
Robust Non-Linear Control through NeuroevolutionFaustino J. Gomez and Risto MiikkulainenDepartment of Computer SienesThe University of TexasAustin, TX 78712, U.S.A(inaki,risto�s.utexas.edu)TR AI-2002-292AbstratMany omplex ontrol problems require sophistiated solutions that are not amenable totraditional ontroller design. Not only is it diÆult to model real world systems, but often itis unlear what kind of behavior is required to solve the task. Reinforement learning (RL)approahes have made progress by utilizing diret interation with the task environment,but have so far not saled well to large state spaes and environments that are not fullyobservable. In reent years, neuroevolution, the arti�ial evolution of neural networks, hashad remarkable suess in tasks that exhibit these two properties, but, like RL methods,requires solutions to be disovered in simulation and then transferred to the real world. Toensure that transfer is possible, evolved ontrollers need to be robust enough to ope withdisrepanies between these two settings. In this paper, we demonstrate how a methodalled Enfored SubPopulations (ESP), for evolving reurrent neural network ontrollers,an failitate this transfer. The method is �rst ompared to a broad range of reinforementlearning algorithms on very diÆult versions of the pole balaning problem that involvelarge (ontinuous, high-dimensional) state spaes and hidden state. ESP is shown to besigni�antly more eÆient and powerful than the other methods on these tasks. We thenpresent a model-based method that allows ontrollers evolved in a learned model of theenvironment to suessfully transfer to the real world. We test the method on the mostdiÆult version of the pole balaning task, and show that the appropriate use of noiseduring evolution an improve transfer signi�antly by ompensating for inauray in themodel.
1

1 IntrodutionIn many deision making proesses suh as manufaturing, airraft ontrol, and robotisresearhers are faed with the problem of ontrolling systems that are highly omplex, noisy,and unstable. A ontroller or agent must be built that observes the state of the system, orenvironment, and outputs a ontrol signal that a�ets future states of the environment insome desirable way. For example, a guidane system designed to stabilize a roket in ightmust modulate the thrust of several engines in order to maximize altitude under variableatmospheri onditions. To sueed, this ontroller needs to be general and robust enoughto respond e�etively to onditions not expliitly onsidered or ompletely modeled by thedesigner.The problem with designing or programming suh ontrollers by onventional engineeringmethods is threefold:I. No mathematial model. The environment is usually so high-dimensional, non-linear, and noisy that it is impossible to obtain the kind of aurate and tratablemathematial model required by these methods.II. No examples of orret behavior. The task is omplex enough that there is verylittle a priori knowledge of what onstitutes a reasonable, muh less optimal, on-trol strategy. For a sophistiated task like roket guidane, the designer knows theontroller's general objetive, but does not know how it should at from moment tomoment in order to best ahieve the objetive.III. The transfer problem. If a good ontrol strategy is found, will it work on thereal system being modeled? In general, it is not possible to predit how an agent willbehave until it has begun to interat with its environment. Consequently, deiding whatontrol features, designed in isolation, will yield the desired behavior when transferredto the real world an be very diÆult.The �rst two problems have ompelled researhers to explore methods based on reinfore-ment learning (RL; Sutton and Barto 1998). Instead of trying to pre-program a responseto every likely situation, the agent is made to learn the task by interating with the envi-ronment. This way, the agent is said to be grounded in its environment (Harnad 1990); theations that beome part of the agent's behavior arise from and are validated by how theyontribute to improved performane. In priniple, RL methods an solve problems I and II:they do not require a mathematial model (i.e. the state transition probabilities) of the envi-ronment and an solve many problems where examples of orret behavior are not available.However, in pratie, they have not saled well to large state spaes or non-Markov taskswhere the state of the environment is not fully observable to the agent. This is a seriousproblem beause the real world is ontinuous (i.e. there are an in�nite number of states) andarti�ial agents, like natural organisms, are neessarily onstrained in their ability to fullypereive their environment. 2

Reently, methods based on evolutionary adaptation have shown promising results onontinuous, non-Markov tasks (Gomez and Miikkulainen 1997, 1999; Nol� and Parisi 1995;Yamauhi and Beer 1994). The �rst goal of this paper is to demonstrate that an arhiteturealled Enfored Subpopulations (ESP) where neurons are evolved in separate subpopulationsto form e�etive neural networks, is a partiularly e�etive method. On a set of very diÆultpole balaning tasks, we ompare the performane of ESP to a wide range of learning systemsinluding value funtion, poliy searh, and other evolutionary methods.However, problem III is still an open issue in RL. Even though RL does not require amodel, diret interation with the environment is usually too slow (ostly) due to the highdata requirements of these methods (Bertsekas and Tsitsiklis 1996), and often too risky sinethe stability of most learning agent arhitetures annot be guaranteed. Consequently, theontrol poliy must �rst be learned o�-line in a simulator or simulation environment andthen be transferred to the atual target environment where it is ultimately meant to operate.Evolutionary approahes are just as dependent on simulation as other RL methods sine itis impratial to evaluate entire populations of ontrollers in the real world. So far, transferof evolved mobile robot ontrollers has been shown to be possible, but there is very littleresearh on transfer in other lasses of tasks, suh as the ontrol of unstable systems. Theseond goal of this paper is to analyze what fators inuene transfer and show that transferis possible even in high-preision tasks in unstable environments, suh as the most diÆultpole balaning task.The paper is organized as follows: First, in setion 2 we review the reinforement learn-ing problem and the onventional, single-agent methods of solving it that are in urrent use(2.1). Then we desribe a fundamentally di�erent RL approah, neuroevolution (2.2), thatsearhes the spae of neural network poliies using a geneti algorithm. Cooperative oevo-lution (reviewed in setion 2.3) is an advaned evolutionary method that evolves interatingsubproblems to solve tasks more eÆiently. Neuroevolution and ooperative oevolution areombined in the SANE algorithm (2.4) whih forms the basis for our system, ESP. The lastbakground setion (2.5) reviews the urrent state of tehnology in the transfer of evolvedontrollers. In setion 3, we present the ESP algorithm, and in setion 4 the pole balaningtask. ESP is ompared to a variety of RL methods in setion 5, and shown to solve harderversions of the problem faster. A methodology for transferring ontrollers to the real worldis developed in setion 6, showing that trajetory noise during training results in robusttransfer.2 Bakground and Related WorkBefore introduing ESP, we �rst review four topis that our work is based on: reinforementlearning, neuroevolution, ooperative oevolution, and, most diretly, the SANE algorithm.
3

Policy

Value
Function

Agent

state action

reward

Environment

Figure 1: The value funtion approah (olor �gure). The agent is omposed of a value-funtion and a poliy. The value funtion tells the agent how muh reward an be expetedfrom eah state if the best known poliy is followed. The poliy maps states to ations based oninformation from the value funtion.2.1 The Reinforement Learning ProblemReinforement learning refers to a lass of algorithms for solving problems in whih a sequeneof deisions is made in order to maximize some measure of reward or reinforement reeivedfrom the environment. At eah deision point, the agent, starting at some state s 2 S,where S is the set of possible states, selets an ation a from a set of possible ations, A,that transitions the environment to the next state s0 and imparts a reinforement signal,r, to the agent. Starting with little or no knowledge of how to solve the task, the agentexplores the environment by trial-and-error. By assoiating reward with ertain ationsin eah situation, the agent an gradually learn a ourse of ation or poliy that leads tofavorable outomes. This learning proess is diÆult beause, unlike supervised learningtasks, the desired response in eah state is not known in advane. An ation that seemsgood in the short run may prove bad or even atastrophi down the road. Conversely, anation that is not good in terms of immediate payo� may prove bene�ial or even essentialfor larger payo�s in the future. Therefore the agent must explore the state-spae to try toassoiate ations to onsequenes in order to determine the best poliy.The best understood and most widely used learning methods for solving these problemsare based on Dynami Programming (Howard 1960). Essential to these methods is the valuefuntion V , whih maps eah problem state to its utility or value with respet to the taskbeing learned (�gure 1). This value is an estimate of the reward the agent an expet toreeive if it starts in a partiular state and follows the urrently best known poliy. As theagent explores the environment, it updates the value of eah visited state aording to thereward it reeives. Given a value funtion that aurately omputes the utility of every state,a ontroller an at optimally by merely seleting the ation at eah state that leads to the4

subsequent state with the highest value. Therefore, the key to RL is �nding the optimalvalue funtion for a given task.RL ontrol methods suh as the popular Q-learning (Watkins 1989; Watkins and Dayan1992), Sarsa (Rummery and Niranjan 1994), and TD(�) (Sutton 1988) algorithms provideinremental proedures for omputing V that are attrative beause they do not require amodel of the environment, an learn a poliy by diret interation, are naturally suited tostohasti environments, and are guaranteed to onverge under ertain onditions. Thesemethods are based on Temporal Di�erene learning (Sutton and Barto 1998) in whih thevalue of eah state is updated byV (s) := V (s) + �[r + V (s0)� V (s)℄: (1)The estimate of the value of state s, V (s), is inremented by the reward r from transitioningto state s0 plus the di�erene between the disounted value of the next state V (s0) and V (s),where � is the learning rate, is the disount fator and 0 � �; � 1. Rule 1 improves V (s)by moving it towards the \target" r + V (s0) whih is more likely to be orret beause ituses the real reward r. To allow seleting the best ation in eah state (i.e. ontrol) methodslike Q-learning and Sarsa atually learn a Q-funtion instead of V , whih gives the value ofeah state-ation pair. The Q-funtion, in e�et, ahes the lookahead that would have tobe performed to �nd the best ation using V , allowing best poliy for a given Q-funtion tobe simply: argmax Q(s; a),a2A (2)In early researh, these methods were investigated in very simple environments with veryfew states and ations. Subsequent work has foused on extending these methods to larger,high-dimensional and/or ontinuous environments. When the number of states and ationsis relatively small, look-up tables an be used to represent V eÆiently. But even withan environment of modest size this approah quikly beomes impratial and a funtionapproximator is needed to map states to values. Typial hoies range from loal approx-imators suh as the CMAC, ase-based memories, and radial basis funtions (Santamariaet al. 1998; Sutton 1996), to neural networks (Crites and Barto 1996; Lin 1993; Tesauro andSejnowski 1987).Despite substantial progress, value-funtion methods an be very slow, espeially whenreinforement is sparse or when the environment is not ompletely observable. If the agent'ssensory system does not provide enough information to determine the state (i.e. the globalor underlying proess state) then the deision proess is non-Markov, and the agent mustutilize a history or short-term memory of observations. This is important for most tasksof interest sine a ontroller's sensors usually have limited range, resolution, and �delity,ausing pereptual aliasing where many observations that require di�erent ations look thesame. Next, we look at an approah that promises to be less suseptible to the problemsoutlined in this setion. 5

action

Neural Network

Algorithm
 Genetic

observation

Environment

fitness

Figure 2: Neuroevolution (olor �gure). Eah hromosome is transformed into a neuralnetwork phenotype and evaluated on the task. The agent reeives input from the environment(observation) and propagates it through its neural network to ompute an output signal (ation)that a�ets the environment. At the end of the evaluation, the network is assigned a �tnessaording to its performane. The networks that perform well on the task are mated to generatenew networks.2.2 NeuroevolutionNeuroevolution (NE) presents a fundamentally di�erent approah to reinforement learningtasks. The basi idea of NE is to searh the spae of neural network poliies diretly usinga geneti algorithm (�gure 2). In ontrast to onventional ontogeneti learning involving asingle agent suh as RL, evolutionary methods use a population of solutions. The individualsolutions are not modi�ed during evaluation; instead, adaptation arises through repeatedlyreombining the population's most �t individuals in a kind of olletive or phylogenetilearning. The population gradually improves as a whole until a suÆiently �t individual isfound.By searhing the spae of poliies diretly, NE eliminates the need for a value funtionand its ostly omputation. Instead, neural network ontrollers map observations from theenvironment diretly to ations. This mapping is potentially powerful: neural networksare universal funtion approximators that an generalize and tolerate noise. Networks withfeedbak onnetions (i.e. reurrent networks) an maintain internal state extrated froma history of inputs, allowing them to solve non-Markov tasks. By evolving these networksinstead of training them, NE avoids the problems of omputational omplexity and dimin-ishing error gradients that a�et reurrent network learning algorithms (Bengio et al. 1994).For NE to work, the environment need not satisfy any partiular onstraints|it an be on-tinuous and non-Markov. All that onerns a NE system is that the network representationsbe large enough to solve the task and that there is an e�etive way to evaluate the relativequality of andidate solutions. 6

NE approahes di�er primarily in how they enode neural network spei�ations intogeneti strings. We will therefore use this dimension to lassify and disuss NE methods.In NE, a hromosome an enode any relevant network parameter inluding synapti weightvalues, size, onnetivity (topology), learning rate, et. The hoie of enoding sheme a�etsthe struture of the searh spae, the behavior of the searh algorithm, and how the networkgenotypes are transformed into their phenotypes for evaluation.There are two basi kinds of enoding shemes: diret and indiret. In diret enoding,the parameters are represented expliitly on the hromosome as binary or real numbers thatare mapped diretly to the phenotype. Many methods enode only the synapti weight values(Belew et al. 1991; Gomez and Miikkulainen 1997; Je�erson et al. 1991) while others evolvetopology as well (Moriarty 1997). Our method, ESP, uses a diret enoding sheme thatdoes not evolve topology. However, sine ESP evolves fully onneted networks, virtuallyany topology of a given size an be represented by having some weights evolve to a value ofzero.Indiret enodings operate at a higher level of abstration. Some simply provide a oarsedesription suh as delineating a neuron's reeptive �eld (Mandisher 1993) or onnetivedensity (Harp et al. 1989), while others are more algorithmi providing growth rules inthe form of graph generating grammars (Kitano 1990; Voigt et al. 1993). These shemeshave the advantage that very large networks an be represented without requiring largehromosomes. Cellular Enoding (CE; Gruau et al. 1996a,b) is a promising indiret methodwhih we ompare to ESP in the experiments below.Whihever enoding sheme is used, neural network spei�ations are usually very high-dimensional so that large populations are required to �nd good solutions before onvergenesets in. The next setion reviews an evolutionary approah that potentially makes the searhmore eÆient by deomposing the searh spae into smaller interating spaes.2.3 Cooperative CoevolutionIn natural eosystems, organisms of one speies ompete and/or ooperate with many otherdi�erent speies in their struggle for resoures and survival. The �tness of eah individualhanges over time beause it is oupled to that of other individuals inhabiting the environ-ment. As speies evolve they speialize and o-adapt their survival strategies to those of otherspeies. This phenomenon of oevolution has been used to enourage omplex behaviors inGAs.Most oevolutionary problem solving systems have onentrated on ompetition betweenspeies (Darwen 1996; Miller and Cli� 1994; Paredis 1994; Pollak et al. 1996; Rosin 1997).These methods rely on establishing an \arms rae" with eah speies produing strongerand stronger strategies for the others to defeat. This is a natural approah in areas suh asgame-playing where an optimal opponent is not available.A very di�erent kind of oevolutionary model emphasizes ooperation. Cooperative o-7

evolution is motivated, in part, by the reognition that the omplexity of diÆult problemsan be redued through modularization (e.g. the human brain; Grady 1993). In ooperativeoevolutionary algorithms the speies represent solution subomponents. Eah individualforms a part of a omplete solution but need not represent anything meaningful on its own.The subomponents are evolved by measuring their ontribution to omplete solutions andreombining those that are most bene�ial to solving the task. Cooperative oevolution anpotentially improve the performane of arti�ial evolution by dividing the task into manysmaller problems.Early work in this area was done by Holland and Reitman (1978) in Classi�er Systems.A population of rules was evolved by assigning a �tness to eah rule based on how well itinterated with other rules. This approah has been used in learning lassi�ers implementedby a neural network, in oevolution of asade orrelation networks, and in oevolution ofradial basis funtions (Eriksson and Olsson 1997; Horn et al. 1994; Paredis 1995; Whiteheadand Choate 1995). More reently, Potter and De Jong (1995) developed a method alledCooperative Coevolutionary GA (CCGA) in whih eah of the speies is evolved indepen-dently in its own population. As in Classi�er Systems, individuals in CCGA are rewarded formaking favorable ontributions to omplete solutions, but members of di�erent populations(speies) are not allowed to mate. A partiularly powerful idea is to ombine ooperativeoevolution with neuroevolution so that the bene�ts of evolving neural networks an be en-haned further through improved searh eÆieny. This is the approah taken by the SANEalgorithm, desribed next.2.4 Symbioti, Adaptive Neuroevolution (SANE)Conventional NE systems evolve genotypes that represent omplete neural networks. SANE(Moriarty 1997; Moriarty and Miikkulainen 1996a) is a ooperative oevolutionary systemthat instead evolves neurons (i.e. partial solutions; �gure 3). SANE evolves two di�erentpopulations simultaneously: a population of neurons and a population of network blueprintsthat speify how the neurons are ombined to form omplete networks. Eah generation ofnetworks is formed using the blueprints, and evaluated on the task.In SANE, neurons ompete on the basis of how well, on average, the networks in whihthey partiipate perform. A high average �tness means that the neuron ontributes toforming suessful networks and, onsequently, suggests that it ooperates well with otherneurons. Over time, neurons will evolve that result in good networks. The SANE approahhas proven faster and more eÆient than other reinforement learning methods suh asAdaptive Heuristi Criti, Q-Learning, and standard neuroevolution, in, for example, thebasi pole balaning task and in the robot arm ontrol task (Moriarty and Miikkulainen1996a,b).SANE evolves good networks more quikly beause the network sub-funtions are allowedto evolve independently. Sine neurons are not tied to one another on a single hromosome(i.e. as in onventional NE) a neuron that may be useful is not disarded if it happens to8

NAS E

observation action

Feed−forward

Neural Network

Environment

fitness

Figure 3: Symbioti, Adaptive Neuroevolution (olor �gure). The algorithm maintainstwo distint populations, one of network blueprints (left), and one of neurons (right). Networks areformed by ombining neurons aording to the blueprints. Networks are evaluated in the task, andthe �tness is distributed among all the neurons that partiipated in the network. After all neuronsare evaluated this way, reombination is performed on both populations.be part of a network that performs poorly. Thus, more paths to a winning solution aremaintained. Likewise, bad neurons do not get \free rides" by being part of a high soringnetwork. The system breaks the problem down to that of �nding the solution to smaller,interating subproblems.Evolving neurons instead of full networks also maintains diversity in the population. Ifone type of neuron genotype begins to take over the population, networks will often be formedthat ontain several opies of that genotype. Beause diÆult tasks usually require severaldi�erent hidden neurons, suh networks annot perform well. They inur low �tness, andthe dominant genotype will be seleted against, bringing diversity bak into the population.In the advaned stages of SANE evolution, instead of onverging the population around asingle individual like a standard GA, the neuron population forms lusters of individuals thatperform speialized funtions in the target behavior (Moriarty 1997). This kind of impliitand automati speiation is similar to more expliit methods suh as �tness sharing thatredue the �tness of individuals that oupy rowded regions of the searh spae (Mahfoud1995).A key problem with SANE is that beause it does not disriminate between the evolvingspeializations when it onstruts networks and selets neurons for reprodution, evaluationsan be very noisy. This limits its ability to evolve reurrent networks. A neuron's behaviorin a reurrent network depends ritially upon the neurons to whih it is onneted, and inSANE it annot rely on being ombined with similar neurons in any two trials. A neuronthat behaves one way in one trial may behave very di�erently in another, and SANE annot9

obtain aurate �tness information. Without the ability to evolve reurrent networks, SANEis restrited to reative tasks where the agent an learn to selet the optimal ation ineah state based solely on its immediate sensory input. This is a serious drawbak sinemost interesting tasks require memory. The method presented in setion 3, ESP, extendsooperative neuroevolution to tasks that make use of short-term memory.2.5 TransferReinforement learning requires a ontinuous interation with the environment. In mosttasks interation is not feasible in the real world, and simulated environments must be usedinstead. However, no matter how rigorously they are developed, simulators annot faithfullymodel all aspets of a target environment. Whenever the target environment is abstratedin some way to simplify evaluation, spurious features are introdued into the simulation. Ifa ontroller relies on these features to aomplish the task, it will fail to transfer to the realworld where the features are not available (Matari and Cli� 1996). Sine some abstrationis neessary to make simulators tratable, suh a \reality gap" an prevent ontrollers fromperforming in the physial world as they do in simulation.Studying fators that lead to suessful transfer is diÆult beause testing potentiallyunstable ontrollers an damage expensive equipment or put lives in danger. One exeptionis Evolutionary Robotis (ER), where the hardware is relatively inexpensive and the taskshave, up to now, not been safety ritial in nature. Researhers in ER are well aware thatit is often just as hard to transfer a behavior as it is to evolve it in simulation, and havedevoted great e�ort to overoming the transfer problem. Given the extensive body of workin this �eld, this setion reviews the key issues and advanes in transfer methods in ER.By far the most widely used platform in ER is the Khepera robot (Mondada et al. 1993).Khepera is very popular beause it is small, inexpensive, reliable, and easy to model dueto its simple ylindrial design. Typially, behaviors suh as phototaxis or \homing" (Fiiiet al. 1999; Floreano and Mondada 1996; Jakobi et al. 1995; Lund and Hallam 1996; Meeden1998), avoidane of stati obstales (Chavas et al. 1998; Jakobi et al. 1995; Miglino et al.1995a), exploring (Lund and Hallam 1996), or pushing a ball (Smith 1998) are �rst evolvedfor a simulated Khepera ontrolled by a neural network that maps sensor readings to motorvoltage values. The software ontroller is then downloaded to the physial robot whereperformane is measured by how well the simulated behavior is preserved in the real world.Although these tasks (e.g. homing and exploring) are simple enough to solve with hand-oded behaviors, many studies have demonstrated that solutions evolved in idealized sim-ulations transfer poorly. The most diret and intuitive way to improve transfer is to makethe simulator more aurate. Instead of relying solely on analytial models, researhers haveinorporated real-world measurements to empirially validate the simulation. Nol� et al.(1994) and Miglino et al. (1995a) olleted sensor and position data from a real Kheperarobot and used to ompute the sensor values and movements of its simulated ounterpart.This approah improved the performane of transferred ontrollers dramatially by ensuring10

a that the ontroller would experiene states in simulation that atually ourred in the realworld.Unfortunately, as the omplexity of tasks and the agents that perform them inreasesenough, it will not be possible to ahieve suÆiently aurate simulations, and a funda-mentally di�erent approah is needed. Instead of trying to eliminate inauraies from thesimulation, why not make the ontrollers less suseptible to them? For example, if noise isadded to the ontroller's sensors and atuators during evaluation, they beome more tolerantof noise in the real world and, therefore, less sensitive to disrepanies between the simulatorand the target environment. The key is to �nd the right amount of noise: if there is notenough noise, the ontroller will rely on unrealistially aurate sensors and atuators. Onthe other hand, too muh noise an amplify an irrelevant signal in the simulator that theontroller will then not be able to �nd in the real world (Matari and Cli� 1996). Corretnoise levels are usually determined experimentally.The most formal investigation of the fators that inuene transfer was arried out byJakobi (1993; 1998; 1995). He proposed using minimal simulations that onentrate onisolating a base set of features in the environment that are neessary for orret behavior.These features need to be made noisy to obtain robust ontrol. Other features that are notrelevant to the task are lassi�ed as implementation features whih must me made unreliable(random) in the simulator so that the agent an not use them to perform the task. This waythe robot will be very reliable with respet to the features that are ritial to the task andnot misled by those that are not. Minimal simulations provide a prinipled approah thatan greatly redue the omplexity of simulations and improve transfer. However, so far theyhave only been used in relatively simple tasks. It is unlear whether this approah will bepossible in more omplex tasks where the set of ritial features (i.e. the base set) is largeor not easily identi�ed (Watson et al. 1999).While signi�ant advanes have been made in the transfer of robot ontrollers, it shouldbe noted that the robots and environments used in ER are relatively \transfer friendly."Most signi�antly, robots like the Khepera are stable: in the absene of a ontrol signalthe robot will either stay in its urrent state or quikly onverge to a nearby state due tomomentum. Consequently, a robot an often perform ompetently in the real world as longas its behavior is preserved qualitatively after transfer. This is not the ase with a greatmany systems of interest suh as rokets, airraft, and hemial plants that are inherentlyunstable. In suh environments, the ontroller must onstantly output a preise ontrolsignal to maintain equilibrium and avoid failure. Therefore, ontrollers for unstable systemsmay be less amenable to tehniques that have worked for transfer in robots.The transfer experiments in setion 6 aim at providing a more general understandingof the transfer proess inluding hallenging problems in unstable environments. We havehosen pole balaning as the test domain for two reasons: (1) it embodies the essentialelements of unstable systems while being simple enough to study in depth, and (2) it hasbeen studied extensively, but in simulation only. This paper represents the �rst attempt tosystematially study transfer outside of the mobile robot domain. However, before transfer11

ESP

observation

Recurrent
Neural Network

action

Environment

fitness

Figure 4: The Enfored Subpopulations Method (ESP; olor �gure). The population ofneurons is segregated into subpopulations shown here in di�erent olors. Networks are formed byrandomly seleting one neuron from eah subpopulation. As with SANE, a neuron aumulatesa �tness sore by adding the �tness of eah network in whih it partiipated. This sore is thennormalized and the best neurons within eah subpopulation are mated to form new neurons.an be studied, we will have to develop an RL method strong enough to robustly solve suhproblems. This will be done in the next three setions.3 Enfored Subpopulations (ESP)In the Enfored Subpopulations1 (Gomez and Miikkulainen 1997, 1998, 1999) method, as inSANE, the population onsists of individual neurons instead of full networks, and a subset ofneurons are put together to form a omplete network. However, in ontrast to SANE, ESPmakes use of expliit subtasks; a separate subpopulation is alloated for eah of the u unitsin the network, and a neuron an only be reombined with members of its own subpopulation(�gure 4). This way the neurons in eah subpopulation an evolve independently, and rapidlyspeialize into good network sub-funtions.Evolution in ESP proeeds as follows:1. Initialization. The number of hidden units u in the networks that will be formed isspei�ed and a subpopulation of neuron hromosomes is reated. Eah hromosomeenodes the input and output onnetion weights of a neuron with a random string ofreal numbers.1The ESP pakage is available at:http://www.s.utexas.edu/users/nn/pages/software/abstrats.html#esp-pp12

2. Evaluation. A set of u neurons is seleted randomly, one neuron from eah subpopu-lation, to form a hidden layer of a feedforward network. The network is submitted toa trial in whih it is evaluated on the task and awarded a �tness sore. The sore isadded to the umulative �tness of eah neuron that partiipated in the network. Thisproess is repeated until eah neuron has partiipated in an average of e.g. 10 trials.3. Reombination. The average �tness of eah neuron is alulated by dividing its umu-lative �tness by the number of trials in whih it partiipated. Neurons are then rankedby average �tness within eah subpopulation. Eah neuron in the top quartile is re-ombined with a higher-ranking neuron using 1-point rossover and mutation at lowlevels to reate the o�spring to replae the lowest-ranking half of the subpopulation.4. The Evaluation{Reombination yle is repeated until a network that performs suÆ-iently well in the task is found.ESP an evolve reurrent networks beause the subpopulation arhiteture makes theevaluations more onsistent, in two ways: �rst, the subpopulations that gradually form inSANE are already present by design in ESP. The speies do not have to organize themselvesout of a single large population, and their progressive speialization is not hindered byreombination aross speializations that usually ful�ll relatively orthogonal roles in thenetwork. Seond, beause the networks formed by ESP always onsist of a representativefrom eah evolving speialization, a neuron is always evaluated on how well it performs itsrole in the ontext of all the other players. A neuron's reurrent onnetion weight ri willalways be assoiated with neurons from subpopulation Si. As the subpopulations speialize,neurons evolve to expet, with inreasing ertainty, the kinds of neurons to whih they willbe onneted. Therefore, the reurrent onnetions to those neurons an be adapted reliably.Figure 5 illustrates the speialization proess. The plots show the distribution of theneurons in the searh spae throughout the ourse of a typial evolution. Eah point repre-sents a neuron hromosome projeted onto 2-D using Prinipal Component Analysis. In theinitial population (Generation 1) the neurons, regardless of subpopulation, are distributedthroughout the spae uniformly. As evolution progresses, the neurons begin to form lusterswhih eventually beome learly de�ned and represent the di�erent speializations used toform good networks.The aelerated speialization aused by segregating neurons into in subpopulations notonly allows for reurrent onnetions, it also makes ESP more eÆient than SANE. Thetradeo� is that diversity in ESP delines over the ourse of evolution like that of a normalGA. This an be a problem beause a onverged population annot easily adapt to a newtask. To deal with premature onvergene ESP is ombined with burst mutation. The ideais to searh for optimal modi�ations of the urrent best solution. When performane hasstagnated for a predetermined number of generations, new subpopulations are reated byadding noise to eah of the neurons in the best solution. Eah new subpopulation ontainsneurons that represent di�erenes from the best solution. Evolution then resumes, but now13

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 1 -20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 20
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 50 -20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 100Figure 5: Evolution of speializations in ESP (olor �gure). The plots show a 2-D projetionof the neuron weight vetors after Prinipal Component Analysis (PCA) transformation. Eahsubpopulation is shown in a di�erent olor. As evolution progresses, the subpopulations luster intotheir own region of the searh spae. Eah subpopulation represents a di�erent neuron speializationthat an be ombined with others to form good networks.searhing the spae in a \neighborhood" around the best previous solution. Burst mutationan be applied multiple times, with suessive invoations representing di�erenes to theprevious best solution. Assuming the best solution already has some ompetene in thetask, most of its weights will not need to be hanged radially. To ensure that most hangesare small while allowing for larger hanges to some weights ESP uses the Cauhy distributionto generate noise: f(x) = ��(�2 + x2) (3)With this distribution 50% of the values will fall within the interval �� and 99:9% within theinterval 318:3� �. This tehnique of \reharging" the subpopulations keeps diversity in thepopulation so that ESP an ontinue to make progress toward a solution even in prolongedevolution.Burst mutation is similar to the Delta-Coding tehnique of Whitley et al. (1991) whihwas developed to improve the preision of geneti algorithms for numerial optimization14

problems. Beause our goal is to maintain diversity, we do not redue the range of thenoise on suessive appliations of burst mutation and we use Cauhy rather that uniformlydistributed noise.ESP does not evolve network topology beause fully onneted networks an e�etivelyrepresent any topology of a given size (setion 2.2). However, ESP does adapt the size ofthe networks. It is well known that when neural networks are trained using gradient-desentmethods suh as bakpropagation, too many or too few hidden units an seriously a�etlearning and generalization. Having too many units an ause the network to memorize thetraining set, resulting in poor generalization. Having too few will slow down learning orprevent it altogether. Similar observations an be made when networks are evolved by ESP.With too few units (i.e. too few subpopulations) the networks will not be powerful enoughto solve the task. If the task requires fewer units than have been spei�ed, two things anhappen: either eah neuron will make only a small ontribution to the overall behavior or,more likely, some of the subpopulations will evolve neurons that do nothing. The networkwill not neessarily over�t to the environment. However, too many units is still a problembeause the evaluations will be slowed down unneessarily, and evaluations will be noisierthan neessary beause a neuron will be sampled in a smaller perentage of all possibleneuron ombinations. Both of these problems result in ineÆient searh.For these reasons ESP uses the following mehanism to add and remove subpopulations asneeded: When evolution eases to make progress, even after some number of burst mutations,take the best network found so far and evaluate it after removing eah of its neurons in turn.If the �tness of the network does not fall below a threshold when missing neuron i, theni is not ritial to the performane of the network and its orresponding subpopulation isremoved. If no neurons an be removed, add a new subpopulation of random neurons andevolve networks with one more neuron.This way, ESP will enlarge networks when the task is too diÆult for the urrent ar-hiteture and prune units (subpopulations) that are found to be ine�etive. Overall, withgrowth and pruning, ESP will be more robust in dealing with environmental hanges andtasks where the appropriate network size is diÆult to determine.4 Experimental SetupWe onduted three di�erent types of experiments using the pole balaning domain. Se-tions 4.1 and 4.2 desribe the domain and task setup in detail. The �rst set of experiments,in setion 5, evaluates how eÆiently ESP an evolve e�etive ontrollers. We ompare ESPto a broad range of learning algorithms on a sequene of inreasingly diÆult versions ofthe pole balaning task. This sheme allows us to ompare methods at di�erent levels oftask omplexity, exposing the strengths and limitations of eah method with respet to spe-i� hallenges introdued by eah sueeding task. In setion 6, we present a model-basedapproah to applying ESP to real-world tasks, and evaluate how enhaning robustness in15

