# Learning to Combine Trained Distance Metrics for Duplicate Detection in Databases \*

Mikhail Bilenko and Raymond J. Mooney Department of Computer Sciences University of Texas at Austin Austin, TX 78712 {mbilenko,mooney}@cs.utexas.edu

February 22, 2002

#### Abstract

The problem of identifying approximately duplicate records in databases has previously been studied as record linkage, the merge/purge problem, hardening soft databases, and field matching. Most existing approaches have focused on efficient algorithms for locating potential duplicates rather than precise similarity metrics for comparing records. In this paper, we present a domain-independent method for improving duplicate detection accuracy using machine learning. First, trainable distance metrics are learned for each field, adapting to the specific notion of similarity that is appropriate for the field's domain. Second, a classifier is employed that uses several diverse metrics for each field as distance features and classifies pairs of records as duplicates or non-duplicates. We also propose an extended model of learnable string distance which improves over an existing approach. Experimental results on real and synthetic datasets show that our method outperforms traditional techniques.

**Keywords:** *data cleaning, deduplication, record linkage, distance metric learning, trained similarity measures, string edit distance* 

# **1** Introduction

Databases frequently contain approximately duplicate field-values and records that refer to the same entity but are not identical. Variations in representation can arise from typographical errors, misspellings, abbreviations, as well as other sources. Variations are particularly pronounced in data that is automatically extracted from unstructured or semi-structured documents or web pages [15, 8, 3]. Such variant duplicates can have many deleterious effects, including preventing data-mining algorithms from discovering important regularities. Such problems are typically handled during a tedious manual "data cleaning" or "de-duping" process.

Some previous work has addressed the problem of identifying duplicate records, where it is referred to as record linkage [17, 25], the merge/purge problem [10], duplicate detection [14], hardening soft databases [3], and reference matching [12]. Typically, a fixed textual similarity metric such as edit distance [22] or vector-space cosine similarity [21] is used to determine whether two values or records are alike enough to be duplicates.

<sup>\*</sup>This research was supported by the National Science Foundation under grant IIS-0117308.

However, the similarity of two strings can depend on the domain and field under consideration. For example, deleting the substring "Street" may be acceptable when comparing addresses but not when comparing names of people (e.g. "Nick Street"), web sites (e.g. "TheStreet.com"), or newspapers (e.g. "Wall Street Journal"). Rather than hand-tuning a distance metric for each field in each domain, we present a method for automatically learning an appropriate string-similarity metric from small corpora of hand-labeled examples. When computing edit distance, a different cost can be assigned to each edit operation. These costs are typically set manually; however, an algorithm was recently introduced for learning appropriate costs by training on a set of labeled examples [20]. We consider an extended model of edit distance and employ a similar Expectation Maximization (EM) method to train metrics appropriate for each field.

Different types of textual similarity, such as "bag of words" metrics versus string-based edit distances, have complementary strengths and weaknesses. Consequently, it is also useful to consider multiple similarity metrics when evaluating potential duplicates. The utility of different metrics is task-dependent, and therefore it is also preferable to adaptively learn an appropriate function for combining them [2]. In our approach, Support Vector Machines (SVM's) [23], are used to learn a function of multiple similarity metrics that best discriminates duplicates from non-duplicates.

Our overall system, MARLIN (Multiply Adaptive Record Linkage with INduction), employs a two-level learning approach. First, a set of similarity metrics are trained to appropriately determine the similarity of different field values. Next, a final predicate for detecting duplicate records is learned from multiple (trained and static) similarity metrics applied to each of the individual fields. Experimental results on real and synthetic datasets show that MARLIN is more accurate than traditional techniques.

# 2 Learnable String Distance

#### 2.1 Background

There are several well-known methods for estimating similarity between strings, which can be roughly separated into two groups: token-based techniques and character-based techniques. Jaccard and vector-space cosine similarity are examples of difference measures that operate on tokens, treating a string as a "bag of words" [21]. Character-based measures, such as Levenshtein distance and its variants [9], compute similarity between strings by estimating the minimum sequence of changes that transform one string into another. When data is represented by relatively short strings that contain similar yet orthographically distinct tokens, character-based measures are preferable since they can estimate the difference between the strings with higher resolution.

Original string edit distance proposed by Levenshtein [11] is defined as the minimum number of insertions, deletions or substitutions necessary to transform one string into another. Needleman and Wunsch [16] extended the distance model to allow contiguous sequences of mismatched characters, or gaps, in the alignment of two strings and described a general dynamic programming method for computing edit distance. Most commonly the gap penalty is calculated using the *affine* model:  $cost(g) = s + e \times l$ , where s is the cost of opening a gap, e is the cost of extending a gap, and l is the length of a gap in the alignment of two strings, assuming that all characters have a unit cost. Usually e is set to a value lower than s, thus decreasing the penalty for contiguous mismatched substrings. Since differences between duplicate records often arise because of abbreviations or whole-word insertions and deletions, this model produces a more sensitive similarity estimate than Levenshtein distance.

String distance with affine gaps,  $S(x^T, y^V)$ , between strings  $x^T$  of length T and  $y^V$  of length V, can be computed using a dynamic programming algorithm that constructs three matrices based on the following

recurrences in O(TV) computational time:

$$M_{i,j} = \min \begin{cases} M_{i-1,j-1} + c(x_i, y_j) \\ I_{i-1,j-1} + c(x_i, y_j) \\ D_{i-1,j-1} + c(x_i, y_j) \end{cases}$$

$$D_{i,j} = \min \begin{cases} M_{i-1,j} + s + c(x_i, \epsilon) \\ D_{i-1,j} + e + c(x_i, \epsilon) \end{cases}$$

$$I_{i,j} = \min \begin{cases} M_{i,j-1} + s + c(\epsilon, y_j) \\ I_{i,j-1} + e + c(\epsilon, y_j) \end{cases}$$

$$S(x^T, y^V) = \min(I_{T,V}, D_{T,V}, M_{T,V})$$
(1)

Each matrix element  $M_{i,j}$  contains the distance between substrings  $x_{0...i}$  and  $y_{0...j}$  for an alignment where the last two characters of the substrings,  $x_i$  and  $y_j$ , are aligned, while matrix elements  $I_{i,j}$  and  $D_{i,j}$  give the distances between substring alignments that end in insertion and deletion gaps respectively. Cost of a single edit operation (insertion, deletion or substitution) that aligns character  $x_i$  to character  $y_j$  is given by  $c(x_i, y_j)$ , where either  $x_i$  or  $y_j$  can be the null string  $\epsilon$ , corresponding to a part of a gap. The final distance between the strings is the minimum of three alignments:  $M_{T,V}$ , matching the last two characters of the two strings;  $D_{T,V}$ , matching the last character of the first string with a gap in the second string; and  $I_{T,V}$ , matching the last character of the second string with a gap in the first string.

#### 2.2 Learnable Distance Metrics

Different edit operations have varying significance in different domains. For example, inserting, deleting and substituting symbols "-" and "/" is common and unimportant when phone numbers are being matched, while any edit operation involving digits introduces a semantically meaningful difference. Therefore, adapting a string similarity metric to a particular domain requires assigning different weights  $c(x_i, y_j)$  to different edit operations, a task that has traditionally been performed manually either using domain knowledge or by trial and error.

Ristad and Yianilos [20] proposed a generative model of Levenshtein distance along with an Expectation-Maximization algorithm that learns model parameters using a training corpus of matched strings. In their model, a string alignment is equivalent to a sequence of character pairs generated by edit operations emitted by a memoryless stochastic transducer. Each edit operation corresponds to the probability of producing a substitution  $p(\langle x_i, y_j \rangle)$ , an insertion  $p(\langle \epsilon, y_j \rangle)$ , or a deletion  $p(\langle x_i, \epsilon \rangle)$ , where probabilities of all operations are normalized.

An analogous generative model can be constructed for string distance with affine gaps. Given an alphabet of symbols  $A^* = A \bigcup \{\epsilon\}$ , the full set of edit operations is  $E = E_s \bigcup E_d \bigcup E_i$ , where  $E_s = \{\langle a, b \rangle \mid a, b \in A\}$  is the set of all substitution and matching operations  $\langle a, b \rangle$ ; and  $E_i = \{\langle \epsilon, a \rangle \mid a \in A\}$  and  $E_d = \{\langle a, \epsilon \rangle \mid a \in A\}$  are sets of insertion and deletion operations respectively.

Each of the three matrices of the original affine gap model (1) corresponds to one of the states of the generative model in Fig.1. A pair of matched strings is generated by this model as a sequence of traversals along the edges accompanied by emissions of characters pairs, which are determined by the state that is reached via each traversal. The production starts in state M and terminates when special state # is reached.

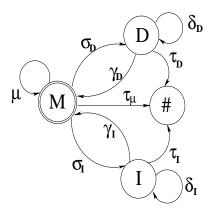


Figure 1: Generative model for string distance with affine gaps

Edit operations emitted in each state correspond to aligned pairs of characters: substitutions  $\langle a, b \rangle$  and exact matches  $\langle a, a \rangle$  in state M; deletions from the first string  $\langle a, \epsilon \rangle$  in state D; and insertions of characters from the second string into the first string  $\langle \epsilon, a \rangle$  in state I. Each edit operation  $e \in E$  is assigned a probability p(e) such that  $\sum_{e \in E_s} p(e) = 1$ ,  $\sum_{e \in E_d} p(e) = 1$ , and  $\sum_{e \in E_i} p(e) = 1$ . Edit operations with higher probabilities produce character pairs that are likely to be aligned in a given domain, such as substitution ("/", "-") for phone numbers, or deletion (".",  $\epsilon$ ) for addresses.

Transitions  $\sigma_D$  and  $\sigma_I$  from the matching state M to either the deletion state D or the insertion state I correspond to starting a gap in one of the strings. A gap is ended when edges  $\gamma_D$  and  $\gamma_I$  are traversed back to the matching state. Remaining in state M by taking edge  $\mu$  corresponds to a sequence of substitutions or exact matches of characters, while remaining in states I and D is analogous to extending a gap in either the first or the second string. Thus, gap opening and extension costs s and e of the original affine model (1) correspond to transition probabilities  $\sigma_D$ ,  $\sigma_I$ ,  $\delta_D$  and  $\delta_I$ . The sum of transition probabilities must be normalized in each state for the model to be complete:

$$\mu + \sigma_D + \sigma_I + \tau_\mu = 1$$
  

$$\delta_D + \gamma_D + \tau_D = 1$$
  

$$\delta_I + \gamma_I + \tau_I = 1$$
(2)

This generative model is similar to one given for amino-acid sequences in [6] with two differences: (1) transition probabilities are distinct for states D and I, and (2) every transition has a probability parameter associated with it, instead of being expressed through other transitions outgoing from the same state.

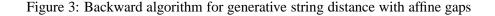
Given two strings,  $x^T$  of length T and  $y^V$  of length V, we can calculate probabilities of generating the pair of prefixes  $(x_{1...t}^T, y_{1...v}^V)$  and suffixes  $(x_{t+1...T}^T, y_{v+1...V}^V)$  using dynamic programming in forward and backward algorithms shown in Fig.2 and Fig.3 in O(TV) time. The total probability of generating a pair of strings  $p(x^T, y^V)$  by taking all possible paths through the model is the same for forward and backward algorithms.

Given a corpus of n matched strings corresponding to pairs of duplicates,  $C = \{(x^{T_1}, y^{V_1}), \ldots, (x^{T_n}, y^{V_n})\}$ , this model can be trained using the Baum-Welch algorithm, which is a variant of the Expectation-Maximization procedure for learning parameters of generative models [19], shown in Fig.4. The training procedure iterates between two steps, shown in Fig.5 and Fig.6. In each EXPECTATION-STEP, the expected number of occurrences for each state transition and edit operation emission is accumulated for a given pair of strings  $(x^T, y^V)$  from the training corpus. This is achieved by accumulating the posterior probabilities for every possible state transition and an accompanying emission in lines 7-20. In the MAXIMIZATION procedure all model parameters are updated using the collected expectations.

 $FORWARD(x^T, y^V)$ 1.  $M_{0,0} = 1; \ D_{0,0} = 0; \ I_{0,0} = 0$ 2. for i = 0 to Tfor j = 0 to V 3. if (i > 0)4.  $D_{i,j} = p(\langle x_i, \epsilon \rangle)[\sigma_D M_{i-1,j} + \delta_D D_{i-1,j}]$ 5. if (j > 0)6.  $I_{i,j} = p(\langle \epsilon, y_j \rangle) [\sigma_I M_{i,j-1} + \delta_I I_{i,j-1}]$ 7. 8. if  $(i > 0 \land j > 0)$  $M_{i,j} = p(\langle x_i, y_j \rangle) [\mu M_{i-1,j-1} +$ 9.  $+ \gamma_I I_{i-1,j-1} + \gamma_D D_{i-1,j-1}$ ] 10.  $p(x^T, y^V) = \tau_{\mu} M_{T,V} + \tau_D D_{T,V} + \tau_I I_{T,V}$ 11. return  $M, I, D, p(x^T, y^V)$ 

Figure 2: Forward algorithm for generative string distance with affine gaps

```
BACKWARD(x^T, y^V)
1. M_{T,V} = \tau_{\mu}; \ D_{T,V} = \tau_{D}; \ I_{T,V} = \tau_{I}
2. for i = T downto 0
          for j = V downto 0
3.
4.
               if (i < T)
5.
                   D_{i,i} = p(\langle x_{i+1}, \epsilon \rangle) \delta_D D_{i+1,i}
                  M_{i,j} = p(\langle x_{i+1}, \epsilon \rangle) \gamma_D D_{i+1,j}
6.
7.
               if (j < V)
                   I_{i,j} = p(\langle \epsilon, y_{j+1} \rangle) \delta_I I_{i,j+1}
8.
                   M_{i,j} += p(\langle \epsilon, y_{j+1} \rangle) \gamma_I I_{i,j+1}
9.
               if (i < T \land j < V)
10.
                   D_{i,i} += p(\langle x_{i+1}, y_{i+1} \rangle) \sigma_D M_{i+1,i+1}
11.
12.
                   I_{i,j} += p(\langle x_{i+1}, y_{j+1} \rangle) \sigma_I M_{i+1,j+1}
                   M_{i,j} += p(\langle x_{i+1}, y_{j+1} \rangle) \mu M_{i+1,j+1}
13.
14. p(x^T, y^V) = M_{0,0}
15. return M, I, D, p(x^T, y^V)
```



```
EXPECTATION-MAXIMIZATION(\{(x^{T_1}, y^{V_1}), \dots, (x^{T_n}, y^{V_n})\})
until convergence
for i = 0 to n
EXPECTATION-STEP((x^{T_i}, y^{V_i}))
MAXIMIZATION()
```

Figure 4: Training algorithm for generative string distance with affine gaps

$$\begin{split} & \text{EXPECTATION-STEP}((x^{T}, y^{V})) \\ & 1. \ (M^{f}, I^{f}, D^{f}, p(x^{T}, y^{V})) = \text{FORWARD}(x^{T}, y^{V})) \\ & 2. \ (M^{b}, I^{b}, D^{b}, p(x^{T}, y^{V})) = \text{BACKWARD}(x^{T}, y^{V})) \\ & 3. \ E(\langle \tau_{D} \rangle) += 1; \ E(\langle \tau_{I} \rangle) += 1 \\ & 4. \ E(\langle \tau_{\mu} \rangle) += 1 \\ & 5. \ \text{for } i = 1 \ \text{to } T \\ & 6. \ \text{ for } j = 1 \ \text{to } V \\ & 7. \qquad \xi_{\mu} = \frac{M_{j-1,k-1}^{f}*\mu*p(\langle x_{i}, y_{j} \rangle)*M_{j,k}^{b}}{p(x^{T}, y^{V})} \\ & 8. \ E[\mu] += \xi_{\mu}; E[\langle x_{i}, y_{j} \rangle) += \xi_{\mu} \\ & 9. \qquad \xi_{\sigma_{I}} = \frac{M_{j,k-1}^{f}*\sigma_{I}*p(\langle e, y_{j} \rangle)*I_{j,k}^{b}}{p(x^{T}, y^{V})} \\ & 10. \ E[\sigma_{I}] += \xi_{\sigma_{I}}; E[\langle x_{i}, e \rangle] += \xi_{\sigma_{I}} \\ & 11. \qquad \xi_{\sigma_{D}} = \frac{M_{j-1,k}^{f}*\sigma_{I}*p(\langle e, y_{j} \rangle)*I_{j,k}^{b}}{p(x^{T}, y^{V})} \\ & 12. \ E[\sigma_{D}] += \xi_{\sigma_{D}}; E[\langle e, y_{j} \rangle] += \xi_{\sigma_{D}} \\ & 13. \qquad \xi_{\delta_{I}} = \frac{I_{j,k-1}^{f}*\delta_{I}*p(\langle e, y_{j} \rangle)*I_{j,k}^{b}}{p(x^{T}, y^{V})} \\ & 14. \ E[\delta_{I}] += \xi_{\delta_{I}}; E[\langle e, y_{j} \rangle] += \xi_{\delta_{I}} \\ & 15 \qquad \xi_{\delta_{D}} = \frac{D_{j-1,k}^{f}*\delta_{D}*p(\langle x_{i}, e \rangle)*D_{j,k}^{b}}{p(x^{T}, y^{V})} \\ & 16. \ E[\delta_{D}] += \xi_{\delta_{D}}; E[\langle x_{i}, e \rangle] += \xi_{\delta_{D}} \\ & 17. \qquad \xi_{\gamma_{I}} = \frac{I_{j-1,k-1}^{f}*\gamma_{D}*p(\langle x_{i}, y_{j} \rangle)*M_{j,k}^{b}}{p(x^{T}, y^{V})} \\ & 18. \qquad E[\gamma_{I}] += \xi_{\gamma_{I}}; E[\langle x_{i}, y_{j} \rangle] += \xi_{\gamma_{I}} \\ & 19. \qquad \xi_{\gamma_{D}} = \frac{D_{j-1,k-1}^{f}*\gamma_{D}*p(\langle x_{i}, y_{j} \rangle)*M_{j,k}^{b}}{p(x^{T}, y^{V})} \\ & 20. \qquad E[\gamma_{D}] += \xi_{\gamma_{D}}; E[\langle x_{i}, y_{j} \rangle] += \xi_{\gamma_{D}} \end{aligned}$$

Figure 5: Expectation step for generative string distance with affine gaps

It can be proved that this training procedure is guaranteed to converge to a local maximum of likelihood of observing the training corpus C. The trained model can be used for estimating distance between two strings by computing the probability of generating the aligned pair of strings summed across all possible paths as calculated by the FORWARD and BACKWARD algorithms:  $d(x^T, y^V) = -\log p(x^T, y^V)$ . A practical problem that may arise in this computation is numerical underflow for long strings, which can be solved by mapping all computations into logarithmic space or by periodic scaling of all values in matrices M, Dand I [20].

#### 2.3 Adapting Learned String Distance with Affine Gaps for Duplicate Detection

Because the order of strings being aligned does not matter when similarity of database records is being estimated, insertion and deletion operations as well as transitions for states *I* and *D* can be represented by a single set of parameters:  $p(\langle a, \epsilon \rangle) = p(\langle \epsilon, a \rangle)$  for all symbols  $a \in A$ ;  $\tau = \tau_I = \tau_D$ ;  $\gamma = \gamma_I = \gamma_D$ ;  $\delta = \delta_I = \delta_D$ ;  $\sigma = \sigma_I = \sigma_D$ . All algorithms described above then would use the unified set of parameters instead of separate sets of values for states *I* and *D*.

The generative model of Fig.1 suffers from two drawbacks that impede its utility for computing similarity between strings in a database. One problem lies in the fact that the model assigns a probability less than

MAXIMIZATION() 1.  $N_M = E[\mu] + E[\sigma_I] + E[\sigma_D] + E[\tau_\mu]$ 2.  $\mu = E[\mu]/N_M; \sigma = E[\sigma]/N_M; \tau_{\mu} = E[\tau_{\mu}]/N_M$ 3.  $N_I = E[\delta_I] + E[\gamma_I] + E[\tau_{\delta_I}]$ 4.  $\delta_I = E[\delta_I]/N_I; \gamma = E[\gamma_I]/N_I; \tau_{\delta_I} = E[\tau_{\delta_I}]/N_I$ 5.  $N_D = E[\delta_D] + E[\gamma_D] + E[\tau_{\delta_D}]$ 6.  $\delta_D = E[\delta_D]/N_D; \gamma = E[\gamma_D]/N_D; \tau_{\delta_D} = E[\tau_{\delta_D}]/N_D$ 7. for each  $\langle a, b \rangle$ 8.  $N'_M += E[\langle a, b \rangle]$ 9. for each  $\langle \epsilon, a \rangle$ 10.  $N_I' += E[\langle \epsilon, a \rangle]$ 11. for each  $\langle a, \epsilon \rangle$  $N'_D += E[\langle a, \epsilon \rangle]$ 12. 13. for each  $\langle a, b \rangle$  $p(\langle a, b \rangle) = E[\langle a, b \rangle] / N'_M$ 14. 15. for each  $\langle \epsilon, a \rangle$  $p(\langle \epsilon, a \rangle) = E[\langle \epsilon, a \rangle] / N_I'$ 16. 17. for each  $\langle a, \epsilon \rangle$  $p(\langle a, \epsilon \rangle) = E[\langle a, \epsilon \rangle] / N'_D$ 18.

Figure 6: Maximization step for generative string distance with affine gaps

one to strings that are exact duplicates. Because the probability of an alignment monotonically decreases as more matching characters are appended to the strings, longer exact duplicates are penalized even more severely than shorter exact duplicates, which is counter-intuitive and exacerbates the problem further.

The second difficulty lies in the fact that due to the large size of the edit operation set, probabilities of individual operations are significantly smaller than transition probabilities. If only a relatively small number of training examples is available, probabilities of some edit operations may be underestimated, and distances assigned to strings will vary significantly with minor character variations. There are two steps that need to be taken to address these issues. First, the probability distribution over the set of edit operations, E, is smoothed by bounding each edit operation probability by some minimum value  $\lambda$ . This is achieved by adding  $\lambda$  to each updated probability in lines 11-16 of the MAXIMIZATION procedure and subsequent normalization. Second, learned parameters of the generative distance model are mapped to operation costs of the additive model (1) by taking the negative logarithm of each probability. Distance can then be calculated analogously to Eq.(1) with the addition of supplemental costs  $g = -\log \gamma$  for ending a gap and  $m = -\log \mu$  for continuing to substitute/match characters. This is equivalent to calculating the cost of the most likely (Viterbi) alignment of the two strings by the generative model in log-space. To solve the "non-zero exact match" problem and decrease high variance in distances due to edit operation costs c(a, b) compared to transition costs s, e, g and m, we dynamically scale edit operation costs to values between 0 and the cost of the state transition that precedes emitting the operation. We also scale the overall distance by the length of the larger string to correct for the "increasing distance for longer exact duplicates" problem. Thus, the resulting metric can be viewed as a hybrid between the generative model and the original fixed-cost model.

# **3** Record-level Similarity

## 3.1 Combining similarity across multiple fields

When the distance between records composed of multiple fields is being calculated, it is necessary to combine similarity estimates for individual fields in a meaningful manner. Because correspondence between overall record similarity and similarity across individual fields can vary greatly, it is necessary to weight fields according to their contribution to the true similarity between records.

While statistical aspects of combining similarity scores for individual fields have been addressed in previous work on record linkage [25], availability of labeled duplicates allows a more direct approach that uses a binary classifier [2]. Given a database that contains records composed of k different fields and a set  $D = \{d_1, \ldots, d_m\}$  of distance metrics, we can represent any pair of records by an mk-dimensional vector of "distance features". Each component of the vector represents similarity between two fields of the records calculated using one of the distance metrics. Matched pairs of duplicate records  $R = \{(r_{10}, r_{11}), \ldots, (r_{n0}, r_{n1})\}$ can be used to construct a training set of such vectors by assigning them a positive class label. Pairs of records that are not labeled as duplicates form the complementary set of negative examples.

A binary classifier can then be trained using these vectors to discriminate between pairs of records corresponding to duplicates and non-duplicates. Such a classifier must possess several important properties:

- Resilience to irrelevant features that correspond to those fields that do not carry discriminatory information.
- 2. Ability to handle correlated features corresponding to fields that are closely related.
- 3. Independence from the relative sizes of the positive and negative example sets. Because it could be easier for a human expert to identify a small subset of duplicate records, achieving equal proportions of duplicate and non-duplicate records in the training set and the testing set could be difficult.
- 4. Capability to compute confidence estimates for class membership.

Support vector machines [23] satisfy all of these requirements. SVM's perform binary classification based on the concept of structural risk minimization by mapping data into a high-dimensional space where the two classes are separated by a hyperplane via a kernel function. SVM's exhibit remarkable resistance to noise, handle correlated features well, and rely only on most informative training examples, which implies independence from the relative sizes of the sets of positive and negative examples. Confidence estimates of belonging to each class are naturally given by a datapoint's distance from the hyperplane that separates classes of duplicates and non-duplicates in high-dimensional space.

#### 3.2 Duplicate detection algorithm

A confidence estimate of belonging to the class of duplicates for a given pair of records can be viewed as an overall measure of similarity between the records comprising the pair. Given a large database, producing all possible pairs of records and computing similarity between them is too expensive since it would require  $\frac{n^2-1}{2}$  distance computations. The sorted neighborhood method [10] dramatically reduces the number of potential duplicate pairs. The database is sorted using different fields as keys in several passes. After each sorting pass, potential pairs of duplicates are generated by sliding a window of fixed size over the sorted database and adding all pairs of records that co-occur within the window. This technique generates O(wN)pairs, where w is the window size and N is the total number of records in the database.

The canopies clustering method [12] is an alternative approach to reducing the number of candidate pairs. It utilizes some computationally inexpensive metric  $d_c$ , such as Jaccard similarity based on an inverted

index, to separate records into overlapping clusters ("canopies") of potential duplicates. Jaccard similarity between two strings  $s_1$  and  $s_2$  composed of tokens  $\{s_{10}, \ldots, s_{1v}\}$  and  $\{s_{20}, \ldots, s_{2w}\}$  is given by:

$$J(s_1, s_2) = \frac{|\{s_{10}, \dots, s_{1v}\} \bigcap \{s_{20}, \dots, s_{2w}\}|}{|\{s_{10}, \dots, s_{1v}\} \bigcup \{s_{20}, \dots, s_{2w}\}|}$$
(3)

The clustering process requires two distance thresholds:  $T_{loose}$  for the maximum distance between records that are placed in the same cluster and correspond to potential duplicates, and  $T_{tight}$  for limiting the number of clusters by considering only records at a distance of at least  $T_{tight}$  from each other as possible cluster centers, where  $T_{loose} > T_{tight}$ . Candidate pairs are then equivalent to all pairs of records that fall in each cluster, where clusters may overlap.

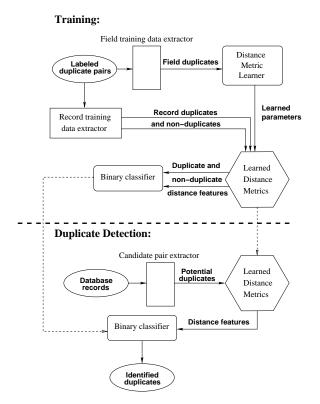


Figure 7: MARLIN overview

An overall view of our system, MARLIN, is presented in Fig.7. The training phase consists of two steps. First, the learnable distance metrics are trained for each record field. The training corpus of paired field-level duplicates is obtained by taking pairs of values for each field from the set of paired duplicate records. Because duplicate records may contain individual fields that are not equivalent, training data can be noisy. This does not pose a serious problem for our approach, since particularly noisy fields that are unhelpful for identifying record-level duplicates will be ignored by the binary classifier as irrelevant distance features.

After individual similarity metrics are learned, they are used to compute distances for each field of duplicate and non-duplicate record pairs to obtain training data for the binary classifier in the form of vectors composed of distance features. For a given training set that contains n duplicate pairs,  $O(n^2)$  non-duplicate pairs can be generated. Because we are employing a classifier that does not depend on the relative sizes of training data for the two classes, it is sufficient to randomly add n non-duplicate record pairs to the training set.

The duplicate detection phase starts with the generation of potential duplicate pairs using either the sorted neighborhood or canopies method. This process requires selecting parameter values for either the window size w or for the canopy thresholds  $T_{loose}$  and  $T_{tight}$ . This can be done by applying the chosen method to the training data and selecting parameter values that result in labeling all true duplicate pairs as candidates.

Next, learned distance metrics are used to calculate distances for each field of each pair of potential duplicate records, thus creating distance feature vectors for the classifier. Confidence estimates for belonging to the class of duplicates are then produced by the binary classifier for each candidate pair, and pairs are sorted by increasing confidence.

The problem of finding a similarity threshold for separating duplicates from non-duplicates arises at this point. A trivial solution would be to use the binary classification results to label some records as duplicates, and others as non-duplicates. A traditional approach to this problem [25], however, requires assigning two thresholds: one that separates pairs of records that are high-confidence duplicates, and another for possible duplicates that should be reviewed by a human expert. Since relative costs of labeling a non-duplicate as a duplicate (false positives) and overlooking true duplicates (false negatives) can vary from database to database, there is no "silver bullet" solution to this problem. Availability of labeled data, however, allows us to provide precision-recall estimates for any threshold value and thus offer a way to control the trade-off between false and unidentified duplicates by selecting threshold values that are appropriate for a particular database.

It is highly likely that several identified duplicate pairs will contain the same record. Since the "duplicate of" relation is transitive, it is necessary to compute the transitive closure of equivalent pairs to complete the identification process. Following [14], we utilize the union-find data structure to store all database records in this step, which allows updating the transitive closure of identified duplicates incrementally in an efficient manner.

## 4 Experimental Evaluation

#### 4.1 Datasets

We have used three different datasets for our experiments. RESTAURANT is a database of 864 restaurant names and addresses containing 112 duplicates assembled by Sheila Tejada from Fodor's and Zagat's guidebooks. The second dataset, CORA, is a collection of 1295 distinct references to 122 Computer Science research papers from the Cora Computer Science research paper search engine<sup>1</sup>. Finally, we used the database generator of Hernández and Stolfo [10] that randomly corrupts records to introduce duplicates into a mailing list database to create the MAILING dataset of 1200 records corresponding to 400 original entries. Tables 1–3 contain sample duplicate records from each of the databases.

#### 4.2 Experimental Methodology

All experiments were conducted using 10-fold cross validation. To create the folds, duplicate records were grouped together, and the resulting clusters were randomly assigned to the folds. This method was chosen because randomly assigning records to different folds would dramatically reduce the number of duplicate records that can be potentially identified in each fold, as well as corrupt training data since some of the duplicate pairs would be split between the training and testing folds.

In each trial, the training phase of MARLIN was performed using nine training partitions, and then tested on the remaining test partition. Because the sizes of our datasets allowed computing distances between all

<sup>&</sup>lt;sup>1</sup>http://cora.whizbang.com

| authors               | title              | venue             | address        | year | pages          |  |
|-----------------------|--------------------|-------------------|----------------|------|----------------|--|
|                       | Information, pre-  | Advances in Neu-  | San Mateo, CA  | 1993 | pages 483-490  |  |
| Sebastian Seung, Eli  | diction, and query | ral Information   |                |      |                |  |
| Shamir, and Naftali   | by committee       | Processing System |                |      |                |  |
| Tishby                |                    |                   |                |      |                |  |
| Freund, Y., Seung, H. | Information, pre-  | Advances in       | San Mateo, CA. | -    | (pp. 483-490). |  |
| S., Shamir, E., &     | diction, and query | Neural Informa-   |                |      |                |  |
| Tishby, N.            | by committee       | tion Processing   |                |      |                |  |
|                       |                    | Systems           |                |      |                |  |

Table 1: Sample duplicate records from the CORA database

| Table 2: Sample du | uplicate records | from the | RESTAURANT | database |
|--------------------|------------------|----------|------------|----------|
|                    |                  |          |            |          |

| name               | address                  | city          | phone        | cuisine      |
|--------------------|--------------------------|---------------|--------------|--------------|
| Second Avenue Deli | 156 2nd Ave. at 10th St. | New York      | 212/677-0606 | Delicatessen |
| Second Avenue Deli | 156 Second Ave.          | New York City | 212-677-0606 | Delis        |

Table 3: Sample duplicate records from the MAILING database

| Į | first | last     | street address      | city               |
|---|-------|----------|---------------------|--------------------|
| 1 | Tsy C | Dodgson  | 18 Lilammal Ave 3k1 | Christina MT 59423 |
|   | Tessy | Dodgeson | PO Box 3879         | Christina MT 59428 |

pairs of records, we did not employ the sorted neighborhood or canopies approaches to limit the number of potential duplicates. Either of the approaches, however, could be used for evaluating accuracy of duplicate detection on larger datasets.

After computing distances between all pairs of potential duplicates, the pair of records with the highest similarity was labeled as a duplicate, and the transitive closure of groups of duplicates was updated. Precision, recall and F-measure defined over pairs of duplicates were computed after each iteration:

$$Precision = rac{\# of Correctly I dentified Duplicate Pairs}{\# of I dentified Duplicate Pairs}$$
 $Recall = rac{\# of Correctly I dentified Duplicate Pairs}{\# of True Duplicate Pairs}$ 
 $F-measure = rac{2 imes Precision imes Recall}{Precision + Recall}$ 

As more pairs with lower similarity are labeled as duplicates, recall increases, while precision begins to decrease because the number of non-duplicate pairs erroneously labeled as duplicates increases. Precision was interpolated at 20 standard recall levels following the traditional procedure in information retrieval [1] (Fig.11 shows results for two additional recall levels of 0.925 and 0.975). Some of the graphs show only those portions of the curves that exhibit differences between approaches; precision results for recall values that are not shown on the graphs were identical for all curves.

| Distance metric     | CORA title | RESTAURANT name | RESTAURANT address | MAILING name | MAILING address |
|---------------------|------------|-----------------|--------------------|--------------|-----------------|
| Levenshtein         | 0.870      | 0.843           | 0.950              | 0.867        | 0.878           |
| Learned Levenshtein | 0.902      | 0.886           | 0.975              | 0.899        | 0.897           |
| Affine              | 0.917      | 0.883           | 0.870              | 0.923        | 0.886           |
| Learned Affine      | 0.971      | 0.967           | 0.929              | 0.959        | 0.892           |

Table 4: Maximum F-measure for detecting duplicate field values

## 4.3 Results

### 4.3.1 Detecting duplicate field values

To evaluate the usefulness of adapting character-based distance metrics to a specific domain, we compared learned similarity metrics with their fixed-cost equivalents for the task of identifying equivalent field values. Because duplicate records may contain field values that are not equivalent, while non-duplicate records may contain equivalent entries in some of the fields, it would be erroneous to label all fields from equivalent records as duplicates. For example, if two different restaurant records appear in a database, one containing *"New York City"* in the city field, and another containing *"New York"*, it would be erroneous to consider the pair (*"New York City"*, *"New York"*) a non-duplicate. To avoid this problem, we have manually relabeled the duplicates for some of the fields to evaluate the utility of different metrics in detecting duplicates for individual fields. We chose the most meaningful fields from the three datasets for these experiments: CORA paper title field, RESTAURANT name and address fields, and MAILING street address and name fields (the latter is a concatenation of first name and last name fields).

We have compared four distance metrics:

- Levenshtein edit distance [22], calculated as the minimum number of character deletions, insertions and substitutions of unit cost;
- Learned Levenshtein edit distance based on a generative model and trained using the Expectation-Maximi-zation procedure described in [20];
- String distance with affine gaps [9] using a substitution cost of 3, gap opening cost of 3, and gap extension cost of 1, which are commonly used parameters;
- Learned string distance with affine gaps described in Section 2.2, trained using Expectation-Maximization procedure in Fig.4 with edit operation probabilities smoothed at  $\lambda = 10^{-12}$  and converted to the additive cost model as described in Section 2.3.

Results for field-level duplicate detection experiments are summarized in Table 4. Each entry in table contains the average of maximum F-measure values over 10 folds. Results for experiments where the difference between the learned and corresponding unlearned metric is significant at the 0.05 level using a 1-tailed t-test are presented in bold font. Figures 8-10 contain recall-precision curves for the performance of MARLIN on the CORA paper title field, the RESTAURANT address field, and the MAILING name field (which is a concatenation of first name and last name fields).

Performance improvements achieved when learned distance metrics were used instead of fixed-cost distance metrics for detecting field duplicates demonstrate that learnable distance metrics are able to approximate the relative importance of differences between strings for a specific field. This can be seen from the fact that precision-recall curves for learned distance metrics are above those for corresponding fixed-cost metrics on Figures 8-10, as well as from higher maximum F-measure values in Table 4. Results of all experiments except for the address field of the MAILING database demonstrate that taking gaps into account when constructing string alignments results in better estimates of string similarity for the task of