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Abstract

Whether humans have a specific, innate perceptual ability to process faces remains controver-
sial. Studies have found face-selective brain regions in adults and have shown that even newborns
preferentially attend to face-like stimuli. On this basis researchers have proposed that there are ge-
netically hard-wired brain regions that specifically process faces. However, other studies suggest
that the face-processing hardware is general purpose and highly plastic, even at birth. We propose
a solution to this apparent paradox: innate face preferences may be learned by a general-purpose
self-organizing system from internally generated input patterns, such as those found in PGO waves
during REM sleep. Simulating this process with the HLISSOM model, we demonstrate that such
an architecture constitutes an efficient way to specify, develop, and maintain functionally appro-
priate perceptual organization. This preorganization can account for newborn face preferences,
providing a computational explanation for how genetic influences interact with experience to con-
struct a complex system.



1 Introduction

Do humans have an innate perceptual ability to process faces? Researchers have investigated this
question repeatedly over the past several decades, but it remains unresolved and highly contro-
versial (as reviewed in Gauthier and Nelson, 2001; Pascalis and Slater, 2001; Tov´ee, 1998). On
the one hand, numerous studies indicate that newborns will preferentially turn their eyes or head
towards face-like stimuli within minutes or hours after birth (Goren et al., 1975; Johnson et al.,
1991; Johnson and Morton, 1991; Mondloch et al., 1999; Simion et al., 1998b; Valenza et al.,
1996). Many researchers argue that there therefore must be a genetically hard-wired brain mecha-
nism specific to face processing (Johnson and Morton, 1991; Mondloch et al., 1999; Simion et al.,
1998a). Indeed, specific brain regions that respond preferentially to faces have been found in adult
humans and in infant monkeys (Kanwisher et al., 1997; Rodman, 1994).

On the other hand, numerous studies also demonstrate rapid experience-driven development
of face processing abilities, even in the first few hours and days after birth (Bushnell et al., 1989;
Field et al., 1984; Walton et al., 1997; Walton and Bower, 1993). Such plasticity appears to be the
rule, rather than the exception, in both the developing and the adult nervous system (as reviewed
in Buonomano and Merzenich, 1998; Hirsch, 1985). Moreover, the adult face-selective regions
have been found to process many stimuli other than faces (Gauthier et al., 1999; Haxby et al.,
2001). Computational simulations have shown how such face-selective regions can arise without
being innately specified for face perception (Dailey and Cottrell, 1999). Finally, some studies have
found newborn preferences only for general image features (such as complexity or curvature), and
not for face-like stimuli in particular (Easterbrook et al., 1999; Kleiner, 1993; Simion et al., 2001;
Slater, 1993). From this evidence many researchers argue that the ability to process faces is learned
from experience, and not genetically hard-wired.

In contrast with the above two competing hypotheses, in this paper we show that learning
and hard-wiring are not only fully compatible even within a single cortical area, they can work
synergetically to develop sophisticated face processing abilities. The underlying thesis is that
prenatal development uses the same learning mechanisms that in the adult extract regularities from
the visual environment, but it uses them to extract regularities in training inputs generated internally
under genetic control (Constantine-Paton et al., 1990; Jouvet, 1999; Marks et al., 1995; Roffwarg
et al., 1966; Shatz, 1990, 1996). Instead of precisely specifying the organization of the brain,
the genome may simply encode a developmental process that is based on genetically determined
patterns presented to a general learning mechanism. After birth, the learning mechanism can then
seamlessly integrate environmental and genetic information into the same cortical hardware. This
explanation can resolve many of the paradoxes underlying the controversy about face perception.

We test this idea computationally using a self-organizing model of cortical development (see
Erwin et al., 1995; Swindale, 1996 for reviews of this class of models). Computational models
allow the assumptions and implications of a conceptual model to be evaluated rigorously, and
are particularly useful for generating testable predictions. In previous experiments using the RF-
LISSOM model (Receptive-Field Laterally Interconnected Synergetically Self-Organizing Map;
Miikkulainen, Bednar, Choe, and Sirosh, 1997; Sirosh and Miikkulainen, 1994; Sirosh, Miikku-
lainen, and Bednar, 1996) we have shown that orientation maps and specific lateral connection
patterns in the primary visual cortex can form from spontaneously generated activity (Bednar and
Miikkulainen, 1998). We have also shown in preliminary work how a simplified model of face pro-
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cessing may account for much of the data on newborn face preferences (Bednar and Miikkulainen,
2000).

In this paper we present HLISSOM, a significant extension to RF-LISSOM that allows pro-
cessing of real photographic images by modeling the retina, LGN, and higher-level visual areas in
addition to the primary visual cortex. This model allows preferences for low-level features such as
orientation or spatial frequency and high-level features such as faces to be compared in the same
model, in order to account for the full range of data measured in experiments with newborns. Very
few self-organizing models have been tested with real images, and none to our knowledge have
previously modeled the self-organization of both the primary visual cortex and higher regions, nor
have any simulated the large retinal and cortical area needed to process the large stimuli tested with
newborns. With HLISSOM, we demonstrate how patterns found during REM sleep can explain a
newborn’s apparently innate predisposition for faces, within a general-purpose adaptive system for
learning both low-level and high-level features of images.

In the next section, we will briefly review other relevant models of the development of face
perception and experimental evidence for the internally generated brain activity upon which the
model is based. Next, we introduce the HLISSOM architecture and describe the experimental
setup for testing face detection. We then show how this model can account for newborn face
preferences using both schematic and photographic images, and suggest future computational and
psychophysical experiments to help understand the development of face processing.

2 Related work

There are three main previous explanations for how a newborn can show an initial face preference
and then later develop full face processing abilities. (1) TheLinear Systems Model(LSM) acts
as a minimal baseline against which other theories can be compared. The LSM posits that new-
born preferences (including those for faces) result solely from the spatial frequencies in an image,
filtered by the measured sensitivity of the newborn to each frequency. These sensitivities result
from general, genetically determined aspects of the visual system; adult face processing abilities
are assumed to develop only later, in higher visual areas. (2)Sensory modelsare generalizations of
the LSM, stating that the spatial frequency response plus some other general features of the sen-
sory apparatus together account for newborn face preferences, still without face-specific circuitry
present at birth. (3)Multiple systems modelspropose that there is a genetically fixed, face-specific
system present at birth that is later replaced or augmented by a separate, plastic system that oper-
ates into adulthood. These three hypotheses will be reviewed below, and a simpler, more effective
alternative will be proposed: that only a single, general-purpose system is necessary if that system
is exposed tointernally generated patterns, such as those in REM sleep.

2.1 Linear Systems Model

The Linear Systems Model (Banks and Salapatek, 1981; Kleiner, 1993) is a straightforward and
effective way of explaining a wide variety of newborn pattern preferences, and is easily imple-
mented as a computational model. It is based solely on the newborn’s measured contrast sensitiv-
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ity function, which is limited by the immature state of the eye and the early visual pathways. The
assumption is that newborns pay attention to those patterns that activate their early visual system
most strongly. For instance, low-contrast patterns and patterns with only very fine detail are not
very salient to newborns, and thus newborns do not attend to them strongly (Banks and Salap-
atek, 1981). In turn, faces might be preferred simply because they have strong spatial-frequency
components in the ranges that are most visible to newborns.

However, studies have found that the LSM fails to account for the responses to face-like stimuli.
For instance, some of the face-like patterns preferred by newborns have a lower amplitude spectrum
in the visible range (and thus lower expected LSM response) than patterns that are less preferred
(Johnson and Morton, 1991). In particular, the LSM predicts that the newborn will respond equally
well to a schematic face regardless of its orientation, because the orientation does not change the
spatial frequency or the contrast. Instead, newborns prefer schematic face-like stimuli oriented
right-side-up, even when those stimuli are at a less-optimal spatial frequency than another one that
is upside-down (Valenza et al., 1996). Thus, matching the contrast sensitivity function does not
explain face preferences, and a more complicated model is required.

2.2 Sensory models

The LSM is only a high-level abstraction of the properties of the early visual system, and it does
not take into account the fact that processing in these areas is performed by neurons responding
to limited portions of the visual field. Incorporating such general limitations, Acerra et al. (2001)
recently developed a computational model of processing in the primary visual cortex (V1) that can
account for some of the face preferences found in the Valenza et al. (1996) study. In this model,
the preference for an upright face over an inverted one results from differences in the responses
of some of the V1 neurons. Valenza et al. actually inverted only the internal facial features, not
the entire pattern, which changed the distance between some of the features and the face outline
(compare figures 5a,top with 5d,top in section 5). For the face-like pattern, the result of these
border effects was to increase the response of some neurons preferring low spatial frequencies.

However, the Acerra et al. model was not tested with patterns from other studies, such as
Johnson and Morton (1991), whose published stimuli did not have the requisite spacing between
the internal features and the face outline. Moreover, Johnson and Morton used a white paddle
against a light-colored ceiling, and such an edge would have a much lower contrast than the black-
background patterns used in Valenza et al. (1996). Thus border effects are less likely to explain
Johnson and Morton’s face preference results. Most importantly, the Acerra et al. (2001) model
was not tested with real images of faces, where the spacing of the internal features from the face
outline varies widely depending on the way the hair falls. Thus overall the Acerra et al. (2001)
model should not significantly prefer photographs of real faces over other similar images; the
model introduced in this paper makes the opposite prediction.

Simion et al. (2001) recently proposed that besides the preferences suggested by the LSM,
newborns merely prefer objects with a boundary of a certain size that contains denser patterns in
the upper than the lower half. Nearly all of the face-like schematic patterns that have been tested in
newborns do have this “top-heavy” property. Preliminary work also shows that some other patterns
that are top-heavy but not face-like are preferred by newborns, relative to an inverted version of
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the pattern (Simion et al., 2001). However, preferences for face-like patterns have not yet been
compared directly with those for other top-heavy patterns, and thus it is not yet known whether
the top-heavy preferences might be responsible for face preferences, or are instead independent of
them.

To be tested computationally, the hypothesis that face preferences are due to top-heavy prefer-
ences would need to be made more explicit, with a specific mechanism for locating object bound-
aries and the relative locations of patterns with them. We expect that the result of such a test would
be only a relatively small preference (if any) for photographs of real faces, compared to many other
common stimuli. For beards, wide smiles, or wide-open mouths, control patterns might even be
preferred over the face image, since such face images may no longer be top-heavy. Because the
bulk of the current evidence suggests that instead the newborn preferences are more selective for
faces, face-specific generated patterns will be used in the experiments in this paper.

2.3 Multiple-systems models

The most widely known conceptual model for newborn face preferences and later learning was
proposed by Johnson and Morton (1991); it too has not yet been evaluated computationally. John-
son and Morton suggested that infant face preferences are mediated by two anatomically separate
systems that they dubbed CONSPEC and CONLERN. CONSPEC would be a genetically fixed
subcortical face-processing system, assumed to be located in the superior colliculus/pulvinar path-
way. Johnson and Morton proposed that a CONSPEC responding to three blobs in a triangular
configuration, one each for the eyes and one for the nose/mouth region, would account for the
newborn face preferences (see figure 3a and 4d,top for examples). CONLERN would be a sep-
arate plastic cortical system, presumably the face-processing areas that have since been found in
adults; this system would assume control only after about 6 weeks of age and thenceforth mediate
environment-driven face preferences. This model is plausible, given that the superior colliculus is
fairly mature in newborn monkeys and does seem to be controlling attention and other functions,
although no face-selectivity has yet been found experimentally in that pathway in young animals
(Wallace et al., 1997). The model also helps explain why infants at one month of age briefly show
a reduced interest in faces, which could occur as attentional control shifts to the not-quite-mature
cortical system (Johnson et al., 1991; Johnson and Morton, 1991).

However, subsequent studies showed that even newborns are capable of learning individual
faces (Slater, 1993; Slater and Kirby, 1998). Thus if there are two systems, either both are plastic
or both are functioning at birth, and thus there is noa priori reason why a single face-selective
system would be insufficient. On the other hand, de Schonen et al. (1998) argue forthreesystems:
a subcortical one mediating facial feature preferences at birth, another one mediating newborn
learning (of objects and head/hair outlines; Slater, 1993), and a cortical system mediating older
infant and adult learning of facial features. And Simion et al. (1998a) proposed that face selectivity
relies on multiple systemswithin the cortex, maturing first in the dorsal stream but later supplanted
by the ventral stream (which handles face-processing in the adult).

In contrast to the increasing complexity of these explanations, we propose that a single general-
purpose plastic system is sufficient, if that system is first exposed to internally generated face-like
patterns of neural activity.
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2.4 Internally generated activity

Spontaneous neural activity has been documented in many cortical and subcortical areas as they
develop, including the visual cortex, the retina, the auditory system, and the spinal cord (Feller
et al., 1996; Lippe, 1994; Wong et al., 1993; Yuste et al., 1995; reviewed in O’Donovan, 1999;
Wong, 1999). Such activity has previously been shown to be responsible for the segregation of
the LGN into eye-specific layers before birth, indicating that internally generated activity does
influence development (Shatz, 1990, 1996).

We will focus on one common type of spontaneous activity: ponto-geniculo-occipital (PGO)
waves generated during rapid-eye-movement (REM) sleep. Developing embryos spend a large
percentage of their time in what appears to be REM sleep, which suggests that it plays a major role
in development (Roffwarg et al., 1966). During and just before REM sleep, PGO waves originate
in the pons of the brain stem and travel to the LGN, visual cortex, and a variety of subcortical areas
(see Callaway et al., 1987 for a review). PGO waves are strongly correlated with eye movements
and with vivid visual imagery in dreams, suggesting that they activate the visual system as if they
were visual inputs (Marks et al., 1995). PGO waves have been found to elicit different distributions
of activity in different species (Datta, 1997), and interrupting them has been shown to increase the
influence of the environment on development (Marks et al., 1995; Shaffery et al., 1999).

All of these characteristics suggest that PGO waves may be providing species-specific training
patterns for development (Jouvet, 1998). However, due to limitations in experimental imaging
equipment and techniques, it has not yet been possible to measure the two-dimensional shape of
the activity resulting from the PGO waves (Rector et al., 1997). This paper predicts that if the PGO
activity patterns have a simple configuration of three active areas surrounded by inactive areas, they
can account for the measured face-detection performance of human newborns. These patterns are
similar to those proposed by Johnson and Morton (1991). However, instead of genetically encoded
templates implemented in a hard-wired subcortical face-detecting region, in our model they are
simply training patterns for a general-purpose cortical system, the same system that later develops
adult face perception abilities through training with real faces.

3 HLISSOM model

We will investigate the pattern-generation hypothesis using the HLISSOM model of the primate
visual system, focusing on how sub-cortically generated patterns can drive the development of cor-
tical areas. The HLISSOM architecture is shown in figure 1. The model consists of a hierarchy of
two-dimensional sheets of neural units modeling different areas of the nervous system: two sheets
of input units (the retinal photoreceptors and the PGO generator), two sheets of LGN units (ON-
center and OFF-center), and two sheets of cortical units (“neurons”): the primary visual cortex
(V1), and a higher-level area from the ventral processing stream with large receptive fields (here
called the face-selective area, FSA1). Because the focus is on the two-dimensional organization of

1The FSA represents the first region in the infero-temporal portion of the ventral processing pathway that has re-
ceptive fields large enough to span a human face at close range (approximately 45Æ of visual arc). In newborn humans,
the location of the FSA is not known, but based on its position in the ventral pathway, area V4v is a likely candidate
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LGN
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Face−selective area (FSA)

PGO pattern
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Figure 1:Schematic diagram of the HLISSOM model. Each sheet of units in the model visual pathway
is shown with a sample activation pattern and the connections to one example unit. Grayscale visual inputs
are presented on the photoreceptors, and the resulting activity propagates through afferent connections to
each of the higher levels. Internally generated PGO input propagates similarly to visual input, but travels
through the ponto-geniculate (PG) pathway to occipital cortex (i.e., V1), rather than the retino-geniculate
pathway. As in humans and animals, activity may be generated either in the PGO area or the photoreceptors,
but not both at once. In the cortical levels (V1 and FSA), activity is focused by lateral connections, which
are initially excitatory between nearby neurons (dotted circles) and inhibitory between more distant neurons
(dashed circles). The final patterns of lateral and afferent connections in the cortical areas develop through
an unsupervised self-organizing process. After self-organization is complete, each stage in the hierarchy
represents a different level of abstraction, transforming the raw image input into a more biologically relevant
representation. The LGN responds best to edges and lines, suppressing areas with no information. The
V1 response is further selective for the orientation of each contour; the patchiness is due to geometrical
constraints on representing all orientations on a two-dimensional surface. The FSA represents the highest
level of abstraction — the response of an FSA neuron signals the presence of a face at the corresponding
location on the retina, which is information that an organism can use directly to control behaviors like visual
fixation.
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each cortical sheet, a neuron in V1 or the FSA corresponds to a vertical column of cells through
the six anatomical layers of that area of the cortex.

Within each sheet, neurons receive afferent connections from broad overlapping circular
patches of units in the previous sheet(s) in the hierarchy; these patches are calledreceptive fields
(RFs). Neurons in the cortical sheets also have reciprocal excitatory and inhibitory lateral connec-
tions to neurons within the same sheet. Lateral excitatory connections are short range, connecting
each neuron with itself and its close neighbors in a circular radius. Lateral inhibitory connections
extend in a larger radius, but also include connections to the neuron itself and to its neighbors.2

Previous models have explained how the connections in the LGN could develop from internally
generated activity in the retina (Eglen, 1997; Haith, 1998). Because the HLISSOM model focuses
on learning at the cortical level, all connection strengths to such subcortical neurons are set to fixed
values. The weights to the cells in the ON and OFF channels of the LGN are set as follows: the
center of each receptive field is mapped to the location in the input sheet corresponding to the
location of the LGN unit, and the weight to a receptor is a fixed function of the distance from
that center. For an ON-center cell, the receptor weights are calculated from the difference of two
normalized Gaussians with widths�c (center) and�s (surround). The weights for an OFF-center
cell are the negative of the ON-center weights; i.e., they are the surround minus the center instead
of the center minus the surround.

The connections to neurons in the cortical sheets are initially unselective (either random, for
afferent weights, or Gaussian-shaped, for lateral weights), and their strengths are subsequently
modified through an unsupervised learning process. The learning process is driven by input pat-
terns. Patterns may be presented on the photoreceptor sheet, representing external visual input,
or they may be generated internally, reaching V1 through the PGO pathway. The PGO-generating
region of the pons and its pathway to the LGN have not yet been mapped out in detail, but since the
activity that results from the PGO waves is similar to that from visual input (Marks et al., 1995),
for simplicity we assume that the retino-geniculate and PGO pathways are similar. Therefore, the
PGO pattern input is modeled with an area like the photoreceptor sheet, connecting to the LGN in
the same way.

At each training step, the activities of all units are initialized to zero, and a grayscale pattern is
drawn on the input sheet (either the PGO generator or the photoreceptors; see figures 2a,i and 3a
for examples). The cells in the ON and OFF channels of the LGN compute their responses as
a scalar product of their fixed weight vector and the activity of units in their receptive fields (as
in figures 2b,j and 3b). The response�ab of ON or OFF-center cell(a; b) is calculated from the

(Haxby et al., 1994; Rolls, 1990). The generic term “face-selective area” is used rather than V4v to emphasize that the
model results do not depend on the precise location or architecture of this region, only on the fact that the region has
receptive fields large enough to allow face-selective responses.

2For high-contrast inputs, long-range interactions must be inhibitory for proper self-organization to occur (Sirosh
and Miikkulainen, 1994). Optical imaging and electrophysiological studies have indeed shown that long-range inter-
actions in the cortex are inhibitory at high contrasts, even though individual lateral connections are primarily excitatory
(Hirsch and Gilbert, 1991; Weliky et al., 1995). The model uses explicit inhibitory connections for simplicity since it
is the high-contrast inputs that primarily drive adaptation in the Hebbian model. Long-range excitation can be included
in the model as well, e.g. to demonstrate perceptual grouping phenomena (Choe, 2001; Choe and Miikkulainen, 2000).
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weighted sum of the retinal activations in its receptive field as

�ab = �

 

A
X
xy

�xy�ab;xy

!
; (1)

where� is a piecewise linear approximation of the sigmoid activation function,�xy is the activation
of retina cell(x; y), and�ab;xy is the corresponding afferent weight. An LGN neuron will respond
when the input pattern is a better match to the central portion of the RF than to the surrounding
portion; the response will be larger with higher contrast, subject to the minimum and maximum
values enforced by the sigmoid. The constant afferent scaling factor
A is set so that the LGN
outputs approach 1.0 in the highest-contrast regions of typical input patterns.

Cortical responses are computed from both afferent and lateral responses. The afferent re-
sponse�ij of V1 neuron(i; j) is calculated like the retinal sum in equation 1, with an additional
divisive (shunting) normalization to increase response selectivity:

�ij =

A
P

�ab ��ab�ij;�ab

1 + 
N
P

�ab ��ab
; (2)

where��ab is the activation of unit(a; b) in sheet� (either the ON channel or the OFF channel3).
and�ij;�ab is the corresponding afferent weight. The normalization strength
N starts at zero and
is gradually increased over training as neurons become more selective, and the scaling factor
A is
set to compensate so that the afferent response� will continue to have values in the range 0 to 1.0
for typical input patterns.

The FSA computes its afferent response just as V1 does, except that sheet� in equation 2 is the
settled response (described below) of V1, instead of the response of an ON or OFF channel of the
LGN.

The initial response of a cortical neuron, both in V1 and the FSA, is computed from the afferent
response only:

�ij(0) = � (�ij) ; (3)

where� is a piecewise linear approximation of the sigmoid activation function. After the initial
response, the cortical activity evolves over a very short time scale through lateral interaction. At
each subsequent time step, the neuron combines the afferent response� with lateral excitation and
inhibition:

�ij(t) = �

 
�ij + 
E

X
kl

Eij;kl�kl(t� 1)� 
I
X
kl

Iij;kl�kl(t� 1)

!
; (4)

whereEij;kl is the excitatory lateral connection weight on the connection from neuron(k; l) to
neuron(i; j), Iij;kl is the inhibitory connection weight, and�kl(t�1) is the activity of neuron(k; l)
during the previous time step. The scaling factors
E and
I determine the relative strengths of
excitatory and inhibitory lateral interactions.

3Afferent inputs from additional ON and OFF channels with different peak spatial frequencies (i.e. different�c and
�s) can be included in the same way. Only a single channel of each type was used here, so that a smaller V1 could be
used and so that the V1 output would be easier to interpret.
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While the cortical response in V1 and the FSA is settling, the afferent response remains con-
stant. The cortical activity pattern in both areas starts out diffuse, but within a few iterations of
equation 4, converges into a small number of stable focused patches of activity, or activity bubbles
(as in figures 2c,d,kand 3e,f). After the activity has settled, the connection weights of each neuron
are modified. Afferent and lateral weights in both areas adapt according to the same mechanism:
the Hebb rule, normalized so that the sum of the weights is constant:

wij;mn(t+ Æt) =
wij;mn(t) + ��ijXmnP

mn [wij;mn(t) + ��ijXmn]
; (5)

where�ij stands for the activity of neuron(i; j) in the final activity bubble,wij;mn is the affer-
ent or lateral connection weight (�, E or I), � is the learning rate for each type of connection
(�A for afferent weights,�E for excitatory, and�I for inhibitory) andXmn is the presynaptic ac-
tivity (� for afferent,� for lateral). The larger the product of the pre- and post-synaptic activity
�ijXmn, the larger the weight change. At long distances, very few neurons in the cortical regions
have correlated activity and therefore most long-range connections eventually become weak. The
weak connections are eliminated periodically, resulting in patchy lateral connectivity similar to
that observed in the visual cortex.

4 Experiments

To model the presentation of large stimuli at close range (as in typical experiments with new-
borns), V1 parameters were generated using the scaling equations from Kelkar et al. (2000) to
model a large V1 area (approximately 1600 mm2 total) at a relatively low sampling density per
mm2 (approximately 50 neurons/mm2). The total area was chosen to be just large enough for the
corresponding photoreceptor area to cover the required range, and the density was chosen to be the
minimum that would still provide a V1 organization that matched animal maps. The input pattern
scale was then set so that the spatial frequencies for which V1 response was maximal would match
the frequency range to which newborns are most sensitive, as cited by Valenza et al. (1996).

The FSA parameters were generated using the scaling equations from Kelkar et al. (2000) to
model a small region of units that have receptive fields large enough to span the central portion of
a face. The final FSA activation threshold (lower bound on the sigmoid function in equations 3
and 4) was set to a high value so that the presence of a blob of activity in the FSA would be a
criterion for the presence of a face at the corresponding location in the retina. This high threshold
allows the FSA output to be interpreted unambiguously as a behavioral response, without the need
for feedback from an additional higher level set of units modeling newborn attention and fixation
processes.

The model consisted of 438�438 photoreceptors, 220�220 PGO generator units, 204�204
ON-center LGN units, 204�204 OFF-center LGN units, 288�288 V1 units, and 36�36 FSA
units, for a total of 408,000 distinct units. Area FSA was mapped to the central 160�160 region of
V1 such that even the units near the borders of the FSA had a complete set of afferent connections
on V1, with no RF extending over the outside edges of V1. V1 was similarly mapped to the central
192�192 region of the LGN channels, and the LGN channels to the central 384�384 region of
the photoreceptors and the central 192�192 region of the PGO generators. In the figures below,
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(a) Generated pattern (b) LGN activity before
training

(c) V1 activity before
training

(d) V1 activity
after training

(e) Afferent weights of
one V1 neuron

(f ) Initial V1
orientation map

(g) Final V1 orientation
map

(h) Detail of orientation
map (g)

(i) Sample visual image (j) LGN response (k) V1 response

only the area mapped directly to V1 is shown, to ensure that all plots have the same size scale. The
model requires 300 megabytes of physical memory to represent the 80 million connections in the
two cortical sheets. The remaining parameters are listed in appendix A.

For simplicity, V1 and the FSA were self-organized in separate training phases. V1 was self-
organized for10; 000 iterations on approximately 11 randomly located circular discs 25 PGO units
wide (figure 2a). The background activity level was 0.5, and the brightness of each disc relative to
this surround (either +0.3 or -0.3) was chosen randomly. The borders of each disc were smoothed
into the background level following a Gaussian of half-width� = 1:5.4

4The V1 training patterns were selected as well-defined approximations of internally generated spatial patterns
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Figure 2: Training the V1 orientation map (color figure; on previous page). The input consisted of
randomly-located circular patterns (a) approximating intrinsic neural activity waves. The ON and OFF
LGN channels compute their responses based on this input; in (b), the ON response minus the OFF response
is shown, with medium gray indicating regions with no response. The V1 neurons compute their responses
based on the output of the ON and OFF channels. Initially V1 neurons have random weights in their
receptive fields, and thus all neurons with RFs overlapping the active areas of the LGN respond (c). After
training, the afferent weights of each neuron show a clear preference for a particular orientation (e); the
plot shows the weights to the ON-center LGN sheet minus those to the OFF-center sheet, drawn on the full
LGN sheet. The orientation maps (f,g) summarize the development of such preferences. Each neuron is
color-coded according to its preferred orientation (using the color key at far right), brighter colors indicate a
stronger selectivity. Initially the neurons are not selective for orientation (f ), but after training, V1 develops
an orientation map similar to those measured in experimental animals (g; Blasdel, 1992). The map covers a
large area of V1; previous work corresponded to only the central 36�36 portion (h) of the 288�288 map in
(g). For the same input (a), the self-organized network response is patchy (d), because only those neurons
whose preferred orientation matches the orientations of local features in the image respond. In (d) each
neuron is colored with the orientation it prefers, and the brightness of the color indicates how active that
neuron is. The trained orientation map works well with natural images; each V1 neuron responds to the
orientation of lines and edges in the corresponding region of the image (i-k).

After 10; 000 iterations (10 hours on a 600MHz Pentium III workstation), the orientation map
shown in figure 2g-h emerged, consisting of neurons that respond strongly to oriented edges and
thick lines. The map organization is similar to maps measured in experimental animals (Blasdel,
1992).

After V1 training, the V1 weights were fixed to their self-organized values, and the FSA was
allowed to activate and learn from the V1 responses. The FSA was self-organized for10; 000
iterations using 1–2 triples of circular dots (brightness -0.3) arranged in a triangular face-like con-
figuration (as was proposed for a hardwired model by Johnson and Morton, 1991; figure 3a). Each
dot was 20 PGO units wide. Each triple was placed at a random location at least 118 PGO units
away from the centers of others (to avoid overlap), with a random angle drawn from a narrow
(� = �/36 radians) normal distribution around vertical.5

After 10; 000 additional iterations with the three-dot patterns (13 hours on a 600MHz Pentium
III workstation), the face-selective map shown in figure 3h emerged, consisting of neurons that
respond most strongly to patterns similar to the training patterns.

such as spontaneous retinal waves (Feller et al., 1996). Miller (1994) has argued that stimuli that (like retinal waves)
are much larger than the V1 receptive field size and are not themselves oriented could not account for the development
of orientation selectivity, but the results here demonstrate otherwise. Simulations with other spatially extended patterns
show that the precise shape is not important as long as it is smooth and large relative to the RF size of the orientation
map.

5Because the face preferences found in newborns have all been for faces of approximately the same size (life-
sized at a distance of around 20 cm), only a single training pattern size was used. As a result, the model will only
be able to detect face-like patterns at one particular size scale. If response to multiple face sizes (i.e., distances) is
desired, the spatial scale of the training patterns can be varied during self-organization (Sirosh and Miikkulainen,
1996). However, a larger map would be needed to represent the different sizes, and the resulting patchy responses
would be less straightforward to interpret.
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(a) Generated pattern (b) LGN activity (c) V1 activity before
FSA training

(d) Afferent weights of
one FSA neuron

(e) FSA response
before training

(f ) FSA response after
training

(g) Initial map (h) Trained map

Figure 3:Training the FSA face map. (a) For training, the input consisted of simple three-dot configu-
rations at random locations in the PGO layer and random nearly-vertical orientations; these patterns were
chosen based on the experiments of Johnson and Morton (1991). (b-c) The LGN and V1 sheets compute
their responses based on this input. Through self-organization, the FSA neurons develop RF weight profiles
(d) that are selective for a range of V1 activity patterns like those resulting from the three-dot stimuli. Ini-
tially, the FSA neurons respond to any activity in their receptive fields (e), but after training only neurons
with closely matching RFs respond (f ). Plots (g) and (h) show the afferent weights for every third neuron
in the face area. All neurons develop similar weight profiles, differing primarily by the position of their
preferred stimuli on the retina, although the selectivity of those along the outside borders is slightly lower
due to border effects. Area FSA thus develops into a face detection map, signaling the presence and location
of face-like stimuli.

After self-organization, the cortical maps were tested on natural images and with the same
schematic stimuli on which human newborns have been tested (Goren et al., 1975; Johnson and
Morton, 1991; Simion et al., 1998b; Valenza et al., 1996). For all of the tests, the same set of
model parameter settings described in appendix A were used. Schematic images were scaled to a
brightness range (difference between the darkest and lightest pixels in the image) of 1.0. Natural
images were scaled to a brightness range of 2.5, so that facial features in images with faces would
have a contrast comparable to that of the schematic images.

The model provides detailed responses for each neural region; these can be compared with
electrophysiological and imaging measurements in animals and humans. In addition, the model
neural responses can be used to predict behavioral responses. To make such a prediction, we
assume that the newborn attends most strongly to the stimuli that are most effective at activating
his or her visual processing system, focusing on the highest level activated (as suggested by Cohen,
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1998). That is, when two stimuli both activate the FSA in the model, we will assume that the one
with the higher total FSA activation will be preferred. Similarly, with two stimuli activating only
V1, the higher total V1 activation will be preferred.

When one stimulus activates only V1 and another activates both V1 and the FSA, the model’s
preference is strictly undefined. Such a preference would depend on the numerical value of the
relative ability of each region to control the infant’s looking behavior, which can only be deter-
mined empirically. We will assume in such cases that the pattern that produces FSA activity will
be preferred by the newborn, unless the V1 activity is vastly greater than for typical patterns (as it
is for e.g. a checkerboard pattern). Using these guidelines, the computed model preferences can be
compared with the newborn’s looking preferences.

5 Results

Figures 4 and 5 show that the responses of the self-organized network match the measured stimulus
preference of newborns remarkably well, with the same relative ranking in each case where it was
defined. For both newborns and the model, a checkerboard pattern (4a) is by far the most effective
at activating V1, because it contains a large number of highly visible edges. Due to the magnitude
of this V1 response, it is not surprising that the checkerboard pattern was also the most preferred
by newborns.

Despite the large V1 response, the checkerboard did not activate the FSA strongly enough
to reach the activation threshold. Face-like schematic patterns do activate the FSA (figure 4b-
d; 5a,b,f,h), while most other patterns activate only V1 (figure 4e-i; 5c-e,g). In each case the
preference rankings computed from the model response match those measured in newborns (Goren
et al., 1975; Johnson et al., 1991; Johnson and Morton, 1991; Simion et al., 1998a; Valenza et al.,
1996).

Interestingly, the model also showed clear preference for one case in which no significant
preference was found in newborns: between the images in figure 5f and 5g. The model shows
similar V1 responses to both patterns but an FSA response to the upright three-blob configuration
only, and thus the upright configuration would be predicted to be preferred. As discussed below,
newborns may not show a preference between these patterns because without a border they fail to
attract sufficient newborn interest.

Overall, these results provide strong computational support for the speculation of Johnson and
Morton (1991) that the newborn could simply be responding to a three-dot face-like configura-
tion, rather than performing sophisticated face detection. Internally generated patterns provide an
account for how such “innate” machinery can be constructed during prenatal development.

Presumably, an ability to detect faces in natural images underlies the newborn’s preference for
schematic faces. However, because natural images exhibit wide extremes of contrast and other
types of variability that are difficult to handle in a computational model, no previous model of
newborn face preferences has been tested with actual face images. HLISSOM was designed to
allow such tests by incorporating nonlinear contrast normalization mechanisms at multiple levels
of the visual system. The resulting network works remarkably well as a face detector for natural
images, as shown in the examples in figure 6.
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Figure 4:Human newborn and model response to Goren et al.’s and Johnson et al.’s schematic im-
ages.The schematic patterns in the top row have been presented to newborn human infants on head-shaped
paddles moving at a short distance from the newborn’s eyes (about 20 cm). The newborn’s preference was
determined by measuring the average distance his or her eyes or head will track each pattern, compared to
other patterns. Goren et al. (1975) measured infants between 3 and 27 minutes after birth. They found that
c>f >i andc>e>i, wherex>y indicates that image (x) was preferred over image (y). Similarly, Johnson
et al. (1991), in one experiment measuring within one hour of birth, foundc>e>i. In another, measuring
at an average of 43 minutes, they foundc>e, andc>h. Finally, Johnson and Morton (1991), measuring
newborns an average of 21 hours old, found thata>(b,c,d), b>d, andc>d. The HLISSOM model has the
same preference for each of these patterns, as shown in the images above. The top row shows the activation
in the photoreceptor sheet. The second row shows the model LGN activations (ON minus OFF). The third
row shows the V1 activations, with the numerical sum of the activities shown underneath. The bottom row
shows the settled response of the FSA with the FSA activity sum underneath; activity at a given location
signals the presence of a face-like stimulus at that location on the retina. The strongest V1 response by
far is to the checkerboard pattern (a), which explains why the newborn would prefer that pattern over the
others. The face-like patterns (b-d) are preferred over patterns (e-i) because of activation in the FSA. The
details of the face-like patterns do not significantly affect the results — (b) is a better match to the training
stimulus, but (c) has a higher V1 activation, and thus they both have similar FSA responses. Both (b) and (c)
result in higher FSA activity than (d), and are thus preferred, because their greater edge length causes higher
V1 activation. The remaining patterns are ranked by their V1 activity alone, because they do not activate
the FSA. In all conditions tested, the HLISSOM model shows behavior remarkably similar to that of the
newborns, and gives detailed computational insight into why these behaviors occur.
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Figure 5:Response to schematic images from Valenza et al. (1996) and Simion et al. (1998a).Valenza
et al. (1996) measured preference between static, projected versions of pairs of the schematic images in the
top row, using newborns ranging from 24 to 155 hours after birth. They found the following preferences:
a>c, a>d, c>d, ande>g. Simion et al. (1998a) similarly found a preference fora>d andh>i. The LGN,
V1, and FSA responses of the model to these images are displayed here as in figure 4. In all cases where the
newborn showed a preference, the model preference matched that of the newborn. For instance, the model
FSA responds to the face-like pattern (a) but not to the inverted version (d). Patterns that closely match
the newborn’s preferred spatial frequencies (c,e) caused a greater V1 response than their corresponding
lower-frequency patterns (d,g). Some non-face-like patterns with high-contrast borders can cause FSA acti-
vation (i); such spurious responses did not affect the predicted preferences. Simion et al. (1998a) found no
preference between (f ) and (g), but the model predicts that (f ) would be preferred due to the FSA response.

In addition to such qualitative tests, the face detection performance of the map was tested
quantitatively using two image databases: a set of images of 15 adult males without glasses pho-
tographed at the same distance against blank backgrounds (Achermann, 1995), and a set of 58
non-face images of various natural scenes (National Park Service, 1995). The face image set con-
tained two views of each person facing forwards, upwards, downwards, left, and right, for a total
of 150 face images; figure 6a shows an example of one frontal view. Each natural scene was
presented at 6 different size scales, for a total of 348 non-face presentations. Overall, the results
indicated very high face detection performance: the FSA responded to 91% (137/150) of the face
images, but to only 4.3% (15/348) of the natural scenes.

Because the two sets of real images were not closely matched in terms of lighting, backgrounds,
and distances, it is important to consider the actual response patterns to be sure that the differences
in the overall totals are genuine. The FSA responded with activation in the location corresponding
to the center of the face in 88% (132/150) of the face images. At the same time, the FSA had
spurious responses in 27% (40/150) of the face images, i.e. responses in locations other than the
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Figure 6: Model response to natural images.The top row shows a sample set of photographic images.
The LGN, V1, and FSA responses of the model to these images are displayed as in figures 4 and 5. The FSA
is indeed activated at the correct location for most real faces of the correct size and orientation (a-d). Just
as important, the network is not activated for most natural scenes (f-g) and man-made objects (h). Besides
human faces, the FSA responds to patterns causing a V1 response similar to that of a three-dot arrangement
of contours (d,i), including related patterns such as dog and monkey faces (not shown). Response is low to
images where hair or glasses obscures the borders of the eyes, nose, or mouth, and to front-lit downward-
looking faces, which have low V1 responses from nose or mouth contours (e). The model predicts that
newborns would show similar responses if tested. Credits: (a) copyright 1995 Bernard Achermann, (b-e)
public domain; (f-i) copyright 1999-2001, James A. Bednar.

center of the face. Nearly half of the spurious responses were from less-selective neurons along
the outer border of the model FSA (see figure 3h); these can be ignored. Most of the remaining
spurious responses resulted from a genuine V1 eye or mouth response plus V1 responses to the
hair or jaw outlines. Such responses would actually serve to direct attention to the general region
of the face, although they would not pinpoint the precise center. For the natural scenes, most of the
responses were from the less-selective neurons along the border of the FSA, and those responses
can again be ignored. The remainder of the natural scene responses were to image regions that
coincidentally had a triangular arrangement of three contour-rich areas, surrounded by areas with
a more uniform shading.

In summary, the FSA responds to most human faces of the right size, signaling their location
in the visual field. It does not respond to most other stimuli, except when they contain acciden-
tal three-dot patterns. The model predicts that human newborns will have a similar pattern of
responses in the face-selective cortical regions.
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6 Discussion and future work

The HLISSOM simulations show that internally generated patterns and self-organization can to-
gether account for newborn face detection. The novel contributions of the model are: (1) providing
a rigorous, computational test of the Johnson and Morton (1991) three-dot conceptual model for
newborn schematic face preferences, (2) demonstrating that preferences for three-dot patterns re-
sult in significant preference for faces in natural images, (3) proposing a specific, plausible way
that a system for face detection could be constructed in the developing brain, (4) demonstrating
how a single system can both exhibit genetically encoded preferences in the newborn and later
learn from real faces, (5) demonstrating at a detailed, realistic neural level how a hierarchy of brain
areas can self-organize and function, (6) showing how the reported newborn pattern preferences
can result from specific feature preferences at the different levels of the hierarchy, and (7) showing
that the effects of internally generated patterns should be considered when explaining genetically
influenced behavior. The fundamental thesis is that pattern generation can combine the strengths of
both genetic pre-specification and input-driven learning into a system more powerful than the sum
of its parts. The following subsections relate the HLISSOM results to those from other models,
and discuss future research directions.

6.1 Comparison to other models

Predictions from the HLISSOM model differ strongly from those of other recent models, and
these predictions can be tested by experiment. HLISSOM predicts that under suitable conditions,
newborns will show a significant preference for both real faces and face schematics over similar
images without faces, independent of an external border. The Acerra et al. (2001) computational
model makes the opposite predictions, namely that the preference for real images would be rel-
atively weak, if any, and that any preference would depend on the spacing with the hair outline.
Experimental evidence to date cannot yet decide between these two explanations. For instance,
Simion et al. (1998a) found no face preference without an external contour, but also found that
the shape of the contour “did not seem to affect the preference” for the patterns. The Acerra et al.
model provides an explanation for why a border would be required, but predicts a large difference
in response depending on the border shape and the spacing of features relative to the border. The
HLISSOM model predicts that if future experiments do confirm a dependence on the border, the
preference will not depend on such precise spacing. Instead the border would just satisfy a general
requirement such as a minimum threshold of complexity, size, or contrast needed for responses to
be measurable. Thus future experiments could distinguish between the two models by presenting
photographic image stimuli and schematic stimuli with a variety of border shapes and spacings, to
newborns and to each model.

When trained on a three-dot pattern, the HLISSOM model also makes predictions that differ
from those of the Simion et al. (2001) “top-heavy preference” explanation. HLISSOM predicts
that a pattern with three dots in the typical symmetrical arrangement would be preferred over
the same pattern with both eye dots pushed to one side, despite both patterns being equally top-
heavy. Finding instead a general preference for top-heavy patterns would imply that the internally
generated patterns are closer in shape to a triangle than to three dots, i.e. are less face-specific.
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However, because such a pattern would cause a lower preference for real faces than found in this
study, such a revised model would predict that newborns also have a lower preference for real
faces.

Many of the predictions of the fully trained HLISSOM model are similar to those of the ge-
netically fixed CONSPEC model proposed by Johnson and Morton (1991). In fact, our earlier
face preference model (which did not include V1) can be seen as the first model of the newborn’s
CONSPEC system to implemented computationally, along with a concrete proposal for how such
a system could be constructed during prenatal development (Bednar and Miikkulainen, 2000). The
primary functional difference between the trained HLISSOM network and CONSPEC/CONLERN
is that only cortical regions are responsible for the detection of faces in HLISSOM. Whether new-
born face detection is mediated cortically or subcortically has been debated extensively, yet no
clear consensus has emerged from behavioral studies (Simion et al., 1998a). Brain imaging may
eventually settle this issue; in either case, the principles of pattern generation and self-organization
can explain the prenatal construction of the face-processing system.

6.2 Future directions

Although the work reported in this paper covers self-organization up to the day of birth only,
postnatal learning of faces is also very important for the development of adult face processing
abilities. Once the genetically specified component has ensured that the newborn pays attention
to faces, experience with real faces should drive the development of more sophisticated abilities.
Preliminary further work has shown that a prenatally trained face map does learn from natural
images more quickly and more effectively than does a map with a random or uniform initial state
(Bednar and Miikkulainen, 2000). In future work we plan to extend these results, examining how
postnatal visual experience and prenatal training combine to develop the adult face processing
system.

The pattern generation hypothesis itself can potentially be verified directly by imaging the
actual activity patterns produced during REM sleep. Very recent advances in imaging hardware
have made limited measurements of this type possible (Rector et al., 1997), and imaging of the pons
of experimental animals is planned for the near future (R. M. Harper, personal communication). It
may soon be possible to test the assumptions and predictions of the HLISSOM model directly in
developing animals.

Why would evolution have favored a pattern-generation approach over fixed hard-wiring or
strictly general learning? One important reason is that the genome can encode the desired out-
come, i.e. three-blob responses, independently of the actual architecture of the face processing
hardware. As shown by Dailey and Cottrell (1999), even when the underlying cortical architecture
is specified only in domain-general terms, specific regions can still become primarily devoted to
face processing. The divide-and-conquer strategy of pattern generation would allow such an ar-
chitecture to evolve and develop independently of the function, which could potentially enable the
rapid evolution and development of more complex adaptive systems.

In terms of information processing, pattern generation combined with self-organization may
represent a general way to solve difficult problems like face detection and recognition. Rather than
meticulously specifying the final, desired individual, the specification need only encode a process
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for constructing an individual through interaction with its environment. The result can seamlessly
combine the full complexity of the environment witha priori information about the desired func-
tion of the system. In the future, this approach could be used for engineering complex artificial
systems for real-world tasks, e.g. handwriting recognition, speech recognition, and language pro-
cessing.

7 Conclusion

Internally generated patterns explain how genetic influences can interact with general adaptation
mechanisms to specify, develop, and maintain a complex system, such as that responsible for face
perception. The HLISSOM model of the visual system incorporates this idea, and is the first to
self-organize both low-level and high-level cortical regions at the scale and detail needed to model
such behavior realistically. The results match experimental data from newborns remarkably well,
and for the first time demonstrate preferences for faces in real images. These results and future
experiments with postnatal learning should help our understanding of the balance between envi-
ronmental and genetic determinants of individuality, and increase our ability to construct complex
artificial systems.
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A Parameter values

Most of the model parameters were calculated using the scaling equations from Kelkar et al.
(2000). Of those below, only the
 parameters and the sigmoid thresholds were set empirically
for this study. For the LGN and V1, the values for these free parameters were set so that the
output from each neural sheet would be in a useful range for the following sheet over the course
of training. For the highest level (FSA), the free parameters were set so that the response would
be nearly binary, and therefore an unambiguous criterion for the presence of a face-like pattern
on the input. Apart from such threshold parameters, small parameter variations produce roughly
equivalent results. The specific parameter values for each subcortical and cortical region follow.

For the LGN,�c was 0.4 and�s was 1.6. The afferent scale
A was 10.6, and the upper and
lower thresholds of the sigmoid were0:14 and1:0, respectively.

For V1, the initial lateral excitation radius was3:6 and was gradually decreased to1:5. The
lateral inhibitory radius of each neuron was8, and inhibitory connections whose strength was
below0:01 were pruned away at10; 000 iterations. The lateral inhibitory connections were initial-
ized to a Gaussian profile with� = 17, and the lateral excitatory connections to a Gaussian with
� = 2:8, with no connections outside the nominal circular radius. Initially, the divisive normaliza-
tion strength
N was zero, the afferent scale
A was 1.0, and the lateral excitation
E and inhibition
strength
I were both0:9. The
 values were constant during V1 training and were gradually in-
creased over the course of FSA training to
n = 4, 
a = 3:25, 
e = 1:2, and
i = 1:4. The learning
rate�A was gradually decreased from0:0035 to 0:00075, �E from 0:059 to 0:0029, and�I was a
constant0:00088. The lower and upper thresholds of the sigmoid were increased from0:08 to 0:5
and from0:63 to 0:86, respectively over the course of V1 training; the lower threshold was then
decreased to0:22 over the course of FSA training. The number of iterations for which the lateral
connections were allowed to settle at each training iteration was initially9, and was increased to
13.

For the FSA, the initial lateral excitation radius was6:3 and was gradually decreased to1:5.
The lateral inhibitory radius of each neuron was15:8, and inhibitory connections whose strength
was below0:0027 were pruned away at20; 000 iterations. The lateral inhibitory connections were
initialized to a Gaussian profile with� = 33, and the lateral excitatory connections to a Gaussian
with � = 4:9. The lateral excitation
E was0:9 and the inhibition strength
I was0:9. Initially, the
divisive normalization strength
N was zero, the afferent scale
A was 3.0, and the lateral excitation

E and inhibition strength
I were both0:9. These values were gradually changed over the course
of FSA training to
n = 9, 
a = 10:6, 
e = 0:4, and
i = 0:6. The learning rate�A was gradually
decreased from0:0001 to 0:000022, �E from 0:025 to 0:013 and�I was a constant0:003. The
lower and upper thresholds of the sigmoid were increased from0:1 to 0:81 and from0:65 to 0:88,
respectively over the course of training. The number of iterations for which the lateral connections
were allowed to settle at each training iteration was initially9, and was increased to13.
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