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Abstract

We consider the problem of how an agent creates a discretialgepresentation from
its continuous interactions with the environment. Suchiespntation will be thenin-
imal one that explains the experiences of the agent in the emaah In this paper
we take the Spatial Semantic Hierarchy as the agent’s tapgeial representation, and
use a circumscriptive theory to specify the minimal modskoaiated with this repre-
sentation. We provide a logic program to calculate the nodethe proposed theory.
We also illustrate how the different levels of the repreagah assume different spatial
properties about both the environment and the actions et by the agent. These
spatial properties play the role of “filters” the agent applin order to distinguish the
different environment states it has visitéd.

1 Introduction

The problem of map building —how an agent creates a discpetigas representation
from its continuous interactions with the environment— banstated formally as an
abduction task where the actions and observations of that age explained by con-
nectivity relations among places in the environn{&ftanahan, 1996, Shanahan, 1997,
Remolina and Kuipers, 1998 In this paper we consider the Spatial Semantic Hier-
archy (SSH)[Kuipers, 2000, Kuipers and Byun, 1988, Kuipers and Byun,11%8
the agent’s target spatial representation. The SSH is af skstinct representations
for large scale space, each with its own ontology and eadhnaatsd from the levels
below it. The SSH describes the different states of knowdettigt an agent uses in
order to organize its sensorimotor experiences and crespgatéal representation (i.e.
a map). Using the SSH representation, navigation amongglamot dependent on
the accuracy, or even the existence, of metrical knowled¢feecenvironment.

In order to define thpreferred modelassociated with the experiences of the agent,
we use a circumscriptive theory to specify the SSH’s (mitjmmdels. Different mod-
els can exist that explain the same set of experiences. Thig®because the agent

2This work has taken place in the Intelligent Robotics LathetArtificial Intelligence Laboratory, The
University of Texas at Austin. Research of the IntelligembBtics lab is supported in part by NSF grants
IRI1-9504138 and CDA 9617327, and by funding from Tivoli Coration.

3This report is the extended version of the pajiRemolina and Kuipers, 20D1o appear in IJCAI-01,
August, 20001.



could associate the same sensory description to differantomment states, or be-
cause the agent has not completely explored the environiedifferent SSH levels
assume different spatial properties about the environarahthe actions performed by
the agent. These spatial properties play the role of “filtére agent applies in order
to distinguish the different environment states it hastedsi For instance, at the SSH
causal level two environment states are considered the samgsequence of actions
started at these states renders the same sequence of tibesrvat the SSH topolog-
ical level, two environment states are considered the shtheyi are at the same place
along the same paths. Finally, at the SSH metrical level gmaronment states are the
same, if it is possible to assign to them the same coordiasasy frame of reference
available to the agent. In sections 3 and 4 we make precisdgdimes above.

Finally, we use the SSH circumscriptive theory as the spatiéin for a logic pro-
gram used to implement the abduction task. In the paper weadmthe logic program
for the SSH causal level theory and illustrate how to enchd@entinimality condi-
tion associated with this theory. We have implemented tlognam using Smodels
[Niemela and Simons, 199@nd confirm that the theory yields the intended models.

2 Related Work

The SSH grew out of the TOUR model proposedkuipers, 1977, Kuipers, 1978
Other computational theories of the cognitive map have Ipeeposed{Kortenkamp
et al, 1995, McDermott and Davis, 1984, Leiser and Zilbersha289] Yeap, 1988
These theories share the same basic principles: the usdtgflsframes of reference,
qualitative representation of metrical information, arwhigectivity relations among
landmarks. They differ in how they define what a landmarkiishe description (view,
local 2D geometry) associated with a landmark. Except foDBltnott and Davis,
none of the theories above has a formal account like the @septed in this paper for
the SSH.

Considering map building as a formal abduction task has pegrosed by Shana-
han[1996, 199Y. He proposes a logic-based framework (based on the ciraiptige
event calculus) in which a robot constructs a model of thddwthrough an abductive
process whereby sensor data is explained by hypothestaamgxistence, locations,
and shapes of objects. In Shanahan’s work, space is coedidaral-valued coordi-
nate system. As pointed out iShanahan, 1997a problem of Shanahan’s approach
is the existence of many minimal models (maps) that explaralgent’s experiences.
We have alleviated this problem by considering the SSH tagiohl map instead of an
Euclidean space as the agent’s target spatial represantati

The problem of distinguishing environment states by owgguiews) and inputs
(actions) has been studied in the framework of automatayH&asyeet al., 1999.
In this framework, the problem we address here is the one diifinthe smallest au-
tomaton (w.r.t. the number of states) consistent with argaet of input/output pairs.
Without any particular assumptions about the environmerthe agent’s perceptual
abilities, the problem of finding this smallest automatoNR-completdBasyeet al,
1994.

The SSHIKuipers, 2000, Kuipers and Byun, 1988, Kuipers and Byun,1] 9®-



stracts the structure of an agent’s spatial knowledge inyathat is relatively indepen-
dent of its sensorimotor apparatus and the environmentrwithich it moves. At the
SSH control levelthe agent and its environment are modeled as continuowsigal
systems whose equilibrium points are abstracted to a désset ofdistinctive states

A distinctive state has associatediaw describing the sensory input obtained at that
distinctive state. The control laws, whose executions éddfiajectories linking these
distinctive states, are abstractedaittions giving a discrete causal graph representa-
tion for the state space. The causal graph of states andhacim in turn be abstracted
to a topological network gblaces pathsandregions(i.e. thetopological map. Local
metrical models, such as occupancy grids, of neighborhobgtaces and paths can
then be built on the framework of the topological network letavoiding global met-
rical consistency problems. In the next sections we foryrddiscribe the SSH causal
and topological levels.

3 SSH Causal level

We use a first order sorted language in order to describe thkca8sal level. The
sorts of this language includfistinctive statesviews actionsandschemasThe sort

of distinctive states corresponds to the names given bygbaetdo the fixpoints of hill-
climbing control strategies. It is possible for the agerddsociate different distinctive
state names with the same environment state. This is theszasethe agent might not
know at which of several environment states it is currerdtated. A distinctive state
has an associated view. We use the prediatav(ds, v) to represent the fact that

is aview associated witldistinctive statels. We assume that a distinctive state has
a unique view. However, we dwot assume that views uniquely determine distinctive
states (i.eView(ds, v) AView(ds',v) /4 ds = ds’). Thisis the case since the sensory
capabilities of an agent may not be sufficient to distingdiistinctive states.

An action has a unique type, eithieavel or turn, associated with it. We use the
predicateAction_type(a, type) to represent the fact that the type of acteors type
Turn actions have associated a unique turn descriptiomerditrnLeft turnRightor
turnAround We use the predicatBurn_desc(a, desc) to indicate thatescis the turn
description associated with the turn actan

A schema represents an action execution performed by th# agéhe environ-
ment. An action execution is characterized in terms of tiséirditive states the agent
was at before and after the action was perforrh¥éée use the predicatéS s, ds, a, ds')
to denote the fact that according to schesnactiona was performed starting at dis-
tinctive stateds and ending at distinctive statk’. While schemas are explicit objects
of our theory, most of the time it is convenient to leave themlicit. We introduce the
following convenient notation:

(ds,a,ds"y =q.5 35 CS(s,ds,a,ds")
(ds,type,ds') =45 Ja {(ds,a,ds') A Action_type(a,type)}
(ds,desc,ds'y =Z4er Ja {(ds,a,ds') A Turn_desc(a,desc)}

4An action execution also has metrical information assediatith it. This metrical information repre-
sents an estimate of, for example, the distance or the argleebn the distinctive states associated with the
action execution.




Example 1

Consider a robot moving in the environment depicted in figureThe robot moves
from distinctive state to distinctive statd by performing a follow-midline actiomml.
Then the robot performs the same action to move to distiastiatec. We assume that
all corridor intersections look alikev§). This set of experiences can be described by
the formulae:

Action_type(ml,travel) ,CS(sl,a,ml,b) , C'S(s2,b,ml,c),
View(a,v+) , View(b,v+) , View(c,v+) .

L1 L L I R
11 |—|a|—|b|—|°ﬁ“\
(a) (b)

Figure 1:(a) Distinctive statea, b andc are not distinguishable at the causal level. Topological
information is needed in order to distinguish them. (b) Aditohctive states are distinguished at
the causal level given the new informatiés travel, d).

Given this set of experiences, at the SSH causal level distnstatesa, b andc
are not distinguishable. Any known sequence of actionseenitie same set of views.
However, at the SSH topological level all these distincttates are distinguishable
since the robot has traveled froanto b and then toc following the samepath (see
example 3). Should the robot continue the exploration asit distinctive state, with
view 11, then by relying just on known actions and views the agentdistmguish all
distinctive states it has visited (see example{nd of example

The agent’s experiences in the environment are describéetrims of CS View,
ActiontypeandTurn.descatomic formulae. Hereafter we ugeto denote a particu-
lar agent’s experience formulae. BY¥S(E) we denote the formulae stating that the
sorts of schemas, distinctive states, views and actionsarmgpletely defined by the
sets ofschemadistinctive statesviewandactionconstant symbols occurring Ere-
spectively> By DT we denote our domain theory, the formulae stating that:hg) t
sets{turn, trave}, {turnLeft,turnRight,turnArounf, completely define the sorts at-
tion_typesandturn_descriptions(-) an action has associated a unique action type ; (-)
distinctive states have associated a unique view; (-) tiergeion associated with an
action is unique; (-) turn actions have associated a turarigg®n; (-) the type of ac-
tions as well as the qualitative description of turn actisrthe one specified i&. The
SSH causal theor€T(E) defines when two distinctive states are indistinguishable a
the SSH causal level. We use the predicatgds, ds') to denote this fact. We will
assume that actions adeterministic

(ds,a,ds'y A (ds,a,ds") — ds' = ds" . Q)

5That sort is completely defined by the constant symbsls. . ., s, means that an interpretation for
sort is theHerbrandinterpretation defined by the sgt;,...,sn}.
6Throughout this paper we assume that formulas are unileigadntified.



CT(E) is the following nested abnormality thedyifschitz, 1995:”
CT(E) = E, HS(E), DT, Aziom1, CEQ_block
whereCEQ_block is defined as

{ maz ceq:

ceq(ds,ds’) — ceq(ds', ds),

ceq(ds,ds’) A ceq(ds',ds") — ceq(ds,ds"),
ceq(ds,ds’) — View(ds,v) = View(ds',v), 2
ceq(ds1,ds2)A(ds1,a,dsy) A{dsz,a,dss) — ceq(ds?, dss) (©)]

}

It can be proved that the predicategdefines an equivalence relation on the sort
of distinctive states. Axiom 44 states that indistinguidbalistinctive states have the
same view. Axiom 44 states that if distinctive statiBsandds’ are indistinguishable
and actiora has been performed for botts andds’, then the action links these states
with indistinguishable states. By maximizirgg we identify distinctive states that
cannot be distinguished by actions and/or views, and tlyareéhimize the set of states
represented by the model.

Axioms 44 and 44 allow us to prove the following useful lemma:

Lemma 1 Let A denote a sequence of action symbols.Ais) denote the distinctive
state symbol resulting of starting the sequedcat distinctive statels or L if A is not
defined fords.® Then,

ceq(ds,ds') A A(ds) #L AA(ds') #L
— View(A(ds),v) = View(A(ds'),v) .

Example 2

Consider the situation depicted in Figure 1b, with the @pomding schemas and
views as in example 1. Using lemma 1 one can conclude thatistihctive states
a, b andc are distinguishable by actions and views alone. For instgmel, m{}(a) =

¢, {ml,mi}(b) = d, View({ml,mli}(a),v+), View({ml, mi}(b), ), and conse-
quently,—ceq(a, b). {end of example

The Herbrand models afT'(E) are in a one to one correspondence with the an-
swer setdGelfond and Lifschitz, 1991of the logic program in Figure £ In this
program, theX andY variables range over distinctive states and the varigbianges
over views inE. The sets of rules 4 and 5 are the facts corresponding to &m@t'ag

"See appendix A, page 15.

8See appendix D, page 22, for a throughly discussion on tmesfoproperties otegq.

9Given an action symbolt and distinctive statés, A(ds) = ds’ if the schemads, A,ds’) has been
observed, otherwised(ds) =_L. MoreoverA(L) =_L. The definition is then extended to action sequences
in the standard way. Notice that(ds) being well-defined relies on our assumption that actionglater-
ministic (Axiom 1).

10see appendix C, page 20, for the definition and propertiesasifer sets. See appendix F, page 29, for
a proof of the correctness of the logic program in Figure 2.



experiences. Rule 6 states that an answer set of the progpaurtdsecompletewith
respect taceq. Rules 7-9 requireeq to be an equivalence class. Rules 9 and 10 are
the counterpart of axiom 44. Rule 12 is the counterpart afra4d4. In order to define
the maximality condition oéeg, the auxiliar predicatg(X,Y, X1,Y1) is introduced.
This predicate reads & X andY were the same, theN 1 and Y'1 would be the
same”. The predicatelist(X,Y) defines when distinctive statéé andY are dis-
tinguishable. Constraint 13 establishes the maximalityd@@®n onceq: ceq(X,Y)
should be the case unleXsandY are distinguishablé&!

{cs(ds,a,ds’) + . : cs(ds,a,ds') € E} (4)
{view(ds,v) < . : view(ds,v) € E} (5)
ceq(X,Y),ceq(X,Y) «— .

p(X,Y,X,Y) + .

p(X,Y,X2,Y1) + p(X,Y,X1,Y1),ceq(X1, X2).

p(X,Y,X1,Y2) «+ p(X,Y,X1,Y1),ceq(Y1,Y2).

p(X,Y,X2,Y2) + p(X,Y,X1,Y1),cs(X1,A,X2),es(Y1, A Y2).

p(X,Y,Y1,X1) « p(X,Y,X1,Y1).

p(X,Y,X1,Y2) « p(X,Y,X1,Y1),p(X,Y,Y1,Y2).

dist(X,Y) + p(X,Y,X1,Y1),view(X1, V), not view(Y1, V).
dist(X,Y) « p(X,Y,X1,Y1), not view(X1,V),view(Y1,V).

ceq(X,Y);nceq(X,Y) + . 6)
«— not ceq(X, X). )
«— ceq(X,Y), not ceq(Y, X). 8)
«— ceq(X,Y),ceq(Y, Z), not ceq(X, Z). 9)
— ceq(X,Y),view(X, V), not view(Y, V). (10)
— ceq(X,Y), not view(X, V), view(Y, V). (11)
— not ceq(X1,Y1),ceq(X,Y),cs(X,A, X1),cs(Y, A, Y1). (12)
< not ceq(X,Y), not dist(X,Y). (13)

Figure 2:Logic program associated with CT(E).

4 SSH Topological Level

We are to define the SSH topological thedRT (E), associated with a set of experi-
encesE. The language of this theory is a sorted language with sortplaces paths

1We have implemented this logic program in Smodalemela and Simons, 1997In the implementa-
tion, one has to add variable domain restrictions to thewfit rules. For example, rule

ceq(X,Y),nceq(X,Y) + .

becomes
ceq(X,Y),ceq(X,Y) + dstate(X), dstate(Y)

wheredstate is our predicate to identify the sort of distinctive states.



andpath directions'? The main purpose d&f T'(E) is to minimize the set of paths and
places consistent with the given experienéesA place can be &opological place
(hereafter place) ori@gion A place is a set of distinctive states linked by turn actions
A region is a set of places. We use the predicftesceandis_regionto identify these
subsorts. A path defines an order relation among places ctathby travel with no
turn actions. They play the role of streets in a city layoue W¥e the predicatpathto
identify the sort of paths. By minimizing the extentiplace, is_region andtpath we
minimize the sort of places and paths respectivlfhe language of the SSH topo-
logical level includes the following other predicatésq(ds,ds’}- distinctive stateds
andds’ aretopologicallyindistinguishableat(ds,p)- distinctive statels is at placep;
along(ds,pa,dir)}-distinctive statels is along pathpa in directiondir; OnPath(pa,p)
—placep is on pathpa; PO(pa,dir,p,q)-placep is before placg when facing direction
dir on pathpa (PO stands for Path Order).

TT(E), is the following nested abnormality theory:

Vp, tplace(p) = —is_region(p), Vpa, tpath(pa) , (14)
{min is_region :
CT(E) ,Tblock ,AT block }

The first line in Axioms 14 says that topological places arglaes are the two
subsorts of places, and that the predicategh represents the sort of paths. The block
CT(E) is the one defined in the previous section. The blbdilock defines the predi-
cateSurn, travel, andtravel such thaturn is the equivalence closure of the schemas
(-, turn, -); travel andtravel are the equivalence and transitive closure of the schemas
(-, travel, ).

The blockAT _block (Figure 3) is the heart of our theoly. The purpose of this
block is to define the extent of the predicatigath tplace at, along, PO andteq, while
identifying a minimum set of places and paths that explaifT he block has associated
the circumscription policy

circ tpath = along = PO = OnPath = tplace var SSprred

WhereSSprred stands for the tuple of predicatas teqg, traveleq andturn_eg®
This circumscription policy states (among others) that aimim set of paths is pre-
ferred over a minimum set of places. Next we discuss the axiamT_block.
Predicateteq is the equivalence relation defined by axiom 18g(ds, ds') is the
case whenevets andds’ cannot be distinguished by views and actions ¢eg(ds, ds’))
and it is consistent to groufs andds’ into the same place. If we assume that views
uniquely identify distinctive states (e.§.iew(ds, V) A View(ds',V) — ds = ds'),

12The sort of directions is completely defined by the symipolsandneg

L3Notice that our logic has sorts falacesand pathsbut in order to minimize these sorts we have to
explicitly have predicates representing them.

14Notice that the predicatés_region is not mentioned in the theory of figure 3. In the next secti@an w
will add to this theory axioms dealing with regions. For thepmse of this section, the minimization of
is_region in conjunction withVp, tplace(p) = —is_region(p) implies (the defaulty/'p tplace(p).

15The symbol>- indicates prioritized circumscription (séifschitz, 1994 section 7.2).

16BJock 20 in Figure 3 states that the predicaten_eq corresponds to the relaticiurn moduloteq.

Block 32 definesravel_eq to be the relationtravel moduloteq.



teq(ds,ds') = 3p {ceq(ds, ds') A at(ds,p) A at(ds', p)} R (15)
at(ds, p) — tplace(p), (16)
Ipat(ds, p), 17)
(ds, turn, ds') A at(ds,p) — at(ds',p), (18)
at(ds, p) A at(ds',p) — turn-eq(ds,ds'), (19)
{min turn_eq : (20)

teq(ds, ds') A teq(dr,dr') A @(ds', dr') — turn-eq(ds, dr),
turn-eq(ds,ds') A turn-eq(ds’,ds'"') — turn_eq(ds,ds"’) }
along(ds, pa, dir) — tpath(pa), (21)
at(ds, p) A at(ds', q) A tra—i)el(ds7 ds') — (22)
dpa, dir {PO(pa, dir, p, q) A along(ds, pa, dir) A along(ds', pa, dir)} s
along(ds, pa, dir) A along(ds, pal,dirl) — pa = pal, (23)
at(ds, p) A at(ds', p) A along(ds, pa, dir) A (24)
along(ds', pa, dir) — teq(ds,ds'),
{(ds7 turn-desc,ds’) A turn-desc # turnAround A (25)

along(ds, pa, dir) A along(ds', pal, dirl)} — pa # pal,

(ds, turnAround, ds') — along(ds, pa, dir) = along(ds', pa, —dir), (26)
PO(pa, pos,p,q) = PO(pa, neg, q,p), 27
= PO(pa,dir, p,p), (28)
PO(pa, dir,p,q) N\ PO(pa,dir,q,7) — PO(pa,dir,p,r), (29)
PO(pa, dir,p, q) — OnPath(pa, p) (30)
OnPath(pa, p) AN OnPath(pa, q) A tpath(pa) — (31)
Ads, ds' {at(ds,p) A at(ds', q) A travel-eq(ds,ds’)},
{min travel_eq : (32)

teq(ds, ds') A teq(dr,dr') A tr/a-v\el(ds', dr') — travel-eq(ds,dr),
travel-eq(ds,ds') A travel_eq(ds’,ds") — travel-eq(ds,ds'") }
circ tpath > along = PO = OnPath > tplace var SSH})Ted

}

Figure 3:AT _block.

then predicateseq andteq will reduce to equality. This is expected since all that is
required to identify a distinctive state is its viéWv.

Every distinctive state is at a unique place (Axiom 17). Whar the agenturns,
it stays at the same place (Axiom 18). Distinctive statesigeal into a topological
place should beurn connected (moduléeq) (Axiom 19). Travelactions among dis-
tinctive states are abstracted to topological paths cdimigthe places associated with
those distinctive states (Axiom 22). A distinctive statalisng at most one path (Ax-
iom 23). At each place there is at most one distinctive stategea given path direction

17see appendix E, page 27, for a discussion of other simpiditaihat can be made when views uniquely
identify distinctive states.



(Axiom 24). Turn actions other thamrnAroundchange the path the initial and final
distinctive states are at (Axiom 25)urnAroundactions relate distinctive states being
in the same path but opposite directions (Axiom 26). The oodglaces in a given
path direction is the inverse of the order of places in theopath direction (Axiom
27). Axioms 28 and 29 requirBO(pa, dir, -, -) to be a non-reflexive transitive order
for the places oma. Places ordered by a path should belong to that path (Axiom 30
Axiom 31 requires the agent to have traveled among the ptatessame path.

Our theory does not assume a “rectilinear” environment ehpeths intersect at
most in one place. It is possible for different paths to h&aeesame order of places (see
Figure 4). Topological information can distinguish distime states not distinguishable
by view and actions.

pal,dirl
fsia W pa.neg
cendsl dsg, ds3 i
ds2 ds4 ds6

a P&POS ) pa,pos

(a) (b)

Figure 4:The environment in (a) illustrates a case where differetitgommtersect at more than
one place. (b) depicts the topological map associated Wighenvironment.

Example 3

Consider the scenario of example 1. Since the same view isriexged ag, b
andc, the extent oteq is maximized by declaringeq = true. Using the topological
theory, from axiom 17 we conclude that there exist plaéesd@, such thatit(a, P)
andat(c, Q). Since itis the case thatavel(a, c), from axioms 22 and 28 we conclude,
for instance, thaP # @. Distinctive states andc are topologically distinguishable
though they are “causally indistinguishable” (i@g(a, c) A —teg(a,c)). {end of ex-
ampléeg

Given a minimal modeM of TT(E), the SSH topological map is defined by the
extentinM of tpath, tplace along POandat. Since the positive and negative direction
of a path are chosen arbitrarily (Axiom 22), there is not aqueiminimal model for
TT(E). We will consider these “up to path direction isomorphic”dets to be the
same. However, it is still the case that the theBfy(E) has minimal models that are
not isomorphic up to path direction (see Figure 5).

5 SSH Boundary Regions

In addition to connectivity and order among places and pdties topological map
includes topological boundary relations: assertions déhalace lies to the right of, to
the left of, or on a path. In order to determine boundary rahat we formally state
the following default heuristic. Suppose the agent is anéersection on a given path,

10
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Figure 5:(a) The robot goes around the block visiting plaggs. .,F,C' in the order suggested

in the figure. IntersectionB andC look alike to the agent. Two minimal models can be associ-
ated with the set of experiences in (a) (see (b) and (c)). [Bgpzal information is not enough to
decide whether the agent is backBoor C. Notice that if the agent accumulates more informa-
tion, by turning atc and traveling tad, then it can deduce that the topology of the environment
is the one in (b). In addition, when available, metrical infiation can be used to refute the
incorrect topology.

and it then turns right. If the agent now travels, any pladmds while traveling with

no turns will be on the right of the starting path. When cotifiig information exists
about whether a place is to the right or left of a path, we dedwchoundary relation
(see Figure 6).

(a) (b) (c)

Figure 6: Different environments illustrating how our default to elehine boundary relations
works. In (a), we conclude by default that places to the left of the path from to B. In (b)
we conclude nothing about the location of pldzevith respect to the path fror to B. In (c),
we conclude that place is to the left of the path fronA to B. This is the case since there is no
information to conclude otherwise

We use the predicatéBothe RightO f /TotheLe ftO f (pl, pa, dir, pal, dirl) to
represent the facts that (Pl is a place on both pathspa and pal, and (ii) when
the agent is aplace plfacing in the directiordir of pa, after executing a turn right
(left) action, the agent will be facing on the directidinl of pal(see Figure 7). The
predicateJothelL eftOfindTotheRightO&re derived from the actions performed by the
agent at a place:

(ds, turnRight,dsl) A at(ds,p) A along(ds, pa,dir) A (33)
along(dsl,pal,dirl) — TotheRightO f(p,pa,dir,pal,dirl)
We use the predicatese ftO f (pa, dir, lr) and RightO f (pa, dir,rr) to denote
thatregionir (rr) is the left (right) region of patpawith respect to the path’s direction

dir. The left/right regions of a path are unique, disjoint, agldted when changing the
path direction (i.eLeftO f (pa, dir,r) = RightO f(pa, —dir,r)). From the relative

11



orientation between paths at a place, we deduce the relatiation of places with
respect to a path (see Figure ¥:

TotheRightOf(pl,pa,dir,pal,dirl) APO(pal,dirl, pl,p)A
RightOf(pa,dir,rr) A =Ab(pa,p) — in_-region(p,rr) (34)

Pa, dir
Pal, dir.

Figure 7:PathPalis to the right of pattPa at placepl. Placep is after placepl on pathpal
By default, we conclude that plagds to the right of pattpa.

The predicat@b is the standard “abnormality” predicate used to represefatdts
in circumscriptive theoriefLifschitz, 1994. Axiom 34 states thatormally” , if at
placepl pathpalis to the right of pattpa, and placep is afterplon pathpal, then it
should be the case thptis on the right ofpa (Figure 7). In order to capture this de-
fault, boundary regions domain theory axidthare added to the blookT _block (see
Figure 3). Since we are interested in the extent of the nedigaesn_region LeftOf
RightOf TotheLeftOfand TotheRightOfwe allow them to vary in the circumscription
policy. The new circumscription policy becomes

circ tpath > along > PO > Onpath >~ Ab > is_region >
in_region =~ tplace var newS,STHpred

where nengHpred stands for the tuple of predicate$ along teq, traveleg
turn_eq, LeftOf, RightOf, TotheLeftOf, and TotheRightOf. The circumscription
policy states that boundary relations should be estaliskien at the expense of hav-
ing more places on the map. In addition, by minimizing thedpratesis_regionand
in_region, we require the models of our theory to have only the regibasdre explic-
itly created by the agent, and not arbitrary ones.

Example 4

Boundary relations determine distinctions among envirentstates that could not
be derived from the connectivity of places alone. Consideagent visiting the differ-
ent corners of a square room in the order suggested by Figurén &ddition, suppose
the agent definegiewsby characterizing the direction of walls and open space. Ac-
cordingly, the agent experiencieair different viewsv1-v4 in this environment.

The set of experiencdsin the environment are:

View(dsl,vl) View(ds2,v2) View(ds3,vl)
View(ds4,v2) View(ds5,vl) (dsl,turnRight, ds2)
(ds2,travel,ds3) (ds4,travel,dsb) (ds3,turnRight,ds4)

18The predicatén_region(p,r)states thaplacep is inregionr.
191n the spirit of axioms 33-34.
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Figure 8:(a) The figure shows the sequence of actions followed by ant agtle navigating a
square room. Starting at distinctive state ds1, distiecihates are visited in the order suggested
by their number. Dashed lines indicate Turn actions. Salieklindicate Travel actions. (b) and
(c) depict the topological map associated with the enviremnm (a) without and using boundary
regions, respectively.

Pb

Suppose that the agent does not use boundary regions wheinthe topological
map. Then the minimal topological model associated \Eithas two path® and two
places. In this modelieq(dsl, ds5) is the case. The environment looks perfectly
symmetric to the agent (Figure 8b).!!

Suppose now that the agent relies on boundary regions. PL&, R, be the
topological places associated wilkl, ds3andds5respectively. From Axiom 22, let
Pa, Pb, dir, and dir, be such thatPO(Pa,dir,, P,Q), along(ds2, Pa,dir,),
along(ds3, Pa, dir,), PO(Pb,diry,Q, R), along(ds4, Pb, diry), and
along(ds5, Pb,diry) hold. From Axiom 33 we can conclude then
TotheRightOf(Q, Pa,dir,, Pb,diry). In the proposed model, the extent of
Ab is minimized by declaringdb = false and consequently from Axiom 34 we
concludein_region(R, right(Pa, dir,)) where right(Pa, dir,) denotes the right
region of Pa when facingdir,. Finally, since a path and its regions are disjoint,
andOnPath(Pa, P) is the case, we conclud® # R and so# teq(dsl,ds5). The
resulting topological map is depicted in Figure §end of example

If the agent’s sensory capabilities are so impoverishedrtzany distinctive states
are perceived to be similar, then metrical information dolbé used to distinguish
different environment states. Figure 9 summarizes differepresentations an agent
could build depending on the spatial properties it relies on

6 Conclusions

Starting with an informal description of the SSH we have fallgnspecified its in-
tended models. These models correspond to the models oifrtiuenscriptive theory
TT(E). The formal account of the theory allows us to illustratediductive power of
the different SSH ontologies. For instance, example 4 shmwsthe use of bound-
ary relations allows the agent to determine distinctionsmgrenvironment states that
could not be derived from the connectivity of places and pathne.

2ONotice that from{ds3, turn Right, ds4) and Axiom 25 we can deduce thBa # Pb in Figure 8b.
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Figure 9: Consider the same environment and agent as in figure 8. Assthmeagent keeps
turning right and following the left wall until it is back toigtinctive statedsl, at placeP.
Only two kind of views|= and =| are observed by the agent. Next we summarizes different
maps the agent could build depending on the spatial pregattielies on. (a) If the agent only
relies on causal information, the map consists of two stélgdVhen topological information is
used, but without boundary relations, the map consistsuf $tates and two places. (c) When
boundary relations are used, the map consists of six statbtheee places. There is no fixed
correspondence between the three places in the map andithiedcstinguishable places in the
real world. (d) If metrical information is accurate enoughréfute the hypothesi® = S, the
map will consist of eight states and four places.

The theoryT T(E)is rather complex so it may be difficult to determine the dftec
the different defaults in combination. However, it is pbésio translate this theory into
a logic program whose answer sets determine the mod@l§(&). We have illustrated
the case for the SSH causal the@¥(E), but the same techniques apply fBF (E).
The major subtleties in the translation are the minimalitg amaximality conditions
associated with the theory. We have used Smodels to cadhlatmodels off T(E)
and confirm that the theory yields the intended models. Hewavhen the number of
distinctive states is big, Smodels may not be able to grob@theory as the number of
rules associated with the program grows exponentially. el working on solving
this problem.
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A Nested Abnormality theories

In this appendix we define circumscription and nested abalities theories following
[Lifschitz, 1994, Lifschitz, 1995

The main idea of circumscription is to consider, instead rbiteary models of
an axiom set, only the models that satisfy a certain minigatndition (usually set
inclusion). Mathematically, circumscription is definedeasyntactic transformation of
logical formulas. It transforms a sentendénto a stronger sentenct®, such that the
models ofA* are precisely the minimal models df

Definition 1 (Circumscription)

Let A(P, Z1,...,Z,,) be a sentence containing a predicate constamind object,

function and/or predicate constarifs, . .., Z,, (and possibly other object, function
and predicate constants). Thiecumscription of P in A with varied, ..., Z,, is the
sentence

AP, Z1, ... Zw) A—3p, 21, - -y 2m [A(D, 21, - -y 2m) A D < P (35)

wherep < P denotes the formula
Vz {p(z) — P(z)} A3Jz{p(z) A-P(z)} .
We denote the formula 35 WY IRC [A; P; Z]. {end of definitiof

Intuitively, the models oI RC [A; P; Z] are the models ofl in which the extent
of P cannot be smaller without losing the propeftyeven at the price of changing the
interpretations of the constants In order to make this claim precisely, the following
order,<”iZ is defined among structures of the languagd of

Definition 2 (<Fi%)

Let M; and M- be two structures for a given one-sorted language. THer< 7% M,
whenever

o | M| = |M],*

e M [C] = M[C],?? for every constan€ which is different fromP and does
not belong taz,

o Mi[P] C M>[P]
{end of definition
M, <FZ M, means thaf\/; and M, differ only in how they interpreP and Z,

and the extent oP in M, is a subset of its extent il5. The next relation (proposition
1 in [Lifschitz, 1994) relatesC I RC [A; P; Z] and<FiZ:

21For a structureV, | M| denotes the universe aff.
22 [C] denotes the interpretation 6fin M.
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Theorem 1 A structureM is a model ofCIRC [A; P; Z] if and only if M is minimal
relative to<F3% .

Example 5

Circumscription is usually used in order to formalize défassociated with an ax-
iomatic theory. Suppose the we would like to represent tlieuie'Normally a block
in on the table”. Suppose blod¥, is not on the table and I&, denotes another block.
The circumscriptive theory below allow us to conclu@etable(Bs):

Block(z) AN —Ab(z) — Ontable(x) (36)
—Ontable(B;) (37)
Block(B;), Block(B2), By # B2 (38)
circ Ab var Ontable (39)

where we have extended our notation such that the abovedsheuinderstood as
CIRC [36 A 37 A 38; Ab; Ontable] .

Inthe above theory, itis the case thHit(z) = = = B;, and consequentYntable(Bs)
follows. The role of the predicatds is to single out the blocks that atabnormal”
relative to the default (36).end of example

It is often convenient to arrange different defaults by gisisig priorities to them.
For example, consider formalizing the enhancement of tkerthabove in which
“Blocks are usually heavy”, and “heavy block are usuallyindhe table”. Next we de-
fine two extensions two the basic definition of circumscadptiparallel and prioritized
circumscription.

Definition 3 (Parallel Circumscription)
Theparallel circumscription
CIRC [A;P,..., P Z]
is the sentence
A(P,Z) AN —3p,z[A(p,z) Ap < P] ,

whereP stands for the tuple of predicatég, ..., P"* andp < P stands for the for-
mula¥y1<i<np' <P AJ1<i<np'< P!
{end of definition

The parallel circumscription of several predicates hasvgle model theoretics
characterization, similar to the one presented by theorésienP is atupleP!, . .., P?,
the relationM; <F34 M, between structured/; and M, is defined as before, ex-
cept that the conditiod/; [P] C M, [P] is replaced by, [P‘] C M, [P?] for all
1=1,...,n.
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Definition 4 (Prioritized Circumscription)
Theprioritized circumscription
CIRC [A; P! ~ ...~ P¥; 7]

is the sentence
A(P,Z) AN —=3p,z[A(p,2) Ap < P]

whereP stands for the tuple of predicatég, ..., P" andp < P stands for the for-

mula
k i—1 ] ) ) )
V[ A@ =P)n@p <P
i=1 \j=1
{end of definitio

The formulap < P defines dexicographicorder among the predicatesprandP.
Whenk = 1 itbecome® < P; if k = 2, it becomes

(p* < PYHV((p' =P") — (p® < P?)) .

Proposition 15 inLifschitz, 1994 shows that prioritized circumscription can be re-
duced to parallel circumscription as follows:

Theorem 2 The circumscriptiotCIRC [4; P* » ... = P¥; Z] is equivalent to

k
/\ CIRC [4; P}, P*,... P¥ 7]

=1

B Nested Abnormality theories (NAT’S)

Nested abnormality theories allows one to apply the cirauip8on operator to a sub-
set of axioms, by structuring the knowledge base (the theoty blocks. Each block
can be viewed as a group of axioms that describes a certd@tttoh of predicates and
functions, and the nesting of blocks reflects the dependehtteese descriptions on
each other.

Definition 5 (NAT’s)

Consider a second-order langudgéhat doesiotinclude Ab among its symbols. For
every natural numbet, by L; we denote the language obtained frénby addingAb
as a k-ary predicate constaBlocksare defined recursively as follows: For atiand

any list of function and/or predicate constaéls. .., C,, of L, if each ofA,,..., A,
is a formula ofL;, or ablock then{C4,...,Cy, : Ai,...,A,}is ablock The last
expression readst, ..., C,, are such thatd,,..., A,. About(C4,...,C,, we say

that they arelescribedy this block.
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The semantics of NAT's is characterized by a maphat translates blocks into
sentences of. It is convenient to make defined also on formulas of the languages
L. If Aissuch aformula, thep(A) stands for the universal closure 4f For blocks
we define, recursively:

0{C1,...,Cp : A1,..., Ay} =3ab CIRC [pA;,...,0A, : ab : C1,...,Cp] .

{end of definitiof

Example 6

Consider the standard example: objects normally don't fidjdmormally do; canaries
are birds; Tweety is a canary. These assertions can be faedals the NAT whose
only axiom is

{Flies :
Flies(z) — Ab(z),
{ Flies :
Bird(z) A ~Ab(z) — Flies(z),
Canary(z) — Bird(z),
Canary(Tweety)

}
}

The outer block describe the ability of objects to fly; thednblock gives more spe-
cific information about the ability dbirds to fly. Each occurrence of the predicaté
is “local” to its block, and so, the two occurrences of thedicate Ab refer two “unre-
lated” predicates though we use the same name.

{end of example

Most often, it is desirable not to mention the predicdteat all. We will adopt the
following notations:

e {C1,...,Cp,min P : Aq,...,A,} stands for
{C1,...,C, P : P(z) = Ab(z), A1,..., A}
e {C1,...,Cp,maz P : A,,...,A,} stands for
{C1,...,Cp, P : 2Ab(z) — P(z), A1,...,Ap}
Using this notation, we could rewrite our previous examgle a
{min Flies :

{ Flies :

18



Bird(z) A ~Ab(z) — Flies(z),
Canary(z) — Bird(z),
Canary(Tweety)
}
}
where we dispense the occurrence of ottepredicate. The reader is referred to

[McCarthy, 1980, McCarthy, 1986, Lifschitz, 1994, Lifs@hitL993 for a complete
survey of the uses and properties of circumscription andNAT
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C Answer Sets

In this appendix we defined the answer set semantics for a psggram as defined in
[Lifschitz, 1999, Gelfond and Lifschitz, 1981

Consider a set of propositional symbols, callgdms A literal is an expression
of the form A or = A, whereA is an atom (we call the symbel “classical negation”,
to distinguish it from the symbaotot used for negation as failure). A rule element is
an expression of the forth or not L, whereL is a literal. Arule is an ordered pair

Head < Body (40)
whereH ead and Body are finite sets of rule elements. If
Head = {Ly,...,Lg,not Ly41,...,not L;}
and
Body = {Lit+1,-..,Lm,not Lyyy1,...,n0t Ly}
(n>m >1 >k > 0) then we write (40) as
Ly;...,Lg;not Ly, ...,not Ly < Lyy1,...,Ly,not Ly,4q,...,n0t L, .

Arule (40) is aconstraint if Head = ). A program is a set of rules.

The notion of an answer set is defined first for program thatdd@ontain negation
as failure { = k andn = m in every rule of the program). Lét be such program, and
let X be a consistent set of literals. We say tiats closedunderlI if, for every rule
inII, Head N X # () wheneveBody C X. We say thafX is ananswer setof IT if X
is minimal among the sets closed undlefrelative to set inclusion).

Example 7
The program
p;q <
r < p
has two answer set$p, —r} and{q}. If we add the constraint
—4q

to this program, we will get a program whose only answer sépjsr} (see theorem
3 below).{end of example

To extend the definition of an answer set to programs with ti@gas failure, take
any progranil, and letX be a consistent set of literals. Tredluct IIX of II relative
to X is the set of rules

Ll;---aLk;<_Ll+17"'7Lm )

for all rules (40) inII such thatX contains all the literald 1, ..., L; but does not
contain any of thel,,, 1, ..., L,. ThusIIX is a program without negation as failure.
We say that X is amnswer setfor I1 if X is an answer set fdiX.
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Example 8
The program

p < notq
q < notp

has two answer set§p} and{q}. {end of example

Adding a constraint to a program affects its collection afer sets by eliminating
the answer sets that “violate” this constraint. Next we prthis property of answer
sets.

Theorem 3 LetII; andIl, be logic programs such thdl, is obtained fromil; by
adding a set of constraints (i.e. II, = II; U C). Let X be a consistent set of literals.
ThenX is an answer set foll, if and only if X is an answer set foll; such that for
eachrule«~ L,,...,L,,,not Ly+1,...,n0tL, € C,{Ly,...,L,} Z X whenever
X does not contain any df,;, 11, ..., Ly.

Proof. LetX andY be consistent sets of literals. LEt*(Y)) denote the fact

thatY does not violates any constraint@*, that is, if« L,,...,L,, € CX then
{L1,...,Lp} €Y. In particular,
Y C X ACX(X) = CX(Y) (41)
Moreover, it is the case that
CX(Y) =Y is closed under C* (42)

In fact, if Y is closed unde€* and« Li,...,L,, € CX,then{L,...,L,}ZY
for otherwiseY N O # (). Conversely, ifC* (Y) is the case, it is easy to see that
is closed unde€*. From the definition of reduct we have tHaff = II¥ cupCX.
Using (41) it is then the case that

{Y : closedyx(Y)} = {Y : closedyx (Y) A C*(Y)} (43)
From facts (41) and (43) the theorem follows:

X answer set for Il

X answer set for IIx
X minimal of {Y : closedpx (Y)}

N
e
@

X minimal of {Y : closedpx(Y) A CcX(Y)}
= CX(X)AVY (Y #XAY CXACX(Y) = ~closedyx (Y))

n
e
=

CX(X)AVY (Y #X NY C X = ~closedyx (Y))

CX(X) A X answer set for II;*
= COX(X)A X answer set for II;
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D Ceq properties

In this appendix we provide proofs for the different propestof the predicatedeq
defined in section 3 (Page 6). We start by proving that préelieg is indeed an equiv-
alence relatio® We then illustrate that it in general it is necessary to exgh)i ask

ceq to be symmetric and transitivé.We show that have the agent completely explored
the environment, then the maximization principle definiag will guaranty thatcegq

is an equivalence relation without explicitly requiring(&age 6). Moreover, we show
that in this case the predicateq captures the idea that two distinctive states are the
same if they render the same views under any sequence ofigctio

Theorem 4 The predicate ceq is an equivalence relation.

Proof. For the purpose of the proof next we reproduce the definiiotine theory
CT(E)
CT(E) =
E, HS(E), DT,
(ds,a,ds'y A (ds,a,ds") — ds' = ds", (Aziom 1)
CEQblock =
{ maz ceq:
ceq(ds,ds") — ceq(ds',ds),
ceq(ds,ds') A ceq(ds',ds") — ceq(ds,ds"),

ceq(ds,ds’) — View(ds,v) = View(ds',v),
ceq(ds1,dsz2) A {(ds1,a,dsy) A {dsz2,a,dsh) — ceq(dst,dsh)
}

We need to prove thakq(ds, ds) is the case. Leds; be a model for the axioms
inside theCEQ_block as well as the other axioms 6fT'(E). Let M, be a structure
identical toM; except that

ceq™? (ds,ds') = ceq™ (ds,ds') V ds = ds' .

Our theorem follows once we prove thaf; is a model for the axioms inside the
CEQ.block?® Next we show why this is the case:

o M, = ceq(ds,ds') — ceq(ds',ds). In fact,

Il
o
o
S
n

233eeceq’s definition below.
24The maximization associated witleq’s definition does not guaranty these properties.
250, satisfies the other axioms GT'( E) sinceceq does not occur in them.
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o My |=ceq(ds,ds') A ceq(ds’,ds") — ceq(ds, ds"). In fact,

ceq™z(ds, ds') A ceq™?(ds', ds"")
= (ceq™ (ds,ds") Vds = ds') A (ceqg™ (ds',ds") v ds' = ds")
= (ceq™ (ds,ds") A ceq™ (ds',ds")) v (ds = ds' A ceq™* (ds',ds")) v
(cequ (ds,ds') Ads' = ds") V (ds = ds' Ads" = ds")
—  ceqM(ds,ds") v (ds = ds' Ads' = ds")
= ceqgM2(ds,ds")

o M, |= ceq(ds,ds’) = View(ds,v) = View(ds',v). In fact,

ceq™2(ds, ds")
= ceqM(ds,ds') vds = ds'
— Yo [View(ds,v) = View(ds',v)] V ds = ds'
— Y [View(ds,v) = View(ds',v)] V Vv [View(ds,v) = View(ds',v)]
= View(ds,v) = View(ds',v)

o M = ceq(dsy,dss) A (ds1,a,ds)) A (ds2,a,dsh) — ceq(ds],dsy). Infact,

ceq™? (dsy,dss) A (ds1,a,ds)) A (dsz,a,dsh)
= (ceq™(dsy,dsz) A (dsy,a,ds)) A (dsz,a,dsh)) V
(dsy = ds2 A (ds1,a,ds)) A (dsz2,a,dsy))
—  ceq™(ds),dsh) V ({ds1,a,ds)) A (ds1,a,dsh))
ceqM (ds!, dsh) V ds)|, = ds)
= ceqM2(ds),dsh)

Axiom 1 (i.e. actions are deterministic) is fundamentahia proof above. Without
this axiom, we could have a set of experiences like

Action_type(ml, travel) ,
CS(sl,a,ml,b), CS(s2,a,ml,c) .
View(a,v) , View(b,vl) , View(c,v2)

for which ceg(a, a) is not the case.

In general it is not possible to remove they’'s symmetry and transitivity axioms
from insideC EQ _block. Consider the following example.

Example 9
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Let E be the set defined by the following formulae:

CS(sl,dsy,a1,dss) , CS(s2,ds1,az,dss3),
CS(s3,ds2,a3,dss) , CS(s4,dss,as,dss) ,
View(ds1,v) , View(dss,v) , View(dss,v)
View(dss,vl) , View(dss,v2) .

Suppose our definition af EQ _block were :

CEQblock =
{ maz ceq:
ceq(ds,ds') — View(ds,v) = View(ds',v),
ceq(dsi,dsz2) A (ds1,a,dsy) A (ds2,a,dsh) — ceq(dst, ds})

}

Sincevl # v2 we conclude-ceg(dss, dss). This in turn implies—ceq(dsz, ds3).
However, in order to maximizeeq we can makeceq(dsy, dss) A ceq(dsy,dss) A
ceq(dsa, ds1) A ceq(dss,ds1) AVds ceq(ds, ds) to be the case. In such a modely is
not transitive.

{end of example

There is a special case in whiebg is symmetric and transitive without explicitly
tell so. This is the case when the result of every action atyedsstinctive state is
known. In this case, we said that the set of experiences ipleten

Definition 6
A set of experiencef is completewhenever
E = Va,ds3ds'(ds,a,ds") .

{end of definition

Theorem 5
Let E be a complete set of experiences. Cat(E) be defined as follows:

CT(E) =
E, HS(E), DT,
(ds,a,ds') A (ds,a,ds") — ds' = ds", (Aziom 1)
CEQblock =
{ mazx ceq:
ceq(ds,ds’) — View(ds,v) = View(ds',v),
ceq(ds1,dsz2) A {ds1,a,dsy) A {dsz2,a,dsh) — ceq(dst,dsh)

}
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Then the predicateeq is an equivalence relation.

Proof. Let M; be a model for the axioms inside ti@EQ block as well as the
other axioms ofCT'(E). We need to prove that it is possible to have a strucidse
identical toM; except thateg™* C ceq™?, M, is a model for the axioms inside the
CEQUblock the other axioms of T'(E), andceg™? is an equivalence class. The proof
goes along the lines of theorem’s 4 proof. Indeed, the saowf ps in theorem 4 allow
us to assume that/ 1 is reflexive.

Let M, be a model identical td/1; except that

ceq™2(ds, ds") = ceq™* (ds,ds’) V ceg™* (ds', ds) .

By definition,ceg™2 is symmetric. We need to prove thif, satisfy the axioms inside
(the new)C EQ _block:

o M |= ceq(ds,ds') — View(ds,v) = View(ds',v). In fact,

ceq™2(ds, ds")
= ceq™ (ds,ds") V ceg™* (ds', ds)
— Yo [View(ds,v) = View(ds',v)] V Vv [View(ds',v) = View(ds,v)]
= View(ds,v) = View(ds',v)

o M |= ceq(dsy,dss) A (ds1,a,dst) A {(ds2,a,dsh) — ceq(dst,dsh). In fact,

ceq™z(dsy, dsy) A (ds1,a,ds)) A (dsz, a, dsh)
= [ceq™ (ds1,ds2) A (ds1,a,ds]) A (dsa,a,dsh)] V
[cequ (ds2,ds1) A (dsy,a,dsy) A (dsz, a, dsh)]
—  ceq™(dsy, dsh) V ceqg™ (dsh, ds))
= ceqM2(ds),dsh)

Finally, let M- be a model identical td/; except that

Mzz

ceq transitive_closure(ceq™) .

By definition,ceq™2 is transitive. Ifceq™* is reflexive and simmetric, so isq=. We
need to prove thal/, satisfies the axioms inside (the ne®EQ _block:

o M |= ceq(ds,ds') = View(ds,v) = View(ds',v). In fact,
ceq™?(ds, ds")
= 3ds°,ds',... ds" [ds =ds®, ds' = ds", ceq™ (ds*,ds'), 0 < i < n]
—  3ds®,ds',...,ds"
[ds =ds°, ds' = ds™, View(dsi,v) = View(dsiﬂ,v), 0<i< n]
—  3ds®,ds" [ds =ds°, ds' = ds", View(ds®,v) = View(ds",v)]
= View(ds,v) = View(ds',v)
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o M |= ceq(dsy,dss) A (ds1,a,dst) A {(ds2,a,dsh) — ceq(dst,dsh). In fact,
ceq™?(ds1,dsz2) A (ds1,a,ds)) A (ds2,a,dsh)
= 3ds'(1<i<n) [dsl =ds', dsy = ds™, ceq" (ds',ds'™"), 1 <i < n]
Ads1,a,dsy) A (dsz2, a,dsh)
"P 34s'3(ds’a,ds” )
[dsl =ds',dsy = ds",ds| = dslr,ds’2 = ds" | ceqM1 (dst,dsit!), 1 <i< n]
—  3ds' {ds'l = dslr, dsy = ds"’, ceq™? (dsi’, ds(iH)’), 1<i< n]

ceq"'®(ds}, dsb)

Il

When a set of experiences is complete the predimadeaptures the idea that two
distinctive states are the same if they render the same viessr any sequence of
actions. Assume that is complete and led* = ay,...,a, a sequence of actions.
The termT'(A*)(ds) denotes the distinctive state resulting from executlrigstarting
atds. By definition,T(A*)(ds) = ds if n = 0, T (Ax)(ds) = ds’ such that(E |=
(T'(a,...,an-1)(ds),an,ds"). Notice that the definition oI'(A*)(ds) makes sense
sinceF is complete and actions are deterministic.

Theorem 6 Let E be a complete set of experiences. Then,
ceq(ds,ds') =VA*, v [View(T(A*)(ds),v) = View(T(A*)(ds"),v)] .
Proof. Let M; be a model for the axioms inside tEQ_block as well as the other
axioms ofCT'(E). Let M, be a model identical td/; except that
ceq™? (ds,ds') = VA*,v [View(T(A*)(ds),v) = View(T(A*)(ds'),v)]

By induction in the length of action sequences on can proatctiy™ C ceqM2.
Our proof is complete by showing thail, satisfy the axioms inside (the new)
CEQ _block:

o M, |= ceq(ds,ds’) — View(ds,v) = View(ds',v). In fact, supposé/, |=
ceq(ds, ds') and consider the empty sequence of actions. Then

View(ds, V) = View(T({})(ds),v) = View(T({})(ds"),v) = View(ds',v) .

o M = ceq(dsy,dss) A (ds1,a,ds)) A {(ds2,a,dsh) — ceq(ds’,dsh). In fact,
ceq™2(ds', dsb)
= VA'v [View(T(A*)(ds'l),v)
+— (ds1,a,ds}) A (ds2,a,dsh) A
VA" v [View(T(aA")(ds1),v) = View(T(aA")(ds2),v)]
—  ceq™? (ds1,dsz2) A {ds1,a,dst) A (ds2,a,dss)

view(T(A*)(ds'g),v)]
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E What if Views uniquely identify distinctive states

In this section we explore how our theory is simplified by tlsstamption that views
uniquely identify distinctive states. Under this hypotisese add the following axiom
to our theory:

View(ds, V) A View(ds',V) — ds = ds' (44)

Since= satisfies all the axioms i@EQ_block (Page 6), we know that C cegq.
From 44 and 44 we conclude thatg C =. Consequently, we do not need to have
block CEQblock and we can replaaeq by =.

Let's consider the predicateq defined by Axiom 15 (Page 9). Sineeq is equal
to =, we deduce that

teq(ds, ds") JIp{ds = ds' A at(ds,p) A at(ds’,p)}
ds = ds' A Jp at(ds, p)

= ds=ds'

Consequentlyteq can also be replaced by. The fact thateq andteq reduce to=
is expected since all that is required to identify a distuecstate is its view. Next we
show that the predicatéarn_eq andtravel_eq can be replaced biurn andtravel,
respectively.

By replacingteq by =, block 20 can be rewritten as:
{ min turn_eq :
turn(ds’,dr') A teq(ds,ds'’) A teq(dr,dr') — turn_eq(ds, dr)
turn_eq(ds,ds') A turn_eq(ds’,ds") — turn_eq(ds, ds")

}
{ min turn_eq :
turn(ds',dr') Ads = ds' A dr = dr' — turn_eq(ds, dr)
turn_eq(ds,ds') A turn_eq(ds',ds") — turn_eq(ds, ds")
}
{ min turn_eq :
turn(ds, dr) — turn_eq(ds, dr)
turn_eq(ds,ds') A turn_eq(ds',ds") — turn_eq(ds,ds")
}

turn = turn_eq

where the last equality follows from the fact tatn is transitive, andurn_eq is the
minimum transitive predicate containitigrn.

From the definition oftravel_eq (block 32), and a similar argument to the one
above, we conclude thatavel_eq = travel. Consequently, we can dispense with the
use of the predicatesirn_eq andtravel_eq in our formalization.
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Therefore, if views uniquely identify distinctive statéd, _block (Page 9) can be
rewritten as follows:

AT block =

{:

at(ds,p) — tplace(p),

Ip at(ds,p),

(ds,turn,ds’) A at(ds,p) — at(ds', p),
at(ds,p) A at(ds',p) — turn(ds, ds'),

along(ds, pa,dir) — tpath(pa),
at(ds,p) A at(ds', q) A travel(ds,ds') —
dpa, dir {PO(pa, dir,p,q) A along(ds, pa,dir) A along(ds',pa,dir)} ,
along(ds, pa,dir) A along(ds,pal,dirl) — pa = pal,
at(ds,p) A at(ds', p) A along(ds, pa, dir) A along(ds', pa, dir) — ds = ds’,

along(ds, pa, dir) A along(ds', pal, dirl)} — pa # pal,
{{ds, turn_desc,ds') A turn_desc # turnAround A
along(ds,pa, dir) A along(ds',pal,dirl)} — pa # pal,
(ds, turnAround, ds') — along(ds, pa, dir) = along(ds', pa, —dir),

PO(pa, pos, p, q) = PO(pa, neg, q,p),
—PO(pa,dir,p,p),

PO(pa,dir,p,q) A PO(pa,dir,q,r) — PO(pa,dir,p,r),
PO(pa,dir,p,q) = OnPath(pa,p)

OnPath(pa,p) A OnPath(pa,q) A tpath(pa)

— 3ds,ds’ {at(ds,p) A at(ds',q) A ta;el(ds, ds')},

circ tpath > along = PO > OnPath > tplace var at
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F Logic Program Correctness

Given a set of experiencds the models of the theoyT'(E) (Page 6) indicate under
what circumstances it is possible to consider two distectitates as referring to the
same environment state. In order to calculate these mouaests,we define a logic
program such that its answer sets are in a one to one corspoawith the models
of CT(E).

Recall that the theorg'T'(E) is defined as follows:

CT(E) =

E, HS(E), DT (45)

(ds,a,ds') A (ds,a,ds") — ds' = ds" (46)

CEQblock =

{ maz ceq:
ceq(ds,ds), 47)
ceq(ds,ds') — ceq(ds',ds), (48)
ceq(ds,ds’) A ceq(ds',ds") — ceq(ds,ds"), (49)
ceq(ds,ds’) — View(ds,v) = View(ds',v), (50)
ceq(dsi,dsz2) A (ds1,a,dsy) A (dsz2,a,dsh) — ceq(dst,dsh) (51)

}

The logic progranil we will consider is defined as follows:

p(X,) Y, X,)Y) «+ (52)
p(X,Y,X2,Y1) p(X,Y, X1,Y1),ceq(X1, X2). (53)
p(X,Y,X1,Y2) + p(X,Y,X1,Y1),ceq(Y1,Y2). (54)
p(X,Y,X2,Y2) + p(X,Y,X1,Y1),es(X1,A X2),¢cs(Y1,AY2). (55)
p(X,Y,Y1,X1) + p(X,Y,X1,Y1). (56)
p(X,Y,X1,Y2) <+ p(X,Y,X1,Y1),p(X,Y,Y1,Y2). (57)

dist(X,Y) « p(X,Y,X1,Y1),view(X1,V),not view(Y1,V). (58)
dist(X,Y) « p(X,Y,X1,Y1), not view(X1,V),view(Y1,V). (59)
ceq(X,Y);nceq(X,Y) + . (60)
+— not ceq(X, X). (61)

+— ceq(X,Y),not ceq(Y, X). (62)

+— ceq(X,Y),ceq(Y, Z),not ceq(X, Z). (63)

+— ceq(X,Y),view(X, V), not view(Y, V). (64)

+— ceq(X,Y),not view(X,V),view(Y, V). (65)

not ceq(X1,Y1),ceq(X,Y),cs(X, A, X1),cs(Y,A,Y1).(66)

+— not ceq(X,Y),not dist(X,Y). (67)
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where the variableX s andY s variable range over distinctive states and the varitble
ranges over views. Rule 60 states that an answer set of thegmnshould beomplete
with respect taceq. Rules 61-63 requireeq to be an equivalence class. Rules 64 and
65 are the counterpart of axiom 50. Rule 66 is the countegfaxiom 51. In order

to define the maximality condition @kq, the auxiliar predicatg(X,Y, X1,Y1) isin-
troduced. This predicate reads“#s X andY were the same, thekil andY'1 would

be the same” The predicatelist(X, Y) defines when distinctive statés andY” are
distinguishable. Constraint 67 establishes the maxignatindition onceq: ceq(X,Y)
should be the case unleidsandY are distinguishable.

Notation.Given a set of experiencds, II(E) denotes the grounded program con-

Sisting of the rules{cs(ds,a,ds’) < . : E | (ds,a,ds")}, {view(ds,v) <

E |= View(ds,v)}, and replacing inIl the occurrences of the variables
X X1, X2,Y,Y1, Y2 andV by distinctive states and view symbols ) respec-
tively.

Given a modelM for the axioms 45-5111(E)(ceq™) denotes the program con-
sisting ofII(E) and the rule§ceg(a,b) < . : M = ceq(a,b)}, {—ceq(a,b) +
M | ceq(a,b)}.

Similarly, II(E);(ceq™) denotes the program resulting by removing from
II(E)(ceM) the rules associated with grounding rule 67. Bg (I1(E); (ceqg™)) we
denote the answer set H{ E), (ce¢™) (see lemma 2, page 32).

We say thateg™ is maximalin M wheneveM is a model forCT (E).?®

{end of notation

Using the notation above we can state our theorem as follows:

Theorem 7 ceq™ is maximalin M if and only if AS(I1(E); (ceg™)) is an answer set
for [I(E)(ceq™).

Notice that theorem 7 establishes a one to one correspoadeteeen the an-
swer sets olI(E) and the models of T'(E). Given a modelM for CT(E), ceq™
is maximalin M, and soAS(I1(E);(ceg™)) is an answer set fdi(E)(ceqg™), thus,
an answer set fofl(E).2’Conversely, given any answer skt for II(E), the model
M defined such thad/ = E andceqg™ = {(ds,ds') : (ds,ds’) € X}, is such that
AS(II(E)1(ceg™)) = X.28 Consequentlyceq™ is maximalin M, that is, M is a
model forCT(E).

Proof of theorem 7.
(a) Supposeeq? is maximal inM and AS(II(E); (ceq®)) is not an answer set
for IL(E)(ceg™). SinceAS(II(E);(ceq™)) is an answer set fdi(E); (ceq™), then

26Recall thatceq™ denotes the interpretation eéq in the structureM.

27Suppose X is an answer set fdil(E)(ceg™ ) and conside’ C X closed undell(E). Then, in
virtue of 60,Y is closed undeeeg™ and soX =Y.

28Given any progranil and X an answer set fdil, X is the unique answer set fof U X .
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AS(II(E) (ceq™)) does not satisfy constraint 67 Consequently, there exist distinc-
tive statesX andY” such that:

1. ceq(X,Y) ¢ AS(II(E)1 (cegM)), and
2. dist(X,Y) ¢ AS(II(E)1 (ceg™)).

Define ceq1™ in M such thatM k& ceql(a,b) wheneverM |= ceq(a,b) or
p(X,Y,a,b) € AS(II(E); (ceg™)). Symbolically,

ceql™(a,b) = ceq™(a,b) V p(X, Y, a,b) .

By definition,ceq™ C ceql™ .30 We are to prove thateql™ satisfies axioms 47-51,
which will contradict the fact thateg™ is maximal inM:

e By lemma 3ceql™ is an equivalence relation.

e Suppose thateql(ds,ds') is the case. liceq™ (ds,ds') is the case, then
M | View(ds,v) = View(ds',v). If p(X,Y,ds,ds') is the case, then
View(ds,v) = View(ds',v) is the case, since otherwiglgst(X,Y") will be-
long to AS(II(E); (ceq)).%*

e Suppose thatM | ceql(dsi,ds2) A (dsi,a,dsi) A (ds2,a,dsh). |If
M E  ceq(ds;,dsy) is the case, thenM |= ceq(ds|,dsy) is the
case. Ifp(X,Y,ds1,dss) is the case, by rule 55p(X,Y,ds!,ds,) €
AS(II(E)1 (ceq™)) and soM k= ceql(ds), dsb).

d

(b) Suppose thatt S(I1(E); (ceq)) is an answer set fdil(E)(ceqg™) andcegM is
notmaximal inM. Then, there existseq1l™, ceq™ C ceql™, ceq1™ maximal inM.
Moreover, by the if part of this theorem, (a) abov&§ (I1( E); (ceq1™)) is an answer
set forIl(E)(ceq1™). Let X andY be such that:

1. M | ceql(X,Y),
2. M £ ceq(X,Y), and so (Lemma 2eq(X,Y) € AS(II(E)1 (ceg™)).

Since AS(II(E)i(ceq™)) satisfies constraint 67, thendist(X,Y) €
AS(II(E); (ceg™)), and consequently (rules 58-59) there exi$t,Y1 and V,
such that

1. p(X,Y,X1,Y1) € AS(II(E); (ceq™)),
2. M =View(X1,V) #View(Y1,V).

29The answer sets dl(E)(ceqg™) are those answer setsi{ E)1 (ceq™) that satisfy constraint 67.

30Sincep(X,Y, X,Y) € AS(II(E)1(ceq™))

31This is the case according to rules 58 and 59, and the factB4tI(E)1(ceq)) is the answer set for
I(E)1 (ceq).
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Sinceceg™ C ceql™, thenp(X,Y, X1,Y1) € AS(II(E);(ceqlM)) (Lemma 4).
Sinceceq(X,Y) € AS(II(E); (ceq1M)), thenceq(X1,Y1) € AS(II(E)1(ceql™))
(Lemma 5) which is a contradiction sincgS(I1(E); (ceq1™)) satisfies constraints
64-65.

O

Lemma 2 Let M be a model for axioms 45-51. Letq™ be the interpretation

of ceq in M.22 ThenII(E),(ceq™) has a unique answer set which we denote by
AS(II(E); (ceq™)). Moreover, for any two distinctive states and ds’, M |=
ceq(ds, ds') if and only ifceq(ds, ds') € AS(II(E)1 (ceg™)).

Proof. LetlI(E) (ceq™) denote the program resulting of removing frélE) ; (ceq™)
those constraints resulting from grounding rules 61-6& dswer sets &l (E); (ceq™)
are those answer sets Iif E)» (ceq™) satisfying constraints 61-66. We are to prove
thatIl(E),(ceq™) has a unique answer set satisfying constraints 52-59.

Let Facts denote the union of the se{gs(ds,a,ds’) «+ . : E |= (ds,a,ds’)},
{view(ds,v) + . : E | View(ds,v)}, {ceq(a,b) « . : M = ceq(a,b)}, and
{=ceq(a,b) «~ . : M [~ ceq(a,b)}. Any answer set ofl(E)z(ceqg™) contains
Facts. Let X andY denote two possible answer sets T(E). (ceq™). Then the
reduct of X andY are the saméel(E)s(ceg™ )X = I(E)2(ceq™)Y, since bothX
andY agree on the literals of the formew(ds, v).3* Consequentlyll(E)s(ceq™)
has at most one answer set. In faCty(I1(E)s (ceq™)F2¢t*) is such answer sét.
In particular,ceq(ds,ds’) € Cn(IL(E)2(ceq™)Facts) iff ceq(ds,ds') € Facts iff
M |= ceq(ds, ds").

Finally, sinceceq™ satisfies axioms 47-51 then (I1(E)2 (ceg™ ) Facts) satisfies
constraints 61-66, thus, it is an answer setlt¢¥); (ceq™). O

Lemma 3 Let M be a model for axioms 45-51. Letqg™ be the interpretation ofeq
in M, and letAS(II(E); (ceqg™)) be the answer set fai (E); (ceg™). LetX andY be
two arbitrary distinctive state symbols. Letg1 in M be such thal/ |= ceql(a, b)
wheneveV! |= ceq(a,b) or p(X,Y,a,b) € AS(II(E); (ceg™)). Symbolically,

ceql™(a,b) = ceq™(a,b) V p(X, Y, a,b) .
Then,ceql™ is an equivalence relation.
Proof.

e ceql is reflexive. Indeed,

ceql™ (ds, ds) = ceq™ (ds,ds) V p(X,Y, ds,ds) g ceq™ (ds, ds) .

32The interpretation ofeq in M is not necessarily maximal.
33Notice thatview(ds, ds’) € X iff view(ds,ds’) € Facts.
34Cn(II) denotes the set of consequences of a logic program withgatioe as failure.
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e ceql is symmetric. Indeed,

ceql™(ds,ds') = ceqM(ds,ds') V p(X,Y,ds,ds")
- ceqM (ds', ds) vV p(X,Y,ds,ds")
z ceqM(ds',ds) vV p(X,Y,ds’, ds)

ceq1l™ (ds1, ds)

e ceql is transitive. Indeed,

ceq1™ (ds,ds') A ceq1™ (ds', ds")
= {ceq™(ds,ds') vV p(X,Y,ds,ds')} A {ceq™ (ds',ds") V p(X,Y,ds',ds")}
= {ceq™(ds,ds') A ceq™ (ds',ds")} V {ceq™ (ds,ds') Ap(X,Y,ds ,ds")} v
{p(X,Y,ds,ds') A ceq™ (ds',ds")} V {p(X,Y,ds,ds") A p(X,Y,ds',ds")}
ceq™ (ds,ds") v {ceq™ (ds,ds') A p(X,Y,ds',ds")} v
{p(X,Y,ds,ds') A ceq™ (ds',ds")} v p(X,Y,ds,ds")
ceq™ (ds,ds") V p(X,Y,ds,ds") V p(X,Y,ds,ds") V p(X,Y,ds,ds")
ceqM(ds, ds") vV p(X,Y,ds,ds")
ceq1™ (ds, ds")

49,57
_>

53, 54

Lemma4 Let M be a model for axioms 45-51, and leteg™, ceql™ ,
ceqg™ C ceql™, be two relations such that both satisfy axioms 47-51. Then,
AS(IL(E);(ceq™)) C AS(II(E); (ceql™M)).

Proof. LetII(E)2(ceg™) denote the program resulting of removing from
II(E)1 (ceg™) those constraints resulting from grounding rules 61-68. Kects de-
note the union of the setgs(ds, a, ds) .+ E = (ds,a,ds")}, {view(ds,v) +

E | view(ds,v)}, {ceq(a,b) « |— ceq(a,b)}, and{—ceq(a,b)
M l;é ceq(a,b)}. DeflneFactsl in the same way a$'acts but usingceql mstead
of ceq. Since,ceq™ C ceql™, it is the case thaFacts C Factl and consequently
I(E)2(ceq™) C L(E)s(ceql™).

Since, Facts and Factsl agree on literals of the formuiew(ds,v),
it follows that II(E)z(ceg™)facts  C  II(E)s(ceqlM)Factst, It fol-
lows then that Cn(Il(E)z(ceg™)Fects)  C  Cn(II(E)z(cegM)Faoctsly
Cn(II(E)2(ceqlM)Factsly  In lemma 2 we prove thatdS(IL(E);(ceq™)) =
Cn(I(E)2(ceg™)Facts) and AS(IL(E)(ceqlM)) = Cn(l(E)2(cegM)Factst),
Therefore AS(IL(E); (ceq™)) C AS(II(E)1 (ceq1™)).

O

Lemma5 Let M be a model for axioms 45-51. Iteq™ (ds,ds’) and
p(ds,ds',ds1,ds1’) € AS(II(E)1(ceq™)), thenceq (ds1,ds1’).
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Proof. Consider the prografii( £), (ceq™) resulting fromII(E); (ceq™), by re-
moving those instances of rules 56 and 57 wheére: ds andY = ds’. Let AS denote
the answer set fofl(E); (ceg™). We are to prove thatlS(II(E); (ceg™)) = AS,
which in virtue of property 68, proves our theorem. NoticatthS(IL(E); (ceqg™)) is
closed undefi(E); (ceq™)), and consequentilS C AS(II(E); (ceg™)). We need
to prove then thatlS is closed undefl(E); (ceg™)).

Since AS is the answer set fofl(E); (ceq™), p(ds,ds’, X,Y) € AS if and
only if there exist distinctive stateXy, Xo, Yy, Xo, - . ; Xn, Xn, Yn, X, and actions
Ag,...,A,_1 such that

1. (Xo,Yo) = (ds,ds'), (Xn,Y,) = (X,Y),
2. ceq(X;, Xi), ceq(¥;,Y;), 0 < i < n.
3. cs(Xy, Aiy Xig1), cd(Ys, Ag, Yir1), 0 < i < m.
By induction onn we can prove then that
if p(ds,ds’, X,Y) € AS then ceq(X,Y) € AS. (68)

Forn = 0 we have tha(Xy,Yy) = (ds,ds’), (Xo,Yo) = (X,Y), ceq(ds, X),
and ceq(ds',Y). Sinceceq is an equivalence relation andgq(ds,ds’), it follows
that ceq(X,Y). Suppose now thatX,,,Y,) = (X,Y) for somen > 0. By in-
duction hypothesisc;eq(f(n_l,Yn_l). Sinceceq satisfies constraint 66, it follows
that cgq()gn,Yn) € AS. Sinceceq is an equivalence relation, it follows then that
ceq(Xn, Yn).

Using 68 we prove that$ is closed undel(E); (ceq™)). Indeed,

p(ds,ds',Y,X) & p(ds,ds,Y,Y),ceq(Y, X)

"L p(ds,ds', X,Y), ceq(X,Y)
& p(ds,ds’, X,Y) € AS .

wW

6

p(ds,ds’, X, Z) p(ds,ds',Y,Z) A ceq(Y, X)
p(ds,ds’, X,Y) Aceq(X,Y) A

p(ds,ds', Y, Z) A ceq(Y, Z)
68

& p(ds,ds', X,Y) e AS Ap(ds,ds',Y,Z) € AS .

T8 18

We have proved thatl$ is closed undefl(E); (ceq™)). It follows that AS =
AS(IL(E); (ceg™)). O
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