
TR AI2000-284, AI Lab, Department of Computer Sciences, Univ. of Texas at Austin
http://www.cs.utexas.edu/users/ai-lab/

The Algernon Abstract Machine:
Compiling and Executing

Rule-Based Programs

Micheal Hewett

Department of Computer Sciences
University of Texas
Taylor Hall 2.124

Austin, TX 78712-1188

May, 2000

Abstract

This report describes the Algernon Abstract Machine, an execution environment for access-
limited logic programs. Like the Warren Abstract Machine for Prolog, the Algernon Abstract Ma-
chine (AAM) consists of an assembly-level language and a set of registers on which the language
instructions operate. The AAM has a well-defined interface to a knowledge base, enabling it to
be used in conjunction with any frame-based knowledge base. We describe the instructions of
the AAM language and the process of compiling queries, assertions, and forward and backward
chaining rules into AAM code. The restrictions of access limitation are handled by the compiler,
so the abstract machine itself can execute general-purpose forward and backward chaining rules.
We also describe how the AAM can be used as an interface to a network-accessible knowledge
base.

Building a system around an abstract machine has several advantages, including enhancing the
portability of user-level code to different execution environments. This has been apparent in the
success of Prolog (using the Warren Abstract Machine) and Java (using the Java Virtual Machine).
Additional advantages include enhanced maintainability, modularity and performance monitor-
ing.

Table of Contents

1 Introduction ... 1

2 Access-limited logic ... 3
2.1 Knowledge representation .. 3
2.2 Processing modes .. 5
2.3 Rule activation ... 6
2.4 Theoretical results for access-limited logic ... 7
2.5 Seamless interleaved forward and backward chaining 8
2.6 Summary of Section 2 .. 12

3 The Algernon Abstract Machine ... 13
3.1 What is an abstract machine? ... 13
3.2 Architecture of the AAM ... 14
3.3 Access-limited logic forms compiled by the AAM 15
3.4 Compiling and executing ALL forms ... 16
3.5 Rule Activation ... 26
3.6 Compiling rules .. 29
3.7 Rule continuations ... 29
3.8 Special forms ... 30

4 The AAM compiler .. 33

5 Examples of access-limited logic program execution .. 35
5.1 Defining the taxonomy .. 35
5.2 Defining relations ... 36
5.3 Defining rules ... 37
5.4 Asking questions and making assertions .. 40

6 Performance monitoring ... 49
6.1 Potential AAM optimizations .. 50

7 Conclusions and future research ... 51

Bibliography ... 53

Appendix A: Formal definitions of the AAM instructions ... 55

Appendix B: Utility functions from Algernon ... 59
B.1 Unification in access-limited logic .. 59
B.2 Binding set merge ... 62

Appendix C: Initializing the Knowledge Base ... 63

Appendix D: Specification of the Simple Frame System ... 69
D.1 General notes ... 69
D.2 Initializing the knowledge base .. 70

D.3 Defining knowledge base components .. 70
D.4 Knowledge base component type checking .. 71
D.5 Knowledge base storage .. 72
D.6 Knowledge base retrieval .. 72
D.7 Knowledge base deletion .. 74
D.8 Displaying KB information .. 74
D.9 Public Name Dictionary functions .. 76
D.10 The SELECT function .. 76

iv

1 Introduction

Intelligent systems, from rule-based systems to neural nets, are computationally intensive.
Those who implement Artificial Intelligence programs are continually searching for more effi-
cient algorithms and mechanisms. Solutions have come from many directions: efficient activa-
tion mechanisms (in rule-based systems [Forgy, 1982; Doorenbos, 1994], blackboard systems
[Hewett and Hewett, 1997]); parallelism (in neural nets [Rumelhart and McClelland, 1986],
blackboard systems [Rice, et al., 1989], rule-based systems [Miranker and Lofaso, 1991]); and
even specialized hardware [Hillis, 1985]. But efficiency is often gained at the expense of flexibility
of representation and portability.

Perhaps the most successful balance of efficiency, flexibility and portability at the architec-
ture level has been the Warren Abstract Machine [Warren, 1977; Aït-Kaci, 1991] for resolution-
based theorem proving. The WAM has been the basis for many, if not all, efficient and portable
Prolog implementations. In response, Prolog has become the language of choice for many AI
scientists.

This paper describes the Algernon Abstract Machine1, a system for executing access-limited
logic programs, and rule-based programs in general. It is based on both the WAM and the
SECD machine for LISP [Kogge, 1991]. We have implemented the AAM and used it as the un-
derlying architecture of a new version of the Algernon [Crawford and Kuipers, 1991] reasoning
system. One of the few drawbacks of the WAM has been the dearth of readable, understand-
able explanations of the WAM. It is the author's hope that this document is both readable and
useful.

The next section describes access-limited logic and the reasoning mechanisms it uses. It is
the basis for understanding the abstract machine described in Section 3. Detailed descriptions
of AAM operations can be found there and in the Appendices. Section 5 contains a trace of the
AAM while executing a program.

1

1 This work builds on earlier implementations of Algernon by James Crawford and Benjamin
Kuipers, who also provided valuable insights for this work. Spencer Bishop was the principal designer
of the current unification algorithm and also made substantial contributions in the areas of theoretical
analysis, debugging and testing.

2

2 Access-limited logic

This section summarizes methods of representation and reasoning using access-limited
logic (ALL)2. ALL addresses the problem of tractable reasoning within a large symbolic knowl-
edge base containing objects and relations (e.g. a frame-based representation or its equivalent
semantic net). It provides both forward and backward chaining, and imposes one significant
constraint on the programmer: only data related to an already-known data item may be ac-
cessed. This inhibits the programmer from performing a global search based on attributes. In-
stead, the programmer should perform a directed search (access-limited search) starting from a
known frame.

2.1 Knowledge representation

The basic representation in ALL involves predicates of the form (r a b) where r is the
relation and a and b are the arguments. However, ALL presumes that the knowledge base
stores these predicates as frames. Figure 2.1 shows the frame-relation equivalence, wher
represents the frame, r represents the slot, and b the value of the slot. This representation can
be generalized to n-ary relations by storing the value as a list of the last n-1 arguments of the re-
lation.

(slot frame value) ≡

frame:
slot: value

Fig. 2.1. The predicate-frame equivalence.

We will refer to predicates as clauses. Sequences of clauses are paths and are deemed access
paths if they satisfy the access limitation requirements:

• an empty path is an access path.
• in a non-empty path, the frame and slot arguments of the first clause must be constants

or bound variables, and the remaining clauses must form an access path (possibly using
additional bindings created by processing the first clause).

These restrictions do not allow global pattern matching as performed in Prolog, OPS5 or
other deductive systems. An example illustrates this restriction. The path:

((sister John ?x) (likes ?x chocolate))

is a legal access-limited path meaning "Does John have a sister who likes chocolate?", but the logi-
cally equivalent path:

((likes ?x chocolate) (sister John ?x))

meaning "Is there someone who likes chocolate who is John's sister?" is not legal because the first
clause does not have a bound frame argument and thus would require a global search of a

3

2 Sections 2.1 through 2.4 are derived from Chapters 1 and 7 of [Crawford, 1990].

(single-indexed, frame-based) knowledge base. In practice, this limitation does not severely re-
strict expressiveness because a knowledge base can always be constructed with one "root"
frame containing relations to every other frame in the KB, thus allowing the equivalent of a
global search starting from the "root" frame of the KB. Access limitation is commonly used in
many efficient Prolog-style programs to restrict search, even though it is not required by Prolog.

Rules in ALL are constructed using access paths in the antecedent and consequent of the
rule. Forward-chaining rules are illustrated by the following example:

((sister John ?x) ;; Every sister of John who likes
(likes ?x chocolate)) ;; chocolate is a chocolate lover.

→
((chocolate-lover ?x true))

A forward-chaining rule activates when an assertion to the KB matches (unifies with) the
first clause of its antecedent. The antecedent path is processed in query mode, where the clauses
may retrieve values from the KB. The consequent path is processed in assert mode, in which
fully instantiated clauses are stored in the KB.

A backward-chaining version of the above rule would be:

((chocolate-lover ?x true)) ;; A chocolate lover is any
← ;; sister of John who likes
((sister John ?x) ;; chocolate.

(likes ?x chocolate))

Like forward-chaining rules, the antecedent is processed in query mode and the consequent is
processed in assert mode. A backward-chaining rule activates when a query to the KB matches
(unifies with) the first clause of its consequent.

2.1.1 Antecedent processing

In many rule-based systems, the antecedents are patterns that, when fully matched, cause
the consequent to be processed. These patterns are order-independent, except perhaps for effi-
ciency. For efficient activation, antecedent patterns require an external pattern-matching com-
ponent such as a RETE network. However, in ALL , antecedent clauses are not order-
independent. Clauses may use bindings from preceding clauses.

In ALL , when a rule activates, the antecedent clauses are processed sequentially. If a
clause fails, the antecedent processing stops but a rule continuation is created from the an-
tecedent clause that failed. Rule continuations are forward-chaining rules formed from the par-
tial antecedents of other rules. Rule continuations will complete the antecedent processing if
information later becomes available that makes an antecedent clause true. The use of rule con-
tinuations guarantees that the same deductions will be made independent of the order of asser-
tions. However, some results are still dependent on the order of queries. Rule continuations im-
plement an active form of the RETE pattern-matcher that allows seamless mixed-mode reason-
ing as described in Section 2.5.

4

2.2 Processing modes

The user interacts with the system using the functions tell and ask . Each takes an ac-
cess path as an argument. The former processes the path in assert mode, while the latter process-
es the path in query mode. The processing modes are described below. The user interface con-
tains various macros for creating frame, slots and rules, as well as other useful routines. Fur-
ther information about using the Algernon implementation of ALL can be found in [Kuipers,
1994]. The tables in Figures 2.2 and 2.3 describe the basic forms that ALL can process.

Form Description
ground assertion or ver-
i f y

A form containing no variables.

Non-ground assertion,
query, or verify, with or
without a binding list

A form containing at least one variable.

ground paths (assert,
query, verify)

A sequence of ground assertions, queries or
verifies.

Non-ground paths A sequence of forms, each of which may have
variables but which must form an access
path. The path has an associated binding list.

Figure 2.2. Basic representation forms in access-limited logic.

In either assert or query mode, the system will encounter both ground and non-ground
clauses. The two modes differ in how they treat each type of clause.

Form Example
ground assert/query (status door-3 open 19.57)

assert/verify with vari-
ables and binding list

(status door-3 ?state ?amount)
?state = open, ?amount = 12.12

query with variables and
binding list

(status door-3 ?state ?amount)
?state = open

ground assert/verify path ((status door-3 open 19.90)
(entrance room door-3))

query path ((status door-3 ?state ?amount)
(type ?state ?position-type))

path assert/verify/query
with variables & binding
l i s t

((status door-3 ?state ?amount)
(amount space-available ?amount))

?state = open, ?amount = 6.14

Figure 2.3. Examples of representations in ALL.

5

2.2.1 Assert mode

In assert mode, ground clauses are stored in the KB, while non-ground clauses are treated
as knowledge base queries. If a query returns several values for the unbound variable(s) in a
non-ground clause, the reasoning process will branch and follow each branch (i.e. each binding)
independently. For example, in assert mode the path:

((sister John ?x) (likes ?x cats))

means "All of John's sisters like cats". Processing it will store the "likes cats" fact for every sister
of John. If John has five sisters, processing will make a five-way branch at the first clause, so
the second clause will execute five times, once for each different binding of ?x . The similar
path:

((sister John Judy) (likes Judy cats))

will never branch. Instead it will assert two facts into the KB.
Knowledge base assertions activate relevant forward-chaining rules (called if-added rules)

unless the assertion was already known in the KB. Rule activation is discussed in Section 2.3.

2.2.2 Query mode

In query mode, non-ground clauses are treated as knowledge base queries, as in assert
mode. Likewise, if the KB returns several values for the unbound variable(s) in the clause, the
reasoning process will branch and follow each binding independently. However, in query
mode ground clauses are verified—that is, they return a true result if the clause exists in the KB,
and return a false value otherwise.

Using the example above, in query mode the path :

((sister John ?x) (likes ?x cats))

means "Do any of John's sisters like cats?". The answer is either "No" or one or more "Yes, ?x
does" responses, with ?x bound to each value that makes the statement true.

Each new knowledge base query activates backward-chaining rules (called if-needed rules)
which are processed prior to the query so that they can generate values to be retrieved. If a
query has previously been made, any relevant if-needed rules will have already created rule
continuations which would have asserted any new information. So the duplicate query is guar-
anteed to retrieve every possible piece of information without needing to activate any rules. An
exception to this guarantee occurs when new rules are asserted between any two duplicate
queries. In that case, the query should fire if-needed rules again. For this reason, runtime rule
assertion is not allowed in the ALL theory (although it is allowed in the Algernon implementa-
tion of ALL).

2.3 Rule activation

In ALL, rules are assigned to slots (i.e. relations) or sets. Slot rules are activated when a
slot is asserted or queried. Set rules are activated when a relation involving a member of the set

6

is asserted or queried. The set member must be the first argument of the relation. During rule
activation, rules are first retrieved from these locations. Then the key clause of the rule (the first
clause of the antecedent for forward-chaining rules; the first clause of the consequent for
backward-chaining rules) must unify with the query or assertion in order for the rule to acti-
vate. Although in theory rule activations in ALL are processed in parallel, in practice the acti-
vated rules are placed on a queue and processed sequentially. The user can control the order in
which the activated rules are processed.

2.4 Theoretical results for access-limited logic

This section summarizes the completeness and time complexity results from Crawford's
thesis cited above.

2.4.1 Completeness

Since ALL does not allow a global pattern match over frames, reasoning in ALL is not com-
plete. For example, answers to queries such as "What has the color green?" are not directly re-
trievable even though the knowledge base may contain information that could answer the
query. However, a form of completeness called Socratic completeness is supported. If a tutor
provides the right set of leading questions and the knowledge base supports answering those
questions, the query can be answered.

In practice, this means that if one can describe a directed path from a known starting point
to the solution, the solution will be found. Usually this restriction does not seriously limit the
expressiveness of the language. Many logic programs use access-limitation to reduce the execu-
tion time of their systems (by reducing the branching factor), even though they are not required
to do so.

2.4.2 Time complexity

As shown in Chapter 7 of [Crawford, 1990], the upper bound on runtime of a primitive
query or assertion in an ALL system with the restrictions shown below is proportional to:

c5 x o2 x r 5 x f 5v+m

where c is the the maximum number of clauses in the antecedent of any rule in the KB, o is the
number of unique queries and assertions generated by the operation, r is the number of rules
in the knowledge base, f is the number of frames reachable via the operation, v is the maxi-
mum number of variables in any of the rules, and mis the maximum arity of a slot. This equa-
tion is polynomial in the number of frames in the KB, under the following restrictions:

• The number of variables per rule (v) is bounded.

• The maximum arity of any slot (m) is bounded.

• The program is not allowed to assert new frames or rules during execution.

Under these conditions, ALL has a polynomial runtime because it is not expressive enough to

7

represent general solutions to NP-hard problems. Non-polynomial problems can be solved, but
the implementation of a general solution requires an unbounded number of variables.

Implementation of the polynomial guarantee requires that rules not be fired for duplicate
assertions and queries. It is "safe" to not fire rules in these situations because rule continuations
guarantee that the correct results will be returned, as discussed in Sections 2.5 and 2.6.

Even though the time complexity equation is polynomial, it is unclear that it is a useful
polynomial. Because of the way the time complexity is analyzed (it assumes that the program
runs until the knowledge base is "full") it provides an extremely relaxed upper bound on the
run time.

For example, what does the equation tell us about the relatively small system described
below?

r = 10 10 rules

c = 5 5 clauses per rule

o = 5 5 operations per rule

v = 5 5 variables per rule

m = 2 2 maximum arity of a slot

The time complexity becomes:

7.8125 x f 27 x 109

The table below shows how the upper bound varies based on f, the number of reachable
frames:

f time upper bound

10 7.8125 x 1036

100 7.8125 x 1063

1000 7.8125 x 1090

Generously estimating one operation per microsecond, the upper bound for the smallest of the

above systems corresponds to 2.5 x 1023 years. Since the estimated age of the universe is ap-

proximately 1010 years, the time complexity formula does not provide any useful non-

theoretical results.
Clearly, we must resort to experimental results on a wide range of systems to determine

the actual run time effects of access-limited logic.

2.5 Seamless interleaved forward and backward chaining

The ALL integration of forward and backward chained reasoning has several nice features:

• Identical syntax for both forward and backward-chaining rules;
• Requires no external pattern-matching network;

8

• Each unique query need only be derived once. The system guarantees that all available
answers can be directly retrieved for subsequent duplicate queries.

• Knowledge base content is independent of the order of assertions.

OPS5-style matching [Brownston et al, 1985] and use of the RETE network have apparent-
ly hindered the development of good syntaxes for mixed-mode reasoning. In OPS5, the an-
tecedent clauses of its forward-chaining rules are simply patterns to be matched. When a sys-
tem is run, the antecedents are compiled away into a RETE network. This makes backward-
chaining using the same syntax problematic in several ways:

• The antecedents of a backward-chaining rule are a list of sub-goals to be fulfilled, usual-
ly in some reasonable order. But the standard RETE network does not allow for or-
dered retrieval of the antecedents.

• Since the antecedents are compiled away and unordered, the system can not determine
when to fire rules in order to fulfill an antecedent.

These problems have been addressed in several, mostly awkward, ways. The Knowledge-
Works system [Harlequin] uses a uniform rule syntax, but has two inference engines: OPS-style
for forward chaining rules; Prolog for backward chaining rules. The M.4 system [Teknowledge]
is primarily a backward chaining system; forward chaining rules have a different syntax.

The MIKE rule-based shell [Eisenstadt and Brayshaw, 1990] has a uniform syntax, but re-
quires the programmer to explicitly state which antecedent clauses should fire backward chain-
ing rules. For example the following forward chaining rule activates a backward chaining rule
via the deduce keyword.

;; Forward-chaining rule in MIKE
rule refinement_to_subclass forward

if
goal(refine) &
possible(DiseaseClass) &
deduce allowable(Subclass)

then
announce ['just refined down to subclass ',Subclass] &
add possible(Subclass).

In the above example, allowable(X) is the consequent of a backward chaining rule de-
fined elsewhere. The purpose of the deduce keyword is presumably two-fold:

• It tells the system not to compile the clause into the RETE network.
• It allows efficient activation of backward-chaining rules by clause name.

However, there are several drawbacks to this method: the language requires an extra keyword;
backward chaining does not start until the other clauses are satisfied; and in MIKE the deduc-
tions are not asserted into the KB, and thus have to be recreated each time they are needed.

The Eclipse system [Haley] comes closest to Algernon in its seamless integration of for-

9

ward and backward chaining rules. Eclipse has a uniform syntax for forward and backward
chaining rules with the addition of a goal keyword. Below are a pair of rules, one forward-
chaining and one backward-chaining, in Eclipse .

;; backward chaining rule in Eclipse
(defrule cousin

(goal (cousin ?x ?y))
(parent ?x ?p1)
(parent ?y ?p2)
(sibling ?p1 ?p2)
=>
(assert (cousin ?x ?y)))

;; forward chaining rule
(defrule cousins-may-inherit-trait-goal-generation-1

(has ?x ?trait)
=>
(assert (goal (cousin ?x ?y))))

Although this implementation is more general than the MIKE implementation, we again see the
somewhat ugly explicit invocation of backward chaining rules.

In contrast to the above systems, ALL prescribes a uniform syntax for both forward and
backward chaining rules. It uses query and assert modes to determine which types of rules to
fire. Antecedents are processed in query mode in which any antecedent clause may fire a back-
ward chaining rule.

2.5.1 Rule families

The ECLIPSE system is the only system other than Algernon that addresses the third point
of the features listed at the beginning of this section:

• Each unique query need only be derived once. The system guarantees that all available
answers can be directly retrieved for subsequent duplicate queries.

ECLIPSE and Algernon both automatically convert backward chaining rules into rule families.
A backward chaining rule with n antecedents is converted into a rule family consisting of the
backward chaining rule and n forward chaining rules.

The rule family of a backward chaining rule ensures that every possible conclusion will be
deduced even if the query is made only once. It does this by instantiating the forward chaining
rules as rule continuations when the antecedent clauses are encountered. For example, the
backward chaining rule:

c1 ← a1 a2 a3 RULE17

is automatically transformed into the rule family:

10

c1 ← a1 a2 a3 RULE17
a1 a2 a3 → c1 RULE17-001

a2 a3 → c1 RULE17-002
a3 → c1 RULE17-003

If RULE17 is activated, RULE17-001 is also instantiated with the bindings from the activation of
its root rule, RULE17. If and when clause a2 of any instantiation of either RULE17 or RULE17-
001 is processed, RULE17-002 is instantiated with the appropriate bindings from the active rule.

To illustrate how this works, consider the cousin rule implemented in ALL:

((cousin ?x ?y)
<-
(parent ?x ?p1)
(sibling ?p1 ?p2)
(child ?p2 ?y)
)

Suppose that when the query (cousin Arnold ?c) is made, the knowledge base contains infor-
mation about only one sibling of Arnold's parents. In that case, the query will compute some of
Arnold's cousins. If, later, the new fact (sibling Arnold's-Dad Joe) is asserted, the system may
be able to deduce more cousins for Arnold. We want to system to make these deductions with-
out requiring the user to repeat the cousin query again.

The rule family approach will do this for us. When the new sibling fact is asserted, the
equivalent of RULE17-002 above will activate (because the sibling clause is the second an-
tecedent of the cousin rule). Since this rule continuation is a forward chaining rule, it will de-
duce any newly-found cousins of Arnold and the knowledge in the system will be complete.
The next time a query is made to retrieve Arnold's cousins, the information will already be
there and no further rules need to be fired.

Rule continuations ensure that the set of facts deduced by the knowledge base is indepen-
dent of the order in which other facts are asserted. This is also one of the guarantees of the Rete
network. In many ways, rule continuations are equivalent to a form of the Rete network.

2.5.2 Activating rule continuations

Under the guarantees of access-limited logic, the frame and slot of a clause will be bound
when the clause is processed. Rule continuation closures, which are created as clauses are pro-
cessed, are stored on a special facet of the frame and slot of the clause. If another value is as-
serted into that slot, the closure will activate and continue processing what was originally a
backward chaining rule.

The activation of rule continuations is an exception to the normal ALL method of activat-
ing rules that belong to sets of which a frame is a member. The activations could be placed in
an appropriate set, but the method used in Algernon is more efficient because the rule will be
selected for possible instantiation less often. We should note that rule continuations are created
for antecedents of forward-chaining rules too in order to preserve the independence of knowl-
edge base contents from order of assertion.

11

2.5.3 Comparing OPS-style rules and ALL rules

In OPS-style rules, the antecedent clauses are patterns. When all of the patterns match a
set of facts, the consequent(s) of the rule are asserted. Treating antecedents as a set of facts
makes rule activation independent of the order of assertions. In ALL , antecedents are access
paths that are processed sequentially in query mode. The use of query mode means that back-
ward chaining rules will automatically be activated as necessary.

The sequential processing of antecedents would seem to make the conclusions dependent
on the order in which facts were asserted to the knowledge base. However, as described above,
rule continuations perform the same duty without the need for an external pattern matching
network.

Much work has been invested over the last decade to make RETE-class activation net-
works efficient. The match problem is known to be an NP-hard problem [Tambe and Rosen-
bloom, 1994]. ALL's method, based on rule continuations and activation from rule sets is more
efficient because it partitions the set of rules into locally-active subsets, but it could suffer from
combinatorial space usage. The number of continuations that could be created from a single
rule is Fac, where F is the number of frames capable of instantiating an argument of a slot, a is
the arity of the slot, and c is the number of clauses in the antecedent of a rule. In practice, con-
tinuations tend to collect on certain frame-slots and are not spread all over the knowledge base.

2.6 Summary of Section 2

In this section we have discussed reasoning in ALL, as well as ALL's Socratic completeness
guarantee. If an access-limited path can be described to a solution, ALL guarantees that it will
be found. The time complexity of ALL has a very large polynomial upper bound if the number
of variables per rule is bounded.

ALL 's seamless interleaved forward and backward chaining mechanism is a better design than

many, if not all, existing rule-based systems that support mixed-mode reasoning. It uses rule continua-

tions to maintain the same guarantees as RETE regarding independence of results from assertion order.

12

3 The Algernon Abstract Machine

This section describes the Algernon Abstract Machine (AAM). Included in this section are
methods of compiling and processing ALL statements. The design of the AAM is influenced by
the SECD machine for LISP [Kogge, 1991] and the Warren Abstract Machine (WAM) for Prolog
[Warren, 1977; Aït-Kaci, 1991]. Since Prolog reasoning is resolution-based and ALL reasoning
involves forward-chaining, backward-chaining and rule continuations, the AAM differs signifi-
cantly from the WAM. A LISP-based implementation of the AAM has been implemented as
version 3 of Algernon [Crawford and Kuipers, 1991].

This chapter is intended to serve as a reference manual for future ALL implementations.
Abstract machines are difficult to describe clearly; witness the profusion of nearly incompre-
hensible descriptions of the WAM. In hopes of adding clarity to this document, the AAM in-
structions are introduced gradually as required to handle more complex processing. In addi-
tion, the text attempts to explain why each implementation detail is necessary.

3.1 What is an abstract machine?

Abstract machines provide an operational definition of an algorithm or process. In pub-
lished papers, a process is often described in terms of data flow, set theory or with a series of
theorems and lemmas. Implementing these high-level descriptions is often difficult because
they are at a level of abstraction far removed from the machine level of memory accesses, regis-
ter stores, and elementary computations.

An abstract machine provides a description of a process in terms of registers and atomic
instructions, but in the language of the process. The "machine" component of an abstract ma-
chine can be described like a standard processor with registers, stacks, and heaps, but the data
elements manipulated by the machine are process-specific (e.g. frames and rules) rather than
hardware-specific (e.g. bytes). Implementation of a system based on an abstract machine is
thus easier because the processing details are explicit and the implementor need only translate
process-specific data structures and operations into programming language-level constructs.

In addition, the level of abstraction provided by an abstract machine allows machine-
independent implementations of systems. For example, a rule compiled to abstract machine
code can execute on any implementation of the abstract machine. The clarity of the implemen-
tation and the virtues of portability make abstract machines a popular method for implement-
ing systems that must run on a wide variety of machines. Examples include the programming
languages Algol68 [van Wijngaarden et al, 1975], Prolog [Warren, 1977], Smalltalk [Goldberg,
1986] and Java [Lindholm and Yellin, 1996]

One of the main components of an abstract machine is its set of instructions, which ap-
proximate an assembly language for a hardware-based machine. A compiler or translator is
provided to translate higher-level constructs such as rules into the abstract machine language.
The compiler's output, combined with the definition of each abstract machine instruction, de-
fines the operational semantics of the higher-level operation.

The Algernon Abstract Machine (AAM) utilizes LISP-like data elements (symbols and
lists) to represent rules and binding lists, much like a typical computer uses bits and bytes to
represent strings and structures. The basic AAM operations manipulate data elements or per-
form knowledge-base store and retrieval operations. Consequently, the AAM is more easily

13

implemented in symbol-processing languages such as LISP.

3.2 Architecture of the AAM

The AAM utilizes LISP as its base language and requires a knowledge base management
system, called here the Simple Frame System (SFS). The path compiler and instruction proces-
sor each access both the SFS and LISP, as shown in Figure 3.1. The Simple Frame System is
completely independent of the AAM and is accessed via an interface defined in Appendix D.

LISP

SFS

AAM

Compiler Processor

Rules Paths

Fig. 3.1. The architecture of the Algernon Abstract Machine.

Internally, the AAM has a set of registers, each of which contains a pointer to a symbolic
data structure that is stored in a heap. In the implementation of the AAM described in this r
port, the heap corresponds to the LISP memory area and is managed by LISP. The heap area
the SFS is also managed by LISP.

3.2.1 Registers

The AAM contains several registers; the important ones are the CLAUSE, BINDINGS,
ACTIONS, RESULTS, CODE, ACTIVATE-IA and ACTIVATE-IN registers. A few other regis-
ters, INDEX, RULE, and KEY contain information useful for the user but not essential to the
functioning of the machine. A CONTEXT register is reserved for implementation of a context
mechanism. Figure 3.2 describes the contents of the important registers.

14

register contents
ACTIONS Queue of pending actions
BINDINGS Stack of variable bindings
CLAUSE The clause being processed
CODE AAM instructions to be processed
RESULTS Bindings from successful paths
ACTIVATE-IA Clause used to activate if-added rules
ACTIVATE-IN Clause used to activate if-needed rules

Figure 3.2. Registers in the abstract machine.

3.2.2 Initializing the AAM

When the AAM is reset, the memory and frame system are cleared and loaded with an ini-
tial knowledge base, as described below. At the beginning of each reasoning sequence, the ab-
stract machine is initialized with the path and code to be processed and the initial binding set.
Figures 3.3 and 3.4 illustrate the reset and initialization processes.

reset-machine
-- initialize registers
{ACTIONS, BINDINGS, CLAUSE, CODE,

RESULTS, ACTIVATE-IA, ACTIVATE-IN} ← NIL;

-- initialize the knowledge base
-- (see Appendix C for details of the core KB)
(SFS:RESET)
(load "algy-core-kb");

Fig. 3.3. Instructions to reset the abstract machine.

initialize-machine(code, bindings)

-- initialize registers
CODE ← code ;
BINDINGS ← bindings ;

Fig. 3.4. Instructions to initialize the abstract machine.

3.3 Access-limited logic forms compiled by the AAM

The AAM compiler, described in Chapter 4, accepts as input an access path as defined in
Chapter 2, or a rule whose antecedent and consequent are both access paths. It also accepts a

15

processing mode, query or assert. The compiler returns a list of AAM instructions that, when
processed, will execute the path or rule. Using a relatively simple variable analysis the compil-
er can enforce the restrictions of access limitation at compile time. It can also do type verifica-
tion of slot accesses at compile time. Both of these features speed up and simplify the execution
model of the abstract machine.

3.4 Compiling and executing ALL forms

This section introduces the core set of AAM instructions by way of several examples. The
input to the AAM processing sequence is a path, a mode (ASSERT or QUERY), and an optional
binding list. The following subsections detail how each type of path is compiled and executed,
introducing new abstract machine instructions as necessary. Appendix A contains formal de-
scriptions of all of the AAM instructions.

3.4.1 Bindings, bindings lists, and binding sets

Before proceeding to the instructions, we must precisely define the format in which results
of operations are stored. A variable binding consists of a variable and its binding, which is a
frame or a lower-level data structure. In our list-based data representation, we store bindings
as a dotted pair. Some examples of bindings:

(?x . oak-tree)
(?mom . Hillary)
(?size . 17)

A binding list is a collection of bindings, containing one binding for each variable in the list.
The representation is an association list: a collection of dotted-pairs. An example:

((?x . oak-tree)
(?mom . Hillary)
(?size . 17))

A binding set is a collection of binding lists. The representation is a list of binding lists, with the
constraint that no binding list is duplicated. A binding set is generated when a query returns
multiple values for a variable binding. For example, the query (parent John ?p) might re-
turn two values for ?p, Bill and Mary . The binding set created from these return values
would contain two binding lists:

(((?p . Bill))
((?p . Mary)))

A subsequent query of (parent ?p ?gp) to find the grandparents of John would produce a
binding set containing four binding lists:

(((?p . Bill) (?gp . Carl))
((?p . Bill) (?gp . Connie))
((?p . Mary) (?gp . Doug))

16

((?p . Mary) (?gp . DeAnn))
)

Each binding list in a binding set corresponds to a branch of the search tree. So when an action
is activated from the queue, its binding set contains just one binding list, since an activation
represents one branch of the tree. As further queries are processed, more binding lists are gen-
erated and the binding set grows.

The BINDINGS register always contains a binding set. Results are merged into it, activa-
tions are created from it, and substitutions are made from it.

3.4.2 Rule closures and activations

Rules to be activated are stored in the knowledge base as rule closures, consisting of a rule
name and a binding list. The rule name is the name of a frame that contains the rule's an-
tecedent, consequent and compiled code. A rule continuation is simply a rule closure whose
rule is a partial rule constructed from the antecedents and consequent of a rule provided by the
user.

Rules pending execution are contained in rule activations. A rule activation consists of a set
of AAM registers and their contents. When a rule closure is first activated, it provides the con-
tents of the CODEand BINDINGS registers; the other registers contain NIL .

3.4.3 Ground assert or verify

The :ASSERT and :VERIFY instructions operate on the clause in the CLAUSEregister, so
we must introduce an instruction, :CLAUSE, that stores an item in the register.

:CLAUSE <clause>

Stores <clause> in the CLAUSEregister.

We also introduce the :ASSERT and :VERIFY instructions that perform the assert or veri-
fy.

:ASSERT

Uses the SFS command KB-PUT-VALUE to assert the clause in the
CLAUSEregister into the knowledge base. The return value from KB-
PUT-VALUEis pushed onto the BINDINGS register. The contents of the
CLAUSEregister are copied to the ACTIVATE-IA register (see Section
3.5.1).

The result value can be T, meaning the assertion was successful; :KNOWN,
meaning the assertion was already in the knowledge base; or NIL , mean-
ing that the assertion was unsuccessful. An assertion will fail if the slot or
frame was nonexistent or if the slot was full (as defined by its cardinal-
ity and the current contents of the slot).

17

:VERIFY

Uses the SFS command KB-GET-VALUES to check whether the clause in
the CLAUSEregister is already in the knowledge base. The result is
pushed onto the BINDINGS register.

The result value can be T, meaning the clause was present in the knowl-
edge base; or NIL , meaning that it wasn't.

The compiled form of a ground assertion such as (parent John Mrs-Smith) is thus:

:CLAUSE (parent John Mrs-Smith)
:ASSERT

The compiled form of a verify operation has a similar structure.

3.4.4 Ground query

A simple query, such as (mother John ?mom) utilizes similar instructions. The differ-
ence is that the query produces a set of bindings for the variable(s) in the query. The binding
set is pushed onto the BINDINGS register by the :QUERYcommand.

:QUERY

Uses the SFS command KB-GET-VALUES to retrieve all known instantia-
tions of the clause in the CLAUSEregister. A binding set is produced from
the results and is pushed onto the BINDINGS register. If the binding set is
NIL , the query was unsuccessful.

We also need some instructions to handle binding sets. Since clause processing is
formed in the context of path processing, sometimes when a clause is processed a binding
will be available in the BINDINGS register. At other times there will be none. Thus, we need
commands to both create and manage binding lists.

First, we have a general instruction, :PUSH, to push a value into a register. The BINDINGS
register is the primary recipient of these values.

:PUSH <register> <value>

Pushes the value onto the given register.

Using the above instructions, a ground query can be expressed as:

:PUSH :BINDINGS NIL
:CLAUSE (parent John ?who)
:QUERY

A binding set resulting from a query is combined with the existing binding set so that the com-
bined results can be used with the next clause. The algorithm for binding set merge is de-
scribed in Appendix B. After each query then, we must mer ge binding lists:

18

:MERGE-BINDINGS

Pops the top two binding sets from the BINDINGS register and merges
them into one binding set, which is pushed onto the BINDINGS register.

The basic instruction stream for a query is thus:

:PUSH :BINDINGS NIL
:CLAUSE (parent John ?who)
:QUERY
:MERGE-BINDINGS

Note that :ASSERT instructions are not followed by a :MERGE-BINDINGS instruction because
they do not generate new binding sets.

Values from binding lists are substituted for variables in clauses before the assertion or
query is performed. The AAM instruction to perform this substitution is :SUBST. The compil-
er inserts a :SUBST command before every :ASSERT or :QUERYwhich it has determined will
contain unbound variables at runtime.

:SUBST

Substitutes the values in the topmost binding list into the current clause.

:CLAUSE (parent John ?who)
:SUBST
:QUERY
:MERGE-BINDINGS

3.4.5 Terminating a reasoning stream

In practice, the calling program wants a value returned from the machine. The two most
useful return values are (1) an indication of the success of the operation; and (2) the binding set
created by processing the path. Thus the :RETURNcommand signals the end of a reasoning
stream and the need to return some values. It is executed at the end of each path.

:RETURN <return-type>

This instruction always sets the CODEregister to NIL . In addition it does
one of the following:

If return-type is :SUCCESS, it pushes a new dotted pair onto the RE-
SULTSregister. The first element of the pair is either T or NIL , signifying
the success or failure of the operation. The second element is the binding
set produced by the path.

If return-type is :FAILURE it pops the BINDINGS register (since the path
failed, the bindings are useless).

If return-type is :NOTHING, no result is saved.

A standard code sequence is placed at the end of every compiled path. In most cases, the

19

following sequence allows for both failure (see Section 3.4.7) and success exits. In compiled
rules, the sequence allows for either failure or "nothing" exits, which simply stop execution.
The standard path ending code sequence is:

...

...
:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

while the standard rule path ending code sequence is:
...
...

:END :RETURN :NOTHING
:FAIL :RETURN :FAILURE

The :SUCC, :END, and :FAIL labels are another AAM instruction, which has the form:

:LABEL <label>

Provides a destination for a jump command. If encountered during pro-
cessing, acts as a no-op (i.e. it does nothing).

When printing AAM code, the :LABEL is usually dropped and the label
itself is printed before the succeeding line, unless it is also a label.

3.4.6 Path processing

We have now defined all of the instructions needed to process simple non-branching
paths. The input consists of a path, a mode, and a (possibly empty) binding set. The output is
success value and a set of binding lists. The AAM instructions for a compiled assertion or
query typically include a step to initialize the BINDINGS register; an assert, query, or verify for
every clause in the path; a command to merge bindings after every query; and a terminating
:RETURN to prepare the return value for the caller. Some user-level functions are helpful in
preparing the input and collecting the output. The functions TELL and ASKaccept a path, call
the compiler to convert the path to AAM code, call the processor to process the AAM code, and
present the output to the user. Below is the TELL command. ASKis very similar.

20

(defun TELL (path)

"Asserts the clauses in the path and presents the results."

(let (values-and-bindings)
(setq values-and-bindings

(aam:aam-process (aam:aam-compile path :ASSERT NIL)
NIL))

(cond (values-and-bindings
(format T "~2%TELL succeeded.")
(dolist (result values-and-bindings)

(show-binding-set (cdr result))))
(T

(format T "~2%TELL failed.")))))

The function AAM-PROCESSexecutes the compiled code and returns the contents of the RE-
SULTS register. It is a relatively simple loop that steps through the instructions and executes
each one sequentially.

3.4.7 Disjunctive branching

Consider the following path, which asserts that John is the child of each of his parents:

(tell '((parent John ?parent)
(child ?parent John)))

The alert reader will wonder how the child relation is asserted for both parents. Remember that
in assert mode a non-ground clause is treated as a query. So the first query will typically return
at least two bindings for the variable ?parent . In ALL, any succeeding clauses should be exe-
cuted once for each binding. Therefore, an implicit branch occurs in the reasoning process at
that point. The AAM instruction to perform a branch is :BRANCH.

:BRANCH

For every binding list in the topmost binding set of the BINDINGS regis-
ter, create an activation from the currently executing code and add it to the
ACTIONSregister. If the BINDINGS register is empty, create an activa-
tion with an empty binding list and place it in the ACTIONSregister.

In addition, clear the CODEregister to force one of the activations in the
queue to be selected for execution.

When the activation resumes execution, it begins with the instruction fol-
lowing the :BRANCH.

After each query, the AAM must check for a branch opportunity. Since only the :QUERY
instruction can produce multiple return values, the compiler inserts a :BRANCH instruction

21

after each query, but not after an assert. The compiled form of the above TELL is now:

:PUSH :BINDINGS NIL
:CLAUSE (parent John ?parent)
:QUERY
:MERGE-BINDINGS
:BRANCH
:CLAUSE (child ?parent John)
:SUBST
:ASSERT

:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

Note that the compiler inserts a :SUBST instruction only when compiling the second
clause. It can determine at compile time that the binding set will be empty when the first clause
is processed, so there will be no need to do variable substitution then.

The :SELECT instruction selects an activation from the ACTIONSregister and restores the
registers from its contents. The AAM processor will then begin executing the code from that ac-
tivation.

:SELECT

Selects an activation from the ACTIONS register and restores the AAM
registers from the information in it. By default it selects the topmost activa-
tion, but it can be programmed to select the actions in any order as deter-
mined by a control scheme.

Since the processor does an automatic :SELECT when it encounters an
empty CODEregister, the compiler rarely generates :SELECT statements.

3.4.8 Conjunctive branching

The :BRANCHinstruction described above implements an OR branch–the path succeeds if
any branch succeeds. Algernon has an :ALL-PATHS operator which implements AND branch-
ing. It succeeds if and only if all of its branches succeed. To implement conjunctive branching,
we need two additional instructions, :CONJ-BRANCHand :CONJ-CLEAR. The first is very sim-
ilar to :BRANCHexcept that it tags each activation with a unique (group) ID tag.

:CONJ-BRANCH

Like :BRANCH, it creates a set of activations, one for each binding in the
current binding set. It tags these activations with a common, unique ID. If
any branch fails, the ID is used to find and remove all of the remaining
branches from the ACTIONS register.

If any branch of the conjunction should fail, the conjunction fails and the remaining branches
do not need to be processed. The :CONJ-CLEAR instruction removes any activations in the
ACTIONSregister that have the same ID as the instruction that failed.

22

:CONJ-CLEAR <tag>

Removes any activations in the ACTIONS register that have the same ID
tag as a conjunctive branch that failed.

3.4.9 Handling failure

If a reasoning branch fails, for example by being unable to retrieve any values from a
query, processing of that branch should terminate. For this reason, the compiler includes a
:FAIL? instruction after each assert, query or verify.

:FAIL? <label>

If the last operation failed (signified by a NIL on top of the BINDINGS reg-
ister), it pops the BINDINGS register and jumps to the given label (usually
the label called :FAIL). If the last operation was successful and returned a
set of bindings, this instruction does nothing. If the last operation was suc-
cessful and returned T, the T value is removed from the BINDINGS regis-
ter.

The :FAIL? instruction checks the BINDINGS register for the result of the last operation.
If it failed, the result is removed from the BINDINGS register and the processor jumps to the
given label. Often this is a label representing a failure exit from the path.

As an example that illustrates branching and failure, consider a query that retrieves all of
the grandfathers of Arnold:

(ask '((parent Arnold ?parent) ; Query 1
(parent ?parent ?g-parent) ; Query 2
(gender ?g-parent male))) ; Query 3

This query should return all bindings of ?parent and ?g-parent that satisfy all three queries.
The reasoning tree is shown below:

Q1

Q2 Q2

Q3 Q3 Q3 Q3

?parent = Bob ?parent = Betty

Cassius Carla CassandraCharles

?g-parent:

Fig. 3.7. Search tree for retrieving grandfathers.

23

Therefore, the compiled form should branch twice and check for failure after queries, as shown
in the compiled code below:

:PUSH:BINDINGS NIL
:CLAUSE (PARENT ARNOLD ?PARENT)
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS
:BRANCH

:CLAUSE (PARENT ?PARENT ?G-PARENT)
:SUBST
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS
:BRANCH

:CLAUSE (GENDER ?G-PARENT MALE)
:SUBST
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS

:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

Assuming that the knowledge base contains relevant information about the family tree, the
trace below shows the AAM processing the above code.

24

Ask: ((parent Arnold ?parent) ; Query 1
(parent ?parent ?g-parent) ; Query 2
(gender ?g-parent male))) ; Query 3

Query succeeded. ; Query 1
Query succeeded. ; Query 2, branch 1
Query succeeded. ; Query 3, branch 1
Returning success,

bindings = ((?parent . bob) (?g-parent . Cassius))

Query failed. ; Query 3, branch 2

Query succeeded. ; Query 2, branch 2
Query succeeded. ; Query 3, branch 3
Returning success,

bindings = ((?parent . betty) (?g-parent . Charles))

Query failed. ; Query 3, branch 4

ASK succeeded.
Bindings:

?parent = Bob
?g-parent = Cassius

?parent = Betty
?g-parent = Charles

3.4.10 Examples of path processing

Let's take a look at the code generated and processed for some simple paths. Note that
these paths do no branching, and the code has only limited failure checking. First, a simple
one-clause assert:

(TELL '((mother Arnold Betty))

:PUSH :BINDINGS NIL
:CLAUSE (mother Arnold Betty)
:ASSERT
:FAIL? :FAIL

:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

and the corresponding query:

25

(ASK '((mother Arnold ?mom)))

:PUSH :BINDINGS NIL
:CLAUSE (mother Arnold ?mom)
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS

:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

A multi-clause assert:

(TELL '((mother Arnold Betty)
(father Arnold Bob)))

:PUSH :BINDINGS NIL
:CLAUSE (mother Arnold Betty)
:ASSERT
:FAIL? :FAIL
:CLAUSE (father Arnold Bob)
:ASSERT
:FAIL? :FAIL

:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

and a combination assert and query:

(TELL '((mother Arnold Betty)

(father Arnold ?dad)

:PUSH :BINDINGS NIL
:CLAUSE (mother Arnold Betty)
:ASSERT
:FAIL? :FAIL
:CLAUSE (father Arnold ?dad)
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS

:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

3.5 Rule Activation

The AAM supports both forward-chaining and backward-chaining rules. Forward-
chaining rules, called if-added rules, are activated when an assertion unifies with the key clause of

26

an if-added rule. Except for continuations, which are described in Section 3.6, the key clause of
an if-added rule is the first clause of its antecedent.

Backward-chaining rules, called if-needed rules, are activated when a query unifies with the
key clause of an if-needed rule. The key clause of an if-needed rule is the first clause of its con-
sequent.

3.5.1 Activating if-added rules

If-added rules are activated after a successful new assertion is made. An assertion is new if
it was not previously known in the knowledge base. Therefore, after an assertion is made we
not only need to check for failure with the :FAIL? instruction, we also need to check whether
the assertion was already known. We do this using the :KNOWN?instruction.

:KNOWN? <label>

If the last assertion was known (signified by a :KNOWNvalue on top of the
BINDINGS register), it pops the BINDINGS register and jumps to the given
label. If the last operation was successful and returned a set of bindings,
this instruction does nothing. If the last operation was successful and re-
turned T, the T value is removed from the BINDINGS register.

This instruction is normally used to branch around an instruction that per-
forms if-added rule activation.

The rule activation itself is performed by the :ACTIVATE-IA instruction.

:ACTIVATE-IA

Activates appropriate if-added rules based on the last clause recorded in
the ACTIVATE-IA register. Rules are retrieved, unified with the clause
and, if successfully unified, an activation is created and placed in the AC-
TIONS register.

The first example of Section 3.4.6 shows the compiled form of a simple assertion. The final
addition to its compiled form is to include rule activation as follows:

(TELL '((mother Arnold Betty))

:PUSH :BINDINGS NIL
:CLAUSE (mother Arnold Betty)
:ASSERT
:KNOWN? :L-1
:FAIL? :FAIL
:ACTIVATE-IA
:BRANCH

:L-1 …
:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

Note that the :ACTIVATE-IA instruction is followed by a :BRANCHinstruction. A branch

27

occurs whenever a query returns more than one value, or whenever one or more rules have
been activated. This allows the most appropriate action on the action queue to be selected for
execution. Recall that :BRANCHplaces a copy of the current execution environment on the ac-
tion queue and then empties the CODEregister, thereby ensuring that a :SELECT statement will
be executed to select an action from the queue.

3.5.2 Activating if-needed rules

If-needed rules are activated before a query is attempted. The rules are executed first so
that they can generate information in the KB to be retrieved by the query. In terms of lines of
reasoning, this means that the current line of reasoning must be suspended (put on the queue)
until rule activation has been performed and the activated rules have been executed. Normally,
this is done with a :BRANCHinstruction, but that would leave no way for a rule activation in-
struction to execute. Therefore, we introduce the :SAVE instruction, which is a modified form
of a :BRANCHinstruction.

:SAVE

This instruction is like :BRANCHexcept that it doesn't clear the CODEregis-
ter. It is used only before an :ACTIVATE-IN instruction. It also copies the
current contents of the CLAUSEregister into the ACTIVATE-IN register.

The rule activation itself is performed by the :ACTIVATE-IN instruction. A :SELECT in-
struction after the rule activation causes the activated rules to execute.

:ACTIVATE-IN

Activates appropriate if-needed rules based on the clause to be queried
(and recorded in the ACTIVATE-IN register). Rules are retrieved, unified
with the clause and, if successfully unified, an activation is created and
placed in the ACTIONSregister.

The third example of Section 3.4.6 shows the compiled form of a simple query. The final
addition to its compiled form is to include rule activation as follows:

(ASK '((mother Arnold ?mom)))

:PUSH :BINDINGS NIL
:CLAUSE (mother Arnold ?mom)
:SAVE
:ACTIVATE-IN
:SELECT
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS

:SUCC :RETURN :SUCCESS
:FAIL :RETURN :FAILURE

28

3.6 Compiling rules

Rules are compiled by compiling the antecedent in query mode and the consequent in as-
sert mode and concatenating the two code segments together. There are two differences be-
tween a normal compiled path and a compiled rule. First, the compiled rule either fails, or suc-
ceeds and returns "nothing". This means that after executing a rule, the processor proceeds in a
seamless fashion to the first instruction of the next action.

The second difference is that an executing rule creates continuations for every antecedent.
A continuation, described fully in Section 3.7, is a partial rule consisting of the remaining an-
tecedents and the bindings created from the preceding antecedents. If an assertion is made that
satisfies the first of the remaining antecedents, the rule will continue executing from the point
where the continuation was made.

In order to efficiently create continuations at runtime, all of the possible partial rules are
compiled when the original rule is compiled. If the rule being compiled is Rule57, it may have
several continuation rules named Rule57-002, Rule57-003, etc. The appended number denotes
the clause where the continuation will begin execution if activated.

3.6.1 Compiling backward chaining rules

Backward chaining rules present one unique problem for access limitation. For a slot with
n arguments, it is unknown at compile time which of the n arguments will be bound by an acti-
vating query at runtime. Access limitation states only that the frame and slot will be bound.
The code for the compiled rule may depend on which variables are bound or not.

To handle this situation, the compiler generates up to four versions of the compiled rule,
corresponding to the situations in which zero, one, two or three arguments are bound. If anoth-
er calling configuration arises at runtime, the compiler is called at that time to generate an ap-
propriate version of the compiled rule.

3.7 Rule continuations

Rule continuations are an unusual feature of Algernon. They allow the system to guaran-
tee independence of results from the order of assertions. For example, suppose that a rule has
three antecedent clauses and that when it activates, the first two are satisfied while the third can
not be. Sometime later, when an assertion is made that satisfies the third clause, the rule should
resume processing. In many rule-based systems, this will not happen. In Algernon, a rule con-
tinuation will exist for the third clause. Upon asserting a clause that satisfies the third an-
tecedent, the continuation will activate and complete execution of the rule.

Rule continuations actually correspond to an inline version of the RETE activation net-
work. They allow rules to fire independent of the order of assertions.

In order for continuations to be created at the appropriate times, a compiled rule has
:CONTINUATION instructions at the beginning of every clause processing phase.

:CONTINUATION <continuation-rule-name>

Creates one or more closures consisting of the continuation rule and a
binding list from the current set of bindings and stores them in the KB for
future activation.

29

3.8 Special forms

Algernon has numerous operators that must be handled by the compiler. Some of these
can be compiled into the set of instructions described above, but others need their own instruc-
tion. The AAM recognizes and implements all of the standard Algernon operators. The in-
structions needed to handle them are:

:ANY

Implements the :ANY operator of Algernon. If there is more than one bind-
ing list in the topmost binding-set of the BINDINGS register, pick one at
random and throw the rest away.

:ASK

Implements the :ASK operator of Algernon. Queries the user, accepts input
and either binds a variable or returns a value as specified by the definition
of :ASK .

:BIND <vars> <expr>

Implements the :BIND operator of Algernon. Binds one or more variables
to the result of an expression.

:BOUNDP

Succeeds if the given variable is currently bound.

:BRANCH-USER

Implements the :BRANCHoperator of Algernon, which is different from the
:BRANCHinstruction in the AAM. Unifies the given variables with the re-
sult of evaluating the given expression. Creates a binding list for each uni-
fication and places the resulting binding set on the BINDINGS register.

:CLEAR-SLOT

Implements the :CLEAR-SLOT operator of Algernon. Deletes all values
stored in the frame-slot specified by the current contents of the CLAUSEreg-
ister

:DELETE <frame> <slot> <value>

Implements the :DELETE operator of Algernon. Deletes the frame-slot-
value specified by the current contents of the CLAUSEregister.

:EVAL <expression>

Implements the :EVAL operator of Algernon. Calls the underlying lan-
guage (usually LISP) to evaluate the given expression. This operator al-
ways succeeds and places no result on the BINDINGS register.

30

:KB-DEF-FRAME <var>

Creates a frame in the KB whose name is computed according to the cur-
rent clause. The frame name becomes the binding for var and is added to
the binding set.

:NEQ <value1> <value2>

Implements the :NEQ operator of Algernon. If the two arguments of the
clause are not EQ, the clause succeeds.

:POP <register>

The complement of the previously-described :PUSHinstruction.

:RULES <class> <rule1> <rule2>…

Implements the :RULES operator of Algernon. It calls DEF-RULE on its ar-
guments.

:SHOW

Displays a frame using the SFS print function.

:SKIP <label>

Performs an unconditional jump to a label that occurs later in the code.

:SLOT <name> <domains>

Calls DEF-SLOT on the slot and declares it a member of the SLOT class.

:SRULES <slot> <rule1> <rule2>…

Implements the :SRULES operator of Algernon. It calls DEF-RULE on its
arguments.

:STOP

Halts AAM processing and exits from the top-level call to the AAM proces-
sor.

:SUBR <var> <code>

Executes the given AAM code in a recursive call to the AAM processor. If
var is bound by the code, its binding(s) are retained and available for use
in subsequent clauses. If no variable is given, all results are retained.

:SUBR is used to implement many Algernon instructions, especially those
containing complex forms, such as :OR, and :ALL-PATHS .

31

:SUCCEED? <label>

The opposite of :FAIL? , it jumps to the given label if the previous opera-
tion succeeded.

:TAXONOMY

Implements the :TAXONOMYoperator in Algernon. Defines frames and
taxonomic relations at runtime.

:TEST <expression>

Implements the :TEST operator in Algernon. Succeeds if the expression
evaluates to a non-NIL result.

:UNBOUNDP

Succeeds if the given variable is not bound.

:UNIQUE? <var> <label>

Implements the :THE operator in Algernon. If var has exactly one bind-
ing, the statement succeeds and jumps to the given label. If the variable has
more than one binding, it fails.

:VERIFY

Succeeds if the current clause already exists in the knowledge base. Similar
to :QUERY, but it doesn't activate rules.

32

4 The AAM compiler

The compiler's goal is to turn a path into a list of AAM instructions. The instructions gen-
erated depend on the mode, binding lists (if any) and whether or not a clause is ground. The
compiler is highly recursive and is right-recursive on the path so that it generates the instruc-
tions in the correct order.

aam-compile

(defun aam-compile (path mode bindings
&OPTIONAL (compiling-rule? NIL))

"Returns AAM machine code to be executed. Bindings only
occur in the case where a form is compiled during execution
of a path. For example, when a rule is defined during
execution of a rule, or when a rule is compiled at runtime.

Mode is ASSERT or QUERY."

;; Error checking goes here - make sure the arg is a path.
(let ((the-path (preprocess path))

(index 1))

(compile-path the-path index mode bindings
(mapcar #'car (car bindings))
compiling-rule?)))

compile-path

(defun compile-path (path index mode bindings
bound-variables
&OPTIONAL (compiling-rule? NIL))

"Compiles a path."

(append
(unless *no-bindings* ;; Used by :SUBR

`(:PUSH :BINDINGS ,bindings))
(compile-path-aux path index mode bound-variables

(if compiling-rule?
(list :LABEL :END :RETURN :NOTHING

:LABEL :FAIL :RETURN :FAILURE)
;;else
(list :LABEL :SUCC :RETURN :SUCCESS

:LABEL :FAIL :RETURN :FAILURE))
compiling-rule?)))

The topmost functions, shown above, set up the call to compile-path-aux , which recur-
sively calls itself to compile the given path.

33

compile-path-aux

(defun compile-path-aux (path index mode bound-variables
code
&OPTIONAL (compiling-rule? NIL))

"Recursive form of compile-path."

(if (null path)
code

;;ELSE
(if (null (cdr path))

(compile-clause (car path) index mode bound-variables
code :LAST-CLAUSE compiling-rule?)

;;ELSE
(compile-clause (car path) index mode bound-variables

(compile-path-aux (cdr path) (1+ index)
mode (union (variable-arguments

(car path))
bound-variables)

code compiling-rule?)
NIL compiling-rule?))))

Compile-path-aux detects whether it is compiling the last clause or not. The last clause
does not need a :BRANCHstatement because there will be no further processing of this branch
of the search tree.

The compile-clause function checks for violation of access limitation using the list of
bound variables that is constructed in the above functions. It also checks that slot domains
have the correct type by propagating types among the variables.

It then calls compile-query or compile-assert depending on the current mode and
whether or not the clause is ground. Asserts and queries are compiled as described in Section
3. It may also call a special-purpose function to compile one of Algernon's special forms such
as :ASK .

34

5 Examples of access-limited logic program execution

In this section we show an example of execution of an Algernon program. We show the
results of compiling each Algernon path and illustrate the register changes caused by each com-
mand.

5.1 Defining the taxonomy

In an Algernon program, the first operations performed are additions to the standard tax-
onomy. In the example of this section, we will define the classes People and Vehicles , with
relevant subclasses and instances:

(tell '((:TAXONOMY (Things
(People Jeff Karen)
(Vehicles

(Automobiles montero accord)
(Motorcycles pacific nighthawk))

(Colors blue red white)
))))

In Algernon, :TAXONOMYhas a fairly complex Algernon expansion, and the corresponding
AAM implementation is just as complex. We will show just the code for defining the People
class. First, Algernon forms the expression (:THE ?x (name ?x "People")) , which either
retrieves the predefined class named People , creates a new one, or fails if there is more than
one class named People . It then asserts that the frame People is a subclass of Sets , and that
it is a taxonomic descendant of Things . The equivalent Algernon code for the definition of
People is shown below:

(tell '((:THE ?x (name ?x "People"))
(isa ?x Sets)
(imp-superset ?x Things)))

The corresponding AAM code is shown in the box below. Similar code is produced for
each new class or instance in the taxonomy definition. Lines 1-2 use a :SUBR to search for a
frame named "People". The :SUBR is a recursive call to the AAM processor using the supplied
code. If it fails, processing proceeds to label :L-533 at line 6. If it succeeds with a binding to
the argument variable ?$523 , the binding is checked for uniqueness at line 4. If it is unique,
the code jumps to label :L-534 at line 17. If the search for People succeeded, but not unique-
ly, the path fails in line 5 and jumps to the :FAIL label at the end of the compiled code (not
shown).

If the frame People did not previously exist, lines 6-14 create a new frame, assert its
name, check for failure, and activate if-added rules as needed.

35

1 :PUSH :BINDINGS NIL
2 :SUBR ?$523 (:CLAUSE (NAME ?$523 "PEOPLE") :SAVE

:ACTIVATE-IN :SELECT :QUERY :FAIL?
:FAIL :MERGE-BINDINGS :LABEL :SUCC
:RETURN :SUCCESS :LABEL :FAIL
:RETURN :FAILURE)

3 :FAIL? :L-533
4 :UNIQUE? ?$523 :L-534
5 :SKIP :FAIL
6 :L-533 :CLAUSE (:A ?$523 (NAME ?$523 "PEOPLE"))
7 :KB-DEF-FRAME ?$523
8 :MERGE-BINDINGS
9 :CLAUSE (NAME ?$523 "PEOPLE")

10 :SUBST
11 :ASSERT
12 :KNOWN? :L-535
13 :FAIL? :FAIL
14 :ACTIVATE-IA
15 :BRANCH
16 :L-535
17 :L-534 :MERGE-BINDINGS
18 :CLAUSE (ISA ?$523 SETS)
19 :SUBST
20 :ASSERT
21 :KNOWN? :L-536
22 :FAIL? :FAIL
23 :ACTIVATE-IA
24 :BRANCH
25 :L-536 :CLAUSE (IMP-SUPERSET ?$523 THINGS)
26 :SUBST
27 :ASSERT
28 :KNOWN? :L-537
29 :FAIL? :FAIL
30 :ACTIVATE-IA
31 :BRANCH

Lines 17-24 assert that People is a subclass of Sets , including checks for failure and if-
added rule activation. Lines 25-31 do the same for a relation between People and Things .

The :SUBR instruction used above is needed because we need to know the result of pro-
cessing a sub-path, but the result should not be retained permanently. The solution is to run it
in a separate instance of the AAM virtual machine and note, but not store, the result.

5.2 Defining relations

After the taxonomy is defined, the relations between frames should be declared. Remem-
ber that a relation in logic notation corresponds to a slot in frame notation. The definitions in
Algernon are of slots:

36

(tell '((:SLOT owns (People Vehicles))
(:SLOT drives (People Vehicles))
(:SLOT color (Things Colors))))

The AAM code to assert the above Algernon path is much simpler than the taxonomy de-
scription above. Most of the work is done by the :SLOT instruction, which implements the Al-
gernon :SLOT operator using knowledge base functions. The code is straightforward and pre-
sented without comment below:

1 :PUSH :BINDINGS NIL
2 :CLAUSE (:SLOT OWNS (PEOPLE VEHICLES))
3 :SLOT
4 :CLAUSE (:SLOT DRIVES (PEOPLE VEHICLES))
5 :SLOT
6 :CLAUSE (:SLOT COLOR (THINGS COLORS))
7 :SLOT
8 :SUCC :RETURN :SUCCESS
9 :FAIL :RETURN :FAILURE

5.3 Defining rules

First we'll define a simple forward-chaining rule that states "Any person who drives an Ac-
cord drives a white one."

(tell '((:RULES People
((drives ?person ?v)

(isa ?v accord)
->
(color ?v white))

)))

Like the code above for :SLOT , the compiled code is uninteresting in that all of the work is
done by the :RULES instruction using knowledge base functions. However, the compiled code
for the rule is worth looking at and is shown below.

37

1 :CLAUSE (ISA ?V ACCORD)
2 :SUBST
3 :CONTINUATION RULE22-002
4 :SAVE
5 :ACTIVATE-IN
6 :SELECT
7 :QUERY
8 :FAIL? :FAIL
9 :MERGE-BINDINGS

10 :BRANCH
11 :CLAUSE (COLOR ?V WHITE)
12 :SUBST
13 :ASSERT
14 :KNOWN? :L-633
15 :FAIL? :FAIL
16 :ACTIVATE-IA
17 :BRANCH
18 :L-633
19 :END :RETURN :NOTHING
20 :FAIL :RETURN :FAILURE

First, note that the initial clause in Line 1 is the second clause of the antecedent. Since the
rule is activated by an assertion that matches the first clause, there is no need to process the first
clause again. The rule is initially activated with the bindings created by matching the first
clause. So Line 2 is a :SUBST to substitute those bindings in the second clause. A rule continu-
ation (described in Chapters 2 and 3) is created in Line 3.

Since the first clause processed is a query (because it is in the antecedent), if-needed rules
must be activated before the query is made. This is handled in Lines 4-6 where the state of the
current path is saved, if-needed rules are activated, and an activation is selected for execution.
Finally, the original query is made. Assuming it succeeds, it merges its bindings with the exist-
ing bindings (Line 9) and proceeds to the consequent of the rule. Note that there is no line of
demarcation to note that the rule passes from the antecedent to the consequent. The only
change is that the clauses of the consequent are compiled in assert mode and no continuations
are created for the consequent.

In this case, the consequent clause is a fairly simple assertion. Note that if-added rule acti-
vation (Line 16) is skipped (Line 14) if the assertion was already in the knowledge base. Note
also the :BRANCH(Line 17) following the if-added rule activation. As stated above, reasoning
may branch because of multiple values returned by a query or because of rules that activate.
Finally, in Line 19 successful completion of a rule is signified by an empty :RETURN.

Lets define a simple backward chaining (if-needed) rule that states that a person owns a
certain kind of motorcycle if they also own a blue Mustang.

(tell '((:RULES People
((owns ?person nighthawk)

<-
(owns ?person ?v)
(isa ?v mustang)
(color ?v blue)))))

38

The compiled rule is shown below. Lines 1-10, 11-20 and 21-30 implement clauses one,
two and three of the antecedent, respectively. The consequent clause follows immediately in
Lines 31-38. Notice that the compiled code for a backward chaining rule is indistinguishable
from the compiled code for a forward chaining rule. The difference is in how each is activated.

Other expert system shells create a forward chaining version of every backward chaining
rule for completeness. In these systems, every possible deduction will be made, even though a
relevant query may not yet have been made. Other systems, such as Algernon, prefer to wait
for the query to be made before deducing some facts.

39

1 :CLAUSE (OWNS ?PERSON ?V)
2 :SUBST
3 :CONTINUATION RULE23-001
4 :SAVE
5 :ACTIVATE-IN
6 :SELECT
7 :QUERY
8 :FAIL? :FAIL
9 :MERGE-BINDINGS

10 :BRANCH
11 :CLAUSE (ISA ?V MUSTANG)
12 :SUBST
13 :CONTINUATION RULE23-002
14 :SAVE
15 :ACTIVATE-IN
16 :SELECT
17 :QUERY
18 :FAIL? :FAIL
19 :MERGE-BINDINGS
20 :BRANCH
21 :CLAUSE (COLOR ?V BLUE)
22 :SUBST
23 :CONTINUATION RULE23-003
24 :SAVE
25 :ACTIVATE-IN
26 :SELECT
27 :QUERY
28 :FAIL? :FAIL
29 :MERGE-BINDINGS
30 :BRANCH
31 :CLAUSE (OWNS ?PERSON NIGHTHAWK)
32 :SUBST
33 :ASSERT
34 :KNOWN? :L-644
35 :FAIL? :FAIL
36 :ACTIVATE-IA
37 :BRANCH
38 :L-644
39 :END :RETURN :NOTHING
40 :FAIL :RETURN :FAILURE

5.4 Asking questions and making assertions

Since rules are formulated from queries and assertions, we illustrate the AAM instruction set
using a pair of forward and backward chaining rules. The rules below use 15 of the 18 core in-
structions of the AAM (excluding :VERIFY , :SKIP and :PUSH).

A rule to infer Bill’s aunts can be written as either a forward-chaining rule or a backward-
chaining rule:

40

((mother Bill ?mom) ;;forward-chaining
(sister ?mom ?aunt)
->
(aunt Bill ?aunt))

((aunt Bill ?aunt) ;;backward-chaining
<-
(mother Bill ?mom)
(sister ?mom ?aunt))

The main difference is how they are activated. The first is activated by asserting a mother re-
lation, while the second is activated by querying the aunt relation with a first argument of
Bill . After activation, the backward chaining rule first retrieves all bindings for ?momin
(mother Bill ?mom). After that, the remainder of the rule is processed exactly the same as
the forward-chaining rule. Below are the AAM instructions that implement the backward-
chaining rule. The code for the forward-chaining rule is identical to the last two-thirds of this
code.

:CLAUSE (MOTHER BILL ?MOM)
:CONTINUATION RULE376-001
:SAVE
:ACTIVATE-IN
:SELECT
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS
:BRANCH

:CLAUSE (SISTER ?MOM ?AUNT)
:SUBST
:CONTINUATION RULE376-002
:SAVE
:ACTIVATE-IN
:SELECT
:QUERY
:FAIL? :FAIL
:MERGE-BINDINGS
:BRANCH

:CLAUSE (AUNT BILL ?AUNT)
:SUBST
:ASSERT
:KNOWN? :L-66
:FAIL? :FAIL
:ACTIVATE-IA
:BRANCH

:L-66
:END :RETURN :NOTHING
:FAIL :RETURN :FAILURE

41

48

6 Performance monitoring

Our implementation of the AAM has built-in performance monitoring and statistic gather-
ing mechanisms. Below is a table that shows the number of calls for each AAM instruction for
an example program. We also gather information on time per call, but the majority of the times
are below the resolution of the system clock, and are therefore unreliable. The total runtime
was about 50ms on a Sun UltraSparc 140 running Franz Allegro Common LISP v4.3. About
15KBytes of memory was allocated during the run. The time includes time to compile the ini-
tial tell instruction, but not the time used to compile the rules.

Some of the metered operations do not correspond directly to AAM instructions. For ex-
ample, :INSTANTIATE-SUCC 3 denotes how many of the rule instantiations :INSTANTIATE
4 were successful. The rule instantiations themselves are a subset of the :ACTIVATE-IA 8
and :ACTIVATE-IN 1 instructions.

AAM Instruction Calls

:SELECT 15

:BRANCH 12

:LABEL 12

:CLAUSE 11

:SUBST 10

:ASSERT 9

:FAIL? 9

:KNOWN? 9

:RETRIEVE-RULES 9

:ACTIVATE-IA 8

:UNIFY 5

:INSTANTIATE 4

:RETURN 4

:UNIFY-INST 4

:INSTANTIATE-SUCC 3

:REASONING-OK 3

:MERGE-BINDINGS 2

:ACTIVATE-IN 1

:CONTINUATION 1

:KB-DEF-FRAME 1

:PUSH 1

:QUERY 1

:REASONING-SUCC 1

:UNIFY-FAILED 1

Total Calls 136

The table below shows statistics for the underlying frame system for the same example.

49

Of interest to note are the number of retrievals, which is more than ten times the number of
stores, even though the main operation in question is a store, followed by an if-added rule that
does another store. Also, about two-thirds of the operations are doing simple type-checking.

SFS Instruction Calls

:FRAME-P 198

:SLOT-P 178

:FACET-P 171

:RETRIEVE 161

:SLOT-FULL-P 11

:STORE 11

:SELECT 2

:STORE-NAME 2

:NEW-FRAME 1

:STORE-KNOWN 1

Total Calls 736

6.1 Potential AAM optimizations

The execution trace in Section 5 shows several possible optimizations. For example, the
code sequence :BRANCH :SELECToccurs several times without having any effect on the rea-
soning process. This happens when a branch opportunity (either a query or rule activation) did
not produce a branch. An optimization would be to have the query or rule activation note
when a branch does not occur. The subsequent branch and select could then be bypassed. A
similar optimization could be made for :SAVE when used with :ACTIVATE-IN .

Another minor optimization involves multiple labels at one place. A post-compilation op-
timization pass could consolidate multiple labels into one. However, this optimization will
probably not significantly increase the reasoning speed.

50

7 Conclusions and future research

In this report we have described access-limited logic (ALL) programs and how they are ex-
ecuted. The Algernon Abstract Machine provides an execution base for ALL programs and an as-
sembly language into which they can be compiled. Access-limited logic itself requires approxi-
mately eighteen AAM instructions. We have extended our version of the AAM to provide full
support for the Algernon language, which is a superset of access-limited logic.

Access limitation is enforced by the compiler, which implies that the AAM instructions
could be used in many general-purpose rule-based and logic-based systems. We speculate that
the AAM, WAM and other similar machines could be generalized into a general-purpose Ab-
stract Reasoning Machine capable of supporting any of the current major models of reasoning.

In addition, an abstract machine can serve as an effective interface between external rule-
based systems and a network-accessible knowledge base. Remote rule-based systems compile
user queries, assertions and rules into abstract machine code, send the code to the KB for execu-
tion and await the results. Assuming that the abstract machine is general enough, many exist-
ing rule-based systems and shells could access online KBs without the need for a common high-
level reasoning language. The AAM provides a solid foundation for a remote KB inferencing
interface.

Further information about the Algernon system can be found at the Algernon web site:
http://www.cs.utexas.edu/users/qr/algy/ .

51

52

Bibliography

Aït-Kaci, H. (1991). Warren's Abstract Machine: a tutorial reconstruction. MIT Pr ess, Cambridge.

Brownston, L., R. Farrell, E. Kant and N. Martin (1985). Programming Expert Systems in OPS5:

An Introduction to Rule-Based Pr ogramming, Addison-Wesley, Reading, MA.

Crawford, J. (1990). Access-Limited Logic -- A Language for Knowledge Representation. PhD Thesis,

University of Texas at Austin, TR AI90-141.

Crawford, J. M. and B. J. Kuipers (1991). Algernon -- a tractable system for knowledge

representation. SIGART Bulletin 2(3): 35-44, June 1991.

Doorenbos, R. B. (1993). Matching 100,000 Learned Rules, In: Proceedings of AAAI-93, Washing-

ton, D.C.

Eisenstadt, M. and M. Brayshaw (1990). A Knowledge Engineering Toolkit, BYTE 15(10/11),

October/November 1990. http://kmi.open.ac.uk/pr ojects/projects.html

Forgy, C. L. (1982). RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem, Artificial Intelligence, 19:17-37, September, 1982.

Goldberg, A. and D. Robson (1983). Smalltalk-80: The Language and Its Implementation. Addison-

Wesley.

The Haley Enterprise. The Eclipse system. http://www.haley.com.

Harlequin Corporation. Knowledge Works. http://harlequin.com.

Hewett, R. and M. Hewett (1997). Efficiency Mechanisms for a class of Blackboard Systems, In-

ternational Journal of Artificial Intelligence Tools 6(1):97-125.

Hillis, D. (1985) The Connection Machine, MIT Pr ess, Cambridge, Massachusetts.

Karp, P. D., K. Myers and T. Gruber (1995). The Generic Frame Protocol. In: Proceedings of the

1995 International Joint Confer ence on Artificial Intelligence , pp. 768-774.

Kogge, P. M. (1991). The Architecture of Symbolic Computers. McGraw-Hill, New York.

Kuipers, B. J. (1994). http://www.cs.utexas.edu/users/qr/algy/.

53

Lindholm, T. and F. Yellin (1996). The Java™ Virtual Machine Specification. Addison-Wesley.

Miranker, D. P. and B. J. Lofaso (1991). The Organization and Performance of a TREAT-Based

Production System Compiler. IEEE Transactions on Knowledge and Data Engineering 3(1):3-

10.

Rice, J., Aiello, N. and H. P. Nii (1989). See How They Run…The Architecture and Performance

of Two Concurrent Blackboard Systems, In: Blackboard Architectures and Applications, V. Ja-

gannathan, R. Dodhiawala and L. S. Baum, Eds. Academic Press.

Rumelhart, D. E. and J. L. McClelland. (1986). Parallel Distributed Processing, Vols I and II. MIT

Press, Cambridge, Massachusetts.

Tambe, M. and P. S. Rosenbloom (1994). Investigating Production System Representations for

Non-combinatorial Match. Artificial Intelligence 68(1), 1994.

Teknowledge Corporation. M.4 Expert Systems Software, http://www.teknowledge.com/.

Van Wijngaarden, et al. (1975). Revised Report on the Algorithmic Language ALGOL68, Acta

Informatica 5:1-236.

Warren, D. H. D. (1977). Implementing PROLOG–Compiling Predicate Logic Programs, Vols. 1 and

2, Reports Nos. 39 and 40, Department of Artificial Intelligence, University of Edinburgh, Ed-

inburgh, Scotland, May.

54

Appendix A: Formal definitions of the AAM instruc -
tions

Following are the formal definitions of the eighteen core AAM instructions. Each is de-
fined by its effect on the AAM registers. In the notation, the name of the register is followed by
the original contents of a register and the contents after the instruction has been executed. The
→ symbol should be read as "becomes". X denotes the original contents of the register being
manipulated, while [Reg] denotes the contents of a another register. LISP notation is used to
describe the data. For example an instruction whose action is described by:

B: (NIL . X) → X
IA: → [C]

means that NIL was originally at the top of the B register and was removed by the instruction.
In addition, the contents of the IA register were replaced by the contents of the C register, re-
gardless of the original contents. The registers are represented by letters in bold style as fol-
lows:

A Actions

B Bindings

C Clause

IA If-added activation clause

IN If-needed activation clause

P Program Code

R Results

:ACTIVATE-IA

A: X → X + activate-if-added-rules(IA)

• The '+' is a set addition operation. Entries in the A register may be ordered accord-
ing to the implementation or the application. The application programmer should
be allowed to control the ordering of items in the A register.

:ACTIVATE-IN

A: X → X + activate-if-needed-rules(IN)

• The '+' is a set addition operation. Entries in the A register may be ordered accord-
ing to the implementation or the application. The application programmer should
be allowed to control the ordering of items in the A register.

:ASSERT

IA : → [C]
B: X → (SFS:PUT-VALUE(frame([C]),slot([C]),facet([C])) . X)

55

:BRANCH

for every b ∈ [B] :
A: X → X + make-activation(b, [A] , [C] , [IA] , [IN])

• All other registers are set to NIL in order to force a :SELECT operation.

• Entries in the A register may be ordered according to the implementation or the ap-
plication. The application programmer should be allowed to control the ordering
of items in the A register.

:CLAUSE <clause>

C: → <clause>

:CONTINUATION <rule>

for every b ∈ [B] :
store-rule-closure(<rule>, b, frame([C]), slot([C]),

rule-facet([C]))

:FAIL? <label>

if null(car([B]))
P: FAIL? <label> … :LABEL <label> . X → X

else if atom(car([B]))

B: (a . X) Æ X

else

do nothing

• This checks for failure of the previous action.

:KNOWN? <label>

if (eq :KNOWN (car [B])

P: :KNOWN? <label> … :LABEL <label> . X → X

B: (:KNOWN . X) → X

else

do nothing

:LABEL

P: :LABEL <label> . X → X

:MERGE-BINDINGS

B: (bset1 bset2 . X) → merge-bindings(bset1, bset2) . X

:PUSH <value> <register>

<register>: X → <value> . X

56

:QUERY

let values = SFS:get-values(frame([C]),slot([C]),facet([C]))

if null(values)
B: X → NIL . X

else
let r = algy-unify(values, args([C]))

B: X → (mapcar #'bindings r) . X

• NIL indicates a failed query.

:RETURN <type>

if <type> is:
:SUCCESS: P: → NIL

if null(car([B])
do nothing

else
for every b ∈ car([B])
R: X → (T . (b)) . X

:NOTHING: do nothing

:FAILURE: B: (b . X) → X

:SAVE

• Exactly the same as :BRANCHexcept that the other registers are not set to NIL .

:SELECT

A: X → X - select(X)

• select is a user-definable function that selects one activation from the set of activa-
tions in A. By default, the AAM selects the last action stored. The other registers
are restored from the contents of the selected activation.

:SUBR <var> <code>

let (result . binding-set) = process(<code>);

if null(result)
B: X → (NIL . X)

else if null(<var>)
B: → (binding-set)

else
B: X → (filter(binding-set, <var>) . X)

• If a variable is specified, the binding set returned from the recursive call to the
AAM processor is filtered, leaving only bindings of <var> .

57

: SUBST

C: X → subst(X, (caar [B]))

• The variable bindings in the first binding list of B are substituted for variables in the
current clause.

:VERIFY

let values = SFS:get-values(frame([C]),slot([C]),facet([C]))

if member(args([C]), values)
B: X → T . X

else
B: X → NIL . X

• The equivalent of the LISP equalp function should be used to compare values in
the call to member.

58

Appendix B: Utility functions from Algernon

This section presents the implementation of several non-obvious routines used in Alger-
non for unification and binding set manipulation.

B.1 Unification in access-limited logic

This section defines the unify function as used in ALL. Since ALL does not have complex
patterns, the function is more of a pattern matching function than a general-purpose unification
algorithm such as the one used in Prolog. Also, this function maintains two binding lists; one
for the pattern and one for the clause being matched. This eliminates the need to rename vari-
ables to handle situations in which the pattern and the clause have a variable of the same name.

The input to unify is a pattern to match and an expression to match with it. Both the pat-
tern and the expression have the form of a clause such as (action robot ?location ?be-
havior) . Variables may occur anywhere in either clause.

(defun unify (pattern expression)

(let ((p-and-e-bindings
(unify-aux pattern expression '(NIL . NIL))))

(if (eq (car p-and-e-bindings) :FAILED)
(cons :FAILED NIL)

;;else
;; Some variables in the pattern may have been bound to
;; variables in the expression that now have bindings.
;; Assign bindings to those.

(cons T
(fixup-variables (car p-and-e-bindings)

(cdr p-and-e-bindings))))))

59

(defun algy-unify-aux (pattern expression p-and-e-bindings)

(if (eq (car p-and-e-bindings) :FAILED)
p-and-e-bindings
;;else
(let ((p-bindings (car p-and-e-bindings))

(e-bindings (cdr p-and-e-bindings))
)

;; Instantiate the variables, if possible.
(when (variable-p pattern)

(setq pattern (var-lookup pattern p-bindings)))

(when (variable-p expression)
(setq expression (var-lookup expression e-bindings)))

(cond ((null pattern)
(if (null expression) p-and-e-bindings

(cons :FAILED :FAILED)))
((consp pattern)

(algy-unify-aux (cdr pattern) (cdr expression)
(algy-unify-aux (car pattern)

(car expression) p-and-e-bindings)))

((variable-p pattern)
(setq p-bindings (bind pattern expression

p-bindings))
(cons p-bindings e-bindings))

((variable-p expression)
(setq e-bindings (bind expression pattern

e-bindings))
(cons p-bindings e-bindings))

;; Names are strings, so handle them separately.
((and (stringp pattern)

(not (stringp expression)))
(if (funcall *equalp-test*

(read-from-string pattern) expression)
(cons p-bindings e-bindings)
(cons :FAILED e-bindings)))

continued below

60

algy-unify-aux continued…

;; Names are strings, so handle them separately.
((and (stringp expression)

(not (stringp pattern)))
(if (funcall *equalp-test*

(read-from-string expression) pattern)
(cons p-bindings e-bindings)
;;else
(cons :FAILED e-bindings)))

(T (if (funcall *equalp-test*
pattern expression)

(cons p-bindings e-bindings)
;;else
(cons :FAILED e-bindings)))))))

(defun var-lookup (var bindings)
"Returns the var if it has no binding."

;; Returns either the value of the variable or the variable
;; itself if there is no binding for it.

(let ((entry (assoc var bindings)))

(if entry
(cdr entry)
;;else
var)))

(defun bind (var value bindings)

;; Puts (var . value) on the bindings list unless it finds
;; a binding for that variable already there.
;; If the existing binding is the same, that's fine.
;; If it's different, unification fails.

(let ((entry (assoc var bindings)))

(cond (entry (if (eq value (cdr entry))
bindings :FAILED))

(T (cons (cons var value) bindings)))))

A final function, fixup-variables , makes a final pass through the binding list and fixes
or removes any variables that are bound to other variables, since the caller is only interested in
bindings that go from a variable to a non-variable.

61

(defun fixup-variables (p-bindings e-bindings)

;; All variables in the pattern should now have bindings.
;; Some of them need to be found transitively by searching
;; the e-bindings list.
;; This loop fixes up the bindings by finding the correct
;; value. If there is no value, the binding is removed.

(dolist (binding p-bindings p-bindings)
(when (variable-p (cdr binding))

(unless (variable-p (var-lookup (cdr binding)
e-bindings))

(setf (cdr binding) (var-lookup (cdr binding)
e-bindings)))))

;; Some bindings still may be to variables. Remove them as
;; they are of no use to us.

(delete-if #'variable-p p-bindings :key #'cdr))

B.2 Binding set merge

The function below is used to merge two binding sets in the AAM instruction :MERGE-
BINDINGS. It assumes that there are no duplicate bindings in the two binding sets.

(defun merge-binding-sets (new-blset BLSet)
"Returns a set of binding lists. Each input is a set

of binding lists."

;;; We need to do a sort of cross-product.

(cond ((null new-blset) BLSet)
((null BLSet) new-blset)
(T

(mapcan #'(lambda (bl1)
(mapcar #'(lambda (bl2)

(append bl1 (copy-list bl2)))
new-blset))

BLSet))))

62

Appendix C: Initializing the Knowledge Base

The following forms bootstrap and initialize the knowledge base so that ALL reasoning
can begin. Some of the functions used are compatible with the Generic Frame Protocol [Karp,
1995], which provides a KB interface layer above the Simple Frame System. In addition to the
code shown below, ALL requires that the base types :number , :string , :symbol and :list
be recognized and understood by the AAM compiler.

The following forms are copied from the file "algy-core-kb " in the Algernon source di-
rectory.

(in-package :CL-USER)

#|
Appendix A:

Knowledge Base Initialization The following forms will initialize the
knowledge base so that A-L-L reasoning can begin. These forms are written
using the Generic Frame Protocol. In addition to the code shown below, ALL
requires that the base types :number, :string, :symbol and :list be
defined.
|#

(aam:with-aam-silent ;; We don't want output from these assertions.

;;; create the basic facets

(GFP:create-facet 'value NIL NIL) ;; (slot frame <value>)
(GFP:create-facet 'n-value NIL NIL) ;; (not (slot frame <value>))
(GFP:create-facet 'if-added NIL NIL) ;; Forward-chaining rules
(GFP:create-facet 'n-if-added NIL NIL) ;; FC on (not ...)
(GFP:create-facet 'if-needed NIL NIL) ;; Backward-chaining rules
(GFP:create-facet 'n-if-needed NIL NIL) ;; BC on (not ...)

(GFP:create-facet 'slot-if-added NIL NIL) ;; Forward-chaining on slots
(GFP:create-facet 'slot-n-if-added NIL NIL) ;; FC on slot (not ...)
(GFP:create-facet 'slot-if-needed NIL NIL) ;; Backward-chaining on slots
(GFP:create-facet 'slot-n-if-needed NIL NIL) ;; BC on slot (not ...)

(GFP:create-facet 'self-if-added NIL NIL) ;; Rule Continuations
(GFP:create-facet 'self-n-if-added NIL NIL) ;; Rule Continuations, negated

(GFP:create-facet 'cache-if-added NIL NIL) ;; Forward-chaining on slots
(GFP:create-facet 'cache-n-if-added NIL NIL) ;; FC on slot (not ...)
(GFP:create-facet 'cache-if-needed NIL NIL) ;; Backward-chaining on slots
(GFP:create-facet 'cache-n-if-needed NIL NIL) ;; BC on slot (not ...)

(GFP:create-facet 'cache-slot-if-added NIL NIL) ;; FC on slots
(GFP:create-facet 'cache-slot-n-if-added NIL NIL) ;; FC on slot (not ...)
(GFP:create-facet 'cache-slot-if-needed NIL NIL) ;; BC on slots
(GFP:create-facet 'cache-slot-n-if-needed NIL NIL) ;; BC on slot (not ...)

63

(GFP:create-facet 'queries NIL NIL) ;; Storage for Query History

;;; create the basic slots

(with-no-rule-caching ;; We haven't bootstrapped enough yet...
(let ((aam::*forward-chain* NIL)

(aam::*backward-chain* NIL)
(*check-slot-domains* NIL))

(tell '((:slot isa (things sets))
(:slot name (things :string))
(:slot arity (Slots :NUMBER))
))

;; Generic must come before the first time we do an assert,
;; which comes in the next 'tell' after this.

(tell '((:slot generic (things rules))
(arity isa 2) ;; the ARITY slot wasn't available above...
(arity name 2) ;; so we assert these by hand.

))

;;; Bootstrap the top of the hierarchy
;;; We have to be careful to not use slots that aren't defined yet.

(SFS:kb-def-frame 'things)
(SFS:kb-def-frame 'slots)
(SFS:kb-def-frame 'rules)
(SFS:kb-def-frame 'objects)
(SFS:kb-def-frame 'physical-objects)
(SFS:kb-def-frame 'booleans)

(SFS:kb-def-frame 'true)
(SFS:kb-def-frame 'false)

;;; IMP-SUPERSET is related to activation of rules and
;;; propagation of the ISA relation.

(tell '((:slot imp-superset (sets sets)))) ;; taxonomy

;;; Slots related to the inheritance hierarchy

(tell '((:slot member (sets things))))

;;; Define the major class/subclass relation
(tell '((:slot subset (sets sets)) ;; class/subclass

(:slot superset (sets sets))
))

)) ;; end of WITH-NO-RULE-CACHING

64

;;; -------- Done with important bootstrapping ---------------

(let ((*check-slot-domains* NIL)) ;; Don't have enough info to check yet.

;;; 'cardinality' and 'inverse' are already defined as
;;; facets in GFP, but A-L-L views them as slots.

(tell '((:slot cardinality (Slots :NUMBER))
(:slot inverse (Slots Slots))
(:slot complete (Sets Booleans))
(:slot generalization (Slots Slots))
))

(tell '((inverse subset superset)
(cardinality cardinality 1)
(cardinality inverse 1)

))

;;;; In Algernon, Rules and Rule Continuations are stored
;;;; in the knowledge base on frames and facets of frames.
;;;; So the components of a rule are stored in slots.

;;; slots related to rule components

(GFP:create-class 'directions '(objects))
(GFP:create-instance '-> '(directions))
(GFP:create-instance '<- '(directions))

(tell '((:slot antecedent (rules :LIST))
(:slot consequent (rules :LIST))
(:slot code (rules :LIST))
(:slot direction (rules directions))
(:slot index (rules :NUMBER))
(:slot key (rules :LIST))
(:slot root (rules :SYMBOL))
(cardinality antecedent 1)
(cardinality consequent 1)
(cardinality direction 1)
(cardinality key 1)
(cardinality index 1)
(cardinality root 1)))

;;;; Relations between rules and rule continuations

(tell '((:slot instance-of (rules rules))
(cardinality instance-of 1)

(:slot disjoint (sets sets))))

;;; Now we can create some rules The DEFAULT RULES

;;; For every 'member' link we want an 'isa' link, but

65

;;; not necessarily vice-versa. So we don't make
;;; 'member' and 'isa' be inverses.

(tell '((:srules member
((member ?set ?x) -> (isa ?x ?set))
((not (member ?f1 ?f2)) -> (not (isa ?f2 ?f1))))))

;;; This rule propagates inverse links.
(tell '((:srules SLOTS

((inverse ?s1 ?s2)
->
(:SRULES ?s1 ((?s1 ?x ?y) -> (?s2 ?y ?x)))
(:SRULES ?s1 ((not (?s1 ?x ?y)) -> (not (?s2 ?y ?x))))

(:SRULES ?s2 ((?s2 ?y ?x) -> (?s1 ?x ?y)))
(:SRULES ?s2 ((not (?s2 ?y ?x)) -> (not (?s1 ?x ?y))))
)

)))

;;; This rule propagates a "one-way" inverse link for imp-superset.
(tell '((:srules IMP-SUPERSET

((imp-superset ?s1 ?s2)
->
(subset ?s2 ?s1)))))

;; Important transitive closure of imp-superset
(tell '((:srules IMP-SUPERSET

((imp-superset ?a ?b)
(imp-superset ?b ?c)
->
(imp-superset ?a ?c)))))

;; The Generalization slot implements a hierarchy of slots.
;; For example, 'spouse' is a generalization of 'wife'
(tell '((:srules generalization

((generalization ?P1 ?P2)
(arity ?P1 2)
(arity ?P2 2)
->
(:srules ?P1

((?P1 ?x1 ?x2) -> (?P2 ?x1 ?x2)))))

(:srules generalization
((generalization ?P1 ?P2)

(arity ?P1 3) ; and similar for arities 3,4,5.
(arity ?P2 3)
->
(:srules ?P1

((?P1 ?x1 ?x2 ?x3) -> (?P2 ?x1 ?x2 ?x3)))))

(:srules generalization
((generalization ?P1 ?P2)

66

(arity ?P1 4) ; and similar for arities 3,4,5.
(arity ?P2 4)
->
(:srules ?P1

((?P1 ?x1 ?x2 ?x3 ?x4) -> (?P2 ?x1 ?x2 ?x3 ?x4)))))

(:srules generalization
((generalization ?P1 ?P2)

(arity ?P1 5) ; and similar for arities 3,4,5.
(arity ?P2 5)
->
(:srules ?P1

((?P1 ?x1 ?x2 ?x3 ?x4 ?x5) -> (?P2 ?x1 ?x2 ?x3 ?x4 ?x5)))))
))

;;; Now reassert the taxonomy to get all the necessary relations defined.

;;; It is okay to reassert the classes because GFP:CREATE-CLASS
;;; will reuse the old frame. But we need to get rid of the
;;; instances before we do the taxonomy. Otherwise we get
;;; frames like 'TRUE1'

;;; Instances
(sfs::kb-delete-values 'directions 'member) ;; Delete links to -> and <-
(sfs::kb-delete-values 'booleans 'member) ;; Delete TRUE and FALSE

(SFS:kb-delete-frame '->)
(SFS:kb-delete-frame '<-)
(SFS:kb-delete-frame 'TRUE)
(SFS:kb-delete-frame 'FALSE)

;; Recreate the taxonomy
;; This should cause rules to fire.
(GFP:create-class 'things NIL) ;; The two key classes.
(GFP:create-class 'sets NIL)

(tell '((:taxonomy (things
(slots)
(sets)
(rules)
(objects

(sets things objects sets slots)
(booleans false true :complete)
(contexts global-context)
(directions -> <- :complete)
(physical-objects))

))))

;; The imp-superset links came in "too late" for frames created in
;; bootstrapping so we have to add isa links explicitly:
;;

67

(tell '(
(isa things objects)
(isa objects objects)
(isa sets objects)
(isa slots objects)

(isa things things)
(isa objects things)
(isa sets things)
(isa slots things)

(isa things sets)
(isa objects sets)
(isa sets sets)
(isa slots sets)
)

:comment "Algernon Core KB loaded.")

;;; Delete some inconsistencies
(tell '((:delete (not (isa things objects)))

(:delete (not (isa things sets)))
(:delete (not (isa objects sets)))
))

) ;; End of let .. *check-slot-domains* NIL

) ;; End of WITH-AAM-SILENT

68

Appendix D: Specification of the Simple Frame System

This appendix contains a specification of the frame system used in Algernon, an imple-
mentation of access-limited logic. The frame system is used to define all frames, slots and
facets; to keep track of names of frames; and to retrieve, store and delete values from the knowl-
edge base.

The AAM accesses values from the KB via frame, slot, and facet names, but it does not
know or care about the internal format of the KB. The SFS does not know anything about the
AAM and is not dependent on the characteristics of any program that uses it.

As described in Chapter 2, the AAM reasons using clauses of the form (r a b …), but
the SFS stores the relations as frames, where a is the frame name, r is the slot name, and the
facet is value if the clause is positive, and n-value if the clause is negated (the facet is deter-
mined by the AAM).

The SFS implements a straightforward frame-slot-facet representation. Each facet can
have multiple values, up to the value specified by the cardinality of its slot. Since a slot may
have any arity, values are stored as lists. For example, the clause (r F a b c) will be stored
as value (a b c) of slot r of frame F Even binary relations are stored as a list: (r a b) stores
the value (b) . All functions that retrieve values should be consistent in returning values in this
manner.

D.1 General notes

Since the SFS was designed with LISP as the base language, terms referring to language-
level data types such as symbol refer to the definition of the data type in LISP. Similarly, the
values TRUEand FALSEused below refer to T and NIL when the SFS is implemented in LISP.
Equality tests should be performed using the equivalent of the Common LISP equalp function.

D.1.1 Frame names

Frame, slot and facet names are symbols. A frame may have one or more public names,
which are strings. The SFS maintains a Public Name Dictionary to translate to and from public
names. The Public Name Dictionary indexes frames by their (symbolic) name.

Often, a program will attempt to create a frame with a suggested name (a symbol) that is
already in use. It is recommended that a new unique name be created from the symbol by ap-
pending a number to the end of the suggested name. For example, repeated attempts to define
a frame named Box should result in the frames Box1 , Box2 , … being created.

Since the user defines frame, slot and facet names, they are interned in the CL-USER pack-
age when implemented in LISP. Since the SFS is in its own package, the programmer should re-
member to access facet names such as VALUEfrom the CL-USER package. The AAM is also in
its own package. Packages are not discussed further in this document.

D.1.2 Efficiency

The functions FRAME-P, SLOT-P, and FACET-P are called much more often than than any

69

other functions in the system, so they should be optimized. Similarly, retrieval normally occurs
an order of magnitude more often than storage, so retrieval should be optimized.

The SELECTfunction used in GET-VALUESis a simple filter. Its implementation is given
in Section D.10.

D.2 Initializing the knowledge base

RESET

Clears the knowledge base completely, erasing all frames, slots and facets.
Clears the Public Name Dictionary.

D.3 Defining knowledge base components

DEF-FACET facet-name

Creates a frame to represent the facet.

DEF-FRAME suggested-name &KEY (create TRUE)

If a frame by that name already exists
If create is TRUE
Generate a new unique name for the frame and
create the frame as below

else
Print a warning that the frame is being redefined
Return the name of the frame

Create a new frame
Store <frame, name> in the Public Name Dictionary
Return the name of the frame.

DEF-SLOT slot-name domains

If a slot by that name exists already,
Print a warning that the slot is being redefined.
Delete the old slot and associated information.

Create a frame to represent the slot.
Store the slot and its domains.
Return the name of the slot frame.

DECLARE-CONTINUATION frame-name

Declares that the frame is a rule continuation. This status is used in the
function CONTINUATION-P.

70

DECLARE-RULE frame-name

Declares that the frame is a rule. This status is used in the function RULE-
P.

D.4 Knowledge base component type checking

CONTINUATION-P name

Returns TRUE if the name given is a rule continuation, FALSE
otherwise.

FACET-P name

Returns TRUEif the name given is a facet, FALSEotherwise.

FRAME-P name

Returns TRUEif the name given is a frame, FALSEotherwise.

RULE-P name

Returns TRUEif the name given is a rule, FALSEotherwise.

SLOT-P name

Returns TRUEif the name given is a slot, FALSEotherwise.

71

D.5 Knowledge base storage

PUT-VALUE frame slot facet value

If the value was already present in the facet, (using EQUALP)
return :KNOWN

else
if the frame is a frame type and

the slot is a slot type and
the facet is a facet type and
the frame/slot/facet is not SLOT-FULL-P

Store the value in the frame/slot/facet in a FIFO order.
When the slot is NAME,

add the pair <frame, "value"> to the Public Name Dictionary

else
generate an appropriate error message and return FALSE.

D.6 Knowledge base retrieval

ALL-CLAUSES frame

For the given frame, returns all the information stored on it in the VALUE
and N-VALUE facets of every slot, as a list of clausal forms. For example, if
the frame Bessie is the argument, the result might be:

((provides Bessie milk)
(age Bessie 7)
(color Bessie brown)
(legs Bessie 4))

GET-ALL-FRAMES

Returns a list of every frame defined in the system.

72

GET-VALUES frame slot facet &OPTIONAL pattern

If the slot name is NAMEand
the frame is a string type and
the facet is VALUE
Return a list of every frame with that name.

else
if the frame is a frame type and

the slot is a slot type and
the facet is a facet type and

Retrieve the set of values from the given frame/slot/facet.
If there is a pattern,
Return only those values that are selected by the pattern

else
Return all values

else
Generate an appropriate error message and return FALSE.

GET-SLOT-DOMAINS slot

Returns the list of slot domains associated with the slot when it was de-
fined.

ALL-SLOTS-OF-FRAME frame

Returns a list of the slots in use on the frame (ones that have any value for
any facet).

ALL-FACETS-OF-SLOT frame

Returns a list of the facets in use on the given frame and slot.

SLOT-FULL-P frame slot facet

If the facet is the VALUEfacet and
the frame is a frame type,

Find the length of the contents of the frame/slot/facet.
Find the cardinality of the slot (as defined by the

CARDINALITY relation on the slot's frame, if any).
If the cardinality exists and

the cardinality is <= to the length of the contents,
Return TRUE
else
Return FALSE

else
Return FALSE.

73

D.7 Knowledge base deletion

DELETE-FRAME frame

Get all of the public names of the frame (from its NAMEslot).
Delete all of the pairs <frame , public name > from the

Public Name Dictionary.
Reinitialize the frame, erasing all slots, facets and notations

of its type (rule, slot, ...).
Delete the frame from any list kept of all known frames.

DELETE-VALUE frame slot facet value

Delete the value from the frame/slot/facet (using EQUALP).
If that was the last value for the facet,

Remove the facet from the slot.
If that was the last facet for the slot,
Remove the slot from the frame.

DELETE-VALUES frame slot &OPTIONAL facet

If the facet was given,
(delete-all-values frame slot facet)

else
(delete-all-values frame slot VALUE)
(delete-all-values frame slot N-VALUE)

;; Delete-all-values is for internal use only.

delete-all-values frame slot facet

Remove the facet from the slot.
If that was the last facet on the slot,
Remove the slot from the frame.

D.8 Displaying KB information

Most of the print functions are described by examples showing suggested output, since
print routines vary from language to language. These functions should probably belong to the
AAM since they afford special handling to certain facets that the AAM uses. The facets given
special treatment by the print routines are:

n-if-added if-added
n-if-needed if-needed
slot-n-if-added slot-if-added
slot-n-if-needed slot-if-needed
self-if-added self-n-if-added
queries

74

PRINT frame &OPTIONAL stream

If the frame is a facet type
(print-facet frame stream)

else if the frame is a slot type
(print-slot frame stream)

else if the frame is a frame type
(print-frame frame stream)

else
Print an error message.
Return FALSE.

PRINT-FACET frame &OPTIONAL stream

Example: (print 'self-if-needed)
SELF-IF-NEEDED is a facet.

PRINT-FRAME frame &OPTIONAL stream

Example: (print 'bessel)
BESSEL:

NAME: ("Bessel")
ISA: (WORDS)

S1: (X)
NOT-S1: (C)

SELF-IF-ADDED: (#S(RULE-CLOSURE :RULE RULE15-002
:BINDINGS ((?B . B) (?A . A)) :KEY NIL))

(#S(RULE-CLOSURE :RULE RULE15-002
:BINDINGS ((?B . B) (?A . C)) :KEY NIL))

QUERIES: (S1 B ?C)

PRINT-FRAME-NO-RULES frame &OPTIONAL stream

Example: (print-no-rules 'bessel)
BESSEL:

NAME: ("Bessel")
ISA: (WORDS)

S1: (X)
NOT-S1: (C)

PRINT-SLOT frame &OPTIONAL stream

Example: (print 'color)

COLOR is a slot with domains (PHYSICAL-OBJECTS COLORS)
and slots:

<slot-info here, as in PRINT-FRAME>

75

D.9 Public Name Dictionary functions

DELETE-NAME frame public-name

Deletes the entry <frame, public-name> from the Public Name Dic-
tionary.

GET-ALL-NAMES

Returns all <frame, public-name> entries in the Public Name Dictio-
nary.

NAMES-RESET

Empties the Public Name Dictionary.

OBJECTS-NAMED public-name

Returns a list of all frames whose public-name is as given.

STORE-NAME frame public-name

Stores the pair <frame, public-name> in the Public Name Dictio-
nary, if it is not there already.

D.10The SELECT function

Select is used in GET-VALUES to do the equivalent of a database select operation, return-
ing those values that match a given pattern.

(defun select (pattern values)
"Not a user-level function. Returns the members

of the VALUES list that match the pattern."

(remove-if-not #'(lambda (value)
(values-match value pattern))

values))

76

(defun values-match (value pattern)
"Length value = length pattern."

;; If the pattern element is not a variable, see whether it
;; matches the corresponding value element.

(do ((v-arg value (cdr v-arg))
(p-arg pattern (cdr p-arg))
(match T (or (variable-p (car p-arg))

(funcall *equalp-test*
(car v-arg) (car p-arg)))))

((or (not match)
(null v-arg))

match)))

77

