Robust Non-Linear Control through Neuroevolution

Faustino J. Gomez and Risto Miikkulainen
Department of Computer Sciences
The University of Texas

Austin, TX 78712, U.S.A
(inaki,risto@cs.utexas.edu)

TR AI-2002-292

Abstract

Many complex control problems require sophisticated solutions that are not amenable to
traditional controller design. Not only is it difficult to model real world systems, but often it
is unclear what kind of behavior is required to solve the task. Reinforcement learning (RL)
approaches have made progress by utilizing direct interaction with the task environment,
but have so far not scaled well to large state spaces and environments that are not fully
observable. In recent years, neuroevolution, the artificial evolution of neural networks, has
had remarkable success in tasks that exhibit these two properties, but, like RL methods,
requires solutions to be discovered in simulation and then transferred to the real world. To
ensure that transfer is possible, evolved controllers need to be robust enough to cope with
discrepancies between these two settings. In this paper, we demonstrate how a method
called Enforced SubPopulations (ESP), for evolving recurrent neural network controllers,
can facilitate this transfer. The method is first compared to a broad range of reinforcement
learning algorithms on very difficult versions of the pole balancing problem that involve
large (continuous, high-dimensional) state spaces and hidden state. ESP is shown to be
significantly more efficient and powerful than the other methods on these tasks. We then
present a model-based method that allows controllers evolved in a learned model of the
environment to successfully transfer to the real world. We test the method on the most
difficult version of the pole balancing task, and show that the appropriate use of noise
during evolution can improve transfer significantly by compensating for inaccuracy in the
model.



1 Introduction

In many decision making processes such as manufacturing, aircraft control, and robotics
researchers are faced with the problem of controlling systems that are highly complex, noisy,
and unstable. A controller or agent must be built that observes the state of the system, or
environment, and outputs a control signal that affects future states of the environment in
some desirable way. For example, a guidance system designed to stabilize a rocket in flight
must modulate the thrust of several engines in order to maximize altitude under variable
atmospheric conditions. To succeed, this controller needs to be general and robust enough
to respond effectively to conditions not explicitly considered or completely modeled by the
designer.

The problem with designing or programming such controllers by conventional engineering
methods is threefold:

[. No mathematical model. The environment is usually so high-dimensional, non-
linear, and noisy that it is impossible to obtain the kind of accurate and tractable
mathematical model required by these methods.

II. No examples of correct behavior. The task is complex enough that there is very
little a prior: knowledge of what constitutes a reasonable, much less optimal, con-
trol strategy. For a sophisticated task like rocket guidance, the designer knows the
controller’s general objective, but does not know how it should act from moment to
moment in order to best achieve the objective.

ITI. The transfer problem. If a good control strategy is found, will it work on the
real system being modeled? In general, it is not possible to predict how an agent will
behave until it has begun to interact with its environment. Consequently, deciding what
control features, designed in isolation, will yield the desired behavior when transferred
to the real world can be very difficult.

The first two problems have compelled researchers to explore methods based on reinforce-
ment learning (RL; Sutton and Barto 1998). Instead of trying to pre-program a response
to every likely situation, the agent is made to learn the task by interacting with the envi-
ronment. This way, the agent is said to be grounded in its environment (Harnad 1990); the
actions that become part of the agent’s behavior arise from and are validated by how they
contribute to improved performance. In principle, RL methods can solve problems I and II:
they do not require a mathematical model (i.e. the state transition probabilities) of the envi-
ronment and can solve many problems where examples of correct behavior are not available.
However, in practice, they have not scaled well to large state spaces or non-Markov tasks
where the state of the environment is not fully observable to the agent. This is a serious
problem because the real world is continuous (i.e. there are an infinite number of states) and
artificial agents, like natural organisms, are necessarily constrained in their ability to fully
perceive their environment.



Recently, methods based on evolutionary adaptation have shown promising results on
continuous, non-Markov tasks (Gomez and Miikkulainen 1997, 1999; Nolfi and Parisi 1995;
Yamauchi and Beer 1994). The first goal of this paper is to demonstrate that an architecture
called Enforced Subpopulations (ESP) where neurons are evolved in separate subpopulations
to form effective neural networks, is a particularly effective method. On a set of very difficult
pole balancing tasks, we compare the performance of ESP to a wide range of learning systems
including value function, policy search, and other evolutionary methods.

However, problem III is still an open issue in RL. Even though RL does not require a
model, direct interaction with the environment is usually too slow (costly) due to the high
data requirements of these methods (Bertsekas and Tsitsiklis 1996), and often too risky since
the stability of most learning agent architectures cannot be guaranteed. Consequently, the
control policy must first be learned off-line in a simulator or simulation environment and
then be transferred to the actual target environment where it is ultimately meant to operate.
Evolutionary approaches are just as dependent on simulation as other RL methods since it
is impractical to evaluate entire populations of controllers in the real world. So far, transfer
of evolved mobile robot controllers has been shown to be possible, but there is very little
research on transfer in other classes of tasks, such as the control of unstable systems. The
second goal of this paper is to analyze what factors influence transfer and show that transfer
is possible even in high-precision tasks in unstable environments, such as the most difficult
pole balancing task.

The paper is organized as follows: First, in section 2 we review the reinforcement learn-
ing problem and the conventional, single-agent methods of solving it that are in current use
(2.1). Then we describe a fundamentally different RL approach, neuroevolution (2.2), that
searches the space of neural network policies using a genetic algorithm. Cooperative coevo-
lution (reviewed in section 2.3) is an advanced evolutionary method that evolves interacting
subproblems to solve tasks more efficiently. Neuroevolution and cooperative coevolution are
combined in the SANE algorithm (2.4) which forms the basis for our system, ESP. The last
background section (2.5) reviews the current state of technology in the transfer of evolved
controllers. In section 3, we present the ESP algorithm, and in section 4 the pole balancing
task. ESP is compared to a variety of RL methods in section 5, and shown to solve harder
versions of the problem faster. A methodology for transferring controllers to the real world
is developed in section 6, showing that trajectory noise during training results in robust
transfer.

2 Background and Related Work

Before introducing ESP, we first review four topics that our work is based on: reinforcement
learning, neuroevolution, cooperative coevolution, and, most directly, the SANE algorithm.



.y Rl ? e,
!’ Sal Y ® .’Q,.\‘\' ‘i
L/ ]
‘ ~
— . *
« Environment »:4_7
: ”‘—.
) . . =
/.'.v-\’\‘ K /~/.\“’\‘ ./.’.rl\’\'
reward
Vaue Agent
~—®——— Function ;
state - \CIO action
- Policy — J

Figure 1: The value function approach (color figure). The agent is composed of a value-
function and a policy. The value function tells the agent how much reward can be expected
from each state if the best known policy is followed. The policy maps states to actions based on
information from the value function.

2.1 The Reinforcement Learning Problem

Reinforcement learning refers to a class of algorithms for solving problems in which a sequence
of decisions is made in order to maximize some measure of reward or reinforcement received
from the environment. At each decision point, the agent, starting at some state s € S,
where S is the set of possible states, selects an action a from a set of possible actions, A,
that transitions the environment to the next state s’ and imparts a reinforcement signal,
r, to the agent. Starting with little or no knowledge of how to solve the task, the agent
explores the environment by trial-and-error. By associating reward with certain actions
in each situation, the agent can gradually learn a course of action or policy that leads to
favorable outcomes. This learning process is difficult because, unlike supervised learning
tasks, the desired response in each state is not known in advance. An action that seems
good in the short run may prove bad or even catastrophic down the road. Conversely, an
action that is not good in terms of immediate payoff may prove beneficial or even essential
for larger payoffs in the future. Therefore the agent must explore the state-space to try to
associate actions to consequences in order to determine the best policy.

The best understood and most widely used learning methods for solving these problems
are based on Dynamic Programming (Howard 1960). Essential to these methods is the value
function V', which maps each problem state to its utility or value with respect to the task
being learned (figure 1). This value is an estimate of the reward the agent can expect to
receive if it starts in a particular state and follows the currently best known policy. As the
agent explores the environment, it updates the value of each visited state according to the
reward it receives. Given a value function that accurately computes the utility of every state,
a controller can act optimally by merely selecting the action at each state that leads to the

4



subsequent state with the highest value. Therefore, the key to RL is finding the optimal
value function for a given task.

RL control methods such as the popular Q-learning (Watkins 1989; Watkins and Dayan
1992), Sarsa (Rummery and Niranjan 1994), and TD()A) (Sutton 1988) algorithms provide
incremental procedures for computing V' that are attractive because they do not require a
model of the environment, can learn a policy by direct interaction, are naturally suited to
stochastic environments, and are guaranteed to converge under certain conditions. These
methods are based on Temporal Difference learning (Sutton and Barto 1998) in which the
value of each state is updated by

V(s):=V(s)+alr+V(s') —V(s)]. (1)

The estimate of the value of state s, V(s), is incremented by the reward r from transitioning
to state s’ plus the difference between the discounted value of the next state vV (s') and V (s),
where « is the learning rate, 7 is the discount factor and 0 < «,y < 1. Rule 1 improves V(s)
by moving it towards the “target” r 4+ vV (s') which is more likely to be correct because it
uses the real reward r. To allow selecting the best action in each state (i.e. control) methods
like Q-learning and Sarsa actually learn a @)-function instead of V', which gives the value of
each state-action pair. The @Q-function, in effect, caches the lookahead that would have to
be performed to find the best action using V, allowing best policy for a given -function to
be simply:

argargfx Q(s,a), @)

In early research, these methods were investigated in very simple environments with very
few states and actions. Subsequent work has focused on extending these methods to larger,
high-dimensional and/or continuous environments. When the number of states and actions
is relatively small, look-up tables can be used to represent V efficiently. But even with
an environment of modest size this approach quickly becomes impractical and a function
approximator is needed to map states to values. Typical choices range from local approx-
imators such as the CMAC, case-based memories, and radial basis functions (Santamaria
et al. 1998; Sutton 1996), to neural networks (Crites and Barto 1996; Lin 1993; Tesauro and
Sejnowski 1987).

Despite substantial progress, value-function methods can be very slow, especially when
reinforcement is sparse or when the environment is not completely observable. If the agent’s
sensory system does not provide enough information to determine the state (i.e. the global
or underlying process state) then the decision process is non-Markov, and the agent must
utilize a history or short-term memory of observations. This is important for most tasks
of interest since a controller’s sensors usually have limited range, resolution, and fidelity,
causing perceptual aliasing where many observations that require different actions look the
same. Next, we look at an approach that promises to be less susceptible to the problems
outlined in this section.



Wiy .
-~ N2 ‘a K a3
§/.I-\O /.l. \'\0

TN

Environment

action

observation

Neural Network

Figure 2: Neuroevolution (color figure). Each chromosome is transformed into a neural
network phenotype and evaluated on the task. The agent receives input from the environment
(observation) and propagates it through its neural network to compute an output signal (action)
that affects the environment. At the end of the evaluation, the network is assigned a fitness
according to its performance. The networks that perform well on the task are mated to generate
new networks.

2.2 Neuroevolution

Neuroevolution (NE) presents a fundamentally different approach to reinforcement learning
tasks. The basic idea of NE is to search the space of neural network policies directly using
a genetic algorithm (figure 2). In contrast to conventional ontogenetic learning involving a
single agent such as RL, evolutionary methods use a population of solutions. The individual
solutions are not modified during evaluation; instead, adaptation arises through repeatedly
recombining the population’s most fit individuals in a kind of collective or phylogenetic
learning. The population gradually improves as a whole until a sufficiently fit individual is
found.

By searching the space of policies directly, NE eliminates the need for a value function
and its costly computation. Instead, neural network controllers map observations from the
environment directly to actions. This mapping is potentially powerful: neural networks
are universal function approximators that can generalize and tolerate noise. Networks with
feedback connections (i.e. recurrent networks) can maintain internal state extracted from
a history of inputs, allowing them to solve non-Markov tasks. By evolving these networks
instead of training them, NE avoids the problems of computational complexity and dimin-
ishing error gradients that affect recurrent network learning algorithms (Bengio et al. 1994).
For NE to work, the environment need not satisfy any particular constraints—it can be con-
tinuous and non-Markov. All that concerns a NE system is that the network representations
be large enough to solve the task and that there is an effective way to evaluate the relative
quality of candidate solutions.



NE approaches differ primarily in how they encode neural network specifications into
genetic strings. We will therefore use this dimension to classify and discuss NE methods.
In NE, a chromosome can encode any relevant network parameter including synaptic weight
values, size, connectivity (topology), learning rate, etc. The choice of encoding scheme affects
the structure of the search space, the behavior of the search algorithm, and how the network
genotypes are transformed into their phenotypes for evaluation.

There are two basic kinds of encoding schemes: direct and indirect. In direct encoding,
the parameters are represented explicitly on the chromosome as binary or real numbers that
are mapped directly to the phenotype. Many methods encode only the synaptic weight values
(Belew et al. 1991; Gomez and Miikkulainen 1997; Jefferson et al. 1991) while others evolve
topology as well (Moriarty 1997). Our method, ESP, uses a direct encoding scheme that
does not evolve topology. However, since ESP evolves fully connected networks, virtually
any topology of a given size can be represented by having some weights evolve to a value of
Zero.

Indirect encodings operate at a higher level of abstraction. Some simply provide a coarse
description such as delineating a neuron’s receptive field (Mandischer 1993) or connective
density (Harp et al. 1989), while others are more algorithmic providing growth rules in
the form of graph generating grammars (Kitano 1990; Voigt et al. 1993). These schemes
have the advantage that very large networks can be represented without requiring large
chromosomes. Cellular Encoding (CE; Gruau et al. 1996a,b) is a promising indirect method
which we compare to ESP in the experiments below.

Whichever encoding scheme is used, neural network specifications are usually very high-
dimensional so that large populations are required to find good solutions before convergence
sets in. The next section reviews an evolutionary approach that potentially makes the search
more efficient by decomposing the search space into smaller interacting spaces.

2.3 Cooperative Coevolution

In natural ecosystems, organisms of one species compete and/or cooperate with many other
different species in their struggle for resources and survival. The fitness of each individual
changes over time because it is coupled to that of other individuals inhabiting the environ-
ment. As species evolve they specialize and co-adapt their survival strategies to those of other

species. This phenomenon of coevolution has been used to encourage complex behaviors in
GAs.

Most coevolutionary problem solving systems have concentrated on competition between
species (Darwen 1996; Miller and Cliff 1994; Paredis 1994; Pollack et al. 1996; Rosin 1997).
These methods rely on establishing an “arms race” with each species producing stronger
and stronger strategies for the others to defeat. This is a natural approach in areas such as
game-playing where an optimal opponent is not available.

A very different kind of coevolutionary model emphasizes cooperation. Cooperative co-

7



evolution is motivated, in part, by the recognition that the complexity of difficult problems
can be reduced through modularization (e.g. the human brain; Grady 1993). In cooperative
coevolutionary algorithms the species represent solution subcomponents. Each individual
forms a part of a complete solution but need not represent anything meaningful on its own.
The subcomponents are evolved by measuring their contribution to complete solutions and
recombining those that are most beneficial to solving the task. Cooperative coevolution can
potentially improve the performance of artificial evolution by dividing the task into many
smaller problems.

Early work in this area was done by Holland and Reitman (1978) in Classifier Systems.
A population of rules was evolved by assigning a fitness to each rule based on how well it
interacted with other rules. This approach has been used in learning classifiers implemented
by a neural network, in coevolution of cascade correlation networks, and in coevolution of
radial basis functions (Eriksson and Olsson 1997; Horn et al. 1994; Paredis 1995; Whitehead
and Choate 1995). More recently, Potter and De Jong (1995) developed a method called
Cooperative Coevolutionary GA (CCGA) in which each of the species is evolved indepen-
dently in its own population. As in Classifier Systems, individuals in CCGA are rewarded for
making favorable contributions to complete solutions, but members of different populations
(species) are not allowed to mate. A particularly powerful idea is to combine cooperative
coevolution with neuroevolution so that the benefits of evolving neural networks can be en-
hanced further through improved search efficiency. This is the approach taken by the SANE
algorithm, described next.

2.4 Symbiotic, Adaptive Neuroevolution (SANE)

Conventional NE systems evolve genotypes that represent complete neural networks. SANE
(Moriarty 1997; Moriarty and Miikkulainen 1996a) is a cooperative coevolutionary system
that instead evolves neurons (i.e. partial solutions; figure 3). SANE evolves two different
populations simultaneously: a population of neurons and a population of network blueprints
that specify how the neurons are combined to form complete networks. Each generation of
networks is formed using the blueprints, and evaluated on the task.

In SANE, neurons compete on the basis of how well, on average, the networks in which
they participate perform. A high average fitness means that the neuron contributes to
forming successful networks and, consequently, suggests that it cooperates well with other
neurons. Over time, neurons will evolve that result in good networks. The SANE approach
has proven faster and more efficient than other reinforcement learning methods such as
Adaptive Heuristic Critic, Q-Learning, and standard neuroevolution, in, for example, the
basic pole balancing task and in the robot arm control task (Moriarty and Miikkulainen
1996a,b).

SANE evolves good networks more quickly because the network sub-functions are allowed
to evolve independently. Since neurons are not tied to one another on a single chromosome
(i.e. as in conventional NE) a neuron that may be useful is not discarded if it happens to

8



", iy
‘o £
Lo\ B

./
)
;
h
din
PR /b‘
By
' ® ’Q/.I_\f

Environment
117 -4
LI 1] L)
1111 ',‘ \‘\-/b, S LN &
‘qm\® /.’.\’\O '

observation &=

Feed-forward
Neural Network

Figure 3: Symbiotic, Adaptive Neuroevolution (color figure). The algorithm maintains
two distinct populations, one of network blueprints (left), and one of neurons (right). Networks are
formed by combining neurons according to the blueprints. Networks are evaluated in the task, and
the fitness is distributed among all the neurons that participated in the network. After all neurons
are evaluated this way, recombination is performed on both populations.

be part of a network that performs poorly. Thus, more paths to a winning solution are
maintained. Likewise, bad neurons do not get “free rides” by being part of a high scoring
network. The system breaks the problem down to that of finding the solution to smaller,
interacting subproblems.

Evolving neurons instead of full networks also maintains diversity in the population. If
one type of neuron genotype begins to take over the population, networks will often be formed
that contain several copies of that genotype. Because difficult tasks usually require several
different hidden neurons, such networks cannot perform well. They incur low fitness, and
the dominant genotype will be selected against, bringing diversity back into the population.
In the advanced stages of SANE evolution, instead of converging the population around a
single individual like a standard GA, the neuron population forms clusters of individuals that
perform specialized functions in the target behavior (Moriarty 1997). This kind of implicit
and automatic speciation is similar to more explicit methods such as fitness sharing that
reduce the fitness of individuals that occupy crowded regions of the search space (Mahfoud
1995).

A key problem with SANE is that because it does not discriminate between the evolving
specializations when it constructs networks and selects neurons for reproduction, evaluations
can be very noisy. This limits its ability to evolve recurrent networks. A neuron’s behavior
in a recurrent network depends critically upon the neurons to which it is connected, and in
SANE it cannot rely on being combined with similar neurons in any two trials. A neuron
that behaves one way in one trial may behave very differently in another, and SANE cannot



obtain accurate fitness information. Without the ability to evolve recurrent networks, SANE
is restricted to reactive tasks where the agent can learn to select the optimal action in
each state based solely on its immediate sensory input. This is a serious drawback since
most interesting tasks require memory. The method presented in section 3, ESP, extends
cooperative neuroevolution to tasks that make use of short-term memory.

2.5 Transfer

Reinforcement learning requires a continuous interaction with the environment. In most
tasks interaction is not feasible in the real world, and simulated environments must be used
instead. However, no matter how rigorously they are developed, simulators cannot faithfully
model all aspects of a target environment. Whenever the target environment is abstracted
in some way to simplify evaluation, spurious features are introduced into the simulation. If
a controller relies on these features to accomplish the task, it will fail to transfer to the real
world where the features are not available (Mataric and Cliff 1996). Since some abstraction
is necessary to make simulators tractable, such a “reality gap” can prevent controllers from
performing in the physical world as they do in simulation.

Studying factors that lead to successful transfer is difficult because testing potentially
unstable controllers can damage expensive equipment or put lives in danger. One exception
is Evolutionary Robotics (ER), where the hardware is relatively inexpensive and the tasks
have, up to now, not been safety critical in nature. Researchers in ER are well aware that
it is often just as hard to transfer a behavior as it is to evolve it in simulation, and have
devoted great effort to overcoming the transfer problem. Given the extensive body of work
in this field, this section reviews the key issues and advances in transfer methods in ER.

By far the most widely used platform in ER is the Khepera robot (Mondada et al. 1993).
Khepera is very popular because it is small, inexpensive, reliable, and easy to model due
to its simple cylindrical design. Typically, behaviors such as phototaxis or “homing” (Ficici
et al. 1999; Floreano and Mondada 1996; Jakobi et al. 1995; Lund and Hallam 1996; Meeden
1998), avoidance of static obstacles (Chavas et al. 1998; Jakobi et al. 1995; Miglino et al.
1995a), exploring (Lund and Hallam 1996), or pushing a ball (Smith 1998) are first evolved
for a simulated Khepera controlled by a neural network that maps sensor readings to motor
voltage values. The software controller is then downloaded to the physical robot where
performance is measured by how well the simulated behavior is preserved in the real world.

Although these tasks (e.g. homing and exploring) are simple enough to solve with hand-
coded behaviors, many studies have demonstrated that solutions evolved in idealized sim-
ulations transfer poorly. The most direct and intuitive way to improve transfer is to make
the simulator more accurate. Instead of relying solely on analytical models, researchers have
incorporated real-world measurements to empirically validate the simulation. Nolfi et al.
(1994) and Miglino et al. (1995a) collected sensor and position data from a real Khepera
robot and used to compute the sensor values and movements of its simulated counterpart.
This approach improved the performance of transferred controllers dramatically by ensuring

10



a that the controller would experience states in simulation that actually occurred in the real
world.

Unfortunately, as the complexity of tasks and the agents that perform them increases
enough, it will not be possible to achieve sufficiently accurate simulations, and a funda-
mentally different approach is needed. Instead of trying to eliminate inaccuracies from the
simulation, why not make the controllers less susceptible to them? For example, if noise is
added to the controller’s sensors and actuators during evaluation, they become more tolerant
of noise in the real world and, therefore, less sensitive to discrepancies between the simulator
and the target environment. The key is to find the right amount of noise: if there is not
enough noise, the controller will rely on unrealistically accurate sensors and actuators. On
the other hand, too much noise can amplify an irrelevant signal in the simulator that the
controller will then not be able to find in the real world (Mataric and Cliff 1996). Correct
noise levels are usually determined experimentally.

The most formal investigation of the factors that influence transfer was carried out by
Jakobi (1993; 1998; 1995). He proposed using minimal simulations that concentrate on
isolating a base set of features in the environment that are necessary for correct behavior.
These features need to be made noisy to obtain robust control. Other features that are not
relevant to the task are classified as implementation features which must me made unreliable
(random) in the simulator so that the agent can not use them to perform the task. This way
the robot will be very reliable with respect to the features that are critical to the task and
not misled by those that are not. Minimal simulations provide a principled approach that
can greatly reduce the complexity of simulations and improve transfer. However, so far they
have only been used in relatively simple tasks. It is unclear whether this approach will be
possible in more complex tasks where the set of critical features (i.e. the base set) is large
or not easily identified (Watson et al. 1999).

While significant advances have been made in the transfer of robot controllers, it should
be noted that the robots and environments used in ER are relatively “transfer friendly.”
Most significantly, robots like the Khepera are stable: in the absence of a control signal
the robot will either stay in its current state or quickly converge to a nearby state due to
momentum. Consequently, a robot can often perform competently in the real world as long
as its behavior is preserved qualitatively after transfer. This is not the case with a great
many systems of interest such as rockets, aircraft, and chemical plants that are inherently
unstable. In such environments, the controller must constantly output a precise control
signal to maintain equilibrium and avoid failure. Therefore, controllers for unstable systems
may be less amenable to techniques that have worked for transfer in robots.

The transfer experiments in section 6 aim at providing a more general understanding
of the transfer process including challenging problems in unstable environments. We have
chosen pole balancing as the test domain for two reasons: (1) it embodies the essential
elements of unstable systems while being simple enough to study in depth, and (2) it has
been studied extensively, but in simulation only. This paper represents the first attempt to
systematically study transfer outside of the mobile robot domain. However, before transfer

11



fitness

-~

gl

observation

Recurrent
Neural Network

Figure 4: The Enforced Subpopulations Method (ESP; color figure). The population of
neurons is segregated into subpopulations shown here in different colors. Networks are formed by
randomly selecting one neuron from each subpopulation. As with SANE, a neuron accumulates
a fitness score by adding the fitness of each network in which it participated. This score is then
normalized and the best neurons within each subpopulation are mated to form new neurons.

can be studied, we will have to develop an RL method strong enough to robustly solve such
problems. This will be done in the next three sections.

3 Enforced Subpopulations (ESP)

In the Enforced Subpopulations' (Gomez and Miikkulainen 1997, 1998, 1999) method, as in
SANE, the population consists of individual neurons instead of full networks, and a subset of
neurons are put together to form a complete network. However, in contrast to SANE, ESP
makes use of explicit subtasks; a separate subpopulation is allocated for each of the u units
in the network, and a neuron can only be recombined with members of its own subpopulation
(figure 4). This way the neurons in each subpopulation can evolve independently, and rapidly
specialize into good network sub-functions.

Evolution in ESP proceeds as follows:

1. Initialization. The number of hidden units u in the networks that will be formed is
specified and a subpopulation of neuron chromosomes is created. Each chromosome
encodes the input and output connection weights of a neuron with a random string of
real numbers.

!The ESP package is available at:
http://www.cs.utexas.edu/users/nn/pages/software/abstracts.html#esp-cpp

12



2. Evaluation. A set of u neurons is selected randomly, one neuron from each subpopu-
lation, to form a hidden layer of a feedforward network. The network is submitted to
a trial in which it is evaluated on the task and awarded a fitness score. The score is
added to the cumulative fitness of each neuron that participated in the network. This
process is repeated until each neuron has participated in an average of e.g. 10 trials.

3. Recombination. The average fitness of each neuron is calculated by dividing its cumu-
lative fitness by the number of trials in which it participated. Neurons are then ranked
by average fitness within each subpopulation. Each neuron in the top quartile is re-
combined with a higher-ranking neuron using 1-point crossover and mutation at low
levels to create the offspring to replace the lowest-ranking half of the subpopulation.

4. The Evaluation—-Recombination cycle is repeated until a network that performs suffi-
ciently well in the task is found.

ESP can evolve recurrent networks because the subpopulation architecture makes the
evaluations more consistent, in two ways: first, the subpopulations that gradually form in
SANE are already present by design in ESP. The species do not have to organize themselves
out of a single large population, and their progressive specialization is not hindered by
recombination across specializations that usually fulfill relatively orthogonal roles in the
network. Second, because the networks formed by ESP always consist of a representative
from each evolving specialization, a neuron is always evaluated on how well it performs its
role in the context of all the other players. A neuron’s recurrent connection weight r; will
always be associated with neurons from subpopulation S;. As the subpopulations specialize,
neurons evolve to expect, with increasing certainty, the kinds of neurons to which they will
be connected. Therefore, the recurrent connections to those neurons can be adapted reliably.

Figure 5 illustrates the specialization process. The plots show the distribution of the
neurons in the search space throughout the course of a typical evolution. Each point repre-
sents a neuron chromosome projected onto 2-D using Principal Component Analysis. In the
initial population (Generation 1) the neurons, regardless of subpopulation, are distributed
throughout the space uniformly. As evolution progresses, the neurons begin to form clusters
which eventually become clearly defined and represent the different specializations used to
form good networks.

The accelerated specialization caused by segregating neurons into in subpopulations not
only allows for recurrent connections, it also makes ESP more efficient than SANE. The
tradeoff is that diversity in ESP declines over the course of evolution like that of a normal
GA. This can be a problem because a converged population cannot easily adapt to a new
task. To deal with premature convergence ESP is combined with burst mutation. The idea
is to search for optimal modifications of the current best solution. When performance has
stagnated for a predetermined number of generations, new subpopulations are created by
adding noise to each of the neurons in the best solution. Each new subpopulation contains
neurons that represent differences from the best solution. Evolution then resumes, but now

13



L L L L L L L E L L L L L L L
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20

Generation 1 Generation 20

Generation 50 Generation 100
Figure 5: Evolution of specializations in ESP (color figure). The plots show a 2-D projection
of the neuron weight vectors after Principal Component Analysis (PCA) transformation. Each
subpopulation is shown in a different color. As evolution progresses, the subpopulations cluster into
their own region of the search space. Each subpopulation represents a different neuron specialization
that can be combined with others to form good networks.

searching the space in a “neighborhood” around the best previous solution. Burst mutation
can be applied multiple times, with successive invocations representing differences to the
previous best solution. Assuming the best solution already has some competence in the
task, most of its weights will not need to be changed radically. To ensure that most changes
are small while allowing for larger changes to some weights ESP uses the Cauchy distribution

to generate noise:
o

flz) = (@122 (3)

With this distribution 50% of the values will fall within the interval £a and 99.9% within the
interval 318.3 4+ «. This technique of “recharging” the subpopulations keeps diversity in the
population so that ESP can continue to make progress toward a solution even in prolonged
evolution.

Burst mutation is similar to the Delta-Coding technique of Whitley et al. (1991) which
was developed to improve the precision of genetic algorithms for numerical optimization

14



problems. Because our goal is to maintain diversity, we do not reduce the range of the
noise on successive applications of burst mutation and we use Cauchy rather that uniformly
distributed noise.

ESP does not evolve network topology because fully connected networks can effectively
represent any topology of a given size (section 2.2). However, ESP does adapt the size of
the networks. It is well known that when neural networks are trained using gradient-descent
methods such as backpropagation, too many or too few hidden units can seriously affect
learning and generalization. Having too many units can cause the network to memorize the
training set, resulting in poor generalization. Having too few will slow down learning or
prevent it altogether. Similar observations can be made when networks are evolved by ESP.
With too few units (i.e. too few subpopulations) the networks will not be powerful enough
to solve the task. If the task requires fewer units than have been specified, two things can
happen: either each neuron will make only a small contribution to the overall behavior or,
more likely, some of the subpopulations will evolve neurons that do nothing. The network
will not necessarily overfit to the environment. However, too many units is still a problem
because the evaluations will be slowed down unnecessarily, and evaluations will be noisier
than necessary because a neuron will be sampled in a smaller percentage of all possible
neuron combinations. Both of these problems result in inefficient search.

For these reasons ESP uses the following mechanism to add and remove subpopulations as
needed: When evolution ceases to make progress, even after some number of burst mutations,
take the best network found so far and evaluate it after removing each of its neurons in turn.
If the fitness of the network does not fall below a threshold when missing neuron ¢, then
¢ is not critical to the performance of the network and its corresponding subpopulation is
removed. If no neurons can be removed, add a new subpopulation of random neurons and
evolve networks with one more neuron.

This way, ESP will enlarge networks when the task is too difficult for the current ar-
chitecture and prune units (subpopulations) that are found to be ineffective. Overall, with
growth and pruning, ESP will be more robust in dealing with environmental changes and
tasks where the appropriate network size is difficult to determine.

4 Experimental Setup

We conducted three different types of experiments using the pole balancing domain. Sec-
tions 4.1 and 4.2 describe the domain and task setup in detail. The first set of experiments,
in section 5, evaluates how efficiently ESP can evolve effective controllers. We compare ESP
to a broad range of learning algorithms on a sequence of increasingly difficult versions of
the pole balancing task. This scheme allows us to compare methods at different levels of
task complexity, exposing the strengths and limitations of each method with respect to spe-
cific challenges introduced by each succeeding task. In section 6, we present a model-based
approach to applying ESP to real-world tasks, and evaluate how enhancing robustness in

15



