
UT Austin Villa 2003: A New RoboCup Four-Legged TeamPeter Stone, Kurt Dresner, Selim T. Erdo�gan, Peggy Fidelman,Ni
holas K. Jong, Nate Kohl, Gregory Kuhlmann, Ellie Lin,Mohan Sridharan, Daniel Stronger, Gurushyam HariharanDepartment of Computer S
ien
esThe University of Texas at Austin1 University Station C0500Austin, Texas 78712-1188fpstone,kdresner,selim,peggy,nkj,nate,kuhlmann,ellie,smohan,stronger,thegurug�
s.utexas.eduhttp://www.
s.utexas.edu/~AustinVillaTe
hni
al Report UT-AI-TR-03-304O
tober 6, 2003Abstra
tThe UT Austin Villa RoboCup 2003 Four-Legged Team was a new entry in the ongoing series ofRoboCup legged league
ompetitions. The team development began in mid-January of 2003, at whi
htime none of the team members had any familiarity with the Aibos. Without using any RoboCup-related
ode from other teams, we entered a team in the Ameri
an Open
ompetition at the end of April, and metwith some su

ess at the annual RoboCup
ompetition that took pla
e in Padova, Italy at the beginningof July. In this report, we des
ribe both our development pro
ess and the te
hni
al details of its endresult, the UT Austin Villa team. The main
ontributions of this paper are (i) a roadmap for new teamsentering the
ompetition who are starting from s
rat
h, and (ii) full do
umentation of the algorithmsbehind our approa
h with the goal of making them fully repli
able.

1

Contents1 Introdu
tion 52 The Class 53 Initial Behaviors 64 Vision 74.1 Camera Settings . 84.2 Color Segmentation . 94.3 Region Building and Merging . 114.4 Obje
t Re
ognition with Bounding Boxes . 134.5 Position and Bearing of Obje
ts . 164.6 Visual Opponent Modeling . 165 Movement 175.1 Walking . 185.1.1 Basi
s . 185.1.2 Forward Kinemati
s . 185.1.3 Inverse Kinemati
s . 195.1.4 General Walking Stru
ture . 225.1.5 Omnidire
tional Control . 235.1.6 Tilting the Body Forward . 245.1.7 Des
ription of all the Parameters . 245.1.8 Tuning the Parameters . 255.1.9 Odometry Calibration . 265.2 General Movement . 275.2.1 Movement Module . 275.2.2 Movement Interfa
e . 295.2.3 High-Level Control . 306 Fall Dete
tion 317 Ki
king 317.1 The Initial Ki
k . 317.2 A General Ki
k Framework . 327.2.1 Creating the Criti
al A
tion . 327.2.2 Integrating the Criti
al A
tion into the Walk . 337.3 Head Ki
k . 337.4 Chest Push Ki
k . 347.5 Arms Together Ki
k . 347.6 Fall Forward Ki
k . 347.7 Yoshi Ki
k . 368 Lo
alization 368.1 Basi
 Parti
le Filtering Approa
h . 368.2 Motion Update . 368.3 Observation Update . 378.3.1 Landmark Memory . 378.3.2 Removing Obsolete Observations . 388.3.3 Merging Past Observations . 388.3.4 Updating Probabilities . 382

8.3.5 Resampling . 398.3.6 Two Bea
on Triangulation . 398.3.7 Three Bea
on Triangulation . 408.3.8 Random Movement . 418.4 Pose Estimation . 429 Communi
ation 429.1 Initial Robot-to-Robot Communi
ation . 429.2 TCP Gateway . 439.3 Message Types . 439.4 Queuing Messages . 4410 General Ar
hite
ture 4411 Global Map 4511.1 Maintaining Lo
ation Data . 4511.2 Information from Teammates . 4611.3 Providing a High Level Interfa
e . 4612 Behaviors 4712.1 Goal S
oring . 4712.1.1 Initial Solution . 4812.1.2 In
orporating Lo
alization . 4812.1.3 A Finite State Ma
hine . 5012.2 Goalie . 5112.2.1 Initial Solution . 5112.2.2 In
orporating Lo
alization . 5413 Coordination 5513.1 Dibs . 5513.1.1 Relevant Data . 5513.1.2 Thrashing . 5513.1.3 Stabilization . 5513.1.4 Taking the Average . 5613.1.5 Aging . 5613.1.6 Calling the Ball . 5613.1.7 Support Distan
e . 5613.1.8 Phasing out Dibs . 5713.2 Final Strategy . 5713.2.1 Roles . 5713.2.2 Supporter Behavior . 5713.2.3 Defender Behavior . 5813.2.4 Dynami
 Role Assignment . 5814 UT Assist 6014.1 General Ar
hite
ture . 6014.1.1 Typi
al Usage . 6014.2 Debugging Data . 6114.2.1 Visual Output . 6114.2.2 Lo
alization Output . 6114.2.3 Mis
ellaneous Output . 6214.3 Vision Calibration . 623

15 The Competitions 6415.1 Ameri
an Open . 6415.2 RoboCup 2003 . 6615.3 The Challenge Events . 6716 Con
lusions and Future Work 68A Heuristi
s for the Vision Module 69A.1 Region Merging and Pruning Parameters . 69A.2 Tilt Angle Test . 70A.3 Cir
le Method . 70A.4 Bea
on Parameters . 72A.5 Goal Parameters . 73A.6 Ball Parameters . 74A.7 Opponent Dete
tion Parameters . 74A.8 Opponent Blob Likelihood Cal
ulation . 74A.9 Coordinate Transforms . 75

4

1 Introdu
tionRoboCup, or the Robot So

er World Cup, is an international resear
h initiative designed to advan
e the�elds of roboti
s and arti�
ial intelligen
e by using the game of so

er as a substrate
hallenge domain. Thelong-term goal of RoboCup is, by the year 2050, to build a full team of 11 humanoid robot so

er playersthat
an beat the best human so

er team on a real so

er �eld [1℄.RoboCup is organized into several di�erent leagues, in
luding a
omputer simulation league and twoleagues that use wheeled robots. This te
hni
al report
on
erns the development of a new team for theSony four-legged league1 in whi
h all
ompetitors use identi
al Sony Aibo ERS-210A robots and the Open-Rsoftware development kit.2Sin
e all teams use identi
al robots, the four-legged league amounts to essentially a software
ompetition.In this report, we detail the development of a new team,
alled UT Austin Villa,3 from the Department ofComputer S
ien
es at the University of Texas at Austin.For the purposes of this report, we assume familiarity with the spe
i�
ations of the robots as well as therules of the RoboCup games. For full details see the legged league and Open-R sites footnoted above. Herewe des
ribe both our development pro
ess and the te
hni
al details of its end result, the UT Austin Villateam. The main
ontributions of this report are1. A roadmap for new teams entering the
ompetition who are starting from s
rat
h; and2. Full do
umentation of the algorithms behind our approa
h with the goal of making them fully repli
able.Our team development began in mid-January of 2003, at whi
h time none of the team members hadany familiarity with the Aibos. Without using any RoboCup-related
ode from any other teams, we entereda team in the Ameri
an Open
ompetition at the end of April, and met with some su

ess at the annualRoboCup
ompetition that took pla
e in Padova, Italy at the beginning of July. Although our team was notone of the top few at the
ompetition, we view it as a great a

omplishment that we were able to developa
ompetitive team in su
h a short time. A primary goal of this report is to do
ument our developmentpro
ess as a guide for new teams in the future.Our e�ort began as a graduate resear
h seminar o�ered as a
lass during the Spring semester of 2003.The following se
tion outlines the stru
ture of the
lass. At the end of that se
tion we outline the stru
tureof the remainder of the paper.2 The ClassThe UT Austin Villa 2003 legged robot team began as a fo
used
lass e�ort during the Spring semester of2003 at the University of Texas at Austin. Nineteen graduate students and one undergraduate were enrolledin the
ourse CS395T: Multi-Robot Systems: Roboti
 So

er with Legged Robots.4 All of the authors on thispaper parti
ipated in the
lass.Students in the
lass studied past approa
hes, both as des
ribed in the literature and as re
e
ted inpubli
ly available sour
e
ode. However, we developed the entire
ode base from s
rat
h with the goals oflearning about all aspe
ts of robot
ontrol and of introdu
ing a
ompletely new
ode base to the
ommunity.Class sessions were devoted to students edu
ating ea
h other about their �ndings and progress, as wellas
oordinating the integration of everybody's
ode. Just nine weeks after their initial introdu
tion to therobots, the students already had preliminary working solutions to vision, lo
alization, fast walking, ki
king,and
ommuni
ation.The
on
rete goal of the
ourse was to have a
ompletely new working solution by the end of April sothat we
ould parti
ipate in the Ameri
an Open
ompetition, whi
h happened to fall during the last weekof the
lass. After that point, a subset of the students
ontinued working towards RoboCup 2003 in Padova.1http://www.openr.org/robo
up/index.html2http://openr.aibo.
om/3http://www.
s.utexas.edu/~AustinVilla4http://www.
s.utexas.edu/~pstone/Courses/395Tspring035

The
lass was organized into three phases. Initially, the students
reated simple behaviors with the soleaim of be
oming familiar with Open-R.Then, about two weeks into the
lass we shifted to phase two by identifying key subtasks that wereimportant for
reating a
omplete team. Those subtasks were:� Vision;� Movement;� Fall Dete
tion;� Ki
king;� Lo
alization;� Communi
ation;� General Ar
hite
ture; and� Coordination.During this phase, students
hose one or more of these subtasks and worked in subgroups on generatinginitial solutions to these tasks in isolation.By about the middle of Mar
h, we were ready to swit
h to phase three, during whi
h we emphasized\
losing the loop," or
reating a single uni�ed
ode-base that was
apable of playing a full game of so

er.We
ompleted this integration pro
ess in time to enter a team in the RoboCup Ameri
an Open
ompetitionat the end of April.The following se
tions
hroni
le our progress towards our RoboCup 2003 entry. All of the subtopi
saddressed in phase two of the
lass
ontinued to be improved throughout our development pro
ess. For
larity of presentation, we present our eventual solutions in the same se
tions in whi
h we introdu
e ourinitial approa
hes. In so doing, we make an e�ort to do
ument the evolution of ideas that led to our �nalsolutions, though in general we give full details only for our �nal solutions. Subsequent se
tions address our�nal integration e�orts as well as our experien
es at the
ompetition.The remainder of the report is organized as follows. In Se
tion 3 we do
ument some of the initialbehaviors that were generated during phase one of the
lass. Next we do
ument the output of some ofthe subgroups that were formed in phase two of the
lass: vision in Se
tion 4; movement in Se
tion 5; falldete
tion in Se
tion 6; ki
king in Se
tion 7; lo
alization in Se
tion 8; and
ommuni
ation in Se
tion 9. Inea
h of these se
tions we fully do
ument our solutions to the subtasks as of RoboCup 2003 in July. Next, wedo
ument the tasks that o

upied phase three of the
lass, namely those that allowed us to put together theabove modules into a
ohesive
ode base. In Se
tion 10 we des
ribe our general ar
hite
ture that
ombinessensing, de
ision-making, and a
ting. In Se
tion 11 we introdu
e global maps, our main state representation.Se
tion 12 des
ribes our so

er-playing behaviors su
h as goal-s
oring and goaltending. Then in Se
tion 13we do
ument our methods for
oordinating the behaviors of the robots as a team. Se
tion 14 introdu
es ourdebugging and development tool. Then in Se
tion 15 we summarize our experien
es at the Ameri
an Openand RoboCup 2003
ompetitions, and Se
tion 16
on
ludes.3 Initial BehaviorsThe �rst task for the students in the
lass was to learn enough about the Aibo to be able to
ompile andrun any simple program on the Aibo.The open sour
e release of Open-R
ame with several sample programs that
ould be
ompiled and loadedonto the Aibo right away. These programs
ould do simple tasks su
h as:L-Master-R-Slave: Cause the right legs to mirror manual movements of the left legs.Ball-Tra
king-Head: Cause the head to turn su
h that the pink ball is always in the
enter of the visualimage (if possible).PID
ontrol: Move a joint to a position spe
i�ed by the user by typing in a telnet window.6

The students were to pi
k any program and modify it, or
ombine two programs in any way. The mainobje
tive was to make sure that everyone was familiar with the pro
ess for
ompiling and running programson the Aibos. Some of the resulting programs in
luded:� Variations on L-Master-R-Slave in whi
h di�erent joints were used to
ontrol ea
h other. For example,one student used the tail as the master to
ontrol all 4 legs, whi
h resulted in a swimming type motion.Doing so required s
aling the range of the tail joints to those of the leg joints appropriately.� Variations on Ball-Tra
king-Head in whi
h a di�erent
olor was tra
ked. Two students teamed up to
ause the robot to play di�erent sounds when it found or lost the ball.� Variations on PID
ontrol su
h that more than one joint
ould be
ontrolled by the same input string.After be
oming familiar with the
ompiling and uploading pro
ess, the next task for the students was tobe
ome more familiar with the Aibo's operating system and the Open-R interfa
e. To that end, they wererequired to
reate a program that added at least one new subje
t-observer
onne
tion to the
ode.5 Thestudents were en
ouraged to
reate a new Open-R obje
t from s
rat
h. Pattern-mat
hing from the sample
ode was en
ouraged, but
reating an obje
t as di�erent as possible from the sample
ode was preferred.Some of the responses to this assignment in
luded:� The ability to turn on and o� LEDs by pressing one of the robots' sensors.� A primitive walking program that walks forward when it sees the ball.� A program that alternates blinking the LEDs and
apping the ears.After this assignment, whi
h was due after just the se
ond week of the
lass, the students were familiarenough with the robots and the
oding environment to move on to their more dire
ted tasks with the aimof
reating useful fun
tionality.4 VisionThe ability of the robot to sense its environment is a prerequisite for any de
ision making on the Aibo. Assu
h, we pla
ed a strong emphasis on the vision
omponent of our team. The vision module pro
esses theimages taken by the CMOS
amera lo
ated on the Aibo. The module identi�es
olors in order to re
ognizeobje
ts, whi
h are then used to lo
alize the robot and to plan its operation.Our visual pro
essing is done using the established pro
edure of
olor segmentation followed by obje
tre
ognition. Color segmentation is the pro
ess of
lassifying ea
h pixel in an input image as belonging toone of a number of prede�ned
olor
lasses based on the knowledge of the ground truth on a few trainingimages. Though the fundamental methods employed in this module have been applied previously (both inRoboCup and in other domains), it has been built from s
rat
h like all the other modules in our team.Hen
e, the implementation details provided are our own solutions to the problems we fa
ed along the way.We have drawn some of the ideas from the previous te
hni
al reports of CMU [2℄ and UNSW [4℄. Thismodule
an be broadly divided into two stages: (i) low-level vision, where the
olor segmentation and regionbuilding operations are performed, and (ii) high-level vision, wherein obje
t re
ognition is a

omplished andthe position and bearing of the various obje
ts in the visual �eld are determined. The following se
tionspresent detailed des
riptions of these pro
esses. But �rst, we present a brief overview of the robot's CMOS
olor
amera.5A subje
t-observer
onne
tion is a pipe by whi
h di�erent Open-R obje
ts
an
ommuni
ate and be made interdependent.For example, one Open-R obje
t
ould send a message to a se
ond obje
t whenever the ba
k sensor is pressed,
ausing these
ond obje
t to, for example, suspend its
urrent task or
hange to a new mode of operation.
7

4.1 Camera SettingsAs mentioned previously, the robot
omes equipped with a CMOS
olor
amera that operates at a framerate of 25fps. Some of its other preset features are:� Horizontal viewing angle: 57:6Æ.� Verti
al viewing angle: 47:8Æ.� Lens Aperture: 2.0.� Fo
al length: 2.18mm.We have partial
ontrol over three parameters, ea
h of whi
h has three options from whi
h to
hoose:� WhiteBalan
e : We are provided with settings
orresponding to three di�erent light temperatures.1. Indoor �mode: 2800K.2. FL�mode: 4300K.3. Outdoor �mode: 7000K.This setting, as the name suggests, is basi
ally a
olor
orre
tion system to a

omodate varying lighting
onditions. The idea is that the
amera needs to identify the 'white point' (su
h that white obje
tsappear white) so that the other
olors are mapped properly. We found that this setting does help inin
reasing the separation between
olors and hen
e helps in better obje
t re
ognition. The optimumsetting depends on the 'light temperature' registered on the �eld (this in turn depends on the type oflight used, i.e, in
andes
ent,
uores
ent, et
.). For example, in our lab setting, we noti
ed a betterseparation between orange and yellow with the Indoor setting than with the other settings. This helpedus in distinguishing the orange ball from the other yellow obje
ts on the �eld su
h as the goal andse
tions of the bea
ons.� ShutterSpeed :1. Slow: 1=50se
.2. Mid: 1=100se
 .3. Fast: 1=200se
.This setting denotes the time for whi
h the shutter of the
amera allows light to enter the
amera.The higher settings (larger denominators) are better when we want to freeze the a
tion in an image.We noti
ed that both the 'Mid' and the 'Fast' settings did reasonably well though the 'Fast' settingseemed the best, espe
ially
onsidering that we want to
apture the motion of the ball. Here, the lowersettings would result in blurred images.� Gain:1. Low: 0dB.2. Mid: 0dB .3. High: 6dB.This parameter sets the
amera gain. In this
ase, we did not noti
e any major di�eren
e in performan
eamong the three settings provided.
8

4.2 Color SegmentationThe image
aptured by the robot's
amera, in the YCbCr format, is a set of numbers, ranging from 0 to255 along ea
h dimension, representing luminan
e (Y) and
hrominan
e (Cb, Cr). To enable the robot toextra
t useful information from these images, the numbers have to be suitably mapped into an appropriate
olor spa
e. We retain the YCbCr format and \train" the robot, using a Nearest Neighbor (NNr) s
heme[8, 4℄, to re
ognize and distinguish between 10 di�erent
olors, numbered as follows:� 0 = pink,� 1 = yellow,� 2 = blue,� 3 = orange,� 4 = marker green,� 5 = red,� 6 = dark (robot) blue,� 7 = white,� 8 = �eld green,� 9 = bla
k.The motivation behind using the NNr approa
h is that the
olors under
onsideration overlap in the YCbCrspa
e (some, su
h as orange and yellow, do so by a signi�
ant amount). Unlike other
ommon methods thattry to divide the
olor spa
e into
uboidal regions (or a
olle
tion of planes), the NNr s
heme allows us tolearn a
olor table where the individual blobs are de�ned more pre
isely.The original
olor spa
e has three dimensions,
orresponding to the Y, Cb, and Cr
hannels of the inputimage. To build the
olor table (used for
lassi�
ation of the subsequent images on the robot), we maintainthree di�erent types of
olor
ubes in the training phase: one Intermediate (IM)
olor
ube
orrespondingto ea
h
olor, a Nearest Neighbor
ube, and a Master (M)
ube (the names will make more sense after thedes
ription given below). To redu
e storage requirements, we operate at half the resolution, i.e. all the
ubeshave their numeri
al values s
aled to range from 0 to 127 along ea
h dimension. The
ells of the IM
ubesare all initialized to zero, while those of the NNr
ube and the M
ube are initialized to 9 (the
olor bla
k,also representing ba
kground).Color segmentation begins by �rst training on a set of images using UT Assist, our Java-based inter-fa
e/debugging tool (for more details see Se
tion 14). A robot is pla
ed at a few points on the �eld. Imagesare
aptured and then transmitted over the wireless network to a remote
omputer running the Java-basedserver appli
ation. The obje
ts of interest (goals, bea
ons, robots, ball, et
.) in the images are manually\labeled" as belonging to one of the
olor
lasses previously de�ned, using the Image Segmenter (see Se
-tion 14 for some pi
tures showing the labeling pro
ess). For ea
h pixel of the image that we label, the
elldetermined by the
orresponding YCbCr values (after transforming to half-resolution), in the
orrespondingIM
ube, is in
remented by 3 and all
ells a
ertain Manhattan distan
e away (within 2 units) from this
ell are in
remented by 1. For example, if we label a pixel on the ball orange in the image and this pixel
orresponds to a
ell (115; 35; 60) based on the intensity values of that pixel in the image, then in the orangeIM
ube this
ell is in
remented by 3 while the
ells su
h as (115; 36; 61) and (114; 34; 60) (among others)whi
h are within a Manhattan distan
e of 2 units from this
ell, in the orange IM
ube alone, are in
rementedby 1. For another example, see Figure 1.The training pro
ess is performed in
rementally, so at any stage we
an generate a single
ube (the NNr
ube is used for this purpose) that
an be used for segmenting the subsequent images. This helps us see how\well-trained" the system is for ea
h of the
olors and serves as a feedba
k me
hanism that lets us de
idewhi
h
olors need to be trained further. To generate the NNr
ube, we traverse ea
h
ell in the NNr
ubeand
ompare the values in the
orresponding
ell in ea
h of the IM
ubes and assign to this
ell the index ofthe IM
ube that has the maximum value in this
ell, i.e., 8(p; q; r) 2 [0; 127℄,NNrCube(yp;
bq;
rr) = arg maxi2[0;9℄ IMi(yp;
bq ;
rr) (1)9

Y

 Cb

 Cr

 0

 0 0 0

 0 0 0 0 0

 0 0

 0 0

 0 0

 0 0 0

 0 0

 0 0

 0

 0 0

 0 0

 0

 0 0

 0

 0

 0 0 0

 0 1

 3 1

 1

 0

 1

 1

 1

 1

 1 1

 1

 1 1

(a) (b) (
)Figure 1: An example of the development of the
olor table, spe
i�
ally the IM
ube. Part(a) shows thegeneral
oordinate frame for the
olor
ubes. Part(b) shows a planar subse
tion of one of the IM
ubesbefore labeling. Part(
) depi
ts the same subse
tion after the labeling of a pixel that maps to the
ell at the
enter of the subse
tion. Here only one plane is shown - the same operation o

urs a
ross all planes passingthrough the
ell under
onsideration su
h that all
ells a
ertain Manhattan distan
e away from this
ell arein
remented by 1.When we use this
olor
ube to segment subsequent images, we use the NNr s
heme. For ea
h pixel in thetest image, the YCbCr values (transformed to half-resolution) are used to index into this NNr
ube. Then we
ompute the weighted average of the value of this
ell and those
ells that are a
ertain Manhattan distan
e(we use 2-3 units) around it to arrive at a value that is set as the \numeri
al
olor" (i.e. the
olor
lass) ofthis pixel in the test image. The weights are proportional to the Manhattan distan
e from the
entral
ell,i.e., the greater this distan
e the smaller the signi�
an
e atta
hed to the value in the
orresponding
ell (seeFigure 2).We do the training over several images (around 20-30) by pla
ing the robot at suitable points on the�eld. The idea here is to train on images that
apture the bea
ons, goals, ball and the robots from di�erentdistan
es (and also di�erent angles for the ball) to a

ount for the variations in lighting along di�erent pointson the �eld. This is espe
ially important for the orange ball, whose
olor
ould vary from orange to yellowto brownish-red depending on the amount of lighting available at that point. We also train with severaldi�erent balls to a

ount for the fa
t that there is a marked variation in
olor among di�erent balls. Atthe end of the training pro
ess, we have all the IM
ubes with the
orresponding
ells suitably in
remented.The NNr operation is
omputationally intensive to perform on the robot's pro
essor. To over
ome this, wepre
ompute the result of performing this operation (the Master
ube is used for this) from the
orresponding
ells in the NNr
olor
ube, i.e. we traverse ea
h
ell of the M Cube and
ompute the \Nearest Neighbor"value from the
orresponding
ells in the NNr
ube. In other words, 8(p; q; r) 2 [0; 127℄ with a prede�nedManhattan distan
e ManDist 2 [3; 7℄,MCube(yp;
bq;
rr) = arg maxi2[0;9℄S
ore(i) (2)where 8(k1; k2; k3) 2 [0; 127℄,S
ore(i) = 0� Xk1;k2;k3 �ManDist� (j k1 � p j + j k2 � q j + j k3 � r j) 1A j(j k1 � p j + j k2 � q j + j k3 � r j) < ManDist^ NNrCube(yk1 ;
bk2 ;
rk3) = i: (3)10

 1

 1

 1

 1

 1

 1

 1

 1 1

 1

 1 1

 3

 1

 9 9 3

 3 3 3

 3 3

 3 3

 3 9 3 9

 3

 3 3

 9 3 9

 3 3 3 3

 3 3 3 3 3

 3 3 3

 9 3 3 9

 (a) (b)Figure 2: An example of the weighted average applied to the NNr
ube (a 2-dimensional representativeexample). Part (a) shows the values along a plane of the NNr
ube before the NNr s
heme is applied to the
entral
ell. Part (b) shows the same plane after the NNr update for its
entral
ell. We are
onsidering
ells within a Manhattan distan
e of 2 units along the plane. For this
entral
ell,
olor label 1 gets a voteof 3+1+1+1 = 6 while label 3 gets a vote of 2+2+2+2+1+1+1+1+1 = 13 whi
h makes the
entral
ell's label = 3. This is the value that is set as the
lassi�
ation result. This is also the value that is storedin the
ell in the M
ube that
orresponds to the
entral
ell.This
ube is loaded onto the robot's memory sti
k. This then makes
olor segmentation on the robot asimple pro
ess of table lookup, thereby making it a lot faster. (For an example of the
olor segmentationpro
ess and the Master Cube generated at the end of it, see Figure 17).One important point about our
olor segmentation s
heme is that we do not (at present) make an e�ortto normalize the
ubes based on the number of pixels (of ea
h
olor) that we train on. So, if we labeled anumber of yellow pixels and a relatively smaller number of orange pixels, then we would be biased towardsyellow in the NNr
ube. This is not a problem if we are
areful during the training pro
ess and label regionssu
h that all
olors get (roughly) equal representation. We leave a prin
ipled treatment of the problem ofnormalization to future resear
h.4.3 Region Building and MergingThe Master
ube is loaded onto the robot's memory sti
k and this is used to segment the images thatthe robot's
amera
aptures (in real-time). The next step in low-level pro
essing involves the formation ofre
tangular bounding boxes around
onne
ted regions of the same
olor. This in turn
onsists of run-lengthen
oding (RLE) and region merging [7℄, whi
h are standard image pro
essing approa
hes used previously inthe RoboCup domain [2℄.As ea
h image is segmented (during the �rst s
an of the image), left to right and top to bottom, it isen
oded in the form of run-lengths along ea
h horizontal s
an line i.e. along ea
h line we store the (x, y)position (the root node) where a sequen
e of a parti
ular
olor starts and the number of pixels until a sequen
eof another
olor begins. The data
orresponding to ea
h run-length is stored in a separate data stru
ture(
alled RunRegion) and the run-lengths are all stored as a linked list. Ea
h RunRegion data stru
ture alsostores the
orresponding
olor. Further, there is a bounding box
orresponding to ea
h RunRegion/run-length, whi
h during the �rst pass is just the run-length itself, but has additional properties su
h as thenumber of run-lengths en
losed, the number of a
tual pixels en
losed, the upper left (UL) and lower right(LR)
orners of the box et
. Ea
h run-length has a pointer to the next run-length of the same
olor (null ifnone exists) and an index
orresponding to the bounding box that it belongs to, while ea
h bounding box has11

a pointer to the list of run-lengths that it en
loses. This fa
ilitates the easy merging of two run-lengths (ora bounding box
ontaining several run-lengths with a single run-length or two bounding boxes ea
h havingmore that one run-length). The RunRegion data stru
ture and the BoundingBox data stru
ture are givenin Table 1.
// The Runregion data structure definition.

struct RunRegion {

};

// The BoundingBox data structure definition.

struct BoundingBox {

 int LRx;
 int LRy;
 bool lastBox;
 int valid;

 int rrcount;

 RunRegion* listRR;
 RunRegion* eoList;

};

 int color; //color associated with the run region.
 RunRegion* root; //the root node of the runregion.

 int xLoc; //x location of the root node.
 int yLoc; //y location of the root node.
 int runLength; // number of run lengths with this region.
 int boundingBox; //the bounding box that this region belongs to.

 RunRegion* nextRun;
 RunRegion* listNext; //pointer to the next runregion in the current run length.

 BoundingBox* prevBox; //pointer to the previous bounding box.
 BoundingBox* nextBox; // pointer to the next bounding box.
 int ULx; //upper left corner x coordinate.
 int ULy; //upper left corner y coordinate.

 int numRunLengths; //number of runlengths associated with this bounding box.
 int numPixels; //number of pixels in this bounding box.

 int color; //color cooresponding to this bounding box.

 float prob; //probability corresponding to this bounding box.Table 1: This table shows the basi
 run region and bounding box data stru
tures with whi
h we operate.Next, we need to merge the run-lengths/bounding boxes
orresponding to the same obje
t together underthe assumption that an obje
t in the image will be represented by
onne
ted run-lengths. In the se
ond pass,we pro
eed along the run-lengths (in the order in whi
h they are present in the linked list) and
he
k forpixels of the same
olor immediately below ea
h pixel over whi
h the run-length extends, merging run-lengthsof the same
olor that have signi�
ant overlap (the threshold number of pixel overlap is de
ided based onexperimentation: see Appendix A.1). When two run-lengths are to be merged, one of the bounding boxesis deleted while the other's properties (root node, number of run-lengths, size et
) are suitably modi�edto in
lude both the bounding boxes. This is a

omplished by moving the
orresponding pointers aroundappropriately. By in
orporating suitable heuristi
s, we remove bounding boxes that are not signi�
antlylarge or dense enough to represent an obje
t of interest in the image, and at the end of this pass, we endup with a number of
andidate bounding boxes, ea
h representing a blob of one of the nine
olors under
onsideration. The bounding boxes
orresponding to ea
h
olor are linked together in a separate linked list,whi
h (if required) is sorted in des
ending order of size for ease of further pro
essing. Details of the heuristi
sused here
an be found in Appendix A.1. 12

4.4 Obje
t Re
ognition with Bounding BoxesOn
e we have bounding boxes of the various
olors arranged in separate lists, we
an pro
eed to high-levelvision, i.e., the dete
tion of obje
ts of interest in the robot's image frame. The obje
ts that we primarilyneed to identify in the visual �eld are the ball, the two goals, the �eld markers (other than the goals) and theopponents. This stage takes as input the lists of bounding boxes and provides as output a
olle
tion of obje
ts(stru
tures
alled the VisionObje
ts), one for ea
h dete
ted obje
t, whi
h are then used for determining theposition and bearing of these obje
ts with respe
t to the robot. This information is in turn used in thelo
alization module (see Se
tion 8) to
al
ulate the robot's position in the �eld
oordinates. To identifythese obje
ts we introdu
e some
onstraints and heuristi
s, some of whi
h are based on the known geometryof the environment while others are parameters that we identi�ed by experimentation. We �rst do
umentthe basi
 pro
ess used to sear
h for the various obje
ts, and at the end of the se
tion we provide a des
riptionof the
onstraints and heuristi
s used.We start with the goals be
ause they are generally the largest blobs of the
orresponding
olors and on
efound they
an be used to eliminate spurious blobs during bea
on and ball dete
tion. We sear
h through thelists of bounding boxes for
olors
orresponding to the goals (blue and yellow) on the �eld, given
onstraintson size, aspe
t ratio and density Furthermore,
he
ks are in
luded to ensure that spurious blobs (noisyestimates on the �eld, blobs
oating in the air, et
.) are not taken into
onsideration. On the basis of these
onstraints we
ompare the blob found in the image (and identi�ed as a goal) with the known geometry ofthe goal. This provides some sort of likelihood measure, and a VisionObje
t is
reated to store this and theinformation of the
orresponding bounding box. (Table 2 displays the data stru
tures used for this purpose)
struct VisionObjects{
 int NumberOfObjects; //number of vision obejcts in curretn frame.
 BBox* ObjectInfo; //array of objects in view.
}

struct BBox {

 Point ul; //upper left point of the bounding box.
 Point lr; //lower right point of the bounding box.

}

}
 double y; //y coordinate.
 double x; //x coordinate.
struct Point {

int ObjID; //object ID.

double prob; //likelihood corresponding to this bounding box/object.

Table 2: This table shows the basi
 VisionObje
t and asso
iated data stru
tures with whi
h we operate.After sear
hing for the goals, we sear
h for the orange ball, probably the most important obje
t inthe �eld. We sort the orange bounding boxes in des
ending order of size and sear
h through the list (not
onsidering very small ones), on
e again based on heuristi
s on size, aspe
t ratio, density, et
. To deal with
ases with partial o

lusions, whi
h is quite
ommon with the ball on the �eld, we use the \
ir
le method" toestimate the equation of the
ir
le that best des
ribes the ball (see Appendix A.3 for details). Basi
ally thisinvolves �nding three points on the edge of the ball and �nding the equation of the
ir
le passing through thethree points. This method seems to give us an a

urate estimate of the ball size (and hen
e the ball distan
e)in most
ases. In the
ase of the ball, in addition to the
he
k that helps eliminate spurious blobs (
oatingin the air),
he
ks have to be in
orporated to ensure that minor mis
lassi�
ation in the segmentation stage(explained below) do not lead to dete
tion of the ball in pla
es where it does not exist.13

Next, we ta
kle the problem of �nding the bea
ons (six �eld markers, ex
luding the goals). The identi�-
ation of bea
ons is important in that the a

ura
y of lo
alization of the robot depends on the determinationof the position and bearing of the bea
ons (with respe
t to the robots) whi
h in turn depends on the properdetermination of the bounding boxes asso
iated with the bea
ons. Sin
e the
olor pink appears in all bea-
ons, we use that as the fo
us of our sear
h. Using suitable heuristi
s to a

ount for size, aspe
t ratio,density, et
. we mat
h ea
h pink blob with blue, green, or yellow blobs to determine the bea
ons. We ensurethat only one instan
e of ea
h bea
on (the most likely one) is retained. Additional tests are in
orporatedto remove spurious bea
ons: those that appear to be on the �eld or in the opponents,
oating in the air,inappropriately huge or tiny, et
. For details, see Appendix A.4.After this �rst pass, if the goals have not been found, we sear
h through the
andidate blobs of theappropriate
olors with a set of redu
ed
onstraints to determine the o

urren
e of the goals (whi
h resultsin a redu
ed likelihood estimate as we will see below). This is useful when we need to identify the goals ata distan
e, whi
h helps us lo
alize better, as ea
h edge of the goal serves as an additional marker for thepurpose of lo
alization.We found that the goal edges were mu
h more reliable as inputs to the lo
alization module than werethe goal
enters. So, on
e the goals are dete
ted, we determine the edges of the goal based on the edges ofthe
orresponding bounding boxes. Of
ourse, we in
lude proper bu�ers at the extremities of the image toensure that we dete
t the a
tual goal edges and not the 'arti�
ial edges' generated when the robot is able tosee only a se
tion of the goal (as a result of its view angle) and the sides of the trun
ated goal's boundingbox are mistaken to be a
tual edges.Next, we present a brief des
ription of some of the heuristi
s employed in the dete
tion of ball, goals,bea
ons and opponents. We begin by listing the heuristi
s that are
ommon to all obje
ts and then also listthose that are spe
i�
 to goals, ball and/or bea
ons. For more detailed explanations on some methods andparameters for individual test see the
orresponding appendi
es.� Spurious blob elimination: A simple
al
ulation using the tilt angle of the robot's head is used todetermine and hen
e eliminate spurious (bea
on, ball and/or goal) blobs that are too far down or toohigh up in the image plane. See Appendix A.2 for the a
tual thresholds and
al
ulations.� Likelihood Cal
ulation: For ea
h obje
t of interest in the robot's visual �eld, we asso
iate a measurewhi
h des
ribes how sure we are of our estimation of the presen
e of that obje
t in the
urrent imageframe. The easiest way to a

omplish this would be to
ompare the aspe
t ratio (the ratio of the heightto the width) of the bounding boxes that identify these obje
ts, to the a
tual known aspe
t ratio of theobje
ts in the �eld. For example, the goal has an aspe
t ratio of 1 : 2 in the �eld, and we
an
omparethe aspe
t ratio of the bounding box that has been dete
ted as the goal with this expe
ted ratio. We
an
laim that the
loser these two values are, the more sure we are of our estimate and hen
e higheris the likelihood.� Bea
on spe
i�

al
ulations:1. To remove spurious bea
ons, we ensure that the two se
tions that form the bea
on are of
ompa-rable size, i.e. that ea
h se
tion is at least half as large and half as dense as the other se
tion.2. We ensure that the separation between the two se
tions is within a small threshold, whi
h isusually 2� 3 pixels.3. We
ompare the aspe
t ratio of bounding box
orresponding to the bea
on in the image to thea
tual aspe
t ratio (2 : 1 :: height : width), whi
h helps remove
andidate bea
ons that are toosmall or disproportionately large.4. Aspe
t ratio, as mentioned above is further used to determine an estimate of the likelihood of ea
h
andidate bea
on that also helps
hoose the \most probable"
andidate when there are multipleo

urren
es of the same bea
on. Only bea
ons with a likelihood above a threshold are retainedand used for lo
alization
al
ulations. This helps ensure that false positives, generated by lightingvariations and/or shadows, do not
ause major problems in lo
alization.14

Note: for sample threshold values, see Appendix A.4.� Goal spe
i�

al
ulations:1. We use the `tilt-angle test' (des
ribed in detail in Appendix A.2)2. We use a similar aspe
t ratio test for the goals, too. In the
ase of the goals we also look forsuÆ
iently high density (the ratio of the number of pixels of the expe
ted
olor to the area of theblob), the number of run-lengths en
losed, and a minimum number of pixels. All these thresholdswere determined experimentally, and
hanging these thresholds
hanges the distan
e from whi
hthe goal
an be dete
ted and the a

ura
y of dete
tion. For example, lowering these thresholds
an lead to false positives.3. The aspe
t ratio is used to determine the likelihood, and the
andidate is a

epted i� it has alikelihood measure above a prede�ned minimum.4. When doing a se
ond pass for the goal sear
h, we relax the
onstraints slightly but proportionatelya lower likelihood measure gets assigned to the goal, if dete
ted.Note: for sample threshold values, see Appendix A.5.� Ball spe
i�

al
ulations:1. We use the `tilt-angle test' to eliminate spurious blobs from
onsideration.2. In most
ases, the ball is severely o

luded, pre
luding the use of the aspe
t ratio test. Nonetheless,we �rst sear
h for an orange obje
t with a high density and an aspe
t ratio (1:1) that would dete
tthe ball if it is seen
ompletely and not o

luded.3. If the ball is not found with these tight
onstraints, we relax the aspe
t ratio
onstraint andin
lude additional heuristi
s (e.g. if the ball is
lose, even if it is partially o

luded, it should havea large number of run-lengths and pixels) that help dete
t a bounding box around the partiallyo

luded ball. These heuristi
s and asso
iated thresholds were determined experimentally.4. If the yellow goal is found, we ensure that the
andidate orange ball does not o

ur within it andabove the ground (whi
h
an happen sin
e yellow and orange are
lose in
olor spa
e).5. We
he
k to make sure that the orange ball is found lower than the lower-most bea
on in the
urrent frame. Also, the ball
annot o

ur above the ground, or within or slightly below thebea
on. The latter
an o

ur if the white and/or yellow portions of the bea
on are mis
lassi�edas orange.6. We use the \
ir
le method" to dete
t the a
tual ball size. But we also in
lude
he
ks to ensurethat in
ases where this method fails and we end up with disproportionately huge or very smallball estimates (thresholds determined experimentally), we either keep the estimates we had beforeemploying the
ir
le method (and extend the bounding box along the shorter side to form a squareto get the
losest approximation to the ball) or reje
t the ball estimate in the
urrent frame. The
hoi
e depends on the extent to whi
h the estimated \ball" satis�es experimental thresholds.Note: for sample threshold values, see Appendix A.6.Finally, we
he
k for opponents in the
urrent image frame. As in the previous
ases, suitable heuristi
sare employed both to weed out the spurious
ases and to determine the likelihood of the estimate. Toidentify the opponents, we �rst sort the blobs of the
orresponding
olor in des
ending order of size, with aminimum threshold on number of pixels and run-lengths. We in
lude a relaxed version of the aspe
t ratiotest and stri
t tilt angle tests (an \opponent" blob
annot o

ur mu
h lower or mu
h higher than the horizonwhen the robot's head has very little tilt and roll) to further remove spurious blobs (see Appendix A.2 andAppendix A.7). Ea
h time an opponent blob (that satis�es these thresholds) is dete
ted, the robot tries tomerge it with one of its previous estimates based on thresholds. If it does not su

eed and it has less than15

4 valid (previous) estimates it adds this estimate to the list of opponents. At the end of this pro
ess, ea
hrobot has a list that stores the four largest bounding boxes (that satisfy all these tests) of the
olor of theopponent with suitable likelihood estimates that are determined based on the size of the bounding boxes(see Appendix A.8). Further pro
essing of opponent estimates using the estimates from other teammateset
 is des
ribed in detail in the se
tion on visual opponent modeling (Se
tion 4.6). On
e pro
essing of the
urrent visual frame is
ompleted, the dete
ted obje
ts, ea
h stored as a VisionObje
t is passed through theBrain to the GlobalMap module wherein the VisionObje
ts are operated upon using Lo
alization routines.4.5 Position and Bearing of Obje
tsThe obje
t re
ognition module returns a set of data stru
tures, one for ea
h \legal" obje
t in the visualframe. Ea
h obje
t also has an estimate of its likelihood, whi
h represents the un
ertainty in our per
eptionof the obje
t. The next step (the �nal step in high-level vision) is to determine the distan
e to ea
h su
hobje
t from the robot and the bearing of the obje
t with respe
t to the robot. In our implementation,this estimation of distan
e and bearing of all obje
ts in the image, with respe
t to the robot, is done asa prepro
essing step when the lo
alization module ki
ks into a
tion during the development of the globalmaps. Sin
e this is basi
ally a vision-based pro
ess we des
ribe it here rather than in the se
tion (Se
tion 8)on lo
alization. As ea
h frame of visual input is pro
essed, the robot has a

ess to the tilt, pan, and rollangles of its
amera from the appropriate sensors and these values give us a simple transform that takes usfrom the 3D world to the 2D image frame. Using the known proje
tion of the obje
t in the image plane andthe geometry of the environment (the expe
ted sizes of the obje
ts in the robot's environment) we
an arriveat estimates for the distan
e and bearing of the obje
t relative to the robot. The known geometry is used toarrive at an estimate for the varian
es
orresponding to the distan
e and the bearing. Suppose the distan
eand angle estimates for a bea
on are d and �. Then the varian
es in the distan
e and bearing estimates areestimated as: varian
ed = � 1bp� � (0:1d) (4)where � 1bp� is the likelihood of the obje
t returned by vision.varian
e� = tan�1�bea
onrd � (5)where bea
onr is the a
tual radius of the bea
on in the environment.By similar
al
ulations, we
an determine the distan
e and bearing (and the
orresponding varian
es) ofthe various obje
ts in the robot's �eld of view.4.6 Visual Opponent ModelingAnother important task a

omplished using the image data is that of opponent modeling. As des
ribedin Se
tion 4.4, ea
h robot provides a maximum of four best estimates of the opponent blobs based on the
urrent image frame. To arrive at an eÆ
ient estimate of the opponents (lo
ation of the opponents relativeto the robot and hen
e with respe
t to the global frame), ea
h robot needs to merge its own estimates withthose
ommuni
ated by its teammates. As su
h this pro
ess is a

omplished during the development of theglobal maps (Se
tion 11) but sin
e the operation interfa
es dire
tly with the output from the vision module,it is des
ribed here.When opponent blobs are identi�ed in the image frame, the vision module returns the bounding boxes
orresponding to these blobs. We noti
ed that though the shape of the blob and hen
e the size of thebounding box
an vary depending on the angle at whi
h the opponent robot is viewed (and its relativeorientation), the height of the bounding box is mostly within a
ertain range. We use this information toarrive at an estimate of the distan
e of the opponent and use the
entroid of the bounding box to estimatethe bearing of the
andidate opponent with respe
t to the robot (see Se
tion 4.5 for details on estimation of16

distan
e and bearing of obje
ts). These values are used to �nd the opponent's (x, y) position relative to therobot and hen
e determine the opponent's global (x, y) position (see Appendix A.9 for details on transformsfrom lo
al to global
oordinates and vi
e versa). Varian
e estimates for both the x and the y positions areobtained based on the
al
ulated distan
e and the likelihood asso
iated with that parti
ular opponent blob.For example, let d and � be the distan
e and bearing of the opponent relative to the robot. Then, in therobot's lo
al
oordinate frame (determined by the robot's position and orientation), we have the relativepositions as:relx = d �
os(�); rely = d � sin(�)From these we obtain the global positions as:� globxgloby � = T globallo
al � � relxrely � (6)where T globallo
al is the 2D-transformation matrix from lo
al to global
oordinates.For the varian
es in the positions, we use a simple approa
h:varx = vary = 1Oppprob � (0:1d) (7)where the likelihood of the opponent blob, Oppprob is determined by heuristi
s (see Appendix A.8).If we do not have any previous estimates of opponents from this or any previous frame, we a

eptthis estimate and store it in the list of known opponent positions. If any previous estimates exist, we tryto merge them with the present estimate by
he
king if they are
lose enough (based on heuristi
s). Allmerging is performed assuming Gaussian distributions. The basi
 idea is to
onsider the x and y position asindependent Gaussians (with the positions as the means and the asso
iated varian
es) and merge them (formore details see Se
tion 8.3.3 and [10℄). If merging is not possible and we have fewer than four opponentestimates, we treat this as a new opponent estimate and store it as su
h in the opponents list. But if fouropponent estimates already exist, we try to repla
e one of the previous estimates (the one with the maximumvarian
e in the list of opponent estimates and with a varian
e higher than the new estimate) with the newestimate. On
e we have traversed through the entire list of opponent bounding boxes presented by the visionmodule, we go through our
urrent list of opponent estimates and degrade all those estimates that were notupdated, i.e. not involved in merging with any of the estimates from the
urrent frame (for more details onthe degradation of estimates, see the initial portions of Se
tion 11 on global maps). When ea
h robot sharesits Global Map (see Se
tion 11) with its teammates, this data gets
ommuni
ated.When the robot re
eives data from its teammates, a similar pro
ess is in
orporated. The robot takesea
h
urrent estimate (i.e. one that was updated in the
urrent
y
le) that is
ommuni
ated by a teammateand tries to merge it with one of its own estimates. If it fails to do so and it has fewer than four opponentestimates, it a

epts the
ommuni
ated estimate as su
h and adds it to its own list of opponent estimates.But if it already has four opponent estimates, it repla
es its oldest estimate (the one with the largest varian
ewhi
h is larger than the varian
e of the
ommuni
ated estimate too) with the
ommuni
ated estimate. Ifthis is not possible, the
ommuni
ated estimate is ignored.This pro
edure, though simple, gives reliable results in nearly all situations on
e the degradation andmerging thresholds are properly tuned. It was used both during games and in one of the
hallenge tasks (seeSe
tion 15.3) during RoboCup and the performan
e was good enough to walk from one goal to the otheravoiding all seven robots pla
ed in its path.5 MovementEnabling the Aibos to move pre
isely and qui
kly is equally as essential to the overall RoboCup task asthe vision task. In this se
tion, we introdu
e our approa
h to Aibo movement, in
luding walking and theinterfa
es from walking to the higher level
ontrol modules.17

The Aibo
omes with a stable but slow walk. From wat
hing the videos of past RoboCups, and fromreading the available te
hni
al reports, it be
ame
lear that a fast walk is an essential part of any RoboCupteam. The walk is perhaps the most feasible
omponent to borrow from another team's
ode base, sin
e it
an be separated out into its own module. Nonetheless, we de
ided to
reate our own walk in the hopesof ending up with something at least as good, if not better, than that of other teams, while retaining theability to �ne tune it on our own.The movement
omponent of our team
an be separated into two parts. First, the walking motion itself,and se
ond, an interfa
e module between the low level
ontrol of the joints (in
luding both walking andki
king) and the de
ision-making
omponents.5.1 WalkingThis se
tion details our approa
h to enabling the Aibos to walk.5.1.1 Basi
sAt the lowest level, walking is e�e
ted on the Aibo by
ontrolling the joint angles of the legs. Ea
h of the fourlegs has three joints known as the rotator, abdu
tor, and knee. The rotator is a shoulder joint that rotatesthe entire leg (in
luding the other two joints) around an axis that runs horizontally from left to right. Theabdu
tor is the shoulder joint responsible for rotating the leg out from the body. Finally, the knee allows thelower link of the leg to bend forwards or ba
kwards, although the knees on the front legs primarily bend thefeet forwards while the ones on the ba
k legs bend primarily ba
kwards. These rotations will be des
ribedmore pre
isely in the se
tion on forward kinemati
s.Ea
h joint is
ontrolled by a PID me
hanism. This me
hanism takes as its inputs P, I, and D gain settingsfor that joint and a desired angle for it. An online tutorial about PID
ontrol
an be found at [11℄. The robotar
hite
ture
an pro
ess a request for ea
h of the joints at a rate of at most on
e every eight millise
onds. Wehave always requested joint values at this maximum allowed frequen
y. Also, the Aibo model informationlists re
ommended settings for the P, I, and D gains for ea
h joint. We have not thoroughly experimentedwith any settings aside from the re
ommended ones and use only the re
ommended ones for everything thatis reported here.The problem of
ompelling the robot to walk is greatly simpli�ed by a te
hnique
alled inverse kinemati
s.This te
hnique allows the traje
tory of a leg to be spe
i�ed in terms of a three-dimensional traje
tory for thefoot. The inverse kinemati
s
onverts the lo
ation of the foot into the
orresponding settings for the threejoint angles. A pre
ursor to deriving inverse kinemati
s formulas is having a model of the forward kinemati
s,the fun
tion that takes the three joint angles to a three-dimensional foot position. This is e�e
tively ourmathemati
al model of the leg.5.1.2 Forward Kinemati
sFor ea
h leg, we de�ne a three-dimensional
oordinate system whose origin is that leg's shoulder. In these
oordinate systems, positive x is to the robot's right, positive y is the forward dire
tion, and positive z isup. Thus, when a positive angle is requested from a
ertain type of joint, the dire
tion of the resultingrotation may vary from leg to leg. For example, a positive angle for the abdu
tor of a right leg rotates theleg out from the body to the right, while a positive angle for a left leg rotates the leg out to the left. Wewill des
ribe the forward and inverse kinemati
s for the front right leg, but be
ause of the symmetry of theAibo, the inverse kinemati
s formulas for the other legs
an be attained simply by �rst negating x or y asne
essary.The unit of distan
e in our
oordinate system is the length of one link of any leg, i.e. from the shoulder tothe knee, or from the knee to the foot. This may seem a strange statement, given that, physi
ally speaking,the di�erent links of the robot's legs are not exa
tly the same length. However, in our mathemati
al model ofthe robot, the links are all the same length. This serves to simplify our
al
ulations, although it is admittedlyan ina

ura
y in our model. We argue that this ina

ura
y is overshadowed by the fa
t that we are not18

modeling the leg's foot, a
umbersome una
tuated aestheti
 appendage. As far as we know, no team has yettried to model the foot.We
all the rotator, abdu
tor, and knee angles J1, J2, and J3 respe
tively. The goal of the forwardkinemati
s is to de�ne the fun
tion from J = (J1; J2; J3) to p = (x; y; z), where p is the lo
ation of thefoot a

ording to our model. We
all this fun
tion KF (J). We start with the fa
t that when J = (0; 0; 0)KF (J) = (0; 0;�2), whi
h we
all p0. This
orresponds to the situation where the leg is extended straightdown. In this base position for the leg, the knee is at the point (0; 0;�1). We will des
ribe the �nal lo
ationof the foot as the result of a series of three rotations being applied to this base position, one for ea
h joint.First, we asso
iate ea
h joint with the rotation it performs when the leg is in the base position. Therotation asso
iated with the knee, K(q;�), where q is any point in spa
e, is a rotation around the line y = 0,z = �1,
ounter
lo
kwise through an angle of � with the x-axis pointing towards you. The abdu
tor'srotation, A(q;�), goes
lo
kwise around the y-axis. Finally, the rotator is R(q;�), and it rotates
ounter-
lo
kwise around the x-axis. In general (i.e. when J1 and J2 are not 0),
hanges in J2 or J3 do not a�e
tp by performing the
orresponding rotation A or K on it. However, these rotations are very useful be
ausethe forward kinemati
s fun
tion
an be de�ned asKF (J) = R(A(K(p0; J3); J2); J1): (8)This formulation is based on the idea that for any set of angles J , the foot
an be moved from p0 to its�nal position by rotating the knee, abdu
tor, and rotator by J3, J2, and J1 respe
tively, in that order. Thisformulation works be
ause when the rotations are done in that order they are always the rotations K, A,and R. A s
hemati
 diagram of the Aibo after ea
h of the �rst two rotations is shown in Figure 3.It is never ne
essary for the robot to
al
ulate x, y, and z from the joint angles, so the above equationneed not be implemented on the Aibo. However, it is the starting point for the derivation of the InverseKinemati
s, whi
h are
onstantly being
omputed while the Aibo is walking.5.1.3 Inverse Kinemati
sInverse kinemati
s is the problem of �nding the inverse of the forward kinemati
s fun
tion KF , KI(q). Withour model of the leg as des
ribed above, the derivation of KI
an be done by a relatively simple
ombinationof geometri
 analysis and variable elimination.The angle J3
an be determined as follows. First we
al
ulate d, the distan
e from the shoulder to thefoot, whi
h is given by d =px2 + y2 + z2: (9)Next, note that the shoulder, knee, and foot are the verti
es of an isos
eles triangle with sides of length1, 1, and d with
entral angle 180� J3. This yields the formulaJ3 = 2
os�1�d2� : (10)The inverse
osine here may have two possible values within the range for J3. In this
ase we always
hoose the positive one. While there are some points in three-dimensional spa
e that this ex
ludes (be
auseof the joint ranges for the other joints), those points are not needed for walking. Furthermore, if we allowedJ3 to sometimes be negative, it would be very diÆ
ult for our fun
tion KI to be
ontinuous over its entiredomain.To
ompute J2, we must �rst write out an expression for K(p0; J3). It is (0; sinJ3; 1+
osJ3). This is theposition of the foot in Figure 3a. Then we
an isolate the e�e
t of J2 as follows. Sin
e the rotation R is withrespe
t to the x-axis, it does not a�e
t the x-
oordinate. Thus we
an make use of the fa
t that the KF (J),whi
h is de�ned to be R(A(K(p0; J3); J2); J1) (Equation 8), has the same x-
oordinate as A(K(p0; J3); J2).Plugging in our expression for K(p0; J3), we get thatA(K(p0; J3); J2) = A((0; sinJ3; 1 +
osJ3); J2): (11)19

+z

+y

−z −z

p0

J3 J3p0K(,)

J2

0 J3p J2A(K(,),)

(0,0,−1)

(0,0,−2)

+z

+x

b)a)Figure 3: S
hemati
 drawings of the Aibo a

ording to our kinemati
s model. a) This is a side view ofthe Aibo after rotation K has been performed on the foot. b) In this front view, rotation A has also beenperformed.

20

Sin
e A is a rotation around the y-axis,A(K(p0; J3); J2) = (sinJ2(1 +
osJ3); sinJ3;
osJ2(1 +
osJ3)): (12)Setting x (whi
h is de�ned to be the x-
oordinate of KF (J)) equal to the x-
oordinate here and solvingfor J2 gives us J2 = sin�1� x1 +
osJ3� : (13)Note that this is only possible if x � 1 +
os(J3). Otherwise, there is no J2 that satis�es our
onstraintfor it, and, in turn, no J su
h that FK(J) = q. This is the impossible sphere problem, whi
h we dis
uss inmore detail below. The position of the foot after rotations K and A is depi
ted in Figure 3b.Finally, we
an
al
ulate J1. Sin
e we know y and z before and after the rotation R, we
an use thedi�eren
e between the angles in the y-z plane of the two (y; z)'s. The C++ fun
tion atan2(z; y) gives us theangle of the point (y; z), so we
an
omputeJ1 = atan2(z; y)� atan2(
osJ2(1 +
osJ3); sinJ3): (14)The result of this subtra
tion is normalized to be within the range for J1. This
on
ludes the derivationof J1 through J3 from x, y, and z. The
omputation itself
onsists simply of the
al
ulations in the fourequations (9), (10), (13), and (14).It is worth noting that expressions for J1, J2, and J3 are never given expli
itly in terms of x, y, and z.Su
h expressions would be very
onvoluted, and they are unne
essary be
ause the serial
omputation givenhere
an be used instead. Furthermore, we feel that this method yields some insight into the relationshipsbetween the legs joint angles and the foot's three-dimensional
oordinates.There are many points q, in three-dimensional spa
e, for whi
h there are no joint angles J su
h thatFK(J) = q. For these points, the inverse kinemati
s formulas are not appli
able. One
ategory of su
hpoints is intuitively
lear: the points whose distan
e from the origin is greater than two. These are impossiblelo
ations for the foot be
ause the leg is not long enough to rea
h them from the shoulder. There are alsomany regions of spa
e that are ex
luded by the angle ranges of the three joints. However, there is oneunintuitive, but important, unrea
hable region, whi
h we
all the impossible sphere. The impossible spherehas a radius of 1 and is
entered at the point (1; 0; 0). The following analysis explains why it is impossiblefor the foot to be in the interior of this sphere.Consider a point (x; y; z) in the interior of the illegal sphere. This means that(x� 1)2 + y2 + z2 < 1x2 � 2x+ 1+ y2 + z2 < 1x2 + y2 + z2 < 2x:Substituting d for px2 + y2 + z2 and dividing by two gives usd22 < x: (15)Sin
e J3 = 2
os�1 �d2� (Equation (10)),
os J32 = d2 , so by the double angle formula
osJ3 = d22 � 1, ord22 = 1 +
osJ3. Substituting for d22 , we get x > 1 +
osJ3: (16)This is pre
isely the
ondition, as dis
ussed above, under whi
h the
al
ulation of J2 breaks down. Thisshows that points in the illegal sphere are not in the range of FK .O

asionally, our parameterized walking algorithm requests a position for the foot that is inside theimpossible sphere. When this happens, we proje
t the point outward from the
enter of the sphere onto its21

C4y
z

2 � C2Figure 4: The foot tra
es a half ellipse as the robot walks forward.surfa
e. The new point on the surfa
e of the sphere is attainable, so the inverse kinemati
s formulas areapplied to this point.5.1.4 General Walking Stru
tureOur walk uses a trot-like gait in whi
h diagonally opposite legs step together. That is, �rst one pair ofdiagonally opposite legs steps forward while the other pair is stationary on the ground. Then the pairsreverse roles so that the �rst pair of legs is planted while the other one steps forward. As the Aibo walksforward, the two pairs of diagonally opposite legs
ontinue to alternate between being on the ground andbeing in the air. For a brief period of time at the start of our developmental pro
ess, we explored thepossibility of other gait patterns, su
h as a walking gait where the legs step one at a time. We settled onthe trot gait after wat
hing video of RoboCup teams from previous years.While the Aibo is walking forwards, if two feet are to be stationary on the ground, that means thatthey have to move ba
kwards with respe
t to the Aibo. In order for the Aibo's body to move forwards ina straight line, ea
h foot should move ba
kwards in a straight line for this portion of its traje
tory. For theremainder of its traje
tory, the foot must move forward in a
urve through the air. We opted to use a halfellipse for the shape of this
urve (Figure 4).A foot's half-ellipti
al path through the air is governed by two fun
tions, y(t) and z(t), where t is theamount of time that the foot has been in the air so far divided by the total time the foot spends in the air(so that t runs from 0 to 1). While the Aibo is walking forwards, the value of x for any given leg is always
onstant. The values of y and z are given byy(t) = C1 � C2
os(�t) (17)and z(t) = C3 � C4 sin(�t): (18)In these equations, C1 through C4 are four parameters that are �xed during the walk. C1 determineshow far forward the foot is and C3 determines how
lose the shoulder is to the ground. The parameters C2and C4 determine how big a step is and how high the foot is raised for ea
h step (Figure 4). Our walk hasmany other free parameters, whi
h are all des
ribed in Se
tion 5.1.7.
22

x
y

(a) (b)Figure 5: The main movement dire
tion of the half ellipses
hanges for (a) walking sideways, (b) turning inpla
e. (The dark squares indi
ate the positions of the four feet when standing still.)

x
y

Figure 6: Combining forwards, sideways and turning motions. Ea
h
omponent
ontributes a ve
tor to the
ombination. Dashed lines show the resulting ve
tors. (We show only half of the ellipse lengths, for
larity.)With the ve
tors shown, the robot will be turning towards its right as it moves diagonally forward and right.5.1.5 Omnidire
tional ControlAfter implementing the forward walk, we needed sideways, ba
kwards, and turning motions. There is a ni
edes
ription of how to obtain all these (and any
ombination of these types of walks) in [12℄. We based ourimplementation on the ideas from that paper.Sideways and ba
kwards walks are just like the forward walk with the ellipse rotated around the z axis(Figure 5a). For walking sideways, the ellipse is rotated 90Æ to the side towards whi
h the robot shouldwalk. For walking ba
kwards, the ellipse points in the negative y dire
tion. Turning in pla
e is a little more
ompli
ated. The four legs of the robot de�ne a
ir
le passing through them. The dire
tion of the ellipsefor ea
h leg is tangent to this
ir
le, pointing
lo
kwise if the robot is to turn right and
ounter
lo
kwise toturn left (Figure 5b).Combinations of walking forwards, ba
kwards, sideways, and turning are also possible by simply
om-bining the di�erent
omponents for the ellipses through ve
tor addition. For example, to walk forwards andto the right at the same time, at an angle of 45Æ to the y axis, we would make the ellipses point 45Æ to theright of the y axis. Any
ombination
an be a
hieved as shown in Figure 6.In pra
ti
e, the method des
ribed here worked well for
ombinations of forwards and turning velo
ities,but we had diÆ
ulty also in
orporating sideways velo
ities. The problem was that, after tuning the param-23

eters (Se
tion 5.1.8), we found that the parameters that worked well for going forwards and turning did notwork well for walking sideways. It was not obvious how to �nd
ommon parameters that would work for
ombinations of all three types of velo
ities.In situations where we needed to walk with a non-zero sideways velo
ity, we frequently used a slower om-nidire
tional walk developed by a student in the Spring semester
lass.6 That walk is
alled SPLINE WALK,while the one being des
ribed here is
alled PARAM WALK. Se
tion 5.2.3 dis
usses when ea
h of the walkswas used.5.1.6 Tilting the Body ForwardUp until the Ameri
an Open, our walking module was restri
ted to having the Aibo's body be parallel to theground. That is, it did not allow for the front and ba
k shoulders to be di�erent distan
es from the ground.This turned out to be a severe limitation. During this time, we were unable to a
hieve a forward speed ofover 150 mm/s. After relaxing this
onstraint, only the slightest hand tuning was ne
essary to bring ourspeed over 200 mm/s. After a signi�
ant amount of hand tuning, we were able to a
hieve a forwards walkingspeed of 235 mm/s. (The parameters that a
hieve this speed are given in Se
tion 5.1.8 and our pro
edurefor measuring walking speed is des
ribed in Se
tion 5.1.9.)In many of the fastest and most stable walks the front legs tou
h the ground with their elbows whenthey step. Apparently, this is far more e�e
tive than just having the feet tou
h the ground. We enable theelbows to tou
h the ground by setting the height of the front shoulders to be lower than that of the ba
kshoulders. However, this ability requires one more
omputation to be performed on the foot
oordinatesbefore the inverse kinemati
s equations are applied. That is, when the Aibo's body is tilted forward we stillwant the feet to move in half ellipses that run parallel to the ground. This means that the points given byequations 17 and 18 have to be rotated with respe
t to the x-axis before the inverse kinemati
s equationsare applied.The angle through whi
h these points must be rotated is determined by the di�eren
e between thedesired heights of the front and ba
k shoulders and the distan
e between the front and ba
k shoulders. Thedi�eren
e between the heights, dh, is a fun
tion of the parameters being used (the heights of the front andba
k shoulders are two of our parameters), but the distan
e between the front and ba
k shoulders is a �xedbody length distan
e whi
h we estimate at 1:64 in our units and
all lb. Then the angle of the body rotationis given by � = sin�1�dhlb � : (19)5.1.7 Des
ription of all the ParametersThis se
tion lists and des
ribes all twenty parameters of our Aibo walk. The units for most of the parametersare distan
es whi
h are in terms of leg-link length, as dis
ussed in Se
tion 5.1.2. Ex
eptions are noted below.� Forward step distan
e: How far forward the foot should move from its home position in one step.� Side step distan
e: How far sideways the foot should move from its home position in one step.� Turn step distan
e: How far ea
h half step should be for turning.� Front shoulder height: How high from the ground the robot's front legs' J1 and J2 joints should be.� Ba
k shoulder height: How high from the ground the robot's ba
k legs' J1 and J2 joints should be.� Ground fra
tion: What fra
tion of a step time the robot's foot is on the ground. (The rest of the timeis spent with the foot in the air, making a half ellipse.) Between 0 and 1. Has no unit.6Aniket Murarka 24

� Front left y-o�set: How far out in the y-dire
tion the robot's front left leg should be when it's in itshome position.� Front right y-o�set: How far out in the y-dire
tion the robot's front right leg should be when it's inits home position.� Ba
k left y-o�set: How far out in the y-dire
tion the robot's ba
k left leg should be when it's in itshome position.� Ba
k right y-o�set: How far out in the y-dire
tion the robot's ba
k right leg should be when it's in itshome position.� Front left x-o�set: How far out in the x-dire
tion the robot's front left leg should be when it's in itshome position.� Front right x-o�set: How far out in the x-dire
tion the robot's front right leg should be when it's inits home position.� Ba
k left x-o�set: How far out in the x-dire
tion the robot's ba
k left leg should be when it's in itshome position.� Ba
k right x-o�set: How far out in the x-dire
tion the robot's ba
k right leg should be when it's in itshome position.� Front Clearan
e: How far up the front legs should be lifted o� the ground at the peak point of the halfellipse.� Ba
k Clearan
e: How far up the ba
k legs should be lifted o� the ground at the peak point of the halfellipse.� Dire
tion fwd: Whether the robot should move forwards or ba
kwards. Either 1 or -1. Has no unit.� Dire
tion side: Whether the robot should move right or left. Either 1 or -1. Has no unit.� Dire
tion turn: Whether the robot should turn towards its right or its left. Either 1 or -1. Has nounit.� Moving max
ounter: Number of Open-R frames one step takes. Greater than 1. Has no unit.5.1.8 Tuning the ParametersOn
e the general framework of our walk was set up, we were fa
ed with the problem of determining goodvalues for all of the parameters of the walk. This pro
ess was greatly fa
ilitated by the use of a tool we hadwritten that allowed us to telnet into the Aibo and
hange walking parameters at run time. Thus we wereable to go ba
k and forth between altering parameters and wat
hing (or timing) the Aibo to see how fast itwas. This pro
ess enabled us to experiment with many di�erent
ombinations of parameters.We fo
used most of our tuning e�ort on �nding as fast a straight forward walk as possible. Our tuningpro
ess
onsisted of a mixture of manual hill-
limbing and using our observations of the walk and intuitionabout the e�e
ts of the parameters. For example, two parameters that were tuned by relatively blind hill-
limbing were Forward step distan
e and Moving max
ounter. These parameters are very important andit is often diÆ
ult to know intuitively if they should be in
reased or de
reased. So tuning pro
eeded slowlyand with many trials. On the other hand, parameters su
h as the front and ba
k
learan
es
ould frequentlybe tuned by noti
ing, for instan
e, that the front (or ba
k) legs dragged along the ground (or went too highin the air). The fastest parameters we were able to �nd for our forward walk are given in the following table.We found that these parameters worked well for
ombinations of forward and turning velo
ities (withthe appropriate modi�
ations to Forward step distan
e and Turn step distan
e). However, when we set the25

Parameter ValueForward step distan
e 0:74Side step distan
e 0:0Turn step distan
e 0:0Front shoulder height 1:1Ba
k shoulder height 1:6Ground fra
tion 0:5Front left y-o�set 0:7Front right y-o�set 0:7Ba
k left y-o�set �0:4Ba
k right y-o�set �0:4Front left x-o�set �0:25Front right x-o�set 0:25Ba
k left x-o�set 0:0Ba
k right x-o�set 0:0Front
learan
e 0:9Dire
tion fwd 1Dire
tion side 1Dire
tion turn 1Moving max
ounter 92Table 3: Fast Walking Parameter Valuesforwards and turning
omponents to zero and tried to walk straight sideways, the robot would
urve quitesharply forwards. Thus to walk with a non-zero sideways velo
ity we used either a di�erent set of parametersor SPLINE WALK.5.1.9 Odometry CalibrationAs the Aibo walks, it keeps tra
k of its forward, horizontal, and angular velo
ities. These values are usedas inputs to our parti
le �ltering algorithm (see Se
tion 8) and it is important for them to be as a

urateas possible. The Movement Module takes a walking request in the form of a set of forward, horizontal, andangular velo
ities. These velo
ities are then
onverted to walking parameters. The Brain assumes that thevelo
ities being requested are the ones that are a
tually attained, so the a

ura
y of the odometry relies onthat of those
onversions.Sin
e the step distan
e parameters are proportional to the distan
e traveled ea
h step and the time forea
h step is the same, the step distan
e parameters should theoreti
ally be proportional to the
orrespondingvelo
ities. This turned out to be true to a fair degree of a

ura
y for
ombinations of forward and turningvelo
ities. As mentioned above, we needed to use a di�erent set of parameters for walking with a non-zerosideways velo
ity. These parameters did not allow for a fast forward walk, but with them the velo
ities wereroughly proportional to the step distan
es for
ombinations of forward, turning, and sideways velo
ities.The proportionality
onstants are determined by a dire
t measurement of the relevant velo
ities. Tomeasure forward velo
ity, we use a stopwat
h to time the robot walking from one goal line to the other withits forward walking parameters. The time taken is divided into the length of the �eld, 4200 mm, to yieldthe forward velo
ity. The same pro
ess is used to measure sideways velo
ity. To measure angular velo
ity,we exe
ute the walk with turning parameters. Then we measure how mu
h time it takes to make a
ertainnumber of
omplete revolutions. This yields a velo
ity in degrees per se
ond. Finally, the proportionality
onstants were
al
ulated by dividing the measured velo
ities by the
orresponding step distan
e parametersthat gave rise to them.Sin
e the odometry estimates are used by lo
alization (Se
tion 8), the odometry
alibration
onstants26

ould be tuned more pre
isely by running lo
alization with a given set of odometry
onstants and observingthe e�e
ts of the odometry on the lo
alization estimates. Then we
ould adjust the odometry
onstants inthe appropriate dire
tion to make lo
alization more a

urate. We feel that we were able to a
hieve quitea

urate odometry estimates by a repetition of this pro
ess.5.2 General MovementControl of the Aibo's movements o

urs at three levels of abstra
tion.1. The lowest level, the \movement module," resides in a separate Open-R obje
t from the rest of our
ode(as des
ribed in the
ontext of our general ar
hite
ture in Se
tion 10) and is responsible for sendingthe joint values to OVirtualRobotComm, the provided Open-R obje
t that serves as an interfa
e to theAibo's motors.2. One level above the movement module is the \movement interfa
e," whi
h handles the work of
al-
ulating many of the parameters parti
ular to the
urrent internal state and sensor values. It alsomanages the inter-obje
t
ommuni
ation between the movement module and the rest of the
ode.3. The highest level o

urs in the behavior module itself (Se
tion 12), where the de
isions to initiate or
ontinue entire types of movement are made.5.2.1 Movement ModuleThe movement module shares three
onne
tions (\servi
es") with other Open-R obje
ts: one with theOVirtualRobotComm obje
t mentioned above, and two with the Brain, the Open-R obje
t whi
h in
ludesmost of our
ode (see Se
tion 10 for a des
ription of our general ar
hite
ture), in
luding the C++ obje
t
orresponding to the movement interfa
e des
ribed in Se
tion 5.2.2. It uses one
onne
tion with the Brainto take requests from the Brain for types of high-level movement, su
h as walking in a parti
ular dire
tion orki
king. It then
onverts them to joint values, and uses its
onne
tion with OVirtualRobotComm to requestthat joint positions be set a

ordingly. These requests are sent as often as is allowed { every 8 millise
onds.The se
ond
onne
tion with the Brain allows the movement module to send updates to the Brain aboutwhat movement it is
urrently performing. Among other things, this lets the Brain know when a movementit requested has �nished (su
h as a ki
k). The
ow of
ontrol is illustrated by the arrows in Figure 7 (thefun
tions identi�ed in the �gure are de�ned below). Thi
k arrows represent a message
ontaining information(from Subje
t to Observer); thin arrows indi
ate a message without further information (from Observer toSubje
t). An arrow ending in a null marker indi
ates that the message does nothing but enable the servi
eto send another message.Be
ause the movement module must send an Open-R message to OVirtualRobotComm every time itwants to
hange a joint position, it is ne
essary for the movement module to keep an internal state sothat it
an resume where it left o� when OVirtualRobotComm returns
ontrol to the movement module.Whenever this happens, the movement module begins exe
ution with the fun
tion ReadyEffe
tor, whi
his
alled automati
ally every time OVirtualRobotComm is ready for a new
ommand. ReadyEffe
tor
allsthe parti
ular fun
tion
orresponding to the
urrent movement module state, a variable that indi
ates whi
htype of movement is
urrently in progress. Many movements (for example, walking and ki
king) require thata sequen
e of sets of joint positions be
arried out, so the fun
tions responsible for these movements mustbe exe
uted multiple times (for multiple messages to OVirtualRobotComm). The states of the movementmodule are summarized in Table 4.Whereas ki
king and getting up require the Aibo's head to be doing something spe
i�
, neither the idlestate nor the two walks require anything in parti
ular from the head joints. Furthermore, it is useful to allowthe head to move independently from the legs whenever possible (this allows the Aibo to \keep its eye on theball" while walking, for instan
e). Thus the movement module also maintains a separate internal state forthe head. If the movement module's state is KICK MOTION or GETUP MOTION when ReadyEffe
torbegins exe
ution, the new joint angles for the head will be spe
i�ed by the fun
tion
orresponding to the27

OVirtualRobotComm MovementModule Brain

(ReceiveMovement)

Update Brain’s knowledge of MovementModule state.

(ReadyEffector)

If state has changed, notify Brain.

Send new joint values to robot.

(MoveToNewAngles)

Adjust motors to reflect new joint values.

(NewParamsNotify) Send movement request.

(Movement.SendCommand)

change state if current action is finished

calculate new joint values

...

...

...

Change MovementModule state
according to received request.

determine movement corresponding to current behavior

...

...

Figure 7: Inter-obje
t
ommuni
ation involving the movement module. Thi
k arrows represent a message
ontaining information (from Subje
t to Observer); thin arrows indi
ate a message without further informa-tion (from Observer to Subje
t). An arrow ending in a null marker indi
ates that the message does nothingbut enable the servi
e to send another message.State Des
riptionINIT Initial stateIDLE No leg motion, but joint gains are set (robot is standing)7PARAM WALK Fastest walkSPLINE WALK Omnidire
tional slower walkKICK MOTION Ki
kingGETUP MOTION No joint position requests being sent to OVirtualRobotComm,thus allowing built-in Sony getup routines
ontrol over all motorsTable 4: Movement module statesmovement module state. Otherwise, ReadyEffe
tor
alls a fun
tion
orresponding to the
urrent head state,whi
h determines the new joint angles for the head, and the rest of the joint angles are determined by thefun
tion for the
urrent movement module state. A summary of the head states appears in Table 5.The movement module listens for
ommands with a fun
tion
alled NewParamsNotify. When the Brainsends a movement request, NewParamsNotify a

epts it and sets the movement module state and/or headstate a

ordingly. When the internal state is next examined { this o

urs in the next
all to ReadyEffe
tor(that is, after the next time the joint positions are set by OVirtualRobotComm) { the movement modulebegins exe
uting the requested movement. See Table 6 for a summary of the possible requests to themovement module. Note that both a head movement and a body movementmay be requested simultaneously,with the same message. However, if the body movement that is requested needs
ontrol of the head joints,the head request is ignored.7In pra
ti
e, this is implemented by exe
uting a \walk" with forward velo
ity, side velo
ity, turn velo
ity, and leg height allequal to 0.
28

State Des
riptionIDLE Head is still (but joint gains are set)MOVE Moving head to a spe
i�
 positionSCAN Moving head at a
onstant speed in one dire
tionKICK Exe
uting a sequen
e of head positionsTable 5: Head statesType of request Explanation Asso
iated parametersMOVE NOOP don't
hange body movementMOVE STOP stop leg movementMOVE PARAM WALK start walking using ParamWalk x-velo
ity, y-velo
ity, angular velo
ityMOVE SPLINE WALK start walking using SplineWalk x-destination, y-destination, angular destinationMOVE KICK exe
ute a ki
k type of ki
kMOVE GETUP get up from a fallDONE GETUP robot is now upright, resume motionsHEAD NOOP don't
hange head movementHEAD MOVE move head to a spe
i�
 angleHEAD SCAN s
an head at
onstant velo
ity s
an speed, dire
tionHEAD KICK ki
k with the head type of ki
kHEAD STOP stop head movementTable 6: Possible requests to the movement module5.2.2 Movement Interfa
eThe movement interfa
e is part of the Brain Open-R obje
t. Its main fun
tion is to translate high-levelmovement
ommands into movement module requests, so that the Brain
an simply spe
ify high-level move-ment behaviors (su
h as \turn toward this angle and ki
k with this ki
k") and let the movement interfa
etake
are of the rest.During ea
h Brain
y
le, the behavior modules spe
ify movements by
alling movement interfa
e fun
-tions, whi
h
ompute the
ombination of movement module requests ne
essary to
arry out the spe
i�edmovement. If the requested types of movement do not interfere with ea
h other (for example, if both a heads
an and a forward walk are requested in the same Brain
y
le), then all requested movements are
ombinedin the message that is eventually sent to the movement module. Finally, at the end of ea
h Brain
y
le, thefun
tion Movement.SendCommand is
alled. This fun
tion takes
are of sending the message to the movementmodule
ontaining the request, and ensuring that redundant messages are not sent.The movement interfa
e provides fun
tions for basi
 movements su
h as walking forward, turning, movingthe head to a position, stopping the legs or head, and getting up from a fall. It also provides several fun
tionsfor more
omplex movements, whi
h are des
ribed here.Head S
an When sear
hing for the ball, it is helpful to move the head around in some fashion so thatmore of the �eld
an be seen. On the one hand, the more qui
kly the �eld
an be
overed by the s
an, themore qui
kly the ball
an be found. On the other hand, if the head moves too qui
kly, the vision will notbe able to re
ognize the ball, be
ause it will not be in sight for the required number of frames. Thereforeit makes sense to try to
over as mu
h of the �eld with as little head movement as possible. At �rst webelieved that it was not possible to
over the entire height of the �eld with fewer than three horizontal s
ans,so we used a three-layer head s
an at the Ameri
an Open. However, by wat
hing other teams, we be
ame
onvin
ed that it must be possible to
over the entire relevant portion of the �eld with two head s
ans. Aftersome experimentation, we managed to eliminate the persistent blind spot in the middle of a two-layer head29

s
an that we
reated. Thus, the movement interfa
e now provides a fun
tion that takes
are of exe
utingthe two-layer head s
an. It also allows the behaviors to spe
ify whi
h
orner the s
an starts from. This isbe
ause the two-layer head s
an typi
ally o

urs immediately after losing the ball, and often the brain knowswhi
h dire
tion the ball is most likely to be in given where it was last seen. Thus allowing the starting
ornerto be spe
i�ed allows this information to be used.Follow Obje
t On
e the robot sees the ball, walking towards it is a
hieved by two simultaneous
ontrollaws. The �rst keeps the head pointed dire
tly at the ball as the ball moves in the image. This is a
hievedby taking the horizontal and verti
al distan
es between the lo
ation of the ball in the image and the
enterof the image and
onverting them into
hanges in the head pan and tilt angles.Se
ond, the Aibo walks towards the dire
tion that its head is pointing. It does this by walking with a
ombination of forward and turning velo
ities. As the head's pan angle
hanges from the straight aheadposition towards a sidewise-fa
ing position, the forward velo
ity de
reases linearly (from its maximum) andthe turning velo
ity in
reases linearly (from zero). In
ombination, these poli
ies bring the Aibo towards theball.While we were able to use the above methods to have the Aibo walk in the general dire
tion of theball, it proved quite diÆ
ult to have the Aibo reliably attain
ontrol of the ball. One problem was that therobot would kno
k the ball away with its legs as it approa
hed the ball. We found that if we in
reased theproportionality
onstant of the turning velo
ity, it would allow the robot to fa
e the ball more pre
isely asit went up to the ball. Then the ball would end up between the Aibo's front legs instead of getting kno
kedaway by one of them. Another problem that arose was that the Aibo o

asionally bumped the ball out ofthe way with its head. We dealt with this by having the robot keep its head pointed 10Æ above the ball.Both of these solutions required some experimentation and tuning of parameters.Tra
k Obje
t This fun
tion follows a ball with the head, and turns the body in pla
e when ne
essary soas not to lose sight of the ball. It is used
hie
y for the goalie.Strafe Before we had lo
alization in pla
e, we needed a way to turn the robot around the ball so that it
ould ki
k it towards the goal. The problem was that we needed to keep its head pointing down the �eld soit
ould see the goal, whi
h made turning with the ball pin
hed underneath the
hin (see below) unfeasible.Stra�ng
onsisted of walking with a sideways velo
ity and a turning velo
ity, but no forward velo
ity. This
aused the Aibo to walk sideways in a
ir
le around the ball. During this time, it was able to keep its headpointed straight ahead so that it
ould stop when it saw the goal.Chin Pin
h Turn This is a motion whi
h lowers the head (to a tilt angle of �55Æ) to trap the ball belowthe
hin, and then turns some number of degrees while the ball is trapped there. On
e we had lo
alizationin pla
e, this repla
ed the strafe fun
tion just des
ribed, be
ause it is both faster and more reliable at notlosing the ball.Tu
k Ball Under This fun
tion walks forward slowly while pulling the head down. It helps the Aiboattain
ontrol of the ball, and is typi
ally used for the transition between follow obje
t and
hin pin
h turn.5.2.3 High-Level ControlFor the most part, it is the task of the behaviors to simply
hoose whi
h
ombinations of the movementinterfa
e fun
tions just des
ribed should be exe
uted. However, there are ex
eptions; sometimes there is areason to handle some details of movement at the level of the behavior. One su
h ex
eption is establishingthe duration of the
hin pin
h turn. Be
ause lo
alization is used to determine when to stop the
hin pin
hturn, it makes more sense to deal with this in the behavior than in the movement interfa
e, whi
h does nototherwise need to get lo
alization information. 30

If the behavior
hooses to do a
hin pin
h turn (see Se
tion 12.1.2 for details on when this happens),it will spe
ify an Aibo-relative angle that it wishes to turn toward as well as whi
h way to turn (by thesign of the angle). This angle is then
onverted to an angle relative to the robot's heading to the o�ensivegoal.8 The robot
ontinues to turn9 until the robot's heading to the opponent goal is as desired, and thenthe behavior transitions to the ki
king state.While we use PARAM WALK for the vast majority of our walking, we use SPLINE WALK in most
aseswhere we need to walk with a non-zero sideways velo
ity. An important example of this is in the supporterrole (Se
tion 13.2.1), where we need to walk to a point while fa
ing a
ertain dire
tion. SPLINE WALK wasalso used for part of the obsta
le avoidan
e
hallenge task. In general, we de
ided whi
h walk to use in anyparti
ular situation by trying both and seeing whi
h one was more e�e
tive.6 Fall Dete
tionSony provides routines that enable the robot to dete
t when it's fallen and that enable it to get up. Ourinitial approa
h was to simply use these routines. However, as our walk evolved, the angle of the Aibo'strunk while walking be
ame steeper. This,
ombined with variations between robots,
aused several of ourrobots to think they were falling over every few steps and to try repeatedly to get up. To remedy this, weimplemented a simple fall dete
tion system of our own.The fall dete
tion system fun
tions by noting the robot's x- and y-a

elerometer sensor values ea
h Brain
y
le. If the absolute value of an a

elerometer reading is greater than some
onstant (we used 6; 800; 000)for a number (5) of
onse
utive
y
les, a fall is registered.It is also possible to turn fall dete
tion o� for some period of time. Many of our ki
ks require the Aiboto pass through a state whi
h would normally register as a fall, so fall dete
tion is disabled while the Aibo iski
king. If the Aibo falls during a ki
k, the fall dete
tion system registers the fall when the ki
k is �nished,and the Aibo then gets up.7 Ki
kingThe robot's ki
k is spe
i�ed by a sequen
e of poses. A Pose = (j1; : : : ; jn), ji 2 <, where j represents thepositions of the n joints of the robot. The robot uses its PID me
hanism to move joints 1 through n fromone Pose to another over a time interval t. We spe
ify ea
h ki
k as a series of moves fMove1; : : : ;Movemgwhere aMove = (Posei; P osef ;�t) andMovejPosef =Move(j+1)Posei , 8j 2 [1;m�1℄. All of our ki
ks onlyused 16 of the robot's joints (leg, head, and mouth). Table 7 depi
ts the used joints and joint des
riptions.7.1 The Initial Ki
kIn the beginning stages of our team development, our main fo
us was on
reating modules (Movement,Vision, Lo
alization, et
.) and in
orporating them with one another. Development of ki
ks did not be
omea high priority until after the other modules had been in
orporated. Thus, we
reated a \�rst ki
k" early onto address the needs of the other modules as they developed and
reated other ki
ks mu
h later to expandour strategi

apabilities.We de
ided to model our �rst ki
k after what seemed to be the predominant goal-s
oring ki
k fromprevious RoboCup
ompetitions. During the ki
k, the robot raises its two front legs up and drops them ontothe sides of the ball. The for
e of the falling legs propels the ball forward. Our �rst ki
k,
alled the \frontpower ki
k" tried to a
hieve this e�e
t.8The
hoi
e of heading to the o�ensive goal as the landmark for determining when the
hin pin
h turn should stop is dueto the fa
t that the
hin pin
h turn's destination is often fa
ing the opponent goal, as well as the fa
t that there was alreadya
onvenient GlobalMap interfa
e fun
tion that provided heading to the o�ensive goal. In theory, anything else would workequally well.9That is, the behavior repeatedly sends requests to the movement interfa
e to exe
ute the
hin pin
h turn.31

joint joint des
riptionj1 front right rotatorj2 front right abdu
torj3 front right kneej4 front left rotatorj5 front left abdu
torj6 front left kneej7 ba
k right rotatorj8 ba
k right abdu
torj9 ba
k right kneej10 ba
k left rotatorj11 ba
k left abdu
torj12 ba
k left kneej13 head tilt jointj14 head pan jointj15 head roll jointj16 mouth jointTable 7: Joints used in ki
ksWe wanted our front power ki
k to transition from any walk without prematurely tapping the ball outof the way. Thus, we started the ki
k in a \broadbase" position in whi
h the robot's torso is on the groundwith its legs spread out to the side. If the robot were to transition into the front power ki
k from a standingposition, the robot would drop to the ground while pulling its legs away from the ball. From this broadbaseposition, the robot then moves its front legs together to
enter the ball. After the ball has been
entered,the robot moves its front legs up above its head and then qui
kly drops the front legs onto the sides of theball, ki
king the ball forward.We found that the ki
k moves the ball relatively straight ahead for a distan
e of up to 3 meters. However,we noti
ed that the robot's front legs would miss the ball if the ball were within 3
m of the robot's
hest.We resolved this issue by using the robot's mouth to push the ball slightly forward before dropping its legson the ball.7.2 A General Ki
k FrameworkWe soon realized that we would need to
reate several di�erent ki
ks for di�erent purposes. To that end,we started thinking of the ki
k-generation pro
ess in more general terms. In this se
tion we formalize thatpro
ess.The ki
k is an example of a �ne-motor
ontrol motion where small errors matter. Creation of a ki
krequires spe
ial attention to ea
h Pose. A few angles' di�eren
e
ould a�e
t whether the robot makes
onta
t with the ball. Even a small di�eren
e in �t in a Move
ould a�e
t the su

ess of a ki
k. To makematters more
ompli
ated, our team needed the ki
k to transition from and to a walk. More
onsiderationhad to be taken to ensure that neither the walk nor the ki
k disrupted the operation of the other.We devised a two-step te
hnique for ki
k-generation:1. Creating the ki
k in isolation from the walk.2. Integrating the ki
k into the walk.7.2.1 Creating the Criti
al A
tionWe �rst
reated the ki
k in isolation from the walk. The Moves that
omprise the ki
k in isolation
onstitutethe
riti
al a
tion of the ki
k. To obtain the joint angle values for ea
h Pose, we used a tool that
aptured32

all the joint angle values of the robot after physi
ally positioning the robot in its desired pose. We �rstpositioned the robot in the Pose in whi
h the robot
onta
ts the ball for the ki
k and re
orded j1; : : : ; jn forthat Pose. We
alled this Poseb.We then physi
ally positioned the robot in the Pose from whi
h we wanted the robot to move to Poseb.We
alled this Posea. We then
reated a Move m = (Posea; P oseb;�t) and wat
hed the robot exe
ute m.At this point of ki
k
reation, we were primarily
on
erned with the path the robot took from Posea toPoseb. Thus, we abstra
ted away the �t of the Move by sele
ting a large �t that enabled us to wat
h thepath from Posea to Poseb. We typi
ally sele
ted �t to be 64. Sin
e movement module requests are sentevery 8 millise
onds, this Move took 64 * 8 millise
onds to exe
ute.If the Move did not travel a path that allowed the robot to ki
k the ball su

essfully, we then added anintermediary Posex between Posea and Poseb and
reated a sequen
e of two Moves f(Posea; P osex;�ti);(Posex; P oseb;�ti+1)g and wat
hed the exe
ution. Again, we abstra
ted away �ti and �ti+1, typi
allysele
ting 64. After wat
hing the path for this sequen
e of Moves, we repeated the pro
ess if ne
essary.After we were �nally satis�ed with the sequen
e of Moves in the
riti
al a
tion, we tuned the �t for ea
hMove. Our goal was to exe
ute ea
h Move of the
riti
al a
tion as qui
kly as possible. Thus, we redu
ed �tfor ea
h Move individually, stopping if the next de
rement disrupted the ki
k.7.2.2 Integrating the Criti
al A
tion into the WalkThe se
ond step in
reating the �nely
ontrolled a
tion involves integrating the
riti
al a
tion into the walk.There are two points of integration: (1) the transition from the walk to the
riti
al a
tion, (2) the transitionfrom the
riti
al a
tion to the walk.We �rst fo
us on the Move i = (Posey; P osea;�t), where Posey 2 fall possible poses of the walkg. Sin
ei pre
edes the
riti
al a
tion, there may be
ases in whi
h i adds unwanted momentum to the
riti
al a
tionand disrupts it. If i had su
h
ases, we found a Poses, in whi
h f(Posey; P oses;�t); (Poses; P osea;�t)gdid not lend unwanted momentum to the
riti
al a
tion. We
all this the initial a
tion. The Poses we usedmirrored the idle position of the walk. The idle position of the walk is the Pose the robot assumes whenwalking with 0 velo
ity. We then added the Move (Poses; P osea;�t), abstra
ting away the �t, to the movesof the
riti
al a
tion and wat
hed the path of exe
ution.As with the
reation of the
riti
al a
tion, we then added intermediary Poses until we were satis�ed withthe sequen
e of Moves from Posey to Posea. We then �ne-tuned the �t for the added Moves.Finally, at the end of every ki
k during game play the robot assumes the idle position of the walk, whi
hwe
all Posez, before
ontinuing the walk. This transition to Posez takes 1 movement
y
le. Thus we
onsider the last Move of the ki
k, f , to be (Poseb; P osez; 1). Sin
e f follows the
riti
al a
tion, there maybe
ases in whi
h f hinders the robot's ability to resume walking.In su
h
ases, as with the
reation of the
riti
al a
tion and the initial a
tion, we then added intermediaryPoses until we were satis�ed with the sequen
e of Moves from Poseb to Posez. We
all the Moves betweenthe intermediary Poses the �nal a
tion. We then �ne-tuned the values of �t used in the �nal a
tion.The sequen
e of Moves
onstituting the initial a
tion,
riti
al a
tion, and �nal a
tion make up the ki
k.7.3 Head Ki
kAfter many of our modules had been integrated, the need arose for a ki
k in a non-forward dire
tion. Inspiredby previous RoboCup teams, de
ided that the head
ould be used to ki
k the ball to the left or to the right.During the head ki
k, the robot �rst leans in the dire
tion opposite of the dire
tion it intends to ki
k theball. The robot then moves its front leg (left leg when ki
king left, right leg when ki
king right) out of theway. Finally, the robot leans in the dire
tion of the ki
k as the head turns to ki
k the ball.The head ki
k moves the ball almost due left (or right) a distan
e of up to 0.5 meters. We dis
overedthat the head ki
k was espe
ially useful when the ball was
lose to the edge of the �eld. The robot
ouldwalk to the ball, head ki
k the ball along the wall, and almost immediately
ontinue walking, whereas thefront power ki
k frequently ki
ked the ball against the wall, e�e
tively moving the ball very little, if at all.33

7.4 Chest Push Ki
kThe
reation of the head ki
k informed us that the robot
ould enter and exit a ki
k mu
h faster when theki
k o

urred with the robot in a standing position. We thus
reated the
hest push ki
k in hopes that itsexe
ution would be mu
h faster than that of the front power ki
k. During the
hest push ki
k, the robotqui
kly leans its
hest into the ball. This o

urs while the robot remains in a standing position.To
reate the ki
k, we �rst isolated the ki
k from the walk. The following table shows the
riti
al a
tionfor the
hest push ki
k. In these tables ea
h value of �t is listed in the row of the Pose that ends the
orresponding Move.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64Pose2 -120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1Pose3 -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64Table 8: Chest push ki
k
riti
al a
tionWe then integrated the walk with the ki
k. Testing revealed that the robot su

essfully ki
ked theball 55% of the time and fell over after 55% of the su

essful ki
ks. Sin
e (Posey; P ose1;�t) addedunwanted momentum to the
riti
al a
tion, we
reated an initial a
tion to pre
ede the
riti
al a
tion.f(Posey; P oses; 64); (Poses; P ose1; 64)g does not lend unwanted momentum to the
riti
al a
tion. Test-ing revealed that the robot now su

essfully ki
ked the ball 100% of the time. The following table shows theinitial a
tion with the
riti
al a
tion.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPoses -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64Pose1 -12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64Pose2 -120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1Pose3 -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64Table 9: Chest push ki
k initial a
tion and
riti
al a
tionSin
e the
riti
al a
tion did not add unwanted momentum that hindered the robot's ability to resume itsbaseline motion, there was no need to
reate a �nal a
tion.We found that the
hest push ki
k moves the ball relatively straight ahead. It is also very fast. However,the distan
e the ball travels after the
hest push ki
k is signi�
antly smaller than the distan
e the ball travelsafter the front power ki
k. Thus, we de
ided against using the
hest push ki
k instead of the front powerki
k during game play.7.5 Arms Together Ki
kAfter
reating ki
ks geared toward s
oring goals, we realized that we needed a ki
k for the goalie to blo
k theball from entering its goal. De
iding that speed and
overage area were more important than the dire
tionof the ki
k, we
reated the arms together ki
k. During the arms together ki
k, the robot �rst drops intobroadbase position mentioned in Se
tion 7.1. The robot then swings its front left leg inward. After that, therobot swings its front right leg inward as it swings its front left leg ba
k out. The arms together ki
k provedsu

essful at qui
kly propelling the ball away from the goal.7.6 Fall Forward Ki
kAfter attending the Ameri
an Open, we saw a need for a forward dire
tion ki
k more powerful than thefront power ki
k. Inspired by a ki
k used by the CMPa
k team from Carnegie Mellon, we
reated the fall34

forward ki
k. The fall forward ki
k makes use of the forward momentum of the robot as it falls from standingposition to lying position. Sin
e the ki
k begins in a standing position, the robot
an qui
kly transition fromthe walk to the ki
k. However, sin
e the ki
k ends in a lying position, the robot does not transition fromthe ki
k ba
k to the walk as qui
kly.We �rst isolated the ki
k from the walk. The following table shows the
riti
al a
tion.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32Pose2 -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32Table 10: Fall forward ki
k
riti
al a
tionWe then integrated the walk with the ki
k. There was no need to
reate an initial a
tion be
ause anymomentum resulting from (Posey; P ose1; 32) was in the forward dire
tion (the same dire
tion we wantedthe robot to fall). However, testing revealed that (Pose2; P osez;�t)
aused the robot to fall forward on itsfa
e every time. Although the robot su

essfully ki
ked the ball, the robot
ould not immediately resumewalking. In this situation, the robot had to wait for its fall dete
tion to trigger and tell it to get up beforeresuming the walk. The get up routine triggered by fall dete
tion was very slow. Thus, we found a Posegsu
h that f(Pose2; P oseg ; 32); (Poseg; P osez;�t)g does not hinder the robot's ability to resume walking.The following table shows the
riti
al a
tion with Move(Pose2; P oseg; 32).j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32Pose2 -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32Poseg 90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32Table 11: Fall forward ki
k
riti
al a
tion and f(Pose2; P oseg ; 32)gFrom observation, it is noted that transitioning from Pose2 dire
tly to Poseg is not ideal. The robotwould fall over 25% of the time during (Pose2; P oseg; 32). Thus, we added Posew to pre
ede Poseg in the�nal a
tion. Afterwards, the robot no longer fell over when transitioning from the ki
k to the walk. Thefollowing table shows the entire �nely
ontrolled a
tion,
onsisting of the
riti
al a
tion and the �nal a
tion.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32Pose2 -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32Posew -100 90 0 -100 90 0 100 6 75 100 6 75 45 -90 0 0 32Poseg 90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32Table 12: Fall forward ki
k
riti
al a
tion and �nal a
tionThe fall forward ki
k exe
uted qui
kly and potentially moved the ball the entire distan
e of the �eld (4.2meters). Unfortunately, the fall forward ki
k did not reliably propel the ball dire
tly forward. Thus, in gameplay, we used the fall forward ki
k in the defensive half of the �eld and used the front power ki
k for morereliable goal s
oring in the o�ensive half of the �eld.One unexpe
ted side-e�e
t of adding Poseg to the end of the fall forward ki
k was that the outstret
hedlegs in Poseg added additional ball
overage. A ball that the fall forward a
tion missed be
ause it was notlo
ated around the robot's
hest would a
tually be propelled forward if the ball was just in front of one ofthe front legs. Thus, the fall forward ki
k, whi
h moves the ball away mu
h farther than the arms togetherki
k, also be
ame our primary goalie blo
k. 35

7.7 Yoshi Ki
kGames at the Ameri
an Open also inspired us to
reate the yoshi ki
k. During the yoshi ki
k, the robotlaun
hes its body over the ball and ki
ks the ball out from behind it. The yoshi ki
k ideally works wellin situations when the robots are
rowded together around the ball. However, be
ause the yoshi ki
k isstill somewhat unreliable, the behavior used for RoboCup games only exe
utes a yoshi ki
k in very spe
i�

ir
umstan
es, whi
h in pra
ti
e o

ur rarely. (See Se
tion 12.1.2 for details.)8 Lo
alizationSin
e it requires at least vision and preferably lo
omotion to already be in pla
e, lo
alization was a rela-tively late emphasis in our e�orts. In fa
t, it did not truly
ome into pla
e until after the Ameri
an OpenCompetition at the end of April. Before that time, we had been working on a preliminary approa
h thatwas eventually dis
arded and repla
ed by the
urrent one.For self-lo
alization, the Austin Villa team implemented a Monte-Carlo lo
alization approa
h similar tothe one used by the German Team [5℄. This approa
h uses a
olle
tion of parti
les to estimate the globalposition and orientation of the robot. These estimates are updated by visual per
epts of �xed landmarksand odometry data from the robot's movement module (see Se
tion 5.1.9). The parti
les are averaged to�nd a best guess of the robot's pose.We have extended the approa
h of the German Team to improve the a

ura
y of the observation updates.Rather than using only the most
urrent landmark observations, our approa
h maintains a history of re
entobservations that are averaged a

ording to their estimated a

ura
y. Be
ause it is rare for the robot togather suÆ
ient information in a single
amera frame to triangulate its position, it is important to in
orporatevisual information from the re
ent past. At the same time, if visual data is ina

urate, reusing it again andagain
an aggravate the problem. Our approa
h is able to leverage past data while, in most situations,robustly tolerating o

asional bad inputs.8.1 Basi
 Parti
le Filtering Approa
hThe goal of the lo
alization module is to
al
ulate a probability distribution over the possible lo
ations andorientations of the robot. Rather than modeling this distribution parametri
ally, Monte-Carlo lo
alizationuses a �nite set of samples
alled parti
les. Ea
h parti
le
an be seen as a hypothesis for the
urrent poseof the robot: < x; y; � > where < x; y > is the position of the robot and � is its orientation in the global
oordinate system. Along with a pose hypothesis, ea
h parti
le is assigned a probability, p, representing thelikelihood that the estimate is
orre
t. In our implementation, we used a set of 100 of these parti
les, whi
hwe found experimentally to provide a suÆ
ient level of a

ura
y without substantially lowering the rate ofour main exe
ution
y
le.During ea
h exe
ution
y
le of the robot, the lo
alization module updates the set of parti
les in threesteps. The �rst step is the motion update in whi
h the parti
les are moved based on the physi
al movementof the robot. The next step is the observation update in whi
h the parti
le probabilities are adjusted for thelatest visual information. Finally, resampling is done to sto
hasti
ally move the parti
les
loser to the mostlikely pose estimate. The following se
tions des
ribe these updates in detail.8.2 Motion UpdateBased on the
urrently exe
uting walk or ki
k, the movement module returns an estimate of the robot's
hange in position and orientation sin
e the last lo
alization update: < Æx; Æy; Æ� >. This
hange is addedto ea
h parti
le's pose a

ording to the following equation:posenew = poseold+ < Æx0; Æy0; Æ� > (20)where Æx0 and Æy0 are Æx and Æy translated from the
oordinate system of the robot into the
oordinatesystem of the parti
le (see Appendix A.9). Be
ause the odometry information is noisy, we assume that36

motion updates de
rease the
ertainty in our pose estimate. For this reason, after ea
h motion update, theprobability of ea
h parti
le is de
ayed a

ording to the following equation:pnew = pold(1� �) (21)In our implementation, we
hose the value 0:02 for �. This value was
hosen, without experimentation, sothat the probability would drop by half every
ouple of se
onds.8.3 Observation UpdateAfter the
urrent frame has been pro
essed by the vision module, the lo
alization module re
eives a list oflandmark observations. For our purposes, the �eld
onsists of 10 identi�able �xed landmarks: 6 bea
ons and4 goal edges.10 Ea
h observation
onsists of a landmark identity (e.g. yellow goal's left edge), a distan
eestimate, d, a bearing estimate, �, and a probability, p̂, representing the
ertainty that the observed landmarkwas identi�ed
orre
tly. These observations are used to update the landmark memory stru
ture, whi
h isdes
ribed in the next se
tion.8.3.1 Landmark MemoryThe landmark memory data stru
ture stores a history of re
ent observations in order to make a

urateestimates of the robot's relative position to landmarks. For ea
h of the 10 landmarks, the landmark memorymaintains a list
ontaining past observations. Along with the observation itself, ea
h list entry in
ludes thefollowing data:� �2d: varian
e of distan
e estimate� �2�: varian
e of bearing estimate� T : absolute time the observation was made� �d: distan
e robot has moved sin
e this observation� ��: total angle the robot has rotated sin
e this observationAn observation is modeled as a 2-d Gaussian distribution with mean < d; � > and varian
e < �2d; �2� >. Theinitial varian
es are
al
ulated from d and p̂ using the following equations:�2d = dp̂ � 10 (22)�2� = tan�1�Wbd � (23)where Wb is the a
tual width of a bea
on. Be
ause the distan
e of a bea
on is more diÆ
ult to estimateas it gets farther away, we made the distan
e error proportional to d. Also, we made the error inverselyproportional to our
ertainty in landmark identity so that false landmark sightings would generate estimateswith high varian
es. The bearing to a bea
on is a
tually easier to estimate as it gets farther away. For thisreason, we made the bearing varian
e inversely proportional to distan
e. These error estimates are
rude,but we found them to be satisfa
tory in pra
ti
e.When an observation is added to the list, the timestamp T is set to the
urrent time and �d and �� areinitialized to 0.10We
hose to use the left and right edges of the goals as landmarks, instead of the goals themselves, be
ause the goal edgeshad more pre
ise lo
ations and were more numerous. 37

8.3.2 Removing Obsolete ObservationsDuring every motion update (see Se
tion 8.2), the entries in the landmark memory are modi�ed to re
e
tpassing time and robot movement. For ea
h observation entry, the �d and �� values are in
reased a

ord-ing to the odometry data returned by the movement module. The observation estimates are updated to
orrespond to the robot's new position and orientation. Also, the varian
es are in
reased proportionally tothe robot's movement. These updates are summarized by the following equations:�d0 = �d+p(Æx)2 + (Æy)2 (24)��0 = �� + jÆ�j (25)d0 =p(d
os(�)� Æx)2 + (d sin(�)� Æy)2 (26)�0 = atan2 (d sin(�)� Æy; d
os(�)� Æx)� Æ� (27)�2d 0 = �2d +p(Æx)2 + (Æy)2 (28)�2�0 = �2� + jÆ�j2 (29)After the observation entries have been updated, we de
ide if the observation should remain in the list.If the observation has a high varian
e (�2d > 500mm or �2� > 22o), then it is removed from the landmarkmemory. Additionally, if the robot has traveled too far (�d > 150mm) or turned too mu
h (�� > 10o)sin
e the observation was made, then the observation is thrown out. Finally, if the observation is too old(time� T > 3s) then the entry is deleted. This way, even if the robot is standing still, old observations donot stay around forever. All thresholds were
hosen without experimentation.8.3.3 Merging Past ObservationsFor ea
h of the 10 �xed landmarks, the landmark memory
ontains a list of 0 or more relative positionestimates. To use this data for updating the parti
les, we must merge the entries within ea
h list to �nd asingle set of landmark observations.As stated previously, observations in the landmark memory are modeled as 2-d Gaussians. We
hose thisdistribution be
ause the theory behind merging Gaussian distributions is well-understood. Here, we treat thedistan
e and bearing estimates as independent distributions. Therefore, we
an perform a two-dimensionalmerge by doing two independent one-dimensional merges. To merge two 1-d Gaussian with means andvarian
es (�a; �2a) and (�b; �2b), respe
tively, into a new distribution (�merged; �2merged), we use the followingequations: �merged = �2a�b + �2b�a�2a + �2b (30)�2merged = �2a�2b�2a + �2b (31)These operations are both
ommutative and asso
iative, so we are free to merge the observations in anyorder. For ea
h landmark with at least one observation entry, we
ompute a merged position estimate to beused for updating the parti
le probabilities.8.3.4 Updating ProbabilitiesUsing the set of merged estimates from the landmark memory, we update the probability, pi, of ea
h parti
le,i, based on the posterior probability of making these observations assuming that the parti
le is the
orre
tpose hypothesis. Here, we use only the bearing measurement of the observation. The distan
e informationis used at a di�erent stage (see Se
tion 8.3.6).Given the parti
le's position and orientation along with information about the positions of all �xedlandmarks from an internal map, we
an
al
ulate the expe
ted bearing, �expe
ted for ea
h observed landmark.38

If the di�eren
e between the measured and expe
ted bearings is small, then the parti
le is likely to be agood estimate of our
urrent position and orientation. If the di�eren
e is large, the parti
le is probably abad estimate.The posterior probability for a single observation is estimated by the following equation:s(�measured; �expe
ted) = � e�50!2 if ! < 1e�50(2�!)2 otherwise (32)where ! = j�measured��expe
tedj� . The probability, p, of a parti
le is just the produ
t of these probabilities:p = Y�measured s(�measured; �expe
ted) (33)However, the parti
le probability is not simply set to this new value. To prevent o

asionally poor observa-tions from
hanging the estimate too dramati
ally, we pla
e a threshold on how mu
h a probability estimate
an
hange in a single
y
le. Therefore, the new probability of a parti
le is
al
ulated by the followingequation: pnew =8<: pold + 0:1 if p > pold + 0:1pold � 0:05 if p < pold � 0:05p otherwise (34)8.3.5 ResamplingOn
e the parti
le probabilities have been updated, the parti
les are resampled to move a higher density ofparti
les
loser to the most likely pose estimates. To do this, we
opy parti
les from an old parti
le listto a new parti
le list in proportion to their probabilities. Higher probability parti
les are dupli
ated andlower probability parti
les are thrown out. The resampling is performed su
h that the new parti
les list will
ontain about 90 parti
les. For a given parti
le, i, in the old list, the number of times that it will appear inthe new list is given by the following equation:#i = $ 1Pj pj 90pi% (35)After
opying over the old parti
les, triangulation estimates made from
ombinations of two or three bea
onsare added until the list
ontains 100 parti
les. Ea
h of these parti
les are given a probability based on theun
ertainty of the observations used in the
al
ulation. Our methods for triangulating the robot's positionare dis
ussed in the following two se
tions.8.3.6 Two Bea
on TriangulationIn this approa
h, we use both the distan
e and angle estimates of the bea
ons, provided by high levelvision, to determine the position and orientation of the robot in the global referen
e frame. The in
lusionof bea
on distan
e estimates (in addition to the angle that the bea
on is estimated to make with the robot)in lo
alization does produ
e robot position estimates that are more error prone than the estimates obtainedusing the angle information alone (i.e. three bea
on triangulation, see Se
tion 8.3.7). But we found that whenthe robot position estimates obtained using this te
hnique are used as seed values in parti
le �ltering (withan appropriate probability value) in addition to the estimates obtained using three bea
on triangulation, theresults obtained are more a

urate than those with just the three bea
on estimates as the seed values.Given two bea
on distan
es and bearings with respe
t to the robot's lo
al
oordinate frame, we
an drawtwo
ir
les, one around ea
h of the bea
ons with radius equal to the distan
e (estimated) of the bea
on fromthe robot. The
ir
les interse
t at two points (or none when the estimates are bad in whi
h
ase they arenot used in
al
ulations), one of them being the
orre
t estimate of the robot's position (see Figure 8).We �rst use the estimated distan
es from the robot to the bea
ons to determine the robot's position withrespe
t to a lo
al frame with the x-axis along the line joining the two bea
ons. This is then
onverted to39

 Beacon 1

 Beacon 2

 (x_b1,y_b1)

 (x_b2,y_b2)

y

x

d2

d1

 D
which is eliminated using
additional constraints.

Location of the

associated
variances.

robot and the Alternative location

Figure 8: Lo
alization using two bea
ons.the global referen
e frame using the known geometry of the �eld. The global orientation of the robot is thendetermined using the robot's
al
ulated position and estimated distan
es and angles to the bea
ons. Wea
tually
al
ulate both possible robot poses (position and orientation) but then eliminate one of them using
onstraints (for example, we
he
k if the position is on the �eld). Then, we need to determine the varian
esin the estimated pose. To do so we basi
ally �nd the partial derivatives of the expressions for pose withrespe
t to the variables in the system. We do this starting from the �nal expression and move ba
kwards tothe initial expressions so that we have the \
hange" in pose expressed in terms of the
hange in the distan
eand bearing estimates of the bea
ons/markers (known values), thereby obtaining the varian
e estimates.8.3.7 Three Bea
on TriangulationThe image of a distant landmark
an be quite small with respe
t to the size of an image pixel. This
an resultin a la
k of a

ura
y in the distan
e estimates, but it does not detra
t from the angle estimates. Be
ause ofthis, it is espe
ially desirable to be able to estimate the Aibo's lo
ation using only angle information fromthe landmarks. This method eliminates the ina

ura
y in the distan
e estimates, but it has the disadvantageof requiring knowledge about three landmarks to be appli
able.The di�eren
e between the horizontal angles of any two landmarks,
ombined with the a
tual positions40

X

Y

A B

C

This circle arc is the
locus of points P such
that angle BPC is the
observed angle between
beacons B and C.

This arc is the set of points
determined by angle APB. The intersection

of the two arcs
is our estimate
of the AIBO’s
actual location,
shown here with
its variance ellipse.

P

Figure 9: Three Bea
on Lo
alization. The horizontal angles between bea
ons A, B, and C are used to
onstru
t two
ir
le ar
s. Their interse
tion is the three-bea
on estimate of the Aibo's lo
ation.of those landmarks on the �eld, yields a
ir
le ar
 of possible lo
ations for the Aibo. Three landmarks yieldtwo
ir
le ar
s (a
tually three, but the third is always redundant), whose interse
tion is our position estimatea

ording to this method (Figure 9). The robot's orientation
an then be determined from its position andthe horizontal angle of any landmark.8.3.8 Random MovementIn the �nal update step, the parti
les are moved lo
ally in a random fashion. Parti
les with higher prob-abilities are moved less. This pro
ess performs a probabilisti
 sear
h over nearby hypotheses. The update
al
ulation is summarized as follows:x0 = x+ 100mm � (1� p0) � rand[�1; 1℄ (36)y0 = y + 100mm � (1� p0) � rand[�1; 1℄ (37)�0 = � + 30o � (1� p0) � rand[�1; 1℄ (38)41

Parti
les
an be moved up to 100mm in x and y and rotated up to 30o. These values were
hosen withoutexperimentation.8.4 Pose EstimationThe �nal stage in the lo
alization pro
ess is �nding a pose estimate from the parti
le set. This estimate is
omputed in two steps: �nding the largest
luster of parti
les and averaging the parti
les within that
luster.To �nd the largest
luster, we divide the spa
e of possible x,y,� values into 10� 10� 10
ells. We thensear
h through all possible 2� 2� 2 groups of adja
ent
ells to �nd the group with the most parti
les. Thex,y,� values for ea
h parti
le in the group are then averaged a

ording to the following equation:pose = * 1m mXi=1 xi; 1m mXi=1 yi; atan2 mXi=1 sin(�i); mXi=1
os(�i)!+ (39)where m is the number of parti
les in the group and < xi; yi; �i > is the pose of parti
le i. Noti
e that the� values
annot simply be averaged be
ause angle values wrap around.Breaking the values into 10�10�10
ells and sear
hing the 2�2�2 groups is an admittedly sup-optimalapproa
h in that it risks missing
on
entrations of parti
les that span the boundaries of 3 adja
ent
ells.We leave more prin
ipled approa
hes to future work, but found that this method was straightforward toimplement and it worked well in pra
ti
e.In addition to the pose estimate, the robot's behavior is also dependent upon its
ertainty in that estimate.We
al
ulate our
ertainty as the density of parti
le probability in the largest
luster:
ertainty = 1n mXi=1 pi (40)where n is the total number of parti
les and pi is the probability of parti
le i. Based on this
ertaintyvalue, the robot
an de
ide whether to perform a lo
alization-dependent skill (e.g. shot on goal) or take aninformation-gathering a
tion (i.e. sear
h for landmarks).9 Communi
ationColle
tive de
ision making is an essential aspe
t of a multiagent domain su
h as robot so

er. The robotsthus need the ability to share information among themselves. In this se
tion we dis
uss the methodologieswe adopted to enable
ommuni
ation and the various stages of development of the resulting
ommuni
ationmodule.9.1 Initial Robot-to-Robot Communi
ationOur initial goal was to understand the
apabilities and limitations of the wireless
ommuni
ation
hannelbetween the various robots. Although the rules required us to use TCPGateway for
ommuni
ation duringthe games, we wanted to examine other options that might be useful during non-game situations.We
reated a simple server and a
lient that used the User Datagram Proto
ol (UDP). We
hose UDPbe
ause it typi
ally provides greater bandwidth than the alternative, TCP. Our intent was to determine howqui
kly we
ould transfer data between robots and to simply get used to writing appli
ations that wouldallow the robots to
ommuni
ate.The �rst server that we
reated generated a few bytes of data and tried to broad
ast it to a
lient. The
lient program simply gathered this data as it re
eived it. We ran the server and the
lient on two di�erentrobots and monitored their a
tions by telnetting into them.On
e that worked, we extended our
ommuni
ation modules to interfa
e with the robot's me
hani
alparts. The next server that we
reated
aptured the joint angles of the robot and broad
ast them to the42

lient. The
lient gathered the data and set its own joint positions a

ordingly. Thus, when we movedthe legs of the server robot, the
lient robot would move it's legs by the same amount, thus a
ting as amaster-slave (puppet) interfa
e.As we be
ame familiar with the networking interfa
es of the robot, we
ontinued to explore the varioususes of
ommuni
ation. We streamed images from the robot's
amera to a PC with both UDP and TCP,
reated a hierar
hy of single-master, multiple-slaves that enabled one robot to \lead" a team of robots, and
oded a remote-
ontrol program that we
ould use to
ontrol the Aibo from a PC. All of these experimentsprovided valuable feedba
k that we later used when
reating both our oÆ
ial robot-to-robot
ommuni
ationmodule (des
ribed below) and UT Assist (Se
tion 14).9.2 TCP GatewayOn
e we were familiar with the stru
tures that the robots use to
ommuni
ate, we began implementinga
ommuni
ation module. TCPGateway (the required interfa
e for oÆ
ial robot-to-robot
ommuni
ationduring games) abstra
ted away most of the low-level networking, providing a standard Open-R interfa
e inits pla
e. The most diÆ
ult part of getting TCPGateway working was understanding the organization ofthe
on�guration �les.The TCPGateway
on�guration �les basi
ally insert two network addresses and ports in the middle ofan Open-R subje
t/observer relationship. This
reates the following situation:� Instead of sending data dire
tly to the intended observer, the subje
t on the initiating robot sendsdata to a TCPGateway observer.� The TCPGateway module on the initiating robot has a spe
i�

onne
tion on a unique port for data
owing in that dire
tion, and sends the data from the subje
t over that
onne
tion to the PC.� The PC, whi
h has been
on�gured to map data from one in
oming port to one outgoing port, sendsthe subje
t's data out to the re
eiving robot on a spe
i�
 port.� The TCPGateway module on the re
eiving robot pro
esses the data that it re
eives on this port andsends the data to the intended observer.All of the mappings des
ribed above were de�ned in two �les on ea
h robot (CONNECT.CFG and ROBOTGW.CFG)and in two �les on the PC (CONNECT.CFG and HOSTGW.CFG).9.3 Message TypesOne of the
hallenges we fa
ed regarding
ommuni
ation was the possibility that multiple types of messageswould need to be sent. We
ould theoreti
ally handle this with a stage in the brain loop that
ould read anddistribute messages appropriately. As we pro
eeded, however, this option be
ame more and more unwieldy.Variables and data that would be used in one part of a program would be read and set in another part,perhaps even in another �le. What we needed was the ability to
reate an arbitrary number of di�erentmessage types, su
h that anywhere in the program, we
ould request from the
ommuni
ation system thenext message of that type.Our �rst implementation kept the same
ommuni
ation sta
k, but when a request was made, the typeof message was passed as a parameter. The
ommuni
ation system would then sear
h through the sta
k forthe next message of that type, remove it from the sta
k, and return it. This worked �ne, but we qui
klyrealized that if any one type of message
eased to be
onsumed, it
ould have serious rami�
ations in termsof the time needed to retrieve other types of messages.To solve this, we implemented an array of
ommuni
ation sta
ks, one for ea
h type of message. Thisgave us a
onstant-time fet
h for the next message of any type. As messages arrived, they were pro
essed bytheir type and pla
ed into the
orre
t sta
k. This way, messages related to global maps
ould be retrievedand used in the
ode that a
tually handles the operation of global maps, while messages relating to strategy
hanges
ould be handled in a di�erent part of the
ode.43

Brain MovementModule

OVirtualRobotComm

wireless network

Figure 10: A high level view of the main Open-R obje
ts in our agent. The robot sends visual data tothe Brain obje
t, whi
h sends movement
ommands to the MovementModule obje
t, whi
h sends set pointsto the PID
ontrollers in the robot. The Brain obje
t also has network
onne
tions to teammates' Brainobje
ts, the Robo
up game
ontroller, and our UT Assist
lient (Se
tion 14). Note that this �gure omitssensor readings obtained via dire
t Open-R API
alls.9.4 Queuing MessagesWhen we �rst tested our new multi-type
ommuni
ation system, we found that some of our messages werenot being re
eived. More spe
i�
ally, the �rst message of any brain
y
le was sent, but any other messagessent later in that brain
y
le would be dropped. At �rst we thought it was just a
onne
tivity issue. However,when we reversed the order of our messages, we found that all but the �rst were not delivered.Further investigation found that the TCPGateway obje
t was not able to pro
ess the messages we weresending qui
kly enough. We had enough bandwidth, and our robots were
onne
ted, but TCPGateway wasjust too slow to handle all the overhead for ea
h message. The obvious solution to this was to queue ourmessages. Thus, when a request to send a message was made somewhere in the
ode, what would a
tuallyhappen is that the message would be put into a queue, where it would sit until the end of the brain
y
le.At the end of the brain
y
le, the messages were stit
hed together into a long byte stream, and then sento� to the other robots. This meant that we
ould do all of our
ommuni
ation with only one TCPGateway
ommuni
ation per brain
y
le, whi
h
ut ba
k on the total overhead.10 General Ar
hite
tureDue to our bottom-up approa
h, we did not address the issue of general ar
hite
ture until some impor-tant modules had already taken shape. We had some
ode that
obbled together our vision and movement
omponents to produ
e a rudimentary but fun
tional goal-s
oring behavior (see Se
tion 12.1.1). Althoughthis agent worked, we realized that we would need a more stru
tured ar
hite
ture to develop a more so-phisti
ated agent, parti
ularly with the number of programmers working
on
urrently on the proje
t. Thede
ision to adopt the ar
hite
ture des
ribed below did not
ome easily, sin
e we already had something thatworked. Implementing a
leaner approa
h stopped our momentum in the short term and required some teammembers to rewrite their
ode, but we feel the e�ort proved worthwhile as we
ontinued to
ombine moreindependently-developed modules.We designed a framework for the modules with the aim of fa
ilitating further development. We
onsideredtaking advantage of the operating system's inherent distributed nature and giving ea
h module its ownpro
ess. However, we de
ided that the task did not require su
h a high degree of
on
urrent
omputation,so we organized our
ode into just two separate
on
urrent obje
ts (Figure 10).We en
apsulated all of the
ode implementing low-level movement (Se
tion 5.2.1) in the MovementMod-ule obje
t. This module re
eives Open-R messages di
tating whi
h movement to exe
ute. Available legmovements in
lude lo
omotion in a parti
ular dire
tion, speed, and turning rate; any one of a repertoire of44

ki
ks; and getting up from a fallen position. Additionally, the messages may
ontain independent dire
tivesfor the head, mouth, and tail. The MovementModule translates these
ommands into sequen
es of set points,whi
h it feeds as messages into the robot's OVirtualRobotComm obje
t. Note that this
ode inhabits its ownOpen-R obje
t pre
isely so that it
an supply a steady stream of
ommands to the robot asyn
hronously withrespe
t to sensor pro
essing and deliberation. For further details on the movement module, see Se
tion 5.2.1.The Brain obje
t is responsible for the remainder of the agent's tasks: a

epting messages
ontaining
amera images from OVirtualRobotComm,
ommuni
ating over the wireless network, and de
iding whatmovement
ommand messages to send to the MovementModule obje
t. It
ontains the remaining modules,in
luding Vision, Fall Dete
tion, Lo
alization, and Communi
ation. These
omponents thus exist as C++obje
ts within a single Open-R obje
t. The Brain itself does not provide mu
h organization for the modulesthat
omprise it. In large part it serves as a
ontainer for the modules, whi
h are free to
all ea
h other'smethods.From an implementation perspe
tive, the Brain's primary job is to a
tivate the appropriate modules atthe appropriate times. Our agent's \main loop" a
tivates whenever the Brain re
eives a new visual imagefrom OVirtualRobotComm. Other types of in
oming data, mostly from the wireless network, reside inbu�ers until the
amera instigates the next Brain
y
le. Ea
h
amera image triggers the following sequen
eof a
tions from the Brain:Get Data: The Brain �rst obtains the
urrent joint positions and other sensor readings from Open-R. Itstores this data in a pla
e where modules su
h as Fall Dete
tion
an read them. This means thatwe ignore the joint positions and sensor readings that OVirtualRobotComm generates between visionframes.Pro
ess Data: Now the Brain invokes all those modules
on
erning interpreting sensor input: Vision,Lo
alization, and Fall Dete
tion. Note that for simpli
ity's sake even Communi
ation data waits untilthis step, syn
hronized by inputs from the
amera, before being pro
essed. Generally the end result ofthis step is to update the agent's internal representation of its external environment: the global map(see Se
tion 11).A
t: After the Brain has taken
are of sensing, it invokes those modules that implement a
ting, des
ribedin Se
tions 12 and 13. These modules typi
ally don't dire
tly a

ess the data gathered by the Brain.Instead they query the updated global map.11 Global MapEarly in the development of our so

er playing agent, parti
ularly before we had fun
tioning lo
alizationand
ommuni
ation, we
hose our a
tions using a simple �nite state ma
hine (see Se
tion 12). Our sensoryinput and feedba
k from the Movement Module di
tated state transitions, so sensations had a relativelydire
t in
uen
e on behavior. However, on
e we developed the
apability to lo
ate our agents and the ballon the �eld and to
ommuni
ate this information, su
h a dire
t mapping be
ame impossible. We
reatedthe global map to satisfy the need for an intermediate level of reasoning. The global map
ombines theoutputs of Lo
alization from Vision and from Communi
ation into a
oherent pi
ture of what is happeningin the game, and it provides methods that interpret this map in meaningful ways to the
ode that governsbehavior.11.1 Maintaining Lo
ation DataWhen a robot
omputes new information about the lo
ation of any parti
ular obje
t on the �eld, it usuallymerges the new estimate of position with the
urrent estimate of position that is stored in its global map(see Se
tion 8.3.3).As time passes, the error estimate for all of the information in the global map in
reases. This degradationof information is in
luded to more a

urately model the rapid rate of
hange in the state of the game. The45

idea is to make the degradation smooth to re
e
t the maximum
hange that we are ready to allow (i.e. the
hange that we think
ould have happened) sin
e the last update. The approa
h used here is to estimate amaximum 'velo
ity' by whi
h we assume the obje
t
an move along the x and the y axes. We then use thisvelo
ity to
al
ulate the maximum distan
e the obje
t
ould have moved along the axes in the time sin
e thelast update. The estimated
hange, �
hange, is statisti
ally added to the lo
ation's un
ertainty in a

ordan
ewith the formula: �updated =q�2previous + �2
hange (41)For example, if we
onsider the modeling of the opponents, we want our estimates of the opponents to beas a

urate as possible and we do not want new estimates to o

ur every frame. We would ideally want to beable to merge estimates from the
urrent frame with those in the previous frame, wherever possible, so thatwe
an a
tually map the motion of the opponents. At the same time, we may have spurious dete
tions everyon
e in a while and if they are not seen in su

essive frames, we want these estimates to disappear qui
kly.So for opponents we use an arti�
ially high 'velo
ity' su
h as 1500 mm/s (determined by experimentation).On the other hand we want the estimates of the ball, robot position and those of the teammates to degradedepending on some 'velo
ity' that re
e
ts their a
tual motion. So we
hoose the velo
ity for teammatemotion as 300 mm/s (we do not think any team
an move any faster than that as yet) and that for the ballas 1000 to 1500 mm/s be
ause the ball
an move about that fast after a single powerful ki
k. These valueswere all determined experimentally and seem to provide reasonable performan
e in terms of how we wouldlike our estimates to be updated.11.2 Information from TeammatesEa
h robot periodi
ally sends information from its global map to ea
h of its teammates. This transmittedinformation in
ludes:1. The lo
ation of the robot, along with an error estimate.2. The lo
ations of any opponents of whi
h the robot
urrently is aware, along with error estimates.3. The lo
ation of the ball, along with an error estimate.When robot A re
eives teammate position information from robot B, robot A always assumes that B'sestimate of B's position is better than A's estimate of B's position. Therefore, robot A simply repla
es it'sold position for B with the new position.When a robot re
eives opponent information from another robot, it updates it's
urrent estimate ofopponent lo
ations as des
ribed in Se
tion 4.6.If robot A has seen the ball re
ently when it re
eives a ball position update from robot B, robot A ignoresB's estimate of ball position. If robot A hasn't seen the ball re
ently, then it merges its
urrent estimate ofthe ball's position with the position estimate that it re
eives from robot B.The basi
 idea behind having a global map is to make sharing of information possible so that the team
onsisting of individual agents with limited knowledge of their surroundings
an pool the information tofun
tion better as a team. The aim is to have
ompletely shared knowledge but the extent to whi
h thissu

eeds is dependent upon the ability to
ommuni
ate. Sin
e the
ommuni
ation (see Se
tion 9) is not fullyreliable, we have to design a good strategy (Se
tion 12 des
ribes our strategy and behaviors) that uses theavailable information to the maximum extent possible. Other modules
an a

ess the information in theGlobalMaps using the a

essor fun
tions (predi
ates) des
ribed in the following se
tion.11.3 Providing a High Level Interfa
eFrom a high level perspe
tive, the only data that the global map provides to other modules are the es-timated positions of the ball and the robots on the �eld, along with degrees of un
ertainty about these46

estimates. However, the global map also houses an array of fun
tions on these data, to prevent di�erentportions of the behavior
ode from repli
ating
ommonly used predi
ates and high level queries. See Ta-ble 13 for a
omplete list of these fun
tions, most of whose names are
lear indi
ators of their fun
tionality.Note that they range from relatively low level methods that return the position of an individual robot(getTeamMembers) to relatively high level methods su
h as NumOpponentsWithinDistan
e. They in
ludeta
ti
al
onsiderations, su
h as whether IAmClosestToBall, as well as methods relative to our strategi
 roles(see Se
tion 13.2.1), su
h as GetDistan
eFromSupporter. Finally, methods su
h as AmIInDefensiveZoneand IsDefenderWellLo
alized provide a more abstra
t interfa
e to the position estimates.getID GetDistan
eFromDefender InLeftThirdgetTeamMembers GetDistan
eFromKeeper InCentralThirdgetOpponents GetAtta
kerRelativePosition InRightThirdgetBall GetSupporterRelativePosition InTopQuartergetMyPosition GetDefenderRelativePosition InOwnHalfadjustRelativeBall GetKeeperRelativePosition IsLowerwellLo
alized GetAtta
kerAbsolutePosition InOwnGoalBoxballOnField GetSupporterAbsolutePosition AmILeftMostgetBallDistan
eFromOurGoal GetDefenderAbsolutePosition AmIRightMostgetRelativeBall GetKeeperAbsolutePosition GetLeftPosAnglegetRelativeOrientation IsAtta
kerWellLo
alized GetRightPosAnglegetRelativeOpponentGoal IsSupporterWellLo
alized OpponentsOnLeftgetRelativeOwnGoal IsDefenderWellLo
alized OpponentsOnRightgetRelativeOpponents IsKeeperWellLo
alized NumOpponentsOnLeftgetRelativeTeamMembers BallInOwnGoalBox NumOpponentsOnRightGetRelativePositionOf BallInOppGoalBox OnOurSideOfTheFieldGetRelativePositionOfTeamRel BallInOurHalf OnLeftSideOfTheFieldHeadingToOffPost AmIInDefensiveZone IAmClosestToHeadingToDefPost NearOwnGoalBox IAmClosestToBallGetClosestCorner NumberOfTeamMatesInOpponentHalf NumOpponentsWithinDistan
eDistan
eToOffPost NumberOfTeamMatesInOwnHalf GetRelativePositionToDistan
eToDefPost HeadingToOppGoal InZoneGetDefensivePost HeadingToOwnGoal Approa
hingZoneGetDistan
eFromAtta
ker HeadingToOppLeftCornerGetDistan
eFromSupporter HeadingToOppRightCornerTable 13: The predi
ates that GlobalMap provides.12 BehaviorsIn this se
tion we des
ribe the robot's so

er-playing behaviors. In our development, we had relatively littletime to fo
us on behaviors, spending mu
h more of our time building up the low-level modules su
h aswalking, vision, and lo
alization. As su
h, the behaviors we des
ribe here are far from ideal. We anti
ipateoverhauling this
omponent of our
ode base should we parti
ipate in future
ompetitions. Nonetheless, wepresent a detailed des
ription for the sake of
ompleteness, and to illustrate what was possible in the timewe had to work.12.1 Goal S
oringOne of the most important skills for a so

er-playing robot is the ability to s
ore, at least on an empty goal.In this se
tion we des
ribe our initial solution that was devised before the lo
alization module was developed,47

followed by our eventual behavior that we used at RoboCup 2003.12.1.1 Initial SolutionOn
e we had the initial movement and vision modules in pla
e, we were in a position to \
lose the loop" bydeveloping a very basi
 goal s
oring behavior. The goal was to test the various modules as they intera
tedwith ea
h other. Sin
e neither the lo
alization module (Se
tion 8) nor the general ar
hite
ture (Se
tion 10)had been implemented by this time, this behavior was entirely rea
tive.This goal s
oring behavior, implemented as a Finite State Ma
hine (FSM), assumes that the robot ispla
ed at a point on the �eld su
h that the distan
e between the orange ball and the robot is not more thanone half the length of the �eld (i.e. the ball is at a distan
e where it
an be seen by the robot). A point tonote here is that this
onstraint
ould have been removed by in
orporating a \random walk" sequen
e intothe behavior. The robot �rst performs a three-layer head s
an to determine if it
an \see" the ball at its
urrent position. If the ball is not in its visual �eld at this stage, the robot starts stra�ng (turning 360 Æabout its
urrent position) in sear
h of the ball. In either
ase, the dete
tion of a ball in a single visualframe
auses the robot to stop and determine if the ball has a
tually been seen (noise in the image
olorsegmentation
an sometime
ause false ball dete
tions in high level vision). On
e the ball is in sight, therobot walks towards it by tra
king the
entroid of the ball with its head and moving its body in whateverdire
tion the head points to. This walking state
ontinues until either the ball is lost from the visual frame(in whi
h
ase the robot goes ba
k to sear
hing for the ball) or the robot rea
hes a point suÆ
iently
loseto the ball, as determined by its ne
k angles at that point. The thresholds in the ne
k angles are set su
hthat the robot stops with the ball right under its head. Next, the robot strafes around the ball with its headheld at 0 Æ tilt), sear
hing for the o�ensive goal (blue or yellow depending on whether the robot is on thered team or the blue team). On
e the goal is found, the robot
he
ks to ensure that the ball is still underits nose and then tries to ki
k the ball into the goal. If the robot �nds that it has lost the ball (it sometimespushed it away a

identally while stra�ng), it goes ba
k to sear
hing for the ball.This behavior, despite being extremely rudimentary, helped us understand the issues involved in theintera
tion/
ommuni
ation between modules. It also served to illustrate the importan
e of a good ar
hite
-ture in implementing
omplex behaviors. At the time of the Ameri
an Open, this was the only goal-s
oringbehavior that we had implemented.12.1.2 In
orporating Lo
alizationWhen lo
alization
ame into pla
e, we repla
ed the above behavior using stra�ng and a single ki
k with amore
omplex behavior involving the
hin pin
h turn. In the new behavior, the de
ision about whi
h ki
k touse is made a

ording to knowledge about where on the �eld the robot is and whether there are opponentsnearby.Figure 11 summarizes the ki
king strategy used when no opponents are dete
ted nearby. If the robot ison the o�ensive half of the �eld and is not near any walls, it follows the natural strategy of turning towardthe goal and then ki
king the ball. On the quarter of the �eld nearest the o�ensive goal, the front powerki
k is used rather than the fall forward ki
k. This is be
ause we believe the front power ki
k to be morea

urate than the fall forward ki
k, although less powerful.When the robot is in the defensive half of the �eld, it ki
ks toward the far same-side
orner (that is, ifit is on the left half of the �eld, it ki
ks toward the o�ensive-half left
orner). The reasoning behind thiswas that when the ball is in the robot's defensive half, the most important thing is to
lear the ball to theother half of the �eld. Sin
e other robots are generally more likely to be in the
enter of the �eld, a goodstrategy for a

omplishing this is to ki
k toward the outside so that the ball will on average be allowed totravel farther before its path is obstru
ted.When the robot is near the wall and fa
ing it, the head ki
k is typi
ally used.11 This is
hie
y be
ause11The ex
eption to this is when the robot is
lose to and dire
tly fa
ing the ba
k wall near its defensive goal, a situationwhi
h o

urs relatively rarely. In this
ase, the yoshi ki
k is used, be
ause under these
ir
umstan
es it is likely to su

eed atpushing the ball in the
orre
t dire
tion, and there is also a good
han
e that it will ki
k the ball farther than the head ki
k.48

corner, do not turn ball in front
of own goal, kick with fall
forward kick or head kick

No turn, or yoshi kickkick with head kick

Chin pinch turn toward far same−side

Chin pinch turn toward
far same−side corner,
do not turn ball in front
of own goal, kick with
head kick or fall foward
kick

Chin pinch turn toward goal,
kick with fall forward kick

kick with front power kick
Chin pinch turn toward goal,

Chin pinch turn toward
goal, kick with head kick
or front power kick

Offensive
Goal

Defensive
GoalFigure 11: Ki
king strategy when no nearby opponents are dete
ted

49

we want to use the
hin pin
h turn as little as possible when we are along the wall. The more the robot runsinto the wall while moving, the larger the dis
repan
y be
omes between the a
tual distan
e traveled and theinformation that odometry gives to lo
alization. Be
ause the FSM uses lo
alization to determine when toswit
h from
hin pin
h turning to ki
king, the longer the robot uses a
hin pin
h turn along a wall, the lesslikely it is to stop turning at the right time. So, it is typi
ally a better strategy when very near a wall andfa
ing it to head ki
k the ball along the wall rather than trying to turn with the ball to an exa
t angle andthen ki
k with a more powerful ki
k.Another situation where the head ki
k is used is when we would otherwise need to turn more than 180degrees with the ball. This situation typi
ally arises when the robot is in the defensive half and needs toavoid turning in a way that will pass the ball between it and its own goal. A 360-degree
hin pin
h turntakes approximately 5 se
onds. Thus, given that many of our ki
ks take a small amount of time to preparebefore hitting the ball away,
hin pin
h turning for more than 180 degrees
arries the danger of putting usin violation of the 3-se
ond holding rule. Therefore, in situations where we need to turn through some angle� > 180 degrees, we instead turn through � � 80 (or 180, if �� 80 > 180) degrees and then head ki
k in theappropriate dire
tion.If opponents are dete
ted nearby, the robot simply ki
ks with the head ki
k in the dire
tion of the goalunless the goal is dire
tly behind the robot, in whi
h
ase it ki
ks with the yoshi ki
k. The reasoning behindthis is the same as the reasoning just des
ribed underlying the
hoi
e of the head ki
k near walls.12.1.3 A Finite State Ma
hineOur behaviors are implemented by a Finite State Ma
hine (FSM), wherein at any time the Aibo is in one ofa �nite number of states. The states
orrespond roughly to primitive behaviors, and the transitions betweenstates depend on input from vision, lo
alization, the global map, and joint angles. This se
tion des
ribesthe FSM underlying our main goal-s
oring behavior. As we developed our strategy more fully, this be
amethe behavior of the atta
ker (see Se
tion 13.2.1). The behaviors of the other two roles are dis
ussed inSe
tion 13.2.1 as well.The main goal s
oring states are listed here. Note that the a
tions taken in these states are exe
utedthrough the Movement Interfa
e, and they are des
ribed in more detail in Se
tion 5.2.2.� Head S
an For Ball: This is the �rst of a few states designed to �nd the ball. While in this state, therobot stands in pla
e s
anning the �eld with its head. We use a two-layer head s
an for this.� Turning For Ball: This state
orresponds to turning in pla
e with the head in a �xed position (pointingahead but tilted down slightly).� Walking To Unseen Ball: This state is for when the robot does not see the ball itself, but one of itsteammates
ommuni
ates to it the ball's lo
ation. Then the robot tries to walk towards the ball. Atthe same time, it s
ans with its head to try to �nd the ball.� Walking To Seen Ball: Here we see the ball and are walking towards it. During this state the robotkeeps its head pointed towards the ball and walks in the dire
tion that its head is pointing. As therobot approa
hes the ball, it
aptures the ball by lowering its head right before transferring into theChin Pin
h Turn state.� Chin Pin
h Turn: This state pin
hes the ball between the robot's
hin and the ground. It then turnswith the ball to fa
e the dire
tion it is trying to ki
k.� Ki
king: While in this state, the robot is ki
king the ball.� Re
over From Ki
k: Here the robot updates its knowledge of where the ball is and bran
hes intoanother state. Both of these pro
esses are in
uen
ed by whi
h ki
k has just been performed.50

� Stopped To See Ball: In this state, the robot is looking for the ball and has seen it, but still does nothave a high enough
on�den
e level that it is a
tually the ball (as opposed to a false positive fromvision). To verify that the ball is there, the robot momentarily freezes in pla
e. When the robot seesthe ball for enough
onse
utive frames, it moves on to Walking To Seen Ball. If the robot fails to seethe ball, it goes ba
k to the state it was in last (where it was looking for the ball).In order to navigate between these states, the FSM relies on a number of helper fun
tions and variablesthat help it make state transition de
isions. The most important of these are:� BallLost: This Boolean variable denotes whether or not we are
on�dent that we see the ball. This isa sti
ky version of whether or not high level vision is reporting a ball, meaning that if BallLost is true,it will be
ome false only if the robot sees the ball (a

ording to vision) for a number of
onse
utiveframes. Similarly, a few
onse
utive frames of not seeing the ball are required for BallLost to be
ometrue.� NearBall: This fun
tion is used when we are walking to the ball. It indi
ates when we are
lose enoughto it to begin
apturing the ball with a
hin pin
h motion. It is determined by a threshold value forthe head's tilt angle.� DetermineAndSetKi
k: This fun
tion is used when transitioning out of Walking To Seen Ball uponrea
hing the ball. It determines whether or not a
hin pin
h turn is ne
essary, what angle the robotshould turn to with the ball before ki
king, and whi
h ki
k should be exe
uted.Finally, an overview of the rules that govern how the states transition into one another is given inFigure 12.12.2 GoalieIn this se
tion we detail our initial (pre-lo
alization) and �nal (RoboCup-2003) goalie behaviors.12.2.1 Initial SolutionLike the rest of our behaviors, our goalie behavior used an FSM for
ontrol. The initial behavior was asfollows: On
e it started, the �rst thing would be to look around for the goal, go to it, turn around andstand there, in front of the goal, looking forward to see if it saw the ball. If it saw the ball, it would startto \tra
k" it, i.e. keep its eye on the ball and turn in pla
e if ne
essary. If the ball got too
lose, it wouldstret
h its arms out, hoping to blo
k the ball (Figure 13).Closeness to the ball was based on the head tilt angle. Sin
e we didn't have lo
alization working properlyat the time, this was the only way to reliably tell distan
e. The goalie would tra
k the ball, whi
h entailsmoving the head su
h that the ball is in the
enter of the �eld of vision (and turning the body in pla
e ifturning the head isn't enough). Therefore the head would always be pointed towards the ball and the
loserthe ball, the larger the tilt angle (Figure 14). The angles for being \
lose" were determined by trying variousangles on the �eld.This simple approa
h had many problems, some due to its simpli
ity and some due to inabilities of ourAibos at a lower behavioral level. For example, tra
king the ball didn't work fast enough for the Aibo torea
t even to slow shots
oming towards it. The ball would just roll by the goalie who would lose sight of itbe
ause its head wouldn't get moved in time to tra
k the ball.The most important problem was the passiveness of our goalie. Judging that we would be dead in thewater if we just waited passively for the ball to slowly roll up to us, we de
ided to take a more a
tiveapproa
h. Our revised goalie waited in its goalbox until the ball
ame within a safety distan
e and then itwalked to the ball and attempted to
lear it. This approa
h worked mu
h better but it also brought alongsome new problems to solve: 51

Chin Pinch
Turn

Recover
From KickKicking

Turning
For Ball

Walking To
Seen Ball

Head Scan
For Ball

Walking To
Unseen Ball

desired direction.
Robot is facing Kick is

finished.

Ball was kicked
forwards.

Ball kicked to side
or backwards

DetermineAndSetKick says
Chin Pinch Turn is not necessary.

NearBall is true and
Chin Pinch is executed.

The robot has turned
at least 360 without seeing
the ball, and the Global Map
knows where the ball is.

The Global Map doesn’t
know where the ball is.

Enough time has elapsed
without finding the ball.

BallLost
becomes true.

Ball is seen.

Figure 12: The �nite state ma
hine that governs the behavior of the atta
king robot.
52

Closeness threshold

(a) (b)Figure 13: First attempt at a goalie: (a) it waits for the ball to get within a
loseness threshold and then(b) stret
hes its arms out to blo
k the ball. This approa
h didn't work well sin
e ball tra
king was slow. Bythe time the goalie stret
hed, the ball would be long gone.
Tilt angle

Figure 14: Closeness to ball was based on the how large the head tilt angle was.
53

� How
lose should the safety distan
e be? We don't want the goalie to leave the goal to
lear a ball atmid�eld, but if it waits too long, the opponent with the ball will have too great a
han
e of shootinga fast shot into the goal.� How should the robot
lear the ball? If it just stret
hes as it did before, it won't be pushing the ballaway from itself.� When and how should it get ba
k in position? There is often an opponent behind or next to the ball,so after attempting to
lear it, the goalie needs to make sure the ball's not still right in front of it. On
eit's
leared the ball, what is the qui
kest way to go ba
k to position in the goalbox while minimizingthe possibility of being
aught unaware of the ball
oming ba
k to the goal?The �rst method we used for
learing the ball was the simple stret
hing out to the sides, whi
h workedsometimes but usually didn't
lear the ball very far and just left it in pla
e or pushed it to the side a little.This motivated us to experiment with di�erent ki
king styles. Some ki
ks we tried were the
hest push ki
k,the arms together ki
k, the fall forward ki
k and the \right (or left) swerve ki
k." (See Se
tion 7 for detailsof the �rst three ki
ks.) In the right (left) swerve ki
k the robot ba
ks up to the right (left) side, raises itsright (left) leg and then qui
kly brings it diagonally down and towards the inside, somewhat like a karate
hop. This ki
k was one of our most powerful ki
ks early in our development pro
ess. However, after wedeveloped the fall forward ki
k, we experimented with using di�erent ki
ks in di�erent situations (e.g. usethe fall forward ki
k when the ball is right in front and the swerve ki
k when it is o� to the side). Eventuallywe de
ided that the best approa
h was to always use the fall forward ki
k.When the goalie tries to
lear the ball, frequently the ball stays where it is or moves a very small amount.This
an be due to not exe
uting the ki
k perfe
tly or, more often, the fa
t that there is an opponent robotright behind the ball, keeping it from rolling away. To make sure the ball is
leared and it is safe to goba
k to the waiting position inside the goalbox, the goalie
he
ked to see if the ball was right under it afterki
king. If it saw the ball there it would try to ki
k again. This was repeated until the ball was su

essfully
leared.Going ba
k to the goal after
learing was one of the tri
kiest parts be
ause we didn't have any lo
alizationinitially. All the goalie knew was to re
ognize the ball and the goal. We didn't want the goalie to just turnba
k, look for the goal, walk ba
k to it and turn around to fa
e the �eld. That would mean spending a longtime without looking at the ball, whi
h might give our opponents a
han
e to s
ore sin
e the ball might nothave been
leared very far away (even though we make sure its not right under our head). The solutionto this was to walk ba
kwards after su

essfully
learing the ball and at the same time keeping looking forthe ball in
ase it appears
lose to the robot. This worked quite well and the goalie kept wat
hing the ballwhen it wasn't
leared far away, but there was a new problem. When the goalie saw the ball while walkingba
kwards, it would return to tra
king and go out to
lear the ball if it got
lose enough. After going out to
lear and walking ba
k a few times, the error in position would get large and the goalie would start driftingaway from its home position. To
ounter this, we
hanged the behavior so the goalie would turn around andgo ba
k to its home position after walking out for a long time (\a long time" being
hosen arbitrarily basedon experiments on the �eld).There are many ways in whi
h the
apabilities of the goalie
an be improved. Adding lo
alization wasdone after the Ameri
an Open, and is des
ribed in the next subse
tion. Getting better ball tra
king abilitywith faster rea
tion to fast-moving balls (su
h as shots) is de�nitely needed and would improve goalkeepingbehavior substantially.12.2.2 In
orporating Lo
alizationOn
e our goalie had the ability to determine its position on the �eld, our primary strategy shifted to stayingbetween the ball and the goal. Given the size of the goalie with respe
t to the goal, we adopted a fairly
onservative strategy that kept the goalie in the goal most of the time.Whenever the goalie saw the ball, it oriented itself su
h that it was pointed at the ball and situatedbetween the ball and the goal. If the ball
ame within a
ertain distan
e of the goal, the goalie advan
ed54

towards the ball and attempted to
lear it. After attempting to
lear the ball, the goalie retreated ba
k intothe goal, walking ba
kwards and looking for the ball. Any time the goalie saw the ball in a non-threateningposition, it oriented itself towards the ball and
ontinued its
urrent
ourse of a
tion.Whenever the ball was in view, the goalie kept a history of ball positions and time estimates. Thishistory allowed the goalie to approximate the velo
ity of the ball, whi
h was useful in de
iding when thegoalie should \stret
h out" to blo
k a shot on the goal.One interesting dilemma we en
ountered
on
erned the tradeo� between looking at the ball and lookingaround for landmarks. It seemed very possible that, given the goalie's size, if it
ould just stay between theball and the goal it
ould to a fairly good job of preventing goals. However, this strategy depended on thegoalie both being able to keep tra
k of it's own position and the ball's position. When we programmed thegoalie to �xate on the ball, it was not able to see enough landmarks to maintain an a

urate estimate ofits own position. On the other hand, when the goalie fo
ussed on the bea
ons in order to stay lo
alized, itwould often miss seeing the approa
hing ball. It proved to be very diÆ
ult to strike a balan
e between thesetwo opposing for
es.13 CoordinationIn this se
tion we des
ribe our initial and eventual solutions to
oordinating multiple so

er-playing robots.13.1 DibsOur �rst e�orts to make the players
ooperate resulted dire
tly from our attempts to play games with 8players. Every game would wind up with six robots
rowded around the ball, wrestling for
ontrol. At thispoint, we only had 2 weeks before our �rst
ompetition, and thus needed a solution that did not depend onlo
alization, whi
h was not yet fun
tional. Our solution was a pro
ess we
alled Dibs.13.1.1 Relevant DataIn developing Dibs, we tried to fo
us on determining both what data were available to us, and of that data,whi
h were relevant. Be
ause we did not have a
oherent set of global maps at this point, any informationfrom other robots would have to
ome dire
tly into the Dibs system. As we
reated the system, it be
amemore and more
lear that the only thing we
ared about was how far from the ball ea
h robot was. Our �rstattempt simply transmitted the ball distan
e to every other robot. Ea
h robot would then only go to theball if its distan
e estimate was lower than that of every other robot.13.1.2 ThrashingUnfortunately, this �rst attempt did not work so well. First of all, the robots' per
eption of their distan
e tothe ball was very heavily dependent on how mu
h of the ball they
ould see, how the lights were re
e
tingo� the surfa
e of the ball, and how mu
h of the ball was a
tually
lassi�ed as \orange." This means thatestimates of the ball's distan
e varied wildly from brain
y
le to brain
y
le, often by orders of magnitude inea
h dire
tion. Se
ondly, even when estimates were fairly stable, a robot
ould think that it was the
losestto the ball, start to step, and in the pro
ess move slightly ba
kward, whi
h would signal another robot togo for the ball. The other robot would begin to step, moving slightly ba
kward at �rst, and the
y
le would
ontinue ad in�nitum.13.1.3 StabilizationTo
orre
t these problems, we de
ided that re-evaluating whi
h robot should go to the ball in ea
h brain
y
lewas too mu
h. Evaluating that frequently didn't give a robot the
han
e to a
tually step forward (this wasbefore our walk was fully developed as well), so that its estimate of ball distan
e
ould de
rease. However,we
ouldn't just take measurements every n brain
y
les and throw away all the other information | we55

were strapped for information as it was, and we didn't want one noisy measurement to negatively a�e
t thenext n brain
y
les of play. Our solution was to take an average of the measurements over a period of time,and instead only transmit them every n brain
y
les.13.1.4 Taking the AverageBe
ause the vision is somewhat noisy (i.e. the robot sometimes sees the ball when it is not there, andsometimes doesn't see it when it is there), it didn't make sense just to take the raw mean of the estimatesover the period of n brain
y
les. We de
ided that unless the robot saw the ball for at least n2
y
les in ea
hperiod, it would report an essentially in�nite distan
e to the ball. If it did see the ball enough, it wouldtake all the non-in�nite estimates in that \transmit
y
le", dis
ard some �xed number of highest and lowestvalues (an attempt to
lean up some of the noise), and then transmit the mean of the remaining values.13.1.5 AgingTo prevent deadlo
k we introdu
ed an aging system into Dibs. Originally, if a robot had transmitted a verylow estimate of distan
e to the ball, and then
rashed or was removed from play, any other robots would justremain wat
hing the ball, be
ause they would still have the other robot's estimate in their memory. Thus,at the end of ea
h transmit
y
le, we in
remented the age of ea
h other robot's estimate. When the agerea
hed a pre-determined
uto� (10 in our
ase), the estimate was dis
arded and set to the maximum value.In this way, other robots
ould then resume atta
king the ball.13.1.6 Calling the BallAnother problem we ran into involved the \strafe" state. On
e a robot had established \Dibs" on the ball,it would walk towards the ball while the other robots wat
hed the ball
losely. When the robot rea
hed theball, however, it would look up, in order to �nd the goal. While it was looking up, its ball estimates wouldall go to the maximum value, and other robots would resume atta
king the ball. More often than not, thiswould result in a robot stra�ng to �nd the goal, while another robot of ours would
ome up and take theball right out from under the nose of the �rst. Next, the se
ond robot would start to strafe, and a largetangle of robots would result. To prevent this, we added fun
tions
alled \
allBall" and \relinquishBall."These fun
tions merely set
ags that made the robot start lying about its distan
e to the ball and stop lying,respe
tively. When lying about its distan
e to the ball, the robot would always report zero as its distan
eestimate. This way, whenever the robot entered the stra�ng state, it
ould e�e
tively let the other robotsknow that even though it wasn't seeing the ball, they shouldn't go after it. The robot would then relinquishthe ball at the beginning of most states, in
luding when it had lost the ball and when it had just �nishedki
king the ball.13.1.7 Support Distan
eThe system des
ribed so far worked pretty well in that it prevented more than one robot from going to theball at on
e. However that was all it did. One robot might be going to the ball, but all the others wouldjust stare at the ball, regardless of how far away they were. We determined that this was
onsiderablysub-optimal, and that even if a robot is dribbling the ball down the �eld toward the enemy goal, if it were tolose the ball, it would be ni
e to have another robot nearby to re
over, if possible. Thus we introdu
ed the
on
ept of a \support distan
e." Originally set at half a meter, and then tuned to approximately a meter,the support distan
e was how
lose the robot would have to be to the ball before its la
k of Dibs wouldprevent it from advan
ing further. While we only enjoyed limited overall su

ess using the support distan
ete
hnique, it was a marked improvement over ordinary Dibs.
56

13.1.8 Phasing out DibsOn
e lo
alization was brought online, the need for multiple types of transmissions (whi
h Dibs did notrespe
t) and the desire to use lo
alization data di
tated a phasing out of Dibs. Be
ause Dibs was so
arefullytuned to the robots' playing style,
ooperation a
tually worsened for quite a while before it improved afterphasing out Dibs. However, as with many things, it needed to get worse before it
ould get better.13.2 Final StrategyHere we des
ribe the
oordination strategy developed during the last week or so before RoboCup 2003. Inparti
ular, it takes advantage of both lo
alization and global maps.13.2.1 RolesOur strategy uses a dynami
 system of roles to
oordinate the robots. In this system, ea
h robot has oneof three roles: atta
ker, supporter, and defender. The goalie does not parti
ipate in the role system. Thisse
tion gives an overview of the ideas behind the roles. The following se
tions des
ribe in more detail thesupporter's and defender's behaviors and under what
onditions the roles
hange.The roles are dynami
ally assigned, in that at the start of ea
h Brain
y
le, a given robot reevaluatesits role based on its
urrent role, its global map information, and other strategi
 information
ommuni
atedto it by its teammates. The default allo
ation of roles is for there to be one defender and two atta
kers.Under
ertain
ir
umstan
es an atta
ker
an be
ome a supporter, but after some time it
hanges ba
k intoan atta
ker. It is also possible for the defender to swit
h roles with an atta
ker. There should always beexa
tly one defender and at least one atta
ker.The di�eren
es between the roles manifest themselves in the robots' behaviors. Here is a summary ofthe di�eren
es between the behaviors e�e
ted by the di�erent roles. The atta
ker's behavior is des
ribed inmore detail in Se
tion 12.1, and the supporter and defender behaviors are des
ribed more fully below.� An atta
ker robot fo
uses ex
lusively on goal-s
oring. That is, it tries to �nd the ball, move to it, andki
k it towards the goal.� The supporter's a
tions are based on a
ouple of goals. One is to stay out of the way of the atta
ker.This is based on the idea that one robot
an s
ore by itself more e�e
tively than two robots both tryingto s
ore at the same time. Another goal is to be well pla
ed so that if the atta
ker shoots the balland it ri
o
hets o� the goalie or a wall the supporter
an then be
ome the atta
ker and
ontinue theatta
k.� Our defender stays on the defensive half of the �eld at all times. Its job is to wait for the ball to be onits half and then go to the ball and
lear it ba
k to the o�ensive side of the �eld.13.2.2 Supporter BehaviorThe supporter uses an omnidire
tional walk to try to simultaneously fa
e the ball and move to a supportingpost. If it sees the ball, it keeps its head pointing towards the ball and tries to point its body in the samedire
tion as its head. If it doesn't see the ball, it tries to turn towards its global map lo
ation of the balland s
ans with its head to try to �nd it. It is very rare for there to be a supporter that has no idea wherethe ball is (i.e. while no robot sees the ball).The lo
ation of the supporting post is a fun
tion of the position of the ball. For this we use a team-
entri

oordinate system where the edge of the �eld in
luding the defensive goal line is the positive x-axis, the leftedge of the �eld is the positive y-axis, and the units are millimeters. If the
oordinates of the ball are (x; y),then the supporting post, (Sx; Sy), is given bySx = � 1150 if x > 14501750 if x � 1450 (42)57

and Sy = min�y + 42002 ; 3800� : (43)13.2.3 Defender BehaviorThe role of a defender in robot so

er is not mu
h di�erent from that in real so

er | to prevent theopponents from moving the ball anywhere near the goal it is defending and to try and ki
k the ball, whenin its own half, towards a team member in the other half. We de
ided to go for a very
onservative defendersu
h that there is always one robot in our half defending the goal. At the same time we wanted to ensurethat under
onditions where the defender is in a better position to fun
tion as the atta
ker, there is smoothswit
hing of roles between the robots.When a robot is assigned the defender role, its �rst a
tion is to walk within a
ertain distan
e (approx.200mm) of a prede�ned defensive post that is roughly the
enter of the defensive half of the �eld. On
eit gets within this distan
e of the defensive post, it either turns su
h that it fa
es the ball whi
h is withinits �eld of vision or it turns to fa
e the point where it thinks the ball is based on the result of merging theestimates from other teammates in its global map (see Se
tion 11). If it
annot see the ball and also does notre
eive any
ommuni
ation regarding the ball from other teammates (a rare o

urren
e), it starts sear
hingfor the ball on
e it gets to the defensive post. Even while it is walking to this post, if it sees the ball and�nds, on the basis of its
urrent world knowledge, that it is the
losest to the ball, it starts walking to theball. On
e it gets to the ball it tries to ki
k the ball away from the defensive zone (the bottom three-fourthsof the half of the �eld that it is defending). For the defender, we use a
ombination of the
hin-pin
h turnand the fall forward ki
k (see Se
tion 7), as it is the most powerful ki
k we have. While ki
king, the defenderalways tries to angle the ki
k away from its own goal and towards one of the
orners of the opposition.This strategy allows us to
lear the ball in most instan
es and even takes it a long way into the other halfthereby giving the atta
ker(s) (or atta
ker and supporter) a better
han
e of s
oring a goal. A

ording tothe rules of the
ompetition, none of the team members
an enter the penalty box around their own goal. Toa

ommodate this in the defender and in the other team members ex
luding the goalkeeper, we add a
he
kthat prevents the robot from entering the goal box and a \bu�er" region around it. If the ball is within thisregion, the robot just tra
ks the ball and lets the goalkeeper take
are of
learing the ball.13.2.4 Dynami
 Role AssignmentOur role assignment system has three main fa
ets. One is a set of general rules that serve to maintain thestatus quo of there being exa
tly one defender and at least one atta
ker. Next are the rules that determinewhen one of the two atta
kers be
omes a supporter and then when it swit
hes ba
k. The last set of rulesor
hestrates timely swit
hes between the defender and an atta
ker.General Rules We label the three robots R1, R2, and R3. Then the following rules in
uen
e R1's
hoi
eof role. (The rules are the same for ea
h robot; the labels are to distinguish whi
h robot's role is beingdetermined presently.)� The default is for ea
h robot to keep its
urrent role. It will only
hange roles if a spe
i�
 rule applies.� If R1 �nds that it is \alone" in that it has not been re
eiving
ommuni
ation from other teammatesfor some time, it automati
ally assumes the role of an atta
ker.� In most
ases,
ommuni
ation works �ne, and if neither R2 nor R3 is a defender, then R1 will auto-mati
ally be
ome (or stay) a defender. This ensures that (under normal
onditions) there will alwaysbe at least one defender. Ensuring that there is not more than one defender is taken
are of in these
tion on atta
ker and defender swit
hing. 58

� If R1 is a supporter and so is R2 or R3, then R1 will automati
ally be
ome an atta
ker. This
ouldhappen a

identally if two supporters simultaneously de
ide to be
ome supporters without enoughtime in between for the se
ond one to be aware of the �rst's de
ision. In this
ase this rule ensuresthat at least one of the supporters will immediately go ba
k to being an atta
ker.Atta
kers and Supporters A number of
onsiderations in
uen
e our me
hanism for swit
hing betweenatta
ker and supporter. One su
h
onsideration is that we want to prevent a robot from
hanging roles twi
ewith very little time in between. This is be
ause a robot that keeps
hanging roles very frequently behavesin a s
attered manner and is unable to a

omplish anything. To enfor
e this, we made the roles somewhatsti
ky. That is, for an atta
ker or supporter, there is an amount of time su
h that on
e the robot enters thatrole, it is unable to leave it until that mu
h time has passed. Presently, the amount of time for an atta
keris 2:5 se
onds, and for a supporter it is 2 se
onds. Notably, sti
kiness
an easily be in
on
i
t with thegeneral rules listed above. In these
ases we give sti
kiness the highest priority. We also
onsidered givingthe general rules highest priority, and it is still not
ompletely
lear to us whi
h system is better.An important measure that we use to evaluate a robot's utility as an atta
ker is its ki
k time. This isan estimate of the amount of time it will take the robot in question to walk up to the ball, turn it towardsthe goal, and ki
k. Ea
h robot
al
ulates its own ki
k time and
ommuni
ates it to the other robots as partof their
ommuni
ation of strategi
 information. The estimated amount of time to get to the ball is theestimated distan
e to the ball divided by the forward speed. The time to turn with the ball is determined by
al
ulating the angle that the ball will have to be turned and dividing by the speed of the
hin-pin
h turn.Consider the
ase where there are two atta
kers, A1 and A2. On
e A1's period of sti
kiness has expired,it will be
ome a supporter pre
isely when all of the following
onditions are met:� A1 and A2 both see the ball. This helps to ensure the a

ura
y of the other information being used.� The ball is in the o�ensive half, as well as both robots A1 and A2. Be
oming a supporter is only usefulwhen our team is on the atta
k.� A1 has a higher ki
k time than A2. That is, A2 is better suited to atta
k, so A1 should be
ome thesupporter.On
e we have a supporter, S, and the role is no longer stu
k, it will turn ba
k into an atta
ker if any ofthe following
onditions hold:� S, the ball, or the atta
ker (A) go ba
k into the defensive half.� A and S both see the ball, and S's estimate of its distan
e from the ball is smaller than A's.� A doesn't see the ball, and S's estimate of the ball's distan
e from it is less than some
onstant(presently 300 mm).� S has been a supporter for longer than some
onstant amount of time (presently 12 se
onds).Atta
ker and Defender Swit
hing The following set of rules is used to allow the defender and anatta
ker to swit
h roles under appropriate
ir
umstan
es.� If a defender re
eives the information that there is another defender, it
he
ks, using the global mapdata on the robots' distan
es to the ball, if it is a \better" defender (the one farthest from the ball).If so, it stays a defender. If not, it be
omes an atta
ker.� If a defender �nds that there is no other defender, it still
he
ks to see if the
onditions are suitable forit to be
ome an atta
ker. Here we test to see if the robot is
losest to the ball and is in the se
tion ofthe �eld that is on the top half on its side of the �eld. If it is, it sends a request to the atta
ker, askingto swit
h roles with it. Then, instead of be
oming an atta
ker immediately, it waits for the atta
ker to59

re
eive the request. On
e this happens, we end up with more than one defender in the team (see therule mentioned below), and this is resolved using the
ondition mentioned above. More information onmessage types and
ommuni
ation
an be found in Se
tion 9.� When an atta
ker re
eives a request from a defender to swit
h roles, it automati
ally a

epts. Itdoes not need to parti
ipate in the de
ision making pro
ess be
ause the defender had a

ess to thesame information as it did (as a result of the global maps) when it de
ided to swit
h. The atta
ker
ommuni
ates its a

eptan
e by simply be
oming a defender. This is suÆ
ient be
ause the robotsalways
ommuni
ate their roles to all of their teammates.As mentioned above, our role system was developed quite hastily in the last week or so before
ompetition.However, we feel that the system performs quite appropriately during games. The atta
ker/defender swit
hesnormally o

ur where they seem intuitively reasonable. The two atta
kers (with one be
oming a supporterperiodi
ally), trying to s
ore a goal, frequently look like a well organized pair of teammates. Nonetheless,there are
ertainly some instan
es during the games where we
an point to situations where a role
hangehappened at an inopportune time, or where it seems like they should \know better" than to do what theyjust did. Finding viable solutions to problems like this
an be strikingly diÆ
ult. We look forward to makingfurther progress on these problems and to improving the
ooperation between the robots.14 UT AssistDuring the
ourse of our development, we developed a valuable tool to help us debug our robot behaviorsand modules. This tool, whi
h we
alled UT Assist, allowed us to experien
e the world from the perspe
tiveof our Aibos and monitor their internal states in real-time.14.1 General Ar
hite
tureUT Assist
onsists of two pie
es: a
lient and a server. The fun
tion of the
lient software, whi
h isprogrammed in C++ and runs on an Aibo, is to queue and send data to the server. The server, whi
his programmed in Java and runs on a remote
omputer, is primarily
on
erned with
olle
ting, displaying,and saving the data that it re
eives. We
hose Java for the server be
ause it put us on a relatively qui
kdevelopment
y
le and gave us a

ess to a ri
h library of pre-existing
ode. In parti
ular, the ease with whi
hJava handles networking and graphi
s made it an obvious
andidate for this proje
t.Multiple
lients
an
onne
t to one server. It is possible for more than one server to be a
tive aton
e, provided that it does not listen on a port that is already taken by another servi
e. All
lient-server
ommuni
ation takes pla
e via TCP. The
lient software uses the default Open-R TCP endpoint interfa
e,and the server software uses TCP networking
lasses des
ribed in the Java 2 API spe
i�
ation.14.1.1 Typi
al UsageDuring ea
h Brain
y
le on the Aibo, many di�erent pie
es of
ode
an attempt to send data messages tothe server. If the
lient is not already sending data to the server, it will a

ept ea
h request and pla
e thespe
i�ed data into a queue. If the
lient is busy sending data, it will reje
t the request to send data. Atthe end of ea
h Brain
y
le, if the
lient has some data in its queue, it will divide the data into �xed-lengthpa
kets and start sending the data to the server. This method of pro
essing data ensures that only datafrom the most re
ent Brain
y
le will be sent to the server and avoids a \ba
klog" situation, in whi
h thespeed at whi
h data is queued ex
eeds the speed at whi
h it
an be delivered to the server.Ea
h message that enters the queue in the
lient is uniquely identi�ed by a one-byte ID �eld. From theperspe
tive of the
lient, ea
h message it re
eives is simply a group of bytes asso
iated with a unique ID.None of the pa
ket pro
essing that the
lient performs upon the queue of messages depends on the a
tualdata in the messages, whi
h allows users to add new types of data messages without modifying the
lient.60

