
Declarative User Interfaces with Property Models

Jaakko Järvi Mat Marcus Sean Parent
John Freeman Jacob N. Smith

Texas A&M University Adobe Systems, Inc.

April 13, 2009

1 / 16

Motivation

Why is software like this?

2 / 16

Motivation

Why is software like this?

2 / 16

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

def ChangeCurrentHeightPx(self, event):
self.LastUpdated = ”Height”
constrained = self.Controls[”Constrain”].GetValue()
no matter what the percent & current stay bound together
get current height, and compute relative height and place new rel. ht
height = float(self.Controls[”AbsolutePx”][”Height”].GetValue())
pct = height / self.InitialSize[self.Height]
self.Controls[”Relative%”][”Height”].SetValue(str(pct∗100))

if constrained: # update width & width%
self.Controls[”Relative%”][”Width”].SetValue(str(pct∗100))
width = pct∗ self.InitialSize[self.Width]
self.Controls[”AbsolutePx”][”Width”].SetValue(str(round(width)))

def ChangeCurrentWidthPx(self, event):
self.LastUpdated = ”Width”
constrained = self.Controls[”Constrain”].GetValue()
no matter what the percent & current stay bound together
get current width, and compute relative width and place new rel. wd
height = float(self.Controls[”AbsolutePx”][”Width”].GetValue())
pct = height / self.InitialSize[self.Width]
self.Controls[”Relative%”][”Width”].SetValue(str(pct∗100))

if constrained: # update height & height%
self.Controls[”Relative%”][”Height”].SetValue(str(pct∗100))

height = pct∗ self.InitialSize[self.Height]
self.Controls[”AbsolutePx”][”Height”].SetValue(str(round(height)))

def ChangeCurrentHeightPct(self, event):
self.LastUpdated = ”Height”
constrained = self.Controls[”Constrain”].GetValue()
no matter what the percent & current stay bound together
get current rel. ht, and compute absolute height and place new abs. ht
height = float(self.Controls[”Relative%”][”Height”].GetValue())
cur = height∗ self.InitialSize[self.Height] / 100
self.Controls[”AbsolutePx”][”Height”].SetValue(str(round(cur)))

if constrained: # update width & width%
self.Controls[”Relative%”][”Width”].SetValue(str(height))
width = height∗ self.InitialSize[self.Width] / 100
self.Controls[”AbsolutePx”][”Width”].SetValue(str(round(width)))

def ChangeCurrentWidthPct(self, event):
self.LastUpdated = ”Width”
constrained = self.Controls[”Constrain”].GetValue()
no matter what the percent & current stay bound together
get current rel. wd, and compute absolute width and place new abs. wd
width = float(self.Controls[”Relative%”][”Width”].GetValue())
cur = width∗ self.InitialSize[self.Width] / 100
self.Controls[”AbsolutePx”][”Width”].SetValue(str(round(cur)))

if constrained: # update height & height%
self.Controls[”Relative%”][”Height”].SetValue(str(width))
height = width∗ self.InitialSize[self.Height] / 100
self.Controls[”AbsolutePx”][”Height”].SetValue(str(round(height)))

def ChangeConstrainState(self, event):
constrained = self.Controls[”Constrain”].GetValue()
If the ratio is constrained, determine which dimension
was last updated and update the OTHER dimension.
For example: if Height was last updated, use Height as
Width’s new percent, and update Width’s absolute value
if constrained:

if self.LastUpdated == ”Height”: # update width px & %
pct = float(self.Controls[”Relative%”][”Height”].GetValue())
self.Controls[”Relative%”][”Width”].SetValue(str(pct))
width = pct∗ self.InitialSize[self.Width] / 100
self.Controls[”AbsolutePx”][”Width”].SetValue(str(round(width)))

else: # update width px & %
pct = float(self.Controls[”Relative%”][”Width”].GetValue())
self.Controls[”Relative%”][”Height”].SetValue(str(pct))
height = pct∗ self.InitialSize[self.Height] / 100
self.Controls[”AbsolutePx”][”Height”].SetValue(str(round(height)))

3 / 16

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

Reuse is a proven and successful route to improve quality of software,
and increase programmer productivity

Vast amounts of well tested and proven code routinely reused
GUI components, delivering events, rendering, capturing user’s actions

Compositions are not reusable⇒ ad-hoc solutions, defects, inconsistent behavior, costly development

Incidental data structures that arise from a network of objects

Incidental algorithms that arise from the concert of localized actions

Minimal requirement for reuse: understandable model
Not satisfied by incidental data structures and algorithms

4 / 16

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

Reuse is a proven and successful route to improve quality of software,
and increase programmer productivity

Vast amounts of well tested and proven code routinely reused
GUI components, delivering events, rendering, capturing user’s actions

Compositions are not reusable⇒ ad-hoc solutions, defects, inconsistent behavior, costly development

Incidental data structures that arise from a network of objects

Incidental algorithms that arise from the concert of localized actions

Minimal requirement for reuse: understandable model
Not satisfied by incidental data structures and algorithms

4 / 16

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

Reuse is a proven and successful route to improve quality of software,
and increase programmer productivity

Vast amounts of well tested and proven code routinely reused
GUI components, delivering events, rendering, capturing user’s actions

Compositions are not reusable⇒ ad-hoc solutions, defects, inconsistent behavior, costly development

Incidental data structures that arise from a network of objects

Incidental algorithms that arise from the concert of localized actions

Minimal requirement for reuse: understandable model
Not satisfied by incidental data structures and algorithms

4 / 16

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

Reuse is a proven and successful route to improve quality of software,
and increase programmer productivity

Vast amounts of well tested and proven code routinely reused
GUI components, delivering events, rendering, capturing user’s actions

Compositions are not reusable⇒ ad-hoc solutions, defects, inconsistent behavior, costly development

Incidental data structures that arise from a network of objects

Incidental algorithms that arise from the concert of localized actions

Minimal requirement for reuse: understandable model
Not satisfied by incidental data structures and algorithms

4 / 16

Motivation

Dialog

Initial
Height

Initial
Weight

Absolute
Height

Absolute
Width

Relative
Height

Relative
Width

Event
Handler
Abs. W.

Event
Handler
Abs. H.

Event
Handler
Rel. W.

Event
Handler
Rel. H.

last
updated

Preserve
ratio

Event
Handler
Constr.

Reuse is a proven and successful route to improve quality of software,
and increase programmer productivity

Vast amounts of well tested and proven code routinely reused
GUI components, delivering events, rendering, capturing user’s actions

Compositions are not reusable⇒ ad-hoc solutions, defects, inconsistent behavior, costly development

Incidental data structures that arise from a network of objects

Incidental algorithms that arise from the concert of localized actions

Minimal requirement for reuse: understandable model
Not satisfied by incidental data structures and algorithms

4 / 16

Approach

The Problem
Complex,

In Adobe’s desktop applications, event handling is estimated to account for a
third of the code...

Buggy,
...and over half of the defects

Incidental data structures and algorithms

Our Approach
To understand

the role of a user interface
the commonalities that exist in event-handling code

To define
a model that captures these commonalites

To apply
and gain substantial increase in reuse

5 / 16

Approach

The Problem
Complex,

In Adobe’s desktop applications, event handling is estimated to account for a
third of the code...

Buggy,
...and over half of the defects

Incidental data structures and algorithms

Our Approach
To understand

the role of a user interface
the commonalities that exist in event-handling code

To define
a model that captures these commonalites

To apply
and gain substantial increase in reuse

5 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

Command interested in only a few values
Dialog may provide more values than necessary for assistance

After the user edits a value,
The dialog is inconsistent

Then it tries to restore consistency

6 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

Command interested in only a few values

Dialog may provide more values than necessary for assistance
After the user edits a value,

The dialog is inconsistent

Then it tries to restore consistency

6 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

Command interested in only a few values
Dialog may provide more values than necessary for assistance

After the user edits a value,
The dialog is inconsistent

Then it tries to restore consistency

6 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

200.0

Command interested in only a few values
Dialog may provide more values than necessary for assistance

After the user edits a value,
The dialog is inconsistent

Then it tries to restore consistency

6 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

200.0

Command interested in only a few values
Dialog may provide more values than necessary for assistance

After the user edits a value,
The dialog is inconsistent

Then it tries to restore consistency
6 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

200.0

3000

Command interested in only a few values
Dialog may provide more values than necessary for assistance

After the user edits a value,
The dialog is inconsistent

Then it tries to restore consistency
6 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

200.0

3000

200.0

Command interested in only a few values
Dialog may provide more values than necessary for assistance

After the user edits a value,
The dialog is inconsistent

Then it tries to restore consistency
6 / 16

Understanding UIs: Command Parameter Synthesis

Dialogs serve to
assist the user in selecting values for parameters to some command

200.0

3000

200.0

4200

Command interested in only a few values
Dialog may provide more values than necessary for assistance

After the user edits a value,
The dialog is inconsistent

Then it tries to restore consistency
6 / 16

Core of the Model: Multi-way Dataflow Constraint System

Variables ...

tied together by constraints ...
HeightAbsolute = HeightInitial · (

HeightRelative
100)

each of which can be satisfied by any of a number of methods
a: absolute height = initial height ∗ relative height / 100;
b: relative height = (absolute height / initial height) ∗ 100;

7 / 16

Core of the Model: Multi-way Dataflow Constraint System

Variables ...

tied together by constraints ...
HeightAbsolute = HeightInitial · (

HeightRelative
100)

each of which can be satisfied by any of a number of methods
a: absolute height = initial height ∗ relative height / 100;
b: relative height = (absolute height / initial height) ∗ 100;

7 / 16

Core of the Model: Multi-way Dataflow Constraint System

Variables ...

tied together by constraints ...

HeightAbsolute = HeightInitial · (
HeightRelative

100)

each of which can be satisfied by any of a number of methods
a: absolute height = initial height ∗ relative height / 100;
b: relative height = (absolute height / initial height) ∗ 100;

7 / 16

Core of the Model: Multi-way Dataflow Constraint System

Variables ...

tied together by constraints ...
HeightAbsolute = HeightInitial · (

HeightRelative
100)

each of which can be satisfied by any of a number of methods
a: absolute height = initial height ∗ relative height / 100;
b: relative height = (absolute height / initial height) ∗ 100;

7 / 16

Core of the Model: Multi-way Dataflow Constraint System

Variables ...

tied together by constraints ...
HeightAbsolute = HeightInitial · (

HeightRelative
100)

each of which can be satisfied by any of a number of methods

a: absolute height = initial height ∗ relative height / 100;
b: relative height = (absolute height / initial height) ∗ 100;

7 / 16

Core of the Model: Multi-way Dataflow Constraint System

Variables ...

tied together by constraints ...
HeightAbsolute = HeightInitial · (

HeightRelative
100)

each of which can be satisfied by any of a number of methods
a: absolute height = initial height ∗ relative height / 100;
b: relative height = (absolute height / initial height) ∗ 100;

7 / 16

Multi-way Dataflow Constraint Systems

Restoring consistency is now just solving the system

Solution defines a dataflow
Selection of methods (in order) such that

all constraints enforced
no two methods output to same variable

e.g. a, e → c

8 / 16

Multi-way Dataflow Constraint Systems

200.0

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Restoring consistency is now just solving the system

Solution defines a dataflow

Selection of methods (in order) such that
all constraints enforced
no two methods output to same variable

e.g. a, e → c

8 / 16

Multi-way Dataflow Constraint Systems

200.0

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Restoring consistency is now just solving the system

Solution defines a dataflow
Selection of methods (in order) such that

all constraints enforced
no two methods output to same variable

e.g. a, e → c

8 / 16

Multi-way Dataflow Constraint Systems

200.0

3000

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Restoring consistency is now just solving the system

Solution defines a dataflow
Selection of methods (in order) such that

all constraints enforced
no two methods output to same variable

e.g. a, e → c

8 / 16

Multi-way Dataflow Constraint Systems

200.0

3000

200.0

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Restoring consistency is now just solving the system

Solution defines a dataflow
Selection of methods (in order) such that

all constraints enforced
no two methods output to same variable

e.g. a, e → c

8 / 16

Multi-way Dataflow Constraint Systems

200.0

3000

200.0

4200

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Restoring consistency is now just solving the system

Solution defines a dataflow
Selection of methods (in order) such that

all constraints enforced
no two methods output to same variable

e.g. a, e → c

8 / 16

Multi-way Dataflow Constraint Systems

200.0

3000

200.0

4200

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Restoring consistency is now just solving the system

Solution defines a dataflow
Selection of methods (in order) such that

all constraints enforced
no two methods output to same variable

e.g. a, e → c

8 / 16

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities = Hierarchical Stay Constraints
Stay constraint = does nothing, so its variable stays the same
Hierarchy = groups of constraints with certain strength

9 / 16

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities = Hierarchical Stay Constraints
Stay constraint = does nothing, so its variable stays the same
Hierarchy = groups of constraints with certain strength

9 / 16

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities = Hierarchical Stay Constraints
Stay constraint = does nothing, so its variable stays the same
Hierarchy = groups of constraints with certain strength

9 / 16

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities = Hierarchical Stay Constraints
Stay constraint = does nothing, so its variable stays the same
Hierarchy = groups of constraints with certain strength

9 / 16

Picking the “right” solution

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities

= Hierarchical Stay Constraints
Stay constraint = does nothing, so its variable stays the same
Hierarchy = groups of constraints with certain strength

9 / 16

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

4

1

3

6

2

5

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities = Hierarchical Stay Constraints

Stay constraint = does nothing, so its variable stays the same
Hierarchy = groups of constraints with certain strength

9 / 16

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

4

1

3

6

2

5

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities = Hierarchical Stay Constraints
Stay constraint = does nothing, so its variable stays the same

Hierarchy = groups of constraints with certain strength

9 / 16

Picking the “right” solution

Relative
Height (%)

Absolute
Height

Initial
Height

Relative
Width (%)

Absolute
Width

Initial
Width

c

d

a

b

e

f

4

1

3

6

2

5

Initial Height 1
Initial Width 2
Relative Height 3
Absolute Height 4
Relative Width 5
Absolute Width 6

Programmer only defines relations and their methods, not which method
to execute and when ⇒ often multiple solutions

Need a way to order them

In general, want to prefer methods that change older values

Priorities = Hierarchical Stay Constraints
Stay constraint = does nothing, so its variable stays the same
Hierarchy = groups of constraints with certain strength

9 / 16

Explicit Algorithm for Command Parameter Synthesis

Each UI element has a variable in a constraint system

Event handling code becomes auto-generated boilerplate
Value modification generates a request to the constraint system to modify
one variable and its priority, and solve
At all times, the UI element shows the value of the variable in the constraint
system

10 / 16

Property Model

Before, every new feature required more spaghetti (incidental) code,
specific to each dialog

Now, each new feature can be defined as a reusable algorithm over
property models

11 / 16

Enablement

Currently programmers must explicitly express conditions when a widget
should be disabled

Use “rules-of-thumb,” usability and user guidelines, give up, ...

We are able to automate enablement/disablement tracking using property
models

12 / 16

Enablement

Currently programmers must explicitly express conditions when a widget
should be disabled

Use “rules-of-thumb,” usability and user guidelines, give up, ...

We are able to automate enablement/disablement tracking using property
models

12 / 16

Enablement: Pictorially

Or are all variables relevant to at least one output.

Fr are all variables relevant to at least one failed invariant.

S \ (Or ∪ Fr) can be safely disabled (dark gray)

13 / 16

Graphical Overview

Constraint Graph Solution Graph Evaluation Graph

����������
77

��������
��

8877 ff ��������
77

77 ff ��������
77

77

14 / 16

Current Status and Future Directions

Early experience deploying property models for command parameter
synthesis at Adobe

Code reductions of a factor of 8 to 10
Fewer defects
Consistency among user interfaces

Opportunities for user interfaces using property models
Currently working on model for enabling/disabling
Presets and defaults will follow
Perfecting the model for command parameter synthesis

Incidental structures present in many areas of software
Want to know how the approach generalizes
Currently have ideas about applying property models to other kinds of
document modeling

15 / 16

Questions?

0 2 4 6 8 10 12 14 16

Reporting Week

0

5

10

15

20

25

30

35

B
u

g
s

R
ep

o
rt

ed

AE1

AE2

AE3

TF

16 / 16

