
Robust Non-Linear Control through NeuroevolutionFaustino J. Gomez and Risto MiikkulainenDepartment of Computer S
ien
esThe University of TexasAustin, TX 78712, U.S.A(inaki,risto�
s.utexas.edu)TR AI-2002-292Abstra
tMany 
omplex 
ontrol problems require sophisti
ated solutions that are not amenable totraditional 
ontroller design. Not only is it diÆ
ult to model real world systems, but often itis un
lear what kind of behavior is required to solve the task. Reinfor
ement learning (RL)approa
hes have made progress by utilizing dire
t intera
tion with the task environment,but have so far not s
aled well to large state spa
es and environments that are not fullyobservable. In re
ent years, neuroevolution, the arti�
ial evolution of neural networks, hashad remarkable su

ess in tasks that exhibit these two properties, but, like RL methods,requires solutions to be dis
overed in simulation and then transferred to the real world. Toensure that transfer is possible, evolved 
ontrollers need to be robust enough to 
ope withdis
repan
ies between these two settings. In this paper, we demonstrate how a method
alled Enfor
ed SubPopulations (ESP), for evolving re
urrent neural network 
ontrollers,
an fa
ilitate this transfer. The method is �rst 
ompared to a broad range of reinfor
ementlearning algorithms on very diÆ
ult versions of the pole balan
ing problem that involvelarge (
ontinuous, high-dimensional) state spa
es and hidden state. ESP is shown to besigni�
antly more eÆ
ient and powerful than the other methods on these tasks. We thenpresent a model-based method that allows 
ontrollers evolved in a learned model of theenvironment to su

essfully transfer to the real world. We test the method on the mostdiÆ
ult version of the pole balan
ing task, and show that the appropriate use of noiseduring evolution 
an improve transfer signi�
antly by 
ompensating for ina

ura
y in themodel.
1



1 Introdu
tionIn many de
ision making pro
esses su
h as manufa
turing, air
raft 
ontrol, and roboti
sresear
hers are fa
ed with the problem of 
ontrolling systems that are highly 
omplex, noisy,and unstable. A 
ontroller or agent must be built that observes the state of the system, orenvironment, and outputs a 
ontrol signal that a�e
ts future states of the environment insome desirable way. For example, a guidan
e system designed to stabilize a ro
ket in 
ightmust modulate the thrust of several engines in order to maximize altitude under variableatmospheri
 
onditions. To su

eed, this 
ontroller needs to be general and robust enoughto respond e�e
tively to 
onditions not expli
itly 
onsidered or 
ompletely modeled by thedesigner.The problem with designing or programming su
h 
ontrollers by 
onventional engineeringmethods is threefold:I. No mathemati
al model. The environment is usually so high-dimensional, non-linear, and noisy that it is impossible to obtain the kind of a

urate and tra
tablemathemati
al model required by these methods.II. No examples of 
orre
t behavior. The task is 
omplex enough that there is verylittle a priori knowledge of what 
onstitutes a reasonable, mu
h less optimal, 
on-trol strategy. For a sophisti
ated task like ro
ket guidan
e, the designer knows the
ontroller's general obje
tive, but does not know how it should a
t from moment tomoment in order to best a
hieve the obje
tive.III. The transfer problem. If a good 
ontrol strategy is found, will it work on thereal system being modeled? In general, it is not possible to predi
t how an agent willbehave until it has begun to intera
t with its environment. Consequently, de
iding what
ontrol features, designed in isolation, will yield the desired behavior when transferredto the real world 
an be very diÆ
ult.The �rst two problems have 
ompelled resear
hers to explore methods based on reinfor
e-ment learning (RL; Sutton and Barto 1998). Instead of trying to pre-program a responseto every likely situation, the agent is made to learn the task by intera
ting with the envi-ronment. This way, the agent is said to be grounded in its environment (Harnad 1990); thea
tions that be
ome part of the agent's behavior arise from and are validated by how they
ontribute to improved performan
e. In prin
iple, RL methods 
an solve problems I and II:they do not require a mathemati
al model (i.e. the state transition probabilities) of the envi-ronment and 
an solve many problems where examples of 
orre
t behavior are not available.However, in pra
ti
e, they have not s
aled well to large state spa
es or non-Markov taskswhere the state of the environment is not fully observable to the agent. This is a seriousproblem be
ause the real world is 
ontinuous (i.e. there are an in�nite number of states) andarti�
ial agents, like natural organisms, are ne
essarily 
onstrained in their ability to fullyper
eive their environment. 2



Re
ently, methods based on evolutionary adaptation have shown promising results on
ontinuous, non-Markov tasks (Gomez and Miikkulainen 1997, 1999; Nol� and Parisi 1995;Yamau
hi and Beer 1994). The �rst goal of this paper is to demonstrate that an ar
hite
ture
alled Enfor
ed Subpopulations (ESP) where neurons are evolved in separate subpopulationsto form e�e
tive neural networks, is a parti
ularly e�e
tive method. On a set of very diÆ
ultpole balan
ing tasks, we 
ompare the performan
e of ESP to a wide range of learning systemsin
luding value fun
tion, poli
y sear
h, and other evolutionary methods.However, problem III is still an open issue in RL. Even though RL does not require amodel, dire
t intera
tion with the environment is usually too slow (
ostly) due to the highdata requirements of these methods (Bertsekas and Tsitsiklis 1996), and often too risky sin
ethe stability of most learning agent ar
hite
tures 
annot be guaranteed. Consequently, the
ontrol poli
y must �rst be learned o�-line in a simulator or simulation environment andthen be transferred to the a
tual target environment where it is ultimately meant to operate.Evolutionary approa
hes are just as dependent on simulation as other RL methods sin
e itis impra
ti
al to evaluate entire populations of 
ontrollers in the real world. So far, transferof evolved mobile robot 
ontrollers has been shown to be possible, but there is very littleresear
h on transfer in other 
lasses of tasks, su
h as the 
ontrol of unstable systems. These
ond goal of this paper is to analyze what fa
tors in
uen
e transfer and show that transferis possible even in high-pre
ision tasks in unstable environments, su
h as the most diÆ
ultpole balan
ing task.The paper is organized as follows: First, in se
tion 2 we review the reinfor
ement learn-ing problem and the 
onventional, single-agent methods of solving it that are in 
urrent use(2.1). Then we des
ribe a fundamentally di�erent RL approa
h, neuroevolution (2.2), thatsear
hes the spa
e of neural network poli
ies using a geneti
 algorithm. Cooperative 
oevo-lution (reviewed in se
tion 2.3) is an advan
ed evolutionary method that evolves intera
tingsubproblems to solve tasks more eÆ
iently. Neuroevolution and 
ooperative 
oevolution are
ombined in the SANE algorithm (2.4) whi
h forms the basis for our system, ESP. The lastba
kground se
tion (2.5) reviews the 
urrent state of te
hnology in the transfer of evolved
ontrollers. In se
tion 3, we present the ESP algorithm, and in se
tion 4 the pole balan
ingtask. ESP is 
ompared to a variety of RL methods in se
tion 5, and shown to solve harderversions of the problem faster. A methodology for transferring 
ontrollers to the real worldis developed in se
tion 6, showing that traje
tory noise during training results in robusttransfer.2 Ba
kground and Related WorkBefore introdu
ing ESP, we �rst review four topi
s that our work is based on: reinfor
ementlearning, neuroevolution, 
ooperative 
oevolution, and, most dire
tly, the SANE algorithm.
3



Policy

Value
Function

Agent

state action

reward

Environment

Figure 1: The value fun
tion approa
h (
olor �gure). The agent is 
omposed of a value-fun
tion and a poli
y. The value fun
tion tells the agent how mu
h reward 
an be expe
tedfrom ea
h state if the best known poli
y is followed. The poli
y maps states to a
tions based oninformation from the value fun
tion.2.1 The Reinfor
ement Learning ProblemReinfor
ement learning refers to a 
lass of algorithms for solving problems in whi
h a sequen
eof de
isions is made in order to maximize some measure of reward or reinfor
ement re
eivedfrom the environment. At ea
h de
ision point, the agent, starting at some state s 2 S,where S is the set of possible states, sele
ts an a
tion a from a set of possible a
tions, A,that transitions the environment to the next state s0 and imparts a reinfor
ement signal,r, to the agent. Starting with little or no knowledge of how to solve the task, the agentexplores the environment by trial-and-error. By asso
iating reward with 
ertain a
tionsin ea
h situation, the agent 
an gradually learn a 
ourse of a
tion or poli
y that leads tofavorable out
omes. This learning pro
ess is diÆ
ult be
ause, unlike supervised learningtasks, the desired response in ea
h state is not known in advan
e. An a
tion that seemsgood in the short run may prove bad or even 
atastrophi
 down the road. Conversely, ana
tion that is not good in terms of immediate payo� may prove bene�
ial or even essentialfor larger payo�s in the future. Therefore the agent must explore the state-spa
e to try toasso
iate a
tions to 
onsequen
es in order to determine the best poli
y.The best understood and most widely used learning methods for solving these problemsare based on Dynami
 Programming (Howard 1960). Essential to these methods is the valuefun
tion V , whi
h maps ea
h problem state to its utility or value with respe
t to the taskbeing learned (�gure 1). This value is an estimate of the reward the agent 
an expe
t tore
eive if it starts in a parti
ular state and follows the 
urrently best known poli
y. As theagent explores the environment, it updates the value of ea
h visited state a

ording to thereward it re
eives. Given a value fun
tion that a

urately 
omputes the utility of every state,a 
ontroller 
an a
t optimally by merely sele
ting the a
tion at ea
h state that leads to the4



subsequent state with the highest value. Therefore, the key to RL is �nding the optimalvalue fun
tion for a given task.RL 
ontrol methods su
h as the popular Q-learning (Watkins 1989; Watkins and Dayan1992), Sarsa (Rummery and Niranjan 1994), and TD(�) (Sutton 1988) algorithms providein
remental pro
edures for 
omputing V that are attra
tive be
ause they do not require amodel of the environment, 
an learn a poli
y by dire
t intera
tion, are naturally suited tosto
hasti
 environments, and are guaranteed to 
onverge under 
ertain 
onditions. Thesemethods are based on Temporal Di�eren
e learning (Sutton and Barto 1998) in whi
h thevalue of ea
h state is updated byV (s) := V (s) + �[r + 
V (s0)� V (s)℄: (1)The estimate of the value of state s, V (s), is in
remented by the reward r from transitioningto state s0 plus the di�eren
e between the dis
ounted value of the next state 
V (s0) and V (s),where � is the learning rate, 
 is the dis
ount fa
tor and 0 � �; 
 � 1. Rule 1 improves V (s)by moving it towards the \target" r + 
V (s0) whi
h is more likely to be 
orre
t be
ause ituses the real reward r. To allow sele
ting the best a
tion in ea
h state (i.e. 
ontrol) methodslike Q-learning and Sarsa a
tually learn a Q-fun
tion instead of V , whi
h gives the value ofea
h state-a
tion pair. The Q-fun
tion, in e�e
t, 
a
hes the lookahead that would have tobe performed to �nd the best a
tion using V , allowing best poli
y for a given Q-fun
tion tobe simply: argmax Q(s; a),a2A (2)In early resear
h, these methods were investigated in very simple environments with veryfew states and a
tions. Subsequent work has fo
used on extending these methods to larger,high-dimensional and/or 
ontinuous environments. When the number of states and a
tionsis relatively small, look-up tables 
an be used to represent V eÆ
iently. But even withan environment of modest size this approa
h qui
kly be
omes impra
ti
al and a fun
tionapproximator is needed to map states to values. Typi
al 
hoi
es range from lo
al approx-imators su
h as the CMAC, 
ase-based memories, and radial basis fun
tions (Santamariaet al. 1998; Sutton 1996), to neural networks (Crites and Barto 1996; Lin 1993; Tesauro andSejnowski 1987).Despite substantial progress, value-fun
tion methods 
an be very slow, espe
ially whenreinfor
ement is sparse or when the environment is not 
ompletely observable. If the agent'ssensory system does not provide enough information to determine the state (i.e. the globalor underlying pro
ess state) then the de
ision pro
ess is non-Markov, and the agent mustutilize a history or short-term memory of observations. This is important for most tasksof interest sin
e a 
ontroller's sensors usually have limited range, resolution, and �delity,
ausing per
eptual aliasing where many observations that require di�erent a
tions look thesame. Next, we look at an approa
h that promises to be less sus
eptible to the problemsoutlined in this se
tion. 5



action

Neural Network

Algorithm
 Genetic 

observation

Environment

fitness

Figure 2: Neuroevolution (
olor �gure). Ea
h 
hromosome is transformed into a neuralnetwork phenotype and evaluated on the task. The agent re
eives input from the environment(observation) and propagates it through its neural network to 
ompute an output signal (a
tion)that a�e
ts the environment. At the end of the evaluation, the network is assigned a �tnessa

ording to its performan
e. The networks that perform well on the task are mated to generatenew networks.2.2 NeuroevolutionNeuroevolution (NE) presents a fundamentally di�erent approa
h to reinfor
ement learningtasks. The basi
 idea of NE is to sear
h the spa
e of neural network poli
ies dire
tly usinga geneti
 algorithm (�gure 2). In 
ontrast to 
onventional ontogeneti
 learning involving asingle agent su
h as RL, evolutionary methods use a population of solutions. The individualsolutions are not modi�ed during evaluation; instead, adaptation arises through repeatedlyre
ombining the population's most �t individuals in a kind of 
olle
tive or phylogeneti
learning. The population gradually improves as a whole until a suÆ
iently �t individual isfound.By sear
hing the spa
e of poli
ies dire
tly, NE eliminates the need for a value fun
tionand its 
ostly 
omputation. Instead, neural network 
ontrollers map observations from theenvironment dire
tly to a
tions. This mapping is potentially powerful: neural networksare universal fun
tion approximators that 
an generalize and tolerate noise. Networks withfeedba
k 
onne
tions (i.e. re
urrent networks) 
an maintain internal state extra
ted froma history of inputs, allowing them to solve non-Markov tasks. By evolving these networksinstead of training them, NE avoids the problems of 
omputational 
omplexity and dimin-ishing error gradients that a�e
t re
urrent network learning algorithms (Bengio et al. 1994).For NE to work, the environment need not satisfy any parti
ular 
onstraints|it 
an be 
on-tinuous and non-Markov. All that 
on
erns a NE system is that the network representationsbe large enough to solve the task and that there is an e�e
tive way to evaluate the relativequality of 
andidate solutions. 6



NE approa
hes di�er primarily in how they en
ode neural network spe
i�
ations intogeneti
 strings. We will therefore use this dimension to 
lassify and dis
uss NE methods.In NE, a 
hromosome 
an en
ode any relevant network parameter in
luding synapti
 weightvalues, size, 
onne
tivity (topology), learning rate, et
. The 
hoi
e of en
oding s
heme a�e
tsthe stru
ture of the sear
h spa
e, the behavior of the sear
h algorithm, and how the networkgenotypes are transformed into their phenotypes for evaluation.There are two basi
 kinds of en
oding s
hemes: dire
t and indire
t. In dire
t en
oding,the parameters are represented expli
itly on the 
hromosome as binary or real numbers thatare mapped dire
tly to the phenotype. Many methods en
ode only the synapti
 weight values(Belew et al. 1991; Gomez and Miikkulainen 1997; Je�erson et al. 1991) while others evolvetopology as well (Moriarty 1997). Our method, ESP, uses a dire
t en
oding s
heme thatdoes not evolve topology. However, sin
e ESP evolves fully 
onne
ted networks, virtuallyany topology of a given size 
an be represented by having some weights evolve to a value ofzero.Indire
t en
odings operate at a higher level of abstra
tion. Some simply provide a 
oarsedes
ription su
h as delineating a neuron's re
eptive �eld (Mandis
her 1993) or 
onne
tivedensity (Harp et al. 1989), while others are more algorithmi
 providing growth rules inthe form of graph generating grammars (Kitano 1990; Voigt et al. 1993). These s
hemeshave the advantage that very large networks 
an be represented without requiring large
hromosomes. Cellular En
oding (CE; Gruau et al. 1996a,b) is a promising indire
t methodwhi
h we 
ompare to ESP in the experiments below.Whi
hever en
oding s
heme is used, neural network spe
i�
ations are usually very high-dimensional so that large populations are required to �nd good solutions before 
onvergen
esets in. The next se
tion reviews an evolutionary approa
h that potentially makes the sear
hmore eÆ
ient by de
omposing the sear
h spa
e into smaller intera
ting spa
es.2.3 Cooperative CoevolutionIn natural e
osystems, organisms of one spe
ies 
ompete and/or 
ooperate with many otherdi�erent spe
ies in their struggle for resour
es and survival. The �tness of ea
h individual
hanges over time be
ause it is 
oupled to that of other individuals inhabiting the environ-ment. As spe
ies evolve they spe
ialize and 
o-adapt their survival strategies to those of otherspe
ies. This phenomenon of 
oevolution has been used to en
ourage 
omplex behaviors inGAs.Most 
oevolutionary problem solving systems have 
on
entrated on 
ompetition betweenspe
ies (Darwen 1996; Miller and Cli� 1994; Paredis 1994; Polla
k et al. 1996; Rosin 1997).These methods rely on establishing an \arms ra
e" with ea
h spe
ies produ
ing strongerand stronger strategies for the others to defeat. This is a natural approa
h in areas su
h asgame-playing where an optimal opponent is not available.A very di�erent kind of 
oevolutionary model emphasizes 
ooperation. Cooperative 
o-7



evolution is motivated, in part, by the re
ognition that the 
omplexity of diÆ
ult problems
an be redu
ed through modularization (e.g. the human brain; Grady 1993). In 
ooperative
oevolutionary algorithms the spe
ies represent solution sub
omponents. Ea
h individualforms a part of a 
omplete solution but need not represent anything meaningful on its own.The sub
omponents are evolved by measuring their 
ontribution to 
omplete solutions andre
ombining those that are most bene�
ial to solving the task. Cooperative 
oevolution 
anpotentially improve the performan
e of arti�
ial evolution by dividing the task into manysmaller problems.Early work in this area was done by Holland and Reitman (1978) in Classi�er Systems.A population of rules was evolved by assigning a �tness to ea
h rule based on how well itintera
ted with other rules. This approa
h has been used in learning 
lassi�ers implementedby a neural network, in 
oevolution of 
as
ade 
orrelation networks, and in 
oevolution ofradial basis fun
tions (Eriksson and Olsson 1997; Horn et al. 1994; Paredis 1995; Whiteheadand Choate 1995). More re
ently, Potter and De Jong (1995) developed a method 
alledCooperative Coevolutionary GA (CCGA) in whi
h ea
h of the spe
ies is evolved indepen-dently in its own population. As in Classi�er Systems, individuals in CCGA are rewarded formaking favorable 
ontributions to 
omplete solutions, but members of di�erent populations(spe
ies) are not allowed to mate. A parti
ularly powerful idea is to 
ombine 
ooperative
oevolution with neuroevolution so that the bene�ts of evolving neural networks 
an be en-han
ed further through improved sear
h eÆ
ien
y. This is the approa
h taken by the SANEalgorithm, des
ribed next.2.4 Symbioti
, Adaptive Neuroevolution (SANE)Conventional NE systems evolve genotypes that represent 
omplete neural networks. SANE(Moriarty 1997; Moriarty and Miikkulainen 1996a) is a 
ooperative 
oevolutionary systemthat instead evolves neurons (i.e. partial solutions; �gure 3). SANE evolves two di�erentpopulations simultaneously: a population of neurons and a population of network blueprintsthat spe
ify how the neurons are 
ombined to form 
omplete networks. Ea
h generation ofnetworks is formed using the blueprints, and evaluated on the task.In SANE, neurons 
ompete on the basis of how well, on average, the networks in whi
hthey parti
ipate perform. A high average �tness means that the neuron 
ontributes toforming su

essful networks and, 
onsequently, suggests that it 
ooperates well with otherneurons. Over time, neurons will evolve that result in good networks. The SANE approa
hhas proven faster and more eÆ
ient than other reinfor
ement learning methods su
h asAdaptive Heuristi
 Criti
, Q-Learning, and standard neuroevolution, in, for example, thebasi
 pole balan
ing task and in the robot arm 
ontrol task (Moriarty and Miikkulainen1996a,b).SANE evolves good networks more qui
kly be
ause the network sub-fun
tions are allowedto evolve independently. Sin
e neurons are not tied to one another on a single 
hromosome(i.e. as in 
onventional NE) a neuron that may be useful is not dis
arded if it happens to8



NAS E

observation action

Feed−forward

Neural Network

Environment

fitness

Figure 3: Symbioti
, Adaptive Neuroevolution (
olor �gure). The algorithm maintainstwo distin
t populations, one of network blueprints (left), and one of neurons (right). Networks areformed by 
ombining neurons a

ording to the blueprints. Networks are evaluated in the task, andthe �tness is distributed among all the neurons that parti
ipated in the network. After all neuronsare evaluated this way, re
ombination is performed on both populations.be part of a network that performs poorly. Thus, more paths to a winning solution aremaintained. Likewise, bad neurons do not get \free rides" by being part of a high s
oringnetwork. The system breaks the problem down to that of �nding the solution to smaller,intera
ting subproblems.Evolving neurons instead of full networks also maintains diversity in the population. Ifone type of neuron genotype begins to take over the population, networks will often be formedthat 
ontain several 
opies of that genotype. Be
ause diÆ
ult tasks usually require severaldi�erent hidden neurons, su
h networks 
annot perform well. They in
ur low �tness, andthe dominant genotype will be sele
ted against, bringing diversity ba
k into the population.In the advan
ed stages of SANE evolution, instead of 
onverging the population around asingle individual like a standard GA, the neuron population forms 
lusters of individuals thatperform spe
ialized fun
tions in the target behavior (Moriarty 1997). This kind of impli
itand automati
 spe
iation is similar to more expli
it methods su
h as �tness sharing thatredu
e the �tness of individuals that o

upy 
rowded regions of the sear
h spa
e (Mahfoud1995).A key problem with SANE is that be
ause it does not dis
riminate between the evolvingspe
ializations when it 
onstru
ts networks and sele
ts neurons for reprodu
tion, evaluations
an be very noisy. This limits its ability to evolve re
urrent networks. A neuron's behaviorin a re
urrent network depends 
riti
ally upon the neurons to whi
h it is 
onne
ted, and inSANE it 
annot rely on being 
ombined with similar neurons in any two trials. A neuronthat behaves one way in one trial may behave very di�erently in another, and SANE 
annot9



obtain a

urate �tness information. Without the ability to evolve re
urrent networks, SANEis restri
ted to rea
tive tasks where the agent 
an learn to sele
t the optimal a
tion inea
h state based solely on its immediate sensory input. This is a serious drawba
k sin
emost interesting tasks require memory. The method presented in se
tion 3, ESP, extends
ooperative neuroevolution to tasks that make use of short-term memory.2.5 TransferReinfor
ement learning requires a 
ontinuous intera
tion with the environment. In mosttasks intera
tion is not feasible in the real world, and simulated environments must be usedinstead. However, no matter how rigorously they are developed, simulators 
annot faithfullymodel all aspe
ts of a target environment. Whenever the target environment is abstra
tedin some way to simplify evaluation, spurious features are introdu
ed into the simulation. Ifa 
ontroller relies on these features to a

omplish the task, it will fail to transfer to the realworld where the features are not available (Matari
 and Cli� 1996). Sin
e some abstra
tionis ne
essary to make simulators tra
table, su
h a \reality gap" 
an prevent 
ontrollers fromperforming in the physi
al world as they do in simulation.Studying fa
tors that lead to su

essful transfer is diÆ
ult be
ause testing potentiallyunstable 
ontrollers 
an damage expensive equipment or put lives in danger. One ex
eptionis Evolutionary Roboti
s (ER), where the hardware is relatively inexpensive and the taskshave, up to now, not been safety 
riti
al in nature. Resear
hers in ER are well aware thatit is often just as hard to transfer a behavior as it is to evolve it in simulation, and havedevoted great e�ort to over
oming the transfer problem. Given the extensive body of workin this �eld, this se
tion reviews the key issues and advan
es in transfer methods in ER.By far the most widely used platform in ER is the Khepera robot (Mondada et al. 1993).Khepera is very popular be
ause it is small, inexpensive, reliable, and easy to model dueto its simple 
ylindri
al design. Typi
ally, behaviors su
h as phototaxis or \homing" (Fi
i
iet al. 1999; Floreano and Mondada 1996; Jakobi et al. 1995; Lund and Hallam 1996; Meeden1998), avoidan
e of stati
 obsta
les (Chavas et al. 1998; Jakobi et al. 1995; Miglino et al.1995a), exploring (Lund and Hallam 1996), or pushing a ball (Smith 1998) are �rst evolvedfor a simulated Khepera 
ontrolled by a neural network that maps sensor readings to motorvoltage values. The software 
ontroller is then downloaded to the physi
al robot whereperforman
e is measured by how well the simulated behavior is preserved in the real world.Although these tasks (e.g. homing and exploring) are simple enough to solve with hand-
oded behaviors, many studies have demonstrated that solutions evolved in idealized sim-ulations transfer poorly. The most dire
t and intuitive way to improve transfer is to makethe simulator more a

urate. Instead of relying solely on analyti
al models, resear
hers havein
orporated real-world measurements to empiri
ally validate the simulation. Nol� et al.(1994) and Miglino et al. (1995a) 
olle
ted sensor and position data from a real Kheperarobot and used to 
ompute the sensor values and movements of its simulated 
ounterpart.This approa
h improved the performan
e of transferred 
ontrollers dramati
ally by ensuring10



a that the 
ontroller would experien
e states in simulation that a
tually o

urred in the realworld.Unfortunately, as the 
omplexity of tasks and the agents that perform them in
reasesenough, it will not be possible to a
hieve suÆ
iently a

urate simulations, and a funda-mentally di�erent approa
h is needed. Instead of trying to eliminate ina

ura
ies from thesimulation, why not make the 
ontrollers less sus
eptible to them? For example, if noise isadded to the 
ontroller's sensors and a
tuators during evaluation, they be
ome more tolerantof noise in the real world and, therefore, less sensitive to dis
repan
ies between the simulatorand the target environment. The key is to �nd the right amount of noise: if there is notenough noise, the 
ontroller will rely on unrealisti
ally a

urate sensors and a
tuators. Onthe other hand, too mu
h noise 
an amplify an irrelevant signal in the simulator that the
ontroller will then not be able to �nd in the real world (Matari
 and Cli� 1996). Corre
tnoise levels are usually determined experimentally.The most formal investigation of the fa
tors that in
uen
e transfer was 
arried out byJakobi (1993; 1998; 1995). He proposed using minimal simulations that 
on
entrate onisolating a base set of features in the environment that are ne
essary for 
orre
t behavior.These features need to be made noisy to obtain robust 
ontrol. Other features that are notrelevant to the task are 
lassi�ed as implementation features whi
h must me made unreliable(random) in the simulator so that the agent 
an not use them to perform the task. This waythe robot will be very reliable with respe
t to the features that are 
riti
al to the task andnot misled by those that are not. Minimal simulations provide a prin
ipled approa
h that
an greatly redu
e the 
omplexity of simulations and improve transfer. However, so far theyhave only been used in relatively simple tasks. It is un
lear whether this approa
h will bepossible in more 
omplex tasks where the set of 
riti
al features (i.e. the base set) is largeor not easily identi�ed (Watson et al. 1999).While signi�
ant advan
es have been made in the transfer of robot 
ontrollers, it shouldbe noted that the robots and environments used in ER are relatively \transfer friendly."Most signi�
antly, robots like the Khepera are stable: in the absen
e of a 
ontrol signalthe robot will either stay in its 
urrent state or qui
kly 
onverge to a nearby state due tomomentum. Consequently, a robot 
an often perform 
ompetently in the real world as longas its behavior is preserved qualitatively after transfer. This is not the 
ase with a greatmany systems of interest su
h as ro
kets, air
raft, and 
hemi
al plants that are inherentlyunstable. In su
h environments, the 
ontroller must 
onstantly output a pre
ise 
ontrolsignal to maintain equilibrium and avoid failure. Therefore, 
ontrollers for unstable systemsmay be less amenable to te
hniques that have worked for transfer in robots.The transfer experiments in se
tion 6 aim at providing a more general understandingof the transfer pro
ess in
luding 
hallenging problems in unstable environments. We have
hosen pole balan
ing as the test domain for two reasons: (1) it embodies the essentialelements of unstable systems while being simple enough to study in depth, and (2) it hasbeen studied extensively, but in simulation only. This paper represents the �rst attempt tosystemati
ally study transfer outside of the mobile robot domain. However, before transfer11



ESP

observation

Recurrent
Neural Network

action

Environment

fitness

Figure 4: The Enfor
ed Subpopulations Method (ESP; 
olor �gure). The population ofneurons is segregated into subpopulations shown here in di�erent 
olors. Networks are formed byrandomly sele
ting one neuron from ea
h subpopulation. As with SANE, a neuron a

umulatesa �tness s
ore by adding the �tness of ea
h network in whi
h it parti
ipated. This s
ore is thennormalized and the best neurons within ea
h subpopulation are mated to form new neurons.
an be studied, we will have to develop an RL method strong enough to robustly solve su
hproblems. This will be done in the next three se
tions.3 Enfor
ed Subpopulations (ESP)In the Enfor
ed Subpopulations1 (Gomez and Miikkulainen 1997, 1998, 1999) method, as inSANE, the population 
onsists of individual neurons instead of full networks, and a subset ofneurons are put together to form a 
omplete network. However, in 
ontrast to SANE, ESPmakes use of expli
it subtasks; a separate subpopulation is allo
ated for ea
h of the u unitsin the network, and a neuron 
an only be re
ombined with members of its own subpopulation(�gure 4). This way the neurons in ea
h subpopulation 
an evolve independently, and rapidlyspe
ialize into good network sub-fun
tions.Evolution in ESP pro
eeds as follows:1. Initialization. The number of hidden units u in the networks that will be formed isspe
i�ed and a subpopulation of neuron 
hromosomes is 
reated. Ea
h 
hromosomeen
odes the input and output 
onne
tion weights of a neuron with a random string ofreal numbers.1The ESP pa
kage is available at:http://www.
s.utexas.edu/users/nn/pages/software/abstra
ts.html#esp-
pp12



2. Evaluation. A set of u neurons is sele
ted randomly, one neuron from ea
h subpopu-lation, to form a hidden layer of a feedforward network. The network is submitted toa trial in whi
h it is evaluated on the task and awarded a �tness s
ore. The s
ore isadded to the 
umulative �tness of ea
h neuron that parti
ipated in the network. Thispro
ess is repeated until ea
h neuron has parti
ipated in an average of e.g. 10 trials.3. Re
ombination. The average �tness of ea
h neuron is 
al
ulated by dividing its 
umu-lative �tness by the number of trials in whi
h it parti
ipated. Neurons are then rankedby average �tness within ea
h subpopulation. Ea
h neuron in the top quartile is re-
ombined with a higher-ranking neuron using 1-point 
rossover and mutation at lowlevels to 
reate the o�spring to repla
e the lowest-ranking half of the subpopulation.4. The Evaluation{Re
ombination 
y
le is repeated until a network that performs suÆ-
iently well in the task is found.ESP 
an evolve re
urrent networks be
ause the subpopulation ar
hite
ture makes theevaluations more 
onsistent, in two ways: �rst, the subpopulations that gradually form inSANE are already present by design in ESP. The spe
ies do not have to organize themselvesout of a single large population, and their progressive spe
ialization is not hindered byre
ombination a
ross spe
ializations that usually ful�ll relatively orthogonal roles in thenetwork. Se
ond, be
ause the networks formed by ESP always 
onsist of a representativefrom ea
h evolving spe
ialization, a neuron is always evaluated on how well it performs itsrole in the 
ontext of all the other players. A neuron's re
urrent 
onne
tion weight ri willalways be asso
iated with neurons from subpopulation Si. As the subpopulations spe
ialize,neurons evolve to expe
t, with in
reasing 
ertainty, the kinds of neurons to whi
h they willbe 
onne
ted. Therefore, the re
urrent 
onne
tions to those neurons 
an be adapted reliably.Figure 5 illustrates the spe
ialization pro
ess. The plots show the distribution of theneurons in the sear
h spa
e throughout the 
ourse of a typi
al evolution. Ea
h point repre-sents a neuron 
hromosome proje
ted onto 2-D using Prin
ipal Component Analysis. In theinitial population (Generation 1) the neurons, regardless of subpopulation, are distributedthroughout the spa
e uniformly. As evolution progresses, the neurons begin to form 
lusterswhi
h eventually be
ome 
learly de�ned and represent the di�erent spe
ializations used toform good networks.The a

elerated spe
ialization 
aused by segregating neurons into in subpopulations notonly allows for re
urrent 
onne
tions, it also makes ESP more eÆ
ient than SANE. Thetradeo� is that diversity in ESP de
lines over the 
ourse of evolution like that of a normalGA. This 
an be a problem be
ause a 
onverged population 
annot easily adapt to a newtask. To deal with premature 
onvergen
e ESP is 
ombined with burst mutation. The ideais to sear
h for optimal modi�
ations of the 
urrent best solution. When performan
e hasstagnated for a predetermined number of generations, new subpopulations are 
reated byadding noise to ea
h of the neurons in the best solution. Ea
h new subpopulation 
ontainsneurons that represent di�eren
es from the best solution. Evolution then resumes, but now13



-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 1 -20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 20
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 50 -20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20Generation 100Figure 5: Evolution of spe
ializations in ESP (
olor �gure). The plots show a 2-D proje
tionof the neuron weight ve
tors after Prin
ipal Component Analysis (PCA) transformation. Ea
hsubpopulation is shown in a di�erent 
olor. As evolution progresses, the subpopulations 
luster intotheir own region of the sear
h spa
e. Ea
h subpopulation represents a di�erent neuron spe
ializationthat 
an be 
ombined with others to form good networks.sear
hing the spa
e in a \neighborhood" around the best previous solution. Burst mutation
an be applied multiple times, with su

essive invo
ations representing di�eren
es to theprevious best solution. Assuming the best solution already has some 
ompeten
e in thetask, most of its weights will not need to be 
hanged radi
ally. To ensure that most 
hangesare small while allowing for larger 
hanges to some weights ESP uses the Cau
hy distributionto generate noise: f(x) = ��(�2 + x2) (3)With this distribution 50% of the values will fall within the interval �� and 99:9% within theinterval 318:3� �. This te
hnique of \re
harging" the subpopulations keeps diversity in thepopulation so that ESP 
an 
ontinue to make progress toward a solution even in prolongedevolution.Burst mutation is similar to the Delta-Coding te
hnique of Whitley et al. (1991) whi
hwas developed to improve the pre
ision of geneti
 algorithms for numeri
al optimization14



problems. Be
ause our goal is to maintain diversity, we do not redu
e the range of thenoise on su

essive appli
ations of burst mutation and we use Cau
hy rather that uniformlydistributed noise.ESP does not evolve network topology be
ause fully 
onne
ted networks 
an e�e
tivelyrepresent any topology of a given size (se
tion 2.2). However, ESP does adapt the size ofthe networks. It is well known that when neural networks are trained using gradient-des
entmethods su
h as ba
kpropagation, too many or too few hidden units 
an seriously a�e
tlearning and generalization. Having too many units 
an 
ause the network to memorize thetraining set, resulting in poor generalization. Having too few will slow down learning orprevent it altogether. Similar observations 
an be made when networks are evolved by ESP.With too few units (i.e. too few subpopulations) the networks will not be powerful enoughto solve the task. If the task requires fewer units than have been spe
i�ed, two things 
anhappen: either ea
h neuron will make only a small 
ontribution to the overall behavior or,more likely, some of the subpopulations will evolve neurons that do nothing. The networkwill not ne
essarily over�t to the environment. However, too many units is still a problembe
ause the evaluations will be slowed down unne
essarily, and evaluations will be noisierthan ne
essary be
ause a neuron will be sampled in a smaller per
entage of all possibleneuron 
ombinations. Both of these problems result in ineÆ
ient sear
h.For these reasons ESP uses the following me
hanism to add and remove subpopulations asneeded: When evolution 
eases to make progress, even after some number of burst mutations,take the best network found so far and evaluate it after removing ea
h of its neurons in turn.If the �tness of the network does not fall below a threshold when missing neuron i, theni is not 
riti
al to the performan
e of the network and its 
orresponding subpopulation isremoved. If no neurons 
an be removed, add a new subpopulation of random neurons andevolve networks with one more neuron.This way, ESP will enlarge networks when the task is too diÆ
ult for the 
urrent ar-
hite
ture and prune units (subpopulations) that are found to be ine�e
tive. Overall, withgrowth and pruning, ESP will be more robust in dealing with environmental 
hanges andtasks where the appropriate network size is diÆ
ult to determine.4 Experimental SetupWe 
ondu
ted three di�erent types of experiments using the pole balan
ing domain. Se
-tions 4.1 and 4.2 des
ribe the domain and task setup in detail. The �rst set of experiments,in se
tion 5, evaluates how eÆ
iently ESP 
an evolve e�e
tive 
ontrollers. We 
ompare ESPto a broad range of learning algorithms on a sequen
e of in
reasingly diÆ
ult versions ofthe pole balan
ing task. This s
heme allows us to 
ompare methods at di�erent levels oftask 
omplexity, exposing the strengths and limitations of ea
h method with respe
t to spe-
i�
 
hallenges introdu
ed by ea
h su

eeding task. In se
tion 6, we present a model-basedapproa
h to applying ESP to real-world tasks, and evaluate how enhan
ing robustness in15


