
The NERO Real-time Video Game

Kenneth O. Stanley (kstanley@cs.utexas.edu)
Bobby D. Bryant (bdbryant@cs.utexas.edu)
Risto Miikkulainen (risto@cs.utexas.edu)

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712 USA
Technical Report UT-AI-TR-04-312

Abstract

In most modern video games, character behavior is scripted; no matter how many times the player exploits

a weakness, that weakness is never repaired. Yet if game characters could learn through interacting with

the player, behavior could improve as the game is played, keeping it interesting. This paper introduces the

real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method for evolving increasingly complex

artificial neural networks inreal-time, as a game is being played. The rtNEAT method allows agents to

change and improve during the game. In fact, rtNEAT makes possible an entirely new genre of video games

in which the playerteachesa team of agents through a series of customized training exercises. In order to

demonstrate this concept in the NeuroEvolving Robotic Operatives (NERO) game, the player trains a team

of robots for combat. This paper describes results from this novel application of machine learning, and

demonstrates that rtNEAT makes possible video games like NERO where agents evolve and adapt in real

time. In the future, rtNEAT may allow new kinds of educational and training applications.

1 Introduction

The world video game market in 2002 was between $15 billion and $20 billion, larger than even that of Hol-

lywood (Thurrott 2002). Video games have become a facet of many people’s lives and the market continues

to expand. Because there are millions of interactive players and because video games carry perhaps the least

risk to human life of any real-world application, they make an excellent testbed for techniques in artificial

intelligence and machine learning (ML). In fact, Laird and van Lent (2000) suggested that interactive video

games are a “killer application” for human-level AI.

1

http://www.cs.utexas.edu/users/kstanley/
mailto:kstanley@cs.utexas.edu
http://www.cs.utexas.edu/users/bdbryant/
mailto:bdbryant@cs.utexas.edu
http://www.cs.utexas.edu/users/risto/
mailto:risto@cs.utexas.edu
http://www.cs.utexas.edu/
http://www.utexas.edu/

One of the most compelling yet least exploited technologies in the video game industry is machine

learning. Thus, there is an unexplored opportunity to make video games more interesting and realistic, and

to build entirely new genres. Such enhancements may have applications in education and training as well,

changing the way people interact with their computers.

In the video game industry, the termNon-player-character(NPC) refers to an autonomous computer-

controlled agent in the game. This paper focuses on training NPCs as intelligent agents, and the standard

AI term agentsis therefore used to refer to them. The behavior of such agents in current games is often

repetitive and predictable. In most video games, simple scripts cannot learn or adapt to control the agents:

Opponents will always make the same moves and the game quickly becomes boring. Machine learning

could potentially keep video games interesting by allowing agents to change and adapt. However, a major

problem with learning in video games is that if behavior is allowed to change, the game content becomes

unpredictable. Agents might learn idiosyncratic behaviors or even not learn at all, making the gaming

experience unsatisfying. One way to avoid this problem is to train agents offline, and then freeze the results

into the final game. However, if behaviors are frozen before the game is released, agents cannot adapt and

change in response to the tactics of particular players.

If agents are to adapt and change in real-time, a powerful and reliable machine learning method is

needed. This paper describes a novel game built around a real-time enhancement of the NeuroEvolution of

Augmenting Topologies method (NEAT; Stanley and Miikkulainen 2002b, 2004a). NEAT evolves increas-

ingly complex neural networks, i.e. itcomplexifies. Real-time NEAT (rtNEAT) is able to complexify neural

networksas the game is played, making it possible for agents to evolve increasingly sophisticated behaviors

in real time. Thus, agent behavior improves visibly during gameplay. The aim is to show that machine

learning is indispensable for some kinds of video games to work, and to show how rtNEAT makes such an

application possible.

In order to demonstrate the potential of rtNEAT, the Digital Media Collaboratory (DMC) at the Uni-

versity of Texas at Austin initiated the NeuroEvolving Robotic Operatives (NERO) project in October of

2003 (http://dev.eltlabs.org/nero public). This project is based on a proposal for a game

based on rtNEAT developed at the2nd Annual Game Development Workshop on Artificial Intelligence, In-

teractivity, and Immersive Environmentsin Austin, TX (presentation by Kenneth Stanley, 2003). The idea

was to create a game in which learning isindispensable, in other words, without learning NERO could not

exist as a game. In NERO, the player takes the role of a trainer, teaching skills to a set of intelligent agents

controlled by rtNEAT. Thus, NERO is a powerful demonstration of how machine learning can open up new

2

possibilities in gaming and allow agents to adapt.

NERO opens up new opportunities for interactive machine learning in entertainment, education, and

simulation. This paper describes rtNEAT and NERO, and reviews results from the first year of this ongoing

project. The next section presents a brief taxonomy of games that use learning, placing NERO in broader

context. NEAT is then described, including how it was enhanced to create rtNEAT. The last sections describe

NERO and summarize of the current status and performance of the game.

2 Background

Early successes in applying machine learning (ML) to board games have motivated more recent work in

live-action video games. For example, Samuel (1959) trained a computer to play checkers using a method

similar to temporal difference learning(Sutton 1988) in the first application of machine learning (ML) to

games. Since then, board games such as tic-tac-toe (Gardner 1962; Michie 1961), backgammon (Tesauro

and Sejnowski 1987), Go (Richards et al. 1997), and Othello (Yoshioka et al. 1998) have remained popular

applications of ML. A comprehensive survey of machine learning in board games was given by Fürnkranz

(2001). Recently, interest has been growing in applying ML to video games (Laird and van Lent 2000).

For example Geisler (2002) trained agents to run and shoot opponents using supervised learning techniques.

This section examines how machine learning can be applied to video games.

From the human game player’s perspective there are two types of learning in games. First, inout-game

learning(OGL), game developers use ML techniques to pretrain agents that no longer learn after the game

is shipped. Second, duringin-game learning(IGL), agents learn as the player interacts with them in the

game; the player can either purposefully direct the learning process or the agents can adapt autonomously

to the player’s behavior. Most applications of ML to games have used OGL, though the distinction may be

blurred from the researcher’s perspective when online learning methods are used for OGL. However, the

difference between OGL and IGL is important to players and marketers, and ML researchers will frequently

need to make a choice between the two.

In aMachine Learning Game(MLG), the playerexplicitlyattempts to train agents as part of IGL. Since

such explicit training requires powerful learning methods, MLGs have not been possible until recently, and

thus represent a new genre of video games. Although some conventional game designs include a “training”

phase during which the player accumulates resources or technologies in order to advance in levels, such

games are not MLGs because the agents are not actually adapting or learning.

3

Prior examples in the MLG genre include theTamagotchivirtual pet1 and the video “God game”Black

& White2. In both games, the player shapes the behavior of game agents with positive or negative feedback.

It is also possible to train agents by human example during the game, as van Lent and Laird (2001) described

in their experiments withQuake II3. While these examples demonstrated that limited learning is possible in

a game, NERO is an entirely new kind of MLG; it uses a reinforcement learning method (neuroevolution) to

optimize a fitness function that is dynamically specifiedby the playerwhile watching and interacting with

the learning agents. Thus agent behavior continues to improve as long as the game is played.

A flexible and powerful ML method is needed to allow agents to adapt during gameplay. It is not enough

to simply script several key agent behaviors because adaptation would then be limited to the foresight of

the programmer who wrote the script, and agents would only be choosing from among a limited menu of

options. Moreover, because agents need to learn online as the game is played, predetermined training targets

are usually not available, ruling out supervised techniques such as backpropagation (Rumelhart et al. 1986)

and decision tree learning (Utgoff 1989).

Traditional reinforcement learning (RL) techniques such as Q-Learning (Watkins and Dayan 1992) and

Sarsa(λ) with a Case-Based function approximator (SARSA-CABA; Santamaria et al. 1998) can adapt in

domains with sparse feedback (Kaelbling et al. 1996; Sutton and Barto 1998; Watkins and Dayan 1992)

and thus can be applied to video games as well. These techniques learn to predict the long-term reward

for taking actions in different states by exploring the state space and keeping track of the results. However,

video games have several properties that pose serious obstacles to traditional RL:

1. Large state/action space. Since games usually have several different types of objects and characters,

and many different possible actions, the state/action space that RL must explore is high-dimensional.

Not only does this pose the usual problem of encoding a high-dimensional space (Sutton and Barto

1998), but in a real-time game there is the additional challenge of checking the value of every possible

action on every game tick for every agent in the game, which may overburden the CPU when other

tasks such as screen updates must also be computed.

2. Diverse behaviors. Agents learning simultaneously in a simulated world should not all converge

to the same behavior because a homogeneous population would make the game boring. Yet since

1Tamagotchiis a trademark of Bandai Co., Ltd. of Tokyo, Japan.

2Black & Whiteis a trademark of Lionhead Studios, Ltd. of Guildford, UK.

3Quake II is a trademark of Id Software, Inc.

4

RL techniques are based on convergence guarantees and do not explicitly maintain diversity, such an

outcome is likely.

3. Consistent individual behaviors. RL depends on occasionally taking a random action in order to

explore new behaviors. While this strategy works well in offline learning, players do not want to

constantly see individual agents periodically making inexplicable and idiosyncratic moves.

4. Fast adaptation. Players do not want to wait hours for agents to adapt. Yet a complex state/action

representation can take a long time to learn. On the other hand, a simple representation would limit

the ability to learn sophisticated behaviors.

5. Memory of past states. If agents remember past events, they can react more convincingly to the

present situation. However, such memory requires keeping track of more than the current state, ruling

out traditional Markovian methods.

It turns out there is an alternative RL technique called neuroevolution (NE), i.e. the artificial evolu-

tion of neural networks using a genetic algorithm, that can meet each of these requirements: (1) NE does

not require enumerating the state/action space; it works well in high-dimensional state spaces (Gomez and

Miikkulainen 2003b), and only produces a single requested action without checking the values of multiple

actions. (2) Diverse populations can be explicitly maintained (Stanley and Miikkulainen 2002b). (3) The

behavior of an individual during its lifetime does not change. (4) Arepresentationof the solution can be

evolved, allowing simple practical behaviors to be discovered quickly in the beginning and later complexi-

fied (Stanley and Miikkulainen 2004a). (5) Recurrent neural networks can be evolved that utilize memory

(Gomez and Miikkulainen 1999). Thus, NE is a good match for video games. Neural networks also make

good controllers for video game agents because they can compute arbitrarily complex functions, can both

learn and perform in the presence of noisy inputs, and generalize their behavior to previously unseen inputs

(Cybenko 1989; Siegelmann and Sontag 1994). NE has successfully evolved motor-control skills such as

those necessary in continuous-state games in many challenging non-Markovian domains (Aharonov-Barki

et al. 2001; Floriano and Mondada 1994; Fogel 2001; Gomez and Miikkulainen 1998, 1999, 2003a; Gruau

et al. 1996; Harvey 1993; Moriarty and Miikkulainen 1996; Nolfi et al. 1994; Potter et al. 1995; Stanley and

Miikkulainen 2004a; Whitley et al. 1993).

Our research group has been applying NE to gameplay for about a decade. Using this approach, we

have applied several neuroevolutionary algorithms to board games (Moriarty and Miikkulainen 1993; Mo-

riarty 1997; Richards et al. 1997; Stanley and Miikkulainen 2004b). InOthello, NE discovered themobility

5

strategyonly a few years after its invention by humans (Moriarty and Miikkulainen 1993). Recent work has

focused on higher-level strategies and real-time adaptation, which are needed for success in both continuous

and discrete multi-agent games (Agogino et al. 2000; Bryant and Miikkulainen 2003; Stanley and Miik-

kulainen 2004a). Relatively simple ANN controllers can be trained in games and game-like environments

to produce convincing purposeful and intelligent behavior (Agogino et al. 2000; Gomez and Miikkulainen

1998; Moriarty and Miikkulainen 1995a,b, 1996; Richards et al. 1997; Stanley and Miikkulainen 2004a).

The current challenge is to achieve evolution inreal time, as the game is played. If agents could be

evolved in a smooth cycle of replacement, the player could interact with evolution during the game and

the many benefits of NE would be available to the video gaming community. This paper introduces such

a real-time NE technique, rtNEAT, which is applied to the NERO multi-agent continuous-state MLG. In

NERO, agents must master both motor control and higher-level strategy to win the game. The player acts

as a trainer, teaching a team of robots the skills they need to survive. The next section reviews the NEAT

neuroevolution method, and how it can be enhanced to produce rtNEAT.

3 Real-time NeuroEvolution of Augmenting Topologies (rtNEAT)

The rtNEAT method is based on NEAT, a technique for evolving neural networks for complex reinforcement

learning tasks using a genetic algorithm (GA). NEAT combines the usual search for the appropriate network

weights withcomplexificationof the network structure, allowing the behavior of evolved neural networks to

become increasingly sophisticated over generations. This approach is highly effective: NEAT outperforms

other neuroevolution (NE) methods e.g. on the benchmark double pole balancing task (Stanley and Miik-

kulainen 2002a,b). In addition, because NEAT starts with simple networks and expands the search space

only when beneficial, it is able to find significantly more complex controllers than fixed-topology evolution,

as demonstrated in a robotic strategy-learning domain (Stanley and Miikkulainen 2004a). These properties

make NEAT an attractive method for evolving neural networks in complex tasks such as video games.

Like most GAs, NEAT was originally designed to runoffline. Individuals are evaluated one or two

at a time, and after the whole population has been evaluated, a new population is created to form the next

generation. In other words, in a normal GA it is not possible for a human to interact with the evolving agents

while they are evolving. This section first describes the original offline NEAT method, and then describes

how it can be modified to make it possible for players to interact with evolving agents in real time.

The NEAT method consists of solutions to three fundamental challenges in evolving neural network

6

Node 1

Sensor

Node 2

Sensor

Node 3

Sensor

Node 4

Output

Node 5

Hidden

In 1

Out 4

Weight 0.7

Enabled
Innov 1

In 2

Out 4

Weight−0.5

DISABLED
Innov 2

In 3

Out 4

Weight 0.5

Enabled
Innov 3

In 2

Out 5

Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4

Out 4 Out 5 Out 5

Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3
5

4

Figure 1: A NEAT genotype to phenotype mapping example. A genotype is depicted that produces the shown
phenotype. There are 3 input nodes, one hidden, one output node, and seven connection definitions, one of which is
recurrent. The second gene is disabled, so the connection that it specifies (between nodes 2 and 4) is not expressed in
the phenotype. In order to allow complexification, genome length is unbounded.

topology: (1) What kind of genetic representation would allow disparate topologies to crossover in a mean-

ingful way? The solution is to use historical markings to line up genes with the same origin. (2) How can

topological innovation that needs a few generations to optimize be protected so that it does not disappear

from the population prematurely? The solution is to separate each innovation into a different species. (3)

How can topologies be minimizedthroughout evolutionso the most efficient solutions will be discovered?

The solution is to start from a minimal structure and add nodes and connections incrementally. This section

explains how each of these solutions is implemented in NEAT.

The section begins by explaining the genetic encoding used in NEAT. Structural mutations are intro-

duced, allowing genomes to grow in NEAT. Historical markings are applied whenever a genome grows;

crossover uses historical markings as a way of addressing the competing conventions problem. NEAT’s

approach to speciation using fitness sharing is introduced as a way to protect innovation, allowing NEAT to

grow networks from a minimal starting point. Finally, the last section explains how NEAT was modified to

work in real time.

7

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>6 6−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 2: The two types of structural mutation in NEAT. Both types, adding a connection and adding a node,
are illustrated with the genes above their phenotypes. The top number in each genome is theinnovation numberof
that gene. The bottom two numbers denote the two nodes connected by that gene. The weight of the connection, also
encoded in the gene, is not shown. The symbol DIS means that the gene is disabled, and therefore not expressed in the
network. The figure shows how connection genes are appended to the genome when a new connection and a new node
is added to the network. Assuming the depicted mutations occurred one after the other, the genes would be assigned
increasing innovation numbers as the figure illustrates, thereby allowing NEAT to keep an implicit history of the origin
of every gene in the population.

3.1 Genetic Encoding

Evolving structure requires a flexible genetic encoding. In order to allow structures to complexify, their

representations must be dynamic and expandable. Each genome in NEAT includes a list ofconnection

genes, each of which refers to twonode genesbeing connected (Figure 1). Each connection gene specifies

the in-node, the out-node, the weight of the connection, whether or not the connection gene is expressed (an

enable bit), and aninnovation number, which allows finding corresponding genes during crossover.

Mutation in NEAT can change both connection weights and network structures. Connection weights

mutate as in any NE system, with each connection either perturbed or not. Structural mutations, which

form the basis of complexification, occur in two ways (Figure 2). Each mutation expands the size of the

genome by adding genes. In theadd connectionmutation, a single new connection gene is added connecting

two previously unconnected nodes. In theadd nodemutation, an existing connection is split and the new

node placed where the old connection used to be. The old connection is disabled and two new connections

are added to the genome. The connection between the first node in the chain and the new node is given

a weight of one, and the connection between the new node and the last node in the chain is given the

8

same weight as the connection being split. Splitting the connection in this way introduces a nonlinearity

(i.e. sigmoid function) where there was none before. This nonlinearity changes the function only slightly,

and the new node is immediately integrated into the network. Old behaviors encoded in the preexisting

network structure are not destroyed and remain qualitatively the same, while the new structure provides an

opportunity to elaborate on these original behaviors.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of varying sizes will result,

sometimes with different connections at the same positions. Crossover must be able to recombine networks

with differing topologies, which can be difficult (Radcliffe 1993). The next section explains how NEAT

addresses this problem.

3.2 Tracking Genes through Historical Markings

It turns out that the historical origin of each gene can be used to tell us exactly which genes match up

betweenany individuals in the population. Two genes with the same historical origin represent the same

structure (although possibly with different weights), since they were both derived from the same ancestral

gene at some point in the past. Thus, all a system needs to do is to keep track of the historical origin of every

gene in the system.

Tracking the historical origins requires very little computation. Whenever a new gene appears (through

structural mutation), aglobal innovation numberis incremented and assigned to that gene. The innovation

numbers thus represent a chronology of every gene in the system. As an example, let us say the two

mutations in Figure 2 occurred one after another in the system. The new connection gene created in the first

mutation is assigned the number7, and the two new connection genes added during the new node mutation

are assigned the numbers8 and9. In the future, whenever these genomes cross over, the offspring will

inherit the same innovation numbers on each gene. Thus, the historical origin of every gene in the system is

known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation numbers in

the same generation if it occurs by chance more than once. However, by keeping a list of the innovations

that occurred in the current generation, it is possible to ensure that when the same structure arises more than

once through independent mutations in the same generation, each identical mutation is assigned the same

innovation number. Extensive experimentation established that resetting the list every generation as opposed

to keeping a growing list of mutations throughout evolution is sufficient to prevent innovation numbers from

exploding.

9

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>6

5−>4

5−>4

1−>5

1−>5

6−>4

6−>4

1−>6

1−>6

1−>61−>5

5−>6

5−>6

3−>5

3−>5

3−>56−>4

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB DISAB

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

4

4

5

5

5

6

5

5

8

8

7

7

10

10

108

6

6

9

9

97

3

3

3

disjointdisjoint

disjoint

excessexcess

Parent1 Parent2

Parent2

Offspring

Parent1

1

1

1
2

2

2
3

3

3

5

5

5

6

4

4

6

4

Figure 3:Matching up genomes for different network topologies using innovation numbers.Although Parent 1
and Parent 2 look different, their innovation numbers (shown at the top of each gene) tell us that several of their genes
match up even without topological analysis. A new structure that combines the overlapping parts of the two parents
as well as their different parts can be created in crossover. In this case, equal fitnesses are assumed, so each disjoint
and excess gene is inherited from either parent randomly. Otherwise the genes would be inherited from the more fit
parent. The disabled genes may become enabled again in future generations: There is a preset chance that an inherited
gene is enabled if it is disabled in either parent.

Through innovation numbers, the system now knows exactly which genes match up with which (Figure

3). Genes that do not match are eitherdisjoint or excess, depending on whether they occur within or outside

the range of the other parent’s innovation numbers. When crossing over, the genes with the same innovation

numbers are lined up and crossed over in one of two ways. In the first method, matching genes are randomly

chosen for the offspring genome; alternatively, the connection weights of matching genes can be averaged

(Wright 1991). NEAT uses both types of crossover. Genes that do not match are inherited from the more fit

parent, or if they are equally fit, each gene is inherited from either parent randomly. Disabled genes have a

chance of being reenabled during crossover, allowing networks to make use of older genes once again.

Historical markings allow NEAT to perform crossover without analyzing topologies. Genomes of differ-

10

ent organizations and sizes stay compatible throughout evolution, and the variable-length genome problem

is essentially avoided. This methodology allows NEAT to complexify structure while different networks

still remain compatible. However, it turns out that it is difficult for a population of varying topologies to

support new innovations that add structure to existing networks, Because smaller structures optimize faster

than larger structures, and adding nodes and connections usually initially decreases the fitness of the net-

work, recently augmented structures have little hope of surviving more than one generation even though

the innovations they represent might be crucial towards solving the task in the long run. The solution is to

protect innovation by speciating the population, as explained in the next section.

3.3 Protecting Innovation through Speciation

NEAT speciates the population so that individuals compete primarily within their own niches instead of

with the population at large. This way, topological innovations are protected and have time to optimize their

structure before they have to compete with other niches in the population. In addition, speciation prevents

bloating of genomes: Species with smaller genomes survive as long as their fitness is competitive, ensuring

that small networks are not replaced by larger ones unnecessarily. Protecting innovation through speciation

follows the philosophy that new ideas must be given time to reach their potential before they are eliminated.

Historical markings make it possible for the system to divide the population into species based on how

similar they are topologically. We can measure the distanceδ between two network encodings as a linear

combination of the number of excess (E) and disjoint (D) genes, as well as the average weight differences

of matching genes (W):

δ =
c1E

N
+

c2D

N
+ c3 · W. (1)

The coefficientsc1, c2, andc3 adjust the importance of the three factors, and the factorN , the number

of genes in the larger genome, normalizes for genome size (N can be set to 1 unless both genomes are

excessively large). Genomes are tested one at a time; if a genome’s distance to a randomly chosen member

of the species is less thanδt, a compatibility threshold, it is placed into this species. Each genome is placed

into the first species from theprevious generationwhere this condition is satisfied, so that no genome is in

more than one species. Keeping the same set of species from one generation to the next allows NEAT to

remove stagnant species, i.e. species that have not improved for too many generations. If a genome is not

compatible with any existing species, a new species is created. The problem of choosing the best value for

δt can be avoided by makingδt dynamic; that is, given a target number of species, the system can slightly

raiseδt if there are too many species, and lowerδt if there are too few.

11

Let P be the entire population. The algorithm for clustering genomes into species consists of two loops:

• The Genome Loop:

– Take next genomeg from P

– The Species Loop:

∗ If all species in S have been checked, create new speciessnew and placeg in it

∗ Else

· get next speciess from S

· If g is compatible withs, addg to s

∗ If g has not been placed, Species Loop

– If not all genomes inG have been placed, Genome Loop

– Else STOP

As the reproduction mechanism, NEAT usesexplicit fitness sharing(Goldberg and Richardson 1987),

where organisms in the same species must share the fitness of their niche. Thus, a species cannot afford to

become too big even if many of its organisms perform well. Therefore, any one species is unlikely to take

over the entire population, which is crucial for speciated evolution to support a variety of topologies. The

adjusted fitnessf ′
i for organismi is calculated according to its distanceδ from every other organismj in the

population:

f ′
i =

fi∑n
j=1 sh(δ(i, j))

. (2)

The sharing functionsh is set to0 when distanceδ(i, j) is above the thresholdδt; otherwise,sh(δ(i, j)) is

set to 1 (Spears 1995). Thus,
∑n

j=1 sh(δ(i, j)) reduces to the number of organisms in the same species as

organismi. This reduction is natural since species are already clustered by compatibility using the threshold

δt. Every species is assigned a potentially different number of offspring in proportion to the sum of adjusted

fitnessesf ′
i of its member organisms. The net effect of fitness sharing in NEAT can be summarized as

follows. LetFk be the average fitness of speciesk and|P | be the size of the population. LetF tot =
∑

k Fk

be the total of all species fitness averages. The number of offspringnk allotted to speciesk is:

nk =
Fk

F tot
|P |. (3)

Species reproduce by first eliminating the lowest performing members from the population. The entire

population is then replaced by the offspring of the remaining individuals in each species.

12

The net effect of speciating the population is that structural innovation is protected. The final goal of the

system, then, is to perform the search for a solution as efficiently as possible. This goal is achieved through

complexification from a simple starting structure, as detailed in the next section.

3.4 Minimizing Dimensionality through Complexification

Unlike other systems that evolve network topologies and weights (Angeline et al. 1993; Gruau et al. 1996;

Yao 1999; Zhang and Muhlenbein 1993), NEAT begins with a uniform population of simple networks with

no hidden nodes, differing only in their initial random weights. Speciation protects new innovations, al-

lowing diverse topologies to gradually accumulate over evolution. Thus, because NEAT protects innovation

using speciation, it can start in this manner, minimally, and grow new structure over generations.

New structure is introduced incrementally as structural mutations occur, and only those structures sur-

vive that are found to be useful through fitness evaluations. This way, NEAT searches through a minimal

number of weight dimensions, significantly reducing the number of generations necessary to find a solution,

and ensuring that networks become no more complex than necessary. This gradual increase in complexity

over generations iscomplexification. In other words, NEAT searches for the optimal topology by incremen-

tally complexifying existing structure.

In previous work, each of the three main components of NEAT (i.e. historical markings, speciation, and

starting from minimal structure) were experimentally ablated in order to demonstrate how they contribute

to performance (Stanley and Miikkulainen 2002b). The ablation study demonstrated that all three compo-

nents are interdependent and necessary to make NEAT work. The next section explains how NEAT can be

enhanced to work in real time.

3.5 Running NEAT in Real Time

NEAT is a powerful algorithm that can evolve increasingly complex structures. However, it evaluates one

complete generation of individuals sequentially before creating the next generation. Real-time neuroevolu-

tion is based on the observation that in a video game, the entire population of agents playsat the same time.

Therefore, unlike in offline genetic algorithms such as NEAT, agent fitness statistics are constantly collected

as the game is played, and the agents are evolved continuously. The question is when the agents can be

replaced with new ones so offspring can be evaluated.

Replacing the entire population together on each generation would look incongruous since everyone’s

13

2 high−fitness agents

1 low−fitness agent
Cross over

New agent

Mutate

X

Figure 4:The main replacement cycle in rtNEAT. Robot game agents (represented as small circles) are depicted
playing a game in the large box. Every few ticks, two high-fitness robots are selected to produce an offspring that
replaces another of lower fitness. This cycle of replacement operates continually throughout the game, creating a
constant turnover of new behaviors.

behavior would change at once. In addition, behaviors would remain static during the large gaps of time

between generations. Instead, in rtNEAT, a single individual is replaced every few game ticks (as in e.g.

(m,1)-ES; Beyer and Paul Schwefel 2002). One of the worst individuals is removed and replaced with a

child of parents chosen from among the best. This cycle of removal and replacement happens continually

throughout the game (figure 4).

Real-time evolution was first implemented using conventional neuroevolution (Agogino et al. 2000)

before NEAT was developed. However, conventional neuroevolution is not sufficiently powerful to meet

the demands of modern video games. In contrast, a real-time version of NEAT offers the advantages of

NEAT: Agent neural networks can become increasingly sophisticated and complex during gameplay. The

challenge is to preserve the usual dynamics of NEAT, namely protection of innovation through speciation

and complexification. While original NEAT normally assigns offspring to speciesen massefor each new

generation, rtNEAT cannot allocate space for an entire species at once since it only produces one new

offspring at a time. Therefore, a new reproduction cycle must be introduced to allow rtNEAT to speciate in

real-time with the same results.

The main loop in rtNEAT works as follows. Letfi be the fitness of individuali. Recall that fitness

sharing adjusts it tofi

|S| , where|S| is the number of individuals in the species (Section 3.3). In other words,

14

fitness is reduced proportionally to the size of the species. This adjustment is important because selection in

rtNEAT must be based on adjusted fitness rather than original fitness in order to maintain the same dynamics

as NEAT. In addition, because the number of offspring assigned to a species in NEAT is based on its average

fitnessF , this average must always be kept up-to-date. Thus, after everyn ticks of the game clock, rtNEAT

performs the following operations:

1. Remove the agent with the worstadjustedfitness from the population assuming one has been alive

sufficiently long so that it has been properly evaluated.

2. Re-estimateF for all species

3. Choose a parent species to create the new offspring

4. AdjustCt dynamically andreassignall agents to species

5. Place the new agent in the world

Each of these steps is discussed in more detail below.

3.5.1 Step 1: Removing the worst agent

The goal of this step is to remove a poorly performing agent from the game, hopefully to be replaced

by something better. The agent must be chosen carefully to preserve speciation dynamics. If the agent

with the worstunadjustedfitness were chosen, fitness sharing could no longer protect innovation because

new topologies would be removed as soon as they appear. Thus, the agent with the worstadjustedfitness

should be removed, since adjusted fitness takes into account species size, so that new smaller species are not

removed as soon as they appear.

It is also important not to remove agents that are too young. In original NEAT,age is not considered

since networks are generally all evaluated for the same amount of time. However, in rtNEAT, new agents are

constantly being born, meaning different agents have been around for different lengths of time. It would be

dangerous to remove agents that are too young because they have not played for long enough to accurately

assess their fitness. Therefore, rtNEAT only removes agents who have played for more than the minimum

amount of timem.

15

3.5.2 Step 2: Re-estimatingF

Assuming there was an agent old enough to be removed, its species now has one less member and therefore

its average fitnessF has likely changed. It is important to keepF up-to-date becauseF is used in choosing

the parent species in the next step. Therefore, rtNEAT needs to re-estimateF .

3.5.3 Step 3: Choosing the parent species

In original NEAT the number of offspringnk assigned to speciesk is Fk

F tot
|P |, whereFk is the average fitness

of speciesk, F tot is the sum of all the average species’ fitnesses, and|P | is the population size (equation 3).

This behavior needs to be approximated in rtNEAT even thoughnk cannot be assigned explicitly (since

only one offspring is created at a time). Given thatnk is proportional toF , the parent species can be chosen

probabilistically using the same relationship:

Pr(Sk) =
Fk

F tot
. (4)

The probability of choosing a given parent species is proportional to its average fitness compared to the

total of all species’ average fitnesses. Thus, over the long run, the expected number of offspring for each

species is proportional tonk, preserving the speciation dynamics of original NEAT.

3.5.4 Step 4: Dynamic Compatibility Thresholding in Real time

Recall from section 3.3 that networks are placed into a species in original NEAT if their compatibility

distance from the species’ representative is less than the thresholdCt. Section 3.3 suggested that one way

to avoid the burden of choosing the appropriateCt is to instead choose a target number of species and let

NEAT adjustCt dynamically to reach the target. If there are too many species,Ct can be raised to be more

inclusive; if there are too few,Ct can be lowered to be stricter.

An advantage of this kind ofdynamic compatibility thresholdingis that it keeps the number of species

relatively stable. Such stability is particularly important in a real-time video game since the population may

need to be small to accommodate CPU resources dedicated to graphical processing, and therefore a sudden

explosion in the number of species would be undesirable.

In original NEAT, Ct can be adjusted before the next generation is created, but in rtNEAT changing

Ct alone is not sufficient because most of the population simply remains where they are. Just changing a

16

variable does not cause anything to move to a different species. Therefore, after changingCt in rtNEAT, the

entire population must be reassigned to the existing species based on the newCt. As in original NEAT, if a

network does not belong in any species a new species is created with that network as its representative.4

3.5.5 Step 5: Replacing the old agent with the new one

Since an individual was removed in step 1, the new offspring needs to replace it. How agents are replaced

depends on the game. In some games, the neural network can be removed from a body and replaced without

doing anything to the body. In others, the body may have died and need to be replaced as well. rtNEAT can

work with any of these schemes as long as an old neural network gets replaced with a new one.

Step 5 concludes the steps necessary to approximate original NEAT in real-time. However, there is one

remaining issue. The entire loop should be performed at regular intervals, everyn ticks: How shouldn be

chosen?

3.5.6 Determining the Number of Ticks Between Replacements

If agents are replaced too frequently, they do not live long enough to reach the minimum timem to be

evaluated. For example, imagine that it takes 100 ticks to obtain an accurate performance evaluation, but

that an individual is replaced in a population of 50 on every tick. No one ever lives long enough to be

evaluated and the population always consists of only new agents. On the other hand, if agents are replaced

too infrequently, evolution slows down to a pace that the player no longer enjoys.

Interestingly, the appropriate frequency can be determined through a principled approach. LetI be the

fraction of the population that is too young and therefore cannot be replaced. As before,n is the ticks

between replacements,m is the minimum time alive, and|P | is the population size. Alaw of eligibility can

be formulated that specifies what fraction of the population can be expected to be ineligible once evolution

reaches a steady state (i.e. after the first few time steps when no one is eligible):

I =
m

|P |n
. (5)

According to Equation 5, the larger the population and the more time between replacements, the lower the

fraction of ineligible agents. This principle makes sense since in a larger population it takes more time

4Depending on the specific game,Ct does not necessarily need to be adjusted and species reorganized as often as every replace-

ment. The number of ticks between adjustments is chosen by the game designer.

17

to replace the entire population. Also, the more time passes between replacements, the more time the

population has to age, and hence fewer are ineligible. On the other hand, the larger the minimum age, the

more agents are ineligible because more time is necessary to become eligible.

It is also helpful to think ofmn as thenumberof individuals that must be ineligible at any time; over the

course ofm ticks, an agent is replaced everyn ticks, and all the new agents that appear overm ticks will

remain ineligible for that duration since they cannot have been around for overm ticks. For example, if|P |

is 50, M is 500, andn is 20, 50% of the population would be ineligible.

Based on the law of eligibility, rtNEAT can decide on its own how many ticksn should lapse between

replacements for a preferred level of ineligibility, specific population size, and minimum time between

replacements:

n =
m

|P |I
. (6)

It is best to let the user chooseI because in general it is most critical to performance; if too much of the

population is ineligible at one time, the mating pool is not sufficiently large. Equation 6 allows rtNEAT

to determine the correct number of ticks between replacementsn to maintain a desired eligibility level. In

NERO, 50% of the population remains eligible using this technique.

By performing the right operations everyn ticks, choosing the right individual to replace and replacing

it with an offspring of a carefully chosen species, rtNEAT is able to replicate the dynamics of NEAT in

real-time. Thus, it is now possible to deploy NEAT in a real video game and interact with complexifying

agents as they evolve. The next section describes such a game.

4 NeuroEvolving Robotic Operatives (NERO)

NERO is representative of a new MLG genre that is only possible through machine learning. The idea is

to put the player in the role of atrainer or a drill instructor who teaches a team of agents by designing a

curriculum. Of course, for the player to be able to teach agents, the agents must be able tolearn; rtNEAT is

the learning algorithm that makes NERO possible.

In NERO, the learning agents are simulated robots, and the goal is to train a team of robots for military

combat. The robots begin the game with no skills and only the ability to learn. In order to prepare for combat,

the player must design a sequence of training exercises and goals. Ideally, the exercises are increasingly

18

Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls Battle

Figure 5: A turret training sequence (color figure). The figure depicts a sequence of increasingly difficult and
complicated training exercises in which the agents attempt to attack turrets without getting hit. In the first exercise
there is only a single turret but more turrets are added by the player as the team improves. Eventually walls are added
and the turrets are given wheels so they can move. Finally, after the team has mastered the hardest exercise, it is
deployed in a real battle against another team.

Figure 6:Setting up training scenarios (color figure). This screenshot shows items the player can place on the field
and sliders used to control behavior. The red robot is a stationary enemy turret that turns back and forth as it shoots
repetitively. Behind the turret is a wall. The player can place turrets, other kinds of enemies, and walls anywhere on
the training field. On the right is the box containing slider controls. These sliders specify the player’s preference for
the behavior the team should try to optimize. For example the “E” icon means “approach enemy,” and the red bar
specifies that the player wants to punish robots that approach the enemy. The crosshair icon represents “hit target,”
which is being rewarded. The sliders represent fitness components that are used by rtNEAT. The value of the slider
is used by rtNEAT as the coefficient of the corresponding fitness component. Through placing items on the field and
setting sliders, the player creates training scenarios where learning takes place.

difficult so that the team can begin by learning a foundation of basic skills and then gradually building on

them (figure 5). When the player is satisfied that the team is prepared, the team is deployed in a battle

against another team trained by another player (possibly on internet), making for a captivating and exciting

culmination of training. The challenge is to anticipate the kinds of skills that might be necessary for battle

and build training exercises to hone those skills. The next two sections explain how the agents are trained in

NERO and how they fight an opposing team in battle.

19

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

Figure 7:NERO input sensors and action outputs (color figure). Each NERO robot can see enemies, determine
whether an enemy is currently in its line of fire, detect objects and walls, and see the direction the enemy is firing.
Its outputs specify the direction of movement and whether or not to fire. This configuration has been used to evolve
varied and complex behaviors; other variations work as well and the standard set of sensors can easily be changed.

4.1 Training Mode

The player sets up training exercises by placing objects on the field and specifying goals through several

sliders (figure 6). The objects include static enemies, enemy turrets, rovers (i.e. turrets that move), and walls.

To the player, the sliders serve as an interface for describing ideal behavior. To rtNEAT, they represent coef-

ficients for fitness components. For example, the sliders specify how much to reward or punish approaching

enemies, hitting targets, getting hit, following friends, dispersing, etc. Fitness is computed as the sum of all

these components multiplied by their slider levels, which can be positive or negative. Thus, the player has a

natural interface for setting up a training exercise and specifying desired behavior.

Robots have several types of sensors. Although NERO programmers frequently experiment with new

sensor configurations, the standard sensors include enemy radars, an “on target” sensor, object rangefinders,

and line-of-fire sensors. Figure 7 shows a neural network with the standard set of sensors and outputs, and

figure 8 describes how the sensors function.

Training mode is designed to allow the player to set up a training scenario on the field where the robots

can continually be evaluated while the worst robot’s neural network is replaced every few ticks. Thus,

training must provide a standard way for robots to appear on the field in such a way that every robot has

an equal chance to prove its worth. To meet this goal, the robots spawn from a designated area of the field

called thefactory. Each robot is allowed a limited time on the field during which its fitness is assessed.

When their time on the field expires, robots are transported back to the factory, where they begin another

20

(a) Enemy Radars (b) Rangefinders

(c) On-Target Sensor (d) Line-of-fire sensors

Figure 8: NERO sensor design. All NERO sensors are egocentric, i.e. they tell where the objects are from the
robot’s perspective. (a) Several enemy radar sensors divide the 360 degrees around the robot into slices. Each slice
activates a sensor in proportion to how close an enemy is within that slice. If there is more than one enemy in a single
slice, their activations are summed. (b) Rangefinders project rays at several angles from the robot. The distance the
ray travels before it hits an object is returned as the value of the sensor. Rangefinders are useful for detecting long
contiguous objects whereas radars are appropriate for relatively small, discrete objects. (c) The on-target sensor returns
full activation only if a ray projected along the front heading of the robot hits an enemy. This sensor tells the robot
whether it should attempt to shoot. (d) The line of fire sensors detect where a bullet stream from the closest enemy is
heading. Thus, these sensors can be used to avoid fire. They work by computing where the line of fire intersects rays
projecting from the robot, giving a sense of the bullet’s path. These sensors provide sufficient information for robots
to learn successful behaviors for battle.

evaluation. Neural networks are only replaced in robots that have been put back in the factory. The factory

ensures that a new neural network cannot get lucky by appearing in a robot that happens to be standing in

an advantageous position: All evaluations begin consistently in the factory. In addition, the fitness of robots

that survive more than one deployment on the field is updated through a diminishing average that gradually

forgets deployments from the distant past. Thus, older robots have more reliable fitness measures since they

are averaged over more deployments than younger robots, but their fitness does not become out of date.

The diminishing average fitness is obtained by first computing an average over the first few trials and

then maintaining a continuous leaky average. The fitness update rule is,

ft+1 = ft +
st − ft

r
(7)

21

whereft is the current fitness,st is the score from the current evaluation, andr controls the rate of forgetting.

The lowerr is set, the sooner recent evaluations are forgotten. This method ensures that fitness statistics do

not become out of date even for older networks.

Training begins by deploying 50 robots on the field. Each robot is controlled by a neural network

with random connection weights and no hidden nodes, as is the usual starting configuration for NEAT (see

appendix A for a complete description of the rtNEAT parameters used in NERO). As the neural networks

are replaced in real-time, behavior improves dramatically, and robots eventually learn to perform the task

the player sets up. When the player decides that performance has reached a satisfactory level, he or she can

save the team in a file. Saved teams can be reloaded for further training in different scenarios, or they can

be loaded into battle mode. In battle, they face off against teams trained by an opponent player, as will be

described next.

4.2 Battle Mode

In battle mode, the player discovers how training paid off. A battle team of 20 robots is assembled from as

many different training teams as desired. For example, perhaps some robots were trained for close combat

while others were trained to stay far away and avoid fire. A player may choose to compose a heterogeneous

team from both training sessions.

Battle mode is designed to run over a server so that two players can watch the battle from separate

terminals on the internet. The battle begins with the two teams arrayed on opposite sides of the field. When

one player presses a “go” button, the neural networks obtain control of their robots and perform according to

their training. Unlike in training, where being shot does not lead to a robot body being damaged, the robots

are actually destroyed after being shot several times in battle. The battle ends when one team is completely

eliminated. In some cases, the only surviving robots may insist on avoiding each other, in which case action

ceases before one side is completely destroyed. In that case, the winner is the team with the most robots left

standing.

The basic battlefield configuration is an empty pen surrounded by four bounding walls, although it is

possible to compete on a more complex field, with walls or other obstacles (figure 9). Players train their

robots and assemble teams for the particular battle field configuration on which they intend to play. In the

experiments described in this chapter, the battlefield was the basic pen.

The next section gives examples of actual NERO training and battle sessions.

22

Figure 9: Battlefield configurations (color figure). The figure shows a range of possible configurations from an
open pen to a maze-like environment. Players can construct their own battlefield configurations and train for them.
The basic configuration, which is used in section 5, is the empty pen surrounded by four bounding walls.

5 Playing NERO

Behavior can be evolved very quickly in NERO, fast enough so that the player can be watching and inter-

acting with the system in real time. The game engine Torque, licensed from GarageGames

(http://www.garagegames.com/), drives NERO’s simulated physics and graphics. An important

property of the Torque engine is that its physics simulation is slightly nondeterministic, so that the same

game is never played twice. In addition, Torque makes it possible for the player to take control of enemy

robots using a joystick, an option that can be useful in training.

The first playable version of NERO was completed in May of 2004. At that time, several NERO pro-

grammers trained their own teams and held a tournament. As examples of what is possible in NERO, this

section outlines the behaviors evolved for the tournament, the resulting battles, and the real-time perfor-

mance of NERO and rtNEAT.

NERO is capable of evolving behaviors very quickly in real-time. The most basic battle tactic is to

aggressively seek the enemy and fire. To train for this tactic, a single static enemy was placed on the

training field, and robots were rewarded for approaching the enemy. This training required robots to learn

to run towards a target, which is difficult since robots start out in the factory facing in random directions.

Starting from random neural networks, it takes on average 99.7 seconds for 90% of the robots on the field

learn to approach the enemy successfully (10 runs,sd = 44.5s) It is important to note that the success

criterion, i.e. that the team sufficiently learns to approach the enemy, is in part subjective since the player

decides when training is complete by visually assessing the team’s performance. Nevertheless, success in

seeking is generally unambiguous as shown in figure 10.

NERO differs from most applications of GAs in that the quality of evolution is judged from the player’s

23

(a) Five seconds: Mass confusion (b) 100 seconds: Success

Figure 10:Learning to approach the enemy (color figure). These screenshots show the training field before and
after the robots evolved seeking behavior. The factory is at the bottom of each panel and the enemy being sought
is at the top. The numbers above the robots’ heads are used to identify individual robots. (a) Five seconds after the
training begins, the robots scatter haphazardly around the factory, unable to effectively seek the enemy. (b) After
ninety seconds, the robots consistently seek the enemy. Some robots prefer swinging left, while others swing right.
These pictures demonstrate that behavior improves dramatically in real-time over only 100 seconds.

perspective based on the performance of theentirepopulation. On the other hand GA practitioners generally

only look at the champions of a run. However, even though the entire population must solve the task, it does

not converge to the same solution. In seek training, some robots evolve a tendency to run slightly to the left

of the target, while others run to the right. The population diverges because the 50 agents interact as they

move simultaneously on the field at the same time. If all the robots chose exactly the same path, they would

often crash into each other and slow each other down, so naturally some robots take slightly different paths

to the goal. In other words, NERO is actually a massively parallel coevolving ecology in which the entire

population is evaluated together.

After the robots learned to seek the enemy, they were further trained to fire at the enemy. It is possible

to train robots to aim by rewarding them for hitting a target, but that it is also aesthetically unpleasing to

players to have to wait while robots fire haphazardly in all directions and slowly figure out how to aim.

Therefore, the fire output of neural networks was connected to an aiming script that points the gun properly

at the enemy closest to the robot’s current heading within some fixed distance. Thus, robots quickly learn to

24

Figure 11: Running away backwards (color figure). This training screenshot shows several robots backed up
against the wall after running backwards and shooting at the enemy, which is being controlled from a first-person
perspective by a human trainer using a joystick. Robots learned to run away from the enemy backwards during
avoidance training because that way they can shoot as they flee. Running away backwards is an example of evolution’s
ability to find novel and effective behaviors.

seek and attack the enemy.

Robots were also trained to avoid the enemy. In fact, rtNEAT was flexible enough todevolvea population

that had converged on seeking behavior into a completely opposite, avoidance, behavior. For avoidance

training, players controlled an enemy robot with a joystick and ran it towards robots on the field. The robots

learned to back away in order to avoid being penalized for being too near the enemy. Interestingly, robots

preferred to run away from the enemy backwards because that way they could still shoot the enemy. Also,

most of their enemy radars are on their front half, giving them better resolution if they remain facing their

target (figure 11).

By placing a turret on the field and asking robots to approach the turret without getting hit, robots were

able to learn to avoid enemy fire (figure 12). The turret is programmed to periodically rotate back and forth

spraying bullets. Robots evolved to run to the opposite side of the turret from the spray and approach it from

behind, a tactic that is promising for battle.

Other interesting behaviors were evolved to test the limits of rtNEAT rather than specifically prepare

the troops for battle. For example, robots were trained to run around walls in order to approach the enemy.

As performance improved, players incrementally added more walls until the robots could navigate an entire

maze without any path-planning (figure 13)! Interestingly, different species evolved to take different paths

through the maze, showing that topology and function are correlated in rtNEAT, and confirming the success

of real-time speciation.

25

Figure 12:Avoiding turret fire (color figure). The black arrow points in the current direction of the turret fire (the
arrow is not part of the NERO display and is only added for illustration). Robots in training learn to run safely around
the enemy’s line of fire in order to attack. Notice how they loop around the back of the turret and attack from behind.
When the turret moves, the robots change their attack trajectory accordingly. Learning to avoid fire is an important
battle skill. The conclusion is that rtNEAT was able to evolve sophisticated, nontrivial behavior in real time.

In a powerful demonstration of real-time adaptation, robots that were trained to approach a designated

location (marked by a flag) through a hallway were then attacked by an enemy controlled by the player

(figure 14). After two minutes, the robots learned to take an alternative path through an adjacent hallway in

order to avoid the enemy’s fire. While such training is used in NERO to prepare robots for battle, the same

kind of adaptation could be used in any interactive game to make it more realistic and interesting.

In battle, some teams that were trained differently were nevertheless evenly matched, while some train-

ing types consistently prevailed against others For example, an aggressive seeking team from the tournament

had only a slight advantage over an avoidant team, winning six out of ten battles, losing three, and tying one

(Table 1). The avoidant team runs in a pack to a corner of the field’s enclosing wall (figure 15). Sometimes,

if they make it to the corner and assemble fast enough, the aggressive team runs into an ambush and is

obliterated. However, slightly more often the aggressive team gets a few shots in before the avoidant team

can gather in the corner. In that case, the aggressive team traps the avoidant team with greater surviving

numbers. The conclusion is that seeking and running away are fairly well-balanced tactics, neither provid-

ing a significant advantage over the other. The interesting challenge of NERO is to conceive strategies that

are clearly dominant over others.

26

Figure 13:Navigating a maze. Incremental training on increasingly complex wall configurations produced robots
that could navigate this maze to find the enemy. The robots spawn from the factory at the top of the maze and proceed
down to the enemy at the bottom. In this picture, the green numbers above the robots specify their species. Notice that
species “4” evolved to take the path through the right side of the maze while other species take the the left path. This
result suggests that protecting innovation in rtNEAT indeed supports a range of diverse behaviors, each with its own
network topology.

(a) Robots approach flag (b) Player attacks on left (c) Robots learn new approach

Figure 14:Video game characters adapt to player’s actions (color figure). The robots in these screenshots spawn
from the top of the screen and must approach the flag (circled) at the bottom left. (a) The robots first learn to take the
left hallway since it is the shortest path to the flag. (b) A human player (identified by a square) attacks inside the left
hallway and decimates the robots. (c) Even though the left hallway is the shortest path to the flag, the robots learn
that they can avoid the human enemy by taking the right hallway, which is protected from the human’s fire by a wall.
rtNEAT allows the robots to adapt in this way to the player’s tactics in real time.

27

Battle Number Seekers Avoiders

1 6 0

2 4 7

3 8 0

4 7 7

5 8 3

6 6 10

7 5 4

8 5 2

9 3 7

10 8 0

Table 1:Seekers vs. Avoiders. Scores from 10 battles are shown between a team trained to aggressively seek and
attack the enemy and another team taught to run away backwards and shoot at the same time. The seeking team wins
six out of the 10 games, but its advantage is not significant, showing that when strategies contrast they can still be
evenly matched. Results like this one can be unexpected, teaching players about the relative strengths and weakness
of different tactics.

Figure 15:Seekers chasing avoiders in battle (color figure). In this battle screenshot, red robots trained to seek
and attack the enemy pursue blue robots that have backed up against the wall. Teams trained for different tactics are
clearly discernable in battle, demonstrating the ability of the training to evolve diverse tactics.

28

Battle Number Wall-fighters Seekers

1 7 2

2 9 0

3 4 3

4 7 2

5 10 0

6 8 2

7 12 2

8 7 2

9 4 2

10 9 1

Table 2:Wall-fighters vs. Seekers.The table shows final scores from 10 battles between a team trained to fight near
walls and another trained to aggressively seek and attack the enemy. The wall-fighters win every battle because they
know how to avoid fire near a wall, while the aggressive team runs directly into fire when fighting near a wall. The
total superiority of the wall-fighters shows that the right tactical training indeed matters in battle, and that rtNEAT was
able to evolve sophisticated fighting tactics.

One of the best teams was trained by observing a phenomenon that happened consistently in battle.

Chases among robots from opposing teams frequently caused robots to eventually reach the field’s bounding

walls. Particularly for robots trained to avoid turret fire by attacking from behind (figure 12), enemies

standing against the wall present a serious problem since it is not possible to go around them. Thus, training

a team against a turret with its back against the wall, it was possible to familiarize robots with attacking

enemies against a wall. This team learned to hover near the turret and fire when it turned away, but back

off quickly when it turned towards them. This tactic works effectively when several friendly robots from

the same team are nearby since an enemy can only be facing one direction at a time. In fact, the wall-based

team won the first NERO tournament by using this strategy. Table 2 shows that the wall-trained team wins

100% of the time against the aggressive seeking team. Thus, it is possible to learn sophisticated tactics that

dominate over simpler ones like seek or avoid.

6 Discussion

Participants in the first NERO tournament agreed that the game was engrossing and entertaining. Battles

were exciting events for all the participants, evoking plentiful clapping and cheering. Players spent many

hours honing behaviors and assembling teams with just the right combination of tactics.

29

An important point of this project is that NERO would not be possible without rtNEAT. rtNEAT was

able to evolve interesting tactics quickly in real-time while players interacted with NERO, showing that

neuroevolution can be deployed in a real game and work fast enough to provide entertaining results.

The success of the first NERO prototype suggests that the rtNEAT technology has immediate potential

commercial applications in modern games. Any game in which agent behavior is repetitive and boring can be

improved by allowing rtNEAT to at least partially modify tactics in real-time. Especially in persistent video

games such as Massive Multiplayer Online Games (MMOGs) that last for months or years, the potential for

rtNEAT to continually adapt and optimize agent behavior may permanently alter the gaming experience for

millions of players around the world.

Since the first tournament took place, new features have been added to NERO, increasing its appeal and

complexity. For example, robots can now duck behind walls and learn to run to a flag placed by the player

to designate important areas of the field. The game continues to be developed and new features and sensors

are constantly being added. The goal is to have a full network-playable version with an easy and intuitive

user interface in the near future.

An important issue for the future is how to assess results in a game in which behavior is largely subjec-

tive. One possible approach is to train benchmark teams and measure the success of future training against

those benchmarks. This idea and others will be employed in testing as the project matures and standard

strategies are identified. At present, the project’s main contribution is to show that an entirely new genre of

game is possible because of rtNEAT.

NERO is also being used as a common platform for quickly implementing complicated real-time neu-

roevolution experiments. While video games are intended mainly for entertainment, they are an excellent

catalyst for improving machine learning technology. Because of the gaming industry’s financial success and

low physical risk, it makes sense to explore this area as a stepping stone to other more critical applications.

With this new technology, it may finally be possible to use games for training as has long been envisioned.

As humans improve in such training games, so could surrounding agents, keeping the simulation realistic

for longer than has been possible in the past.

7 Conclusion

A real-time version of NEAT (rtNEAT) was developed to allow users to interact with evolving agents. In

rtNEAT, an entire population is simultaneously and asynchronously evaluated as it evolves. Using this

30

method, it was possible to build an entirely new kind of video game, NERO, where the characters adapt in

real time in response to the player’s actions. In NERO, the player takes the role of a trainer and constructs

training scenarios for a team of simulated robots. The rtNEAT technique can form the basis for other similar

interactive learning applications in the future, and eventually even make it possible to use gaming as a

method for training people in sophisticated tasks.

Acknowledgments

Special thanks are due to Aaron Thibault and Alex Cavalli of theIC2 and DMC for supporting the NERO

project. The entire NERO team deserves recognition for their contribution to this project including the

NERO leads Aliza Gold (Producer), Philip Flesher (Lead Programmer), Jonathan Perry (Lead Artist), Matt

Patterson (Lead Designer), and Brad Walls (Lead Programmer). We are grateful also to the original vol-

unteer programming team Ryan Cornelius and Michael Chrien, and newer programmers Ben Fitch, Justin

Larrabee, Trung Ngo, and Dustin Stewart-Silverman, and to our volunteer artists Bobby Bird, Brian Frank,

Corey Hollins, Blake Lowry, Ian Minshill, and Mike Ward. This research was supported in part by the

Digital Media Collaboratory (DMC) Laboratory at theIC2 Institute (http://dmc.ic2.org/), in part

by the National Science Foundation under grant IIS-0083776, and in part by the Texas Higher Educa-

tion Coordinating Board under grant ARP-003658-476-2001. NERO physics is controlled by the Torque

Engine, which is licensed from GarageGames (http://www.garagegames.com/). NERO’s official

public website ishttp://dmc.ic2.org/nero public , and the project’s official email address is

nero@cs.utexas.edu .

A NERO System Parameters

The coefficients for measuring compatibility werec1 = 1.0, c2 = 1.0, andc3 = 0.4. The initial compatibil-

ity distance wasδt = 4.0. The population was only 50 so that the CPU could accommodate all the agents

being evaluated simultaneously. A target of 4 species was assigned. If the number of species grew above

4, δt was increased by0.3 to reduce the number of species. Conversely, if the number of species fell below

4, δt was decreased by0.3 to increase the number of species. The thresholdδt was changed in real time

(Section 3.5.4). The interspecies mating rate was 0.001. The probability of adding a new node was 0.05

and the probability of a new link mutation was 0.03. These parameter values were found experimentally but

they do follow intuitively meaningful rules: Links need to be added significantly more often than nodes, and

31

weight differences are given low weight since the population is small. Performance is robust to moderate

variations in these values: The dynamic compatibility distance measure caused speciation to remain stable.

The percentage of the population allowed to be ineligible at one time was 50%. The number of ticks

between replacements is 20 and the minimum evaluation time is 500. The number of ticks between replace-

ments can also be derived from equation 6.

References

Agogino, A., Stanley, K., and Miikkulainen, R. (2000). Real-time interactive neuro-evolution.Neural

Processing Letters, 11:29–38.

Aharonov-Barki, R., Beker, T., and Ruppin, E. (2001). Emergence of memory-Driven command neurons in

evolved artificial agents.Neural Computation, 13(3):691–716.

Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1993). An evolutionary algorithm that constructs

recurrent neural networks.IEEE Transactions on Neural Networks, 5:54–65.

Beyer, H.-G., and Paul Schwefel, H. (2002). Evolution strategies – A comprehensive introduction.Natural

Computing, 1(1):3–52.

Bryant, B. D., and Miikkulainen, R. (2003). Neuroevolution for adaptive teams. InProceeedings of the

2003 Congress on Evolutionary Computation (CEC 2003), vol. 3, 2194–2201. Piscataway, NJ: IEEE.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.Mathematics of Control,

Signals, and Systems, 2(4):303–314.

Floriano, D., and Mondada, F. (1994). Automatic creation of an autonomous agent: Genetic evolution of a

neural-network driven robot. InFrom Animals to Animats 3: Proceedings of the Third International

Conference on Simulation of Adaptive Behavior.

Fogel, D. B. (2001).Blondie24: Playing at the Edge of AI. San Francisco, CA: Morgan Kaufmann.

Fürnkranz, J. (2001). Machine learning in games: A survey. In Fürnkranz, J., and Kubat, M., editors,

Machines that Learn to Play Games, chapter 2, 11–59. Huntington, NY: Nova Science Publishers.

Gardner, M. (1962). How to build a game-learning machine and then teach it to play and to win.Scientific

American, 206(3):138–144.

32

http://nn.cs.utexas.edu/keyword?agogino:npl00
http://www.kluweronline.com/article.asp?PIPS=401777
http://nn.cs.utexas.edu/keyword?bryant:cec03
file:citeseer.ist.psu.edu/380247.html

Geisler, B. (2002).An Empirical Study of Machine Learning Algorithms Applied to Modeling Player Be-

havior in a ’First Person Shooter’ Video Game. Master’s thesis, Department of Computer Sciences,

University of Wisconsin-Madison, Madison, WI.

Goldberg, D. E., and Richardson, J. (1987). Genetic algorithms with sharing for multimodal function opti-

mization. In Grefenstette, J. J., editor,Proceedings of the Second International Conference on Genetic

Algorithms, 148–154. San Francisco, CA: Morgan Kaufmann.

Gomez, F., and Miikkulainen, R. (1998). 2-D pole-balancing with recurrent evolutionary networks. In

Proceedings of the International Conference on Artificial Neural Networks, 425–430. Berlin; New

York: Springer-Verlag.

Gomez, F., and Miikkulainen, R. (1999). Solving non-Markovian control tasks with neuroevolution. In

Proceedings of the 16th International Joint Conference on Artificial Intelligence. Denver, CO: Morgan

Kaufmann.

Gomez, F., and Miikkulainen, R. (2003a). Active guidance for a finless rocket using neuroevolution. InPro-

ceeedings of the Genetic and Evolutionary Computation Conference (GECCO-2003). San Francisco,

CA: Morgan Kaufmann.

Gomez, F. J., and Miikkulainen, R. (2003b). Active guidance for a finless rocket through neuroevolu-

tion. InProceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003). Berlin:

Springer Verlag.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison between cellular encoding and direct encoding

for genetic neural networks. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,

Genetic Programming 1996: Proceedings of the First Annual Conference, 81–89. Cambridge, MA:

MIT Press.

Harvey, I. (1993). The Artificial Evolution of Adaptive Behavior. PhD thesis, School of Cognitive and

Computing Sciences, University of Sussex, Sussex.

Kaelbling, L. P., Littman, M., and Moore, A. W. (1996). Reinforcement learning: A survey.Journal of

Artificial Intelligence, 4:237–285.

Laird, J. E., and van Lent, M. (2000). Human-level AI’s killer application: Interactive computer games. In

Proceedings of the 17th National Conference on Artificial Intelligence. Cambridge, MA: MIT Press.

33

http://www.mpi-sb.mpg.de/services/library/proceedings/contents/icga87.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/icga87.html
http://nn.cs.utexas.edu/keyword?gomez:icann98
http://nn.cs.utexas.edu/keyword?gomez:ijcai99
http://nn.cs.utexas.edu/keyword?gomez:gecco03
http://nn.cs.utexas.edu/keyword?gomez:gecco03
http://www.cogs.susx.ac.uk/users/inmanh/inman_thesis.html

Michie, D. (1961). Trail and error.Penguin Science Survey, 2:129–145.

Moriarty, D., and Miikkulainen, R. (1993). Evolving complex Othello strategies with marker-based encod-

ing of neural networks. Technical Report AI93-206, Department of Computer Sciences, The University

of Texas at Austin.

Moriarty, D., and Miikkulainen, R. (1995a). Learning sequential decision tasks. Technical Report AI95-229,

Department of Computer Sciences, The University of Texas at Austin.

Moriarty, D. E. (1997).Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. PhD thesis,

Department of Computer Sciences, The University of Texas at Austin. Technical Report UT-AI97-257.

Moriarty, D. E., and Miikkulainen, R. (1995b). Discovering complex Othello strategies through evolutionary

neural networks.Connection Science, 7(3):195–209.

Moriarty, D. E., and Miikkulainen, R. (1996). Evolving obstacle avoidance behavior in a robot arm. In

Maes, P., Mataric, M. J., Meyer, J.-A., Pollack, J., and Wilson, S. W., editors,From Animals to Animats

4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, 468–475.

Cambridge, MA: MIT Press.

Nolfi, S., Elman, J. L., and Parisi, D. (1994). Learning and evolution in neural networks.Adaptive Behavior,

2:5–28.

Potter, M. A., De Jong, K. A., and Grefenstette, J. J. (1995). A coevolutionary approach to learning sequen-

tial decision rules. In Eshelman, L. J., editor,Proceedings of the Sixth International Conference on

Genetic Algorithms. San Francisco, CA: Morgan Kaufmann.

Radcliffe, N. J. (1993). Genetic set recombination and its application to neural network topology optimiza-

tion. Neural computing and applications, 1(1):67–90.

Richards, N., Moriarty, D., McQuesten, P., and Miikkulainen, R. (1997). Evolving neural networks to play

Go. In Bäck, T., editor,Proceedings of the Seventh International Conference on Genetic Algorithms

(ICGA-97, East Lansing, MI), 768–775. San Francisco, CA: Morgan Kaufmann.

Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1986).Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, Volume 1: Foundations. Cambridge, MA: MIT Press.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.IBM Journal, 3:210–

229.

34

http://nn.cs.utexas.edu/keyword?moriarty:patelbook
http://nn.cs.utexas.edu/keyword?moriarty:phd
http://nn.cs.utexas.edu/keyword?moriarty:discovering
http://nn.cs.utexas.edu/keyword?moriarty:discovering
http://nn.cs.utexas.edu/keyword?moriarty:sab96
http://kant.irmkant.rm.cnr.it/econets/nolfi.learn-evo.ps.Z
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/icga95.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/icga95.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/icga97.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/icga97.html

Santamaria, J. C., Sutton, R. S., and Ram, A. (1998). Experiments with reinforcement learning in problems

with continuous state and action spaces.Adaptive Behavior, 6(2):163–218.

Siegelmann, H. T., and Sontag, E. D. (1994). Analog computation via neural networks.Theoretical Com-

puter Science, 131(2):331–360.

Spears, W. (1995). Speciation using tag bits. InHandbook of Evolutionary Computation. IOP Publishing

Ltd. and Oxford University Press.

Stanley, K. O., and Miikkulainen, R. (2002a). Efficient reinforcement learning through evolving neural net-

work topologies. InProceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2002). San Francisco, CA: Morgan Kaufmann.

Stanley, K. O., and Miikkulainen, R. (2002b). Evolving neural networks through augmenting topologies.

Evolutionary Computation, 10(2).

Stanley, K. O., and Miikkulainen, R. (2004a). Competitive coevolution through evolutionary complexifica-

tion. Journal of Artificial Intelligence Research, 21:63–100.

Stanley, K. O., and Miikkulainen, R. (2004b). Evolving a roving eye for Go. InProceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2004). Berlin: Springer Verlag.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.Machine Learning, 3:9–44.

Sutton, R. S., and Barto, A. G. (1998).Reinforcement Learning: An Introduction. Cambridge, MA: MIT

Press.

Tesauro, G., and Sejnowski, T. J. (1987). A “neural” network that learns to play backgammon. In Anderson,

D. Z., editor,Neural Information Processing Systems. New York: American Institute of Physics.

Thurrott, P. (2002). Top stories of 2001, #9: Expanding video-Game market brings microsoft home for the

holidays.Windows & .NET Magazine Network.

Utgoff, P. E. (1989). Incremental induction of decision trees.Machine Learning, 4(2):161–186.

van Lent, M., and Laird, J. E. (2001). Learning procedural knowledge through observation. InProceedings

of the International Conference on Knowledge Capture, 179–186. New York: ACM.

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning.Machine Learning, 8(3):279–292.

35

file:citeseer.nj.nec.com/siegelmann94analog.html
http://www.cs.utexas.edu/users/kstanley/stanley.gecco02_1.ps.Z
http://www.cs.utexas.edu/users/kstanley/stanley.gecco02_1.ps.Z
http://nn.cs.utexas.edu/keyword?stanley:gecco04
http://www.winnetmag.com/Article/ArticleID/23862/23862.html
http://www.winnetmag.com/Article/ArticleID/23862/23862.html
http://portal.acm.org/citation.cfm?id=500765

Whitley, D., Dominic, S., Das, R., and Anderson, C. W. (1993). Genetic reinforcement learning for neuro-

control problems.Machine Learning, 13:259–284.

Wright, A. H. (1991). Genetic algorithms for real parameter optimization. In Rawlins, G. J. E., editor,

Foundations of Genetic Algorithms, 205–218. San Francisco, CA: Morgan Kaufmann.

Yao, X. (1999). Evolving artificial neural networks.Proceedings of the IEEE, 87(9):1423–1447.

Yoshioka, T., Ishii, S., and Ito, M. (1998). Strategy acquisition for the game Othello based on reinforcement

learning. In Usui, S., and Omori, T., editors,Proceedings of the Fifth International Conference on

Neural Information Processing, 841–844. Tokyo: IOS Press.

Zhang, B.-T., and Muhlenbein, H. (1993). Evolving optimal neural networks using genetic algorithms with

Occam’s razor.Complex Systems, 7:199–220.

36

	Introduction
	Background
	Real-time NeuroEvolution of Augmenting Topologies (rtNEAT)
	Genetic Encoding
	Tracking Genes through Historical Markings
	Protecting Innovation through Speciation
	Minimizing Dimensionality through Complexification
	Running NEAT in Real Time
	Step 1: Removing the worst agent
	Step 2: Re-estimating F
	Step 3: Choosing the parent species
	Step 4: Dynamic Compatibility Thresholding in Real time
	Step 5: Replacing the old agent with the new one
	Determining the Number of Ticks Between Replacements

	NeuroEvolving Robotic Operatives (NERO)
	Training Mode
	Battle Mode

	Playing NERO
	Discussion
	Conclusion
	NERO System Parameters

