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Abstract

In certain tasks such as pursuit and evasion, multiple agezed to coordinate their behavior to achieve
a common goal. An interesting question is, how can such hehéest be evolved? When the agents
are controlled with neural networks, a powerful method i€devolve them in separate subpopulations,
and test together in the common task. In this paper, such hoghetalled Multi-Agent ESP (Enforced
Subpopulations) is presented, and demonstrated in a praye task. The approach is shown more efficient
and robust than evolving a single central controller foragents. The role of communication in such
domains is also studied, and shown to be unnecessary andietranental if effective behavior in the task
can be expressed as role-based cooperation rather thamwayization.

1 Introduction

In multi-agent problem solving, several agents work togetio achieve a common goal. Due to their

distributed nature, multi-agent systems can be more affiaieore robust, and more flexible than centralized
problem solvers. To be effective, the agents need to irtesad they need to behave cooperatively rather
than greedily to accomplish a common objective. The ceiggale is how such cooperation can be best
established. First, should the agents be implemented ageséiset of autonomous actors, or should they
be coordinated by a central controller? Second, if the agmmet autonomous, what kind of communication

is necessary for them to cooperate effectively in the task?

This paper explores these questions in the context of madbémning, where a team of neural networks
is evolved using genetic algorithms to solve a cooperatigk.t The Enforced Subpopulations method of
neuroevolution (ESP [7, 8]), which has proven highly effitim single-agent reinforcement learning tasks,
is first extended to multi-agent evolution. The method isiteealuated in a pursuit-and-evasion task where
a team of several predators must cooperate to capture méagtg prey.

The main contribution is to show how the different ways of@ting, evolving, and coordinating a
team of agents affect performance. We demonstrate twasttag results: first, a central-controller neural-
network that is evolved to control the entire team perforoissgantially worse than a set of autonomous
neural networks each evolved cooperatively to controlglsipredator. This result counteracts the common-
sense notion that a centralized controller is useful foaanteMoreover, the agents do not even need to com-
municate to behave cohesively: it is sufficient that theywobe to establish compatible roles in the team.
In fact, communicating teams (where each team member dahe ather team members) consistently per-
formed worse than non-communicating teams (where they eagtsee the prey)! These surprising results
are due to niching in coevolution, which is especially siram ESP. Instead of searching the entire space
of solutions, coevolution allows identifying a set of simpbkubtasks, and optimizing each team member
separately and in parallel for one such subtask. In the exudh agent knows what to expect from the other
agents, and explicit communication is not necessary.



We will begin with a brief review of related work in coopesagicoevolution, multi-agent learning, and
the predator-prey domain. The multi-agent Enforced Subladipns method is then described, followed by
its experimental evaluation. A discussion of future praspef this approach concludes the paper.

2 Background and Related Work

Coevolution in Evolutionary Algorithms refers to maintaig and evolving individuals for different roles in

a common task, either in a single population or in multipleydations. In competitive coevolution, these
roles are adversarial in that one agent’s loss is anothés gaén. In cooperative coevolution, however,
the agents share the rewards and penalties of successeailaresf The kinds of problems that can best
utilize cooperative coevolution are those in which the ofucan be naturally modularized into subcom-
ponents that interact or cooperate to solve the problemh Balsccomponent can then be evolved in its own
population, and each population contributes its best iddal to the solution. For example, Gomez and
Miikkulainen [7] developed a method called Enforced Suhpations (ESP) to evolve populations of neu-
rons to form a neural network. A neuron was selected from paphlation to form the hidden-layer units of
a neural network, which was evaluated on the problem; thed#tnvas then passed back to the participating
neurons. In the multi-agent evolution developed in thisgpape use ESP to evolve each neural network,
but also require that the neural networks cooperate. Ther&3Rod and our extension to it are discussed
in more detail in Section 4.

Potter and De Jong [21] outlined an architecture and praafassoperative coevolution that is similar to
that of ESP, and we also use it partially in our approach. 8Mdtter and De Jong focus on methodological
issues such as how to automatically decompose the probtenarimappropriate number of subcomponents
and roles, our focus is on understanding cooperation jtseliuding the efficiency of the different models
of team control and the role of communication.

In a series of papers, Haynes and Sen explored various wagmscofling, controlling, and evolving
predators that behave cooperatively in the predator-poegaih [11, 10, 12]. In the first of these stud-
ies [11], Genetic Programming was used to evolve a populaifcstrategies, where each individual was
a program that represented the strategies of all predatdieiteam. The predators were thus said to be
homogeneous, since they each shared the same behaviatedgtin follow-up studies [10, 12], they devel-
oped heterogeneous predators: each chromosome in theapopwas composed @f different programs,
each one representing the behavioral strategy of one df firedators in the team. They reported that the
heterogeneous predators were able to perform better tleamthogeneous ones. We take a further step in
the direction towards increasing heterogeneity by evgharcontroller for each predator in separate popu-
lations using cooperative coevolution. Also, because E&bkeen shown to be powerful in various control
tasks [7, 8], we use ESP to evolve neural network controllather than Genetic Programming to evolve
program controllers.

The role of communication in cooperative behavior has bégdied in several Artificial Life experi-
ments [26, 4]. These studies have shown that communicatiorbe highly beneficial, allowing the com-
municating individuals to outperform the non-communiegtones. However, most of these studies did not
take into account the cost of communication—-such as theggrexpenditure in signaling, or the danger
of attracting predators, or the complexity of the apparaéapiired. There also exists other forms of co-
operative strategies that do not involve communicatiorr. éxample, Wagner [24] suggested that even in
domains where communication does contribute towardsreplaitask, communicative traits may still not
evolve if they involve a significant cost. Other kinds of cergtive strategies may evolve instead, depending
on other factors such as the nature of the task, populatinsitgeand availability of resources. This idea
is especially relevant to our work, in which agents that dbhave communicative abilities still manage to
evolve cooperative behavior.

Balch [2] examined the behavioral diversity learned by tdleams using reinforcement learning. He
found that when the reinforcement was local, i.e. appliggthsely to each agent, the agents within the
team learned identical behavior; global reinforcementesthdy all agents, on the other hand, produced
teams with more heterogeneous behavior. This result peevéduseful guideline for evolving cooperating
agents: rewarding the whole team for good behavior priedegooperation even when some agents do
not contribute as much as others, while rewarding indiMglirrduces more competitive behavior as each
individual tries to maximize its own reward at the expensthefgood of the entire team. Our work diverges
from Balch’s in focus and implementation: we study the bévaV diversity and niching of evolved teams
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Figure 1: The Predator-Prey Domain. The environment is 400 x 100 toroidal grid, with one prey (denoted by
“X") and three predators (denoted by "1”, "2” and "3"). Theraws indicate current direction of movement.

with respect to global vs. local control and communicatiandg instead of reinforcement learning we use
evolutionary learning on neural networks, which tends e gnore malleable and efficient performance [8].

In sum, the coevolutionary approach seems to be a good natahuiti-agent tasks. The predator-prey
domain is a simple but effective domain to test this hypothes will be discussed next.

3 ThePredator-Prey Domain

The prey capture task used in this paper is a special casergifipavasion problems [15]. Such tasks
consist of an environment with one or more preys and one oempadators. The predators move around
the environment trying to catch the prey, and the prey tiesvade the predators. Pursuit-evasion tasks are
interesting because they are ubiquitous in the naturaldyarld offer a clear objective that requires complex
coordination with respect to the environment, other ageiitts the same goal, and adversarial agents [7].
They are therefore challenging for even the best learnistesys, allow measuring success accurately, and
allow analyzing and visualizing the strategies that evolve

We use this domain to test various approaches to evolutidncantrol. There is one prey and three
predators in the environment (Figure 1). The prey is coletioby a simple algorithm; the predators are
controlled by neural networks. The goal is to evolve the aknetworks to form an efficient team for
catching the prey. The different approaches and technigrgesompared based on how long it takes for the
team to catch the prey, and what kind of strategies they use.

The environment is 400 x 100 square toroid without obstacles or barriers (16 x 100 square is
referred to as the “map” below). All agents can move in 4 dioss: N, S, E, or W. The prey moves as fast
as the predators, and always directly away from the nearedafor. The prey starts at a random location of
the map, and the predators all start at the bottom left cothttre predators have not caught the prey in 150
moves, the trial is terminated and counted as a failure.

Constrained this way, it is impossible to consistently ledke prey without cooperation. First, since the
predators always start at the bottom left corner, behaviegdily would mean that they chase the prey as a
pack in the same direction. The prey would avoid capture bging in away in the same direction. Because
it is as fast as the predators, and the environment is tdrafdzy would never catch it (see Figure 10 for an
illustration of this scenario). On the other hand, shoutdphedators behave randomly, there is little chance
for them to coordinate an approach, let alone maneuver inpaure. The time limit is chosen so that the
predators can travel from one corner of the map to the othieis Way they have enough time to move to
surround the prey, but it is not possible for them to just mmitlund and bump into the prey eventually.

The prey capture task has been widely used to test multitégdravior. For example Benda [5], as well
as Haynes and Sen [10, 12], used this domain to assess tbenp@nte of different coordination systems.
In their variant of the task, the predators were requiredutoosind the prey to catch it. The main difficulty
in this task lies in coordinating the predators to occupygbsitions of the capture configuration: the prey
tends to move either randomly or at a slower speed than tiiaanes, thus allowing the predators to catch
up with it easily. In our domain, on the other hand, it is erffofigr one predator to move onto the prey’s
position for a successful capture. However, the prey mosdas as the predators, and always away from
the nearest predator; there is thus no way to catch the prghysby chasing it. The main difficulty that our
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Figure 2: ESP architecture. Each population contributes a neuron to form the neural o¢wvhich is then
evaluated in the domain. The fitness is passed back to theipating neurons. This is also the scheme used to evolve
the central-controller neural network that controls alieth predators simultaneously. See Figure 4 for a detailed
architecture of this neural network.

predators face is coordinating the chase so that in the engtdy has nowhere to go, which requires a more
long-term strategy.

4 The Multi-Agent ESP Approach

The Enforced Subpopulations Method (The ES?, 8]) is an extension of Symbiotic, Adaptive Neuro-

Evolution (SANE; [17, 18, 16]). SANE is a method of neuro-enion that evolves a population of neurons
instead of complete networks. Neurons are selected fronpdipellation to form the hidden layer of a

neural network, which is evaluated on the problem. The féngghen passed back to all the partaking
neurons of the network equally. ESP extends on SANE by dllgga separate population for each hidden
layer neuron of the network; a number of neuron populatioesttaus evolved simultaneously (Figure 2).
It is thus a cooperative coevolution method of evolving aéaetworks: each neuron population tends to
converge to a role that results in the highest fithess whemdheal network is evaluated. This way, ESP
decomposes the problem of finding a successful network @ueral smaller subproblems, resulting in more
efficient evolution.

In several robot control benchmark tasks, ESP was compareithér neuro-evolution methods such as
SANE, GENITOR [28], and Cellular Encoding [9, 29], as welltather reinforcement learning methods
such as Adaptive Heuristic Critic [3, 1], Q-learning [25],28nd VAPS [14]. ESP turns out to be consistently
the most powerful, solving problems faster, and solvingdbamproblems [8]. It therefore forms a solid
foundation for an extension to multi-agent systems evatuiti

In this paper, ESP is adapted to allow for the simultaneootuen of multiple agents. We evaluate
two approaches of encoding and controlling agents: theraecdntroller approach and the autonomous,
cooperating controllers approach. Each of these entaiffesiaht method of ESP evolution.

In the central-controller approach, all three predatoescantrolled by a single neural network (Fig-
ure 4). Since there is only one network, this system is implaied using the usual ESP method (Figure 2).
In the distributed control approach, each predator is ofiatt by its own network (Figure 5)—there are
thus three autonomous networks that need to be evolvedtainealusly. During each cycle, each network
is formed using the usual ESP method. These three netwoekthan evaluated together in the domain
as a team, and the resulting fitness for the team is distdbaeong the neurons that constitute the three
networks (Figure 3).

1ESP neuroevolution software, as well as sofware for SAN&aglable at www.cs.utexas.edu/users/nn/pages/s@isaftware.html
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Figure 3: Multi-agent ESP architecture. Each predator is controlled by its own neural network, fairfrem its

own subpopulations of neurons. The three neural netwogkiamed and evaluated in the domain at the same time as
a team, and the fithess for the team is passed back to allipatiitg neurons. See Figure 5 for a detailed architecture
of the individual networks.

In both the central-controller and the autonomous-cole®lapproach, the agents were evolved in a
series of incrementally more challenging tasks. Such mergal evolution, or shaping, has been found to
facilitate learning of complex domains, where direct etiolu in the goal task would result in inadequate,
mechanical strategies [7, 22, 6]. Evolution proceeds tjinciive stages: in the easiest task the prey is
stationary, and in each subsequent task the prey moves stea $peed, until in the last task it moves as
fast as the predators. When a team manages to solve the tctaskrconsistently, the next harder task
is introduced. In our domain, incremental learning is paitiry useful because it gives the predators an
opportunity to close in on the stationary or slow-movingypoé the easier tasks and gain experience in
catching the prey at close proximity. Placing the predaittis the final task right from the start does not
give them sufficient exposure to maneuvering close to thg peait is difficult to approach the prey to begin
with. Incremental learning is therefore used to give evolumore experience in the necessary skills that
would otherwise be hard to develop.

The fitness function consists of two components, dependinghether they prey was captured or not:

10

; _{ do—de jf prey not caught
% if prey caught

whered, is the average initial distance from the prdy,is the average final distance from the prey. This
fitness function was chosen to satisfy four criteria:

1. If the prey is caught, we should not privilege or depriydeeams based on the starting scenarios—
that is, the initial distance from the prey must not be a fadtmwever, we should privilege teams if
their ending positions are good—that is, if all predatoesrazar the prey.

2. If the prey is not caught, then we should take into accob@tdistance covered by the predators,
wherein the initial distance from the prey is a factor.

3. Since a successful strategy has to involve surroundirsguaadwiching the prey between two or more
predators, at least one predator must travel the long distahthe map and approach the prey from
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the furthest direction. Thus the time taken for each capemds to be about the same, and should not
be a factor in the fitness function.

4. The fitness function should have the same form througlmeudifferent stages of incremental evolu-
tion, making it simple and convenient to track progress.

The neuron chromosomes are concatenations of the readsalaights on the input and output con-
nections of the neuron. As is usual in ESP, burst mutatiooutiiin delta-coding [27] on these weights is
used as needed to avoid premature convergence. If progresslution stagnates because the populations
have converged, the populations are re-initiated accgrtira Cauchy distribution around the current best
solution. Burst mutation typically takes place at tasks$maons as well as in prolonged evolution in difficult
tasks [7, 8]. However, it only happened a couple of times insimulations, which were not that difficult
for ESP to solve.

5 Experiments

In this section, we conduct two experiments to test our mgpotheses: first, that cooperative coevolution
of autonomous controllers is more effective than evolvimgiatral controller (Section 5.1), and second, that
the agents controlled by autonomous neural networks cain teacooperate even without any communi-
cation between them, and indeed learn more powerful cotpetaehavior in a shorter time compared to
communicating agents (Section 5.2). In addition to quatitié comparisons of performance, Section 5.3
describes and compares actual example behaviors leartieel iree approaches. Finally, in two more ex-
periments, we will test the robustness of the solutions,vaiidrerify that cooperation indeed is necessary
for the task.

In each experiment, there are 30 subpopulations of neurémghe central-controller approach the
neural network has 30 hidden-layer neurons, one from eaopogwlation; in the distributed approach
each predator’s neural network has 10 hidden-layer neut®ash subpopulation consists of 100 neurons.
During each evolutionary cycle, 1,000 trials are run whetbe neurons are randomly chosen from their
subpopulations to form the neural network(s). In each,ttfied team is evaluated six times; the prey starts in
a random location each time, while the predators always istéine bottom-left corner. The fithesses over
the six evaluations are averaged, and assigned to all themsethat constitute the network(s). After the
trials, the top 25% of neurons are recombined using 1-poodsover. The offspring replaces the bottom
bottom 50% of the neurons, and they are then mutated witleaf#.4 on one randomly-chosen weight on
each chromosome, by adding a Cauchy-distributed randome valit.

Note that the environment is stochastic only in the preygstistg location, and this is the only factor
that determines the course of action taken by the preddtoosder to test these strategies comprehensively,
we implemented a suite of benchmark problems. The map wédediinto nine33 x 33 subsquares; in
each trial, each team was tested nine times, with the preyngfat the center of each of these squares in
turn. Such an arrangement provides a sampling of the diffesieuations, and allows estimating the general
effectiveness of each team. A team that manages to catchehénseven out of the nine benchmark cases
is considered to have learned the task reasonably well;na tieat catches the prey in all nine benchmark
cases is considered to have completely solved the taskndedd such a team usually has a 100% success
rate in random, general scenarios.

5.1 Standard Evolution of aCentral Controller vs. Cooper ative Coevolution of Autonomous
Controllers

In this section we compare the results of evolving a singleralenetwork that controls the entire team
against coevolving three separate neural networks, eauhotling a single predator. We shall make the
comparison in terms of the number of evolutionary cyclesladdor the neural network(s) to learn to solve
the task reasonably well; in Section 5.3, the actual thegtoedbehaviors that emerge are described and
compared. The network architectures are shown in Figureglaand they are evolved according to the
scheme outlined in Section 4 above (Figures 2 and 3). Fivalations of each technique were run for 400
evolutionary cycles each.
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Figure 4: Central controller network for all three predators.. This neural network receives the relativeand

y offsets of the prey and the other predators from the perisjee@te. location) of all three predators, and outputs
the movement decisions for all three predators. This wagti as the central controller for the whole team. The
chromosome size of each hidden layer unit is 33 (18 inputs eutputs).
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Figure 5:Controller for a single autonomous cooper ating predator. This neural network autonomously controls
one predator; three such networks are simultaneously egadivthe task. The network receives the relativendy
offsets of the prey and the other two predators as its inpbie dhromosome size of each hidden layer unitis 11 (6
inputs + 5 outputs).



Contral Generationsto Solve 7 Benchmark Casesout of 9 | Teamsthat Evolved to Solve
Mean Standard Deviation 9 Benchmark Casesout of 9
Central 231 116 0 out of 5 simulations
Distributed 87 22 5 out of 5 simulations

Table 1:Learning performance of standard evolution of a central controller ver sus cooper ative coevolution of
multiple cooper ative controllers.

Communication | Generationsto Solve 7 Benchmark Casesout of 9 | Teamsthat Evolved to Solve
Mean Standard Deviation 9 Benchmark Casesout of 9
With 87 22 5 out of 5 simulations
Without 18 7 5 out of 5 simulations

Table 2: Learning performance of cooper ative coevolution of autonomous controllerswith and without com-
munication.

Table 1 shows the mean and standard deviation of the numimmobftionary generations needed for
each approach to learn to solve the task reasonably welkstha be able to catch the prey in at least seven
benchmark cases out of nine. It also lists the number of téhatsearned to solve the task completely—that
is, in all nine benchmark cases.

On average, the coevolution of the three neural networkroleits was almost three times as fast as the
evolution of a centralized controller in finding a reasoeatmlution (the difference is statistically significant
with p > 0.95). Furthermore, the single neural network was unable tovevtd the level of expertise
required to solve all nine benchmark cases within the 400udgoary cycles, whereas the cooperating
neural networks were able to do it every time. These resubigge convincing evidence that a cooperative
coevolution is more powerful than a standard centralizegaach in this task.

5.2 Cooperative Coevolution With vs. Without Communication

In the previous section, we saw how separating the contredoli agent into disjoint autonomous networks
allows for more powerful evolution. Even though the coriend no longer receive direct information about
what the other agents see, the domain is still completelyesgmted in the predator’'s own and the prey’s
offsets. In this section we reduce the available infornmatig preventing the predators from seeing each
other. This way the agents will have to act entirely autoneshg without any direct communication be-
tween them. The objective is to find out whether communicaisonecessary for cooperative behavior to
evolve.

The modified network architecture is shown in Figure 6. Thedptor no longer sees the relative
andy offsets of the other predators, only the offsets of the pBexch networks were evolved with the same
coevolutionary multi-agent ESP method as the communiga@tworks of Figure 5. Again, five simulations
of each system were run for 400 evolutionary cycles.

The learning performance of the communicating and non-conicating controllers is given in Table 2.
Somewhat surprisingly, the non-communicating systermkxhireasonable behavior four times faster on
average (the difference is statistically significant with> 0.99). Both systems also learned to solve the
task completely without exception. These results show élxpticit communication is not necessary for
cooperative behavior to emerge in this task; in fact, sihéerot necessary, it is more efficient to do away
with it entirely. Let us next analyze examples of evolvedawdrs to gain insight into why this is the case.

5.3 Analysesand Comparisons of Evolved Behaviors
In this section, we try to characterize the behaviors thatrgmfrom each approach, and to point out their

differences. We first describe the emergent behavior of ra tfathe autonomous cooperative controllers
without communication, then do the same for the commumigagam, and then compare these two. Finally,
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Figure 6:A non-communicating autonomous controller. This neural network receives the preyandy offsets as
its inputs. Therefore, it controls a single predator withiknowing where the other two predators are (i.e. there is no
communication between them). The chromosome size of eacdehilayer unitis 7 (2 inputs + 5 outputs).
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Figure 7:A sample strategy of a non-communicating team. The predators 2 and 3 are Chasers, pursuing the prey
towards predator 1, which acts as a Blocker.

we will discuss the behavior of the team with a centralizedtimdler compared to the other two.

The main result is that evolution without communicationdaroes teams that evolve specific and rigid
roles for each team member, and that utilize a single effiecttrategy in all cases. On the other hand,
evolution with communication tends to produce teams withrarftexible (although less effective) agents
able to employ two or more different strategies.

Figure 7 illustrates one such successful strategy for acoommunicating team. This strategy involves
2 different roles, which we call the Chaser and the Blockegdptor 1 is a Blocker, while predators 2 and 3
are Chasers. The Blocker only moves in a horizontal diractimoving into and staying on the same vertical
axis as the prey; the Chasers pursue the prey verticallyargsror downwards depending on where the prey
is. The first frame in Figure 7 shows the initial positionsha tigents and the prey. Predator 1, the Blocker,
moves right to get onto the prey’s vertical axis; predatoen@ 3 do the same, while the prey flees from
them. In frame two, the Chasers are more or less in the sarmea¢e&olumn as the prey, and start chasing it
upwards; the Blocker (predator 1) simply keeps on the pragrcal axis. In frame three, the prey has been
trapped between the Blocker and the Chasers, who move ihndarapture. Notice that this strategy requires
no communication between predators: as long as the Blodagkitself on the prey’s vertical axis, and the
Chasers chase the prey vertically, the prey will always gl

Another successful strategy that sometimes emerges ewaluly Chasers. If the Chasers go after the
prey in opposite directions, i.e. one upwards, another éa@wds, they can sandwich the prey between them
and capture it without help from the Blocker. Again, comnoation is not necessary, only the implicit
knowledge that there will be an opposite Chaser in the teaimceShe networks are evolved in separate
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Figure 8:A strategy of a communicating team. This strategy shows more versatility, starting with two €dva and
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Figure 9:Another strategy of the same communicating team asin Figure 8. This time there is a Blocker and two
Chasers throughout, but the movement is horizontal.

populations, it is possible to draw successful teams eltfgrombining Chasers with opposite directions,
or by combining Chasers and Blockers. Sometimes both kifideamns can be formed from the same
population; they constitute divisions of the high-leveblglem into useful general-purpose subtasks, which
can therefore be found very robustly.

Figures 8 and 9 illustrate the behavior of an evolved compaiinig team. Two different strategies
are shown because this team actually displays both of thathakso their combinations and variations,
depending on the prey’s starting location and the locatiah@ other predators at each timestep. Figure 8
illustrates behavior similar to the Chaser-Blocker stgteThe first frame is a snapshot of the starting
position. Predators 1 and 2 are the Chasers, and they startipy the prey upwards. Predator 3 is the
Blocker, and it moves left onto the prey’s vertical axis. RAistpoint, however, it starts chasing the prey
downwards, in Frame 2, until the prey is trapped betweenhadlet predators in Frame 3. Already this
strategy is more versatile as those of the non-commungagams, as a combination of Blocking and
opposite Chasers.

Figure 9 illustrates another strategy employed by the saamt In the first frame, predators 1 and
3 start moving toward the prey diagonally upwards and dowdsyarespectively, while predator 2 moves
upwards until it is horizontal with the prey. By the seconanfie, predators 1 and 3 have started chasing
the prey horizontally until it is trapped between them anedator 2. This strategy is again similar to the
Chaser-Blocker strategy, except this time the prey is @hbhsézontally instead of vertically, and the chase
includes diagonal movement as well.

Although each strategy is similar to those of non-commuirigateams, what is significant here is that
they are employed by one and the same team. This team cansaswmombinations of these strategies,
depending on the situation, for example by starting with and finishing with the other. Thus, each
predator does not have a specific role it has to perform yighit modifies the strategy depending on the
situation. Each predator behaves not only according to teg'sprelative location, but also observes the
other predators in deciding how to act. This way, their efiatis more versatile, but also less efficient.
Whereas the non-communicating teams resemble e.g. playarsvell-trained soccer team, where each
player knows what to expect from the others in each play, #teabior of the communicating teams is
similar to a pickup team where each player has to constantlyitor the others to determine what to do.
Such players can perhaps play with many other kinds of pdayeit not as efficiently.

Of course we have to be somewhat cautious and not attribuheelintelligence and intention to neural
networks that simply manage to adapt to each others’ behdviwvever, the difference in the behavior of
the two approaches is striking: the noncommunicating teapl@ys a single, efficient, failproof strategy in
which each team member is evolved into a specific and rigil while the communicating team adaptively
employs variations and combinations of two (or more) stjiate
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Communication Aver age Number of Benchmark Cases Solved

Prey moves 3 stepseach | Prey moves 3 stepseach | Prey always moves
timeand in random timeand in random right only
direction 20% of time direction 50% of time
With 2.7 2 0
Without 4.3 4.3 1.3

Table 3: Adaptation of communicating and non-communicating teams to novel prey behavior. The noncom-
municing teams are robust as long as their basic strategglits, \wowever, they cannot cope if the prey employs a
consistently different strategy. The results were avedayer the three teams of each approach.

In contrast, none of the evolutions of the centrally-coifgbteams were able to produce a solution to
solve all nine benchmark cases. The cases on which they faiee often characterized by a mechanical
strategy: all predators and the prey would make a step irettne slirection, and since their relative locations
remain unchanged, they would make the same move again aidwagdl time ran out. However, they
behaved similarly to the non-communicating team in thahéaam would try to utilize a single strategy in
all cases, only less cohesively and indeed often failingpéntask.

5.4 How robust arethe solutions?

Although the non-communicating networks work togethee kkwell-trained soccer team, soccer (like most
interesting real-world tasks) is somewhat unpredictalbler example, a player from the other team may
intercept a pass, in which case the team members will haveitiklyg adapt their strategy to cope with
the new situation. To determine how the non-communicatixagnt can deal with such unpredictability, we
conducted a test in which three teams, evolved until theydcsolve all 9 benchmark cases, were pitted
against a prey that behaved differently from those encoedtduring evolution. For comparison, we also
did the same test for communicating teams. Since the nomrzonicating teams’ predators act according
to rigid roles, we expected that they would not be able to tdapvell as the communicating teams’ more
flexible agents.

The results, summarized in Table 3, are surprising: the ammmunicating teams are more robust
against unpredictable preys than the communicating onpparkntly, the first two prey behaviors, which
are noisy versions of the original behavior, are still faanilenough so that the rigid roles are effective:
the teams still catch the prey about 50% of the time. All therag have to do is track the occasional
erratic movement, otherwise their strategy can remaindh@es The communicating teams, however, have
a narrower margin of adaptable situations, particularlyalse their agents tend to switch strategies and
roles based on the current state of the map, and thus gey easiused by the unexpected prey actions.
In the third case, where the prey always moves right, bottmseare unable to adapt. This behavior is
consistently novel, and the agents are evolved not to expect

In sum, teams that have delegated rigid and specific rolds thémbers may be more tolerant to noisy
or unusual situations, as long as the basic strategy ivalid.

5.5 IsCoevolution Necessary?

Although the performance of cooperative coevolution loo&avincing, it does not necessarily mean that
coevolution is essential for the task. Perhaps it is possiévolve good predators individually, and just put
them together into the domain? In this section we demoiesigberimentally that such an approach is not
sufficient, and the agents indeed must be evolved togettsaive the task.

We took a single predator without communication inputs (e in Figure 6) and evolved it alone in
the prey-capture domain with incremental learning usitgstandard ESP method as described in Section 4
and Figure 2. The predator was allowed to evolve until it dowd longer improve its fitness. This process
was repeated twice, each time with a new predator, to prottuee independent but capable predators.
These three predators were then put into the same envirgrandrevaluated in the prey capture task.
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Figure 10:A strategy of threeindividually evolved predators placed on the same environment.. The predators
chase the prey together in the nearest direction but ardestmbatch it

X

The results clearly support coevolution. When a predatolveg alone, it is never able to catch the prey,
since the prey moves at the same speed as the predatorn# teathase the prey but is never able to reduce
the distance between them, and is only capable of prevetitengrey from increasing this distance. When
the 3 individually evolved predators are put together agjatme prey, they all chase the prey in the nearest
direction, and are unable to catch it at all—the prey keepging and maintains the distance (Figure 10).
In other words, coevolution is necessary in this task toweveliccessful cooperative behavior.

6 Discussion

In Section 5.1 we found that evolving a central controlleski@lmost three times as long as coevolving

autonomous cooperating controllers up to a reasonablédéperformance. Furthermore, the centralized

approach was never able to achieve the level of expertisgemetality needed to solve all benchmark cases,
whereas the cooperative approach did so every time. Cdogemevolution appears able to decompose
the task into simpler roles, thereby making it easier tocefor a solution.

Such decomposition is a special case of speciation in égolry systems. Speciation has been widely
used to maintain diversity in evolution. Using various t@goes such as islands and fitness sharing [23,
19, 13], separated populations are encouraged to diveligejireg more efficient search of the solution
space. If these separated populations are further evdlja@tdly and rewarded with a global fitness, they
tend to converge to heterogenous policies that work webtttogr. This is the driving mechanism behind
cooperative coevolution. Thus, the observed cooperatitwden predators is a necessary consequence of
cooperation between populations during evolution.

On the other hand, the central-controller evolution shaldd be able to generate cooperating agents—
after all, the agents are not autonomous, but integral padassingle decision making system. This system
merely has to coordinate its components, much the same way im$ant learns to coordinate his/her legs
to walk. Therefore, in cooperative coevolution the ageetsri to cooperate indirectly through correlated
fitness, whereas in the centralized approach the agent&ectydevolved to cooperate. It is thus somewhat
surprising that the indirect learning is more efficient. tRarmore, the central controller should perform
better because all predators are always completely synidegband coordinated by a single neural network;
there can never be any surprises.

However, such theoretical advantages of the central dietrare accompanied by nontrivial costs.
The central controller must perform more computations tharthree autonomous controllers together. The
central controller has 30 neurons with 33 weights each, @dwthe disjoint-controllers have 30 neurons with
11 weights each (compare Figures 4 and 5); thus, the cemstiiaéivolution has a drastically larger search
space to explore. The central controller coordinates theethgents by linking them together with these
extra weights, whereas the disjoint controllers coordimabre abstractly through niching: each populations
specializes to a useful subtask that can be explored moc@&etty, and combinations of subtasks will most
often lead to good solutions. Therefore, the practicaldaliffy for a central network evolution to optimize all
three agents at once overwhelms the theoretical advantdgemore coordinated and centralized control.

Section 5.2 revealed the unexpected result that predatooscannot see each other evolve to coop-
erate and solve the task about four times faster than pnedttat can. This is surprising because such
communication allows each predator to make a decision basethere the other predators are, as well
as where the prey is, and should theoretically allow for mamaplex strategies to evolve. However, as
discussed in Section 5.3, we found that the non-communigagam always employed a single strategy
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where each agent has a rigid and specific role, whereas thmgnitating team tended to utilize variations
and combinations of two or more strategies and the rolesaraswell delineated. During evolution, each
non-communicating subpopulation converges towards agtig specific functions such that, as long as
each agent performs its role right, the team solves the tastessfully, even though the team members are
entirely invisible to one another. Evolution without commzation thus places strong evolutionary pressure
on each predator to perform its assigned role meticuloulihe assignment of roles appears to take place
through simultaneous adaptive niching: as one agent bégiosnverge to a particular behavior, the other
agents that behave complementarily are rewarded, and éheeaegin to niche into such roles; this in turn
yields a higher fitness, and all predators begin to convergeciooperative roles.

However, not all multi-agent domains may be as efficientlyesb by non-communicating agents. For
example in the predator-prey domain where a capture coafiguris necessary (as used by Benda [5] and
Haynes and Sen [10, 12]) it would be very difficult for the ageio guess the exact locations of the other
agents to achieve successful capture. On the other haritk #dents can let other agents know where
they are, they can effectively coordinate their positiosich a comparison leads to a potentially useful
distinction between communication-based cooperativealieh on one hand, and role-based cooperative
behavior on the other. In the former, agents cooperate bghsgnizing their actions, for example by letting
the others know which capture position has already beemtakédhe latter, agents cooperate by taking on
well-known roles. Our domain is strictly role-based, inttbammunication is not necessary at all. In such
domains, communication is actually a source of noise tharti teams from the best solution. It is also
interesting to note that the capture-configuration domatoarages homogeneously-behaving agents that
tend to share the same strategies of discovering unoccuogj#dre positions and occupying them, whereas
our domain encourages heterogeneous-behaving agentegdlogland perform specific and different roles.
Other domains that involve role-based cooperative behawiy include controlling elevators to most effi-
ciently serve a building, or controlling agents that sedahghweb for information. Such tasks constitute a
most interesting direction for future work.

7 Conclusion

The experiments reported in this paper show that evolvirgraéautonomous, cooperating neural networks
to control a team of agents is more efficient and robust thalvieyg a single centralized controller. We pro-
posed an efficient and natural method for such multi-agempe@tive coevolution, called Multi-Agent ESP.
Furthermore, a class of problems was identified, calledivaked cooperative problems, where communica-
tion is not necessary for success, but may actually makeigeolless effective. Identifying such problems
is still somewhat difficult, although it appears many reakldasks fall in this category. Applying the
approach to such tasks, as well as studying ways to deal withl and changing environments are the main
directions of future work in this area.
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