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Abstract

Two major goals in machine learning are the discovery of complex multidimensional solutions and con-
tinual improvement of existing solutions. In this paper, weargue thatcomplexification, i.e. the incremental
elaboration of solutions through adding new structure, achieves both these goals. We demonstrate the power
of complexification through the NeuroEvolution of Augmenting Topologies (NEAT) method, which evolves
increasingly complex neural network architectures. NEAT is applied to an open-ended coevolutionary robot
duel domain where robot controllers compete head to head. Because the robot duel domain supports a wide
range of sophisticated strategies, and because coevolution benefits from an escalating arms race, it serves
as a suitable testbed for observing the effect of evolving increasingly complex controllers. The result is an
arms race of increasingly sophisticated strategies. When compared to the evolution of networks with fixed
structure, complexifying networks discover significantlymore sophisticated strategies. The results suggest
that in order to realize the full potential of evolution, andsearch in general, solutions must be allowed to
complexify as well as optimize.

1 Introduction

Traditional genetic algorithms evolve fixed-length genomes under the assumption that the space of the
genome is sufficient to encode the solution. A genome containing n genes encodes a single point in ann-dimensional search space. In many cases, a solution is known to exist somewhere in that space. For
example, the global maximum of a function of three argumentsmustexist in the three dimensional space
defined by those arguments. Thus, a genome of three genes can encode the location of the maximum.

However, many common structures are defined by an arbitrary number of parameters. In particular,
those solution types that can contain a variable number of parts can be represented byanynumber of genes.
For example, the number of parts in neural networks, cellular automata, and electronic circuits can vary
(Miller et al. 200a; Mitchell et al. 1996; Stanley and Miikkulainen 2002d). In fact, two neural networks with
different numbers of connections and nodes can approximatethe same function (Cybenko 1989). Thus, it is
not clear what number of genes is appropriate for solving a particular problem. Because of this ambiguity,
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researchers evolving fixed-length genotypes must use heuristics, such as smaller neural networks general-
izing better than larger ones, in order to estimatea priori the appropriate number of genes to encode such
structures.

A major obstacle to using fixed-length encodings is that heuristically determining the appropriate num-
ber of genes becomes impossible for very complex problems. For example, how many nodes and connec-
tions are necessary for a neural network that controls a ping-pong playing robot? Or, how many bits are
needed in the neighborhood function of a cellular automata that performs information compression? The
answers to these questions can hardly be based on empirical experience or analytic methods, since little is
known about the solutions. One possible approach is to simply make the genome extremely large, so that
the space it encodes is extremely large and a solution is likely to lie somewhere within. Yet the larger the
genome, the higher dimensional the space that evolution needs to search. Even if a ping-pong playing robot
lies somewhere in the 10,000 dimensional space of a 10,000 gene genome, searching such a space may take
prohibitively long.

Even more problematic are open-ended problems where phenotypes are meant to improve indefinitely
and there is no known final solution. For example, in competitive games, estimating the complexity of the
“best” possible player is difficult because making such an estimate implicitly assumes that no better player
can exist. How could we ever know that? Moreover, many artificial life domains are aimed at evolving
increasingly complex artificial creatures for as long as possible (Maley 1999). Fixing the size of the genome
in such domains also fixes the maximum complexity of evolved creatures, defeating the purpose of the
experiment.

In this paper, we argue that the right way to evolve arbitrarily structured phenotypes is to start evolution
with a population of small, simple genomes and systematically complexifysolutions over generations by
adding new genes. That way, evolutions begins searching in asmall easily-optimized space, and adds new
dimensions as necessary. This approach is more likely to discover highly complex phenotypes than an
approach that begins searching directly in the intractablylarge space of complete solutions. In fact, natural
evolution has itself utilized this strategy, occasionallyadding new genes that lead to increased phenotypic
complexity (Martin 1999; Section 2). In biology, this process is calledcomplexification, which is why we
use this term to describe our approach as well.

When a good strategy is found in a fixed-length genome, the entire representational space of the genome
is used to encode it. Thus, the only way to improve it is toalter the strategy, thereby sacrificing some of
the functionality learned over previous generations. In contrast, complexificationelaborateson the existing
strategy by adding new structure without changing the existing representation. Thus the strategy does not
only become different, butmore elaborate(figure 1).

This idea is implemented in a method for evolving increasingly complex neural networks, called Neu-
roEvolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen 2002b,c,d). NEAT begins by
evolving networks without any hidden nodes. Over many generations, new hidden nodes and connections
are added, resulting in the complexification of the solutionspace. This way, more complex strategies elabo-
rate on simpler strategies, focusing search on solutions that are likely to maintain existing capabilities. We
use NEAT to demonstrate the power of complexification.

NEAT was tested in a competitive robot control domain with and without complexification. Coevolu-
tion was used to evolve robot controllers against each otherto find better strategies. We chose this domain
because it is open-ended; there is no known optimal strategybut it is possible to come up with increasingly
more sophisticated strategies indefinitely. The main results were that (1) evolution did complexify when
possible, (2) complexification led to elaboration, and (3) significantly more sophisticated and successful
strategies were evolved with complexification than without. These results imply that complexification al-
lows coevolution to continually elaborate on successful strategies, resulting in an arms race that achieves a
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Figure 1: Alteration vs. elaboration example. A robot (depicted as a circle) evolves to avoid an obstacle. In
the alteration scenario (top), the robot first evolves a strategy to go around the left side of the obstacle. However, the
strategy fails in a future generation when the obstacle begins moving to the left. Thus, the robot alters its strategy by
evolving the tendency to move right instead of left. However, when the obstacle later moves right, the new, altered,
strategy fails because the robot did not retain its old ability to move left. In the elaboration scenario (bottom), the
original strategy of moving left also fails. However, instead of altering the strategy, it iselaboratedby adding a new
ability to move right as well. Thus, when the obstacle later moves right, the robot still has the ability to avoid it by
using its original strategy. Elaboration is necessary for acoevolutionary arms race to emerge and it can be achieved
through complexification.

significantly higher level of sophistication than is otherwise possible.

We begin by reviewing biological support for complexification, as well as past work in coevolution,
followed by a description of the NEAT method, and experimental results.

2 Background

2.1 Complexification in Nature

Mutation in nature not only results in optimizing existing structures: New genes are occasionally added to
the genome, allowing evolution to perform a complexifying function over and above optimization. In addi-
tion, complexification is protected in nature in that interspecific mating is prohibited. Such speciation creates
important dynamics differing from standard GAs. In this section, we discuss these important characteristics
of natural evolution as a basis for our approach to utilize them computationally in genetic algorithms.

Gene duplicationis a special kind of mutation in which one or more parental genes are copied into an
offspring’s genome more than once. The offspring then has redundant genes expressing the same proteins.
Gene duplication has been responsible for key innovations in overall body morphology over the course of
natural evolution (Amores et al. 1998; Carroll 1995; Force et al. 1999; Martin 1999).

A major gene duplication event occurred around the time thatvertebrates separated from invertebrates.
The evidence for this duplication centers aroundHOX genes, which determine the fate of cells along the
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anterior-posterior axis of embryos. HOX genes are crucial in shaping the overall pattern of developmental in
embryos. In fact, differences in HOX gene regulation explain a great deal of arthropod and tetrapod diversity
(Carroll 1995). Amores et al. (1998) explain that since invertebrates have a single HOX cluster while
vertebrates have four, cluster duplication must have significantly contributed to elaborations in vertebrate
body-plans. The additional HOX genes took on new roles in regulating how vertebrate anterior-posterior axis
develops, considerably increasing body-plan complexity.Although Martin (1999) argues that the additional
clusters can be explained by many single gene duplications accumulating over generations, as opposed to
massive whole-genome duplications, researchers agree that gene duplication contributed significantly to
important body-plan elaboration.

A detailed account of how duplicate genes can take on novel roles was given by Force et al. (1999): Base
pair mutations in the generations following duplicationpartition the initially redundant regulatory roles of
genes into separate classes. Thus, the embryo develops in the same way, but the genes that determine
overall body-plan are confined to more specific roles, since there are more of them. The partitioning phase
completes when redundant clusters of genes are separated enough that they no longer produce identical
proteins at the same time. After partitioning, mutations within the duplicated cluster of genes alter different
steps in development than mutations within the original cluster. In other words, duplication creates more
points at which mutations can occur. In this way, developmental processes complexify.

In order to implement this idea in artificial evolutionary systems we are faced with two major challenges.
First, such systems evolve variable-length genomes, whichcan be difficult to cross over without losing in-
formation. For example, depending on when duplications occurred in the ancestral histories of two different
genomes, the same gene may exist at different positions. Conversely, different genes may exist at the same
position. Thus, artificial crossover may lose essential genes through misalignment. Second, it may be dif-
ficult for a variable-length genome GA to find innovative solutions; Optimizing many genes takes longer
than optimizing only a few, meaning that more complex genotypes may be eliminated from the population
before they have a sufficient opportunity to be optimized.

How has nature solved these problems? First, nature has a mechanism for aligning genes with their
proper counterparts during crossover, so that data is not lost nor obscured. This alignment process has
been most clearly observed inE. coli (Radding 1982; Sigal and Alberts 1972). A special protein called
RecAtakes a single strand of DNA and aligns it with another strandby attaching the strands at genes that
express the same traits, which are calledhomologous genes. The process by which RecA protein aligns
homologous genes is calledsynapsis. In experiments in vitro, researchers have found that RecA protein
does not complete the process of synapsis on fragments of DNAthat are not homologous (Radding 1982).
Second, organisms with significantly different genomes never mate because they are in different species.
Speciation also protects innovation, because it allows organisms to compete primarily within their own
niches, instead of with the population at large.

It turns out complexification also possible in evolutionarycomputation if abstractions of synapsis and
speciation are made part of the genetic algorithm. The NEAT method (section 3) is an implementation of this
idea: the genome is complexified by adding new genes which in turn encode new structure in the phenotype,
as in biological evolution.

Complexification is especially powerful in open-ended domains where the goal is to continually generate
more sophisticated strategies. Competitive coevolution is a particularly important such domain, as will be
reviewed in the next section.
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2.2 Competitive Coevolution

In competitive coevolution, individual fitness is evaluated through direct competition with other individuals
in the population, rather than through an objective fitness measure. In other words, fitness signifies only the
relative strengths of solutions; an increased fitness in onesolution leads to a decreased fitness for another.
Ideally, competing solutions will continually outdo one another, leading to an ”arms race” of increasing
sophistication (Dawkins and Krebs 1979; Rosin 1997; Van Valin 1973).

In practice, it is difficult to establish an arms race. Evolution tends to find the simplest solutions that
can win, meaning that strategies can switch back and forth between different idiosyncratic yet uninteresting
variations (Darwen 1996; Floreano and Nolfi 1997; Rosin and Belew 1997). Several methods have been
developed to encourage the arms race (Angeline and Pollack 1993; Ficici and Pollack 2001; Noble and
Watson 2001; Rosin and Belew 1997). For example, a ”hall of fame” can be used to ensure that current
strategies remain competitive against strategies from thepast. Recently, Ficici and Pollack (2001) and
Noble and Watson (2001) introduced a promising method called Pareto coevolution, which finds the best
learners and the best teachers in two populations by castingcoevolution as a multiobjective optimization
problem.

Although such techniques improve the performance of competitive coevolution, they do not directly en-
couragecontinual coevolution, i.e. creating new solutions that maintain existing capabilities. For example,
no matter how well selection is performed, or how well competitors are chosen, if no better solution exists
in the fixed solution space, elaboration is impossible sincethe global optimum has already been reached.
Moreover, it may occasionally be easier to escape a local optimum by adding a new dimension of freedom
to the search space than by jumping back out into the same space that lead to the optimum in the first place.

Complexification is an ideal technique for establishing a coevolutionary arms race. Complexification
naturally elaborates strategies by adding new dimensions to the search space. Thus, progress can be made
indefinitely long: even if a global optimum is reached in the search space of solutions, new dimensions can
be added, opening up a higher-dimensional space in which even higher optima may exist.

To test this idea experimentally, we chose a robot duel domain that combines predator/prey interaction
and food foraging in a novel head-to-head competition (Section 4). We use this domain to demonstrate how
NEAT uses complexification to continually elaborate on strategies. The next section describes the NEAT
neuroevolution method, followed by a description of the robot duel domain and a discussion of the results.

3 NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method of evolving artificial neural networks combines the usual search for appropriate network
weights with complexification of the network structure. This approach is highly effective: NEAT outper-
forms other neuroevolution (NE) methods, e.g. on the benchmark double pole balancing task by a factor of
five (Stanley and Miikkulainen 2002b,c,d). The NEAT method consists of solutions to three fundamental
challenges in evolving neural network topology: (1) What kind of genetic representation would allow dis-
parate topologies to crossover in a meaningful way? Our solution is to use historical markings to line up
genes with the same origin. (2) How can topological innovation that needs a few generations to optimize
be protected so that it does not disappear from the population prematurely? Our solution is to separate each
innovation into a different species. (3) How can topologiesbe minimizedthroughout evolutionso the most
efficient solutions will be discovered? Our solution is to start from a minimal structure and grow only when
necessary. In this section, we explain how NEAT addresses each challenge.
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