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1 IntrodutionRoboCup, or the Robot Soer World Cup, is an international researh initiative designed to advane the�elds of robotis and arti�ial intelligene by using the game of soer as a substrate hallenge domain. Thelong-term goal of RoboCup is, by the year 2050, to build a full team of 11 humanoid robot soer playersthat an beat the best human soer team on a real soer �eld [1℄.RoboCup is organized into several di�erent leagues, inluding a omputer simulation league and twoleagues that use wheeled robots. This tehnial report onerns the development of a new team for theSony four-legged league1 in whih all ompetitors use idential Sony Aibo ERS-210A robots and the Open-Rsoftware development kit.2Sine all teams use idential robots, the four-legged league amounts to essentially a software ompetition.In this report, we detail the development of a new team, alled UT Austin Villa,3 from the Department ofComputer Sienes at the University of Texas at Austin.For the purposes of this report, we assume familiarity with the spei�ations of the robots as well as therules of the RoboCup games. For full details see the legged league and Open-R sites footnoted above. Herewe desribe both our development proess and the tehnial details of its end result, the UT Austin Villateam. The main ontributions of this report are1. A roadmap for new teams entering the ompetition who are starting from srath; and2. Full doumentation of the algorithms behind our approah with the goal of making them fully repliable.Our team development began in mid-January of 2003, at whih time none of the team members hadany familiarity with the Aibos. Without using any RoboCup-related ode from any other teams, we entereda team in the Amerian Open ompetition at the end of April, and met with some suess at the annualRoboCup ompetition that took plae in Padova, Italy at the beginning of July. Although our team was notone of the top few at the ompetition, we view it as a great aomplishment that we were able to developa ompetitive team in suh a short time. A primary goal of this report is to doument our developmentproess as a guide for new teams in the future.Our e�ort began as a graduate researh seminar o�ered as a lass during the Spring semester of 2003.The following setion outlines the struture of the lass. At the end of that setion we outline the strutureof the remainder of the paper.2 The ClassThe UT Austin Villa 2003 legged robot team began as a foused lass e�ort during the Spring semester of2003 at the University of Texas at Austin. Nineteen graduate students and one undergraduate were enrolledin the ourse CS395T: Multi-Robot Systems: Roboti Soer with Legged Robots.4 All of the authors on thispaper partiipated in the lass.Students in the lass studied past approahes, both as desribed in the literature and as reeted inpublily available soure ode. However, we developed the entire ode base from srath with the goals oflearning about all aspets of robot ontrol and of introduing a ompletely new ode base to the ommunity.Class sessions were devoted to students eduating eah other about their �ndings and progress, as wellas oordinating the integration of everybody's ode. Just nine weeks after their initial introdution to therobots, the students already had preliminary working solutions to vision, loalization, fast walking, kiking,and ommuniation.The onrete goal of the ourse was to have a ompletely new working solution by the end of April sothat we ould partiipate in the Amerian Open ompetition, whih happened to fall during the last weekof the lass. After that point, a subset of the students ontinued working towards RoboCup 2003 in Padova.1http://www.openr.org/roboup/index.html2http://openr.aibo.om/3http://www.s.utexas.edu/~AustinVilla4http://www.s.utexas.edu/~pstone/Courses/395Tspring035



The lass was organized into three phases. Initially, the students reated simple behaviors with the soleaim of beoming familiar with Open-R.Then, about two weeks into the lass we shifted to phase two by identifying key subtasks that wereimportant for reating a omplete team. Those subtasks were:� Vision;� Movement;� Fall Detetion;� Kiking;� Loalization;� Communiation;� General Arhiteture; and� Coordination.During this phase, students hose one or more of these subtasks and worked in subgroups on generatinginitial solutions to these tasks in isolation.By about the middle of Marh, we were ready to swith to phase three, during whih we emphasized\losing the loop," or reating a single uni�ed ode-base that was apable of playing a full game of soer.We ompleted this integration proess in time to enter a team in the RoboCup Amerian Open ompetitionat the end of April.The following setions hronile our progress towards our RoboCup 2003 entry. All of the subtopisaddressed in phase two of the lass ontinued to be improved throughout our development proess. Forlarity of presentation, we present our eventual solutions in the same setions in whih we introdue ourinitial approahes. In so doing, we make an e�ort to doument the evolution of ideas that led to our �nalsolutions, though in general we give full details only for our �nal solutions. Subsequent setions address our�nal integration e�orts as well as our experienes at the ompetition.The remainder of the report is organized as follows. In Setion 3 we doument some of the initialbehaviors that were generated during phase one of the lass. Next we doument the output of some ofthe subgroups that were formed in phase two of the lass: vision in Setion 4; movement in Setion 5; falldetetion in Setion 6; kiking in Setion 7; loalization in Setion 8; and ommuniation in Setion 9. Ineah of these setions we fully doument our solutions to the subtasks as of RoboCup 2003 in July. Next, wedoument the tasks that oupied phase three of the lass, namely those that allowed us to put together theabove modules into a ohesive ode base. In Setion 10 we desribe our general arhiteture that ombinessensing, deision-making, and ating. In Setion 11 we introdue global maps, our main state representation.Setion 12 desribes our soer-playing behaviors suh as goal-soring and goaltending. Then in Setion 13we doument our methods for oordinating the behaviors of the robots as a team. Setion 14 introdues ourdebugging and development tool. Then in Setion 15 we summarize our experienes at the Amerian Openand RoboCup 2003 ompetitions, and Setion 16 onludes.3 Initial BehaviorsThe �rst task for the students in the lass was to learn enough about the Aibo to be able to ompile andrun any simple program on the Aibo.The open soure release of Open-R ame with several sample programs that ould be ompiled and loadedonto the Aibo right away. These programs ould do simple tasks suh as:L-Master-R-Slave: Cause the right legs to mirror manual movements of the left legs.Ball-Traking-Head: Cause the head to turn suh that the pink ball is always in the enter of the visualimage (if possible).PIDontrol: Move a joint to a position spei�ed by the user by typing in a telnet window.6



The students were to pik any program and modify it, or ombine two programs in any way. The mainobjetive was to make sure that everyone was familiar with the proess for ompiling and running programson the Aibos. Some of the resulting programs inluded:� Variations on L-Master-R-Slave in whih di�erent joints were used to ontrol eah other. For example,one student used the tail as the master to ontrol all 4 legs, whih resulted in a swimming type motion.Doing so required saling the range of the tail joints to those of the leg joints appropriately.� Variations on Ball-Traking-Head in whih a di�erent olor was traked. Two students teamed up toause the robot to play di�erent sounds when it found or lost the ball.� Variations on PIDontrol suh that more than one joint ould be ontrolled by the same input string.After beoming familiar with the ompiling and uploading proess, the next task for the students was tobeome more familiar with the Aibo's operating system and the Open-R interfae. To that end, they wererequired to reate a program that added at least one new subjet-observer onnetion to the ode.5 Thestudents were enouraged to reate a new Open-R objet from srath. Pattern-mathing from the sampleode was enouraged, but reating an objet as di�erent as possible from the sample ode was preferred.Some of the responses to this assignment inluded:� The ability to turn on and o� LEDs by pressing one of the robots' sensors.� A primitive walking program that walks forward when it sees the ball.� A program that alternates blinking the LEDs and apping the ears.After this assignment, whih was due after just the seond week of the lass, the students were familiarenough with the robots and the oding environment to move on to their more direted tasks with the aimof reating useful funtionality.4 VisionThe ability of the robot to sense its environment is a prerequisite for any deision making on the Aibo. Assuh, we plaed a strong emphasis on the vision omponent of our team. The vision module proesses theimages taken by the CMOS amera loated on the Aibo. The module identi�es olors in order to reognizeobjets, whih are then used to loalize the robot and to plan its operation.Our visual proessing is done using the established proedure of olor segmentation followed by objetreognition. Color segmentation is the proess of lassifying eah pixel in an input image as belonging toone of a number of prede�ned olor lasses based on the knowledge of the ground truth on a few trainingimages. Though the fundamental methods employed in this module have been applied previously (both inRoboCup and in other domains), it has been built from srath like all the other modules in our team.Hene, the implementation details provided are our own solutions to the problems we faed along the way.We have drawn some of the ideas from the previous tehnial reports of CMU [2℄ and UNSW [4℄. Thismodule an be broadly divided into two stages: (i) low-level vision, where the olor segmentation and regionbuilding operations are performed, and (ii) high-level vision, wherein objet reognition is aomplished andthe position and bearing of the various objets in the visual �eld are determined. The following setionspresent detailed desriptions of these proesses. But �rst, we present a brief overview of the robot's CMOSolor amera.5A subjet-observer onnetion is a pipe by whih di�erent Open-R objets an ommuniate and be made interdependent.For example, one Open-R objet ould send a message to a seond objet whenever the bak sensor is pressed, ausing theseond objet to, for example, suspend its urrent task or hange to a new mode of operation.
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4.1 Camera SettingsAs mentioned previously, the robot omes equipped with a CMOS olor amera that operates at a framerate of 25fps. Some of its other preset features are:� Horizontal viewing angle: 57:6Æ.� Vertial viewing angle: 47:8Æ.� Lens Aperture: 2.0.� Foal length: 2.18mm.We have partial ontrol over three parameters, eah of whih has three options from whih to hoose:� WhiteBalane : We are provided with settings orresponding to three di�erent light temperatures.1. Indoor �mode: 2800K.2. FL�mode: 4300K.3. Outdoor �mode: 7000K.This setting, as the name suggests, is basially a olor orretion system to aomodate varying lightingonditions. The idea is that the amera needs to identify the 'white point' (suh that white objetsappear white) so that the other olors are mapped properly. We found that this setting does help ininreasing the separation between olors and hene helps in better objet reognition. The optimumsetting depends on the 'light temperature' registered on the �eld (this in turn depends on the type oflight used, i.e, inandesent, uoresent, et.). For example, in our lab setting, we notied a betterseparation between orange and yellow with the Indoor setting than with the other settings. This helpedus in distinguishing the orange ball from the other yellow objets on the �eld suh as the goal andsetions of the beaons.� ShutterSpeed :1. Slow: 1=50se.2. Mid: 1=100se .3. Fast: 1=200se.This setting denotes the time for whih the shutter of the amera allows light to enter the amera.The higher settings (larger denominators) are better when we want to freeze the ation in an image.We notied that both the 'Mid' and the 'Fast' settings did reasonably well though the 'Fast' settingseemed the best, espeially onsidering that we want to apture the motion of the ball. Here, the lowersettings would result in blurred images.� Gain:1. Low: 0dB.2. Mid: 0dB .3. High: 6dB.This parameter sets the amera gain. In this ase, we did not notie any major di�erene in performaneamong the three settings provided.
8



4.2 Color SegmentationThe image aptured by the robot's amera, in the YCbCr format, is a set of numbers, ranging from 0 to255 along eah dimension, representing luminane (Y) and hrominane (Cb, Cr). To enable the robot toextrat useful information from these images, the numbers have to be suitably mapped into an appropriateolor spae. We retain the YCbCr format and \train" the robot, using a Nearest Neighbor (NNr) sheme[8, 4℄, to reognize and distinguish between 10 di�erent olors, numbered as follows:� 0 = pink,� 1 = yellow,� 2 = blue,� 3 = orange,� 4 = marker green,� 5 = red,� 6 = dark (robot) blue,� 7 = white,� 8 = �eld green,� 9 = blak.The motivation behind using the NNr approah is that the olors under onsideration overlap in the YCbCrspae (some, suh as orange and yellow, do so by a signi�ant amount). Unlike other ommon methods thattry to divide the olor spae into uboidal regions (or a olletion of planes), the NNr sheme allows us tolearn a olor table where the individual blobs are de�ned more preisely.The original olor spae has three dimensions, orresponding to the Y, Cb, and Cr hannels of the inputimage. To build the olor table (used for lassi�ation of the subsequent images on the robot), we maintainthree di�erent types of olor ubes in the training phase: one Intermediate (IM) olor ube orrespondingto eah olor, a Nearest Neighbor ube, and a Master (M) ube (the names will make more sense after thedesription given below). To redue storage requirements, we operate at half the resolution, i.e. all the ubeshave their numerial values saled to range from 0 to 127 along eah dimension. The ells of the IM ubesare all initialized to zero, while those of the NNr ube and the M ube are initialized to 9 (the olor blak,also representing bakground).Color segmentation begins by �rst training on a set of images using UT Assist, our Java-based inter-fae/debugging tool (for more details see Setion 14). A robot is plaed at a few points on the �eld. Imagesare aptured and then transmitted over the wireless network to a remote omputer running the Java-basedserver appliation. The objets of interest (goals, beaons, robots, ball, et.) in the images are manually\labeled" as belonging to one of the olor lasses previously de�ned, using the Image Segmenter (see Se-tion 14 for some pitures showing the labeling proess). For eah pixel of the image that we label, the elldetermined by the orresponding YCbCr values (after transforming to half-resolution), in the orrespondingIM ube, is inremented by 3 and all ells a ertain Manhattan distane away (within 2 units) from thisell are inremented by 1. For example, if we label a pixel on the ball orange in the image and this pixelorresponds to a ell (115; 35; 60) based on the intensity values of that pixel in the image, then in the orangeIM ube this ell is inremented by 3 while the ells suh as (115; 36; 61) and (114; 34; 60) (among others)whih are within a Manhattan distane of 2 units from this ell, in the orange IM ube alone, are inrementedby 1. For another example, see Figure 1.The training proess is performed inrementally, so at any stage we an generate a single ube (the NNrube is used for this purpose) that an be used for segmenting the subsequent images. This helps us see how\well-trained" the system is for eah of the olors and serves as a feedbak mehanism that lets us deidewhih olors need to be trained further. To generate the NNr ube, we traverse eah ell in the NNr ubeand ompare the values in the orresponding ell in eah of the IM ubes and assign to this ell the index ofthe IM ube that has the maximum value in this ell, i.e., 8(p; q; r) 2 [0; 127℄,NNrCube(yp; bq; rr) = arg maxi2[0;9℄ IMi(yp; bq ; rr) (1)9
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(a) (b) ()Figure 1: An example of the development of the olor table, spei�ally the IM ube. Part(a) shows thegeneral oordinate frame for the olor ubes. Part(b) shows a planar subsetion of one of the IM ubesbefore labeling. Part() depits the same subsetion after the labeling of a pixel that maps to the ell at theenter of the subsetion. Here only one plane is shown - the same operation ours aross all planes passingthrough the ell under onsideration suh that all ells a ertain Manhattan distane away from this ell areinremented by 1.When we use this olor ube to segment subsequent images, we use the NNr sheme. For eah pixel in thetest image, the YCbCr values (transformed to half-resolution) are used to index into this NNr ube. Then weompute the weighted average of the value of this ell and those ells that are a ertain Manhattan distane(we use 2-3 units) around it to arrive at a value that is set as the \numerial olor" (i.e. the olor lass) ofthis pixel in the test image. The weights are proportional to the Manhattan distane from the entral ell,i.e., the greater this distane the smaller the signi�ane attahed to the value in the orresponding ell (seeFigure 2).We do the training over several images (around 20-30) by plaing the robot at suitable points on the�eld. The idea here is to train on images that apture the beaons, goals, ball and the robots from di�erentdistanes (and also di�erent angles for the ball) to aount for the variations in lighting along di�erent pointson the �eld. This is espeially important for the orange ball, whose olor ould vary from orange to yellowto brownish-red depending on the amount of lighting available at that point. We also train with severaldi�erent balls to aount for the fat that there is a marked variation in olor among di�erent balls. Atthe end of the training proess, we have all the IM ubes with the orresponding ells suitably inremented.The NNr operation is omputationally intensive to perform on the robot's proessor. To overome this, wepreompute the result of performing this operation (the Master ube is used for this) from the orrespondingells in the NNr olor ube, i.e. we traverse eah ell of the M Cube and ompute the \Nearest Neighbor"value from the orresponding ells in the NNr ube. In other words, 8(p; q; r) 2 [0; 127℄ with a prede�nedManhattan distane ManDist 2 [3; 7℄,MCube(yp; bq; rr) = arg maxi2[0;9℄Sore(i) (2)where 8(k1; k2; k3) 2 [0; 127℄,Sore(i) = 0� Xk1;k2;k3 �ManDist� (j k1 � p j + j k2 � q j + j k3 � r j) 1A j(j k1 � p j + j k2 � q j + j k3 � r j) < ManDist^ NNrCube(yk1 ; bk2 ; rk3) = i: (3)10
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    (a) (b)Figure 2: An example of the weighted average applied to the NNr ube (a 2-dimensional representativeexample). Part (a) shows the values along a plane of the NNr ube before the NNr sheme is applied to theentral ell. Part (b) shows the same plane after the NNr update for its entral ell. We are onsideringells within a Manhattan distane of 2 units along the plane. For this entral ell, olor label 1 gets a voteof 3+1+1+1 = 6 while label 3 gets a vote of 2+2+2+2+1+1+1+1+1 = 13 whih makes the entralell's label = 3. This is the value that is set as the lassi�ation result. This is also the value that is storedin the ell in the M ube that orresponds to the entral ell.This ube is loaded onto the robot's memory stik. This then makes olor segmentation on the robot asimple proess of table lookup, thereby making it a lot faster. (For an example of the olor segmentationproess and the Master Cube generated at the end of it, see Figure 17).One important point about our olor segmentation sheme is that we do not (at present) make an e�ortto normalize the ubes based on the number of pixels (of eah olor) that we train on. So, if we labeled anumber of yellow pixels and a relatively smaller number of orange pixels, then we would be biased towardsyellow in the NNr ube. This is not a problem if we are areful during the training proess and label regionssuh that all olors get (roughly) equal representation. We leave a prinipled treatment of the problem ofnormalization to future researh.4.3 Region Building and MergingThe Master ube is loaded onto the robot's memory stik and this is used to segment the images thatthe robot's amera aptures (in real-time). The next step in low-level proessing involves the formation ofretangular bounding boxes around onneted regions of the same olor. This in turn onsists of run-lengthenoding (RLE) and region merging [7℄, whih are standard image proessing approahes used previously inthe RoboCup domain [2℄.As eah image is segmented (during the �rst san of the image), left to right and top to bottom, it isenoded in the form of run-lengths along eah horizontal san line i.e. along eah line we store the (x, y)position (the root node) where a sequene of a partiular olor starts and the number of pixels until a sequeneof another olor begins. The data orresponding to eah run-length is stored in a separate data struture(alled RunRegion) and the run-lengths are all stored as a linked list. Eah RunRegion data struture alsostores the orresponding olor. Further, there is a bounding box orresponding to eah RunRegion/run-length, whih during the �rst pass is just the run-length itself, but has additional properties suh as thenumber of run-lengths enlosed, the number of atual pixels enlosed, the upper left (UL) and lower right(LR) orners of the box et. Eah run-length has a pointer to the next run-length of the same olor (null ifnone exists) and an index orresponding to the bounding box that it belongs to, while eah bounding box has11



a pointer to the list of run-lengths that it enloses. This failitates the easy merging of two run-lengths (ora bounding box ontaining several run-lengths with a single run-length or two bounding boxes eah havingmore that one run-length). The RunRegion data struture and the BoundingBox data struture are givenin Table 1.
// The Runregion data structure definition.

struct RunRegion {

};

// The  BoundingBox  data structure definition.

struct BoundingBox {

     int  LRx;
     int  LRy;
     bool  lastBox;
     int  valid;

     int rrcount;

     RunRegion*  listRR;
     RunRegion*  eoList;

};

       int color;    //color associated with the run region.
       RunRegion*  root;   //the root node of the runregion.

      int  xLoc;   //x location of the root node.
      int  yLoc;   //y location of the root node.
      int  runLength;   // number of run lengths with this region.
      int  boundingBox;   //the bounding box that this region belongs to.

      RunRegion*  nextRun;
      RunRegion*  listNext;   //pointer to the next runregion in the current run length.

       BoundingBox*  prevBox;  //pointer to the previous bounding box.
       BoundingBox*  nextBox;   // pointer to the next bounding box.
     int  ULx;  //upper left corner x coordinate.
     int  ULy;   //upper left corner y coordinate.

     int  numRunLengths;  //number of runlengths associated with this bounding box.
     int  numPixels;   //number of pixels in this bounding box.

     int color;  //color cooresponding to this bounding box.

     float  prob;   //probability corresponding to this bounding box.Table 1: This table shows the basi run region and bounding box data strutures with whih we operate.Next, we need to merge the run-lengths/bounding boxes orresponding to the same objet together underthe assumption that an objet in the image will be represented by onneted run-lengths. In the seond pass,we proeed along the run-lengths (in the order in whih they are present in the linked list) and hek forpixels of the same olor immediately below eah pixel over whih the run-length extends, merging run-lengthsof the same olor that have signi�ant overlap (the threshold number of pixel overlap is deided based onexperimentation: see Appendix A.1). When two run-lengths are to be merged, one of the bounding boxesis deleted while the other's properties (root node, number of run-lengths, size et) are suitably modi�edto inlude both the bounding boxes. This is aomplished by moving the orresponding pointers aroundappropriately. By inorporating suitable heuristis, we remove bounding boxes that are not signi�antlylarge or dense enough to represent an objet of interest in the image, and at the end of this pass, we endup with a number of andidate bounding boxes, eah representing a blob of one of the nine olors underonsideration. The bounding boxes orresponding to eah olor are linked together in a separate linked list,whih (if required) is sorted in desending order of size for ease of further proessing. Details of the heuristisused here an be found in Appendix A.1. 12



4.4 Objet Reognition with Bounding BoxesOne we have bounding boxes of the various olors arranged in separate lists, we an proeed to high-levelvision, i.e., the detetion of objets of interest in the robot's image frame. The objets that we primarilyneed to identify in the visual �eld are the ball, the two goals, the �eld markers (other than the goals) and theopponents. This stage takes as input the lists of bounding boxes and provides as output a olletion of objets(strutures alled the VisionObjets), one for eah deteted objet, whih are then used for determining theposition and bearing of these objets with respet to the robot. This information is in turn used in theloalization module (see Setion 8) to alulate the robot's position in the �eld oordinates. To identifythese objets we introdue some onstraints and heuristis, some of whih are based on the known geometryof the environment while others are parameters that we identi�ed by experimentation. We �rst doumentthe basi proess used to searh for the various objets, and at the end of the setion we provide a desriptionof the onstraints and heuristis used.We start with the goals beause they are generally the largest blobs of the orresponding olors and onefound they an be used to eliminate spurious blobs during beaon and ball detetion. We searh through thelists of bounding boxes for olors orresponding to the goals (blue and yellow) on the �eld, given onstraintson size, aspet ratio and density Furthermore, heks are inluded to ensure that spurious blobs (noisyestimates on the �eld, blobs oating in the air, et.) are not taken into onsideration. On the basis of theseonstraints we ompare the blob found in the image (and identi�ed as a goal) with the known geometry ofthe goal. This provides some sort of likelihood measure, and a VisionObjet is reated to store this and theinformation of the orresponding bounding box. (Table 2 displays the data strutures used for this purpose)
struct VisionObjects{
     int NumberOfObjects;  //number of vision obejcts in curretn frame.
     BBox*  ObjectInfo;    //array of objects in view.
}

struct BBox {

    Point ul;  //upper left point of the bounding box.
    Point lr;  //lower right point of the bounding box.

}

}
    double  y;  //y coordinate.
     double x;  //x coordinate.
struct Point {

int ObjID; //object ID.

double  prob; //likelihood corresponding to this bounding box/object.

Table 2: This table shows the basi VisionObjet and assoiated data strutures with whih we operate.After searhing for the goals, we searh for the orange ball, probably the most important objet inthe �eld. We sort the orange bounding boxes in desending order of size and searh through the list (notonsidering very small ones), one again based on heuristis on size, aspet ratio, density, et. To deal withases with partial olusions, whih is quite ommon with the ball on the �eld, we use the \irle method" toestimate the equation of the irle that best desribes the ball (see Appendix A.3 for details). Basially thisinvolves �nding three points on the edge of the ball and �nding the equation of the irle passing through thethree points. This method seems to give us an aurate estimate of the ball size (and hene the ball distane)in most ases. In the ase of the ball, in addition to the hek that helps eliminate spurious blobs (oatingin the air), heks have to be inorporated to ensure that minor mislassi�ation in the segmentation stage(explained below) do not lead to detetion of the ball in plaes where it does not exist.13



Next, we takle the problem of �nding the beaons (six �eld markers, exluding the goals). The identi�-ation of beaons is important in that the auray of loalization of the robot depends on the determinationof the position and bearing of the beaons (with respet to the robots) whih in turn depends on the properdetermination of the bounding boxes assoiated with the beaons. Sine the olor pink appears in all bea-ons, we use that as the fous of our searh. Using suitable heuristis to aount for size, aspet ratio,density, et. we math eah pink blob with blue, green, or yellow blobs to determine the beaons. We ensurethat only one instane of eah beaon (the most likely one) is retained. Additional tests are inorporatedto remove spurious beaons: those that appear to be on the �eld or in the opponents, oating in the air,inappropriately huge or tiny, et. For details, see Appendix A.4.After this �rst pass, if the goals have not been found, we searh through the andidate blobs of theappropriate olors with a set of redued onstraints to determine the ourrene of the goals (whih resultsin a redued likelihood estimate as we will see below). This is useful when we need to identify the goals ata distane, whih helps us loalize better, as eah edge of the goal serves as an additional marker for thepurpose of loalization.We found that the goal edges were muh more reliable as inputs to the loalization module than werethe goal enters. So, one the goals are deteted, we determine the edges of the goal based on the edges ofthe orresponding bounding boxes. Of ourse, we inlude proper bu�ers at the extremities of the image toensure that we detet the atual goal edges and not the 'arti�ial edges' generated when the robot is able tosee only a setion of the goal (as a result of its view angle) and the sides of the trunated goal's boundingbox are mistaken to be atual edges.Next, we present a brief desription of some of the heuristis employed in the detetion of ball, goals,beaons and opponents. We begin by listing the heuristis that are ommon to all objets and then also listthose that are spei� to goals, ball and/or beaons. For more detailed explanations on some methods andparameters for individual test see the orresponding appendies.� Spurious blob elimination: A simple alulation using the tilt angle of the robot's head is used todetermine and hene eliminate spurious (beaon, ball and/or goal) blobs that are too far down or toohigh up in the image plane. See Appendix A.2 for the atual thresholds and alulations.� Likelihood Calulation: For eah objet of interest in the robot's visual �eld, we assoiate a measurewhih desribes how sure we are of our estimation of the presene of that objet in the urrent imageframe. The easiest way to aomplish this would be to ompare the aspet ratio (the ratio of the heightto the width) of the bounding boxes that identify these objets, to the atual known aspet ratio of theobjets in the �eld. For example, the goal has an aspet ratio of 1 : 2 in the �eld, and we an omparethe aspet ratio of the bounding box that has been deteted as the goal with this expeted ratio. Wean laim that the loser these two values are, the more sure we are of our estimate and hene higheris the likelihood.� Beaon spei� alulations:1. To remove spurious beaons, we ensure that the two setions that form the beaon are of ompa-rable size, i.e. that eah setion is at least half as large and half as dense as the other setion.2. We ensure that the separation between the two setions is within a small threshold, whih isusually 2� 3 pixels.3. We ompare the aspet ratio of bounding box orresponding to the beaon in the image to theatual aspet ratio (2 : 1 :: height : width), whih helps remove andidate beaons that are toosmall or disproportionately large.4. Aspet ratio, as mentioned above is further used to determine an estimate of the likelihood of eahandidate beaon that also helps hoose the \most probable" andidate when there are multipleourrenes of the same beaon. Only beaons with a likelihood above a threshold are retainedand used for loalization alulations. This helps ensure that false positives, generated by lightingvariations and/or shadows, do not ause major problems in loalization.14



Note: for sample threshold values, see Appendix A.4.� Goal spei� alulations:1. We use the `tilt-angle test' (desribed in detail in Appendix A.2)2. We use a similar aspet ratio test for the goals, too. In the ase of the goals we also look forsuÆiently high density (the ratio of the number of pixels of the expeted olor to the area of theblob), the number of run-lengths enlosed, and a minimum number of pixels. All these thresholdswere determined experimentally, and hanging these thresholds hanges the distane from whihthe goal an be deteted and the auray of detetion. For example, lowering these thresholdsan lead to false positives.3. The aspet ratio is used to determine the likelihood, and the andidate is aepted i� it has alikelihood measure above a prede�ned minimum.4. When doing a seond pass for the goal searh, we relax the onstraints slightly but proportionatelya lower likelihood measure gets assigned to the goal, if deteted.Note: for sample threshold values, see Appendix A.5.� Ball spei� alulations:1. We use the `tilt-angle test' to eliminate spurious blobs from onsideration.2. In most ases, the ball is severely oluded, preluding the use of the aspet ratio test. Nonetheless,we �rst searh for an orange objet with a high density and an aspet ratio (1:1) that would detetthe ball if it is seen ompletely and not oluded.3. If the ball is not found with these tight onstraints, we relax the aspet ratio onstraint andinlude additional heuristis (e.g. if the ball is lose, even if it is partially oluded, it should havea large number of run-lengths and pixels) that help detet a bounding box around the partiallyoluded ball. These heuristis and assoiated thresholds were determined experimentally.4. If the yellow goal is found, we ensure that the andidate orange ball does not our within it andabove the ground (whih an happen sine yellow and orange are lose in olor spae).5. We hek to make sure that the orange ball is found lower than the lower-most beaon in theurrent frame. Also, the ball annot our above the ground, or within or slightly below thebeaon. The latter an our if the white and/or yellow portions of the beaon are mislassi�edas orange.6. We use the \irle method" to detet the atual ball size. But we also inlude heks to ensurethat in ases where this method fails and we end up with disproportionately huge or very smallball estimates (thresholds determined experimentally), we either keep the estimates we had beforeemploying the irle method (and extend the bounding box along the shorter side to form a squareto get the losest approximation to the ball) or rejet the ball estimate in the urrent frame. Thehoie depends on the extent to whih the estimated \ball" satis�es experimental thresholds.Note: for sample threshold values, see Appendix A.6.Finally, we hek for opponents in the urrent image frame. As in the previous ases, suitable heuristisare employed both to weed out the spurious ases and to determine the likelihood of the estimate. Toidentify the opponents, we �rst sort the blobs of the orresponding olor in desending order of size, with aminimum threshold on number of pixels and run-lengths. We inlude a relaxed version of the aspet ratiotest and strit tilt angle tests (an \opponent" blob annot our muh lower or muh higher than the horizonwhen the robot's head has very little tilt and roll) to further remove spurious blobs (see Appendix A.2 andAppendix A.7). Eah time an opponent blob (that satis�es these thresholds) is deteted, the robot tries tomerge it with one of its previous estimates based on thresholds. If it does not sueed and it has less than15



4 valid (previous) estimates it adds this estimate to the list of opponents. At the end of this proess, eahrobot has a list that stores the four largest bounding boxes (that satisfy all these tests) of the olor of theopponent with suitable likelihood estimates that are determined based on the size of the bounding boxes(see Appendix A.8). Further proessing of opponent estimates using the estimates from other teammateset is desribed in detail in the setion on visual opponent modeling (Setion 4.6). One proessing of theurrent visual frame is ompleted, the deteted objets, eah stored as a VisionObjet is passed through theBrain to the GlobalMap module wherein the VisionObjets are operated upon using Loalization routines.4.5 Position and Bearing of ObjetsThe objet reognition module returns a set of data strutures, one for eah \legal" objet in the visualframe. Eah objet also has an estimate of its likelihood, whih represents the unertainty in our pereptionof the objet. The next step (the �nal step in high-level vision) is to determine the distane to eah suhobjet from the robot and the bearing of the objet with respet to the robot. In our implementation,this estimation of distane and bearing of all objets in the image, with respet to the robot, is done asa preproessing step when the loalization module kiks into ation during the development of the globalmaps. Sine this is basially a vision-based proess we desribe it here rather than in the setion (Setion 8)on loalization. As eah frame of visual input is proessed, the robot has aess to the tilt, pan, and rollangles of its amera from the appropriate sensors and these values give us a simple transform that takes usfrom the 3D world to the 2D image frame. Using the known projetion of the objet in the image plane andthe geometry of the environment (the expeted sizes of the objets in the robot's environment) we an arriveat estimates for the distane and bearing of the objet relative to the robot. The known geometry is used toarrive at an estimate for the varianes orresponding to the distane and the bearing. Suppose the distaneand angle estimates for a beaon are d and �. Then the varianes in the distane and bearing estimates areestimated as: varianed = � 1bp� � (0:1d) (4)where � 1bp� is the likelihood of the objet returned by vision.variane� = tan�1�beaonrd � (5)where beaonr is the atual radius of the beaon in the environment.By similar alulations, we an determine the distane and bearing (and the orresponding varianes) ofthe various objets in the robot's �eld of view.4.6 Visual Opponent ModelingAnother important task aomplished using the image data is that of opponent modeling. As desribedin Setion 4.4, eah robot provides a maximum of four best estimates of the opponent blobs based on theurrent image frame. To arrive at an eÆient estimate of the opponents (loation of the opponents relativeto the robot and hene with respet to the global frame), eah robot needs to merge its own estimates withthose ommuniated by its teammates. As suh this proess is aomplished during the development of theglobal maps (Setion 11) but sine the operation interfaes diretly with the output from the vision module,it is desribed here.When opponent blobs are identi�ed in the image frame, the vision module returns the bounding boxesorresponding to these blobs. We notied that though the shape of the blob and hene the size of thebounding box an vary depending on the angle at whih the opponent robot is viewed (and its relativeorientation), the height of the bounding box is mostly within a ertain range. We use this information toarrive at an estimate of the distane of the opponent and use the entroid of the bounding box to estimatethe bearing of the andidate opponent with respet to the robot (see Setion 4.5 for details on estimation of16



distane and bearing of objets). These values are used to �nd the opponent's (x, y) position relative to therobot and hene determine the opponent's global (x, y) position (see Appendix A.9 for details on transformsfrom loal to global oordinates and vie versa). Variane estimates for both the x and the y positions areobtained based on the alulated distane and the likelihood assoiated with that partiular opponent blob.For example, let d and � be the distane and bearing of the opponent relative to the robot. Then, in therobot's loal oordinate frame (determined by the robot's position and orientation), we have the relativepositions as:relx = d � os(�); rely = d � sin(�)From these we obtain the global positions as:� globxgloby � = T globalloal � � relxrely � (6)where T globalloal is the 2D-transformation matrix from loal to global oordinates.For the varianes in the positions, we use a simple approah:varx = vary = 1Oppprob � (0:1d) (7)where the likelihood of the opponent blob, Oppprob is determined by heuristis (see Appendix A.8).If we do not have any previous estimates of opponents from this or any previous frame, we aeptthis estimate and store it in the list of known opponent positions. If any previous estimates exist, we tryto merge them with the present estimate by heking if they are lose enough (based on heuristis). Allmerging is performed assuming Gaussian distributions. The basi idea is to onsider the x and y position asindependent Gaussians (with the positions as the means and the assoiated varianes) and merge them (formore details see Setion 8.3.3 and [10℄). If merging is not possible and we have fewer than four opponentestimates, we treat this as a new opponent estimate and store it as suh in the opponents list. But if fouropponent estimates already exist, we try to replae one of the previous estimates (the one with the maximumvariane in the list of opponent estimates and with a variane higher than the new estimate) with the newestimate. One we have traversed through the entire list of opponent bounding boxes presented by the visionmodule, we go through our urrent list of opponent estimates and degrade all those estimates that were notupdated, i.e. not involved in merging with any of the estimates from the urrent frame (for more details onthe degradation of estimates, see the initial portions of Setion 11 on global maps). When eah robot sharesits Global Map (see Setion 11) with its teammates, this data gets ommuniated.When the robot reeives data from its teammates, a similar proess is inorporated. The robot takeseah urrent estimate (i.e. one that was updated in the urrent yle) that is ommuniated by a teammateand tries to merge it with one of its own estimates. If it fails to do so and it has fewer than four opponentestimates, it aepts the ommuniated estimate as suh and adds it to its own list of opponent estimates.But if it already has four opponent estimates, it replaes its oldest estimate (the one with the largest varianewhih is larger than the variane of the ommuniated estimate too) with the ommuniated estimate. Ifthis is not possible, the ommuniated estimate is ignored.This proedure, though simple, gives reliable results in nearly all situations one the degradation andmerging thresholds are properly tuned. It was used both during games and in one of the hallenge tasks (seeSetion 15.3) during RoboCup and the performane was good enough to walk from one goal to the otheravoiding all seven robots plaed in its path.5 MovementEnabling the Aibos to move preisely and quikly is equally as essential to the overall RoboCup task asthe vision task. In this setion, we introdue our approah to Aibo movement, inluding walking and theinterfaes from walking to the higher level ontrol modules.17



The Aibo omes with a stable but slow walk. From wathing the videos of past RoboCups, and fromreading the available tehnial reports, it beame lear that a fast walk is an essential part of any RoboCupteam. The walk is perhaps the most feasible omponent to borrow from another team's ode base, sine itan be separated out into its own module. Nonetheless, we deided to reate our own walk in the hopesof ending up with something at least as good, if not better, than that of other teams, while retaining theability to �ne tune it on our own.The movement omponent of our team an be separated into two parts. First, the walking motion itself,and seond, an interfae module between the low level ontrol of the joints (inluding both walking andkiking) and the deision-making omponents.5.1 WalkingThis setion details our approah to enabling the Aibos to walk.5.1.1 BasisAt the lowest level, walking is e�eted on the Aibo by ontrolling the joint angles of the legs. Eah of the fourlegs has three joints known as the rotator, abdutor, and knee. The rotator is a shoulder joint that rotatesthe entire leg (inluding the other two joints) around an axis that runs horizontally from left to right. Theabdutor is the shoulder joint responsible for rotating the leg out from the body. Finally, the knee allows thelower link of the leg to bend forwards or bakwards, although the knees on the front legs primarily bend thefeet forwards while the ones on the bak legs bend primarily bakwards. These rotations will be desribedmore preisely in the setion on forward kinematis.Eah joint is ontrolled by a PID mehanism. This mehanism takes as its inputs P, I, and D gain settingsfor that joint and a desired angle for it. An online tutorial about PID ontrol an be found at [11℄. The robotarhiteture an proess a request for eah of the joints at a rate of at most one every eight milliseonds. Wehave always requested joint values at this maximum allowed frequeny. Also, the Aibo model informationlists reommended settings for the P, I, and D gains for eah joint. We have not thoroughly experimentedwith any settings aside from the reommended ones and use only the reommended ones for everything thatis reported here.The problem of ompelling the robot to walk is greatly simpli�ed by a tehnique alled inverse kinematis.This tehnique allows the trajetory of a leg to be spei�ed in terms of a three-dimensional trajetory for thefoot. The inverse kinematis onverts the loation of the foot into the orresponding settings for the threejoint angles. A preursor to deriving inverse kinematis formulas is having a model of the forward kinematis,the funtion that takes the three joint angles to a three-dimensional foot position. This is e�etively ourmathematial model of the leg.5.1.2 Forward KinematisFor eah leg, we de�ne a three-dimensional oordinate system whose origin is that leg's shoulder. In theseoordinate systems, positive x is to the robot's right, positive y is the forward diretion, and positive z isup. Thus, when a positive angle is requested from a ertain type of joint, the diretion of the resultingrotation may vary from leg to leg. For example, a positive angle for the abdutor of a right leg rotates theleg out from the body to the right, while a positive angle for a left leg rotates the leg out to the left. Wewill desribe the forward and inverse kinematis for the front right leg, but beause of the symmetry of theAibo, the inverse kinematis formulas for the other legs an be attained simply by �rst negating x or y asneessary.The unit of distane in our oordinate system is the length of one link of any leg, i.e. from the shoulder tothe knee, or from the knee to the foot. This may seem a strange statement, given that, physially speaking,the di�erent links of the robot's legs are not exatly the same length. However, in our mathematial model ofthe robot, the links are all the same length. This serves to simplify our alulations, although it is admittedlyan inauray in our model. We argue that this inauray is overshadowed by the fat that we are not18



modeling the leg's foot, a umbersome unatuated aestheti appendage. As far as we know, no team has yettried to model the foot.We all the rotator, abdutor, and knee angles J1, J2, and J3 respetively. The goal of the forwardkinematis is to de�ne the funtion from J = (J1; J2; J3) to p = (x; y; z), where p is the loation of thefoot aording to our model. We all this funtion KF (J). We start with the fat that when J = (0; 0; 0)KF (J) = (0; 0;�2), whih we all p0. This orresponds to the situation where the leg is extended straightdown. In this base position for the leg, the knee is at the point (0; 0;�1). We will desribe the �nal loationof the foot as the result of a series of three rotations being applied to this base position, one for eah joint.First, we assoiate eah joint with the rotation it performs when the leg is in the base position. Therotation assoiated with the knee, K(q;�), where q is any point in spae, is a rotation around the line y = 0,z = �1, ounterlokwise through an angle of � with the x-axis pointing towards you. The abdutor'srotation, A(q;�), goes lokwise around the y-axis. Finally, the rotator is R(q;�), and it rotates ounter-lokwise around the x-axis. In general (i.e. when J1 and J2 are not 0), hanges in J2 or J3 do not a�etp by performing the orresponding rotation A or K on it. However, these rotations are very useful beausethe forward kinematis funtion an be de�ned asKF (J) = R(A(K(p0; J3); J2); J1): (8)This formulation is based on the idea that for any set of angles J , the foot an be moved from p0 to its�nal position by rotating the knee, abdutor, and rotator by J3, J2, and J1 respetively, in that order. Thisformulation works beause when the rotations are done in that order they are always the rotations K, A,and R. A shemati diagram of the Aibo after eah of the �rst two rotations is shown in Figure 3.It is never neessary for the robot to alulate x, y, and z from the joint angles, so the above equationneed not be implemented on the Aibo. However, it is the starting point for the derivation of the InverseKinematis, whih are onstantly being omputed while the Aibo is walking.5.1.3 Inverse KinematisInverse kinematis is the problem of �nding the inverse of the forward kinematis funtion KF , KI(q). Withour model of the leg as desribed above, the derivation of KI an be done by a relatively simple ombinationof geometri analysis and variable elimination.The angle J3 an be determined as follows. First we alulate d, the distane from the shoulder to thefoot, whih is given by d =px2 + y2 + z2: (9)Next, note that the shoulder, knee, and foot are the verties of an isoseles triangle with sides of length1, 1, and d with entral angle 180� J3. This yields the formulaJ3 = 2 os�1�d2� : (10)The inverse osine here may have two possible values within the range for J3. In this ase we alwayshoose the positive one. While there are some points in three-dimensional spae that this exludes (beauseof the joint ranges for the other joints), those points are not needed for walking. Furthermore, if we allowedJ3 to sometimes be negative, it would be very diÆult for our funtion KI to be ontinuous over its entiredomain.To ompute J2, we must �rst write out an expression for K(p0; J3). It is (0; sinJ3; 1+osJ3). This is theposition of the foot in Figure 3a. Then we an isolate the e�et of J2 as follows. Sine the rotation R is withrespet to the x-axis, it does not a�et the x-oordinate. Thus we an make use of the fat that the KF (J),whih is de�ned to be R(A(K(p0; J3); J2); J1) (Equation 8), has the same x-oordinate as A(K(p0; J3); J2).Plugging in our expression for K(p0; J3), we get thatA(K(p0; J3); J2) = A((0; sinJ3; 1 + osJ3); J2): (11)19
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b)a)Figure 3: Shemati drawings of the Aibo aording to our kinematis model. a) This is a side view ofthe Aibo after rotation K has been performed on the foot. b) In this front view, rotation A has also beenperformed.
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Sine A is a rotation around the y-axis,A(K(p0; J3); J2) = (sinJ2(1 + osJ3); sinJ3; osJ2(1 + osJ3)): (12)Setting x (whih is de�ned to be the x-oordinate of KF (J)) equal to the x-oordinate here and solvingfor J2 gives us J2 = sin�1� x1 + osJ3� : (13)Note that this is only possible if x � 1 + os(J3). Otherwise, there is no J2 that satis�es our onstraintfor it, and, in turn, no J suh that FK(J) = q. This is the impossible sphere problem, whih we disuss inmore detail below. The position of the foot after rotations K and A is depited in Figure 3b.Finally, we an alulate J1. Sine we know y and z before and after the rotation R, we an use thedi�erene between the angles in the y-z plane of the two (y; z)'s. The C++ funtion atan2(z; y) gives us theangle of the point (y; z), so we an omputeJ1 = atan2(z; y)� atan2(osJ2(1 + osJ3); sinJ3): (14)The result of this subtration is normalized to be within the range for J1. This onludes the derivationof J1 through J3 from x, y, and z. The omputation itself onsists simply of the alulations in the fourequations (9), (10), (13), and (14).It is worth noting that expressions for J1, J2, and J3 are never given expliitly in terms of x, y, and z.Suh expressions would be very onvoluted, and they are unneessary beause the serial omputation givenhere an be used instead. Furthermore, we feel that this method yields some insight into the relationshipsbetween the legs joint angles and the foot's three-dimensional oordinates.There are many points q, in three-dimensional spae, for whih there are no joint angles J suh thatFK(J) = q. For these points, the inverse kinematis formulas are not appliable. One ategory of suhpoints is intuitively lear: the points whose distane from the origin is greater than two. These are impossibleloations for the foot beause the leg is not long enough to reah them from the shoulder. There are alsomany regions of spae that are exluded by the angle ranges of the three joints. However, there is oneunintuitive, but important, unreahable region, whih we all the impossible sphere. The impossible spherehas a radius of 1 and is entered at the point (1; 0; 0). The following analysis explains why it is impossiblefor the foot to be in the interior of this sphere.Consider a point (x; y; z) in the interior of the illegal sphere. This means that(x� 1)2 + y2 + z2 < 1x2 � 2x+ 1+ y2 + z2 < 1x2 + y2 + z2 < 2x:Substituting d for px2 + y2 + z2 and dividing by two gives usd22 < x: (15)Sine J3 = 2 os�1 �d2� (Equation (10)), os J32 = d2 , so by the double angle formula osJ3 = d22 � 1, ord22 = 1 + osJ3. Substituting for d22 , we get x > 1 + osJ3: (16)This is preisely the ondition, as disussed above, under whih the alulation of J2 breaks down. Thisshows that points in the illegal sphere are not in the range of FK .Oasionally, our parameterized walking algorithm requests a position for the foot that is inside theimpossible sphere. When this happens, we projet the point outward from the enter of the sphere onto its21
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2 � C2Figure 4: The foot traes a half ellipse as the robot walks forward.surfae. The new point on the surfae of the sphere is attainable, so the inverse kinematis formulas areapplied to this point.5.1.4 General Walking StrutureOur walk uses a trot-like gait in whih diagonally opposite legs step together. That is, �rst one pair ofdiagonally opposite legs steps forward while the other pair is stationary on the ground. Then the pairsreverse roles so that the �rst pair of legs is planted while the other one steps forward. As the Aibo walksforward, the two pairs of diagonally opposite legs ontinue to alternate between being on the ground andbeing in the air. For a brief period of time at the start of our developmental proess, we explored thepossibility of other gait patterns, suh as a walking gait where the legs step one at a time. We settled onthe trot gait after wathing video of RoboCup teams from previous years.While the Aibo is walking forwards, if two feet are to be stationary on the ground, that means thatthey have to move bakwards with respet to the Aibo. In order for the Aibo's body to move forwards ina straight line, eah foot should move bakwards in a straight line for this portion of its trajetory. For theremainder of its trajetory, the foot must move forward in a urve through the air. We opted to use a halfellipse for the shape of this urve (Figure 4).A foot's half-elliptial path through the air is governed by two funtions, y(t) and z(t), where t is theamount of time that the foot has been in the air so far divided by the total time the foot spends in the air(so that t runs from 0 to 1). While the Aibo is walking forwards, the value of x for any given leg is alwaysonstant. The values of y and z are given byy(t) = C1 � C2 os(�t) (17)and z(t) = C3 � C4 sin(�t): (18)In these equations, C1 through C4 are four parameters that are �xed during the walk. C1 determineshow far forward the foot is and C3 determines how lose the shoulder is to the ground. The parameters C2and C4 determine how big a step is and how high the foot is raised for eah step (Figure 4). Our walk hasmany other free parameters, whih are all desribed in Setion 5.1.7.
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(a) (b)Figure 5: The main movement diretion of the half ellipses hanges for (a) walking sideways, (b) turning inplae. (The dark squares indiate the positions of the four feet when standing still.)
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Figure 6: Combining forwards, sideways and turning motions. Eah omponent ontributes a vetor to theombination. Dashed lines show the resulting vetors. (We show only half of the ellipse lengths, for larity.)With the vetors shown, the robot will be turning towards its right as it moves diagonally forward and right.5.1.5 Omnidiretional ControlAfter implementing the forward walk, we needed sideways, bakwards, and turning motions. There is a niedesription of how to obtain all these (and any ombination of these types of walks) in [12℄. We based ourimplementation on the ideas from that paper.Sideways and bakwards walks are just like the forward walk with the ellipse rotated around the z axis(Figure 5a). For walking sideways, the ellipse is rotated 90Æ to the side towards whih the robot shouldwalk. For walking bakwards, the ellipse points in the negative y diretion. Turning in plae is a little moreompliated. The four legs of the robot de�ne a irle passing through them. The diretion of the ellipsefor eah leg is tangent to this irle, pointing lokwise if the robot is to turn right and ounterlokwise toturn left (Figure 5b).Combinations of walking forwards, bakwards, sideways, and turning are also possible by simply om-bining the di�erent omponents for the ellipses through vetor addition. For example, to walk forwards andto the right at the same time, at an angle of 45Æ to the y axis, we would make the ellipses point 45Æ to theright of the y axis. Any ombination an be ahieved as shown in Figure 6.In pratie, the method desribed here worked well for ombinations of forwards and turning veloities,but we had diÆulty also inorporating sideways veloities. The problem was that, after tuning the param-23



eters (Setion 5.1.8), we found that the parameters that worked well for going forwards and turning did notwork well for walking sideways. It was not obvious how to �nd ommon parameters that would work forombinations of all three types of veloities.In situations where we needed to walk with a non-zero sideways veloity, we frequently used a slower om-nidiretional walk developed by a student in the Spring semester lass.6 That walk is alled SPLINE WALK,while the one being desribed here is alled PARAM WALK. Setion 5.2.3 disusses when eah of the walkswas used.5.1.6 Tilting the Body ForwardUp until the Amerian Open, our walking module was restrited to having the Aibo's body be parallel to theground. That is, it did not allow for the front and bak shoulders to be di�erent distanes from the ground.This turned out to be a severe limitation. During this time, we were unable to ahieve a forward speed ofover 150 mm/s. After relaxing this onstraint, only the slightest hand tuning was neessary to bring ourspeed over 200 mm/s. After a signi�ant amount of hand tuning, we were able to ahieve a forwards walkingspeed of 235 mm/s. (The parameters that ahieve this speed are given in Setion 5.1.8 and our proedurefor measuring walking speed is desribed in Setion 5.1.9.)In many of the fastest and most stable walks the front legs touh the ground with their elbows whenthey step. Apparently, this is far more e�etive than just having the feet touh the ground. We enable theelbows to touh the ground by setting the height of the front shoulders to be lower than that of the bakshoulders. However, this ability requires one more omputation to be performed on the foot oordinatesbefore the inverse kinematis equations are applied. That is, when the Aibo's body is tilted forward we stillwant the feet to move in half ellipses that run parallel to the ground. This means that the points given byequations 17 and 18 have to be rotated with respet to the x-axis before the inverse kinematis equationsare applied.The angle through whih these points must be rotated is determined by the di�erene between thedesired heights of the front and bak shoulders and the distane between the front and bak shoulders. Thedi�erene between the heights, dh, is a funtion of the parameters being used (the heights of the front andbak shoulders are two of our parameters), but the distane between the front and bak shoulders is a �xedbody length distane whih we estimate at 1:64 in our units and all lb. Then the angle of the body rotationis given by � = sin�1�dhlb � : (19)5.1.7 Desription of all the ParametersThis setion lists and desribes all twenty parameters of our Aibo walk. The units for most of the parametersare distanes whih are in terms of leg-link length, as disussed in Setion 5.1.2. Exeptions are noted below.� Forward step distane: How far forward the foot should move from its home position in one step.� Side step distane: How far sideways the foot should move from its home position in one step.� Turn step distane: How far eah half step should be for turning.� Front shoulder height: How high from the ground the robot's front legs' J1 and J2 joints should be.� Bak shoulder height: How high from the ground the robot's bak legs' J1 and J2 joints should be.� Ground fration: What fration of a step time the robot's foot is on the ground. (The rest of the timeis spent with the foot in the air, making a half ellipse.) Between 0 and 1. Has no unit.6Aniket Murarka 24



� Front left y-o�set: How far out in the y-diretion the robot's front left leg should be when it's in itshome position.� Front right y-o�set: How far out in the y-diretion the robot's front right leg should be when it's inits home position.� Bak left y-o�set: How far out in the y-diretion the robot's bak left leg should be when it's in itshome position.� Bak right y-o�set: How far out in the y-diretion the robot's bak right leg should be when it's in itshome position.� Front left x-o�set: How far out in the x-diretion the robot's front left leg should be when it's in itshome position.� Front right x-o�set: How far out in the x-diretion the robot's front right leg should be when it's inits home position.� Bak left x-o�set: How far out in the x-diretion the robot's bak left leg should be when it's in itshome position.� Bak right x-o�set: How far out in the x-diretion the robot's bak right leg should be when it's in itshome position.� Front Clearane: How far up the front legs should be lifted o� the ground at the peak point of the halfellipse.� Bak Clearane: How far up the bak legs should be lifted o� the ground at the peak point of the halfellipse.� Diretion fwd: Whether the robot should move forwards or bakwards. Either 1 or -1. Has no unit.� Diretion side: Whether the robot should move right or left. Either 1 or -1. Has no unit.� Diretion turn: Whether the robot should turn towards its right or its left. Either 1 or -1. Has nounit.� Moving max ounter: Number of Open-R frames one step takes. Greater than 1. Has no unit.5.1.8 Tuning the ParametersOne the general framework of our walk was set up, we were faed with the problem of determining goodvalues for all of the parameters of the walk. This proess was greatly failitated by the use of a tool we hadwritten that allowed us to telnet into the Aibo and hange walking parameters at run time. Thus we wereable to go bak and forth between altering parameters and wathing (or timing) the Aibo to see how fast itwas. This proess enabled us to experiment with many di�erent ombinations of parameters.We foused most of our tuning e�ort on �nding as fast a straight forward walk as possible. Our tuningproess onsisted of a mixture of manual hill-limbing and using our observations of the walk and intuitionabout the e�ets of the parameters. For example, two parameters that were tuned by relatively blind hill-limbing were Forward step distane and Moving max ounter. These parameters are very important andit is often diÆult to know intuitively if they should be inreased or dereased. So tuning proeeded slowlyand with many trials. On the other hand, parameters suh as the front and bak learanes ould frequentlybe tuned by notiing, for instane, that the front (or bak) legs dragged along the ground (or went too highin the air). The fastest parameters we were able to �nd for our forward walk are given in the following table.We found that these parameters worked well for ombinations of forward and turning veloities (withthe appropriate modi�ations to Forward step distane and Turn step distane). However, when we set the25



Parameter ValueForward step distane 0:74Side step distane 0:0Turn step distane 0:0Front shoulder height 1:1Bak shoulder height 1:6Ground fration 0:5Front left y-o�set 0:7Front right y-o�set 0:7Bak left y-o�set �0:4Bak right y-o�set �0:4Front left x-o�set �0:25Front right x-o�set 0:25Bak left x-o�set 0:0Bak right x-o�set 0:0Front learane 0:9Diretion fwd 1Diretion side 1Diretion turn 1Moving max ounter 92Table 3: Fast Walking Parameter Valuesforwards and turning omponents to zero and tried to walk straight sideways, the robot would urve quitesharply forwards. Thus to walk with a non-zero sideways veloity we used either a di�erent set of parametersor SPLINE WALK.5.1.9 Odometry CalibrationAs the Aibo walks, it keeps trak of its forward, horizontal, and angular veloities. These values are usedas inputs to our partile �ltering algorithm (see Setion 8) and it is important for them to be as aurateas possible. The Movement Module takes a walking request in the form of a set of forward, horizontal, andangular veloities. These veloities are then onverted to walking parameters. The Brain assumes that theveloities being requested are the ones that are atually attained, so the auray of the odometry relies onthat of those onversions.Sine the step distane parameters are proportional to the distane traveled eah step and the time foreah step is the same, the step distane parameters should theoretially be proportional to the orrespondingveloities. This turned out to be true to a fair degree of auray for ombinations of forward and turningveloities. As mentioned above, we needed to use a di�erent set of parameters for walking with a non-zerosideways veloity. These parameters did not allow for a fast forward walk, but with them the veloities wereroughly proportional to the step distanes for ombinations of forward, turning, and sideways veloities.The proportionality onstants are determined by a diret measurement of the relevant veloities. Tomeasure forward veloity, we use a stopwath to time the robot walking from one goal line to the other withits forward walking parameters. The time taken is divided into the length of the �eld, 4200 mm, to yieldthe forward veloity. The same proess is used to measure sideways veloity. To measure angular veloity,we exeute the walk with turning parameters. Then we measure how muh time it takes to make a ertainnumber of omplete revolutions. This yields a veloity in degrees per seond. Finally, the proportionalityonstants were alulated by dividing the measured veloities by the orresponding step distane parametersthat gave rise to them.Sine the odometry estimates are used by loalization (Setion 8), the odometry alibration onstants26



ould be tuned more preisely by running loalization with a given set of odometry onstants and observingthe e�ets of the odometry on the loalization estimates. Then we ould adjust the odometry onstants inthe appropriate diretion to make loalization more aurate. We feel that we were able to ahieve quiteaurate odometry estimates by a repetition of this proess.5.2 General MovementControl of the Aibo's movements ours at three levels of abstration.1. The lowest level, the \movement module," resides in a separate Open-R objet from the rest of our ode(as desribed in the ontext of our general arhiteture in Setion 10) and is responsible for sendingthe joint values to OVirtualRobotComm, the provided Open-R objet that serves as an interfae to theAibo's motors.2. One level above the movement module is the \movement interfae," whih handles the work of al-ulating many of the parameters partiular to the urrent internal state and sensor values. It alsomanages the inter-objet ommuniation between the movement module and the rest of the ode.3. The highest level ours in the behavior module itself (Setion 12), where the deisions to initiate orontinue entire types of movement are made.5.2.1 Movement ModuleThe movement module shares three onnetions (\servies") with other Open-R objets: one with theOVirtualRobotComm objet mentioned above, and two with the Brain, the Open-R objet whih inludesmost of our ode (see Setion 10 for a desription of our general arhiteture), inluding the C++ objetorresponding to the movement interfae desribed in Setion 5.2.2. It uses one onnetion with the Brainto take requests from the Brain for types of high-level movement, suh as walking in a partiular diretion orkiking. It then onverts them to joint values, and uses its onnetion with OVirtualRobotComm to requestthat joint positions be set aordingly. These requests are sent as often as is allowed { every 8 milliseonds.The seond onnetion with the Brain allows the movement module to send updates to the Brain aboutwhat movement it is urrently performing. Among other things, this lets the Brain know when a movementit requested has �nished (suh as a kik). The ow of ontrol is illustrated by the arrows in Figure 7 (thefuntions identi�ed in the �gure are de�ned below). Thik arrows represent a message ontaining information(from Subjet to Observer); thin arrows indiate a message without further information (from Observer toSubjet). An arrow ending in a null marker indiates that the message does nothing but enable the servieto send another message.Beause the movement module must send an Open-R message to OVirtualRobotComm every time itwants to hange a joint position, it is neessary for the movement module to keep an internal state sothat it an resume where it left o� when OVirtualRobotComm returns ontrol to the movement module.Whenever this happens, the movement module begins exeution with the funtion ReadyEffetor, whihis alled automatially every time OVirtualRobotComm is ready for a new ommand. ReadyEffetor allsthe partiular funtion orresponding to the urrent movement module state, a variable that indiates whihtype of movement is urrently in progress. Many movements (for example, walking and kiking) require thata sequene of sets of joint positions be arried out, so the funtions responsible for these movements mustbe exeuted multiple times (for multiple messages to OVirtualRobotComm). The states of the movementmodule are summarized in Table 4.Whereas kiking and getting up require the Aibo's head to be doing something spei�, neither the idlestate nor the two walks require anything in partiular from the head joints. Furthermore, it is useful to allowthe head to move independently from the legs whenever possible (this allows the Aibo to \keep its eye on theball" while walking, for instane). Thus the movement module also maintains a separate internal state forthe head. If the movement module's state is KICK MOTION or GETUP MOTION when ReadyEffetorbegins exeution, the new joint angles for the head will be spei�ed by the funtion orresponding to the27



OVirtualRobotComm MovementModule Brain

(ReceiveMovement)

Update Brain’s knowledge of MovementModule state.

(ReadyEffector)

If state has changed, notify Brain.

Send new joint values to robot.

(MoveToNewAngles)

Adjust motors to reflect new joint values.

(NewParamsNotify) Send movement request.

(Movement.SendCommand)

change state if current action is finished

calculate new joint values

...

...

...

Change MovementModule state
according to received request.

determine movement corresponding to current behavior

...

...

Figure 7: Inter-objet ommuniation involving the movement module. Thik arrows represent a messageontaining information (from Subjet to Observer); thin arrows indiate a message without further informa-tion (from Observer to Subjet). An arrow ending in a null marker indiates that the message does nothingbut enable the servie to send another message.State DesriptionINIT Initial stateIDLE No leg motion, but joint gains are set (robot is standing)7PARAM WALK Fastest walkSPLINE WALK Omnidiretional slower walkKICK MOTION KikingGETUP MOTION No joint position requests being sent to OVirtualRobotComm,thus allowing built-in Sony getup routines ontrol over all motorsTable 4: Movement module statesmovement module state. Otherwise, ReadyEffetor alls a funtion orresponding to the urrent head state,whih determines the new joint angles for the head, and the rest of the joint angles are determined by thefuntion for the urrent movement module state. A summary of the head states appears in Table 5.The movement module listens for ommands with a funtion alled NewParamsNotify. When the Brainsends a movement request, NewParamsNotify aepts it and sets the movement module state and/or headstate aordingly. When the internal state is next examined { this ours in the next all to ReadyEffetor(that is, after the next time the joint positions are set by OVirtualRobotComm) { the movement modulebegins exeuting the requested movement. See Table 6 for a summary of the possible requests to themovement module. Note that both a head movement and a body movementmay be requested simultaneously,with the same message. However, if the body movement that is requested needs ontrol of the head joints,the head request is ignored.7In pratie, this is implemented by exeuting a \walk" with forward veloity, side veloity, turn veloity, and leg height allequal to 0.
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State DesriptionIDLE Head is still (but joint gains are set)MOVE Moving head to a spei� positionSCAN Moving head at a onstant speed in one diretionKICK Exeuting a sequene of head positionsTable 5: Head statesType of request Explanation Assoiated parametersMOVE NOOP don't hange body movementMOVE STOP stop leg movementMOVE PARAM WALK start walking using ParamWalk x-veloity, y-veloity, angular veloityMOVE SPLINE WALK start walking using SplineWalk x-destination, y-destination, angular destinationMOVE KICK exeute a kik type of kikMOVE GETUP get up from a fallDONE GETUP robot is now upright, resume motionsHEAD NOOP don't hange head movementHEAD MOVE move head to a spei� angleHEAD SCAN san head at onstant veloity san speed, diretionHEAD KICK kik with the head type of kikHEAD STOP stop head movementTable 6: Possible requests to the movement module5.2.2 Movement InterfaeThe movement interfae is part of the Brain Open-R objet. Its main funtion is to translate high-levelmovement ommands into movement module requests, so that the Brain an simply speify high-level move-ment behaviors (suh as \turn toward this angle and kik with this kik") and let the movement interfaetake are of the rest.During eah Brain yle, the behavior modules speify movements by alling movement interfae fun-tions, whih ompute the ombination of movement module requests neessary to arry out the spei�edmovement. If the requested types of movement do not interfere with eah other (for example, if both a headsan and a forward walk are requested in the same Brain yle), then all requested movements are ombinedin the message that is eventually sent to the movement module. Finally, at the end of eah Brain yle, thefuntion Movement.SendCommand is alled. This funtion takes are of sending the message to the movementmodule ontaining the request, and ensuring that redundant messages are not sent.The movement interfae provides funtions for basi movements suh as walking forward, turning, movingthe head to a position, stopping the legs or head, and getting up from a fall. It also provides several funtionsfor more omplex movements, whih are desribed here.Head San When searhing for the ball, it is helpful to move the head around in some fashion so thatmore of the �eld an be seen. On the one hand, the more quikly the �eld an be overed by the san, themore quikly the ball an be found. On the other hand, if the head moves too quikly, the vision will notbe able to reognize the ball, beause it will not be in sight for the required number of frames. Thereforeit makes sense to try to over as muh of the �eld with as little head movement as possible. At �rst webelieved that it was not possible to over the entire height of the �eld with fewer than three horizontal sans,so we used a three-layer head san at the Amerian Open. However, by wathing other teams, we beameonvined that it must be possible to over the entire relevant portion of the �eld with two head sans. Aftersome experimentation, we managed to eliminate the persistent blind spot in the middle of a two-layer head29



san that we reated. Thus, the movement interfae now provides a funtion that takes are of exeutingthe two-layer head san. It also allows the behaviors to speify whih orner the san starts from. This isbeause the two-layer head san typially ours immediately after losing the ball, and often the brain knowswhih diretion the ball is most likely to be in given where it was last seen. Thus allowing the starting ornerto be spei�ed allows this information to be used.Follow Objet One the robot sees the ball, walking towards it is ahieved by two simultaneous ontrollaws. The �rst keeps the head pointed diretly at the ball as the ball moves in the image. This is ahievedby taking the horizontal and vertial distanes between the loation of the ball in the image and the enterof the image and onverting them into hanges in the head pan and tilt angles.Seond, the Aibo walks towards the diretion that its head is pointing. It does this by walking with aombination of forward and turning veloities. As the head's pan angle hanges from the straight aheadposition towards a sidewise-faing position, the forward veloity dereases linearly (from its maximum) andthe turning veloity inreases linearly (from zero). In ombination, these poliies bring the Aibo towards theball.While we were able to use the above methods to have the Aibo walk in the general diretion of theball, it proved quite diÆult to have the Aibo reliably attain ontrol of the ball. One problem was that therobot would knok the ball away with its legs as it approahed the ball. We found that if we inreased theproportionality onstant of the turning veloity, it would allow the robot to fae the ball more preisely asit went up to the ball. Then the ball would end up between the Aibo's front legs instead of getting knokedaway by one of them. Another problem that arose was that the Aibo oasionally bumped the ball out ofthe way with its head. We dealt with this by having the robot keep its head pointed 10Æ above the ball.Both of these solutions required some experimentation and tuning of parameters.Trak Objet This funtion follows a ball with the head, and turns the body in plae when neessary soas not to lose sight of the ball. It is used hiey for the goalie.Strafe Before we had loalization in plae, we needed a way to turn the robot around the ball so that itould kik it towards the goal. The problem was that we needed to keep its head pointing down the �eld soit ould see the goal, whih made turning with the ball pinhed underneath the hin (see below) unfeasible.Stra�ng onsisted of walking with a sideways veloity and a turning veloity, but no forward veloity. Thisaused the Aibo to walk sideways in a irle around the ball. During this time, it was able to keep its headpointed straight ahead so that it ould stop when it saw the goal.Chin Pinh Turn This is a motion whih lowers the head (to a tilt angle of �55Æ) to trap the ball belowthe hin, and then turns some number of degrees while the ball is trapped there. One we had loalizationin plae, this replaed the strafe funtion just desribed, beause it is both faster and more reliable at notlosing the ball.Tuk Ball Under This funtion walks forward slowly while pulling the head down. It helps the Aiboattain ontrol of the ball, and is typially used for the transition between follow objet and hin pinh turn.5.2.3 High-Level ControlFor the most part, it is the task of the behaviors to simply hoose whih ombinations of the movementinterfae funtions just desribed should be exeuted. However, there are exeptions; sometimes there is areason to handle some details of movement at the level of the behavior. One suh exeption is establishingthe duration of the hin pinh turn. Beause loalization is used to determine when to stop the hin pinhturn, it makes more sense to deal with this in the behavior than in the movement interfae, whih does nototherwise need to get loalization information. 30



If the behavior hooses to do a hin pinh turn (see Setion 12.1.2 for details on when this happens),it will speify an Aibo-relative angle that it wishes to turn toward as well as whih way to turn (by thesign of the angle). This angle is then onverted to an angle relative to the robot's heading to the o�ensivegoal.8 The robot ontinues to turn9 until the robot's heading to the opponent goal is as desired, and thenthe behavior transitions to the kiking state.While we use PARAM WALK for the vast majority of our walking, we use SPLINE WALK in most aseswhere we need to walk with a non-zero sideways veloity. An important example of this is in the supporterrole (Setion 13.2.1), where we need to walk to a point while faing a ertain diretion. SPLINE WALK wasalso used for part of the obstale avoidane hallenge task. In general, we deided whih walk to use in anypartiular situation by trying both and seeing whih one was more e�etive.6 Fall DetetionSony provides routines that enable the robot to detet when it's fallen and that enable it to get up. Ourinitial approah was to simply use these routines. However, as our walk evolved, the angle of the Aibo'strunk while walking beame steeper. This, ombined with variations between robots, aused several of ourrobots to think they were falling over every few steps and to try repeatedly to get up. To remedy this, weimplemented a simple fall detetion system of our own.The fall detetion system funtions by noting the robot's x- and y-aelerometer sensor values eah Brainyle. If the absolute value of an aelerometer reading is greater than some onstant (we used 6; 800; 000)for a number (5) of onseutive yles, a fall is registered.It is also possible to turn fall detetion o� for some period of time. Many of our kiks require the Aiboto pass through a state whih would normally register as a fall, so fall detetion is disabled while the Aibo iskiking. If the Aibo falls during a kik, the fall detetion system registers the fall when the kik is �nished,and the Aibo then gets up.7 KikingThe robot's kik is spei�ed by a sequene of poses. A Pose = (j1; : : : ; jn), ji 2 <, where j represents thepositions of the n joints of the robot. The robot uses its PID mehanism to move joints 1 through n fromone Pose to another over a time interval t. We speify eah kik as a series of moves fMove1; : : : ;Movemgwhere aMove = (Posei; P osef ;�t) andMovejPosef =Move(j+1)Posei , 8j 2 [1;m�1℄. All of our kiks onlyused 16 of the robot's joints (leg, head, and mouth). Table 7 depits the used joints and joint desriptions.7.1 The Initial KikIn the beginning stages of our team development, our main fous was on reating modules (Movement,Vision, Loalization, et.) and inorporating them with one another. Development of kiks did not beomea high priority until after the other modules had been inorporated. Thus, we reated a \�rst kik" early onto address the needs of the other modules as they developed and reated other kiks muh later to expandour strategi apabilities.We deided to model our �rst kik after what seemed to be the predominant goal-soring kik fromprevious RoboCup ompetitions. During the kik, the robot raises its two front legs up and drops them ontothe sides of the ball. The fore of the falling legs propels the ball forward. Our �rst kik, alled the \frontpower kik" tried to ahieve this e�et.8The hoie of heading to the o�ensive goal as the landmark for determining when the hin pinh turn should stop is dueto the fat that the hin pinh turn's destination is often faing the opponent goal, as well as the fat that there was alreadya onvenient GlobalMap interfae funtion that provided heading to the o�ensive goal. In theory, anything else would workequally well.9That is, the behavior repeatedly sends requests to the movement interfae to exeute the hin pinh turn.31



joint joint desriptionj1 front right rotatorj2 front right abdutorj3 front right kneej4 front left rotatorj5 front left abdutorj6 front left kneej7 bak right rotatorj8 bak right abdutorj9 bak right kneej10 bak left rotatorj11 bak left abdutorj12 bak left kneej13 head tilt jointj14 head pan jointj15 head roll jointj16 mouth jointTable 7: Joints used in kiksWe wanted our front power kik to transition from any walk without prematurely tapping the ball outof the way. Thus, we started the kik in a \broadbase" position in whih the robot's torso is on the groundwith its legs spread out to the side. If the robot were to transition into the front power kik from a standingposition, the robot would drop to the ground while pulling its legs away from the ball. From this broadbaseposition, the robot then moves its front legs together to enter the ball. After the ball has been entered,the robot moves its front legs up above its head and then quikly drops the front legs onto the sides of theball, kiking the ball forward.We found that the kik moves the ball relatively straight ahead for a distane of up to 3 meters. However,we notied that the robot's front legs would miss the ball if the ball were within 3m of the robot's hest.We resolved this issue by using the robot's mouth to push the ball slightly forward before dropping its legson the ball.7.2 A General Kik FrameworkWe soon realized that we would need to reate several di�erent kiks for di�erent purposes. To that end,we started thinking of the kik-generation proess in more general terms. In this setion we formalize thatproess.The kik is an example of a �ne-motor ontrol motion where small errors matter. Creation of a kikrequires speial attention to eah Pose. A few angles' di�erene ould a�et whether the robot makesontat with the ball. Even a small di�erene in �t in a Move ould a�et the suess of a kik. To makematters more ompliated, our team needed the kik to transition from and to a walk. More onsiderationhad to be taken to ensure that neither the walk nor the kik disrupted the operation of the other.We devised a two-step tehnique for kik-generation:1. Creating the kik in isolation from the walk.2. Integrating the kik into the walk.7.2.1 Creating the Critial AtionWe �rst reated the kik in isolation from the walk. The Moves that omprise the kik in isolation onstitutethe ritial ation of the kik. To obtain the joint angle values for eah Pose, we used a tool that aptured32



all the joint angle values of the robot after physially positioning the robot in its desired pose. We �rstpositioned the robot in the Pose in whih the robot ontats the ball for the kik and reorded j1; : : : ; jn forthat Pose. We alled this Poseb.We then physially positioned the robot in the Pose from whih we wanted the robot to move to Poseb.We alled this Posea. We then reated a Move m = (Posea; P oseb;�t) and wathed the robot exeute m.At this point of kik reation, we were primarily onerned with the path the robot took from Posea toPoseb. Thus, we abstrated away the �t of the Move by seleting a large �t that enabled us to wath thepath from Posea to Poseb. We typially seleted �t to be 64. Sine movement module requests are sentevery 8 milliseonds, this Move took 64 * 8 milliseonds to exeute.If the Move did not travel a path that allowed the robot to kik the ball suessfully, we then added anintermediary Posex between Posea and Poseb and reated a sequene of two Moves f(Posea; P osex;�ti);(Posex; P oseb;�ti+1)g and wathed the exeution. Again, we abstrated away �ti and �ti+1, typiallyseleting 64. After wathing the path for this sequene of Moves, we repeated the proess if neessary.After we were �nally satis�ed with the sequene of Moves in the ritial ation, we tuned the �t for eahMove. Our goal was to exeute eah Move of the ritial ation as quikly as possible. Thus, we redued �tfor eah Move individually, stopping if the next derement disrupted the kik.7.2.2 Integrating the Critial Ation into the WalkThe seond step in reating the �nely ontrolled ation involves integrating the ritial ation into the walk.There are two points of integration: (1) the transition from the walk to the ritial ation, (2) the transitionfrom the ritial ation to the walk.We �rst fous on the Move i = (Posey; P osea;�t), where Posey 2 fall possible poses of the walkg. Sinei preedes the ritial ation, there may be ases in whih i adds unwanted momentum to the ritial ationand disrupts it. If i had suh ases, we found a Poses, in whih f(Posey; P oses;�t); (Poses; P osea;�t)gdid not lend unwanted momentum to the ritial ation. We all this the initial ation. The Poses we usedmirrored the idle position of the walk. The idle position of the walk is the Pose the robot assumes whenwalking with 0 veloity. We then added the Move (Poses; P osea;�t), abstrating away the �t, to the movesof the ritial ation and wathed the path of exeution.As with the reation of the ritial ation, we then added intermediary Poses until we were satis�ed withthe sequene of Moves from Posey to Posea. We then �ne-tuned the �t for the added Moves.Finally, at the end of every kik during game play the robot assumes the idle position of the walk, whihwe all Posez, before ontinuing the walk. This transition to Posez takes 1 movement yle. Thus weonsider the last Move of the kik, f , to be (Poseb; P osez; 1). Sine f follows the ritial ation, there maybe ases in whih f hinders the robot's ability to resume walking.In suh ases, as with the reation of the ritial ation and the initial ation, we then added intermediaryPoses until we were satis�ed with the sequene of Moves from Poseb to Posez. We all the Moves betweenthe intermediary Poses the �nal ation. We then �ne-tuned the values of �t used in the �nal ation.The sequene of Moves onstituting the initial ation, ritial ation, and �nal ation make up the kik.7.3 Head KikAfter many of our modules had been integrated, the need arose for a kik in a non-forward diretion. Inspiredby previous RoboCup teams, deided that the head ould be used to kik the ball to the left or to the right.During the head kik, the robot �rst leans in the diretion opposite of the diretion it intends to kik theball. The robot then moves its front leg (left leg when kiking left, right leg when kiking right) out of theway. Finally, the robot leans in the diretion of the kik as the head turns to kik the ball.The head kik moves the ball almost due left (or right) a distane of up to 0.5 meters. We disoveredthat the head kik was espeially useful when the ball was lose to the edge of the �eld. The robot ouldwalk to the ball, head kik the ball along the wall, and almost immediately ontinue walking, whereas thefront power kik frequently kiked the ball against the wall, e�etively moving the ball very little, if at all.33



7.4 Chest Push KikThe reation of the head kik informed us that the robot ould enter and exit a kik muh faster when thekik ourred with the robot in a standing position. We thus reated the hest push kik in hopes that itsexeution would be muh faster than that of the front power kik. During the hest push kik, the robotquikly leans its hest into the ball. This ours while the robot remains in a standing position.To reate the kik, we �rst isolated the kik from the walk. The following table shows the ritial ationfor the hest push kik. In these tables eah value of �t is listed in the row of the Pose that ends theorresponding Move.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64Pose2 -120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1Pose3 -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64Table 8: Chest push kik ritial ationWe then integrated the walk with the kik. Testing revealed that the robot suessfully kiked theball 55% of the time and fell over after 55% of the suessful kiks. Sine (Posey; P ose1;�t) addedunwanted momentum to the ritial ation, we reated an initial ation to preede the ritial ation.f(Posey; P oses; 64); (Poses; P ose1; 64)g does not lend unwanted momentum to the ritial ation. Test-ing revealed that the robot now suessfully kiked the ball 100% of the time. The following table shows theinitial ation with the ritial ation.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPoses -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64Pose1 -12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64Pose2 -120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1Pose3 -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64Table 9: Chest push kik initial ation and ritial ationSine the ritial ation did not add unwanted momentum that hindered the robot's ability to resume itsbaseline motion, there was no need to reate a �nal ation.We found that the hest push kik moves the ball relatively straight ahead. It is also very fast. However,the distane the ball travels after the hest push kik is signi�antly smaller than the distane the ball travelsafter the front power kik. Thus, we deided against using the hest push kik instead of the front powerkik during game play.7.5 Arms Together KikAfter reating kiks geared toward soring goals, we realized that we needed a kik for the goalie to blok theball from entering its goal. Deiding that speed and overage area were more important than the diretionof the kik, we reated the arms together kik. During the arms together kik, the robot �rst drops intobroadbase position mentioned in Setion 7.1. The robot then swings its front left leg inward. After that, therobot swings its front right leg inward as it swings its front left leg bak out. The arms together kik provedsuessful at quikly propelling the ball away from the goal.7.6 Fall Forward KikAfter attending the Amerian Open, we saw a need for a forward diretion kik more powerful than thefront power kik. Inspired by a kik used by the CMPak team from Carnegie Mellon, we reated the fall34



forward kik. The fall forward kik makes use of the forward momentum of the robot as it falls from standingposition to lying position. Sine the kik begins in a standing position, the robot an quikly transition fromthe walk to the kik. However, sine the kik ends in a lying position, the robot does not transition fromthe kik bak to the walk as quikly.We �rst isolated the kik from the walk. The following table shows the ritial ation.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32Pose2 -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32Table 10: Fall forward kik ritial ationWe then integrated the walk with the kik. There was no need to reate an initial ation beause anymomentum resulting from (Posey; P ose1; 32) was in the forward diretion (the same diretion we wantedthe robot to fall). However, testing revealed that (Pose2; P osez;�t) aused the robot to fall forward on itsfae every time. Although the robot suessfully kiked the ball, the robot ould not immediately resumewalking. In this situation, the robot had to wait for its fall detetion to trigger and tell it to get up beforeresuming the walk. The get up routine triggered by fall detetion was very slow. Thus, we found a Posegsuh that f(Pose2; P oseg ; 32); (Poseg; P osez;�t)g does not hinder the robot's ability to resume walking.The following table shows the ritial ation with Move(Pose2; P oseg; 32).j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32Pose2 -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32Poseg 90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32Table 11: Fall forward kik ritial ation and f(Pose2; P oseg ; 32)gFrom observation, it is noted that transitioning from Pose2 diretly to Poseg is not ideal. The robotwould fall over 25% of the time during (Pose2; P oseg; 32). Thus, we added Posew to preede Poseg in the�nal ation. Afterwards, the robot no longer fell over when transitioning from the kik to the walk. Thefollowing table shows the entire �nely ontrolled ation, onsisting of the ritial ation and the �nal ation.j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 �tPose1 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32Pose2 -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32Posew -100 90 0 -100 90 0 100 6 75 100 6 75 45 -90 0 0 32Poseg 90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32Table 12: Fall forward kik ritial ation and �nal ationThe fall forward kik exeuted quikly and potentially moved the ball the entire distane of the �eld (4.2meters). Unfortunately, the fall forward kik did not reliably propel the ball diretly forward. Thus, in gameplay, we used the fall forward kik in the defensive half of the �eld and used the front power kik for morereliable goal soring in the o�ensive half of the �eld.One unexpeted side-e�et of adding Poseg to the end of the fall forward kik was that the outstrethedlegs in Poseg added additional ball overage. A ball that the fall forward ation missed beause it was notloated around the robot's hest would atually be propelled forward if the ball was just in front of one ofthe front legs. Thus, the fall forward kik, whih moves the ball away muh farther than the arms togetherkik, also beame our primary goalie blok. 35



7.7 Yoshi KikGames at the Amerian Open also inspired us to reate the yoshi kik. During the yoshi kik, the robotlaunhes its body over the ball and kiks the ball out from behind it. The yoshi kik ideally works wellin situations when the robots are rowded together around the ball. However, beause the yoshi kik isstill somewhat unreliable, the behavior used for RoboCup games only exeutes a yoshi kik in very spei�irumstanes, whih in pratie our rarely. (See Setion 12.1.2 for details.)8 LoalizationSine it requires at least vision and preferably loomotion to already be in plae, loalization was a rela-tively late emphasis in our e�orts. In fat, it did not truly ome into plae until after the Amerian OpenCompetition at the end of April. Before that time, we had been working on a preliminary approah thatwas eventually disarded and replaed by the urrent one.For self-loalization, the Austin Villa team implemented a Monte-Carlo loalization approah similar tothe one used by the German Team [5℄. This approah uses a olletion of partiles to estimate the globalposition and orientation of the robot. These estimates are updated by visual perepts of �xed landmarksand odometry data from the robot's movement module (see Setion 5.1.9). The partiles are averaged to�nd a best guess of the robot's pose.We have extended the approah of the German Team to improve the auray of the observation updates.Rather than using only the most urrent landmark observations, our approah maintains a history of reentobservations that are averaged aording to their estimated auray. Beause it is rare for the robot togather suÆient information in a single amera frame to triangulate its position, it is important to inorporatevisual information from the reent past. At the same time, if visual data is inaurate, reusing it again andagain an aggravate the problem. Our approah is able to leverage past data while, in most situations,robustly tolerating oasional bad inputs.8.1 Basi Partile Filtering ApproahThe goal of the loalization module is to alulate a probability distribution over the possible loations andorientations of the robot. Rather than modeling this distribution parametrially, Monte-Carlo loalizationuses a �nite set of samples alled partiles. Eah partile an be seen as a hypothesis for the urrent poseof the robot: < x; y; � > where < x; y > is the position of the robot and � is its orientation in the globaloordinate system. Along with a pose hypothesis, eah partile is assigned a probability, p, representing thelikelihood that the estimate is orret. In our implementation, we used a set of 100 of these partiles, whihwe found experimentally to provide a suÆient level of auray without substantially lowering the rate ofour main exeution yle.During eah exeution yle of the robot, the loalization module updates the set of partiles in threesteps. The �rst step is the motion update in whih the partiles are moved based on the physial movementof the robot. The next step is the observation update in whih the partile probabilities are adjusted for thelatest visual information. Finally, resampling is done to stohastially move the partiles loser to the mostlikely pose estimate. The following setions desribe these updates in detail.8.2 Motion UpdateBased on the urrently exeuting walk or kik, the movement module returns an estimate of the robot'shange in position and orientation sine the last loalization update: < Æx; Æy; Æ� >. This hange is addedto eah partile's pose aording to the following equation:posenew = poseold+ < Æx0; Æy0; Æ� > (20)where Æx0 and Æy0 are Æx and Æy translated from the oordinate system of the robot into the oordinatesystem of the partile (see Appendix A.9). Beause the odometry information is noisy, we assume that36



motion updates derease the ertainty in our pose estimate. For this reason, after eah motion update, theprobability of eah partile is deayed aording to the following equation:pnew = pold(1� �) (21)In our implementation, we hose the value 0:02 for �. This value was hosen, without experimentation, sothat the probability would drop by half every ouple of seonds.8.3 Observation UpdateAfter the urrent frame has been proessed by the vision module, the loalization module reeives a list oflandmark observations. For our purposes, the �eld onsists of 10 identi�able �xed landmarks: 6 beaons and4 goal edges.10 Eah observation onsists of a landmark identity (e.g. yellow goal's left edge), a distaneestimate, d, a bearing estimate, �, and a probability, p̂, representing the ertainty that the observed landmarkwas identi�ed orretly. These observations are used to update the landmark memory struture, whih isdesribed in the next setion.8.3.1 Landmark MemoryThe landmark memory data struture stores a history of reent observations in order to make aurateestimates of the robot's relative position to landmarks. For eah of the 10 landmarks, the landmark memorymaintains a list ontaining past observations. Along with the observation itself, eah list entry inludes thefollowing data:� �2d: variane of distane estimate� �2�: variane of bearing estimate� T : absolute time the observation was made� �d: distane robot has moved sine this observation� ��: total angle the robot has rotated sine this observationAn observation is modeled as a 2-d Gaussian distribution with mean < d; � > and variane < �2d; �2� >. Theinitial varianes are alulated from d and p̂ using the following equations:�2d = dp̂ � 10 (22)�2� = tan�1�Wbd � (23)where Wb is the atual width of a beaon. Beause the distane of a beaon is more diÆult to estimateas it gets farther away, we made the distane error proportional to d. Also, we made the error inverselyproportional to our ertainty in landmark identity so that false landmark sightings would generate estimateswith high varianes. The bearing to a beaon is atually easier to estimate as it gets farther away. For thisreason, we made the bearing variane inversely proportional to distane. These error estimates are rude,but we found them to be satisfatory in pratie.When an observation is added to the list, the timestamp T is set to the urrent time and �d and �� areinitialized to 0.10We hose to use the left and right edges of the goals as landmarks, instead of the goals themselves, beause the goal edgeshad more preise loations and were more numerous. 37



8.3.2 Removing Obsolete ObservationsDuring every motion update (see Setion 8.2), the entries in the landmark memory are modi�ed to reetpassing time and robot movement. For eah observation entry, the �d and �� values are inreased aord-ing to the odometry data returned by the movement module. The observation estimates are updated toorrespond to the robot's new position and orientation. Also, the varianes are inreased proportionally tothe robot's movement. These updates are summarized by the following equations:�d0 = �d+p(Æx)2 + (Æy)2 (24)��0 = �� + jÆ�j (25)d0 =p(d os(�)� Æx)2 + (d sin(�)� Æy)2 (26)�0 = atan2 (d sin(�)� Æy; d os(�)� Æx)� Æ� (27)�2d 0 = �2d +p(Æx)2 + (Æy)2 (28)�2�0 = �2� + jÆ�j2 (29)After the observation entries have been updated, we deide if the observation should remain in the list.If the observation has a high variane (�2d > 500mm or �2� > 22o), then it is removed from the landmarkmemory. Additionally, if the robot has traveled too far (�d > 150mm) or turned too muh (�� > 10o)sine the observation was made, then the observation is thrown out. Finally, if the observation is too old(time� T > 3s) then the entry is deleted. This way, even if the robot is standing still, old observations donot stay around forever. All thresholds were hosen without experimentation.8.3.3 Merging Past ObservationsFor eah of the 10 �xed landmarks, the landmark memory ontains a list of 0 or more relative positionestimates. To use this data for updating the partiles, we must merge the entries within eah list to �nd asingle set of landmark observations.As stated previously, observations in the landmark memory are modeled as 2-d Gaussians. We hose thisdistribution beause the theory behind merging Gaussian distributions is well-understood. Here, we treat thedistane and bearing estimates as independent distributions. Therefore, we an perform a two-dimensionalmerge by doing two independent one-dimensional merges. To merge two 1-d Gaussian with means andvarianes (�a; �2a) and (�b; �2b ), respetively, into a new distribution (�merged; �2merged), we use the followingequations: �merged = �2a�b + �2b�a�2a + �2b (30)�2merged = �2a�2b�2a + �2b (31)These operations are both ommutative and assoiative, so we are free to merge the observations in anyorder. For eah landmark with at least one observation entry, we ompute a merged position estimate to beused for updating the partile probabilities.8.3.4 Updating ProbabilitiesUsing the set of merged estimates from the landmark memory, we update the probability, pi, of eah partile,i, based on the posterior probability of making these observations assuming that the partile is the orretpose hypothesis. Here, we use only the bearing measurement of the observation. The distane informationis used at a di�erent stage (see Setion 8.3.6).Given the partile's position and orientation along with information about the positions of all �xedlandmarks from an internal map, we an alulate the expeted bearing, �expeted for eah observed landmark.38



If the di�erene between the measured and expeted bearings is small, then the partile is likely to be agood estimate of our urrent position and orientation. If the di�erene is large, the partile is probably abad estimate.The posterior probability for a single observation is estimated by the following equation:s(�measured; �expeted) = � e�50!2 if ! < 1e�50(2�!)2 otherwise (32)where ! = j�measured��expetedj� . The probability, p, of a partile is just the produt of these probabilities:p = Y�measured s(�measured; �expeted) (33)However, the partile probability is not simply set to this new value. To prevent oasionally poor observa-tions from hanging the estimate too dramatially, we plae a threshold on how muh a probability estimatean hange in a single yle. Therefore, the new probability of a partile is alulated by the followingequation: pnew =8<: pold + 0:1 if p > pold + 0:1pold � 0:05 if p < pold � 0:05p otherwise (34)8.3.5 ResamplingOne the partile probabilities have been updated, the partiles are resampled to move a higher density ofpartiles loser to the most likely pose estimates. To do this, we opy partiles from an old partile listto a new partile list in proportion to their probabilities. Higher probability partiles are dupliated andlower probability partiles are thrown out. The resampling is performed suh that the new partiles list willontain about 90 partiles. For a given partile, i, in the old list, the number of times that it will appear inthe new list is given by the following equation:#i = $ 1Pj pj 90pi% (35)After opying over the old partiles, triangulation estimates made from ombinations of two or three beaonsare added until the list ontains 100 partiles. Eah of these partiles are given a probability based on theunertainty of the observations used in the alulation. Our methods for triangulating the robot's positionare disussed in the following two setions.8.3.6 Two Beaon TriangulationIn this approah, we use both the distane and angle estimates of the beaons, provided by high levelvision, to determine the position and orientation of the robot in the global referene frame. The inlusionof beaon distane estimates (in addition to the angle that the beaon is estimated to make with the robot)in loalization does produe robot position estimates that are more error prone than the estimates obtainedusing the angle information alone (i.e. three beaon triangulation, see Setion 8.3.7). But we found that whenthe robot position estimates obtained using this tehnique are used as seed values in partile �ltering (withan appropriate probability value) in addition to the estimates obtained using three beaon triangulation, theresults obtained are more aurate than those with just the three beaon estimates as the seed values.Given two beaon distanes and bearings with respet to the robot's loal oordinate frame, we an drawtwo irles, one around eah of the beaons with radius equal to the distane (estimated) of the beaon fromthe robot. The irles interset at two points (or none when the estimates are bad in whih ase they arenot used in alulations), one of them being the orret estimate of the robot's position (see Figure 8).We �rst use the estimated distanes from the robot to the beaons to determine the robot's position withrespet to a loal frame with the x-axis along the line joining the two beaons. This is then onverted to39
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Figure 8: Loalization using two beaons.the global referene frame using the known geometry of the �eld. The global orientation of the robot is thendetermined using the robot's alulated position and estimated distanes and angles to the beaons. Weatually alulate both possible robot poses (position and orientation) but then eliminate one of them usingonstraints (for example, we hek if the position is on the �eld). Then, we need to determine the varianesin the estimated pose. To do so we basially �nd the partial derivatives of the expressions for pose withrespet to the variables in the system. We do this starting from the �nal expression and move bakwards tothe initial expressions so that we have the \hange" in pose expressed in terms of the hange in the distaneand bearing estimates of the beaons/markers (known values), thereby obtaining the variane estimates.8.3.7 Three Beaon TriangulationThe image of a distant landmark an be quite small with respet to the size of an image pixel. This an resultin a lak of auray in the distane estimates, but it does not detrat from the angle estimates. Beause ofthis, it is espeially desirable to be able to estimate the Aibo's loation using only angle information fromthe landmarks. This method eliminates the inauray in the distane estimates, but it has the disadvantageof requiring knowledge about three landmarks to be appliable.The di�erene between the horizontal angles of any two landmarks, ombined with the atual positions40
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Figure 9: Three Beaon Loalization. The horizontal angles between beaons A, B, and C are used toonstrut two irle ars. Their intersetion is the three-beaon estimate of the Aibo's loation.of those landmarks on the �eld, yields a irle ar of possible loations for the Aibo. Three landmarks yieldtwo irle ars (atually three, but the third is always redundant), whose intersetion is our position estimateaording to this method (Figure 9). The robot's orientation an then be determined from its position andthe horizontal angle of any landmark.8.3.8 Random MovementIn the �nal update step, the partiles are moved loally in a random fashion. Partiles with higher prob-abilities are moved less. This proess performs a probabilisti searh over nearby hypotheses. The updatealulation is summarized as follows:x0 = x+ 100mm � (1� p0) � rand[�1; 1℄ (36)y0 = y + 100mm � (1� p0) � rand[�1; 1℄ (37)�0 = � + 30o � (1� p0) � rand[�1; 1℄ (38)41



Partiles an be moved up to 100mm in x and y and rotated up to 30o. These values were hosen withoutexperimentation.8.4 Pose EstimationThe �nal stage in the loalization proess is �nding a pose estimate from the partile set. This estimate isomputed in two steps: �nding the largest luster of partiles and averaging the partiles within that luster.To �nd the largest luster, we divide the spae of possible x,y,� values into 10� 10� 10 ells. We thensearh through all possible 2� 2� 2 groups of adjaent ells to �nd the group with the most partiles. Thex,y,� values for eah partile in the group are then averaged aording to the following equation:pose = * 1m mXi=1 xi; 1m mXi=1 yi; atan2 mXi=1 sin(�i); mXi=1 os(�i)!+ (39)where m is the number of partiles in the group and < xi; yi; �i > is the pose of partile i. Notie that the� values annot simply be averaged beause angle values wrap around.Breaking the values into 10�10�10 ells and searhing the 2�2�2 groups is an admittedly sup-optimalapproah in that it risks missing onentrations of partiles that span the boundaries of 3 adjaent ells.We leave more prinipled approahes to future work, but found that this method was straightforward toimplement and it worked well in pratie.In addition to the pose estimate, the robot's behavior is also dependent upon its ertainty in that estimate.We alulate our ertainty as the density of partile probability in the largest luster:ertainty = 1n mXi=1 pi (40)where n is the total number of partiles and pi is the probability of partile i. Based on this ertaintyvalue, the robot an deide whether to perform a loalization-dependent skill (e.g. shot on goal) or take aninformation-gathering ation (i.e. searh for landmarks).9 CommuniationColletive deision making is an essential aspet of a multiagent domain suh as robot soer. The robotsthus need the ability to share information among themselves. In this setion we disuss the methodologieswe adopted to enable ommuniation and the various stages of development of the resulting ommuniationmodule.9.1 Initial Robot-to-Robot CommuniationOur initial goal was to understand the apabilities and limitations of the wireless ommuniation hannelbetween the various robots. Although the rules required us to use TCPGateway for ommuniation duringthe games, we wanted to examine other options that might be useful during non-game situations.We reated a simple server and a lient that used the User Datagram Protool (UDP). We hose UDPbeause it typially provides greater bandwidth than the alternative, TCP. Our intent was to determine howquikly we ould transfer data between robots and to simply get used to writing appliations that wouldallow the robots to ommuniate.The �rst server that we reated generated a few bytes of data and tried to broadast it to a lient. Thelient program simply gathered this data as it reeived it. We ran the server and the lient on two di�erentrobots and monitored their ations by telnetting into them.One that worked, we extended our ommuniation modules to interfae with the robot's mehanialparts. The next server that we reated aptured the joint angles of the robot and broadast them to the42



lient. The lient gathered the data and set its own joint positions aordingly. Thus, when we movedthe legs of the server robot, the lient robot would move it's legs by the same amount, thus ating as amaster-slave (puppet) interfae.As we beame familiar with the networking interfaes of the robot, we ontinued to explore the varioususes of ommuniation. We streamed images from the robot's amera to a PC with both UDP and TCP,reated a hierarhy of single-master, multiple-slaves that enabled one robot to \lead" a team of robots, andoded a remote-ontrol program that we ould use to ontrol the Aibo from a PC. All of these experimentsprovided valuable feedbak that we later used when reating both our oÆial robot-to-robot ommuniationmodule (desribed below) and UT Assist (Setion 14).9.2 TCP GatewayOne we were familiar with the strutures that the robots use to ommuniate, we began implementinga ommuniation module. TCPGateway (the required interfae for oÆial robot-to-robot ommuniationduring games) abstrated away most of the low-level networking, providing a standard Open-R interfae inits plae. The most diÆult part of getting TCPGateway working was understanding the organization ofthe on�guration �les.The TCPGateway on�guration �les basially insert two network addresses and ports in the middle ofan Open-R subjet/observer relationship. This reates the following situation:� Instead of sending data diretly to the intended observer, the subjet on the initiating robot sendsdata to a TCPGateway observer.� The TCPGateway module on the initiating robot has a spei� onnetion on a unique port for dataowing in that diretion, and sends the data from the subjet over that onnetion to the PC.� The PC, whih has been on�gured to map data from one inoming port to one outgoing port, sendsthe subjet's data out to the reeiving robot on a spei� port.� The TCPGateway module on the reeiving robot proesses the data that it reeives on this port andsends the data to the intended observer.All of the mappings desribed above were de�ned in two �les on eah robot (CONNECT.CFG and ROBOTGW.CFG)and in two �les on the PC (CONNECT.CFG and HOSTGW.CFG).9.3 Message TypesOne of the hallenges we faed regarding ommuniation was the possibility that multiple types of messageswould need to be sent. We ould theoretially handle this with a stage in the brain loop that ould read anddistribute messages appropriately. As we proeeded, however, this option beame more and more unwieldy.Variables and data that would be used in one part of a program would be read and set in another part,perhaps even in another �le. What we needed was the ability to reate an arbitrary number of di�erentmessage types, suh that anywhere in the program, we ould request from the ommuniation system thenext message of that type.Our �rst implementation kept the same ommuniation stak, but when a request was made, the typeof message was passed as a parameter. The ommuniation system would then searh through the stak forthe next message of that type, remove it from the stak, and return it. This worked �ne, but we quiklyrealized that if any one type of message eased to be onsumed, it ould have serious rami�ations in termsof the time needed to retrieve other types of messages.To solve this, we implemented an array of ommuniation staks, one for eah type of message. Thisgave us a onstant-time feth for the next message of any type. As messages arrived, they were proessed bytheir type and plaed into the orret stak. This way, messages related to global maps ould be retrievedand used in the ode that atually handles the operation of global maps, while messages relating to strategyhanges ould be handled in a di�erent part of the ode.43
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Figure 10: A high level view of the main Open-R objets in our agent. The robot sends visual data tothe Brain objet, whih sends movement ommands to the MovementModule objet, whih sends set pointsto the PID ontrollers in the robot. The Brain objet also has network onnetions to teammates' Brainobjets, the Roboup game ontroller, and our UT Assist lient (Setion 14). Note that this �gure omitssensor readings obtained via diret Open-R API alls.9.4 Queuing MessagesWhen we �rst tested our new multi-type ommuniation system, we found that some of our messages werenot being reeived. More spei�ally, the �rst message of any brain yle was sent, but any other messagessent later in that brain yle would be dropped. At �rst we thought it was just a onnetivity issue. However,when we reversed the order of our messages, we found that all but the �rst were not delivered.Further investigation found that the TCPGateway objet was not able to proess the messages we weresending quikly enough. We had enough bandwidth, and our robots were onneted, but TCPGateway wasjust too slow to handle all the overhead for eah message. The obvious solution to this was to queue ourmessages. Thus, when a request to send a message was made somewhere in the ode, what would atuallyhappen is that the message would be put into a queue, where it would sit until the end of the brain yle.At the end of the brain yle, the messages were stithed together into a long byte stream, and then sento� to the other robots. This meant that we ould do all of our ommuniation with only one TCPGatewayommuniation per brain yle, whih ut bak on the total overhead.10 General ArhitetureDue to our bottom-up approah, we did not address the issue of general arhiteture until some impor-tant modules had already taken shape. We had some ode that obbled together our vision and movementomponents to produe a rudimentary but funtional goal-soring behavior (see Setion 12.1.1). Althoughthis agent worked, we realized that we would need a more strutured arhiteture to develop a more so-phistiated agent, partiularly with the number of programmers working onurrently on the projet. Thedeision to adopt the arhiteture desribed below did not ome easily, sine we already had something thatworked. Implementing a leaner approah stopped our momentum in the short term and required some teammembers to rewrite their ode, but we feel the e�ort proved worthwhile as we ontinued to ombine moreindependently-developed modules.We designed a framework for the modules with the aim of failitating further development. We onsideredtaking advantage of the operating system's inherent distributed nature and giving eah module its ownproess. However, we deided that the task did not require suh a high degree of onurrent omputation,so we organized our ode into just two separate onurrent objets (Figure 10).We enapsulated all of the ode implementing low-level movement (Setion 5.2.1) in the MovementMod-ule objet. This module reeives Open-R messages ditating whih movement to exeute. Available legmovements inlude loomotion in a partiular diretion, speed, and turning rate; any one of a repertoire of44



kiks; and getting up from a fallen position. Additionally, the messages may ontain independent diretivesfor the head, mouth, and tail. The MovementModule translates these ommands into sequenes of set points,whih it feeds as messages into the robot's OVirtualRobotComm objet. Note that this ode inhabits its ownOpen-R objet preisely so that it an supply a steady stream of ommands to the robot asynhronously withrespet to sensor proessing and deliberation. For further details on the movement module, see Setion 5.2.1.The Brain objet is responsible for the remainder of the agent's tasks: aepting messages ontainingamera images from OVirtualRobotComm, ommuniating over the wireless network, and deiding whatmovement ommand messages to send to the MovementModule objet. It ontains the remaining modules,inluding Vision, Fall Detetion, Loalization, and Communiation. These omponents thus exist as C++objets within a single Open-R objet. The Brain itself does not provide muh organization for the modulesthat omprise it. In large part it serves as a ontainer for the modules, whih are free to all eah other'smethods.From an implementation perspetive, the Brain's primary job is to ativate the appropriate modules atthe appropriate times. Our agent's \main loop" ativates whenever the Brain reeives a new visual imagefrom OVirtualRobotComm. Other types of inoming data, mostly from the wireless network, reside inbu�ers until the amera instigates the next Brain yle. Eah amera image triggers the following sequeneof ations from the Brain:Get Data: The Brain �rst obtains the urrent joint positions and other sensor readings from Open-R. Itstores this data in a plae where modules suh as Fall Detetion an read them. This means thatwe ignore the joint positions and sensor readings that OVirtualRobotComm generates between visionframes.Proess Data: Now the Brain invokes all those modules onerning interpreting sensor input: Vision,Loalization, and Fall Detetion. Note that for simpliity's sake even Communiation data waits untilthis step, synhronized by inputs from the amera, before being proessed. Generally the end result ofthis step is to update the agent's internal representation of its external environment: the global map(see Setion 11).At: After the Brain has taken are of sensing, it invokes those modules that implement ating, desribedin Setions 12 and 13. These modules typially don't diretly aess the data gathered by the Brain.Instead they query the updated global map.11 Global MapEarly in the development of our soer playing agent, partiularly before we had funtioning loalizationand ommuniation, we hose our ations using a simple �nite state mahine (see Setion 12). Our sensoryinput and feedbak from the Movement Module ditated state transitions, so sensations had a relativelydiret inuene on behavior. However, one we developed the apability to loate our agents and the ballon the �eld and to ommuniate this information, suh a diret mapping beame impossible. We reatedthe global map to satisfy the need for an intermediate level of reasoning. The global map ombines theoutputs of Loalization from Vision and from Communiation into a oherent piture of what is happeningin the game, and it provides methods that interpret this map in meaningful ways to the ode that governsbehavior.11.1 Maintaining Loation DataWhen a robot omputes new information about the loation of any partiular objet on the �eld, it usuallymerges the new estimate of position with the urrent estimate of position that is stored in its global map(see Setion 8.3.3).As time passes, the error estimate for all of the information in the global map inreases. This degradationof information is inluded to more aurately model the rapid rate of hange in the state of the game. The45



idea is to make the degradation smooth to reet the maximum hange that we are ready to allow (i.e. thehange that we think ould have happened) sine the last update. The approah used here is to estimate amaximum 'veloity' by whih we assume the objet an move along the x and the y axes. We then use thisveloity to alulate the maximum distane the objet ould have moved along the axes in the time sine thelast update. The estimated hange, �hange, is statistially added to the loation's unertainty in aordanewith the formula: �updated =q�2previous + �2hange (41)For example, if we onsider the modeling of the opponents, we want our estimates of the opponents to beas aurate as possible and we do not want new estimates to our every frame. We would ideally want to beable to merge estimates from the urrent frame with those in the previous frame, wherever possible, so thatwe an atually map the motion of the opponents. At the same time, we may have spurious detetions everyone in a while and if they are not seen in suessive frames, we want these estimates to disappear quikly.So for opponents we use an arti�ially high 'veloity' suh as 1500 mm/s (determined by experimentation).On the other hand we want the estimates of the ball, robot position and those of the teammates to degradedepending on some 'veloity' that reets their atual motion. So we hoose the veloity for teammatemotion as 300 mm/s (we do not think any team an move any faster than that as yet) and that for the ballas 1000 to 1500 mm/s beause the ball an move about that fast after a single powerful kik. These valueswere all determined experimentally and seem to provide reasonable performane in terms of how we wouldlike our estimates to be updated.11.2 Information from TeammatesEah robot periodially sends information from its global map to eah of its teammates. This transmittedinformation inludes:1. The loation of the robot, along with an error estimate.2. The loations of any opponents of whih the robot urrently is aware, along with error estimates.3. The loation of the ball, along with an error estimate.When robot A reeives teammate position information from robot B, robot A always assumes that B'sestimate of B's position is better than A's estimate of B's position. Therefore, robot A simply replaes it'sold position for B with the new position.When a robot reeives opponent information from another robot, it updates it's urrent estimate ofopponent loations as desribed in Setion 4.6.If robot A has seen the ball reently when it reeives a ball position update from robot B, robot A ignoresB's estimate of ball position. If robot A hasn't seen the ball reently, then it merges its urrent estimate ofthe ball's position with the position estimate that it reeives from robot B.The basi idea behind having a global map is to make sharing of information possible so that the teamonsisting of individual agents with limited knowledge of their surroundings an pool the information tofuntion better as a team. The aim is to have ompletely shared knowledge but the extent to whih thissueeds is dependent upon the ability to ommuniate. Sine the ommuniation (see Setion 9) is not fullyreliable, we have to design a good strategy (Setion 12 desribes our strategy and behaviors) that uses theavailable information to the maximum extent possible. Other modules an aess the information in theGlobalMaps using the aessor funtions (prediates) desribed in the following setion.11.3 Providing a High Level InterfaeFrom a high level perspetive, the only data that the global map provides to other modules are the es-timated positions of the ball and the robots on the �eld, along with degrees of unertainty about these46



estimates. However, the global map also houses an array of funtions on these data, to prevent di�erentportions of the behavior ode from repliating ommonly used prediates and high level queries. See Ta-ble 13 for a omplete list of these funtions, most of whose names are lear indiators of their funtionality.Note that they range from relatively low level methods that return the position of an individual robot(getTeamMembers) to relatively high level methods suh as NumOpponentsWithinDistane. They inludetatial onsiderations, suh as whether IAmClosestToBall, as well as methods relative to our strategi roles(see Setion 13.2.1), suh as GetDistaneFromSupporter. Finally, methods suh as AmIInDefensiveZoneand IsDefenderWellLoalized provide a more abstrat interfae to the position estimates.getID GetDistaneFromDefender InLeftThirdgetTeamMembers GetDistaneFromKeeper InCentralThirdgetOpponents GetAttakerRelativePosition InRightThirdgetBall GetSupporterRelativePosition InTopQuartergetMyPosition GetDefenderRelativePosition InOwnHalfadjustRelativeBall GetKeeperRelativePosition IsLowerwellLoalized GetAttakerAbsolutePosition InOwnGoalBoxballOnField GetSupporterAbsolutePosition AmILeftMostgetBallDistaneFromOurGoal GetDefenderAbsolutePosition AmIRightMostgetRelativeBall GetKeeperAbsolutePosition GetLeftPosAnglegetRelativeOrientation IsAttakerWellLoalized GetRightPosAnglegetRelativeOpponentGoal IsSupporterWellLoalized OpponentsOnLeftgetRelativeOwnGoal IsDefenderWellLoalized OpponentsOnRightgetRelativeOpponents IsKeeperWellLoalized NumOpponentsOnLeftgetRelativeTeamMembers BallInOwnGoalBox NumOpponentsOnRightGetRelativePositionOf BallInOppGoalBox OnOurSideOfTheFieldGetRelativePositionOfTeamRel BallInOurHalf OnLeftSideOfTheFieldHeadingToOffPost AmIInDefensiveZone IAmClosestToHeadingToDefPost NearOwnGoalBox IAmClosestToBallGetClosestCorner NumberOfTeamMatesInOpponentHalf NumOpponentsWithinDistaneDistaneToOffPost NumberOfTeamMatesInOwnHalf GetRelativePositionToDistaneToDefPost HeadingToOppGoal InZoneGetDefensivePost HeadingToOwnGoal ApproahingZoneGetDistaneFromAttaker HeadingToOppLeftCornerGetDistaneFromSupporter HeadingToOppRightCornerTable 13: The prediates that GlobalMap provides.12 BehaviorsIn this setion we desribe the robot's soer-playing behaviors. In our development, we had relatively littletime to fous on behaviors, spending muh more of our time building up the low-level modules suh aswalking, vision, and loalization. As suh, the behaviors we desribe here are far from ideal. We antiipateoverhauling this omponent of our ode base should we partiipate in future ompetitions. Nonetheless, wepresent a detailed desription for the sake of ompleteness, and to illustrate what was possible in the timewe had to work.12.1 Goal SoringOne of the most important skills for a soer-playing robot is the ability to sore, at least on an empty goal.In this setion we desribe our initial solution that was devised before the loalization module was developed,47



followed by our eventual behavior that we used at RoboCup 2003.12.1.1 Initial SolutionOne we had the initial movement and vision modules in plae, we were in a position to \lose the loop" bydeveloping a very basi goal soring behavior. The goal was to test the various modules as they interatedwith eah other. Sine neither the loalization module (Setion 8) nor the general arhiteture (Setion 10)had been implemented by this time, this behavior was entirely reative.This goal soring behavior, implemented as a Finite State Mahine (FSM), assumes that the robot isplaed at a point on the �eld suh that the distane between the orange ball and the robot is not more thanone half the length of the �eld (i.e. the ball is at a distane where it an be seen by the robot). A point tonote here is that this onstraint ould have been removed by inorporating a \random walk" sequene intothe behavior. The robot �rst performs a three-layer head san to determine if it an \see" the ball at itsurrent position. If the ball is not in its visual �eld at this stage, the robot starts stra�ng (turning 360 Æabout its urrent position) in searh of the ball. In either ase, the detetion of a ball in a single visualframe auses the robot to stop and determine if the ball has atually been seen (noise in the image olorsegmentation an sometime ause false ball detetions in high level vision). One the ball is in sight, therobot walks towards it by traking the entroid of the ball with its head and moving its body in whateverdiretion the head points to. This walking state ontinues until either the ball is lost from the visual frame(in whih ase the robot goes bak to searhing for the ball) or the robot reahes a point suÆiently loseto the ball, as determined by its nek angles at that point. The thresholds in the nek angles are set suhthat the robot stops with the ball right under its head. Next, the robot strafes around the ball with its headheld at 0 Æ tilt), searhing for the o�ensive goal (blue or yellow depending on whether the robot is on thered team or the blue team). One the goal is found, the robot heks to ensure that the ball is still underits nose and then tries to kik the ball into the goal. If the robot �nds that it has lost the ball (it sometimespushed it away aidentally while stra�ng), it goes bak to searhing for the ball.This behavior, despite being extremely rudimentary, helped us understand the issues involved in theinteration/ommuniation between modules. It also served to illustrate the importane of a good arhite-ture in implementing omplex behaviors. At the time of the Amerian Open, this was the only goal-soringbehavior that we had implemented.12.1.2 Inorporating LoalizationWhen loalization ame into plae, we replaed the above behavior using stra�ng and a single kik with amore omplex behavior involving the hin pinh turn. In the new behavior, the deision about whih kik touse is made aording to knowledge about where on the �eld the robot is and whether there are opponentsnearby.Figure 11 summarizes the kiking strategy used when no opponents are deteted nearby. If the robot ison the o�ensive half of the �eld and is not near any walls, it follows the natural strategy of turning towardthe goal and then kiking the ball. On the quarter of the �eld nearest the o�ensive goal, the front powerkik is used rather than the fall forward kik. This is beause we believe the front power kik to be moreaurate than the fall forward kik, although less powerful.When the robot is in the defensive half of the �eld, it kiks toward the far same-side orner (that is, ifit is on the left half of the �eld, it kiks toward the o�ensive-half left orner). The reasoning behind thiswas that when the ball is in the robot's defensive half, the most important thing is to lear the ball to theother half of the �eld. Sine other robots are generally more likely to be in the enter of the �eld, a goodstrategy for aomplishing this is to kik toward the outside so that the ball will on average be allowed totravel farther before its path is obstruted.When the robot is near the wall and faing it, the head kik is typially used.11 This is hiey beause11The exeption to this is when the robot is lose to and diretly faing the bak wall near its defensive goal, a situationwhih ours relatively rarely. In this ase, the yoshi kik is used, beause under these irumstanes it is likely to sueed atpushing the ball in the orret diretion, and there is also a good hane that it will kik the ball farther than the head kik.48
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we want to use the hin pinh turn as little as possible when we are along the wall. The more the robot runsinto the wall while moving, the larger the disrepany beomes between the atual distane traveled and theinformation that odometry gives to loalization. Beause the FSM uses loalization to determine when toswith from hin pinh turning to kiking, the longer the robot uses a hin pinh turn along a wall, the lesslikely it is to stop turning at the right time. So, it is typially a better strategy when very near a wall andfaing it to head kik the ball along the wall rather than trying to turn with the ball to an exat angle andthen kik with a more powerful kik.Another situation where the head kik is used is when we would otherwise need to turn more than 180degrees with the ball. This situation typially arises when the robot is in the defensive half and needs toavoid turning in a way that will pass the ball between it and its own goal. A 360-degree hin pinh turntakes approximately 5 seonds. Thus, given that many of our kiks take a small amount of time to preparebefore hitting the ball away, hin pinh turning for more than 180 degrees arries the danger of putting usin violation of the 3-seond holding rule. Therefore, in situations where we need to turn through some angle� > 180 degrees, we instead turn through � � 80 (or 180, if �� 80 > 180) degrees and then head kik in theappropriate diretion.If opponents are deteted nearby, the robot simply kiks with the head kik in the diretion of the goalunless the goal is diretly behind the robot, in whih ase it kiks with the yoshi kik. The reasoning behindthis is the same as the reasoning just desribed underlying the hoie of the head kik near walls.12.1.3 A Finite State MahineOur behaviors are implemented by a Finite State Mahine (FSM), wherein at any time the Aibo is in one ofa �nite number of states. The states orrespond roughly to primitive behaviors, and the transitions betweenstates depend on input from vision, loalization, the global map, and joint angles. This setion desribesthe FSM underlying our main goal-soring behavior. As we developed our strategy more fully, this beamethe behavior of the attaker (see Setion 13.2.1). The behaviors of the other two roles are disussed inSetion 13.2.1 as well.The main goal soring states are listed here. Note that the ations taken in these states are exeutedthrough the Movement Interfae, and they are desribed in more detail in Setion 5.2.2.� Head San For Ball: This is the �rst of a few states designed to �nd the ball. While in this state, therobot stands in plae sanning the �eld with its head. We use a two-layer head san for this.� Turning For Ball: This state orresponds to turning in plae with the head in a �xed position (pointingahead but tilted down slightly).� Walking To Unseen Ball: This state is for when the robot does not see the ball itself, but one of itsteammates ommuniates to it the ball's loation. Then the robot tries to walk towards the ball. Atthe same time, it sans with its head to try to �nd the ball.� Walking To Seen Ball: Here we see the ball and are walking towards it. During this state the robotkeeps its head pointed towards the ball and walks in the diretion that its head is pointing. As therobot approahes the ball, it aptures the ball by lowering its head right before transferring into theChin Pinh Turn state.� Chin Pinh Turn: This state pinhes the ball between the robot's hin and the ground. It then turnswith the ball to fae the diretion it is trying to kik.� Kiking: While in this state, the robot is kiking the ball.� Reover From Kik: Here the robot updates its knowledge of where the ball is and branhes intoanother state. Both of these proesses are inuened by whih kik has just been performed.50



� Stopped To See Ball: In this state, the robot is looking for the ball and has seen it, but still does nothave a high enough on�dene level that it is atually the ball (as opposed to a false positive fromvision). To verify that the ball is there, the robot momentarily freezes in plae. When the robot seesthe ball for enough onseutive frames, it moves on to Walking To Seen Ball. If the robot fails to seethe ball, it goes bak to the state it was in last (where it was looking for the ball).In order to navigate between these states, the FSM relies on a number of helper funtions and variablesthat help it make state transition deisions. The most important of these are:� BallLost: This Boolean variable denotes whether or not we are on�dent that we see the ball. This isa stiky version of whether or not high level vision is reporting a ball, meaning that if BallLost is true,it will beome false only if the robot sees the ball (aording to vision) for a number of onseutiveframes. Similarly, a few onseutive frames of not seeing the ball are required for BallLost to beometrue.� NearBall: This funtion is used when we are walking to the ball. It indiates when we are lose enoughto it to begin apturing the ball with a hin pinh motion. It is determined by a threshold value forthe head's tilt angle.� DetermineAndSetKik: This funtion is used when transitioning out of Walking To Seen Ball uponreahing the ball. It determines whether or not a hin pinh turn is neessary, what angle the robotshould turn to with the ball before kiking, and whih kik should be exeuted.Finally, an overview of the rules that govern how the states transition into one another is given inFigure 12.12.2 GoalieIn this setion we detail our initial (pre-loalization) and �nal (RoboCup-2003) goalie behaviors.12.2.1 Initial SolutionLike the rest of our behaviors, our goalie behavior used an FSM for ontrol. The initial behavior was asfollows: One it started, the �rst thing would be to look around for the goal, go to it, turn around andstand there, in front of the goal, looking forward to see if it saw the ball. If it saw the ball, it would startto \trak" it, i.e. keep its eye on the ball and turn in plae if neessary. If the ball got too lose, it wouldstreth its arms out, hoping to blok the ball (Figure 13).Closeness to the ball was based on the head tilt angle. Sine we didn't have loalization working properlyat the time, this was the only way to reliably tell distane. The goalie would trak the ball, whih entailsmoving the head suh that the ball is in the enter of the �eld of vision (and turning the body in plae ifturning the head isn't enough). Therefore the head would always be pointed towards the ball and the loserthe ball, the larger the tilt angle (Figure 14). The angles for being \lose" were determined by trying variousangles on the �eld.This simple approah had many problems, some due to its simpliity and some due to inabilities of ourAibos at a lower behavioral level. For example, traking the ball didn't work fast enough for the Aibo toreat even to slow shots oming towards it. The ball would just roll by the goalie who would lose sight of itbeause its head wouldn't get moved in time to trak the ball.The most important problem was the passiveness of our goalie. Judging that we would be dead in thewater if we just waited passively for the ball to slowly roll up to us, we deided to take a more ativeapproah. Our revised goalie waited in its goalbox until the ball ame within a safety distane and then itwalked to the ball and attempted to lear it. This approah worked muh better but it also brought alongsome new problems to solve: 51
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Closeness threshold

(a) (b)Figure 13: First attempt at a goalie: (a) it waits for the ball to get within a loseness threshold and then(b) strethes its arms out to blok the ball. This approah didn't work well sine ball traking was slow. Bythe time the goalie strethed, the ball would be long gone.
Tilt angle

Figure 14: Closeness to ball was based on the how large the head tilt angle was.
53



� How lose should the safety distane be? We don't want the goalie to leave the goal to lear a ball atmid�eld, but if it waits too long, the opponent with the ball will have too great a hane of shootinga fast shot into the goal.� How should the robot lear the ball? If it just strethes as it did before, it won't be pushing the ballaway from itself.� When and how should it get bak in position? There is often an opponent behind or next to the ball,so after attempting to lear it, the goalie needs to make sure the ball's not still right in front of it. Oneit's leared the ball, what is the quikest way to go bak to position in the goalbox while minimizingthe possibility of being aught unaware of the ball oming bak to the goal?The �rst method we used for learing the ball was the simple strething out to the sides, whih workedsometimes but usually didn't lear the ball very far and just left it in plae or pushed it to the side a little.This motivated us to experiment with di�erent kiking styles. Some kiks we tried were the hest push kik,the arms together kik, the fall forward kik and the \right (or left) swerve kik." (See Setion 7 for detailsof the �rst three kiks.) In the right (left) swerve kik the robot baks up to the right (left) side, raises itsright (left) leg and then quikly brings it diagonally down and towards the inside, somewhat like a karatehop. This kik was one of our most powerful kiks early in our development proess. However, after wedeveloped the fall forward kik, we experimented with using di�erent kiks in di�erent situations (e.g. usethe fall forward kik when the ball is right in front and the swerve kik when it is o� to the side). Eventuallywe deided that the best approah was to always use the fall forward kik.When the goalie tries to lear the ball, frequently the ball stays where it is or moves a very small amount.This an be due to not exeuting the kik perfetly or, more often, the fat that there is an opponent robotright behind the ball, keeping it from rolling away. To make sure the ball is leared and it is safe to gobak to the waiting position inside the goalbox, the goalie heked to see if the ball was right under it afterkiking. If it saw the ball there it would try to kik again. This was repeated until the ball was suessfullyleared.Going bak to the goal after learing was one of the trikiest parts beause we didn't have any loalizationinitially. All the goalie knew was to reognize the ball and the goal. We didn't want the goalie to just turnbak, look for the goal, walk bak to it and turn around to fae the �eld. That would mean spending a longtime without looking at the ball, whih might give our opponents a hane to sore sine the ball might nothave been leared very far away (even though we make sure its not right under our head). The solutionto this was to walk bakwards after suessfully learing the ball and at the same time keeping looking forthe ball in ase it appears lose to the robot. This worked quite well and the goalie kept wathing the ballwhen it wasn't leared far away, but there was a new problem. When the goalie saw the ball while walkingbakwards, it would return to traking and go out to lear the ball if it got lose enough. After going out tolear and walking bak a few times, the error in position would get large and the goalie would start driftingaway from its home position. To ounter this, we hanged the behavior so the goalie would turn around andgo bak to its home position after walking out for a long time (\a long time" being hosen arbitrarily basedon experiments on the �eld).There are many ways in whih the apabilities of the goalie an be improved. Adding loalization wasdone after the Amerian Open, and is desribed in the next subsetion. Getting better ball traking abilitywith faster reation to fast-moving balls (suh as shots) is de�nitely needed and would improve goalkeepingbehavior substantially.12.2.2 Inorporating LoalizationOne our goalie had the ability to determine its position on the �eld, our primary strategy shifted to stayingbetween the ball and the goal. Given the size of the goalie with respet to the goal, we adopted a fairlyonservative strategy that kept the goalie in the goal most of the time.Whenever the goalie saw the ball, it oriented itself suh that it was pointed at the ball and situatedbetween the ball and the goal. If the ball ame within a ertain distane of the goal, the goalie advaned54



towards the ball and attempted to lear it. After attempting to lear the ball, the goalie retreated bak intothe goal, walking bakwards and looking for the ball. Any time the goalie saw the ball in a non-threateningposition, it oriented itself towards the ball and ontinued its urrent ourse of ation.Whenever the ball was in view, the goalie kept a history of ball positions and time estimates. Thishistory allowed the goalie to approximate the veloity of the ball, whih was useful in deiding when thegoalie should \streth out" to blok a shot on the goal.One interesting dilemma we enountered onerned the tradeo� between looking at the ball and lookingaround for landmarks. It seemed very possible that, given the goalie's size, if it ould just stay between theball and the goal it ould to a fairly good job of preventing goals. However, this strategy depended on thegoalie both being able to keep trak of it's own position and the ball's position. When we programmed thegoalie to �xate on the ball, it was not able to see enough landmarks to maintain an aurate estimate ofits own position. On the other hand, when the goalie foussed on the beaons in order to stay loalized, itwould often miss seeing the approahing ball. It proved to be very diÆult to strike a balane between thesetwo opposing fores.13 CoordinationIn this setion we desribe our initial and eventual solutions to oordinating multiple soer-playing robots.13.1 DibsOur �rst e�orts to make the players ooperate resulted diretly from our attempts to play games with 8players. Every game would wind up with six robots rowded around the ball, wrestling for ontrol. At thispoint, we only had 2 weeks before our �rst ompetition, and thus needed a solution that did not depend onloalization, whih was not yet funtional. Our solution was a proess we alled Dibs.13.1.1 Relevant DataIn developing Dibs, we tried to fous on determining both what data were available to us, and of that data,whih were relevant. Beause we did not have a oherent set of global maps at this point, any informationfrom other robots would have to ome diretly into the Dibs system. As we reated the system, it beamemore and more lear that the only thing we ared about was how far from the ball eah robot was. Our �rstattempt simply transmitted the ball distane to every other robot. Eah robot would then only go to theball if its distane estimate was lower than that of every other robot.13.1.2 ThrashingUnfortunately, this �rst attempt did not work so well. First of all, the robots' pereption of their distane tothe ball was very heavily dependent on how muh of the ball they ould see, how the lights were reetingo� the surfae of the ball, and how muh of the ball was atually lassi�ed as \orange." This means thatestimates of the ball's distane varied wildly from brain yle to brain yle, often by orders of magnitude ineah diretion. Seondly, even when estimates were fairly stable, a robot ould think that it was the losestto the ball, start to step, and in the proess move slightly bakward, whih would signal another robot togo for the ball. The other robot would begin to step, moving slightly bakward at �rst, and the yle wouldontinue ad in�nitum.13.1.3 StabilizationTo orret these problems, we deided that re-evaluating whih robot should go to the ball in eah brain ylewas too muh. Evaluating that frequently didn't give a robot the hane to atually step forward (this wasbefore our walk was fully developed as well), so that its estimate of ball distane ould derease. However,we ouldn't just take measurements every n brain yles and throw away all the other information | we55



were strapped for information as it was, and we didn't want one noisy measurement to negatively a�et thenext n brain yles of play. Our solution was to take an average of the measurements over a period of time,and instead only transmit them every n brain yles.13.1.4 Taking the AverageBeause the vision is somewhat noisy (i.e. the robot sometimes sees the ball when it is not there, andsometimes doesn't see it when it is there), it didn't make sense just to take the raw mean of the estimatesover the period of n brain yles. We deided that unless the robot saw the ball for at least n2 yles in eahperiod, it would report an essentially in�nite distane to the ball. If it did see the ball enough, it wouldtake all the non-in�nite estimates in that \transmit yle", disard some �xed number of highest and lowestvalues (an attempt to lean up some of the noise), and then transmit the mean of the remaining values.13.1.5 AgingTo prevent deadlok we introdued an aging system into Dibs. Originally, if a robot had transmitted a verylow estimate of distane to the ball, and then rashed or was removed from play, any other robots would justremain wathing the ball, beause they would still have the other robot's estimate in their memory. Thus,at the end of eah transmit yle, we inremented the age of eah other robot's estimate. When the agereahed a pre-determined uto� (10 in our ase), the estimate was disarded and set to the maximum value.In this way, other robots ould then resume attaking the ball.13.1.6 Calling the BallAnother problem we ran into involved the \strafe" state. One a robot had established \Dibs" on the ball,it would walk towards the ball while the other robots wathed the ball losely. When the robot reahed theball, however, it would look up, in order to �nd the goal. While it was looking up, its ball estimates wouldall go to the maximum value, and other robots would resume attaking the ball. More often than not, thiswould result in a robot stra�ng to �nd the goal, while another robot of ours would ome up and take theball right out from under the nose of the �rst. Next, the seond robot would start to strafe, and a largetangle of robots would result. To prevent this, we added funtions alled \allBall" and \relinquishBall."These funtions merely set ags that made the robot start lying about its distane to the ball and stop lying,respetively. When lying about its distane to the ball, the robot would always report zero as its distaneestimate. This way, whenever the robot entered the stra�ng state, it ould e�etively let the other robotsknow that even though it wasn't seeing the ball, they shouldn't go after it. The robot would then relinquishthe ball at the beginning of most states, inluding when it had lost the ball and when it had just �nishedkiking the ball.13.1.7 Support DistaneThe system desribed so far worked pretty well in that it prevented more than one robot from going to theball at one. However that was all it did. One robot might be going to the ball, but all the others wouldjust stare at the ball, regardless of how far away they were. We determined that this was onsiderablysub-optimal, and that even if a robot is dribbling the ball down the �eld toward the enemy goal, if it were tolose the ball, it would be nie to have another robot nearby to reover, if possible. Thus we introdued theonept of a \support distane." Originally set at half a meter, and then tuned to approximately a meter,the support distane was how lose the robot would have to be to the ball before its lak of Dibs wouldprevent it from advaning further. While we only enjoyed limited overall suess using the support distanetehnique, it was a marked improvement over ordinary Dibs.
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13.1.8 Phasing out DibsOne loalization was brought online, the need for multiple types of transmissions (whih Dibs did notrespet) and the desire to use loalization data ditated a phasing out of Dibs. Beause Dibs was so arefullytuned to the robots' playing style, ooperation atually worsened for quite a while before it improved afterphasing out Dibs. However, as with many things, it needed to get worse before it ould get better.13.2 Final StrategyHere we desribe the oordination strategy developed during the last week or so before RoboCup 2003. Inpartiular, it takes advantage of both loalization and global maps.13.2.1 RolesOur strategy uses a dynami system of roles to oordinate the robots. In this system, eah robot has oneof three roles: attaker, supporter, and defender. The goalie does not partiipate in the role system. Thissetion gives an overview of the ideas behind the roles. The following setions desribe in more detail thesupporter's and defender's behaviors and under what onditions the roles hange.The roles are dynamially assigned, in that at the start of eah Brain yle, a given robot reevaluatesits role based on its urrent role, its global map information, and other strategi information ommuniatedto it by its teammates. The default alloation of roles is for there to be one defender and two attakers.Under ertain irumstanes an attaker an beome a supporter, but after some time it hanges bak intoan attaker. It is also possible for the defender to swith roles with an attaker. There should always beexatly one defender and at least one attaker.The di�erenes between the roles manifest themselves in the robots' behaviors. Here is a summary ofthe di�erenes between the behaviors e�eted by the di�erent roles. The attaker's behavior is desribed inmore detail in Setion 12.1, and the supporter and defender behaviors are desribed more fully below.� An attaker robot fouses exlusively on goal-soring. That is, it tries to �nd the ball, move to it, andkik it towards the goal.� The supporter's ations are based on a ouple of goals. One is to stay out of the way of the attaker.This is based on the idea that one robot an sore by itself more e�etively than two robots both tryingto sore at the same time. Another goal is to be well plaed so that if the attaker shoots the balland it riohets o� the goalie or a wall the supporter an then beome the attaker and ontinue theattak.� Our defender stays on the defensive half of the �eld at all times. Its job is to wait for the ball to be onits half and then go to the ball and lear it bak to the o�ensive side of the �eld.13.2.2 Supporter BehaviorThe supporter uses an omnidiretional walk to try to simultaneously fae the ball and move to a supportingpost. If it sees the ball, it keeps its head pointing towards the ball and tries to point its body in the samediretion as its head. If it doesn't see the ball, it tries to turn towards its global map loation of the balland sans with its head to try to �nd it. It is very rare for there to be a supporter that has no idea wherethe ball is (i.e. while no robot sees the ball).The loation of the supporting post is a funtion of the position of the ball. For this we use a team-entrioordinate system where the edge of the �eld inluding the defensive goal line is the positive x-axis, the leftedge of the �eld is the positive y-axis, and the units are millimeters. If the oordinates of the ball are (x; y),then the supporting post, (Sx; Sy), is given bySx = � 1150 if x > 14501750 if x � 1450 (42)57



and Sy = min�y + 42002 ; 3800� : (43)13.2.3 Defender BehaviorThe role of a defender in robot soer is not muh di�erent from that in real soer | to prevent theopponents from moving the ball anywhere near the goal it is defending and to try and kik the ball, whenin its own half, towards a team member in the other half. We deided to go for a very onservative defendersuh that there is always one robot in our half defending the goal. At the same time we wanted to ensurethat under onditions where the defender is in a better position to funtion as the attaker, there is smoothswithing of roles between the robots.When a robot is assigned the defender role, its �rst ation is to walk within a ertain distane (approx.200mm) of a prede�ned defensive post that is roughly the enter of the defensive half of the �eld. Oneit gets within this distane of the defensive post, it either turns suh that it faes the ball whih is withinits �eld of vision or it turns to fae the point where it thinks the ball is based on the result of merging theestimates from other teammates in its global map (see Setion 11). If it annot see the ball and also does notreeive any ommuniation regarding the ball from other teammates (a rare ourrene), it starts searhingfor the ball one it gets to the defensive post. Even while it is walking to this post, if it sees the ball and�nds, on the basis of its urrent world knowledge, that it is the losest to the ball, it starts walking to theball. One it gets to the ball it tries to kik the ball away from the defensive zone (the bottom three-fourthsof the half of the �eld that it is defending). For the defender, we use a ombination of the hin-pinh turnand the fall forward kik (see Setion 7), as it is the most powerful kik we have. While kiking, the defenderalways tries to angle the kik away from its own goal and towards one of the orners of the opposition.This strategy allows us to lear the ball in most instanes and even takes it a long way into the other halfthereby giving the attaker(s) (or attaker and supporter) a better hane of soring a goal. Aording tothe rules of the ompetition, none of the team members an enter the penalty box around their own goal. Toaommodate this in the defender and in the other team members exluding the goalkeeper, we add a hekthat prevents the robot from entering the goal box and a \bu�er" region around it. If the ball is within thisregion, the robot just traks the ball and lets the goalkeeper take are of learing the ball.13.2.4 Dynami Role AssignmentOur role assignment system has three main faets. One is a set of general rules that serve to maintain thestatus quo of there being exatly one defender and at least one attaker. Next are the rules that determinewhen one of the two attakers beomes a supporter and then when it swithes bak. The last set of rulesorhestrates timely swithes between the defender and an attaker.General Rules We label the three robots R1, R2, and R3. Then the following rules inuene R1's hoieof role. (The rules are the same for eah robot; the labels are to distinguish whih robot's role is beingdetermined presently.)� The default is for eah robot to keep its urrent role. It will only hange roles if a spei� rule applies.� If R1 �nds that it is \alone" in that it has not been reeiving ommuniation from other teammatesfor some time, it automatially assumes the role of an attaker.� In most ases, ommuniation works �ne, and if neither R2 nor R3 is a defender, then R1 will auto-matially beome (or stay) a defender. This ensures that (under normal onditions) there will alwaysbe at least one defender. Ensuring that there is not more than one defender is taken are of in thesetion on attaker and defender swithing. 58



� If R1 is a supporter and so is R2 or R3, then R1 will automatially beome an attaker. This ouldhappen aidentally if two supporters simultaneously deide to beome supporters without enoughtime in between for the seond one to be aware of the �rst's deision. In this ase this rule ensuresthat at least one of the supporters will immediately go bak to being an attaker.Attakers and Supporters A number of onsiderations inuene our mehanism for swithing betweenattaker and supporter. One suh onsideration is that we want to prevent a robot from hanging roles twiewith very little time in between. This is beause a robot that keeps hanging roles very frequently behavesin a sattered manner and is unable to aomplish anything. To enfore this, we made the roles somewhatstiky. That is, for an attaker or supporter, there is an amount of time suh that one the robot enters thatrole, it is unable to leave it until that muh time has passed. Presently, the amount of time for an attakeris 2:5 seonds, and for a supporter it is 2 seonds. Notably, stikiness an easily be in onit with thegeneral rules listed above. In these ases we give stikiness the highest priority. We also onsidered givingthe general rules highest priority, and it is still not ompletely lear to us whih system is better.An important measure that we use to evaluate a robot's utility as an attaker is its kik time. This isan estimate of the amount of time it will take the robot in question to walk up to the ball, turn it towardsthe goal, and kik. Eah robot alulates its own kik time and ommuniates it to the other robots as partof their ommuniation of strategi information. The estimated amount of time to get to the ball is theestimated distane to the ball divided by the forward speed. The time to turn with the ball is determined byalulating the angle that the ball will have to be turned and dividing by the speed of the hin-pinh turn.Consider the ase where there are two attakers, A1 and A2. One A1's period of stikiness has expired,it will beome a supporter preisely when all of the following onditions are met:� A1 and A2 both see the ball. This helps to ensure the auray of the other information being used.� The ball is in the o�ensive half, as well as both robots A1 and A2. Beoming a supporter is only usefulwhen our team is on the attak.� A1 has a higher kik time than A2. That is, A2 is better suited to attak, so A1 should beome thesupporter.One we have a supporter, S, and the role is no longer stuk, it will turn bak into an attaker if any ofthe following onditions hold:� S, the ball, or the attaker (A) go bak into the defensive half.� A and S both see the ball, and S's estimate of its distane from the ball is smaller than A's.� A doesn't see the ball, and S's estimate of the ball's distane from it is less than some onstant(presently 300 mm).� S has been a supporter for longer than some onstant amount of time (presently 12 seonds).Attaker and Defender Swithing The following set of rules is used to allow the defender and anattaker to swith roles under appropriate irumstanes.� If a defender reeives the information that there is another defender, it heks, using the global mapdata on the robots' distanes to the ball, if it is a \better" defender (the one farthest from the ball).If so, it stays a defender. If not, it beomes an attaker.� If a defender �nds that there is no other defender, it still heks to see if the onditions are suitable forit to beome an attaker. Here we test to see if the robot is losest to the ball and is in the setion ofthe �eld that is on the top half on its side of the �eld. If it is, it sends a request to the attaker, askingto swith roles with it. Then, instead of beoming an attaker immediately, it waits for the attaker to59



reeive the request. One this happens, we end up with more than one defender in the team (see therule mentioned below), and this is resolved using the ondition mentioned above. More information onmessage types and ommuniation an be found in Setion 9.� When an attaker reeives a request from a defender to swith roles, it automatially aepts. Itdoes not need to partiipate in the deision making proess beause the defender had aess to thesame information as it did (as a result of the global maps) when it deided to swith. The attakerommuniates its aeptane by simply beoming a defender. This is suÆient beause the robotsalways ommuniate their roles to all of their teammates.As mentioned above, our role system was developed quite hastily in the last week or so before ompetition.However, we feel that the system performs quite appropriately during games. The attaker/defender swithesnormally our where they seem intuitively reasonable. The two attakers (with one beoming a supporterperiodially), trying to sore a goal, frequently look like a well organized pair of teammates. Nonetheless,there are ertainly some instanes during the games where we an point to situations where a role hangehappened at an inopportune time, or where it seems like they should \know better" than to do what theyjust did. Finding viable solutions to problems like this an be strikingly diÆult. We look forward to makingfurther progress on these problems and to improving the ooperation between the robots.14 UT AssistDuring the ourse of our development, we developed a valuable tool to help us debug our robot behaviorsand modules. This tool, whih we alled UT Assist, allowed us to experiene the world from the perspetiveof our Aibos and monitor their internal states in real-time.14.1 General ArhitetureUT Assist onsists of two piees: a lient and a server. The funtion of the lient software, whih isprogrammed in C++ and runs on an Aibo, is to queue and send data to the server. The server, whihis programmed in Java and runs on a remote omputer, is primarily onerned with olleting, displaying,and saving the data that it reeives. We hose Java for the server beause it put us on a relatively quikdevelopment yle and gave us aess to a rih library of pre-existing ode. In partiular, the ease with whihJava handles networking and graphis made it an obvious andidate for this projet.Multiple lients an onnet to one server. It is possible for more than one server to be ative atone, provided that it does not listen on a port that is already taken by another servie. All lient-serverommuniation takes plae via TCP. The lient software uses the default Open-R TCP endpoint interfae,and the server software uses TCP networking lasses desribed in the Java 2 API spei�ation.14.1.1 Typial UsageDuring eah Brain yle on the Aibo, many di�erent piees of ode an attempt to send data messages tothe server. If the lient is not already sending data to the server, it will aept eah request and plae thespei�ed data into a queue. If the lient is busy sending data, it will rejet the request to send data. Atthe end of eah Brain yle, if the lient has some data in its queue, it will divide the data into �xed-lengthpakets and start sending the data to the server. This method of proessing data ensures that only datafrom the most reent Brain yle will be sent to the server and avoids a \baklog" situation, in whih thespeed at whih data is queued exeeds the speed at whih it an be delivered to the server.Eah message that enters the queue in the lient is uniquely identi�ed by a one-byte ID �eld. From theperspetive of the lient, eah message it reeives is simply a group of bytes assoiated with a unique ID.None of the paket proessing that the lient performs upon the queue of messages depends on the atualdata in the messages, whih allows users to add new types of data messages without modifying the lient.60


