
Using Software-Extended Arhitetures

for

Software Simultaneous Multithreading

Emmett Withel and M. Frans Kaashoek

MIT Laboratory for Computer Siene

545 Tehnology Square

Cambridge MA 02174

Email: fwithel, kaashoekg�ls.mit.edu

Janurary 27, 1997

Abstrat

A software-extended arhiteture (SEA) enhanes a hardware arhiteture by plaing a high-perform-

ane dynami instrution-set translator between the appliation binary and the proessor, improv-

ing proessor utilization and enabling new funtionality with no hanges to either the proessor

or the binaries. Our prototype implementation of a software-extended Alpha 21164 an provide

new system funtionality while adding only 1%{30% to the running time of an appliation. Using

this prototype, we have implemented software simultaneous multithreading (SSMT), a new soft-

ware tehnique for allowing programs to make greater use of the proessor pipeline. SSMT merges

instrution streams from independent proesses, in order to inrease instrution-level parallelism.

Experiments with SSMT on the software-extended Alpha 21164 show that proessor throughput

an be improved by up to 30% on real programs, despite the small number of issue slots on this

proessor.

1 Introdution

While innovations in omputer arhiteture like multiple issue slots, dynami sheduling, and large

register sets are beoming ommonplae, limitations in ompiler tehnology and inherent data-ow

requirements prevent these apabilities from being fullly used. Furthermore, suessive implemen-

tations of the same arhiteture often have di�erent performane harateristis, penalizing legay

binaries. In addition, some users would like to add new apabilities to their arhiteture, e.g.

system all rediretion, without having to modify their hardware.

Software-extended arhitetures (SEA) are a novel approah that addresses these issues. A

software-extended arhiteture interposes a dynami instrution-set translator between the appli-

ation binary and the proessor. At runtime, appliation ode is read by the translator, and new

funtionality is added; the result is immediately exeuted. The translator does not require mod-

i�ations to the exeutable, so existing binaries an be augmented with new apabilities. System

1

MIT-LCS-TR-878. 2

all rediretion [Jon93℄, sandboxing [WLAG93℄, preemptive user-level thread sheduling, and using

on�gurable proessing hardware [RS94℄ are natural appliations for software-extended arhite-

tures. Software-extended arhitetures an also dynamially perform hip-spei� optimizations,

suh as instrution sheduling, and data-dependant optimizations based on feedbak information.

The key advantage of software-extended arhitetures is that users bene�t without hanging the

proessor or the appliation binary.

The translator for the SEA prototype desribed in this paper is based on reent advanes in

dynami binary translation for fast mahine simulation [CK94, WR96℄ . The primary ontributions

of our translator implementation are removing binary translation from the mahine simulation

ontext and adding additional optimizations (suh as ode sheduling and dynami inlining) that

keep translator overheads low and emitted ode quality high. The result is a dynami translator that

an extend the apabilities of existing arhitetures and improve performane for real appliations.

To illustrate the value of software-extended arhitetures we added support for software simul-

taneous multithreading (SSMT) to the Alpha 21164. With the pipelines of supersalar proessors

beoming deeper and wider, tehniques for improving pipeline utilization are beoming more impor-

tant. Like simultaneous multithreading (SMT) [TEL95℄, SSMT inreases appliation throughput

by inreasing pipeline utilization. Unlike SMT, SSMT gains this performane without radially

hanging the underlying mahine arhiteture. The SSMT runtime system dynamially merges

instrution streams from di�erent proesses, thereby inreasing instrution-level parallelism and

making that parallelism easier to exploit. By proper ode sheduling, the lateny of one proess's

register dependenies an overlap either instrution exeution or register dependene lateny of

another proess. SSMT inreases system throughput at the ost of some per-proess lateny.

The work in this paper does not address the interfae to the SSMT system. Nevertheless, one

of the more intriguing possibilities would be for the operating system sheduler to hoose one or

more kernel threads from the run queue for merging. Thus, the only program whose text is diretly

exeuted on the proessor is the operating system itself. This option has profound arhitetural

impliations as it frees proessor arhitets to make drasti hanges for every hip revision|the

runtime system will ensure binary ompatibility for user programs. In addition, the runtime system

an greatly simplify proessor design by performing any neessary register renaming, dependeny

heking, and ode sheduling.

There are a variety of stati translation tools (see Setion 2) whih share some of the goals

of SEA. While some SEA funtionality ould be implemented statially, other appliations, suh

as SSMT, require dynami translation. If SSMT were implemented using stati translation, eah

possible exeution path of one program must be merged with every possible path of the other

program; furthermore, this proess must be repeated for all appliation pairs whih might run in

tandem. The storage overhead of suh a sheme makes it unrealisti. Run-time translation enables

data-dependent optimization, suh as those exploited by dynami ode generation systems [Eng96℄,

as well as SMT. It is possible that stati translation is sometimes more appropriate, but both

tehniques are valuable, and they an often be used in onjuntion.

The key ontributions of this paper are the design and implementation of SEA and SSMT.

We show that for our prototype implementations on the Alpha 21164, an SEA an provide servies

while adding only 1%{30% to program exeution time of some benhmarks, and SSMT an inrease

proessor throughput by as muh as 30% for some appliation pairs. While performane gains are

possible, the 21164 is not a target arhiteture for SSMT. The performane of our prototypes are

limited by the narrow issue width of the 21164. Our measurements indiate that for proessors

whih have more registers and/or wider pipelines, SSMT should perform substantially better. In

the long term, software-extended arhitetures (and SSMT) ould allow a VLIW-like proessor to

MIT-LCS-TR-878. 3

run standard RISC binaries, or allow supersalar arhitets to simplify their design and onentrate

on inreasing lok rate and adding more funtional units.

The rest of this paper is organized as follows. Setion 2 presents related work in software-

extended arhitetures, simultaneous multithreading and binary translation systems. Setion 3

presents the ontrol ow and main data strutures of the dynami binary translator and the new

optimizations it implements. It also presents our experimental environment and a quantitative

analysis of the ost of a software-extended Alpha 21164. Setion 4 disusses how a software-

extended arhiteture an be used to implement SSMT. It explains our merging algorithms and

evaluation methodology, and provides a quantative analysis the gains attainable from SSMT on

the 21164. Setion 5 disusses some of the arhitetural features that would bene�t the translation

system and disusses the impliations of SEA.

2 Related work

In this setion we disuss reent related work in hardware simultaneous multithreading and software

binary translation. The hardware multithreading projet that SSMT most losely resembles is

simultaneous multithreading (SMT) [TEL95, TEE

+

96℄. A SMT proessor dynamially partitions

hip resoures for multiple hardware threads, gaining an advantage over the stati partitioning done

by multiproessors. Multiple hardware threads, inrease the instrution level parallelism available

to the proessor.

The goals and bene�ts of SSMT are similar to SMT, but SSMT supports multithreading in

software. The advantages of a software approah is that it is able to diretly leverage urrent

trends in proessor design. Instead of ommitting to a radially di�erent hip design, proessor

arhitets designing for SSMT an extrapolate tehniques that are urrently bearing fruit.

A disadvantage of using a SMT proessor is that it exposes multithreading to the operating

system, neessitating a kernel with loks and synhronization overhead. While multiproessor

operating systems have suh apabilities, they are generally inferior in performane to uniproessor

operating systems [RBH

+

95℄. SSMT does not require a multiproessor operating system.

Another arhitetural drawbak of the SMT design is its need for a large, oherent register �le

(8*32+100 renaming registers in the simulated arhiteture). While SMT uses two proessor yles

to aess this large register �le [TEE

+

96℄, this design ould limit the lok rate of the hip. SSMT

does not need a single large register �le beause register renaming is done in software.

An advantage of the SMT approah that it is likely to sale to a larger number of threads than

SSMT, as the exponential growth of possibilities for onditional branh resolution quikly beomes

intratable with SSMT, even with arhitetural support.

Software-extended arhitetures are inspired by ideas and implementation tehniques used in

binary rewriting tools. Earl Killian's Pixie [Smi91℄, ATOM [SE94℄, EEL [LS95℄ and similar tools

allow users to analyze and instrument whole program binary images. Image modi�ation allows

extensive analysis and optimization, sine the work is done o�-line and an be amortized over many

exeutions.

Some systems [SCK

+

93℄ use a hybrid approah in whih most work is done statially, but run-

time support is provided for diÆult ases like self-modifying ode. Just in time ompilers [Gos95℄

and virtual exeution environments [ATLLW96℄ perform stati translation (inluding hip-spei�

optimizations), but the user must wait for the translation to be omplete before exeution starts.

Dynami translators suh as Shade [CK94℄ and Embra [WR96℄ translate binaries inrementally

at run-time. The run-time system for software extended arhitetures borrows implementation

tehniques from these fully dynami systems.

MIT-LCS-TR-878. 4

Has code at PC
been translated?

Compute new PC

Execute translation Translate code at PC

Write code into
translation cache

yes no

Reads a basic block
Writes translation into TC

Code fragments which end
with jump dispatch_loop

Call and
return

Translation Cache (TC)

Translator

writes code

Control flow

dispatch_loop:
PC = LookupPC(RA);

 jump pc2tc(PC);
else
 tc = Translate(PC);
 pc2tc(PC) = tc;
 jump tc;

if(IsTranslated(PC))

Dispatcher

(a) Control ow (b) Software arhiteture

Figure 1: Control ow and software arhiteture for the dynami program translator. If the ode

at the urrent program ounter is translated, then we exeute a ahed opy of the translation.

Otherwise, we translate the ode, write it into the translation ahe, and then exeute it.

Some reent onurrent e�orts are using translation tehnology, binary rewriting tools, and

runtime-feedbak to improve performane of binary appliations. A reent produt, FX!32 [Dig℄,

translates odes from the x86 to the Alpha, and uses runtime feedbak to improve the quality of

the translated ode. Our SEA implementation also uses runtime feedbak, and it ould pro�t from

the runtime statistis databases maintained by FX!32. Morph is a new projet that plans to use

pro�le-based information to re-optimize exeutables [CSB96℄. SEA shares some performane goals

with these stati translation shemes. We feel that dynami translation has some advantages in

allowing binaries to be optimized for spei� lasses of inputs, and by enabling data-dependent

optimizations. But we also believe that our approah is ompatible with stati tools. For example,

one might use FX!32 to statially translate from the x86 instrution set to the Alpha instrution

set and then run the resulting binary on a SEA.

Finally, we note that sofware-extended arhitetures represents an appliation of RISC [Pat85℄

philosophy. While RISC pushed hardware omplexity into software, an SEA allows new hardware

funtionality to be implemented in software.

3 Software-extended arhitetures

The key omponent of a software-extended arhiteture is the dynami instrution translator. In

this setion, we desribe the basi design of the translator and some of the optimizations that it

employs to make software-extended arhitetures pratial. We also disuss the proper division

of labor between a ompiler and a SEA, and evaluate the performane of our SEA prototype

implementation.

3.1 The dynami translator

The ontrol ow of the the dynami program translator is oneptually similar to fast mahine

simulators suh as Shade [CK94℄ and Embra [WR96℄ (depited in Fig. 1a). The translator reads a

program binary �nds its entry point, and begins translation. The feth unit of the translator reads

ode from the appliation text segment, performs various funtions on the ode like register renam-

ing, dependeny heking, and pipeline sheduling, and then writes the result to the translation

ahe, an area of memory whih holds translations. The work done by the translator is amortized

MIT-LCS-TR-878. 5

beause a ahed translations are exeuted repeatedly. This translation proess is analogous to the

predeode phase of some modern proessors, where ode is read from memory, and then written in

a slightly modi�ed form to the instrution ahe.

Figure 1b illustrates the software arhiteture of these dynami translation systems. The main

dispath loop determines whether the translator needs to be invoked. It does this by using the

urrent program ounter as an index into the p2t hash table, whih returns the loation of the

translated ode for this program ounter, if a translation exists. If the translation does not exist,

the translator is alled, it writes the translation into the translation ahe, and the loation of the

translation is reorded in the p2t hash table.

3.1.1 Performane of the dynami translator

The performane overhead of the SEA runtime (i.e., the translator and the dispath loop) is due

to two soures, (1) extra instrutions in the ode translations and (2) support routines like the

translator and the dispather. The SEA runtime adopts the litany of optimizations implemented in

Shade and Embra. These optimizations greatly redue the amount of time spend in the translator

and dispather so that almost all exeution time is spent exeuting translations. Sine a SEA trans-

lator must be more onerned with the quality of its generated ode than either Shade or Embra,

it ontains new optimizations to address the overhead of extra instrutions. These optimizations

are disussed below in Setion 3.2.

The SEA runtime also adds arhitetural overheads to program exeution time in the form of

inreased ahe and TLB miss rates, but the measured impat of these overheads is small (see

Setion 3.4).

3.2 Optimizations performed by the SEA runtime

The SEA runtime adds instrutions to the workload to perform funtions like traking the urrent

PC. The performane impat of these instrutions an be redued by (1) minimizing the number of

added instrutions, and mitigated by (2) sheduling the instrutions intelligently and (3) spreading

the ost of the bookkeeping over larger translation units. In Setion 3.2.1, we enumerate the tasks

performed by the SEA runtime in its translations, and how it an perform those funtions eÆiently.

We also talk about how the SEA runtime an try to hide these osts.

Adjusting the feth poliy of the translator has potential advantages and disadvantages that are

algorithmi and arhitetural. An algorithmi advantage of following branhes is that the translator

an feth larger translation units, whih an be better sheduled, and whih an redue the amount

of neessary bookkeeping.

Some form of branh predition is neessary to feth through onditional branhes (whih are

muh more prevelant than unonditional branhes). Information to inrease predition auray

an be olleted at run-time, or read from feedbak information.

Beause branh predition is never perfet, the algorithmi disadvantage of an aggressive feth

poliy is that the translator is doing useless work by fething down a path whih is not exeuted.

Additionally, translations that waste spae in the translation ahe an ause the ahe to �ll (whih

is expensive to deal with) more quikly.

Arhiteturally, fething through branhes has the potential to inrease the ahe and TLB

loality of translations beause if the branh predition is aurate, ode for a long path of instru-

tions may reside in a single translation unit. However, if only small parts of eah large translation

unit are exeuted (due to poor branh predition), ontrol might be transfered all around the

translation ahe, reduing ahe and TLB loality.

MIT-LCS-TR-878. 6

Sine many basi bloks might transfer ontrol to a single blok, following branhes an also

lead to ode repliation. Code repliation an e�etively trade inreased spae for redued time,

but it an also put pressure on the underlying memory hierarhy.

The feth poliy of the translator is a key parameter of the translator, and is analogous to the

hardware branh-speulation poliy of modern proessors. Beause the translator is implemented

in software, its poliies an be aggressively tailored for a given appliation. While the literature

on hardware branh-predition is large [YP92, MEP96, GYCS96℄, we believe that SEA ould open

up a new trade-o� spae for branh predition algorithms based on information olleted by SEA

software. These new branh predition shemes ould either replae hardware predition, or work

with hardware predition shemes.

Like other SEA funtions, software olletion of branh information adds instrutions to ode

translations. While algorithmi innovations for instrution sheduling an help address this ost,

the key tehnologial trend that SEAs antiipate is wider issue widths. Current pipelines are too

narrow to hide the overhead instrutions of an SEA (as measured in Setion 3.4), but we expet

that tehnologial trends will address this problem.

3.2.1 SEA runtime bookkeeping

The SEA runtime adds instrutions to its translations to trak the urrent program PC, implement

register indiret jumps and, support register realloation.

The SEA runtime needs registers for its bookkeeping tasks. In order to minimize the need

for hardware support, the runtime does not require dediated registers, rather it spills program

registers when needed. The runtime uses a stati tool (i.e. the program is not exeuted) to analyze

a binary image and produe a �le detailing the binary's register usage. The runtime reads this �le,

and when possible, it uses \dead" registers (a register whose next appearane in program exeution

is as a destination), beause the ontents of these registers does not need to be saved and restored.

PC traking. In order to ontinue program exeution, the dispather needs to know the

urrent program ounter. Shade and Embra traked the program ounter value using a mahine

register. The SEA runtime aggressively minimizes its use of hardware resoures, and so does not

use a register. Instead, the return address of the branh used to exit the translation ahe is used

as an index into a table (this is depited in the LookupPC step in Fig. 1b) whih ontains the

new program PC. When ode is translated, the addresses of its exit points are assoiated with the

program ounter at those points so the lookup always sueeds.

In the ommon ase of exiting a blok that ends with a onditional branh, the branh ondition

must be evaluated. Evaluating the ondition, spilling a known register, and branhing out of the

translation ahe are the instrution overheads for maintaining the program PC in this ase.

If the translator an e�etively feth through branhes, the PC traking ode an be redued

to a single hek for onditional branhes that the branh was predited orretly.

Register-indiret jumps. When ontrol is transfered to a register value, there is no way

to know the destination statially. Embra had a speial strategy for dealing with register-indiret

jumps alled speulative haining. Eah register-indiret jump transfers ontrol to the prelude of

the translation of the expeted jump destination, whih heks to see that the program ounter

was orret. This was a substantial win on the MIPS arhiteture sine the MIPS ompilers use

register indiret jumps for proedure alls.

Proedure alls on the Alpha are generally implemented as a speial type of unonditional

branh, so most register indiret jumps in Alpha ode are proedure returns. Beause funtions are

usually alled from diverse program sites [Wal86℄, proedure returns are far less preditable than

MIT-LCS-TR-878. 7

proedure alls, and speulative haining is no longer a performane win.

We disuss the details of how register indiret jumps are handled in Setion 3.4, but they are

expensive (�15 instrutions for base SEA and 26 for SSMT). Sine the return point of a funtion is

known at its all site, if a feth poliy an feth through a funtion all to its return, it an simply

ontinue fething after the all site. This ompletely eliminates the indiret jump of the proedure

return.

Register realloation. Register realloation is only an issue for SSMT. It is disussed in

Setion 4.6.1.

Hiding SEA overhead. One the number of instrutions required for an SEA task is min-

imized, the performane overhead an be minimized by instrution sheduling and by amortizing

the ost over larger translation units.

Fething through onditional branhes allows large inreases in translation unit sizes whih

provides an opportunity for the SEA ode sheduler to revisit some ompiler deisions regarding

ode sheduling, register alloation, and loop unrolling. There is an opportunity for ooperation

between the ompiler and the SEA runtime, allowing the ompiler to fous on soure-to-soure and

mahine spei� optimizations, while the SEA uses arhiteture implementation spei� information

for further optimization.

3.3 Drawing the line between the ompiler and an SEA

The SEA runtime performs some of the same funtions as a ompiler, so it is important to onsider

whih tool is more appropriate for whih funtion.

The SEA ode sheduling algorithm is simple, but hip-spei�. Therefore, we would expet it

to perform better than the generi shedule one would obtain from, for example, g, but worse

than what one ould obtain from the most sophistiated algorithms used in the DEC ompiler's

hip-spei� sheduler.

However, it is not lear that the ompiler is the appropriate tool for hip spei� optimizations.

Given that a single binary is often exeuted on multiple revisions of a hip arhiteture, we believe

that hip-spei� ode sheduling is more appropriately done by a software extensible arhiteture

than by a ompiler, or a binary rewriting tool. However, even if a system used a stati tool for

hip-spei� sheduling, and users weren't burdened with �guring out whih binary to run on

whih platform, SEA an integrate data-dependent optimizations with its ode sheduling. Instead

of having a ompiler or binary rewriting tool transform a program for its behavior on one of its

inputs, a program running under a software extended arhiteture an provide a data �le ontaining

pro�le information for eah lass of inputs.

The SEA runtime is apable of doing aggressive inlining and loop unrolling. The ompiler and

an SEA seem diretly ompatible in this ase. In order to support multiple ompilation units, it is

diÆult for ompilers to support inlining of library alls. While suh inlining ould be done by the

linker [Wal86℄, the question of what to inline is diÆult to answer in a mahine-independent way.

The SEA runtime is an extension of the arhiteture, so it is an appropriate level at whih to make

these deisions.

Finally, several studies have shown bene�ts to sheduling ode aross multiple basi bloks

(e.g. trae sheduling [Fis93, Wal91℄). This is a data-dependent ode transformation[Fis81℄ and

so seems appropriate for an SEA, where pro�le information an be provided at runtime, and the

transformations an be aggressive without worrying about penalizing ases where the program

behavior might be di�erent.

To make a onvining ase, and to separate out runtime feedbak, we evaluate the performane

MIT-LCS-TR-878. 8

Benhmark IPC SEA Runtime

Native SEA time

mandel 0.49 0.60 0.32%

swim 0.59 0.56 1.04%

alvinn 0.46 0.49 0.35%

hydro2d 0.49 0.47 1.12%

turb3d 1.05 0.97 1.61%

applu 0.70 0.63 2.08%

ijpeg 1.17 1.07 0.98%

mgrid 1.69 1.40 4.85%

ompress 0.77 0.75 0.50%

Table 1: IPC and SEA runtime system overhead for several benhmarks. Overhead due to SEA

support routines is low, but SEA adds extra instrutions to the workload. How these instrutions

are sheduled inuenes the IPC.

of our SEA by ompiling our benhmarks with hip-spei� optimization, and neither the ompiler

nor the SEA runtime use pro�le information.

3.4 The measured performane of SEA

In order to understand the performane impliations of a software-extended arhiteture, we present

performane results and measurements of a software-extended Alpha 21164. These experiments

measure the base performane of the SEA system. Some types of funtionality (e.g. system all

monitoring) ould be performed at this performane level.

Our experiments were run on a 266MHz Alphastation 500/266 running Digital Unix 4.0. This

mahine has 8KB diret-mapped primary instrution and data ahes with a 2 yle aess time,

a 96KB 3-way seondary ahe with an 8 yle aess time[ER℄, and a 2 MB third level, o�-hip

ahe with a 15.5 yle aess time as measured by lmbenh [MS96℄. Eah mahine has 128 MB

of memory and was in multiuser mode during the measurements. In fat, the mahines were often

in use during the measurements. To mitigate the e�ets of other proesses, we ompare the user

portion of exeution time. The user time measures all of the overheads of our system, exept for

additional system time indued. The inreased system time due to inreased TB misses (due to

SEA support data strutures) is not inluded. However, this inrease is small relative to the running

time of the benhmarks, and if SEA is implemented as part of the operating system, speial support

(e.g., superpages) ould be used to eliminate it. Cahe miss ounts and pipeline information are

measured using the 21164 on-hip ounters.

To evaluate SEA we used several benhmarks from SPEC95 [SPE95℄, both oating point (swim,

hydro2d, turb3d, and applu) and integer (ijpeg and ompress) benhmarks. In all ases the input

data sets have been redued from the SPEC distribution to redue running time. In addition

we measure alvinn, a oating point program from SPEC92, whih we have modi�ed to read its

input data from its data segment rather than a �le. This redues time it takes alvinn to reah

a omputational steady state, whih is the behavior of interest. Mandel is a small program that

generates a olor bitmap of the Mandelbrot set and writes the result to a �le [Gil℄.

The results an be seen in Figure 2. All benhmarks were ompiled with DEC's C or Fortran

MIT-LCS-TR-878. 9

N SEA
mandel

N SEA
swim

N SEA
alvinn

N SEA
hydro2d

N SEA
turb3d

N SEA
applu

N SEA
ijpeg

N SEA
mgrid

N SEA
compress

Benchmark pairs

0

10

20

30

E
xe

cu
ti

on
 T

im
e

(s
)

31.0

31.3
1.2%

24.2

24.6
1.4%

30.1

31.2
3.6%

28.8

32.1
11.7%

16.5

18.7
13.4%

15.8

18.3
15.9%

27.6

32.1
16.4%

4.4

5.2
18.7%

21.7

28.4
31.2%

Pipe stall
Dcache stall
Icache stall
Scache stall
Instructions

Figure 2: Exeution time for several benhmarks (ompilied at the highest optimization level),

running native (N) and running under SEA (SEA) are presented. Aggregate time for eah pair

is broken down among stall for pipeline dependenies, primary data (D) ahe re�ll, primary in-

strution (I) ahe re�ll, and uni�ed on-hip seondary (S) ahe re�ll, and instrution exeution.

The exat running time of eah benhmark pair is given above the bar, and the hange from native

exeution to SEA exeution is given with the SEA value.

ompiler at the highest level of inter-proedural optimization and hip-spei� ode sheduling

ags. Having the ompiler shedule the ode for the 21164 makes the overheads of the SEA

runtime system more apparent beause the ompiler's hip-spei� sheduling is superior to the

hip spei� shedule done by the translator. In order to more fully expose the overhead of the

SEA runtime system, no feedbak information was provided, and onditional branh speulation

was turned o�. Beause SEA an optimize data-dependent branhes and loop limits, we expet

that its performane using feedbak information would be better relative to a ompiler that had

aess to the same information.

Several things are interesting about the data in Figure 2. The �rst is that the overhead of our

SEA implementation is surprisingly low|only 1{3% for three of the nine appliations. While our

benhmarks to not stress the memory system, our SEA implementation adds little overhead (less

than 10%) to memory system osts. SEA also demonstrates little interferene with the memory

mapping hardware of the mahine. SEA's memory and mapping requirements sale (moderately)

with appliation size, not with appliation data sets, so we onlude that the arhitetural ost of

an SEA is aeptably low.

Overhead due to SEA support funtions (e.g., translator and dispather) is shown in Table 1. It

too is surprisingly low, indiating that the optimizations developed for Shade and Embra translate

well to SEAs.

In all ases, the inreased running time on the SEA is due to inreased instrutions. Integer

programs like ijpeg and ompress have more proedure returns than the oating point programs, and

so su�er from larger instrution overheads. The omparison of IPC for native and SEA exeution

MIT-LCS-TR-878. 10

in Table 1 indiates that the SEA runtime is not �nding unused issue slots to hide its overhead

instrutions. The SEA bookkeeping ode atually redues the IPC of most of the benhmarks.

While the SEA runtime inreases the IPC of mandel, Figure 2 shows a de�nite inrease in the

amount of time spend exeuting instrutions. This implies that the SEA bookkeeping ode for

mandel is eÆiently sheduled, but the SEA annot �nd room in the ompiler output to shedule

its overhead instrutions.

Currently, the SEA runtime handles register indiret jumps (e.g., those present at proedure

returns) by using the register that holds the new PC value to index into a hint table. The hint

table assoiates program PC values with the translation ahe address for that ode's translation,

if one exists. Beause the table is just a hint, the PC value must be heked against the PC value

stored in the table. Along with the table indexing overhead, this amounts to approximately 15

instrutions. We are investigating ways, e.g., by using a return stak, to lower this ost.

It is not surprising that instrution overheads dominate in this experiment beause the ompiler

shedules its ode well, and sine our SEA is not speulating through basi bloks, its sheduling

opportunities are limited, and bookkeeping osts are not amortized over large translation units.

4 Software Simultaneous Multithreading

Modern proessors feature multiple funtional units that work in parallel. Although most of these

units are fully pipelined, they often sit idle due to register dependenies, i.e. one instrution

produes a register value needed by a downstream instrution. It may be that the funtional unit

for the downstream instrution is available, but the instrution annot exeute until the upstream

instrution ompletes.

On statially sheduled proessors (like the Alpha 21164 and the MIPS R8000), register de-

pendenies ause the proessor to stall in the issue stage. The problem of a stalled pipeline is

exaerbated on these proessors by their multiple issue apability. The Alpha 21164 an issue

two integer instrutions per yle, so eah stall yle (possibly) prevents two instrutions from

exeuting.

On dynamially sheduled proessors (like the MIPS R10000, and the UltraSPARC), register

dependenies lengthen the funtional unit queue length. On these proessors, it might be possible

to �nd a non-dependent instrution further downstream with no register dependenies, and use

the funtional unit to exeute that instrution while the dependent instrution sits on a queue.

However, queued instrutions use valuable hip resoures (like physial registers). Also, the limited

lookahead of these proessors, oupled with the neessity of branh predition, makes �nding useful,

non-dependent instrutions diÆult.

SSMT addresses this problem of pipeline underutilization by dynamially merging instrution

streams from di�erent proesses. We have implemented SSMT by modifying the dynami translator

of our software-extended Alpha 21164. We disuss the redued loality of merged programs, the

new ode sheduling tasks needed for e�etive program merging, the problems of register alloation

and naming, the operating system tasks performed by the SSMT runtime, and �nally we disuss

the implementation and measure the performane of our prototype.

4.1 Redued loality of merged programs

In order to merge two proesses, the SEA translator needs to keep trak of PC pairs instead of a

single PC. Code for PC pairs is read, sheduled, emitted and exeuted as a unit. This hange is

signi�ant beause the loality of PC pairs is lower than that of individual PCs. Redued loality

MIT-LCS-TR-878. 11

1 a

2 a

3 a

SSM
Runtime

a1

2

3

1

2 SSM
Runtime

1 a

2 b

3 a

1 b

3

a

b

1

2

3

(a) Loop smearing (b) Loop meshing

Figure 3: Merging basi bloks from di�erent proesses. One proess has bloks 1,2,3, the other

has bloks a and b. Loop smear spreads iterations of a loop aross multiple translation units, while

loop meshing auses the entire ross-produt of basi bloks to be merged.

inreases the amount of bookkeeping instrutions that get exeuted, and inreases the amount of

ode generated by the translator. Redued loality has two forms|loop smearing and loop meshing.

Loop smearing (Fig. 3a) ours when one proess is exeuting a loop while the other proess

exeutes straight line ode. Sine the merged ontents of eah loop iteration is di�erent, eah loop

iteration gets smeared out aross the translation ahe.

Loop meshing (Fig. 3b) ours when two proesses are eah in a loop. When the number of basi

bloks in eah loop are relatively prime, then if there are enough loop iterations, all ombinations of

the basi bloks will be emitted. Even if the numbers are not relatively prime, a large fration of the

ross-produt may be emitted into the translation ahe. The e�et is analogous to inter-meshing

gears.

A less fundamental, but still annoying, onsequene of merging programs is that the overhead of

register indiret jumps inreases when PC pairs are used to index the hint table. More instrutions

are needed to ompute the hash funtion and to do the tag hek.

4.2 Code sheduling

The bene�t of SSMT omes from its ability to shedule two independent instrution streams so

pipeline stalls are avoided and latenies overlapped with other latenies or with exeution. The

prototype SSMT runtime system ontains a simple, linear time, greedy ode sheduling algorithm.

When register dependenies or other pipeline hazards are deteted, the instrution sheduler uses

instrutions from the other thread to pak the pipeline. Pipeline lateny values are stored in a

table, so adding support for a new Alpha pipeline onsists of �lling in the table.

For dynamially sheduled proessors, it is not only important to shedule for pipeline stalls, but

also for the memory system stalls. Computation from one proess should be sheduled to overlap

with memory aess lateny from the other proess. While dynamially sheduled proessors try to

hide memory lateny within a thread, there is a signi�ant hallenge to �nding useful instrutions.

These an be provided to the hardware by the SEA instrution sheduler.

There is also a notion of fairness in sheduling ode. Di�erent appliations have di�erent sized

basi bloks, and bene�t from di�erent degrees of branh speulation. The merger an attempt

to balane the number of instrutions fethed from eah thread for eah translation unit, so the

appliations run at roughly the same rate. Using estimates of memory aess time would probably

result in a fairer shedule.

MIT-LCS-TR-878. 12

4.3 Register alloation and naming

There are two important issues involving registers, the �rst is how the register spei�ers in a binary

are mapped onto mahine registers, and the seond is the register requirements of the runtime

system itself.

In order to map program registers onto physial registers, the SSMT runtime supports per-

proessor register maps. If the host arhiteture has enough registers to support both binaries

(e.g., an arhiteture with 64 integer and 64 oating pointer registers ould aommodate 2 Alpha

binaries), then the register map is simple, e.g., one proess gets registers 0{31, the other 32{63.

The SSMT translator then uses the maps to performs register renaming at translation time.

4.4 Operating system tasks

Sine the translator merges two programs, the SSMT runtime needs to perform ertain operating

system tasks, suh as address spae layout, fault isolation, aess to shared state, and system alls.

Address spae layout. The SSMT runtime ontrols the address spae layout. Sine the goal

of SSMT is performane, appliations are mapped into disjoint areas of the address spae so that

(unlike Shade and Embra) runtime address translation is not needed.

Fault isolation. Most operating systems guarantee that independent proesses are fault iso-

lated from eah other. Programs that load from outside their mapped segments (i.e., text, heap,

stak, mmaped regions), are generally sent a signal by the operating system. Running under SSMT,

this signal might not be generated. More seriously, a program that stores outside its mapped seg-

ments might not be sent a signal, but worse, it may orrupt the proess with whih it is being

merged. While a large lass of appliations would be willing to trade this level of fault isolation for

performane, some would not. More fault isolation ould be obtained by arhitetural support, or

by sandboxing [WLAG93℄ stores so that it would not be possible for a buggy or maliious proess

to orrupt the data strutures of the other proess.

Sharing. Having proesses share an address spae simpli�es aess to shared state. Proesses

an request shared memory regions from the SSMT runtime. Aess to these regions an be very

eÆient if �ne grained aess ontrol is not needed. If suh ontrol is needed, sandboxing or the use

of virtual memory protetion (depending on the sharing granularity) an be used. Speial move

instrutions ould also allow appliations to share data at the register level.

System alls. The prototype SSMT runtime simply forwards system alls to the underlying

operating system. Therefore, both proesses blok when either does a bloking system all. So

long as the operating system exports some mehanism for dealing with bloking system alls|i.e.,

non-bloking versions of the same alls, or sheduler ativations [ABLL91℄|the runtime system an

exeute bloking alls in a non-bloking way. If the SEA is being done by the operating system, then

the translator an be informed that one kernel thread is bloked, and the translator will ontinue

running only the other thread.

4.5 Implementation status of SSMT

Most of the disussed features of SSMT have been implemented in the prototype, but there are

some exeptions. The urrent loader is primitive in that it does not reloate dynamially linked

binaries|programs are statially linked at disjoint address ranges. Code is urrently not shed-

uled for fairness, i.e. programs an run at very di�erent rates. The prototype does no per-proess

reompilation|ode is not urrently resheduled aross basi bloks. Finally, while di�erent pro-

esses bene�t from di�erent levels of branh speulation, it is urrently uniformly performed for

MIT-LCS-TR-878. 13

both proesses.

4.5.1 Merging poliies

The poliy spae for the merger is large and, sine there are no run-time systems whose purpose is

performane, there is a no literature to diretly guide poliy deisions. Although the merger has

many apabilities, we are still tuning its performane as we ome to understand its behavior.

One SSMT poliy question is whether to merge all ode or to only merge ode that is heavily

exeuted. The aggressive approah has an advantage in simpliity, but the opportunisti poliy

addresses loop smear. In pratie, the opportunisti sheme has a small advantage.

The other fundamental SSMT poliy question is how aggressive to make the feth unit of the

translator. Currently, the translator aggressively speulates through unonditional branhes, and

a variable number of onditional branhes.

In order to get information for poliy deisions, the SSMT runtime uses feedbak information.

We use ATOM to instrument our exeutables to measure performane and write information from

the exeution into a �le, whih is read by the SSMT runtime system. Currently, this �le ontains a

single branh predition bit for eah program branh, and a single bit for eah instrution indiating

if it is exeuted heavily. We urrently do not use feedbak for data-dependent optimizations.

Our ATOM tool also measures jump behavior. If a ertain register indiret jump almost always

has the same destination (whih is rare beause most indiret jumps are proedure returns), its

translation an be speial ased from 26 instrutions to 4 instrutions. We are urrently looking for

ways to integrate this optimization with jumps that are not perfetly behaved, but whih transfer

ontrol to one site very frequently.

The results shown in this setion are for di�erent translator poliies. The merger always shed-

ules ode for the 21164 pipeline, and always fethes through seven unonditional branhes. We

vary the number of onditional branhes that are fethed through, and are urrently looking for a

single optimal solution. An opportunisti merging sheme is used unless indiated.

4.6 Experimental evaluation

We believe that SSMT is an interesting appliation of SEA, and we wanted to investigate the

feasibility of the tehnique. Sine SSMT dereases loality and inreases working set size in order to

redue register dependenies, it is not likely to be useful for the urrent generation of arhitetures.

Our goal in building the prototype was to see if any performane wins for urrent arhitetures

were possible, and to measure the arhitetural e�ets of SSMT to determine if it might be a good

idea for future arhitetures.

The limited issue width of the 21164, two integer slots, one general purpose oating point

slot, and one oating point multiply slot, represents a hallenging arhiteture for SSMT. There

are limited issue opportunities, and signi�ant issue restritions on some instrution types and

instrution pairs.

The stati sheduling of the 21164 shows o� the ode sheduling algorithms of the SSMT

runtime, but we believe that the SSMT runtime would also be bene�ial (perhaps more so) for

dynamially sheduled proessors. Studies [Fis93℄ have shown that software tehniques whih in-

rease the mix of non-dependent instrutions in the hardware's limited instrution window improve

proessor utilization.

MIT-LCS-TR-878. 14

Benhmark Time

Se 16 int reg SEA

mandel 38.6 0.008% -3.6%

ompress 24.9 2.7% 16.1%

swim 46.6 6.0% 2.8%

alvinn 25.8 9.9% -6.7%

ijpeg 31.1 30.0% 7.5%

Table 2: Inrease in exeution time due to limiting the integer register sets of some benhmarks

ompiled with g. The \SEA" olumn reports the additional overhead of running the redued

integer register binary on an SEA. The negative values indiate a performane improvement

4.6.1 Register set size

Program merging from Alpha binaries to the Alpha 21164 has a fundamental problem beause the

binaries are ompiled to use all 64 arhiteturally visible registers (32 integer and 32 oating point).

This reates heavy ontention for registers. In order to get performane wins on the 21164, this

ontention must be addressed.

Sine the mahine registers are over ommitted, register spei�ers for di�erent proesses are

mapped to the same physial register, e.g., proess 0 might keep its value of a0 in a0, while proess

1 might keep its value of t3 in a0. Only one proess an keep its register value in the register, while

the other proess must load its register value from memory.

While there are optimizations to redue the number of register saves and restores, a signi�ant

number remain. The issue width of the 21164 is not suÆient to hide these instrutions. In order

to experimentally investigate the potential of SSMT, we redued register ontention by limiting the

number of integer registers eah program was ompiled with from 32 to 16. Our hypothesis is that

running two 16 integer register binaries on a 32 integer register mahine is similar to running two

32 integer register binaries on a 64 register mahine. This setup also stresses our register renaming

logi as both binaries are ompiled to use the same 16 registers. We allow eah program to use all

32 oating point registers beause ontention for the oating point register �le is smaller, and we

wanted to interfere with the ompiler as little as possible. Finally, we note that sine we do not

have soure ode for ertain important system libraries (like most of lib), our register partitioning

is approximate.

The register maps reet the register partitioning of the integer register �le. Both binaries

make small use of a ertain range of temporary registers. One binary uses the registers spei�ed

in its program, the other binary has its register spei�ers translated to the set of infrequently used

temporary registers.

There is still some ontention for integer registers, and potentially onsiderable ontention for

oating point registers. When there is a register onit (e.g., both programs use oating point

register 3), the translator hooses a di�erent register for one of the programs (e.g., oating point

register 5). While the translator looks for dead registers (see Setion 4.3), it will spill and restore

a live register if it must. If a register is used read-only, it will not be written at the end of the

translation, and if a register's �rst appearane is as a destination, its value will not �rst be loaded.

MIT-LCS-TR-878. 15

4.6.2 The measured impat of limited integer registers

Before evaluating the performane of SSMT on integer register limited binaries, we want to deter-

mine how reduing the available integer registers a�eted the programs we studied.

The only ompiler we had aess to whih allows �ne grained ontrol over register use is g. This

is unfortunate sine g does no hip spei� sheduling for the DEC 21164, so the resheduling done

by the SSMT runtime is more eÆient than the original shedule, plus the bene�t from overlapping

latenies.

Sine the Gnu fortran ompiler is not yet supported on the Alphas, we use SUIF [HAA

+

96℄

to translate the fortran benhmarks into C, whih we ompiled with g. The resulting binaries

are less eÆient than versions ompiled with a Fortran ompiler, but we believe that they are

ineÆient in a way that penalizes the SSMT runtime. For example, when swim is ompiled with

the Fortran ompiler, it spends 60.6% of its exeution time stalled on register dependenies. When

it is ompiled by g with Fortran support libraries, it only spends 48.0% of its exeution time

stalled on dependenies. This makes sense beause better ompiler tehnology an not remove

basi register dependenies, it an only eliminate instrutions whih mask those latenies.

Table 2 shows the performane impat of moving from 32 integer registers to 16 integer registers

(using g at the highest level of optimization) for the benhmarks we studied in depth.

The impat of limiting the number of available registers di�ers widely for di�erent benhmarks.

Mandel and ompress do not make heavy use of integer registers, while alvinn, and espeially ijpeg

bene�t from larger integer register sets.

While the performane di�erenes are not always large, 16 integer register binaries often have

a higher perentage of loads and stores. While this spill ode usually has good ahe loality, it

does add to data ahe pressure. Additionally, stores an not dual issue on the 21164, so they

are partiularly poor instrutions for the translator. As partial ompensation, load instrutions

have a delay slot whih the translator an use, but there are odd issue restritions (arising from

a strutural hazard for the data ahe ports) regarding loads and stores that our lose together

in time. We believe that on balane, 16 integer register binaries represent a pessimisti ase for

SSMT.

Finally, the SEA \overheads" reported in Table 2 are atually signi�ant performane gains for

two appliations. Our evaluation of base SEA (Figure 2), did not demonstrate these gains beause

the base SEA results were generated without using feedbak information for branh predition.

Additionally, we are showing performane wins for appliations ompiled with g whih does not

do hip-spei� instrution sheduling.

It is important to note that the gains shown for SSMT (in Setion 4.7), are not solely due to

�xing the ode sheduling of g. First, the gains reported here are smaller than the gains for

SSMT, and seond our measurements of SSMT show that instrution sheduling is only part of the

win.

4.7 The measured performane of SSMT

SSMT on the 21164 slowed down almost all appliation pairs we investigated. However, performane

was within a fator of 2.5 of the native exeution time for almost all pairs indiating that the average

ase was not pathologially bad. This agrees with our intuitions that the 21164 arhiteture is not

a good andidate for SSMT.

However, ertain aggressive merging poliies were able to show performane gains for ertain

appliation pairs. By studying some of these ases, and some ases where performane was redued,

MIT-LCS-TR-878. 16

N SSM
mandel
mandel

N SSM
alvinn
alvinn

N SSM
compress
mandel

N SSM
ijpeg

mandel

N SSM
swim
swim

N SSM
alvinn
swim

N SSM
compress

mgrid

Benchmark pairs

0

20

40

60

80

100

E
xe

cu
ti

on
 T

im
e

(s
)

76.6

58.3
31.3%

55.6 47.7
16.5%

65.0 57.8
12.6%

80.0 73.0
9.6%

99.4
97.1
2.4%

77.2
76.5
1.0%

72.2

89.7
24.3%

Pipe stall
Dcache stall
Icache stall
Scache stall
Instructions

Figure 4: Exeution time for several 16 integer register benhmark pairs running native (N) and

running under SSMT (SSM) are presented. Aggregate time for eah pair is broken down among

stall for pipeline dependenies, primary data (D) ahe re�ll, primary instrution (I) ahe re�ll,

and uni�ed on-hip seondary (S) ahe re�ll, and instrution exeution. The exat running time

of eah benhmark pair is given above the bar, and the hange from native exeution to SSMT

exeution is given with the SSMT value.

we an understand the properties of SSMT, and have a persuasive basis for arguing that it will be

useful on more aggressive arhitetures.

A range of appliation performane is presented in Figure 4. SSMT inreases ahe pressure

more than base SEA did, whih is no surprise given that the mahine must now support the sum

of the appliation working sets. The overhead due to SSMT data strutures is small.

SSMT greatly inreases the instrution ahe stall of the measured programs, though the magni-

tude of that stall remains small. This indiates that our translation poliies work well for programs

with small instrution footprints, and it indiates that SSMT might be able to redue instrution

ahe misses on large binaries, so long as the working set of the program or program pair an �t in

the translation ahe.

The overhead due to SSMT support proedures (presented in Table 3), is also slightly larger

than the base SEA ase, but it is 3% or less for most of the benhmarks we studied.

In general, SSMT was able to obtain performane wins by reduing the amount of pipeline

stall. In almost every ase, it inreased the amount of time spent exeuting instrutions. A notable

exeption is the alvinn pair. The redued amount of instrution runtime for this pair, oupled with

the data in Table 2 indiates that the SSMT runtime is not only eÆiently hiding its own overhead,

it is e�etively resheduling alvinn's ode. This an be seen from the inreased IPC as reported in

Table 3.

SSMT's biggest performane win (31% throughput inrease) was for the mandel appliation

pair. The SSMT translator is e�etively sheduling the merged ode to redue pipeline stalls, but

MIT-LCS-TR-878. 17

Benhmark pair IPC SSMT Runtime

Native SSMT time

mandel mandel 0.57 1.21 0.39%

alvinn alvinn 0.65 0.81 3.12%

ompress mandel 0.63 0.83 0.82%

ijpeg mandel 0.73 0.88 2.93%

swim swim 0.62 0.74 0.48%

alvinn swim 0.63 0.70 3.38%

ompress mgrid 0.66 0.64 6.77%

Table 3: IPC and SSMT runtime system overhead for several 16 integer register benhmark pairs.

Overhead due to SSMT support routines is low, but SSMT adds extra instrutions to the workload.

How these instrutions are sheduled inuenes the IPC.

unlike the alvinn pair, it is still adding a signi�ant number of overhead instrutions. But as we saw

in Setion 3.4, the overhead instrutions for mandel an be eÆiently sheduled. The ombination

of these e�ets yields an impressive (greater than 2x) inrease in IPC as reported in Table 3.

While SSMT shows bene�t from hip-spei� sheduling, the wins reported in Table 2 are muh

smaller than those reported in Figure 4. The main ause of the performane win in every ase

is redued pipeline stall. Even if the original binaries were ompiled with hip-spei� sheduling

all pairs that show a performane win, exept the pair alvinn and swim, would ontinue to show

performanes win.

Given the data in Table 2, the performane gains for the mandel pair and the alvinn pair is still

a gain when measured against a binary (ompiled with g) that an use all 32 integer registers. It

is enouraging that for the 21164 there are some ases for whih SSMT provides the most eÆient

exeution model.

SSMT relies on the availability of pipeline stall to gain its wins. As seen in Figure 2 pipeline

stall seems plentiful on the 21164, even using advaned fortran ompilers, and wider issue mahines

will inrease this availability [KOHW

+

96℄. However, oating point intensive appliations generally

spend more time waiting for register interloks beause the lateny of oating point operations is

longer (4 yles lateny for a oating point add on the 21164 as opposed to 1 yle for most integer

instrutions) making them more suited for SSMT.

We present the ompress and mgrid pair as representative of an appliation pair that does not

bene�t from SSMT. This pair does not see a redution in pipe frozen time, indiating a failure

of our ode sheduling algorithm. Additionally, the inreased time spent in instrution exeution

indiates that the SSMT is adding too many instrutions, and the dereased issue rate indiates

that it is not sheduling these overhead instrutions eÆiently.

It is not a oinidene that three of the six performane wins presented are appliations merged

with another opy of themselves. Beause our prototype urrently does not shedule ode for

fairness, beause the benhmarks do not run for exatly the same amount of time, and beause

the benhmarks run for a relatively short period of time, there is often signi�ant load imbalane

when running under SSMT. One proess �nishes, and up to 40% of the ombined running time is

onsumed by the slower proess running to ompletion by itself. When a proess is merged with

another instane of itself, both proesses run together. Running the appliations on their full data

sets would help alleviate this problem, and we believe that future work in our ode sheduling

MIT-LCS-TR-878. 18

algorithms will make this less of an issue.

While SSMT is not appropriate for todays arhitetures, our measurements indiate that it

is e�etive at reduing pipeline stall, and that it an be e�etive at hip-spei� sheduling. We

believe that the importane of these bene�ts will inrease as proessor tehnology progresses.

5 Disussion

In this setion, we disuss some arhitetural features that would bene�t SSM, and we disuss the

arhitetural vision enabled by SSM. We have already mentioned how SSM would bene�t from a

wider issue mahine, beause it ould shedule its bookkeeping instrutions in the unused slots.

Register set size For SSM to be pro�table, there must either be a larger number of physial

registers than are used by most binaries, or instrution issue slots must be plentiful. There are

issues in making a larger register set arhiteturally visible. The �rst is binary ompatibility and

the seond is instrution enoding. SEA diretly addresses binary ompatibility as binaries are not

diretly exeuted on the proessor. However, if an appliation is partiularly poorly suited for SEA,

we believe that binary translation tehnology [SCK

+

93℄ has progressed to the point that translating

a RISC instrution set between enodings an be simply done, and the results are eÆient.

The issues surrounding instrution enoding are more substantial, but are beyond the sope of

this paper. Alternatives inlude alternate enodings if the number of physial registers is 64, or 64

bit instrutions for larger register �les.

If there are more hardware registers available than are required to run a given appliation (or

appliation pair), the translator an use simple heuristis to eliminate memory aesses.

Branhes Our measurements for the hange in branh mispredition rates for programs run

both under SEA and SSM vary widely, from small improvements, to a fator of 2 degradation.

However, if the base arhiteture had branh predition bits in the instrution enoding, the trans-

lator ould pass its predition information down to the hardware. We are also investigating ways

of olleting branh diretion information dynamially, so the translator ould signi�antly extend

the hardware's predition apabilities.

In the ommon ase, SSM translations require the resolution of multiple branh onditions,

whih is potentially expensive to the pipeline. Currently, other performane issues are more im-

portant, and with aggressive branh speulation, the multiple resolution overhead might be a small

part of the exeution time of a translation unit. Still, arhitetural support in the form of a jump

table instrution whih evaluates multiple onditions might be useful.

Floating point latenies SSM exploits the multi-yle lateny of oating point and some

integer instrutions. While these latenies have been dereasing, this has been o�set by wider issue

widths (e.g., on the Alpha 20164 fp lateny is 6 yles and 6 missed integer instrution opportunities.

On the Alpha 21164, fp lateny is 4 yles, and 8 missed integer instrution opportunities). While

the availability of transistors might eliminate this lateny on future proessors altogether, memory

referene lateny is muh harder to eliminate. We believe that our SSM algorithms an be tailored

to inrease the throughput of a dynamially sheduled supersalar proessor by overlapping memory

aess lateny with omputation.

User interfaeWhile the work presented in this paper onsists of exeutables that are speially

prepared, launhed in tandem and run to ompletion, more exible user level interfaes are possible.

These inlude augmenting the operating system ommand shell (suh as the UNIX sh shell) with a

speial pipe harater; modifying the sheduler of a user level threads pakage; and implementing a

set of shared memory maros (e.g. ANL). As mentioned earlier, it is also possible for the operating

system sheduler to provide the merging servie.

MIT-LCS-TR-878. 19

Impat on proessor design In designing ILP proessors, arhitets need to balane hardware

omplexity with reliane on sophistiated software (e.g., advaned ompilers). The urrent gen-

eration of dynamially-sheduled proessors represents a hardware-intensive solution, while VLIW

proessors represent a software-intensive solution. Software-extended arhitetures might allow ar-

hitets to revisit this fundamental tradeo�. An SEA ould ensure binary ompatibility for user

programs, and an greatly simplify proessor design by performing register renaming, dependeny

heking, and ode sheduling. This ould allow proessor designers to simplify their design and

make more radial hanges in between hip version.

We are not sure what the future, or ultimate utility of software-extended arhitetures will be,

but it seems like interposing a layer of software at the arhiteture level opens up new possibili-

ties. In this paper we have disussed how an SEA interats with the proessor arhiteture, the

ompiler, and the operating system. In almost every ase, SEA either provides new funtionality,

or it implements some funtionality at a more natural level of abstration than it was originally

provided.

6 Conlusions

In this paper we have demonstrated that a software-extended arhiteture an be implemented

with very little performane overhead. Our implementation of a software extended 266 Mhz Alpha

21164 adds only 1%|30% to the running time of a program. We have also demonstrated that a

software-extended Alpha 21164 an be used to improve system throughput by supporting software

simultaneous multithreading. SSMT trades dereased loality and inreased working set size for

inreased pipeline utilization. While this is of limited value for appliations on the Alpha 21164,

our data indiates that this tradeo� is appropriate for next generation mahines.

This paper establishes the viability of software-extended arhitetures, but it also leaves a

number of open researh questions. The key ones are (1) what are good poliies for sheduling

merged programs, (2) an software-extended arhitetures enable wider aeptane of VLIW, or

allow supersalar arhitets to simplify their design and onentrate on inreasing lok rate and

adding more funtional units, and (3) what other performane bene�ts and new apabilities an be

obtained using software-extended arhitetures. We expet to investigate these issues in the near

future.

7 Aknowledgments

We would like to thank Eddie Kohler for doing dead register analysis, and Bert Halstead and DEC's

Cambridge Researh Lab for letting us use their mahines.

Referenes

[ABLL91℄ T. E. Anderson, B. N. Bershad, E. Lazowska, and H. M. Levy. Sheduler ativations: E�etive

kernel support for the user-level management of parallelism. In Pro. Thirteenth ACM Symp.

on Operating System Priniples, page 95, Pai� Grove, CA, Ot 1991.

[ATLLW96℄ Ali-Reza Adl-Tabatabai, Geo� Langdate, Steven Luo, and Robert Wahbe. EÆient and

language-independent mobile programs. In Pro. of PLDI, may 1996.

[CK94℄ Robert F. Cmelik and David Keppel. Shade: A fast instrution set simulator for exeution

pro�ling. In SIGMETRICS, 1994.

MIT-LCS-TR-878. 20

[CSB96℄ Bradley Chen, Mihael D. Smith, and Brian N. Bershad. Morph: a framework for platform-

spei� optimizations. Tehnial Report White paper, Harvard University, Marh 1996.

[Dig℄ Digital. Fx!32: x86 win32 ompatibility on aplha. Tehnial Report

http://www.servie.digital.om/fx32/.

[Eng96℄ Dawson R. Engler. vode: a retargetable, extensible, very fast dynami ode generation system.

In Pro. Programming Language Design and Implementation, 1996.

[ER℄ John Edmondson and Paul Rubinfeld. An overview of the alpha axp(tm) miroarhiteture.

In slides.

[Fis81℄ J. A. Fisher. Trae sheduling: a tehnique for global miroode ompation. IEEE Transa-

tions on Computers, 30:478{490, July 1981.

[Fis93℄ Joseph A. Fisher. Global ode generation for instrution-level parallelism:trae sheduling-2.

In HP Laboratories Tehnial Report HRL-93-43, June 1993.

[Gil℄ Frode Gill. http://www.krs.hia.no/ fgill/mandel.fhtml,g.

[Gos95℄ James Gosling. Java intermediate byteodes. In Proeedings of ACM SIGPLAN Workshop on

Intermediate Representations, Marh 1995.

[GYCS96℄ Niolas Gloy, Cli� Young, J. Bradley Chen, and Mihael D. Smith. An analysis of dynami

branh predition shemes on system workloads. In Pro. 23th Annual Symposium on Computer

Arhiteture, pages 12{22, May 1996.

[HAA

+

96℄ M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.W. Liao, E. Bugnion, and

M. S. Lam. Maximizing multiproessor performane with the suif ompiler. In IEEE Computer,

Deember 1996.

[Jon93℄ Mihael B. Jones. Interposing agents: Transparently interposing user ode at the system

interfae. volume 27, pages 80{93, De 1993. 14th ACM Symposium on Operating Priniples.

[KOHW

+

96℄ Basem A Nayfeh Kunle Olukotun, Lane Hammond, Ken Wilson, , and Kunyung Chang. The

ase for a single-hip multiproessor. In Proeedings of ASPLOS-VII, Ot 1996.

[LS95℄ James Larus and Eri Shnarr. Eel: Mahine independent exeutable editing. In Proeedings

of PLDI, June 1995.

[MEP96℄ Po-Yung Chang Marius Evers and Yale N. Patt. Using hybrid branh preditors to improve

branh predition auray in the presene of ontext swithes. In Pro. 23th Annual Sympo-

sium on Computer Arhiteture, pages 3{12, May 1996.

[MS96℄ Larry MVoy and Carl Staelin. lmbenh: Portable tools for performane analysis. In USNIX,

Jan 1996.

[Pat85℄ D. A. Patterson. Redued instrution set omputers. Communiations of the ACM, 28(1):8{21,

January 1985.

[RBH

+

95℄ Mendel Rosenblum, Edouard Bugnion, Stephen A. Herrod, Emmett Withel, and Anoop

Gupta. The impat of arhitetural trends on operating system performane. In SOSP, 1995.

[RS94℄ Rahul Razdan and Mihael D. Smith. High-performane miroarhitetures with hardware-

programmable funtional units. In Proeedings of the 27th Annual IEEE/ACM Intl. Symp. on

Miroarhiteture, pages 172{180, November 1994.

[SCK

+

93℄ R. L. Sites, A. Cherno�, M. B. Kirk, M. P. Marks, and S. G. Robinson. Binary translation.

Communiations of the ACM, 36(2):69{81, February 1993.

[SE94℄ Amitabh Srivastava and Alan Eustae. Atom: a system for building ustomized program

analysis tools. SIGPLAN Noties, 29(6):196{205, June 1994.

MIT-LCS-TR-878. 21

[Smi91℄ Mihael D. Smith. Traing with pixie. Tehnial Report Memo from Center for Integrated

Systems, Stanford University, April 1991.

[SPE95℄ SPEC. Spe pu 95 benhmark suite. In System Performane Evaluation Cooperative, 1995.

[TEE

+

96℄ Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jak L. Lo, and Rebea

Stamm. Simultaneous multithreading: Maximizing on-hip parallelism. In Proeedings of the

23nd International Symposium on Computer Arhiteture, May 1996.

[TEL95℄ Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: Maxi-

mizing on-hip parallelism. In Proeedings of the 22nd International Symposium on Computer

Arhiteture, June 1995.

[Wal86℄ David W. Wall. Global register alloation at link time. In Digital researh report 86.3, Ot

1986.

[Wal91℄ David W. Wall. Limits of instrution-level parallelism. In ASPLOS-IV, pages 176{189, Santa

Clara, California, 1991.

[WLAG93℄ R. Wahbe, S. Luo, T. Anderson, and S. Graham. EÆient software-based fault isolation. In

SOSP14, pages 203{216, Deember 1993.

[WR96℄ Emmett Withel and Mendel Rosenblum. Embra: Fast and exible mahine simulation. In

The proeedings of ACM SIGMETRICS `96: Conferene on Measurement and Modeling of

Computer Systems, 1996.

[YP92℄ Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive branh

predition. In Pro. 19th Annual Symposium on Computer Arhiteture, pages 124{134, may

1992.

