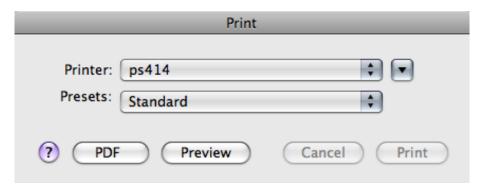
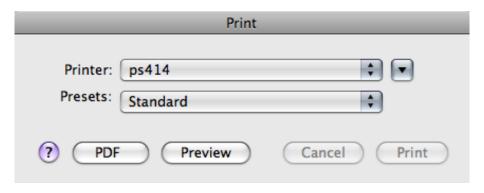
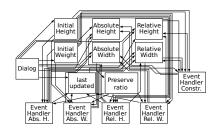
Declarative User Interfaces with Property Models


Jaakko Järvi Mat Marcus Sean Parent


John Freeman Jacob N. Smith

Texas A&M University

Adobe Systems, Inc.


April 13, 2009

Why is software like this?

def ChangeCurrentHeightPx(self, event): self.LastUpdated = "Height"

constrained = self.Controls["Constrain"].GetValue() # no matter what the percent & current stay bound together

get current height, and compute relative height and place new rel. ht self.LastUpdated = "Height" height = float(self.Controls["AbsolutePx"]["Height"].GetValue()) pct = height / self.InitialSize[self.Height] self.Controls["Relative%"]["Height"].SetValue(str(pct * 100))

self.Controls["Relative%"]["Width"].SetValue(str(pct * 100)) width = nct * self InitialSize(self Width) self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPx(self, event): self I astI Indated = "Width"

constrained = self.Controls["Constrain"].GetValue() # no matter what the percent & current stay bound together

get current width, and compute relative width and place new rel. wd height = float(self.Controls["AbsolutePx"]["Width"].GetValue()) pct = height / self.InitialSize[self.Width] self.Controls["Relative%"]["Width"].SetValue(str(pct * 100))

if constrained: # update height & height%

self.Controls["Relative%"]["Height"].SetValue(str(pct * 100))

height = pct * self.InitialSize(self.Height) self.Controls("AbsolutePx")("Height").SetValue(str(round(height)))

def ChangeCurrentHeightPct(self, event): constrained = self.Controls["Constrain"].GetValue()

no matter what the percent & current stay bound together # get current rel. ht. and compute absolute height and place new abs. ht constrained = self.Controls["Constrain"].GetValue() height = float(self.Controls["Relative%"]["Height"].GetValue()) cur = height * self.InitialSize[self.Height] / 100

self.Controls["AbsolutePx"]["Height"].SetValue(str(round(cur))) if constrained: # undate width & width% self.Controls["Relative%"]["Width"].SetValue(str(height)) width = height * self.InitialSize[self.Width] / 100 self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

def ChangeCurrentWidthPct(self, event): self.LastUpdated = "Width"

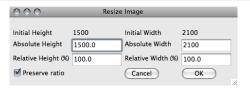
constrained = self.Controls["Constrain"].GetValue() # no matter what the percent & current stay bound together # get current rel. wd, and compute absolute width and place new abs. wd

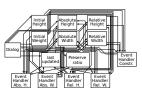
width = float(self.Controls["Relative%"]["Width"].GetValue()) cur = width * self.InitialSize(self.Width) / 100 self.Controls["AbsolutePx"]["Width"].SetValue(str(round(cur)))

if constrained: # update height & height% self.Controls["Relative%"]["Height"].SetValue(str(width)) height = width * self.InitialSize(self.Height) / 100

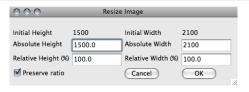
self.Controls("AbsolutePx"]("Height"].SetValue(str(round(height)))

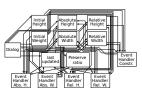
def ChangeConstrainState(self, event):

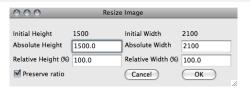

If the ratio is constrained, determine which dimension # was last updated and update the OTHER dimension. # For example: if Height was last updated, use Height as

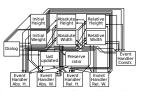

Width's new percent, and undate Width's absolute value. if self.LastUpdated == "Height": # update width px & %

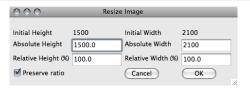
pct = float(self.Controls["Relative%"]["Height"].GetValue()) self.Controls["Relative%"]["Width"].SetValue(str(pct)) width = pct * self.InitialSize[self.Width] / 100 self.Controls["AbsolutePx"]["Width"].SetValue(str(round(width)))

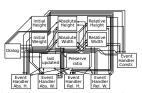

else: # update width px & % pct = float(self.Controls["Relative%"]["Width"].GetValue()) self.Controls["Relative%"]["Height"].SetValue(str(pct))

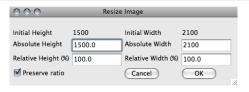

height = nct * self InitialSize(self Height) / 100 self.Controls["AbsolutePx"]["Height"].SetValue(str(round(height)))

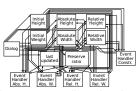



- Reuse is a proven and successful route to improve quality of software, and increase programmer productivity
- Vast amounts of well tested and proven code routinely reused
 - GUI components, delivering events, rendering, capturing user's actions
- Compositions are not reusable
 - ⇒ ad-hoc solutions, defects, inconsistent behavior, costly development
- Incidental data structures that arise from a network of objects
- Incidental algorithms that arise from the concert of localized actions
- Minimal requirement for reuse: understandable model
 - Not satisfied by incidental data structures and algorithms




- Reuse is a proven and successful route to improve quality of software, and increase programmer productivity
- Vast amounts of well tested and proven code routinely reused
 - GUI components, delivering events, rendering, capturing user's actions
- Compositions are not reusable
 - ⇒ ad-hoc solutions, defects, inconsistent behavior, costly development
- Incidental data structures that arise from a network of objects
- Incidental algorithms that arise from the concert of localized actions
- Minimal requirement for reuse: understandable model
 - Not satisfied by incidental data structures and algorithms




- Reuse is a proven and successful route to improve quality of software, and increase programmer productivity
- Vast amounts of well tested and proven code routinely reused
 - GUI components, delivering events, rendering, capturing user's actions
- Compositions are not reusable
 - ⇒ ad-hoc solutions, defects, inconsistent behavior, costly development
- Incidental data structures that arise from a network of objects
- Incidental algorithms that arise from the concert of localized actions
- Minimal requirement for reuse: understandable model
 - Not satisfied by incidental data structures and algorithms

- Reuse is a proven and successful route to improve quality of software, and increase programmer productivity
- Vast amounts of well tested and proven code routinely reused
 - GUI components, delivering events, rendering, capturing user's actions
- Compositions are not reusable
 - ⇒ ad-hoc solutions, defects, inconsistent behavior, costly development
- Incidental data structures that arise from a network of objects
- Incidental algorithms that arise from the concert of localized actions
- Minimal requirement for reuse: understandable model
 - Not satisfied by incidental data structures and algorithms

- Reuse is a proven and successful route to improve quality of software, and increase programmer productivity
- Vast amounts of well tested and proven code routinely reused
 - GUI components, delivering events, rendering, capturing user's actions
- Compositions are not reusable
 - ⇒ ad-hoc solutions, defects, inconsistent behavior, costly development
- Incidental data structures that arise from a network of objects
- Incidental algorithms that arise from the concert of localized actions
- Minimal requirement for reuse: understandable model
 - Not satisfied by incidental data structures and algorithms

Approach

The Problem

- · Complex,
 - In Adobe's desktop applications, event handling is estimated to account for a third of the code...
- Buggy,
 - ...and over half of the defects
- Incidental data structures and algorithms

Our Approach

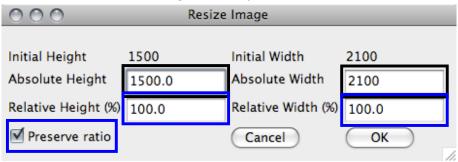
- To understand
 - the role of a user interface
 - the commonalities that exist in event-handling code
- To define
 - a model that captures these commonalites
- To apply
 - and gain substantial increase in reuse

Approach

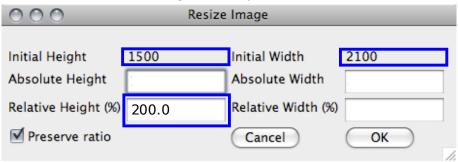
The Problem

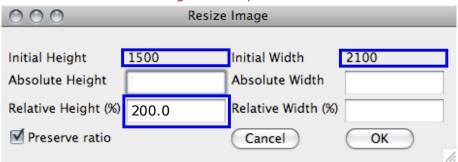

- Complex,
 - In Adobe's desktop applications, event handling is estimated to account for a third of the code...
- Buggy,
 - ...and over half of the defects
- Incidental data structures and algorithms

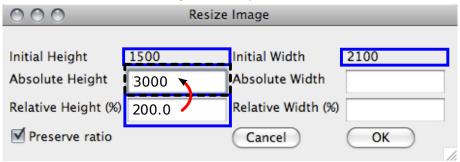
Our Approach

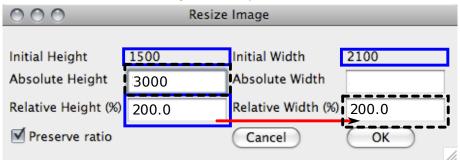

- To understand
 - the role of a user interface
 - the commonalities that exist in event-handling code
- To define
 - a model that captures these commonalites
- To apply
 - and gain substantial increase in reuse

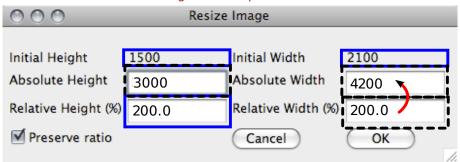
000	Resize Image		
Initial Height	1500	Initial Width	2100
Absolute Height	1500.0	Absolute Width	2100
Relative Height (%)	100.0	Relative Width (%)	100.0
✓ Preserve ratio		Cancel	ОК

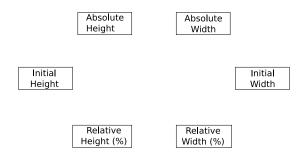

 Dialogs serve to assist the user in selecting values for parameters to some command

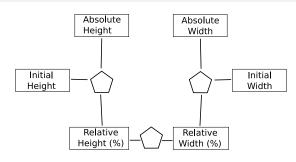

Command interested in only a few values

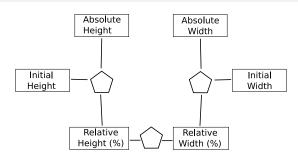

- Command interested in only a few values
 - Dialog may provide more values than necessary for assistance

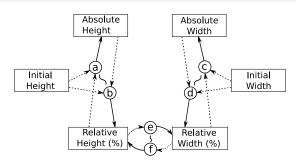

- Command interested in only a few values
 - Dialog may provide more values than necessary for assistance
- After the user edits a value,
 - The dialog is inconsistent

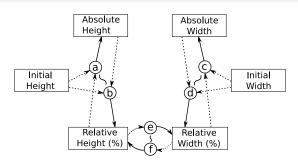

- Command interested in only a few values
 - Dialog may provide more values than necessary for assistance
- After the user edits a value,
 - The dialog is inconsistent
- Then it tries to restore consistency

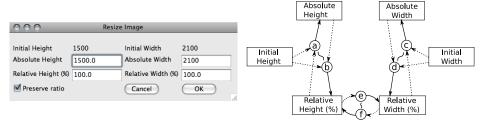

- Command interested in only a few values
 - Dialog may provide more values than necessary for assistance
- After the user edits a value,
 - The dialog is inconsistent
- Then it tries to restore consistency

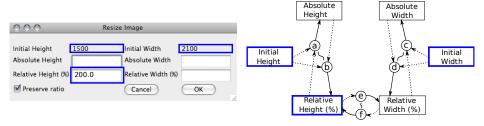

- Command interested in only a few values
 - Dialog may provide more values than necessary for assistance
- After the user edits a value,
 - The dialog is inconsistent
- Then it tries to restore consistency

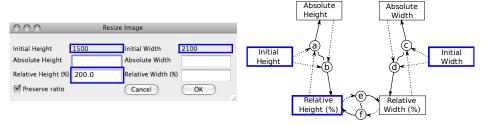

- Command interested in only a few values
 - Dialog may provide more values than necessary for assistance
- After the user edits a value,
 - The dialog is inconsistent
- Then it tries to restore consistency

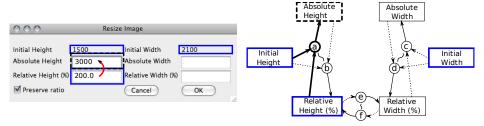

Variables ...

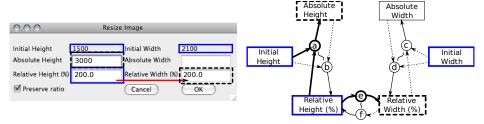

- Variables ...
- tied together by constraints ...

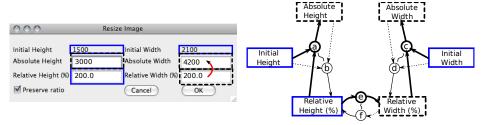

- Variables ...
- tied together by constraints ...
 - $\bullet \ \ \mathsf{Height}_{\mathsf{Absolute}} = \mathsf{Height}_{\mathsf{Initial}} \cdot (\tfrac{\mathsf{Height}_{\mathsf{Relative}}}{\mathsf{100}})$

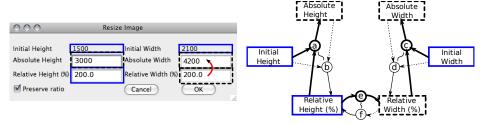

- Variables ...
- tied together by constraints ...
 - $\bullet \; \; \mathsf{Height}_{\mathsf{Absolute}} = \mathsf{Height}_{\mathsf{Initial}} \cdot (\tfrac{\mathsf{Height}_{\mathsf{Relative}}}{\mathsf{100}})$
- each of which can be satisfied by any of a number of methods

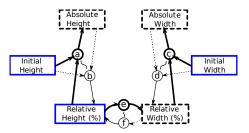

- Variables ...
- tied together by constraints ...
 - $\mathsf{Height}_{\mathsf{Absolute}} = \mathsf{Height}_{\mathsf{Initial}} \cdot (\frac{\mathsf{Height}_{\mathsf{Relative}}}{\mathsf{100}})$
- each of which can be satisfied by any of a number of methods
 - a: absolute_height = initial_height * relative_height / 100;
 - b: relative_height = (absolute_height / initial_height) * 100;

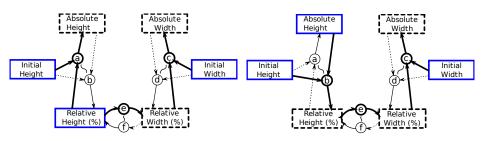

Restoring consistency is now just solving the system

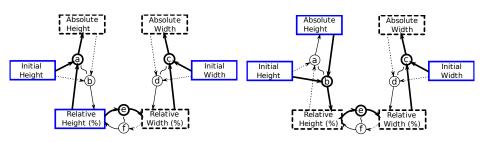

- Restoring consistency is now just solving the system
- Solution defines a dataflow

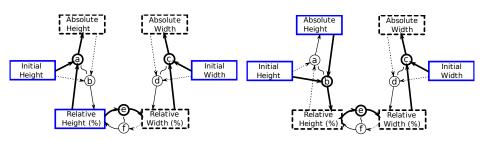

- Restoring consistency is now just solving the system
- Solution defines a dataflow
 - · Selection of methods (in order) such that
 - all constraints enforced
 - no two methods output to same variable

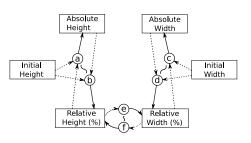

- Restoring consistency is now just solving the system
- Solution defines a dataflow
 - · Selection of methods (in order) such that
 - all constraints enforced
 - no two methods output to same variable


- Restoring consistency is now just solving the system
- Solution defines a dataflow
 - · Selection of methods (in order) such that
 - all constraints enforced
 - no two methods output to same variable

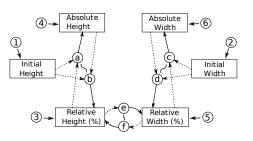

- Restoring consistency is now just solving the system
- Solution defines a dataflow
 - · Selection of methods (in order) such that
 - all constraints enforced
 - no two methods output to same variable


- Restoring consistency is now just solving the system
- Solution defines a dataflow
 - Selection of methods (in order) such that
 - all constraints enforced
 - no two methods output to same variable
 - ullet e.g. a, e ightarrow c

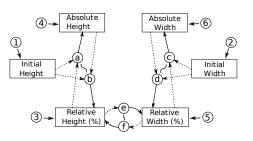

ullet Programmer only defines relations and their methods, not which method to execute and when \Rightarrow often multiple solutions


ullet Programmer only defines relations and their methods, not which method to execute and when \Rightarrow often multiple solutions

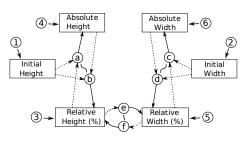
- ullet Programmer only defines relations and their methods, not which method to execute and when \Rightarrow often multiple solutions
 - Need a way to order them



- Programmer only defines relations and their methods, not which method to execute and when ⇒ often multiple solutions
 - · Need a way to order them
- In general, want to prefer methods that change older values


Initial Height	1
Initial Width	2
Relative Height	3
Absolute Height	4
Relative Width	5
Absolute Width	6

- Programmer only defines relations and their methods, not which method to execute and when ⇒ often multiple solutions
 - · Need a way to order them
- In general, want to prefer methods that change older values
- Priorities

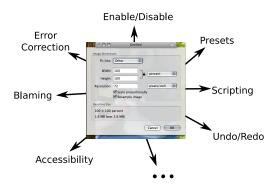

Initial Height	1
Initial Width	2
Relative Height	3
Absolute Height	4
Relative Width	5
Absolute Width	6

- Programmer only defines relations and their methods, not which method to execute and when ⇒ often multiple solutions
 - · Need a way to order them
- In general, want to prefer methods that change older values
- Priorities = Hierarchical Stay Constraints

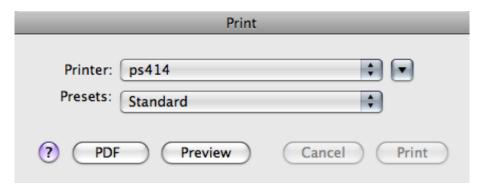
Initial Height	1
Initial Width	2
Relative Height	3
Absolute Height	4
Relative Width	5
Absolute Width	6

- Programmer only defines relations and their methods, not which method to execute and when ⇒ often multiple solutions
 - · Need a way to order them
- In general, want to prefer methods that change older values
- Priorities = Hierarchical Stay Constraints
 - Stay constraint = does nothing, so its variable stays the same

Initial Height	1
Initial Width	2
Relative Height	3
Absolute Height	4
Relative Width	5
Absolute Width	6

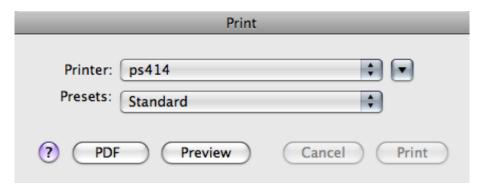

- Programmer only defines relations and their methods, not which method to execute and when ⇒ often multiple solutions
 - Need a way to order them
- In general, want to prefer methods that change older values
- Priorities = Hierarchical Stay Constraints
 - Stay constraint = does nothing, so its variable stays the same
 - Hierarchy = groups of constraints with certain strength

Explicit Algorithm for Command Parameter Synthesis

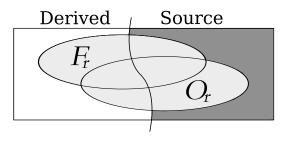

- Each UI element has a variable in a constraint system
- Event handling code becomes auto-generated boilerplate
 - Value modification generates a request to the constraint system to modify one variable and its priority, and solve
 - At all times, the UI element shows the value of the variable in the constraint system

Property Model

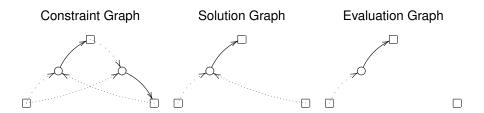
- Before, every new feature required more spaghetti (incidental) code, specific to each dialog
- Now, each new feature can be defined as a reusable algorithm over property models



Enablement

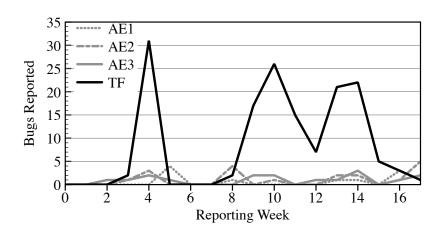

- Currently programmers must explicitly express conditions when a widget should be disabled
 - Use "rules-of-thumb," usability and user guidelines, give up, ...
- We are able to automate enablement/disablement tracking using property models

Enablement


- Currently programmers must explicitly express conditions when a widget should be disabled
 - Use "rules-of-thumb," usability and user guidelines, give up, ...
- We are able to automate enablement/disablement tracking using property models

Enablement: Pictorially

- \bullet O_r are all variables relevant to at least one output.
- F_r are all variables relevant to at least one failed invariant.
- $S \setminus (O_r \cup F_r)$ can be safely disabled (dark gray)


Graphical Overview

Current Status and Future Directions

- Early experience deploying property models for command parameter synthesis at Adobe
 - Code reductions of a factor of 8 to 10
 - Fewer defects
 - Consistency among user interfaces
- Opportunities for user interfaces using property models
 - Currently working on model for enabling/disabling
 - Presets and defaults will follow
 - Perfecting the model for command parameter synthesis
- Incidental structures present in many areas of software
 - Want to know how the approach generalizes
 - Currently have ideas about applying property models to other kinds of document modeling

Questions?

