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Abstract

Self-organizing computational models with specific intracorti-
cal connections can explain many functional features of visual
cortex, such as topographic orientation and ocular dominance
maps. However, due to their computational requirements, itis
difficult to use such detailed models to study large-scale phe-
nomena like object segmentation and binding, object recogni-
tion, tilt illusions, optic flow, and fovea–periphery interaction.
This paper introduces two techniques that make large simu-
lations practical. First, a set of general linear scaling equa-
tions for the RF-LISSOM self-organizing model is derived and
shown to result in quantitatively equivalent maps over a wide
range of simulation sizes. This capability makes it possible to
debug small simulations and then scale them up to larger simu-
lations only when needed. The scaling equations also facilitate
the comparison of biological maps and parameters between in-
dividuals and species with different brain region sizes. Second,
the equations are combined into a new growing map method
called GLISSOM, which dramatically reduces the memory and
computational requirements of large self-organizing networks.
With GLISSOM it should be possible to simulate all of human
V1 at the single-column level using existing supercomputers,
making detailed computational study of large-scale phenom-
ena possible.

1 Introduction
Computational models of the self-organization in the visual
cortex have shown that input-driven development can ex-
plain much of its topographic organization, such as retino-
topy, orientation preference, and ocular dominance, as well
as many of its functional properties, such as short-range con-
tour segmentation and binding (Grossberg 1976; Kohonen
1989; von der Malsburg 1973; see Erwin et al. 1995; Swin-
dale 1996 for review). However, other important phenomena
have remained out of reach because they require too much
computation time and memory to simulate. These phenom-
ena, such as orientation interactions between spatially sep-
arated stimuli and long-range visual contour and object in-
tegration, are thought to arise out of specific lateral interac-
tions between large numbers of neurons over a wide corti-
cal area (Gilbert et al. 1996). Simulating such behavior re-
quires an enormous number of specific, modifiable connec-
tions. Currently-practical methods can only model intracorti-
cal interactions abstractly (e.g. SOM, Erwin et al. 1992; Ko-

honen 1989; Obermayer et al. 1990), and thus cannot be used
for such investigations.

In this paper we present two interrelated techniques for
making detailed large-scale simulations practical. First,
we derive a set of linear scaling equations that, when
given a small-scale simulation, make it possible to deter-
mine the parameter settings necessary to perform a large-
scale simulation. The original and scaled simulations have
quantitatively-equivalent map-level and neuron-level organi-
zation; the larger map will just have more detail. Such a cor-
respondence makes it possible to develop a small-scale simu-
lation first using available hardware, then scale it up to study
specific phenomena that require a larger map. The scaling
equations can also help tie parameters from small models to
experimental measurements in larger systems, help determine
simulation sizes needed for realistic simulations, and allow
comparison of species or individuals with brain regions of
different sizes.

Second, we present a modeling approach called GLISSOM
that allows much larger networks to be simulated in a given
computation time and in a given amount of memory. The
simulations begin with a small network, which is gradually
scaled up as it self-organizes. This approach is effective for
two reasons: (1) pruning-based self-organizing models tend
to have peak computational and memory requirements at the
beginning of training, and (2) self-organization tends to pro-
ceed in a global-to-local fashion, with large-scale order estab-
lished first, followed by more detailed local self-organization
(as found in experimental animals; Chapman et al. 1996).
Thus small maps, which are much quicker to simulate and
take less memory, can be used to establish global order, with
larger maps used only to achieve more detailed structure.

Although the primary motivation for GLISSOM is compu-
tational, the scaling process is also well-motivated biologi-
cally, since it represents the integration of new neurons into
an existing region during development. Recent experimental
results suggest that new neurons continue to be added even
in adulthood in many areas of primate cortex (Gould et al.
1999). Moreover, many of the neurons in the immature cortex
corresponding to GLISSOM’s early stages have not yet be-
gun to make functional connections, having only recently mi-
grated to their final positions (Purves 1988). Thus the scaleup
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procedure in GLISSOM corresponds to the gradual process of
incorporating those neurons into the partially-organizedmap.

In the next section the model used in these simulations
is introduced, and in section 3 scaling equations for it are
derived and shown to achieve matching results over a wide
range of simulation sizes. In section 4 the GLISSOM scaleup
procedure is introduced and shown to greatly reduce simula-
tion time and memory requirements while achieving results
similar to the original model. Section 5 shows calculations
that suggest that with GLISSOM it should be possible to sim-
ulate all of human V1 at the single-column level using ex-
isting supercomputers. The remaining sections discuss how
the scaling equations relate to biological systems and how
they can be used to simulate larger, more realistic systems
that would otherwise be intractable.

2 RF-LISSOM model of the visual cortex

The scaling equations and GLISSOM are based on the RF-
LISSOM (Receptive-Field Laterally Interconnected Syner-
getically Self-Organizing Map) computational model of cor-
tical maps. RF-LISSOM has been successfully used to model
the development of ocular dominance and orientation maps,
as well as low-level visual phenomena in the adult, such as tilt
aftereffects and short-range segmentation and binding (Bed-
nar and Miikkulainen 2000; Choe and Miikkulainen 1998;
Miikkulainen et al. 1997; Sirosh and Miikkulainen 1994;
Sirosh et al. 1996). We will first describe the architecture of
the RF-LISSOM model, and then later present our extensions
that allow scaling the network.

RF-LISSOM focuses on the two-dimensional organization
of the cortex, so each “neuron” in the model cortex corre-
sponds to a vertical column of cells through the six layers of
the primate cortex. The cortical network is modeled with a
sheet of interconnected neurons and the retina with a sheet
of retinal ganglion cells (figure 1). Neurons receive affer-
ent connections from broad overlapping circular patches on
the retina. (Since the lateral geniculate nucleus (LGN) ac-
curately reproduces the receptive fields of the retina, it has
been bypassed to simplify the model.) TheN � N network
is projected on to theR � R retinal ganglion cells, and each
neuron is connected to ganglion cells in an area of radiusrA
around its projection. Thus, neurons at a particular cortical
location receive afferents from a corresponding location on
the retina, i.e. its anatomical receptive field (RF). Additional
ganglion cells are included around the borders so that every
neuron will have a complete set of afferent connections. For
an example set of weights, see figure 9a-c in section 4.1.

In addition to the afferent connections, each neuron has
reciprocal excitatory and inhibitory lateral connectionswith
itself and other neurons. Lateral excitatory connections are
short-range, connecting each neuron with itself and its close
neighbors. Lateral inhibitory connections run for compara-
tively long distances, but also include connections to the neu-
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Figure 1:Architecture of the RF-LISSOM network. A small RF-
LISSOM network and retina are shown, along with connectionsto
a single neuron (shown as the large circle). The input is an oriented
Gaussian activity pattern on the retinal ganglion cells (shown by
grayscale coding); the LGN is bypassed for simplicity. The afferent
connections form a local anatomical receptive field (RF) on the sim-
ulated retina. Neighboring neurons have different but highly over-
lapping RFs. Each neuron computes an initial response as a scalar
(dot) product of its receptive field and its afferent weight vector, i.e.
a sum of the product of each weight with its associated receptor.
The responses then repeatedly propagate within the cortex through
the lateral connections and evolve into activity “bubbles”. After the
activity stabilizes, weights of the active neurons are adapted using a
normalized Hebbian rule.

ron itself and to its neighbors.1

The afferent weights are initially set to random values, and
the lateral weights are preset to a smooth Gaussian profile.
The connections are then organized through an unsupervised
learning process. For an orientation map, the input for the
learning process consists of 2-D ellipsoidal Gaussian patterns
representing retinal ganglion cell activations (figure 2a); each
pattern is presented at a random orientation and position. At
each training step, neurons start out with zero activity. The
initial response�ij of neuron(i; j) is calculated as a weighted
sum of the retinal activations:�ij = �0�Xa;b �ab�ij;ab1A ; (1)

where�ab is the activation of retinal ganglion(a; b) within
the receptive field of the neuron,�ij;ab is the corresponding
afferent weight, and� is a piecewise linear approximation of
the sigmoid activation function. The response evolves over

1For high-contrast inputs, long-range interactions must bein-
hibitory for proper self-organization to occur (Sirosh 1995). Op-
tical imaging and electrophysiological studies have indeed shown
that long-range column-level interactions in the cortex are inhibitory
at high contrasts, even though individual long-range lateral connec-
tions between neurons are primarily excitatory (Grinvald et al. 1994;
Hirsch and Gilbert 1991; Weliky et al. 1995). The model uses ex-
plicit inhibitory connections for simplicity since all inputs used are
high-contrast, and since it is such inputs that primarily drive adapta-
tion in a Hebbian model.
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