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Abstract

We consider the problem of how an agent creates a discrete spatial representation from
its continuous interactions with the environment. Such representation will be themin-
imal one that explains the experiences of the agent in the environment. In this paper
we take the Spatial Semantic Hierarchy as the agent’s targetspatial representation, and
use a circumscriptive theory to specify the minimal models associated with this repre-
sentation. We provide a logic program to calculate the models of the proposed theory.
We also illustrate how the different levels of the representation assume different spatial
properties about both the environment and the actions performed by the agent. These
spatial properties play the role of “filters” the agent applies in order to distinguish the
different environment states it has visited.3

1 Introduction

The problem of map building –how an agent creates a discrete spatial representation
from its continuous interactions with the environment– canbe stated formally as an
abduction task where the actions and observations of the agent are explained by con-
nectivity relations among places in the environment[Shanahan, 1996, Shanahan, 1997,
Remolina and Kuipers, 1998]. In this paper we consider the Spatial Semantic Hier-
archy (SSH)[Kuipers, 2000, Kuipers and Byun, 1988, Kuipers and Byun, 1991] as
the agent’s target spatial representation. The SSH is a set of distinct representations
for large scale space, each with its own ontology and each abstracted from the levels
below it. The SSH describes the different states of knowledge that an agent uses in
order to organize its sensorimotor experiences and create aspatial representation (i.e.
a map). Using the SSH representation, navigation among places is not dependent on
the accuracy, or even the existence, of metrical knowledge of the environment.

In order to define thepreferred modelsassociated with the experiences of the agent,
we use a circumscriptive theory to specify the SSH’s (minimal) models. Different mod-
els can exist that explain the same set of experiences. This occurs because the agent

2This work has taken place in the Intelligent Robotics Lab at the Artificial Intelligence Laboratory, The
University of Texas at Austin. Research of the Intelligent Robotics lab is supported in part by NSF grants
IRI-9504138 and CDA 9617327, and by funding from Tivoli Corporation.

3This report is the extended version of the paper[Remolina and Kuipers, 2001] to appear in IJCAI-01,
August, 20001.
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could associate the same sensory description to different environment states, or be-
cause the agent has not completely explored the environment. The different SSH levels
assume different spatial properties about the environmentand the actions performed by
the agent. These spatial properties play the role of “filters” the agent applies in order
to distinguish the different environment states it has visited. For instance, at the SSH
causal level two environment states are considered the sameif any sequence of actions
started at these states renders the same sequence of observations. At the SSH topolog-
ical level, two environment states are considered the same if they are at the same place
along the same paths. Finally, at the SSH metrical level, twoenvironment states are the
same, if it is possible to assign to them the same coordinatesin any frame of reference
available to the agent. In sections 3 and 4 we make precise theclaims above.

Finally, we use the SSH circumscriptive theory as the specification for a logic pro-
gram used to implement the abduction task. In the paper we provide the logic program
for the SSH causal level theory and illustrate how to encode the minimality condi-
tion associated with this theory. We have implemented the program using Smodels
[Niemelä and Simons, 1997] and confirm that the theory yields the intended models.

2 Related Work

The SSH grew out of the TOUR model proposed in[Kuipers, 1977, Kuipers, 1978].
Other computational theories of the cognitive map have beenproposed:[Kortenkamp
et al., 1995, McDermott and Davis, 1984, Leiser and Zilbershatz, 1989, Yeap, 1988].
These theories share the same basic principles: the use of multiple frames of reference,
qualitative representation of metrical information, and connectivity relations among
landmarks. They differ in how they define what a landmark is, or the description (view,
local 2D geometry) associated with a landmark. Except for McDermott and Davis,
none of the theories above has a formal account like the one presented in this paper for
the SSH.

Considering map building as a formal abduction task has beenproposed by Shana-
han[1996, 1997]. He proposes a logic-based framework (based on the circumscriptive
event calculus) in which a robot constructs a model of the world through an abductive
process whereby sensor data is explained by hypothesizing the existence, locations,
and shapes of objects. In Shanahan’s work, space is considered a real-valued coordi-
nate system. As pointed out in[Shanahan, 1997], a problem of Shanahan’s approach
is the existence of many minimal models (maps) that explain the agent’s experiences.
We have alleviated this problem by considering the SSH topological map instead of an
Euclidean space as the agent’s target spatial representation.

The problem of distinguishing environment states by outputs (views) and inputs
(actions) has been studied in the framework of automata theory [Basyeet al., 1995].
In this framework, the problem we address here is the one of finding the smallest au-
tomaton (w.r.t. the number of states) consistent with a given set of input/output pairs.
Without any particular assumptions about the environment or the agent’s perceptual
abilities, the problem of finding this smallest automaton isNP-complete[Basyeet al.,
1995].

The SSH[Kuipers, 2000, Kuipers and Byun, 1988, Kuipers and Byun, 1991] ab-
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stracts the structure of an agent’s spatial knowledge in a way that is relatively indepen-
dent of its sensorimotor apparatus and the environment within which it moves. At the
SSH control level, the agent and its environment are modeled as continuous dynamical
systems whose equilibrium points are abstracted to a discrete set ofdistinctive states.
A distinctive state has associated aviewdescribing the sensory input obtained at that
distinctive state. The control laws, whose executions define trajectories linking these
distinctive states, are abstracted toactions, giving a discrete causal graph representa-
tion for the state space. The causal graph of states and actions can in turn be abstracted
to a topological network ofplaces, pathsandregions(i.e. thetopological map). Local
metrical models, such as occupancy grids, of neighborhoodsof places and paths can
then be built on the framework of the topological network while avoiding global met-
rical consistency problems. In the next sections we formally describe the SSH causal
and topological levels.

3 SSH Causal level

We use a first order sorted language in order to describe the SSH causal level. The
sorts of this language includedistinctive states, views, actionsandschemas. The sort
of distinctive states corresponds to the names given by the agent to the fixpoints of hill-
climbing control strategies. It is possible for the agent toassociate different distinctive
state names with the same environment state. This is the casesince the agent might not
know at which of several environment states it is currently located. A distinctive state
has an associated view. We use the predicateV iew(ds; v) to represent the fact thatv
is a view associated withdistinctive stateds. We assume that a distinctive state has
a unique view. However, we donot assume that views uniquely determine distinctive
states (i.e.V iew(ds; v)^V iew(ds0; v) 6! ds = ds0). This is the case since the sensory
capabilities of an agent may not be sufficient to distinguishdistinctive states.

An action has a unique type, eithertravel or turn, associated with it. We use the
predicateA
tion type(a; type) to represent the fact that the type of actiona is type.
Turn actions have associated a unique turn description, either turnLeft, turnRightor
turnAround. We use the predicateTurn des
(a; des
) to indicate thatdescis the turn
description associated with the turn actiona.

A schema represents an action execution performed by the agent in the environ-
ment. An action execution is characterized in terms of the distinctive states the agent
was at before and after the action was performed.4 We use the predicateCS(s; ds; a; ds0)
to denote the fact that according to schemas, actiona was performed starting at dis-
tinctive stateds and ending at distinctive stateds0. While schemas are explicit objects
of our theory, most of the time it is convenient to leave them implicit. We introduce the
following convenient notation:hds; a; ds0i �def 9s CS(s; ds; a; ds0)hds; type; ds0i �def 9a �hds; a; ds0i ^A
tion type(a; type)	hds; des
; ds0i �def 9a �hds; a; ds0i ^ Turn des
(a; des
)	

4An action execution also has metrical information associated with it. This metrical information repre-
sents an estimate of, for example, the distance or the angle between the distinctive states associated with the
action execution.
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Example 1

Consider a robot moving in the environment depicted in figure1. The robot moves
from distinctive statea to distinctive stateb by performing a follow-midline action,ml.
Then the robot performs the same action to move to distinctive statec. We assume that
all corridor intersections look alike (v+). This set of experiences can be described by
the formulae:A
tion type(ml; travel) ; CS(s1; a;ml; b) ; CS(s2; b;ml; 
) ;V iew(a; v+) ; V iew(b; v+) ; V iew(
; v+) :

a���� �� ����cb a b dc�� ���� �� ��

(a) (b)

Figure 1:(a) Distinctive statesa, b andc are not distinguishable at the causal level. Topological
information is needed in order to distinguish them. (b) All distinctive states are distinguished at
the causal level given the new informationh
; travel; di.

Given this set of experiences, at the SSH causal level distinctive statesa, b andc
are not distinguishable. Any known sequence of actions renders the same set of views.
However, at the SSH topological level all these distinctivestates are distinguishable
since the robot has traveled froma to b and then toc following the samepath (see
example 3). Should the robot continue the exploration and visit distinctive stated, with
view=, then by relying just on known actions and views the agent candistinguish all
distinctive states it has visited (see example 2).fend of exampleg

The agent’s experiences in the environment are described interms ofCS, View,
Action typeandTurn descatomic formulae. Hereafter we useE to denote a particu-
lar agent’s experience formulae. ByHS(E) we denote the formulae stating that the
sorts of schemas, distinctive states, views and actions arecompletely defined by the
sets ofschema, distinctive states, viewandactionconstant symbols occurring inE re-
spectively.5 By DT we denote our domain theory, the formulae stating that: (-) the
setsfturn, travelg, fturnLeft,turnRight,turnAroundg, completely define the sorts ofac-
tion typesandturn descriptions; (-) an action has associated a unique action type ; (-)
distinctive states have associated a unique view; (-) the description associated with an
action is unique; (-) turn actions have associated a turn description; (-) the type of ac-
tions as well as the qualitative description of turn actionsis the one specified inE. The
SSH causal theoryCT(E) defines when two distinctive states are indistinguishable at
the SSH causal level. We use the predicate
eq(ds; ds0) to denote this fact. We will
assume that actions aredeterministic: 6hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00 : (1)

5That sort is completely defined by the constant symbolss1; : : : ; sn means that an interpretation forsort is theHerbrandinterpretation defined by the setfs1; : : : ; sng.
6Throughout this paper we assume that formulas are universally quantified.
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CT(E) is the following nested abnormality theory[Lifschitz, 1995]:7CT (E) = E; HS(E); DT; Axiom 1; CEQ blo
k
whereCEQ block is defined asf max 
eq :
eq(ds; ds0)! 
eq(ds0; ds);
eq(ds; ds0) ^ 
eq(ds0; ds00)! 
eq(ds; ds00);
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v); (2)
eq(ds1; ds2)^hds1; a; ds01i^hds2; a; ds02i!
eq(ds01; ds02) (3)g
It can be proved that the predicateceqdefines an equivalence relation on the sort

of distinctive states. Axiom 44 states that indistinguishable distinctive states have the
same view. Axiom 44 states that if distinctive statesds andds0 are indistinguishable
and actiona has been performed for bothds andds0, then the action links these states
with indistinguishable states. By maximizing
eq we identify distinctive states that
cannot be distinguished by actions and/or views, and thereby minimize the set of states
represented by the model.8

Axioms 44 and 44 allow us to prove the following useful lemma:

Lemma 1 LetA denote a sequence of action symbols. LetA(ds) denote the distinctive
state symbol resulting of starting the sequenceA at distinctive stateds or? if A is not
defined fords.9 Then,
eq(ds; ds0) ^A(ds) 6=? ^A(ds0) 6=?! V iew(A(ds); v) � V iew(A(ds0); v) :
Example 2

Consider the situation depicted in Figure 1b, with the corresponding schemas and
views as in example 1. Using lemma 1 one can conclude that all distinctive states
a, b andc are distinguishable by actions and views alone. For instance,fml;mlg(a) =
, fml;mlg(b) = d, V iew(fml;mlg(a); v+), V iew(fml;mlg(b);=), and conse-
quently,:
eq(a; b). fend of exampleg

The Herbrand models ofCT (E) are in a one to one correspondence with the an-
swer sets[Gelfond and Lifschitz, 1991] of the logic program in Figure 2.10 In this
program, theX andY variables range over distinctive states and the variableV ranges
over views inE. The sets of rules 4 and 5 are the facts corresponding to the agent’s

7See appendix A, page 15.
8See appendix D, page 22, for a throughly discussion on the formal properties of
eq.
9Given an action symbolA and distinctive stateds, A(ds) = ds0 if the schemahds;A; ds0i has been

observed, otherwise,A(ds) =?. Moreover,A(?) =?. The definition is then extended to action sequences
in the standard way. Notice thatA(ds) being well-defined relies on our assumption that actions aredeter-
ministic (Axiom 1).

10See appendix C, page 20, for the definition and properties of answer sets. See appendix F, page 29, for
a proof of the correctness of the logic program in Figure 2.
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experiences. Rule 6 states that an answer set of the program should becompletewith
respect to
eq. Rules 7-9 require
eq to be an equivalence class. Rules 9 and 10 are
the counterpart of axiom 44. Rule 12 is the counterpart of axiom 44. In order to define
the maximality condition of
eq, the auxiliar predicatep(X;Y;X1; Y 1) is introduced.
This predicate reads as“If X andY were the same, thenX1 andY 1 would be the
same”. The predicatedist(X;Y ) defines when distinctive statesX andY are dis-
tinguishable. Constraint 13 establishes the maximality condition on
eq: 
eq(X;Y )
should be the case unlessX andY are distinguishable.11f
s(ds; a; ds0) : : 
s(ds; a; ds0) 2 Eg (4)fview(ds; v) : : view(ds; v) 2 Eg (5)
eq(X; Y );:
eq(X; Y ) :p(X; Y;X; Y ) :p(X; Y;X2; Y 1) p(X; Y;X1; Y 1); 
eq(X1; X2):p(X; Y;X1; Y 2) p(X; Y;X1; Y 1); 
eq(Y 1; Y 2):p(X; Y;X2; Y 2) p(X; Y;X1; Y 1); 
s(X1; A;X2); 
s(Y 1; A; Y 2):p(X; Y; Y 1;X1) p(X; Y;X1; Y 1):p(X; Y;X1; Y 2) p(X; Y;X1; Y 1); p(X;Y; Y 1; Y 2):dist(X; Y ) p(X; Y;X1; Y 1); view(X1; V ); not view(Y 1; V ):dist(X; Y ) p(X; Y;X1; Y 1); not view(X1; V ); view(Y 1; V ):
eq(X; Y );:
eq(X; Y ) : (6) not 
eq(X;X): (7) 
eq(X; Y ); not 
eq(Y;X): (8) 
eq(X; Y ); 
eq(Y;Z); not 
eq(X;Z): (9) 
eq(X; Y ); view(X; V ); not view(Y; V ): (10) 
eq(X; Y ); not view(X; V ); view(Y; V ): (11) not 
eq(X1; Y 1); 
eq(X; Y ); 
s(X;A;X1); 
s(Y;A; Y 1): (12) not 
eq(X; Y ); not dist(X; Y ): (13)

Figure 2:Logic program associated with CT(E).

4 SSH Topological Level

We are to define the SSH topological theory,TT(E), associated with a set of experi-
encesE. The language of this theory is a sorted language with sorts for places, paths

11We have implemented this logic program in Smodels[Niemelä and Simons, 1997]. In the implementa-
tion, one has to add variable domain restrictions to the different rules. For example, rule
eq(X;Y );:
eq(X;Y ) :
becomes 
eq(X;Y );:
eq(X;Y ) dstate(X); dstate(Y )
wheredstate is our predicate to identify the sort of distinctive states.
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andpath directions.12 The main purpose ofTT (E) is to minimize the set of paths and
places consistent with the given experiencesE. A place can be atopological place
(hereafter place) or aregion. A place is a set of distinctive states linked by turn actions.
A region is a set of places. We use the predicatestplaceandis regionto identify these
subsorts. A path defines an order relation among places connected by travel with no
turn actions. They play the role of streets in a city layout. We use the predicatetpathto
identify the sort of paths. By minimizing the extent oftpla
e, is region andtpath we
minimize the sort of places and paths respectively.13 The language of the SSH topo-
logical level includes the following other predicates:teq(ds,ds’)– distinctive statesds
andds0 aretopologicallyindistinguishable;at(ds,p)– distinctive stateds is at placep;
along(ds,pa,dir)–distinctive stateds is along pathpa in directiondir; OnPath(pa,p)
–placep is on pathpa; PO(pa,dir,p,q)–placep is before placeq when facing directiondir on pathpa (PO stands for Path Order).

TT(E) , is the following nested abnormality theory:8p; tpla
e(p) � :is region(p) ; 8pa; tpath(pa) ; (14)fmin is region :CT (E) ; T blo
k ;AT blo
k g
The first line in Axioms 14 says that topological places and regions are the two

subsorts of places, and that the predicatetpath represents the sort of paths. The block
CT(E) is the one defined in the previous section. The blockT block defines the predi-
catesdturn, dtravel, and ~travel such thatdturn is the equivalence closure of the schemash�; turn; �i; dtravel and ~travel are the equivalence and transitive closure of the schemash�; travel; �i.

The blockAT block (Figure 3) is the heart of our theory.14 The purpose of this
block is to define the extent of the predicatestpath, tplace, at, along, POandteq, while
identifying a minimum set of places and paths that explainE. The block has associated
the circumscription policy15

circ tpath � along � PO � OnPath � tpla
e var ~SSHpred
where ~SSHpred stands for the tuple of predicatesat, teq, travel eq, and turn eq.16

This circumscription policy states (among others) that a minimum set of paths is pre-
ferred over a minimum set of places. Next we discuss the axioms in AT block.

Predicateteq is the equivalence relation defined by axiom 15.teq(ds; ds0) is the
case wheneverds andds0 cannot be distinguished by views and actions (i.e.
eq(ds; ds0))
and it is consistent to groupds andds0 into the same place. If we assume that views
uniquely identify distinctive states (e.g.V iew(ds; V ) ^ V iew(ds0; V ) ! ds = ds0),

12The sort of directions is completely defined by the symbolsposandneg.
13Notice that our logic has sorts forplacesand pathsbut in order to minimize these sorts we have to

explicitly have predicates representing them.
14Notice that the predicateis region is not mentioned in the theory of figure 3. In the next section we

will add to this theory axioms dealing with regions. For the purpose of this section, the minimization ofis region in conjunction with8p; tpla
e(p) � :is region(p) implies (the default)8p tpla
e(p).
15The symbol� indicates prioritized circumscription (see[Lifschitz, 1994] section 7.2).
16Block 20 in Figure 3 states that the predicateturn eq corresponds to the relationdturn moduloteq.

Block 32 definestravel eq to be the relationdtravel moduloteq.
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f :teq(ds; ds0) � 9p �
eq(ds; ds0) ^ at(ds; p) ^ at(ds0; p)	 ; (15)at(ds; p)! tpla
e(p); (16)9!p at(ds; p); (17)hds; turn; ds0i ^ at(ds; p)! at(ds0; p); (18)at(ds; p) ^ at(ds0; p)! turn eq(ds; ds0); (19)fmin turn eq : (20)teq(ds; ds0) ^ teq(dr; dr0) ^dturn(ds0; dr0)! turn eq(ds; dr);turn eq(ds; ds0) ^ turn eq(ds0; ds00)! turn eq(ds; ds00) galong(ds; pa; dir)! tpath(pa); (21)at(ds; p) ^ at(ds0; q) ^ ~travel(ds; ds0)! (22)9pa; dir �PO(pa; dir; p; q) ^ along(ds; pa; dir) ^ along(ds0; pa; dir)	 ;along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1; (23)at(ds; p) ^ at(ds0; p) ^ along(ds; pa; dir) ^ (24)along(ds0; pa; dir)! teq(ds; ds0);�hds; turn des
; ds0i ^ turn des
 6= turnAround ^ (25)along(ds; pa; dir) ^ along(ds0; pa1; dir1)	! pa 6= pa1;hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir); (26)PO(pa; pos; p; q) � PO(pa; neg; q; p); (27):PO(pa; dir; p; p); (28)PO(pa; dir; p; q) ^ PO(pa; dir; q; r)! PO(pa; dir; p; r); (29)PO(pa; dir; p; q) ! OnPath(pa; p) (30)OnPath(pa; p) ^OnPath(pa; q) ^ tpath(pa)! (31)9ds; ds0 fat(ds; p) ^ at(ds0; q) ^ travel eq(ds; ds0)g;fmin travel eq : (32)teq(ds; ds0) ^ teq(dr; dr0) ^ dtravel(ds0; dr0)! travel eq(ds; dr);travel eq(ds; ds0) ^ travel eq(ds0 ; ds00)! travel eq(ds; ds00) g
circ tpath � along � PO � OnPath � tpla
e var ~SSHpredg

Figure 3:AT block.

then predicates
eq andteq will reduce to equality. This is expected since all that is
required to identify a distinctive state is its view.17

Every distinctive state is at a unique place (Axiom 17). Whenever the agentturns,
it stays at the same place (Axiom 18). Distinctive states grouped into a topological
place should beturn connected (moduloteq) (Axiom 19). Travelactions among dis-
tinctive states are abstracted to topological paths connecting the places associated with
those distinctive states (Axiom 22). A distinctive state isalong at most one path (Ax-
iom 23). At each place there is at most one distinctive state along a given path direction

17See appendix E, page 27, for a discussion of other simplification that can be made when views uniquely
identify distinctive states.
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(Axiom 24). Turn actions other thanturnAroundchange the path the initial and final
distinctive states are at (Axiom 25).TurnAroundactions relate distinctive states being
in the same path but opposite directions (Axiom 26). The order of places in a given
path direction is the inverse of the order of places in the other path direction (Axiom
27). Axioms 28 and 29 requirePO(pa; dir; �; �) to be a non-reflexive transitive order
for the places onpa. Places ordered by a path should belong to that path (Axiom 30).
Axiom 31 requires the agent to have traveled among the placeson a same path.

Our theory does not assume a “rectilinear” environment where paths intersect at
most in one place. It is possible for different paths to have the same order of places (see
Figure 4). Topological information can distinguish distinctive states not distinguishable
by view and actions.
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�
��ds1

ds2
ds3

ds4
ds5

ds6

ds7

a b c
pa,pos pa,pos

pa1,dir1

(b)(a)

pa,neg

Figure 4:The environment in (a) illustrates a case where different paths intersect at more than
one place. (b) depicts the topological map associated with this environment.

Example 3

Consider the scenario of example 1. Since the same view is experienced ata, b
andc, the extent of
eq is maximized by declaring
eq = true. Using the topological
theory, from axiom 17 we conclude that there exist placesP andQ, such thatat(a; P )
andat(
;Q). Since it is the case that ~travel(a; 
), from axioms 22 and 28 we conclude,
for instance, thatP 6= Q. Distinctive statesa and
 are topologically distinguishable
though they are “causally indistinguishable” (i.e.
eq(a; 
) ^ :teq(a; 
)). fend of ex-
ampleg

Given a minimal modelM of TT (E), the SSH topological map is defined by the
extent inM of tpath, tplace, along, POandat. Since the positive and negative direction
of a path are chosen arbitrarily (Axiom 22), there is not a unique minimal model forTT (E). We will consider these “up to path direction isomorphic” models to be the
same. However, it is still the case that the theoryTT (E) has minimal models that are
not isomorphic up to path direction (see Figure 5).

5 SSH Boundary Regions

In addition to connectivity and order among places and paths, the topological map
includes topological boundary relations: assertions thata place lies to the right of, to
the left of, or on a path. In order to determine boundary relations we formally state
the following default heuristic. Suppose the agent is at an intersection on a given path,
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f e

a dcb
A C D

EF

A CB B D

EF

(a) (b) (c)

Figure 5:(a) The robot goes around the block visiting placesA,: : :,F ,C in the order suggested
in the figure. IntersectionsB andC look alike to the agent. Two minimal models can be associ-
ated with the set of experiences in (a) (see (b) and (c)). Topological information is not enough to
decide whether the agent is back toB orC. Notice that if the agent accumulates more informa-
tion, by turning at
 and traveling tod, then it can deduce that the topology of the environment
is the one in (b). In addition, when available, metrical information can be used to refute the
incorrect topology.

and it then turns right. If the agent now travels, any place itfinds while traveling with
no turns will be on the right of the starting path. When conflicting information exists
about whether a place is to the right or left of a path, we deduce no boundary relation
(see Figure 6).
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BA

D

BA

D

(a) (b) (c)

Figure 6:Different environments illustrating how our default to determine boundary relations
works. In (a), we conclude by default that placeC is to the left of the path fromA to B. In (b)
we conclude nothing about the location of placeD with respect to the path fromA to B. In (c),
we conclude that placeD is to the left of the path fromA to B. This is the case since there is no
information to conclude otherwise.

We use the predicatesTotheRightOf=TotheLeftOf(p1; pa; dir; pa1; dir1) to
represent the facts that (i)p1 is a place on both paths,pa and pa1, and (ii) when
the agent is atplace p1facing in the directiondir of pa, after executing a turn right
(left) action, the agent will be facing on the directiondir1 of pa1 (see Figure 7). The
predicatesTotheLeftOfandTotheRightOfare derived from the actions performed by the
agent at a place:hds; turnRight; ds1i ^ at(ds; p) ^ along(ds; pa; dir) ^ (33)along(ds1; pa1; dir1)! TotheRightOf(p; pa; dir; pa1; dir1)

We use the predicatesLeftOf(pa; dir; lr) andRightOf(pa; dir; rr) to denote
thatregionlr (rr) is the left (right) region of pathpawith respect to the path’s direction
dir. The left/right regions of a path are unique, disjoint, and related when changing the
path direction (i.eLeftOf(pa; dir; r) � RightOf(pa;�dir; r)). From the relative
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orientation between paths at a place, we deduce the relativelocation of places with
respect to a path (see Figure 7):18TotheRightOf(p1; pa; dir; pa1; dir1)^PO(pa1; dir1; p1; p)^RightOf(pa; dir; rr) ^ :Ab(pa; p)! in region(p; rr) (34)

p

p1

Pa, dir
Pa1, dir1

Figure 7:PathPa1 is to the right of pathPa at placep1. Placep is after placep1 on pathpa1.
By default, we conclude that placep is to the right of pathpa.

The predicateAb is the standard “abnormality” predicate used to represent defaults
in circumscriptive theories[Lifschitz, 1994]. Axiom 34 states that“normally” , if at
placep1pathpa1 is to the right of pathpa, and placep is afterp1on pathpa1, then it
should be the case thatp is on the right ofpa (Figure 7). In order to capture this de-
fault, boundary regions domain theory axioms19 are added to the blockAT block (see
Figure 3). Since we are interested in the extent of the new predicatesin region, LeftOf,
RightOf, TotheLeftOfandTotheRightOf, we allow them to vary in the circumscription
policy. The new circumscription policy becomes

circ tpath � along � PO � Onpath � Ab � is region�
in region � tpla
e var ~newSSHpred

where ~newSSHpred stands for the tuple of predicatesat, along, teq , travel eq,
turn eq, LeftOf , RightOf , TotheLeftOf , and TotheRightOf. The circumscription
policy states that boundary relations should be established even at the expense of hav-
ing more places on the map. In addition, by minimizing the predicatesis regionand
in region, we require the models of our theory to have only the regions that are explic-
itly created by the agent, and not arbitrary ones.

Example 4

Boundary relations determine distinctions among environment states that could not
be derived from the connectivity of places alone. Consider an agent visiting the differ-
ent corners of a square room in the order suggested by Figure 8a. In addition, suppose
the agent definesviewsby characterizing the direction of walls and open space. Ac-
cordingly, the agent experiencesfour different views,v1-v4, in this environment.

The set of experiencesE in the environment are:V iew(ds1; v1) V iew(ds2; v2) V iew(ds3; v1)V iew(ds4; v2) V iew(ds5; v1) hds1; turnRight; ds2ihds2; travel; ds3i hds4; travel; ds5i hds3; turnRight; ds4i
18The predicatein region(p,r)states thatplacep is in regionr.
19In the spirit of axioms 33-34.
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P ds1
ds3

ds4

ds5

ds2

Pa

R

Pb

Q

S

Q
Pa

P=R

Pb

Q

R

Pa

Pb

P

(a) (b) (c)

Figure 8:(a) The figure shows the sequence of actions followed by an agent while navigating a
square room. Starting at distinctive state ds1, distinctive states are visited in the order suggested
by their number. Dashed lines indicate Turn actions. Solid lines indicate Travel actions. (b) and
(c) depict the topological map associated with the environment in (a) without and using boundary
regions, respectively.

Suppose that the agent does not use boundary regions when building the topological
map. Then the minimal topological model associated withE has two paths20 and two
places. In this model,teq(ds1; ds5) is the case. The environment looks perfectly
symmetric to the agent (Figure 8b).!!

Suppose now that the agent relies on boundary regions. LetP, Q, R, be the
topological places associated withds1, ds3andds5respectively. From Axiom 22, let
Pa, Pb, dira and dirb be such thatPO(Pa; dira; P;Q), along(ds2; Pa; dira),along(ds3; Pa; dira), PO(Pb; dirb; Q;R), along(ds4; P b; dirb), andalong(ds5; P b; dirb) hold. From Axiom 33 we can conclude thenTotheRightOf(Q;Pa; dira; P b; dirb). In the proposed model, the extent of
Ab is minimized by declaringAb = false and consequently from Axiom 34 we
concludein region(R; right(Pa; dira)) where right(Pa; dira) denotes the right
region ofPa when facingdira. Finally, since a path and its regions are disjoint,
andOnPath(Pa; P ) is the case, we concludeP 6= R and so6= teq(ds1; ds5). The
resulting topological map is depicted in Figure 8c.fend of exampleg

If the agent’s sensory capabilities are so impoverished that many distinctive states
are perceived to be similar, then metrical information could be used to distinguish
different environment states. Figure 9 summarizes different representations an agent
could build depending on the spatial properties it relies on.

6 Conclusions

Starting with an informal description of the SSH we have formally specified its in-
tended models. These models correspond to the models of the circumscriptive theory
TT(E). The formal account of the theory allows us to illustrate thedeductive power of
the different SSH ontologies. For instance, example 4 showshow the use of bound-
ary relations allows the agent to determine distinctions among environment states that
could not be derived from the connectivity of places and paths alone.

20Notice that fromhds3; turnRight; ds4i and Axiom 25 we can deduce thatPa 6= Pb in Figure 8b.
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Travel

Turn

Travel

TurnTurn

Travel

P=R Q=S

(a) (b)
P=S Q

R

Pa

PbPc

Q

R

Pa

Pb

P

Pc
S

Pd

(c) (d)

Figure 9: Consider the same environment and agent as in figure 8. Assumes the agent keeps
turning right and following the left wall until it is back to distinctive stateds1, at placeP .
Only two kind of viewsj! and!j are observed by the agent. Next we summarizes different
maps the agent could build depending on the spatial properties it relies on. (a) If the agent only
relies on causal information, the map consists of two states. (b) When topological information is
used, but without boundary relations, the map consists of four states and two places. (c) When
boundary relations are used, the map consists of six states and three places. There is no fixed
correspondence between the three places in the map and the four indistinguishable places in the
real world. (d) If metrical information is accurate enough to refute the hypothesisP = S, the
map will consist of eight states and four places.

The theoryTT(E) is rather complex so it may be difficult to determine the effect of
the different defaults in combination. However, it is possible to translate this theory into
a logic program whose answer sets determine the models ofTT(E). We have illustrated
the case for the SSH causal theoryCT(E), but the same techniques apply forTT(E).
The major subtleties in the translation are the minimality and maximality conditions
associated with the theory. We have used Smodels to calculate the models ofTT(E)
and confirm that the theory yields the intended models. However, when the number of
distinctive states is big, Smodels may not be able to ground the theory as the number of
rules associated with the program grows exponentially. We are still working on solving
this problem.
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A Nested Abnormality theories

In this appendix we define circumscription and nested abnormalities theories following
[Lifschitz, 1994, Lifschitz, 1995].

The main idea of circumscription is to consider, instead of arbitrary models of
an axiom set, only the models that satisfy a certain minimality condition (usually set
inclusion). Mathematically, circumscription is defined asa syntactic transformation of
logical formulas. It transforms a sentenceA into a stronger sentenceA�, such that the
models ofA� are precisely the minimal models ofA.

Definition 1 (Circumscription)

Let A(P;Z1; : : : ; Zm) be a sentence containing a predicate constantP and object,
function and/or predicate constantsZ1; : : : ; Zm (and possibly other object, function
and predicate constants). Thecircumscription of P in A with variedZ1; : : : ; Zm is the
sentenceA(P;Z1; : : : ; Zm) ^ :9p; z1; : : : ; zm [A(p; z1; : : : ; zm) ^ p < P ℄ (35)

wherep < P denotes the formula8x fp(x)! P (x)g ^ 9x fp(x) ^ :P (x)g :
We denote the formula 35 byCIRC [A;P ;Z℄. fend of definitiong

Intuitively, the models ofCIRC [A;P ;Z℄ are the models ofA in which the extent
of P cannot be smaller without losing the propertyA, even at the price of changing the
interpretations of the constantsZ. In order to make this claim precisely, the following
order,�P ;Z , is defined among structures of the language ofA.

Definition 2 (�P ;Z)

LetM1 andM2 be two structures for a given one-sorted language. ThenM1 �P ;Z M2
whenever� jM1j = jM2j,21� M1 [C℄ = M2 [C℄,22 for every constantC which is different fromP and does

not belong toZ,� M1 [P ℄ �M2 [P ℄fend of definitiongM1 �P ;Z M2 means thatM1 andM2 differ only in how they interpretP andZ,
and the extent ofP in M1 is a subset of its extent inM2. The next relation (proposition
1 in [Lifschitz, 1994]) relatesCIRC [A;P ;Z℄ and�P ;Z :

21For a structureM , jM j denotes the universe ofM .
22M [C℄ denotes the interpretation ofC in M .

15



Theorem 1 A structureM is a model ofCIRC [A;P ;Z℄ if and only ifM is minimal
relative to�P ;Z .

Example 5

Circumscription is usually used in order to formalize default associated with an ax-
iomatic theory. Suppose the we would like to represent the default “Normally a block
in on the table”. Suppose blockB1 is not on the table and letB2 denotes another block.
The circumscriptive theory below allow us to concludeOntable(B2):Blo
k(x) ^ :Ab(x)! Ontable(x) (36):Ontable(B1) (37)Blo
k(B1); Blo
k(B2); B1 6= B2 (38)

circ Ab var Ontable (39)

where we have extended our notation such that the above should be understood asCIRC [36 ^ 37 ^ 38;Ab;Ontable℄ :
In the above theory, it is the case thatAb(x) � x = B1, and consequentlyOntable(B2)
follows. The role of the predicateAb is to single out the blocks that are“abnormal”
relative to the default (36).fend of exampleg

It is often convenient to arrange different defaults by assigning priorities to them.
For example, consider formalizing the enhancement of the theory above in which
“Blocks are usually heavy”, and “heavy block are usually notin the table”. Next we de-
fine two extensions two the basic definition of circumscription: parallel and prioritized
circumscription.

Definition 3 (Parallel Circumscription)

Theparallel circumscriptionCIRC �A;P 1; : : : ; P k;Z�
is the sentence A(P;Z) ^ :9p; z [A(p; z) ^ p � P ℄ ;
whereP stands for the tuple of predicatesP 1; : : : ; Pn andp � P stands for the for-
mula8 1 � i � n pi � P i ^ 9 1 � i � n pi < P ifend of definitiong

The parallel circumscription of several predicates has a simple model theoretics
characterization, similar to the one presented by theorem 1. WhenP is a tupleP 1; : : : ; Pn,
the relationM1 �P ;Z M2 between structuresM1 andM2 is defined as before, ex-
cept that the conditionM1 [P ℄ � M2 [P ℄ is replaced byM1 �P i� � M2 �P i� for alli = 1; : : : ; n.
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Definition 4 (Prioritized Circumscription)

Theprioritized circumscriptionCIRC �A;P 1 � : : : � P k;Z�
is the sentence A(P;Z) ^ :9p; z [A(p; z) ^ p � P ℄ ;
whereP stands for the tuple of predicatesP 1; : : : ; Pn andp � P stands for the for-
mula k_i=10�i�1̂j=1(pj = P j) ^ (pi < P i)1A :fend of definitiong

The formulap � P defines alexicographicorder among the predicates inp andP .
Whenk = 1 it becomesp < P ; if k = 2, it becomes(p1 < P 1) _ ((p1 = P 1)! (p2 < P 2)) :
Proposition 15 in[Lifschitz, 1994] shows that prioritized circumscription can be re-
duced to parallel circumscription as follows:

Theorem 2 The circumscriptionCIRC �A;P 1 � : : : � P k;Z� is equivalent tok̂i=1CIRC �A;P i;P i+1; : : : ; P k; Z� :
B Nested Abnormality theories (NAT’s)

Nested abnormality theories allows one to apply the circumscription operator to a sub-
set of axioms, by structuring the knowledge base (the theory) into blocks. Each block
can be viewed as a group of axioms that describes a certain collection of predicates and
functions, and the nesting of blocks reflects the dependenceof these descriptions on
each other.

Definition 5 (NAT’s)

Consider a second-order languageL that doesnot includeAb among its symbols. For
every natural numberk, byLk we denote the language obtained fromL by addingAb
as a k-ary predicate constant.Blocksare defined recursively as follows: For anyk and
any list of function and/or predicate constantsC1; : : : ; Cm of L, if each ofA1; : : : ; An
is a formula ofLk or ablock, thenfC1; : : : ; Cm : A1; : : : ; Ang is ablock. The last
expression reads:C1; : : : ; Cm are such thatA1; : : : ; An. AboutC1; : : : ; Cm we say
that they aredescribedby this block.
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The semantics of NAT’s is characterized by a map' that translates blocks into
sentences ofL. It is convenient to make' defined also on formulas of the languagesLk. If A is such a formula, then'(A) stands for the universal closure ofA. For blocks
we define, recursively:' fC1; : : : ; Cm : A1; : : : ; Ang = 9ab CIRC ['A1; : : : ; 'An : ab : C1; : : : ; Cm℄ :fend of definitiong
Example 6

Consider the standard example: objects normally don’t fly: birds normally do; canaries
are birds; Tweety is a canary. These assertions can be formalized as the NAT whose
only axiom is fF lies :F lies(x)! Ab(x);f F lies :Bird(x) ^ :Ab(x)! F lies(x);Canary(x) ! Bird(x);Canary(Tweety)gg
The outer block describe the ability of objects to fly; the inner block gives more spe-
cific information about the ability ofbirds to fly. Each occurrence of the predicateAb
is “local” to its block, and so, the two occurrences of the predicateAb refer two “unre-
lated” predicates though we use the same name.fend of exampleg

Most often, it is desirable not to mention the predicateAb at all. We will adopt the
following notations:� fC1; : : : ; Cm;min P : A1; : : : ; Ang stands forfC1; : : : ; Cm; P : P (x)! Ab(x); A1; : : : ; Ang� fC1; : : : ; Cm;max P : A1; : : : ; Ang stands forfC1; : : : ; Cm; P : :Ab(x)! P (x); A1; : : : ; Ang

Using this notation, we could rewrite our previous example asfmin F lies :f F lies :
18



Bird(x) ^ :Ab(x)! F lies(x);Canary(x) ! Bird(x);Canary(Tweety)gg
where we dispense the occurrence of oneAb predicate. The reader is referred to

[McCarthy, 1980, McCarthy, 1986, Lifschitz, 1994, Lifschitz, 1995] for a complete
survey of the uses and properties of circumscription and NATs.
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C Answer Sets

In this appendix we defined the answer set semantics for a logic program as defined in
[Lifschitz, 1999, Gelfond and Lifschitz, 1991].

Consider a set of propositional symbols, calledatoms. A literal is an expression
of the formA or :A, whereA is an atom (we call the symbol: “classical negation”,
to distinguish it from the symbolnot used for negation as failure). A rule element is
an expression of the formL or notL, whereL is a literal. Arule is an ordered pairHead  Body (40)

whereHead andBody are finite sets of rule elements. IfHead = fL1; : : : ; Lk; not Lk+1; : : : ; not Llg
and Body = fLl+1; : : : ; Lm; not Lm+1; : : : ; not Lng
(n � m � l � k � 0) then we write (40) asL1; : : : ; Lk;notLk+1; : : : ; not Ll  Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln :
A rule (40) is aconstraint if Head = ;. A program is a set of rules.

The notion of an answer set is defined first for program that do not contain negation
as failure (l = k andn = m in every rule of the program). Let� be such program, and
letX be a consistent set of literals. We say thatX is closedunder� if, for every rule
in �, Head\X 6= ; wheneverBody � X . We say thatX is ananswer setof � if X
is minimal among the sets closed under� (relative to set inclusion).

Example 7

The program p; q  :r  p
has two answer sets:fp;:rg andfqg. If we add the constraint q
to this program, we will get a program whose only answer set isfp;:rg (see theorem
3 below).fend of exampleg

To extend the definition of an answer set to programs with negation as failure, take
any program�, and letX be a consistent set of literals. Thereduct �X of � relative
toX is the set of rules L1; : : : ; Lk; Ll+1; : : : ; Lm ;
for all rules (40) in� such thatX contains all the literalsLk+1; : : : ; Ll but does not
contain any of theLm+1; : : : ; Ln. Thus�X is a program without negation as failure.
We say that X is ananswer setfor � if X is an answer set for�X .
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Example 8

The program p not qq  not p
has two answer sets:fpg andfqg. fend of exampleg

Adding a constraint to a program affects its collection of answer sets by eliminating
the answer sets that “violate” this constraint. Next we prove this property of answer
sets.

Theorem 3 Let �1 and�2 be logic programs such that�2 is obtained from�1 by
adding a set of constraintsC (i.e. �2 = �1 [ C). LetX be a consistent set of literals.
ThenX is an answer set for�2 if and only ifX is an answer set for�1 such that for
each rule L1; : : : ; Lm; not Lm+1; : : : ; not Ln 2 C, fL1; : : : ; Lmg 6� X wheneverX does not contain any ofLm+1; : : : ; Ln.

Proof. LetX andY be consistent sets of literals. LetCX (Y ) denote the fact
thatY does not violates any constraint inCX , that is, if L1; : : : ; Lm 2 CX thenfL1; : : : ; Lmg 6� Y . In particular,Y � X ^ CX(X)! CX (Y ) (41)

Moreover, it is the case thatCX (Y ) � Y is 
losed under CX (42)

In fact, if Y is closed underCX and L1; : : : ; Lm 2 CX , thenfL1; : : : ; Lmg 6� Y
for otherwiseY \ ; 6= ;. Conversely, ifCX (Y ) is the case, it is easy to see thatY
is closed underCX . From the definition of reduct we have that�X2 = �X1 
upCX .
Using (41) it is then the case thatfY : 
losed�X2 (Y )g = fY : 
losed�X1 (Y ) ^ CX (Y )g (43)

From facts (41) and (43) the theorem follows:X answer set for �2� X answer set for �X2� X minimal of fY : 
losed�X2 (Y )g(43)� X minimal of fY : 
losed�X1 (Y ) ^ CX(Y )g� CX (X) ^ 8Y �Y 6= X ^ Y � X ^ CX(Y )! :
losed�X1 (Y )�(41)� CX (X) ^ 8Y �Y 6= X ^ Y � X ! :
losed�X1 (Y )�� CX (X) ^X answer set for �X1� CX (X) ^X answer set for �12
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D Ceq properties

In this appendix we provide proofs for the different properties of the predicated
eq
defined in section 3 (Page 6). We start by proving that predicate
eq is indeed an equiv-
alence relation.23 We then illustrate that it in general it is necessary to explicitly ask
eq to be symmetric and transitive.24 We show that have the agent completely explored
the environment, then the maximization principle defining
eq will guaranty that
eq
is an equivalence relation without explicitly requiring so(Page 6). Moreover, we show
that in this case the predicate
eq captures the idea that two distinctive states are the
same if they render the same views under any sequence of actions.

Theorem 4 The predicate ceq is an equivalence relation.

Proof. For the purpose of the proof next we reproduce the definitionof the theory
CT(E): CT (E) =E; HS(E); DT;hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 1)CEQ blo
k =f max 
eq :
eq(ds; ds0)! 
eq(ds0; ds);
eq(ds; ds0) ^ 
eq(ds0; ds00)! 
eq(ds; ds00);
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v);
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds02)g

We need to prove that
eq(ds; ds) is the case. LetM1 be a model for the axioms
inside theCEQ block as well as the other axioms ofCT (E). Let M2 be a structure
identical toM1 except that
eqM2(ds; ds0) � 
eqM1(ds; ds0) _ ds = ds0 :
Our theorem follows once we prove thatM2 is a model for the axioms inside the
CEQ block.25 Next we show why this is the case:� M2 j= 
eq(ds; ds0)! 
eq(ds0; ds). In fact,
eqM2(ds; ds0)� 
eqM1(ds; ds0) _ ds = ds0! 
eqM1(ds0; ds) _ ds0 = ds� 
eqM2(ds0; ds)

23See
eq’s definition below.
24The maximization associated with
eq’s definition does not guaranty these properties.
25M2 satisfies the other axioms inCT (E) since
eq does not occur in them.
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� M2 j= 
eq(ds; ds0) ^ 
eq(ds0; ds00)! 
eq(ds; ds00). In fact,
eqM2(ds; ds0) ^ 
eqM2(ds0; ds00)� �
eqM1(ds; ds0) _ ds = ds0� ^ �
eqM1(ds0; ds00) _ ds0 = ds00�� �
eqM1(ds; ds0) ^ 
eqM1(ds0; ds00)� _ �ds = ds0 ^ 
eqM1(ds0; ds00)� _�
eqM1(ds; ds0) ^ ds0 = ds00� _ (ds = ds0 ^ ds0 = ds00)! 
eqM1(ds; ds00) _ (ds = ds0 ^ ds0 = ds00)� 
eqM2(ds; ds00)� M2 j= 
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v). In fact,
eqM2(ds; ds0)� 
eqM1(ds; ds0) _ ds = ds0! 8v [V iew(ds; v) � V iew(ds0; v)℄ _ ds = ds0! 8v [V iew(ds; v) � V iew(ds0; v)℄ _ 8v [V iew(ds; v) � V iew(ds0; v)℄� V iew(ds; v) � V iew(ds0; v)� M2 j= 
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds002). In fact,
eqM2(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i� �
eqM1(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i� _(ds1 = ds2 ^ hds1; a; ds01i ^ hds2; a; ds02i)! 
eqM1(ds01; ds02) _ (hds1; a; ds01i ^ hds1; a; ds02i)(1)! 
eqM1(ds01; ds02) _ ds01 = ds02� 
eqM2(ds01; ds02)2
Axiom 1 (i.e. actions are deterministic) is fundamental in the proof above. Without

this axiom, we could have a set of experiences likeA
tion type(ml; travel) ;CS(s1; a;ml; b) ; CS(s2; a;ml; 
) :V iew(a; v) ; V iew(b; v1) ; V iew(
; v2)
for which 
eq(a; a) is not the case.

In general it is not possible to remove the
eq’s symmetry and transitivity axioms
from insideCEQ blo
k. Consider the following example.

Example 9
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LetE be the set defined by the following formulae:CS(s1; ds1; a1; ds2) ; CS(s2; ds1; a2; ds3) ;CS(s3; ds2; a3; ds4) ; CS(s4; ds3; a3; ds5) ;V iew(ds1; v) ; V iew(ds2; v) ; V iew(ds3; v) ;V iew(ds4; v1) ; V iew(ds5; v2) :
Suppose our definition ofCEQ blo
k were :CEQ blo
k =f max 
eq :
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v);
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds02)g
Sincev1 6= v2 we conclude:
eq(ds4; ds5). This in turn implies:
eq(ds2; ds3).

However, in order to maximize
eq we can make
eq(ds1; ds2) ^ 
eq(ds1; ds3) ^
eq(ds2; ds1)^ 
eq(ds3; ds1)^8ds 
eq(ds; ds) to be the case. In such a model,
eq is
not transitive.fend of exampleg

There is a special case in which
eq is symmetric and transitive without explicitly
tell so. This is the case when the result of every action at every distinctive state is
known. In this case, we said that the set of experiences is complete.

Definition 6

A set of experiencesE is completewheneverE j= 8a; ds9ds0hds; a; ds0i :fend of definitiong
Theorem 5

LetE be a complete set of experiences. LetCT(E)be defined as follows:CT (E) =E; HS(E); DT;hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 1)CEQ blo
k =f max 
eq :
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v);
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds02)g
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Then the predicate
eq is an equivalence relation.

Proof. Let M1 be a model for the axioms inside theCEQ block as well as the
other axioms ofCT (E). We need to prove that it is possible to have a structureM2
identical toM1 except that
eqM1 � 
eqM2 , M2 is a model for the axioms inside the
CEQ block, the other axioms ofCT (E), and
eqM2 is an equivalence class. The proof
goes along the lines of theorem’s 4 proof. Indeed, the same proof as in theorem 4 allow
us to assume thatM1 is reflexive.

LetM2 be a model identical toM1 except that
eqM2(ds; ds0) = 
eqM1(ds; ds0) _ 
eqM1(ds0; ds) :
By definition,
eqM2 is symmetric. We need to prove thatM2 satisfy the axioms inside
(the new)CEQ blo
k:� M2 j= 
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v). In fact,
eqM2(ds; ds0)� 
eqM1(ds; ds0) _ 
eqM1(ds0; ds)! 8v [V iew(ds; v) � V iew(ds0; v)℄ _ 8v [V iew(ds0; v) � V iew(ds; v)℄� V iew(ds; v) � V iew(ds0; v)� M2 j= 
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds02). In fact,
eqM2(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i� �
eqM1(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i� _�
eqM1(ds2; ds1) ^ hds1; a; ds01i ^ hds2; a; ds02i�! 
eqM1(ds01; ds02) _ 
eqM1(ds02; ds01)� 
eqM2(ds01; ds02)

Finally, letM2 be a model identical toM1 except that
eqM2 = transitive 
losure(
eqM1) :
By definition,
eqM2 is transitive. If
eqM1 is reflexive and simmetric, so is
eqM2 . We
need to prove thatM2 satisfies the axioms inside (the new)CEQ blo
k:� M2 j= 
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v). In fact,
eqM2(ds; ds0)� 9ds0; ds1; : : : ; dsn �ds = ds0; ds0 = dsn; 
eqM1(dsi; dsi+1); 0 � i < n�! 9ds0; ds1; : : : ; dsn�ds = ds0; ds0 = dsn; V iew(dsi; v) � V iew(dsi+1; v); 0 � i < n�! 9ds0; dsn �ds = ds0; ds0 = dsn; V iew(ds0; v) � V iew(dsn; v)�� V iew(ds; v) � V iew(ds0; v)
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� M2 j= 
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds02). In fact,
eqM2(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i� 9dsi(1 � i � n) �ds1 = ds1; ds2 = dsn; 
eqM1 (dsi; dsi+1); 1 � i < n�^hds1; a; ds01i ^ hds2; a; ds02ihyp:! 9dsi9hdsi; a; dsi0i�ds1 = ds1; ds2 = dsn; ds01 = ds10 ; ds02 = dsn0 ; 
eqM1(dsi; dsi+1); 1 � i < n�! 9dsi0 hds01 = ds10 ; ds02 = dsn0 ; 
eqM1(dsi0 ; ds(i+1)0); 1 � i < ni� 
eqM2(ds01; ds02)2
When a set of experiences is complete the predicateceqcaptures the idea that two

distinctive states are the same if they render the same viewsunder any sequence of
actions. Assume thatE is complete and letA� = a1; : : : ; an a sequence of actions.
The termT (A�)(ds) denotes the distinctive state resulting from executingA� starting
at ds. By definition,T (A�)(ds) = ds if n = 0, T (A�)(ds) = ds0 such that(E j=hT (a1; : : : ; an�1)(ds); an; ds0i. Notice that the definition ofT (A�)(ds) makes sense
sinceE is complete and actions are deterministic.

Theorem 6 LetE be a complete set of experiences. Then,
eq(ds; ds0) � 8A�; v [V iew(T (A�)(ds); v) � V iew(T (A�)(ds0); v)℄ :
Proof. Let M1 be a model for the axioms inside theCEQ blockas well as the other
axioms ofCT (E). LetM2 be a model identical toM1 except that
eqM2(ds; ds0) � 8A�; v [V iew(T (A�)(ds); v) � V iew(T (A�)(ds0); v)℄ :

By induction in the length of action sequences on can prove that 
eqM1 � 
eqM2 .
Our proof is complete by showing thatM2 satisfy the axioms inside (the new)CEQ blo
k:� M2 j= 
eq(ds; ds0) ! V iew(ds; v) � V iew(ds0; v). In fact, supposeM2 j=
eq(ds; ds0) and consider the empty sequence of actions. ThenV iew(ds; V ) � V iew(T (fg)(ds); v) � V iew(T (fg)(ds0); v) � V iew(ds0; v) :� M2 j= 
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds02). In fact,
eqM2(ds01; ds02)� 8A�; v �V iew(T (A�)(ds01); v) � view(T (A�)(ds02); v)� hds1; a; ds01i ^ hds2; a; ds02i ^8A�; v [V iew(T (aA�)(ds1); v) � V iew(T (aA�)(ds2); v)℄ 
eqM2(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i2
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E What if Views uniquely identify distinctive states

In this section we explore how our theory is simplified by the assumption that views
uniquely identify distinctive states. Under this hypothesis, we add the following axiom
to our theory: V iew(ds; V ) ^ V iew(ds0; V )! ds = ds0 (44)

Since= satisfies all the axioms inCEQ block (Page 6), we know that=� 
eq.
From 44 and 44 we conclude that
eq �=. Consequently, we do not need to have
block CEQblock and we can replace
eq by=.

Let’s consider the predicateteq defined by Axiom 15 (Page 9). Since
eq is equal
to=, we deduce thatteq(ds; ds0) � 9p fds = ds0 ^ at(ds; p) ^ at(ds0; p)g� ds = ds0 ^ 9p at(ds; p)� ds = ds0
Consequently,teq can also be replaced by=. The fact that
eq andteq reduce to=
is expected since all that is required to identify a distinctive state is its view. Next we
show that the predicatesturn eq andtravel eq can be replaced bydturn and dtravel,
respectively.

By replacingteq by=, block 20 can be rewritten as:f min turn eq :dturn(ds0; dr0) ^ teq(ds; ds0) ^ teq(dr; dr0)! turn eq(ds; dr)turn eq(ds; ds0) ^ turn eq(ds0; ds00)! turn eq(ds; ds00)g �f min turn eq :dturn(ds0; dr0) ^ ds = ds0 ^ dr = dr0 ! turn eq(ds; dr)turn eq(ds; ds0) ^ turn eq(ds0; ds00)! turn eq(ds; ds00)g �f min turn eq :dturn(ds; dr)! turn eq(ds; dr)turn eq(ds; ds0) ^ turn eq(ds0; ds00)! turn eq(ds; ds00)g � dturn = turn eq
where the last equality follows from the fact thatdturn is transitive, andturn eq is the
minimum transitive predicate containingdturn.

From the definition oftravel eq (block 32), and a similar argument to the one
above, we conclude thattravel eq = dtravel. Consequently, we can dispense with the
use of the predicatesturn eq andtravel eq in our formalization.
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Therefore, if views uniquely identify distinctive states,AT block (Page 9) can be
rewritten as follows:AT blo
k =f : at(ds; p)! tpla
e(p);9!p at(ds; p);hds; turn; ds0i ^ at(ds; p)! at(ds0; p);at(ds; p) ^ at(ds0; p)! dturn(ds; ds0);along(ds; pa; dir)! tpath(pa);at(ds; p) ^ at(ds0; q) ^ ~travel(ds; ds0)!9pa; dir �PO(pa; dir; p; q) ^ along(ds; pa; dir) ^ along(ds0; pa; dir)	 ;along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1;at(ds; p) ^ at(ds0; p) ^ along(ds; pa; dir) ^ along(ds0; pa; dir)! ds = ds0;along(ds; pa; dir) ^ along(ds0; pa1; dir1)	! pa 6= pa1;fhds; turn des
; ds0i ^ turn des
 6= turnAround ^along(ds; pa; dir) ^ along(ds0; pa1; dir1)g ! pa 6= pa1;hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir);PO(pa; pos; p; q) � PO(pa; neg; q; p);:PO(pa; dir; p; p);PO(pa; dir; p; q) ^ PO(pa; dir; q; r)! PO(pa; dir; p; r);PO(pa; dir; p; q)! OnPath(pa; p)OnPath(pa; p) ^ OnPath(pa; q) ^ tpath(pa)! 9ds; ds0 fat(ds; p) ^ at(ds0; q) ^ dtravel(ds; ds0)g;

circ tpath � along � PO � OnPath � tpla
e var atg
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F Logic Program Correctness

Given a set of experiencesE, the models of the theoryCT (E) (Page 6) indicate under
what circumstances it is possible to consider two distinctive states as referring to the
same environment state. In order to calculate these models,next we define a logic
program such that its answer sets are in a one to one correspondence with the models
of CT (E).

Recall that the theoryCT (E) is defined as follows:CT (E) =E; HS(E); DT (45)hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00 (46)CEQ blo
k =f max 
eq :
eq(ds; ds); (47)
eq(ds; ds0)! 
eq(ds0; ds); (48)
eq(ds; ds0) ^ 
eq(ds0; ds00)! 
eq(ds; ds00); (49)
eq(ds; ds0)! V iew(ds; v) � V iew(ds0; v); (50)
eq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i ! 
eq(ds01; ds02) (51)g
The logic program� we will consider is defined as follows:p(X;Y;X; Y )  : (52)p(X;Y;X2; Y 1)  p(X;Y;X1; Y 1); 
eq(X1; X2): (53)p(X;Y;X1; Y 2)  p(X;Y;X1; Y 1); 
eq(Y 1; Y 2): (54)p(X;Y;X2; Y 2)  p(X;Y;X1; Y 1); 
s(X1; A;X2); 
s(Y 1; A; Y 2): (55)p(X;Y; Y 1; X1)  p(X;Y;X1; Y 1): (56)p(X;Y;X1; Y 2)  p(X;Y;X1; Y 1); p(X;Y; Y 1; Y 2): (57)dist(X;Y )  p(X;Y;X1; Y 1); view(X1; V ); not view(Y 1; V ): (58)dist(X;Y )  p(X;Y;X1; Y 1); not view(X1; V ); view(Y 1; V ): (59)
eq(X;Y );:
eq(X;Y ) : (60) not 
eq(X;X): (61) 
eq(X;Y ); not 
eq(Y;X): (62) 
eq(X;Y ); 
eq(Y; Z); not 
eq(X;Z): (63) 
eq(X;Y ); view(X; V ); not view(Y; V ): (64) 
eq(X;Y ); not view(X;V ); view(Y; V ): (65) not 
eq(X1; Y 1); 
eq(X;Y ); 
s(X;A;X1); 
s(Y;A; Y 1): (66) not 
eq(X;Y ); not dist(X;Y ): (67)
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where the variablesXs andY s variable range over distinctive states and the variableV
ranges over views. Rule 60 states that an answer set of the program should becomplete
with respect to
eq. Rules 61-63 require
eq to be an equivalence class. Rules 64 and
65 are the counterpart of axiom 50. Rule 66 is the counterpartof axiom 51. In order
to define the maximality condition of
eq, the auxiliar predicatep(X;Y;X1; Y 1) is in-
troduced. This predicate reads as“If X andY were the same, thenX1 andY 1 would
be the same”. The predicatedist(X;Y ) defines when distinctive statesX andY are
distinguishable. Constraint 67 establishes the maximality condition on
eq: 
eq(X;Y )
should be the case unlessX andY are distinguishable.

Notation.Given a set of experiencesE, �(E) denotes the grounded program con-
sisting of the rulesf
s(ds; a; ds0)  : : E j= hds; a; ds0ig, fview(ds; v)  : : E j= V iew(ds; v)g, and replacing in� the occurrences of the variablesX; X1; X2; Y; Y 1; Y 2 andV by distinctive states and view symbols inE, respec-
tively.

Given a modelM for the axioms 45-51,�(E)(
eqM ) denotes the program con-
sisting of�(E) and the rulesf
eq(a; b)  : : M j= 
eq(a; b)g, f:
eq(a; b)  : :M 6j= 
eq(a; b)g.

Similarly, �(E)1(
eqM ) denotes the program resulting by removing from�(E)(
eM ) the rules associated with grounding rule 67. ByAS(�(E)1(
eqM )) we
denote the answer set of�(E)1(
eqM ) (see lemma 2, page 32).

We say that
eqM is maximalin M wheneverM is a model forCT (E).26fend of notationg
Using the notation above we can state our theorem as follows:

Theorem 7 
eqM is maximalin M if and only ifAS(�(E)1(
eqM )) is an answer set
for �(E)(
eqM ).

Notice that theorem 7 establishes a one to one correspondence between the an-
swer sets of�(E) and the models ofCT (E). Given a modelM for CT (E), 
eqM
is maximalin M , and soAS(�(E)1(
eqM )) is an answer set for�(E)(
eqM ), thus,
an answer set for�(E).27Conversely, given any answer setX for �(E), the modelM defined such thatM j= E and
eqM = f(ds; ds0) : (ds; ds0) 2 Xg, is such thatAS(�(E)1(
eqM )) = X .28 Consequently,
eqM is maximalin M , that is,M is a
model forCT (E).

Proof of theorem 7.
(a) Suppose
eqM is maximal inM andAS(�(E)1(
eqE)) is not an answer set

for �(E)(
eqM ). SinceAS(�(E)1(
eqM )) is an answer set for�(E)1(
eqM ), then
26Recall that
eqM denotes the interpretation of
eq in the structureM .
27Suppose,X is an answer set for�(E)(
eqM ) and considerY � X closed under�(E). Then, in

virtue of 60,Y is closed under
eqM and soX = Y .
28Given any program� andX an answer set for�, X is the unique answer set for� [X.
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AS(�(E)1(
eqM )) does not satisfy constraint 67.29 Consequently, there exist distinc-
tive statesX andY such that:

1. 
eq(X;Y ) 62 AS(�(E)1(
eqM )), and

2. dist(X;Y ) 62 AS(�(E)1(
eqM )).
Define 
eq1M in M such thatM j= 
eq1(a; b) wheneverM j= 
eq(a; b) orp(X;Y; a; b) 2 AS(�(E)1(
eqM )). Symbolically,
eq1M (a; b) � 
eqM (a; b) _ p(X;Y; a; b) :
By definition,
eqM � 
eq1M .30 We are to prove that
eq1M satisfies axioms 47-51,
which will contradict the fact that
eqM is maximal inM :� By lemma 3,
eq1M is an equivalence relation.� Suppose that
eq1M (ds; ds0) is the case. If
eqM (ds; ds0) is the case, thenM j= V iew(ds; v) � V iew(ds0; v). If p(X;Y; ds; ds0) is the case, thenV iew(ds; v) � V iew(ds0; v) is the case, since otherwisedist(X;Y ) will be-

long toAS(�(E)1(
eq)).31� Suppose thatM j= 
eq1(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds02i. IfM j= 
eq(ds1; ds2) is the case, thenM j= 
eq(ds01; ds02) is the
case. If p(X;Y; ds1; ds2) is the case, by rule 55,p(X;Y; ds01; ds02) 2AS(�(E)1(
eqM )) and soM j= 
eq1(ds01; ds02).2

(b) Suppose thatAS(�(E)1(
eq)) is an answer set for�(E)(
eqM ) and
eqM is
notmaximal inM . Then, there exists
eq1M , 
eqM � 
eq1M , 
eq1M maximal inM .
Moreover, by the if part of this theorem, (a) above,AS(�(E)1(
eq1M )) is an answer
set for�(E)(
eq1M ). LetX andY be such that:

1. M j= 
eq1(X;Y ),
2. M 6j= 
eq(X;Y ), and so (Lemma 2)
eq(X;Y ) 62 AS(�(E)1(
eqM )).

Since AS(�(E)1(
eqM )) satisfies constraint 67, thendist(X;Y ) 2AS(�(E)1(
eqM )), and consequently (rules 58-59) there existX1,Y 1 and V ,
such that

1. p(X;Y;X1; Y 1) 2 AS(�(E)1(
eqM )),
2. M j= V iew(X1; V ) 6� V iew(Y 1; V ).

29The answer sets of�(E)(
eqM ) are those answer sets of�(E)1(
eqM ) that satisfy constraint 67.
30Sincep(X;Y;X; Y ) 2 AS(�(E)1(
eqM ))
31This is the case according to rules 58 and 59, and the fact thatAS(�(E)1(
eq)) is the answer set for�(E)1(
eq).
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Since
eqM � 
eq1M , thenp(X;Y;X1; Y 1) 2 AS(�(E)1(
eq1M )) (Lemma 4).
Since
eq(X;Y ) 2 AS(�(E)1(
eq1M )), then
eq(X1; Y 1) 2 AS(�(E)1(
eq1M ))
(Lemma 5) which is a contradiction sinceAS(�(E)1(
eq1M )) satisfies constraints
64-65.2
Lemma 2 Let M be a model for axioms 45-51. Let
eqM be the interpretation
of 
eq in M .32 Then�(E)1(
eqM ) has a unique answer set which we denote byAS(�(E)1(
eqM )). Moreover, for any two distinctive statesds and ds0, M j=
eq(ds; ds0) if and only if
eq(ds; ds0) 2 AS(�(E)1(
eqM )).
Proof. Let�(E)2(
eqM ) denote the program resulting of removing from�(E)1(
eqM )
those constraints resulting from grounding rules 61-66. The answer sets of�(E)1(
eqM )
are those answer sets of�(E)2(
eqM ) satisfying constraints 61-66. We are to prove
that�(E)2(
eqM ) has a unique answer set satisfying constraints 52-59.

Let Fa
ts denote the union of the setsf
s(ds; a; ds0)  : : E j= hds; a; ds0ig,fview(ds; v)  : : E j= V iew(ds; v)g, f
eq(a; b)  : : M j= 
eq(a; b)g, andf:
eq(a; b)  : : M 6j= 
eq(a; b)g. Any answer set of�(E)2(
eqM ) containsFa
ts. Let X andY denote two possible answer sets for�(E)2(
eqM ). Then the
reduct ofX andY are the same,�(E)2(
eqM )X = �(E)2(
eqM )Y , since bothX
andY agree on the literals of the formview(ds; v).33 Consequently,�(E)2(
eqM )
has at most one answer set. In fact,Cn(�(E)2(
eqM )Fa
ts) is such answer set.34

In particular,
eq(ds; ds0) 2 Cn(�(E)2(
eqM )Fa
ts) iff 
eq(ds; ds0) 2 Fa
ts iffM j= 
eq(ds; ds0).
Finally, since
eqM satisfies axioms 47-51 thenCn(�(E)2(
eqM )Fa
ts) satisfies

constraints 61-66, thus, it is an answer set for�(E)1(
eqM ). 2
Lemma 3 LetM be a model for axioms 45-51. Let
eqM be the interpretation of
eq
inM , and letAS(�(E)1(
eqM )) be the answer set for�(E)1(
eqM ). LetX andY be
two arbitrary distinctive state symbols. Let
eq1M in M be such thatM j= 
eq1(a; b)
wheneverM j= 
eq(a; b) or p(X;Y; a; b) 2 AS(�(E)1(
eqM )). Symbolically,
eq1M (a; b) � 
eqM (a; b) _ p(X;Y; a; b) :
Then,
eq1M is an equivalence relation.

Proof.� 
eq1 is reflexive. Indeed,
eq1M (ds; ds) � 
eqM (ds; ds) _ p(X;Y; ds; ds) 47� 
eqM (ds; ds) :
32The interpretation of
eq in M is not necessarily maximal.
33Notice thatview(ds; ds0) 2 X iff view(ds; ds0) 2 Fa
ts.
34Cn(�) denotes the set of consequences of a logic program without negation as failure.
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� 
eq1 is symmetric. Indeed,
eq1M (ds; ds0) � 
eqM (ds; ds0) _ p(X;Y; ds; ds0)48� 
eqM (ds0; ds) _ p(X;Y; ds; ds0)56� 
eqM (ds0; ds) _ p(X;Y; ds0; ds)� 
eq1M (ds1; ds)� 
eq1 is transitive. Indeed,
eq1M (ds; ds0) ^ 
eq1M (ds0; ds00)� f
eqM(ds; ds0) _ p(X;Y; ds; ds0)g ^ f
eqM (ds0; ds00) _ p(X;Y; ds0; ds00)g� f
eqM(ds; ds0) ^ 
eqM(ds0; ds00)g _ f
eqM (ds; ds0) ^ p(X;Y; ds0; ds00)g _fp(X;Y; ds; ds0) ^ 
eqM (ds0; ds00)g _ fp(X;Y; ds; ds0) ^ p(X;Y; ds0; ds00)g49;57! 
eqM (ds; ds00) _ f
eqM (ds; ds0) ^ p(X;Y; ds0; ds00)g _fp(X;Y; ds; ds0) ^ 
eqM (ds0; ds00)g _ p(X;Y; ds; ds00)53; 54! 
eqM (ds; ds00) _ p(X;Y; ds; ds00) _ p(X;Y; ds; ds00) _ p(X;Y; ds; ds00)� 
eqM (ds; ds00) _ p(X;Y; ds; ds00)� 
eq1M(ds; ds00)2
Lemma 4 Let M be a model for axioms 45-51, and let
eqM , 
eq1M ,
eqM � 
eq1M , be two relations such that both satisfy axioms 47-51. Then,AS(�(E)1(
eqM )) � AS(�(E)1(
eq1M )).

Proof. Let �(E)2(
eqM ) denote the program resulting of removing from�(E)1(
eqM ) those constraints resulting from grounding rules 61-66. Let Fa
ts de-
note the union of the setsf
s(ds; a; ds0)  : : E j= hds; a; ds0ig, fview(ds; v)  : : E j= view(ds; v)g, f
eq(a; b)  : : M j= 
eq(a; b)g, andf:
eq(a; b)  : :M 6j= 
eq(a; b)g. DefineFa
ts1 in the same way asFa
ts but using
eq1 instead
of 
eq. Since,
eqM � 
eq1M , it is the case thatFa
ts � Fa
t1 and consequently�(E)2(
eqM ) � �(E)2(
eq1M ).

Since, Fa
ts and Fa
ts1 agree on literals of the formview(ds; v),
it follows that �(E)2(
eqM )Fa
ts � �(E)2(
eq1M )Fa
ts1. It fol-
lows then that Cn(�(E)2(
eqM )Fa
ts) � Cn(�(E)2(
eqM )Fa
ts1) �Cn(�(E)2(
eq1M )Fa
ts1). In lemma 2 we prove thatAS(�(E)1(
eqM )) =Cn(�(E)2(
eqM )Fa
ts) and AS(�(E)1(
eq1M )) = Cn(�(E)2(
eqM )Fa
ts1).
Therefore,AS(�(E)1(
eqM )) � AS(�(E)1(
eq1M )).2
Lemma 5 Let M be a model for axioms 45-51. If
eqM (ds; ds0) andp(ds; ds0; ds1; ds10) 2 AS(�(E)1(
eqM )), then
eqM (ds1; ds10).
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Proof. Consider the program̂�(E)1(
eqM ) resulting from�(E)1(
eqM ), by re-
moving those instances of rules 56 and 57 whereX = ds andY = ds0. LetAS denote
the answer set for̂�(E)1(
eqM ). We are to prove thatAS(�(E)1(
eqM )) = AS,
which in virtue of property 68, proves our theorem. Notice thatAS(�(E)1(
eqM )) is
closed under̂�(E)1(
eqM )), and consequentlyAS � AS(�(E)1(
eqM )). We need
to prove then thatAS is closed under�(E)1(
eqM )).

SinceAS is the answer set for̂�(E)1(
eqM ), p(ds; ds0; X; Y ) 2 AS if and
only if there exist distinctive statesX0; X̂0; Y0; X̂0; : : : ; Xn; X̂n; Yn; X̂n and actionsA0; : : : ; An�1 such that

1. (X0; Y0) = (ds; ds0), (X̂n; Ŷn) = (X;Y ),
2. 
eq(Xi; X̂i), 
eq(Yi; Ŷi), 0 � i � n.

3. 
s(X̂i; Ai; Xi+1), 
d(Ŷi; Ai; Yi+1), 0 � i < n.

By induction onn we can prove then thatif p(ds; ds0; X; Y ) 2 AS then 
eq(X;Y ) 2 AS: (68)

For n = 0 we have that(X0; Y0) = (ds; ds0), (X̂0; Ŷ0) = (X;Y ), 
eq(ds;X),
and 
eq(ds0; Y ). Since
eq is an equivalence relation and
eq(ds; ds0), it follows
that 
eq(X;Y ). Suppose now that(X̂n; Ŷn) = (X;Y ) for somen > 0. By in-
duction hypothesis,
eq(X̂n�1; Ŷn�1). Since
eq satisfies constraint 66, it follows
that 
eq(Xn; Yn) 2 AS. Since
eq is an equivalence relation, it follows then that
eq(X̂n; Ŷn).

Using 68 we prove thatAS is closed under�(E)1(
eqM )). Indeed,p(ds; ds0; Y;X) 54 p(ds; ds0; Y; Y ); 
eq(Y;X)53;48 p(ds; ds0; X; Y ); 
eq(X;Y )68 p(ds; ds0; X; Y ) 2 AS :p(ds; ds0; X; Z) 53 p(ds; ds0; Y; Z) ^ 
eq(Y;X)49 p(ds; ds0; X; Y ) ^ 
eq(X;Y ) ^p(ds; ds0; Y; Z) ^ 
eq(Y; Z)68 p(ds; ds0; X; Y ) 2 AS ^ p(ds; ds0; Y; Z) 2 AS :
We have proved thatAS is closed under�(E)1(
eqM )). It follows thatAS =AS(�(E)1(
eqM )). 2
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