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In many machine learning domains (e.g. text processing, bioinformatics), there is a large supply of unlabeled data
but limited labeled data, which can be expensive to generate. Consequently, semi-supervised learning, learning from
a combination of both labeled and unlabeled data, has becomea topic of significant recent interest. In the proposed
thesis, our research focus is on semi-supervised clustering, which uses a small amount of supervised data in the form of
class labels or pairwise constraints on some examples to aidunsupervised clustering. Semi-supervised clustering can
be either search-based, i.e., changes are made to the clustering objective to satisfy user-specified labels/constraints,
or similarity-based, i.e., the clustering similarity metric is trained to satisfy the given labels/constraints. Our main
goal in the proposed thesis is to study search-based semi-supervised clustering algorithms and apply them to different
domains.

In our initial work, we have shown how supervision can be provided to clustering in the form of labeled
data points or pairwise constraints. We have also developedan active learning framework for selecting informative
constraints in the pairwise constrained semi-supervised clustering model, and proposed a method for unifying search-
based and similarity-based techniques in semi-supervisedclustering.

In this thesis, we want to study other aspects of semi-supervised clustering. Some of the issues we want
to investigate include: (1) effect of noisy, probabilisticor incomplete supervision in clustering; (2) model selection
techniques for automatic selection of number of clusters insemi-supervised clustering; (3) ensemble semi-supervised
clustering. In our work so far, we have mainly focussed on generative clustering models, e.g. KMeans and EM, and
ran experiments on clustering low-dimensional UCI datasets or high-dimensional text datasets. In future, we want
to study the effect of semi-supervision on other clusteringalgorithms, especially in the discriminative clustering and
online clustering framework. We also want to study the effectiveness of our semi-supervised clustering algorithms on
other domains, e.g., web search engines (clustering of search results), astronomy (clustering of Mars spectral images)
and bioinformatics (clustering of gene microarray data).
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Chapter 1

Introduction

Two of the most widely-used methods in machine learning for prediction and data analysis are classification and clus-
tering (Duda, Hart, & Stork, 2001; Mitchell, 1997). Classification is a purely supervised learning model, whereas
clustering is completely unsupervised. Recently, there has been a lot of interest in the continuum between completely
supervised and unsupervised learning (Muslea, 2002; Nigam, 2001; Ghani, Jones, & Rosenberg, 2003). In this chap-
ter, we will give an overview of traditional supervised classification and unsupervised clustering, and then describe
learning in the continuum between these two, where we have partially supervised data. We will then be presenting the
main goal of our proposed thesis.

1.1 Classification

Classification is a supervised task, where supervision is provided in the form of a set of labeled training data, each
data point having a class label selected from a fixed set of classes (Mitchell, 1997). The goal in classification is to
learn a function from the training data that gives the best prediction of the class label of unseen (test) data points.
Generative models for classification learn the joint distribution of the data and class variables by assuming a particular
parametric form of the underlying distribution that generated the data points in each class, and then apply Bayes
Rule to obtain class conditional probabilities that are used to predict the class labels for test points drawn from the
same distribution, with unknown class labels (Ng & Jordan, 2002). In the discriminative framework, the focus is on
learning the discriminant function for the class boundaries or a posterior probability for the class labels directly without
learning the underlying generative densities (Jaakkola & Haussler, 1999). It can be shown that the discriminative
model of classification has better generalization error than the generative model under certain assumptions (Vapnik,
1998), which has made discriminative classifiers, e.g., support vector machines (Joachims, 1999) and nearest neighbor
classifiers (Devroye, Gyorfi, & Lugosi, 1996), very popular for the classification task.

1.2 Clustering

Clustering is an unsupervised learning problem, which tries to group a set of points into clusters such that points in the
same cluster are more similar to each other than points in different clusters, under a particular similarity metric (Jain
& Dubes, 1988). Here, the learning algorithm just observes aset of points without observing any corresponding
class/category labels. Clustering problems can also be categorized as generative or discriminative. In the generative
clustering model, a parametric form of data generation is assumed, and the goal in the maximum likelihood formulation
is to find the parameters that maximize the probability (likelihood) of generation of the data given the model. In
the most general formulation, the number of clustersK is also considered to be an unknown parameter. Such a
clustering formulation is called a “model selection” framework, since it has to choose the best value ofK under
which the clustering model fits the data. We will be assuming thatK is known in the clustering frameworks that
we will be considering, unless explicitly mentioned otherwise. In the discriminative clustering setting (e.g., graph-
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theoretic clustering), the clustering algorithm tries to cluster the data so as to maximize within-cluster similarityand
minimize between-cluster similarity based on a particularsimilarity metric, where it is not necessary to consider an
underlying parametric data generation model. In both the generative and discriminative models, clustering algorithms
are generally posed as optimization problems and solved by iterative methods like EM (Dempster, Laird, & Rubin,
1977), approximation algorithms like KMedian (Jain & Vazirani, 2001), or heuristic methods like Metis (Karypis &
Kumar, 1998).

1.3 Semi-supervised learning

In many practical learning domains (e.g. text processing, bioinformatics), there is a large supply of unlabeled data but
limited labeled data, which can be expensive to generate. Consequently,semi-supervised learning, learning from a
combination of both labeled and unlabeled data, has become atopic of significant recent interest. The framework of
semi-supervised learning is applicable to both classification and clustering.

1.3.1 Semi-supervised classification

Supervised classification has a known, fixed set of categories, and category-labeled training data is used to induce a
classification function. In this setting, the training can also exploit additional unlabeled data, frequently resulting in a
more accurate classification function. Several semi-supervised classification algorithms that use unlabeled data to im-
prove classification accuracy have become popular in the past few years, which include co-training (Blum & Mitchell,
1998), transductive support vector machines (Joachims, 1999), and using Expectation Maximization to incorporate
unlabeled data into training (Ghahramani & Jordan, 1994; Nigam, McCallum, Thrun, & Mitchell, 2000). Unlabeled
data have also been used to learn good metrics in the classification setting (Hastie & Tibshirani, 1996). A good review
of semi-supervised classification methods is given in (Seeger, 2000).

1.3.2 Semi-supervised clustering

Semi-supervised clustering, which uses class labels or pairwise constraints on some examples to aid unsupervised
clustering, has been the focus of several recent projects (Basu, Banerjee, & Mooney, 2002; Klein, Kamvar, & Man-
ning, 2002; Wagstaff, Cardie, Rogers, & Schroedl, 2001; Xing, Ng, Jordan, & Russell, 2003). If the initial labeled
data represent all the relevant categories, then both semi-supervised clustering and semi-supervised classificationalgo-
rithms can be used for categorization. However in many domains, knowledge of the relevant categories is incomplete.
Unlike semi-supervised classification, semi-supervised clustering (in the model-selection framework) can group data
using the categories in the initial labeled data as well as extend and modify the existing set of categories as needed to
reflect other regularities in the data.

Existing methods for semi-supervised clustering fall intotwo general approaches that we callsearch-based
andsimilarity-based methods.

Search-based methods

In search-based approaches, the clustering algorithm itself is modified so that user-provided labels or constraints are
used to bias the search for an appropriate partitioning. This can be done by several methods, e.g., modifying the
clustering objective function so that it includes a term forsatisfying specified constraints (Demiriz, Bennett, & Em-
brechts, 1999), enforcing constraints to be satisfied during the cluster assignment in the clustering process (Wagstaff
et al., 2001), doing clustering using side-information from conditional distributions in an auxiliary space (Sinkkonen
& Kaski, 2000), and initializing clusters and inferring clustering constraints based on neighborhoods derived from
labeled examples (Basu et al., 2002).

Similarity-based methods

In similarity-based approaches, an existing clustering algorithm that uses a similarity metric is employed; however,the
similarity metric is first trained to satisfy the labels or constraints in the supervised data. Several similarity metrics have
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been used for similarity-based semi-supervised clustering, including string-edit distance trained using EM (Bilenko
& Mooney, 2003), Jensen-Shannon divergence trained using gradient descent (Cohn, Caruana, & McCallum, 2000),
Euclidean distance modified by a shortest-path algorithm (Klein et al., 2002), or Mahalanobis distances trained using
convex optimization (Hillel, Hertz, Shental, & Weinshall,2003; Xing et al., 2003). Several clustering algorithms
using trained similarity metrics have been employed for semi-supervised clustering, including single-link (Bilenko&
Mooney, 2003) and complete-link (Klein et al., 2002) agglomerative clustering, EM (Cohn et al., 2000; Hillel et al.,
2003), and KMeans (Hillel et al., 2003; Xing et al., 2003).

However, similarity-based and search-based approaches tosemi-supervised clustering have not been ade-
quately compared in previous work, and so their relative strengths and weaknesses are largely unknown. In Section 3.4,
we will be presenting a new semi-supervised clustering algorithm that unifies these two approaches.

1.4 Goal of proposed thesis

In the proposed thesis, the main goal is to study semi-supervised clustering algorithms, characterize some of their
properties and apply them to different domains. In our completed work, we have already shown how supervision
can be provided to clustering in the form of labeled data points or pairwise constraints. We have also developed
an active learning framework for selecting informative constraints in the pairwise constrained semi-supervised clus-
tering model, and proposed a method for unifying search-based and similarity-based techniques in semi-supervised
clustering. Details of the completed work are given in Chapter 3.

In future, we want to look at the following issues, details ofwhich are given in Chapter 4:� Investigate the effects of noisy supervision, probabilistic supervision (e.g., soft constraints) or incomplete su-
pervision (e.g., labels not specified for all clusters) in clustering;� Study model selection issues in semi-supervised clustering, which will help to characterize the difference be-
tween semi-supervised clustering and classification;� Study the feasibility of semi-supervising other clustering algorithms, especially in the discriminative clustering
or online clustering framework;� Create a framework for ensemble semi-supervised clustering;� Apply the semi-supervised clustering model on other domains apart from text, especially web search engines,
astronomy and bioinformatics;� Study the relation between different evaluation metrics used to evaluate semi-supervised clustering;� Investigate other forms of semi-supervision, e.g., attribute-level constraints;� Do more theoretical analysis of certain aspects of semi-supervision, especially semi-supervised clustering with
labeled data and the unified semi-supervised clustering model.
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Chapter 2

Background

This chapter gives a brief review of clustering algorithms on which our proposed semi-supervised clustering techniques
will be applied. It also gives an overview of different popular clustering evaluation measures, and describes the
measures we will be using in our experiments.

2.1 Overview of clustering algorithms

As explained in Chapter 1, clustering algorithms can be classified into two models — generative or discriminative.
There are other categorizations of clustering, e.g., hierarchical or partitional (Jain, Myrthy, & Flynn, 1999), depending
on whether the algorithm clusters the data into a hierarchical structure or gives a flat partitioning of the data.

2.1.1 Hierarchical clustering

In hierarchical clustering, the data is not partitioned into clusters in a single step. Instead, a series of partitions take
place, which may run from a single cluster containing all objects toN clusters each containing a single object. This
gives rise to a hierarchy of clusterings, also known as the cluster dendrogram. Hierarchical clustering can be further
categorized as:� Divisive methods: Create the cluster dendrogram in a top-down divisive fashion, starting with every data point in

one cluster and splitting clusters successively accordingto some measure till a convergence criterion is reached,
e.g., Cobweb (Fisher, 1987), recursive cluster-splittingusing a statistical transformation (Dubnov, El-Yaniv,
Gdalyahu, Schneidman, Tishby, & Yona, 2002), etc.;� Agglomerative methods: Create the cluster dendrogram in a bottom-up agglomerative fashion, starting with
each data point in its own cluster and merging clusters successively according to a similarity measure till a
convergence criterion is reached, e.g., hierarchical agglomerative clustering (Kaufman & Rousseeuw, 1990),
Birch (Zhang, Ramakrishnan, & Livny, 1996), etc.

2.1.2 Partitional clustering

LetX = fxigNi=1 be the set ofN data-points we want to cluster with eachxi 2 Rd. A partitional clustering algorithm
divides the data intoK partitions (K given as input to the algorithm) by grouping the associated feature vectors intoK clusters. Partitional algorithms can be classified as:� Graph-theoretic: These are discriminative clustering approaches, where an undirected graphG = (V;E) is

constructed from the dataset, each vertex invi 2 V corresponding to a data pointxi and the weight of each
edgeeij 2 E corresponding to the similarity between the data pointsxi andxj according to a domain-specific
similarity measure. TheK clustering problem becomes equivalent to finding theK-mincut in this graph, which
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is known to be a NP-complete problem forK � 3 (Garey & Johnson, 1979). So, most graph-based clustering
algorithms try to use good heuristic methods to group nodes so as to find low-cost cuts inG. Several differ-
ent graph-theoretic algorithms have been proposed: methods like Rock (Guha, Rastogi, & Shim, 1999) and
Chameleon (Karypis, Han, & Kumar, 1999) group nodes based onthe idea of defining neighborhoods using
inter-connectivity of nodes inG, Metis (Karypis & Kumar, 1998) performs fast multi-level heuristics onG at
multiple resolutions to give good partitions, while Opossum (Strehl & Ghosh, 2000) uses a modified cut criterion
to ensure that the resulting clusters are well-balanced according to a specified balancing criterion.� Density-based: These methods model clusters as dense regions and use different heuristics to find arbitrary-
shaped high-density regions in the data space and group points accordingly. Well-known methods include
Denclue, which tries to analytically model the overall density around a point (Hinneburg & Keim, 1998), and
WaveCluster, which uses wavelet-transform to find high-density regions (Sheikholesami, Chatterjee, & Zhang,
1998). Density-based methods typically have difficulty scaling up to very high dimensional data (> 10000
dimensions), which are common in domains like text.� Mixture-model based: In mixture-model based clustering, the underlying assumption is that each of theN
data pointsfxigNi=1 to be clustered are generated by one ofK probability distributionsfphgKh=1, where each
distributionph represents a clusterCh. The probability of observing any pointxi is given by:Pr(xij�) = KXi=1 �hph(xij�h)
where� = (�1; � � � ; �K ; �1; � � � ; �K) is the parameter vector,�h are the prior probabilities of the clusters
(
PKh=1 �h = 1), andph is the probability distribution of clusterCh parameterized by the set of parameters�h.

The data-generation process is assumed to be as follows – first, one of theK components is chosen following
their prior probability distributionf�hgKi=1; then, a data-point is sampled following the distributionph of the
chosen component.

Since the cluster assignment of the points are not known, we assume the existence of a random variableZ that
encodes the cluster assignmentzi for each data pointxi. It takes values infhgKh=1 and is always conditioned
on the data-pointxi under consideration. The goal of clustering in this model isto find the estimates of the
parameter vector� and the cluster assignment variableZ such that the log-likelihood of the data:L(X ;Zj�) = NXi=i logPr(xi;Zj�)
is maximized. SinceZ is unknown, the log-likelihood cannot be maximized directly. So, traditional approaches
iteratively maximize theexpected log-likelihood in the Expectation Maximization (EM) framework (Dempster
et al., 1977). Starting from an initial estimate of�, the EM algorithm iteratively improves the estimates of� andp(ZjX ;�) such that the expected value of the complete-data log-likelihood computed over the class conditional
distributionp(ZjX ;�) is maximized. It can be shown that the EM algorithm convergesto a local maximum
of the expected log-likelihood distribution (Dempster et al., 1977), and the final estimates of the conditional
distributionp(ZjX ;�) are used to find the cluster assignments of the points inX .

Most of the work in this area has assumed that the individual mixture density componentsph are Gaussian, and
in this case the parameters of the individual Gaussians are estimated by the EM procedure. The popular KMeans
clustering algorithm (MacQueen, 1967) can be shown to be an EM algorithm on a mixture ofK Gaussians under
certain assumptions. Details of this derivation are shown in Section 2.2.1.

2.2 Our representative clustering algorithms

In our work, we have chosen KMeans and Hierarchical Agglomerative Clustering as two representative clustering algo-
rithms, from the partitional and hierarchical clustering categories respectively, on which our proposed semi-supervised
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