factories are described by the IntVal algebra interface. There’s
a single constructor lit. The algebra interface for expressions then becomes
an extension of IntVal. We also need an integer value interface (IntValue) for
evaluation. With these 3 interfaces we can define an evaluation class (Eval) by
parametrizing that class by a value factory (valFact). This factory is then used
to avoid the use of concrete value constructors (as done in Figure 1). Again,
because the bounds are refinable in extensions, this design allows extensibility
of the value types.

8 Case Study

We have used this technique in implementing a new client model for invoking
remote procedure calls (RCP), web services, and database clients (SQL). The
system is called batches [22, 48]. The system uses a custom scripting language
to communicate batches of operations from clients to servers. The base object
algebra of the system is defined in Figure 13. Some helper functions (which are
technically redundant) are omitted for brevity.

There are currently five implementations of this signature. The first three
implement direct evaluation of scripts, secure evaluation, and SQL translation,
respectively.

The direct evaluation classes are similar to the classes defined in Section 4.
The secure evaluation classes have the same basic structure, but carry additional
state so that they can check the legality of each operation for the current user.

The SQL translator injects the algebra into a object hierarchy that has multi-
ple mutually recursive translation functions, and also has additional SQL-specific
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interface BatchFactory<E> {
E Var(String name); // variable reference
E Data(Object value); // simple constant (number, string, or date)
E Fun(String var, E body);
E Prim(Op op, List<E> args); // unary and binary operators
E Prop(E base, String field); // field access
E Assign(Op op, E target, E source); // assignment
E Let(String var, E expression, E body); // control flow
E If(E condition, E thenExp, E elseExp);
E Loop(Op op, String var, E collection, E body);
E Call(E target, String method, List<E> args); // method invocation
E In(String location); // reading and writing forest
E Out(String location, E expression);

}

Fig. 13. Batch script language abstract syntax

interface SQLTranslation {
void toSQL(StringBuilder sb, List<Object> params, Forest data);
Expression normalize(ISchema schema, SQLQuery query,

Expression outerCond, Env env, NormType normType);
SQLTable getTable();
Expression invertPath(Expression e, Env env, boolean fromChild);
SQLTable getTableNoJoins(Env env);
SQLTable getBase(Env env);
Expression withoutTransformations();
Expression getTransformations(Expression base);
Expression trimLast(Env env);

}

Fig. 14. Interface of mutually recursive methods used by the SQL Translation algebra

objects. The signature of this class is given in Figure 14. Using a traditional visi-
tor approach, every one of these functions would have to be defined as a mutually
recursive visitor class. With object-algebras, the SQL translation objects can call
methods on sub-objects in the normal object-oriented style.

The final implementations are the most complex. They implement the par-
titioning mechanism required by the batch compiler. There are two parts, a
partitioning algebra and a code generation algebra. The partition algebra ex-
tends the base algebra signature with additional node types, to represent code
that does not belong to the batch. The methods, which are also mutually re-
cursive, are listed in Figure 15. The partition system then creates batches, but
then must visit the resulting objects to generate new code after the partition is
complete. This is the one case where something like a traditional visitor is used.
However, it is not used to create new operations. Instead it is used to build the
new objects into a final code-generation algebra.

Subjectively this architecture allows the different subsystems (security, par-
titioning, and SQL translation) to be kept separate. Within each subsystem
ordinary object-oriented dispatch is used. The main difference is that rather
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interface PartitionFactory<E> extends BatchFactory<E> {
E Other(Object external, E... subs);
E DynamicCall(E target, String method, List<E> args);
E Mobile(String type, Object obj, E exp);

}

Fig. 15. Extended script language interface used for partitioning algebra

than constructing generic operations, and then trying to create complex mu-
tually recursive visitors that operate on the generic objects, the batch system
creates specialized objects for each task.

9 Related Work

Throughout the paper we have already compared object algebras with several
other related work. In this section we discuss additional related work.

Expression Problem in Java-like languages: Object algebras require only sim-
ple generics and work in languages like Java or C#. As far as we know Torg-
ersen’s [43] work on the EP presents the only solutions in the literature that can
also work in those languages. He presents 4 solutions, but the first 3 solutions
require advanced features like F-bounds or wildcards, while the last solution
makes use of C# reflection mechanisms and it does not satisfy the (static) type-
safety requirement of the expression problem. A drawback of Torgersen’s first 3
solutions is that they require quite a bit of redundant code just for the purposes
of satisfying the type-checker, and they are conceptually quite heavy. F-bounds
and wildcards are notorious for being difficult to grasp for everyday program-
mers. An advantage of object algebras is that they are comparably lightweight
on the amount of type annotations and they do not use those advanced features.

Before Torgersen’s work, there have been attempts to provide solutions that
work in Java-like languages. Wadler proposed a solution using generics to solve
the expression problem [46], but he later found a subtle typing problem. Kim
Bruce [3] proposed a solution to the expression problem using generics and self-
types. However self-types are not a widely available feature and, as such, his
solution does not work in most current mainstream OO languages. Finally, there
have also been some other solutions that are not statically type-safe, but still
allow extensibility [23, 36, 45].

Modular visitors, encodings of datatypes and embedded DSLs: There has been
a considerable amount of work on modular visitors and related techniques in
advanced programming languages like Haskell or Scala recently. This line of
work is closely related to object algebras.

Hinze [19] was the first to point out that type classes provide a way to rep-
resent encodings of datatypes in Haskell. He exploited this fact to implement
a generic programming library. Inspired by Hinze’s work, Oliveira and Gib-
bons [32] have shown general patterns for those techniques and used them to
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several other applications. In following work Oliveira et al. showed that variants
of these type-class based encodings are extensible and can be used to solve the
expression problem [33]. Later work by Carrete et al. [7] and Hofer et al. [20]
(in Scala) popularized those techniques for defining well-typed interpreters and
embedded DSLs. While all that work is closely related to object algebras, those
techniques require significant advanced language features not available in main-
stream OO languages like Java. A source of additional complexity in this line
of work is that most documented applications use encodings of generalized al-
gebraic datatypes [37]. Even with our simplified techniques, it is not possible
to define Church encodings of generalized algebraic datatypes in Java as this
requires type-constructor polymorphism [39, 28].

The relationship between the Visitor pattern and Church encodings has
been folklore in the type-theory community. Buchlovsky and Thielecke [5] were
the first to precisely document that relationship. The link between the type class
based encodings, the Visitor pattern, encodings of datatypes and the extensi-
bility of such encodings was further developed by Oliveira [30, 35]. In later work,
Oliveira [31] generalized and showed how to apply his results on extensibility to
two variations of the Visitor pattern. Still the Scala implementation of that
work used advanced features including type constructor polymorphism, variance
annotations, self-type annotations and mixins. None of these are available in
Java. A key insight of our work is that by avoiding accept methods and using
plain object algebras instead we can get most of the benefits of modular vis-
itors in Java. Furthermore, unlike visitors, object algebras support retroactive
implementations without requiring accept methods.

Another Haskell solution to the expression problem is based on folds (and
F-algebras) [11, 42]. This solution also requires advanced features and it does not
translate well to object-oriented programming because most OO languages do
not have native support for sums-of-products, which are needed in that solution.

Finally Zenger and Odersky [50] proposed a solution to the expression prob-
lem in Scala using virtual types [4] and the open class pattern [27]. As most other
solutions discussed here, this solution is quite heavyweight in terms of language
features and it requires a lot of type annotations and manual composition code.

Language-based solutions to the expression problem: Several programming lan-
guage features such as multi-methods [8], open classes [9], virtual classes [25, 29],
virtual types [4], units [27], polymorphic variants [14] and others [49, 24, 47] are
aimed at solving problems related to the expression problem. The main advan-
tage of most of these approaches is that solutions to the expression problem can
be expressed quite naturally. In contrast, solutions that instead exploit general
programming language features (like generics or type classes) are commonly crit-
icized for being heavyweight, hard to use and requiring sophisticated features.
Our work shows that is possible to significantly reduce such complexity by using
object algebras. There is still some price to pay in terms of indirection, but com-
pared to other approaches using general programming language features this is a
relatively small cost: it is low enough that object algebras are useful in practice.
The main advantage of object algebras over language-based approaches is that
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object algebras do not require a new language or language extension: they can
be used in any languages that support a simple form of generics.

Visitor Combinators and Functional Interpretations of Design Patterns: There
has been some work on visitor combinators for offering better traversal con-
trol. Visser [45] presented a number of combinators that can express interesting
traversal strategies like bottom-up, top-down or sequential composition of vis-
itors. This work is related to our algebra combinators in Section 7. However a
difference is that we use functional style object algebras whereas Visser uses
imperative style visitors. As part of our future work we would like to explore
more algebra combinators and develop a small algebra of combinators for object
algebras.

Gibbons [16] has proposed functional interpretations for various design pat-
terns. In particular he suggested that the Visitor and the Builder patterns
are closely related to folds in functional programming. Our work supports this
idea and extends it, suggesting that the Abstract Factory pattern is also
also part of the functional interpretation as folds.

10 Conclusion

This paper presents a new solution to the expression problem based on object
algebras. This solution is interesting because it is extremely lightweight in terms
of required language features; has a low conceptual overhead for programmers;
and it scales well with respect to other challenges related to the expression
problem.

Object algebras promote a factory-oriented programming style where con-
crete constructors are avoided. This programming style has some overhead over a
conventional object-oriented programming style, but it also offers several advan-
tages in terms of extensibility. In comparison with the Visitor pattern, object
algebras retain most of the advantages and additionally they support extensi-
bility and do not require accept methods. As such object algebras can provide
retroactive implementations even when the original source code is not available.

Although this paper shows that object algebras can be encoded in languages
like Java, programming language extensions are still useful. With additional
language support we expect programming with object algebras to be even more
convenient. For example programming language extensions can be useful to man-
age factories better, or to automatically provide composition operators for object
algebras. This is something we would like to explore in future work.
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