
Group Diffie Hellman Protocols
and ProVerif

CS 395T - Design and Analysis of Security
Protocols

Ankur Gupta

Secure Multicast
Communication

● Examples: Live broadcast of a match, stock
quotes, video conferencing.

● Security has become a major issue.
● Challenges:
1. Secrecy of messages.
2. Authenticity:
a) Group Authenticity
b) Source Authenticity
3. Anonymity
4. Access Control

Key Exchange

● Main Step: Key Exchange is the main step in
multicast communication.

● Members communicate to set up a common
key that is then used to encrypt messages.

● Several key exchange protocols exist today.
● Examples:
1. 2-party: IKE, JFK.
2. Multi-party: GDH.1, GDH.2, GDH.3.

Security Issues

● Depends on kind of adversary:
1. Passive Adversary: Can read messages but

not inject/delete/modify messages.
2. Active Adversary: Can read/modify/delete

messages.

Passive Adversary
● Secrecy: The key exchanged must be a

secret.
● Key Agreement: All participants in the

protocol agree on the same key.
● Resistance to Known-Key attacks: A key

compromised in one session cannot help in
compromising keys in other sessions.

● Key Independence: For dynamic
memberships, old keys cannot be known to
new members and new keys cannot be
known to old members.

Active Adversary

● Authentication: Each participant has the
assurance that only legitimate users belong
to the group.

● Perfect Forward Secrecy (PFS):
Compromise of long-term keys cannot result
in the compromise of past session keys.

● Resistance to Known-Key attacks: Session
keys known in one session cannot help an
active adversary to impersonate one of the
protocol parties in another session.

Group Diffie Hellman Protocols
Steiner, Tsudik, et al

● Five Group Key Exchange (GKE) protocols
are proposed.

● First three assume static group membership.
● Last two deal with member addition and

deletion.
● We will focus on the first three.
● Proved secure against passive attacker.
● Ateniese, Steiner et al proposed an

authenticated GKE protocol that “tolerates”
active adversary.

GDH.1

● Let 'g' be the generator of a group.
● For 4 participants the protocol works as

follows:
 Each participant P1, P2, P3 and P4 generates a nonce n1, n2,

n3 and n4 respectively.
 P1 sends {gn1} to P2.
 P2 sends {gn1, gn1n2} to P3.
 P3 sends {gn1, gn1n2, gn1n2n3} to P4.
 P4 sets group key to gn1n2n3n4.
 P4 sends {gn4, gn1n4, gn1n2n4} to P3.
 P3 sends {gn4n3, gn1n4n3} to P2.
 P2 sends {gn4n3n2} to P1.

GDH.2

 P1 sends {gn1} to P2.
 P2 sends {gn1, gn2, gn1n2} to P3.
 P3 sends {gn1n2, gn1n3, gn2n3, gn1n2n3} to P4.
 P4 sets group key to gn1n2n3n4.
 P4 broadcasts {gn1n2n4, gn1n3n4, gn2n3n4} to

everyone .

GDH.3

 P1 sends {gn1} to P2.
 P2 sends {gn1n2} to P3.
 P3 sends {gn1n2n3} to P4.
 P4 sets group key to gn1n2n3n4.
 P4 broadcasts {gn1n2n3} to everyone.
 P3 computes inverse and sends {gn1n2} to P4.
 P2 computes inverse and sends {gn1n3} to P4.
 P1 computes inverse and sends {gn2n3} to P4.
 P4 broadcasts {gn1n2n4, gn1n3n4, gn2n3n4} to

everyone.

Comparison of GDH protocols

5n-64 for i < n-
1, 2 for n-
1, n for Pn

2n-1n+1GDH.3

(i+1) for
i<n, n for
Pn

nnGDH.2

(i+1) for
i<n, n for
Pn

2(n-1)2(n-1)GDH.1

Total
Exponentia
tions

Exponentiat
ions per Pi

MessagesRoundsProtocol

Authenticated GDH.2

● Above protocols tolerate only passive
adversary.

● For static membership, an easy fix to GDH.2
“tolerates” active adversary.

● An attack was later found against AGDH.2 in
which an adversary behaving as a legitimate
participant in one session can learn the key
in another session of which it is not a
member.

AGDH.2

 P4 shares long term shared keys K14, K24, K34

with P1, P2 and P3.
 P1 sends {gn1} to P2.
 P2 sends {gn1, gn2, gn1n2} to P3.
 P3 sends {gn1n2, gn1n3, gn2n3, gn1n2n3} to P4.
 P4 sets group key to gn1n2n3n4.
 P4 broadcasts {gn1n2n4k34, gn1n3n4k24, gn2n3n4k14} to

everyone .

ProVerif
Bruno Blanchet

● Protocols can be modeled as applied pi-calculus
processes.

● Explicit modeling of attacker not required.
● Possible to state if an attacker is passive or active.
● Reasonable arithmetic properties of

encryption/decryption can be specified as
mathematical equations in ProVerif.

● Security proofs are done by querying ProVerif if an
attacker knows a key or content of an encrypted
message.

GDH.2 in ProVerif

● free c01, c30, c12, c31, c23, c32, c, sc.

● private free m, sameKey, p04, p14, p24, p34.

● (* Check if attacker can recover m and that all participants generate the same key*)

●

● query attacker:m;

● attacker:sameKey.

● (* Shared key cryptography *)

●

● fun enc/2.

● fun dec/2.

● equation dec(enc(x,y),y) = x.

GDH.2 Contd.

● (* Diffie-Hellman functions *)

● data g/0.

● fun exp/2.
●

● equation exp(exp(g,x),y) = exp(exp(g,y),x).
● equation exp(exp(exp(g,y),z),x)=exp(exp(exp(g,y),x),z).
● equation exp(exp(exp(g,y),z),x)=exp(exp(exp(g,x),z),y).
● equation exp(exp(exp(exp(g,x),y),z),t)=exp(exp(exp(exp(g,x),y),t),z).
● equation exp(exp(exp(exp(g,x),y),z),t)=exp(exp(exp(exp(g,x),z),t),y).
● equation exp(exp(exp(exp(g,x),y),z),t)=exp(exp(exp(exp(g,y),z),t),x).

● reduc inv(exp(exp(exp(exp(g,x),y),z),t),t) = exp(exp(exp(g,x),y),z);
● inv(exp(exp(exp(exp(g,x),y),z),t),z) = exp(exp(exp(g,x),y),t);
● inv(exp(exp(exp(exp(g,x),y),z),t),y) = exp(exp(exp(g,x),z),t);
● inv(exp(exp(exp(exp(g,x),y),z),t),x) = exp(exp(exp(g,y),z),t);
● inv(exp(exp(exp(g,y),z),t),y) = exp(exp(g,t),z);
● inv(exp(exp(exp(g,y),z),t),z) = exp(exp(g,y),t);
● inv(exp(exp(exp(g,y),z),t),t) = exp(exp(g,y),z);
● inv(exp(exp(g,y),z),z) = exp(g,y);
● inv(exp(exp(g,y),z),y) = exp(g,z).

GDH.2 Contd.

● param attacker = passive.
●

● let p0 = new n0;
● out(c01,exp(g,n0)); (* g^n0 *)
● in(c30,u);
● let comk0 = exp(u,n0) in
● out(c, enc(m,comk0));
● out(p04,comk0).
●

● let p1 = new n1;
● in(c01,v);
● out(c12,(v,exp(g,n1),exp(v,n1)));
● (* (g^n0, g^n1, g^n0n1) *)
● in(c31,w);
● let comk1 = exp(w,n1) in
● out(p14,comk1).
●

GDH.2 Contd.
● let p3 = new n3;
● in(c23,(u,v,w,x)); (* g^n0n1, g^n0n2, g^n1n2, g^n0n1n2 *)
● out(c30,exp(w,n3)); (* g^n1n2n3*)
● out(c31,exp(v,n3)); (* g^n0n2n3*)
● out(c32,exp(u,n3)); (* g^n0n1n3*)
● let comk3 = exp(x,n3) in
● out(p34,comk3).
●

● let p4 =
● in(p04, k0);
● in(p14, k1);
● in(p24, k2);
● in(p34, k3);
● if k0 = k1 then
● if k1 = k2 then
● if k2 <> k3 then
● out(sc,sameKey)
● else
● 0
● else
● out(sc, sameKey)
● else
● out(sc, sameKey).
●

● process (p0 | p1 | p2 | p3)

Conclusion

● Modeled GDH.1, GDH.2, and GDH.3
protocols in ProVerif.

 Proved they preserve secrecy and key
agreement against a passive attacker.

● Modeled AGDH.2 to allow active adversary.
 ProVerif was not able to prove/disprove its

security properties.

