
A Verified Operating System Kernel

William R. Bevier

Technical Report 11 October, 1987

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703
This work was sponsored in part by the University of

(512) 322-9951Texas at Austin by the Defense Advanced Research
Projects Agency, ARPA Order 5246, issued by the Space
and Naval Warfare Systems Command under Contract
N00039-85-K-0085 and at Computational Logic, Inc., by
the Defense Advanced Research Projects Agency, ARPA
Orders 6082 and 9151. The views and conclusions
contained in this document are those of the author and
should not be interpreted as representing the official
policies, either expressed or implied, of Computational
Logic, Inc., the Defense Advanced Research Projects
Agency or the U.S. Government.

Abstract

We present a multitasking operating system kernel, called KIT, written in the machine language of a
uni-processor von Neumann computer. The kernel is proved to implement, on this shared computer, a
fixed number of conceptually distributed communicating processes. In addition to implementing
processes, the kernel provides the following verified services: process scheduling, error handling, message
passing, and an interface to asynchronous devices. The problem is stated in the Boyer-Moore logic, and
the proof is mechanically checked with the Boyer-Moore theorem prover.

Acknowledgements

I want to thank my committee members Bob Boyer, J Moore, J. C. Browne, Don Fussell and Don Good.
All contributed to making the dissertation better than I could have done on my own. Particular thanks are
due to Don Good, who saw to it that I was supported at the Institute for Computing Science at the
University of Texas while working on this dissertation.

Thanks to everyone at the Institute for Computing Science for making it such an enjoyable place to work.
Conversations with Matt Kaufmann, Bill Young, Warren Hunt and Mike Smith were very valuable. Matt
Kaufmann read the first draft of the dissertation. Larry Smith built a prototype editor-based interface to
the Boyer-Moore theorem prover which made my life much easier. Larry Akers and Larry Smith kindly
protected me from other duties during the last months of preparation of the dissertation. Thanks again to
all.

Thanks to my wife Susan, without whom completion of this dissertation would not have been possible or
nearly as satisfying.

2

3

Chapter 1

INTRODUCTION

1.1 The Thesis

Since Dijkstra’s report on the "THE"-multiprogramming system [Dijkstra 68], many operating systems
have been designed as a hierarchy of cooperating processes. Brinch Hansen [BrinchHansen 70] named the
lowest layer of such a hierarchy the nucleus, or kernel. The purpose of a kernel is to simulate processes
and implement process communication. The virtual machine which results is a base for building higher
layers of an operating system.

To date, research in the verification of operating systems has not adequately penetrated the kernel layer. It
is possible to apply formal methods such as Hoare logic to kernel verification, but the specifications which
arise are large and tedious to prove. The situation begs for mechanical aids. Some formal systems which
can be used to specify operating systems take a notion of process as a primitive. Those who attempt to
use such systems to verify an implementation typically rely upon low-level machine-dependent
procedures which cannot be verified with the formal methods under consideration. These primitive
procedures are usually critical to the correct implementation of a process.

The purpose of this work is to address the problem of operating systems kernel verification. In particular,
we are concerned with the correct implementation of processes. We present a kernel, which we call
"KIT", written in the assembler language of a uni-processor computer with a typical von Neumann
architecture. (The name KIT is not a tortured acronym, but is intended to suggest the three words kernel,
isolated, tasks.) KIT is proved to implement, on a shared computer, a fixed number of conceptually
distributed communicating processes. In addition to implementing processes, the kernel provides the
following verified services:

• Process scheduling and allocation of CPU time,

• Response to program error conditions (e.g. unrecognized opcode),

• Single-word message passing among processes,

• Character I/O to asynchronous devices.

The result is an operating system kernel which correctly implements a set of concurrent processes. A set
of communicating processes will run as specified on KIT provided there are no hardware errors. The
operating system is proved not to introduce implementation bugs. KIT and its specification are defined in
the Boyer-Moore logic, and the proof is mechanically checked with the Boyer-Moore theorem prover
[Boyer 79].

It is important to say what we do not handle. We take UNIX as a point of comparison. The UNIX kernel

4

as described by Bach [Bach 86] contains two main components: the file subsystem, which besides
implementing a file structure also hides the device interface from the user level; and the process control
subsystem, which includes process creation and deletion, process communication, process scheduling and
memory management.

KIT deals with a subset of these phenomena. It handles process scheduling, process communication (by
message passing), and a terminal device interface. There is no dynamic creation of processes or
communication channels. There is no file system. KIT’s memory management is strictly that supplied by
the hardware - it does not include virtual memory. The hardware memory management is not assumed to
be correct, though. The verification of KIT requires a proof that the hardware protection mechanism
permits the implementation of isolated address spaces.

Therefore, while KIT is not big enough to be considered a kernel for a general purpose operating system,
it does confront some key operating system phenomena. It is adequate for a small special purpose system
such as a communications processor. KIT is fully operational in that it runs on a machine which can be
simulated in the Boyer-Moore logic.

1.2 Process Isolation

We identify a process with the machine state to which it has access. Processes have two kinds of state:
private and shared. There are two corresponding kinds of transitions on a process: private, which alters
only a process’s private state, and communication, which may alter the shared state and the private state of
a process.

As explained later, the highest level specification for KIT is a definition of a single communicating
process, which defines some elementary message passing primitives. These primitives are the only
communication transitions available to a process. The remaining transitions are required to be private
ones.

Our goal is to prove that multiple instances of the process definition are implemented by KIT running on a
particular uni-processor von Neumann machine. In the implementation, a process’s private state consists
of a segment of machine memory and some CPU registers. Its shared state consists of some message
buffers. The private transitions are implemented as the set of non-privileged machine instructions.
Communication transitions are implemented as supervisor services implemented by KIT routines.

At the specification level, process isolation is a trivial property. The proof that a task’s private state can
change only when it is active is a matter of examining a single small definition. At the implementation
level, the private state of a process is not transparently isolated from others. It is not at all obvious that a
private transition on one process leaves other process states unchanged. To prove that KIT implements
multiple processes requires the following results.

• A machine instruction executed in user mode alters only the private state of the current task.
The private state of other tasks and the shared state are protected.

• The services implemented by the kernel alter private and shared state only in ways specified
by the process definition.

The first result is largely a property of the machine architecture. We prove that the protection mechanism
of the target machine permits the implementation of private state and private transitions as required by the
process definition. The kernel guarantees that some conditions required by the machine protection
theorem are invariant.

5

The second result is obtained by verifying kernel code. We prove that state changes made by each kernel
routine correspond to changes to the abstract state at the level of the process definition.

1.3 A Characterization of this Work

We wish to leave the reader with no doubt regarding one of our goals: to verify KIT at the machine code
level. Below we give a small portion of an assembler language listing of the kernel. This is the portion
which saves the state of the current task on an interrupt. We give the details of our implementation of KIT
in chapter 4, but we hope at this point to emphasize the level of verification we perform. This code places
the address of an entry in a task table into register 2, and saves the task-visible state of the CPU of our
target machine in that entry. Our verification proves that the processor state is saved correctly so that the
fiction that each process owns the processor is maintained.

The assembler language representation of our code is not the object of proof. We go yet lower. We verify
the assembler output of the source code: a sequence of numbers which our target machine is capable of
interpreting.

SAVE-STATE
(move (2 temp-r2) (1 r2)) ;; Save R2
(move (2 temp-r3) (1 r3)) ;; Save R3
(move (1 r3) readyq) ;; R3 points to ready queue
(call qfirst) ;; R2 has current task id
save-state-return
(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length
(add (1 r2) task-table) ;; R2 points to current task table entry
(move (3 r2 pc-field) (2 reg-save-area interrupt-pc-field))
(move (3 r2 sp-field) (2 reg-save-area interrupt-sp-field))
(move (3 r2 r2-field) (2 temp-r2))
(move (3 r2 r3-field) (2 temp-r3))
(move (3 r2 r4-field) (1 r4))
(move (3 r2 r5-field) (1 r5))
(move (3 r2 r6-field) (1 r6))
(move (3 r2 r7-field) (1 r7))
(add (1 r2) flag-field) ;; bump index register
(move (3 r2) (2 reg-save-area interrupt-flag-field))
(move (1 r2) (2 temp-r2)) ;; Restore R2 & R3.
(move (1 r3) (2 temp-r3)) ;; This is necessary for SVC interrupts.
(return)

1.4 Plan of Dissertation

The script of Boyer-Moore forms which defines and verifies KIT contains approximately one thousand
definitions and thirty-five hundred lemmas. This script is the heart of the dissertation. The challenge is to
explain this script in a coherent fashion. In Chapter 2 we discuss our approach to verifying KIT. Chapters
3 through 5 discuss the specification, implementation and verification of KIT by examining the highest
level definitions and theorems in the script. Chapter 6 presents in detail the specification, implementation
and verification of queues, which permeate the kernel. Chapter 7 surveys related work and summarizes
our effort. Subsequent volumes contain the script and an index of names in the script. Numbers printed
with events in the text are indices into the script. The index gives the page numbers on which events occur
in this volume.

6

1.5 The Boyer-Moore Logic and its Proof Checker

A description of the Boyer-Moore logic and its proof checker appears in Appendix A. The description is
taken with permission from [Boyer 87]. We make some comments on our usage of the theorem prover.
These comments assume familiarity with the logic and the theorem prover.

We make use of shells to define a number of record structures. We describe our shells by giving the shell
constructor, shell recognizer and shell accessors as shown in the example of the shell FOO below. This
example illustrates how we display an ADD-SHELL event.

Shell Definition.
Add the shell FOO with recognizer FOO-SHELLP,
defining the record structure <A, B>.

We place no type restrictions on the fields of a shell. The event ADD-SHELL in the Boyer-Moore logic does
not permit associating arbitrary predicates with fields. Since we cannot say everything about a shell within
the ADD-SHELL form, we choose to say nothing. If we wish to restrict the fields of a shell to have certain
values, we define a predicate in the logic which recognizes a constrained shell.

We found that we could not manage our large script of events with globally enabled rewrite rules and
definitions. Each event in the script is therefore immediately disabled. The DISABLE events are not
displayed in the script but should be understood to be present. Our approach to guiding the theorem prover
to a proof therefore requires liberal use of ENABLE hints on lemmas. We found this actually to be quite
congenial. A given lemma typically immediately relies upon a fairly small number of support lemmas and
definitions. When proposing a lemma to the theorem prover, we can guess at a number of definitions and
lemmas which must be enabled. The others we discover as we see the prover fail. We found that using this
approach we were always engaged in a positive proof search and were never battling a rewriter which was
taking us in a bad direction due to an enabled but forgotten rule. As we became more and more familiar
with our script we found we were able to remember the names of many lemmas. We also invented
mechanical aids for discovering the names of applicable lemmas.

While a lemma typically relies on a small number of immediate supporters, there are exceptions. To ease
the burden of enabling large numbers of events, we created a new event DEFTHEORY. The form
(DEFTHEORY <NAME> <LIST-OF-NAMES>) binds a name to a list of earlier event names. In subsequent
events, the hint (ENABLE-THEORY NAME) enables all events to which NAME is bound.

7

Chapter 2

DEFINING FINITE STATE MACHINES

WITH RECURSIVE FUNCTIONS

KIT is verified by proving a correspondence between the behavior of two finite state machines. An
abstract finite state machine serves as an operational specification. The kernel running on the bare
computer is also defined as a finite state machine. In this chapter we explain how we define finite state
machines, and describe the form of the correspondence theorem between two machines. We give a brief
overview of the kernel proof, stating the correspondence theorem which establishes KIT’s correctness.

2.1 Interpreters

We define a finite state machine by an interpreter function. An interpreter function models transitions to a
machine over an arbitrary but finite time span. It is a dyadic function of the form Int : S × O → S, where
S is a set of machine states and O is a set of oracles for a machine. An oracle has two roles. It determines
the finite time span for which a machine invocation operates, and it may introduce non-deterministic state
changes into a machine, including communication with other machines.

In a simple situation the set of natural numbers N can be chosen as the oracle set. An interpreter of the
form Int : S × N → S models a machine which operates in complete isolation. Such a machine can be
defined in the Boyer-Moore logic as follows. The function STEP advances the state of this machine. The
expression (MACHINE1 STATE N) is the state obtained by applying N successive applications of STEP to
STATE.

Definition.
(MACHINE1 STATE N)

=
(IF (ZEROP N)

STATE
(MACHINE1 (STEP STATE) (SUB1 N)))

In a more typical situation, an oracle is a list which represents a finite time-sequenced series of external
events impinging on a machine. The length of the oracle determines the time span over which the
machine operates. An element of the oracle is either a single external event, or a symbol such as ’TICK

indicating no event. The interpreter consumes the next element of the oracle at each step, and runs until
the oracle is exhausted. The definition of MACHINE2 gives the form of such an interpreter. In this example,
the function CONSUME-INPUT consumes the next element of the oracle, incorporating it into the state of the
machine so that the input is visible to STEP.

8

Definition.
(MACHINE2 STATE ORACLE)

=
(IF (NOT (LISTP ORACLE))

STATE
(MACHINE2 (STEP (CONSUME-INPUT STATE (CAR ORACLE)))

(CDR ORACLE)))

2.2 Interpreter Equivalence Theorems

In this section we describe several types of theorem which establish a correspondence between two
machines. We call such theorems interpreter equivalence theorems.

We wish to define an implements relation on two machines. Let Int : S × O → S andA A A A
Int : S × O → S be interpreter functions which define two machines M and M . (The subscripts AC C C C A C
and C are chosen to suggest abstract and concrete machines.) Let MapUp : S → S be an abstractionC A
function which maps a concrete state to an abstract state. We say that M implements M if the followingC A
theorem holds.

∀ s ∈ SC C
∀ o ∈ OA A

(1) ∃ o ∈ O such thatC C

MapUp (Int (s , o)) = Int (MapUp (s), o).C C C A C A

Figure 2-1 illustrates the correspondence which the implements relation establishes.

Figure 2-1: Interpreter Equivalence

In this paper we prove a theorem of the form of (1). Notice that if there is a function
MapDown : S → S , and ∀ s ∈ S , MapUp (MapDown (s)) = s , then from (1) we get a strongerA C A A A A
relation given by (2).

9

∀ s ∈ SA A
∀ o ∈ OA A

(2) ∃ o ∈ O such thatC C

MapUp (Int (MapDown (s), o)) = Int (s , o).C A C A A A

Sometimes we find it convenient to reverse the quantification on the abstract and concrete oracles. Then
we get an interpreter equivalence theorem of the form given by (3). Figure 2-1 also describes this formula.

∀ s ∈ SC C
∀ o ∈ OC C

(3) ∃ o ∈ O such thatA A

MapUp (Int (s , o)) = Int (MapUp (s), o)C C C A C A

We cannot state (1), (2) or (3) in the quantifier-free Boyer-Moore logic. For (1) we replace the existential
variable o with a function CORACLE which computes the oracle required by Int to match the behavior ofC C
Int . Typically, this is a function both of the initial concrete state and the value of o . We re-state (1) inA A
the Boyer-Moore logic as follows. The predicate GOOD-CSTATE identifies an element of the set of concrete
machine states.

Theorem. IMPLEMENTS-RELATION:
(IMPLIES (GOOD-CSTATE CSTATE)

(EQUAL (MAPUP (INT-C CSTATE (CORACLE CSTATE ORACLE)))
(INT-A (MAPUP CSTATE) ORACLE)))

2.3 The KIT Proof Structure

The main result in the verification of KIT is the theorem OS-IMPLEMENTS-PARALLEL-TASKS. It is an
interpreter equivalence theorem which demonstrates that the behavior of a single task running under the
kernel implements an abstract definition of a process. In this theorem, the functions TASK-PROCESSOR and
TM-PROCESSOR are interpreter functions. The function PROJECT-ITH-TASK is the mapping function. Our
goal in this dissertation is to explain the content of this theorem.

Theorem {4623}. OS-IMPLEMENTS-PARALLEL-TASKS:
(IMPLIES
(AND (GOOD-OS OS)

(PLISTP ORACLE)
(FINITE-NUMBERP I (LENGTH (AK-PSTATES (MAPUP-OS OS)))))

(EQUAL (PROJECT-ITH-TASK I (TM-PROCESSOR OS (OS-ORACLE OS ORACLE)))
(TASK-PROCESSOR (PROJECT-ITH-TASK I OS)

I
(CONTROL-ORACLE I (MAPUP-OS OS) ORACLE))))

The problem is decomposed into two steps, as pictured in Figure 2-2. An intermediate machine, called the
abstract kernel gives an operational specification for KIT. The proof of OS-IMPLEMENTS-PARALLEL-TASKS
is a result of the theorems AK-IMPLEMENTS-PARALLEL-TASKS and CORRECTNESS-OF-OPERATING-SYSTEM,
which handle the top and bottom interpreter equivalence theorems, respectively, of Figure 2-2.

Theorem {1689}. AK-IMPLEMENTS-PARALLEL-TASKS (rewrite):
(IMPLIES (AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE))))

10

Figure 2-2: KIT Proof Structure

Theorem {4621}. CORRECTNESS-OF-OPERATING-SYSTEM (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE))
(EQUAL (MAPUP-OS (TM-PROCESSOR OS (OS-ORACLE OS ORACLE)))

(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

The verification of KIT spans these layers of interpreters. The task layer is at the top. It provides a
definition of a single communicating process. The second layer, the abstract kernel, gives the kernel
specification. The abstract kernel contains a fixed number of task states. The state space of the abstract
kernel is such that the isolation of task states is easily established. A function PROJECT maps the state of
ith task out of the abstract kernel and up to the task layer.

The bottom layer defines the target machine. The target machine is a very simple von Neumann computer.
We are particularly interested in the state of a target machine when loaded with the machine code for KIT.
In such a machine state, defined by the predicate GOOD-OS, the implementations of tasks are not
transparently isolated. We must prove that they are isolated as defined by the abstract kernel. The
function MAPUP-OS maps the kernel state up to an abstract kernel state. It not only maps up the state of
each task, but the state of all data structures (e.g. the ready queue) which the kernel uses to manage tasks.

11

Chapter 3

THE SPECIFICATION OF KIT

In this chapter we describe the finite state machines which define the task and abstract kernel layers of
Figure 2-2. These serve as specifications for KIT. For each layer we describe a state set and an interpreter
function. We occasionally make reference to intended implementation details to foreshadow later
chapters.

3.1 The Task Layer

The top layer defines an independent process, called a task, capable of communicating with other
processes. We wish to prove correct a particular implementation of tasks.

Figure 3-1 depicts an instance of a network structure of communicating processes. This figure contains a
star with five points, while our definition allows an arbitrary but fixed number of points. Single-headed
arrows indicate communication in the direction of the arrowhead. Double-headed arrows abbreviate two
single-headed arrows, one going in each direction. Each node of Figure 3-1 represents a process. The
nodes at the points of the star are implemented as KIT tasks. The nodes at the extreme perimeter, which
communicate with tasks in one direction only, are implemented as I/O devices.

The task layer defines a single task’s view of this process network. The state space of a task consists of
two parts: a private state which is accessible only to the owning task, and a shared state which is used for
implementing inter-task communication. We distinguish two categories of transitions on a task: private
transitions update only the private state, communication transitions update the shared state. The state
space of a task is described in the Boyer-Moore logic by the shell TASK. The TASK-PSTATE field is the
private state of a task. The TASK-CHANNELS field is the shared state containing an implementation of the
communication network in which tasks participate.

Shell Definition {1386}.
Add the shell TASK with recognizer TASK-SHELLP,
defining the record structure <TASK-PSTATE, TASK-CHANNELS>.

We remind readers unfamiliar with the Boyer-Moore logic that the form (TASK A B) constructs a task
state with private state A and channel state B. If X is a task object, then the form (TASK-PSTATE X) accesses
its private state field, and (TASK-CHANNELS X) accesses its channel state.

The TASK-CHANNELS field contains an implementation of the network structure. It is a three-tuple of tables
of fixed-size buffers. The TASK-IBUFFERS table is for communication with input devices, the
TASK-OBUFFERS table is for communication with output devices, and the TASK-MBUFFERS table contains
message buffers for communicating with other tasks. The names we place on these fields merely suggest a

12

Figure 3-1: Network

lower-level implementation. At this level, a task’s view of a device differs from its view of another task
only in the name space each occupies, as suggested by Figure 3-1.

Definition {1387}.
(TASK-IBUFFERS TASK) = (CAR (TASK-CHANNELS TASK))

Definition {1388}.
(TASK-OBUFFERS TASK) = (CADR (TASK-CHANNELS TASK))

Definition {1389}.
(TASK-MBUFFERS TASK) = (CADDR (TASK-CHANNELS TASK))

The predicate GOOD-TASK completes the definition of the state set of a task. It recognizes a proper task
state with given limits on the number of buffers. The predicates GOOD-TASK-BUFFER-LIST and
GOOD-TASK-BUFFER-TABLE place limits on the length of buffers and the type of their contents. The
predicate GOOD-ADDRESS-SPACE recognizes a proper target machine address space. It reveals our intention
to implement the private state of a task as an address space of some target machine. At this point, we offer
no definition of GOOD-ADDRESS-SPACE.

13

Definition {1433}.
(GOOD-TASK TASK ILENGTH OLENGTH MLENGTH)

=
(AND (TASK-SHELLP TASK)

(GOOD-ADDRESS-SPACE (TASK-PSTATE TASK)
(LENGTH (TM-MEMORY (TASK-PSTATE TASK))))

(EQUAL (LENGTH (TASK-IBUFFERS TASK)) ILENGTH)
(GOOD-TASK-BUFFER-LIST (TASK-IBUFFERS TASK)

(TASK-IBUFFER-CAPACITY))
(EQUAL (LENGTH (TASK-OBUFFERS TASK)) OLENGTH)
(GOOD-TASK-BUFFER-LIST (TASK-OBUFFERS TASK)

(TASK-OBUFFER-CAPACITY))
(EQUAL (LENGTH (TASK-MBUFFERS TASK)) MLENGTH)
(GOOD-TASK-BUFFER-TABLE (TASK-MBUFFERS TASK)

MLENGTH
(TASK-MBUFFER-CAPACITY)))

The interpreter function which defines the transitions on a task is called TASK-PROCESSOR. The first formal
argument, TASK, is a task state. For convenience, and this is the only place we diverge from the pattern, we
split this interpreter’s oracle into two formal arguments. The argument I is the identifier of the task in the
network which the task can sense only through its shared state. The task identifier is a non-negative
integer in some bounded range. The argument ORACLE is a list each of whose elements is either T,
indicating that the task is active and should take a step on its own initiative, or not T, indicating that the
task is not active at this step. In the latter case, the oracle supplies a triple which contains the value of the
channel state at the end of the current step. We shall see later that the kernel, which implements a fixed
number of task states, can construct the oracle argument to a task. Notice that the function
TASK-UPDATE-CHANNELS, which updates a task state on a non-active step, preserves the private state of the
task. Therefore a task’s private state is not altered when the task is not active.

An active task step is defined by the function TASK-STEP. The predicate TASK-COMMUNICATIONP determines
if the current transition is a communication transition. If so, the task executes a communication step,
otherwise a private step. A private step is defined to be a fetch-execute operation. We thus require a
task’s private state to contain its own control state. There is no requirement in this definition that only a
single task is active in any instant, but KIT runs on a single processor and implements tasks in this way.

Definition {1425}.
(TASK-PROCESSOR TASK I ORACLE)

=
(IF (LISTP ORACLE)

(IF (TASK-ACTIVEP (CAR ORACLE))
(TASK-PROCESSOR (TASK-STEP TASK I)

I
(CDR ORACLE))

(TASK-PROCESSOR (TASK-UPDATE-CHANNELS TASK (CAR ORACLE))
I
(CDR ORACLE)))

TASK)

Definition {1424}.
(TASK-ACTIVEP X) = (EQUAL X T)

Definition {1422}.
(TASK-STEP TASK I)

=
(IF (TASK-COMMUNICATIONP TASK)

(TASK-COMMUNICATION-STEP TASK I)
(TASK-PRIVATE-STEP TASK))

Definition {1423}.
(TASK-UPDATE-CHANNELS TASK CHANNELS)

=
(TASK (TASK-PSTATE TASK) CHANNELS)

14

Definition {1421}.
(TASK-PRIVATE-STEP TASK)

=
(TASK (TASK-FETCH-EXECUTE (TASK-PSTATE TASK))

(TASK-CHANNELS TASK))

The definition of TASK-COMMUNICATION-STEP specifies the communication primitives which the kernel
implements. These are the operations send, receive, input and output. Send and receive access the
message buffers, input the input buffers and output the output buffers. There is one bounded message
buffer for each <i,j> pair of task identifiers. Message buffer <i,j> handles messages flowing from task i
to task j. Communication with input and output buffers is simpler. Task i can receive only from input
buffer i, and can send only to output buffer i. The units of information which are passed are implemented
as single target machine words.

The communication primitives are sensitive to empty and full buffers. An attempt to retrieve information
from an empty buffer results in no change to the task state, so the next time the task is active it will be in
the same state from which it initially tried to receive and will therefore attempt to retrieve from the same
buffer again. We give the definitions of send, receive, input and output below. The function
TASK-STORE-MESSAGE defines a convention by which messages are delivered to the private state of a task.
The function TASK-UPDATE-CONTROL updates the control state of a task so that the communication
operation is stepped over.

Definition {1416}.
(TASK-EXECUTE-SEND MSG SRCID DESTID TASK)

=
(IF (QFULLP2 SRCID DESTID (TASK-MBUFFERS TASK) (TASK-MBUFFER-CAPACITY))

TASK
(TASK (TASK-UPDATE-CONTROL (TASK-PSTATE TASK))

(LIST (TASK-IBUFFERS TASK)
(TASK-OBUFFERS TASK)
(ENQ2 MSG SRCID DESTID (TASK-MBUFFERS TASK)))))

Definition {1417}.
(TASK-EXECUTE-RECEIVE SRCID DESTID TASK)

=
(IF (QEMPTYP2 SRCID DESTID (TASK-MBUFFERS TASK))

TASK
(TASK (TASK-UPDATE-CONTROL

(TASK-STORE-MESSAGE
(QFIRST2 SRCID DESTID (TASK-MBUFFERS TASK))
(TASK-PSTATE TASK)))

(LIST (TASK-IBUFFERS TASK)
(TASK-OBUFFERS TASK)
(DEQ2 SRCID DESTID (TASK-MBUFFERS TASK)))))

Definition {1418}.
(TASK-EXECUTE-OUTPUT CHAR ID TASK)

=
(IF (QFULLP (GETNTH ID (TASK-OBUFFERS TASK)) (TASK-OBUFFER-CAPACITY))

TASK
(TASK (TASK-UPDATE-CONTROL (TASK-PSTATE TASK))

(LIST (TASK-IBUFFERS TASK)
(ENQ-ITH-BUFFER CHAR ID (TASK-OBUFFERS TASK))
(TASK-MBUFFERS TASK))))

15

Definition {1419}.
(TASK-EXECUTE-INPUT ID TASK)

=
(IF (QEMPTYP (GETNTH ID (TASK-IBUFFERS TASK)))

TASK
(TASK (TASK-UPDATE-CONTROL

(TASK-STORE-MESSAGE
(QFIRST (GETNTH ID (TASK-IBUFFERS TASK)))
(TASK-PSTATE TASK)))

(LIST (DEQ-ITH-BUFFER ID (TASK-IBUFFERS TASK))
(TASK-OBUFFERS TASK)
(TASK-MBUFFERS TASK))))

The functions GETNTH and PUTNTH are the list accessing primitives. GETNTH accesses the nth element of a
list. PUTNTH stores a value in the nth location in a list.

Definition {210}.
(GETNTH N L)

=
(IF (LISTP L)

(IF (ZEROP N)
(CAR L)
(GETNTH (SUB1 N) (CDR L)))

0)

Definition {211}.
(PUTNTH V N L)

=
(IF (LISTP L)

(IF (ZEROP N)
(CONS V (CDR L))
(CONS (CAR L)

(PUTNTH V (SUB1 N) (CDR L))))
L)

A list structure is used to represent buffers. Buffers are bounded FIFO queues. The primitives which
manipulate a buffer are given below. They are all obvious, except perhaps QREPLACE, which replaces the
last element of a queue with a new item. The functions ENQ2, DEQ2, QFIRST2, QFULLP2 and QEMPTYP2

mentioned above access a 2-dimensional table of buffers, and are defined in terms of the primitives listed
below.

Definition {470}.
(QFIRST LIST) = (CAR LIST)

Definition {471}.
(ENQ ITEM LIST) = (APPEND LIST (LIST ITEM))

Definition {472}.
(DEQ LIST) = (CDR LIST)

Definition {473}.
(QEMPTYP LIST) = (EQUAL (LENGTH LIST) 0)

Definition {474}.
(QFULLP LIST MAX) = (NOT (LESSP (LENGTH LIST) MAX))

Definition {475}.
(QREPLACE ITEM QUEUE) = (ENQ ITEM (NONLAST QUEUE))

The communication primitives are the only transitions explicitly defined at the task layer. Recall that the
definition of a private step is the application of a fetch-execute operation to the private state of a task. We
intend to define TASK-FETCH-EXECUTE to be exactly a target machine’s fetch-execute operation. The
verification of KIT includes a proof that the target machine’s architecture implements isolated address
spaces in a way which satisfies this definition of a task.

Definition {1415}.
(TASK-FETCH-EXECUTE PSTATE) = (TM-FETCH-EXECUTE PSTATE)

16

This concludes the description of our definition of a task. We have in mind a network of communicating
processes whose communication structure is suggested by Figure 3-1. The task layer formalizes the view
of this network taken by one of the nodes at the points of the star. We intend to implement the network on
a computer running a multi-programmed operating system connected to a set of asynchronous input and
output devices. Figure 3-1 suggests clearly our intended implementation.

• Tasks are those processes which communicate via the message buffers. A full star network
among tasks is defined. They are completely implemented by an operating system running
on a computer.

• Input devices communicate only with tasks, and in one direction only: device to task.

• Output devices communicate only with tasks, and in one direction only: task to device.

The task layer serves as a specification for the kernel. The channel state and channel transitions are
completely defined. Private state and private transitions are defined to coincide with some implementation
machine. Choosing the private state to be implemented as an address space on a target machine is an idea
common in operating systems. The proof that our chosen target machine implements private states in a
way which satisfies our definition of a task is one of the most important results in the verification of KIT.

3.2 The Abstract Kernel Layer

The task layer defines the communication transitions in which a task may engage, but says nothing of how
tasks are activated. The abstract kernel layer defines a scheme for activating a finite set of tasks. The
distinction between a task and an I/O device is made more concrete. Each task has a state known
completely to the abstract kernel, while the state of an I/O device is unspecified. Devices communicate
with the kernel only through shared ports. A number of task management operations are specified,
including time slicing, scheduling and error handling.

The state space of the abstract kernel is described by the shell AK which defines a 10-tuple. The
AK-PSTATES field is a fixed-size array of the private states of tasks. The private state of a task is easily
proved to be isolated from the others by virtue of the properties of array access. The fields AK-IBUFFERS,
AK-OBUFFERS and AK-MBUFFERS contain the shared state and, when grouped into a list, are identical to the
channel state at the task layer. The remaining fields introduce the state required to implement task
management and communication with I/O devices. The AK-READYQ is a queue of task identifiers. Task
identifiers are integers in a range bounded by the number of tasks. The first element of the ready queue is
the identifier of the current task. The field AK-STATUS is an array, one element for each task, which gives
the current status of the task. The AK-RWSTATE field is a running/wait state flag. The kernel waits when no
tasks are ready to run. The field AK-CLOCK is the program timer used to control time slicing. The fields
AK-IPORTS and AK-OPORTS define an array of input and output ports for communication with devices.

Shell Definition {1443}.
Add the shell AK with recognizer AK-SHELLP,
defining the record structure
<AK-PSTATES, AK-IBUFFERS, AK-OBUFFERS, AK-MBUFFERS, AK-READYQ,
AK-STATUS, AK-RWSTATE, AK-CLOCK, AK-IPORTS, AK-OPORTS>.

The predicate GOOD-AK defines the abstract kernel state set. It places restrictions on each field of an AK

shell. In addition, GOOD-AK states two invariants on the abstract kernel. First, the ready queue is a
permutation of the set of ready tasks as defined by the task status array. Second, the kernel is in the wait
state if and only if the ready queue is empty. These two invariants are required to prove that the predicate
GOOD-AK is an invariant on the abstract kernel interpreter. The constant function AK-TASKIDLUB defines the
number of tasks which AK supports.

17

Definition {1444}.
(AK-TASKIDLUB) = 16

Definition {1532}.
(GOOD-AK AK)

=
(AND (AK-SHELLP AK)

(EQUAL (LENGTH (AK-PSTATES AK)) (AK-TASKIDLUB))
(GOOD-ADDRESS-SPACE-LIST (AK-PSTATES AK))
(EQUAL (LENGTH (AK-IBUFFERS AK)) (AK-TASKIDLUB))
(GOOD-TASK-BUFFER-LIST (AK-IBUFFERS AK) (TASK-IBUFFER-CAPACITY))
(EQUAL (LENGTH (AK-OBUFFERS AK)) (AK-TASKIDLUB))
(GOOD-TASK-BUFFER-LIST (AK-OBUFFERS AK) (TASK-OBUFFER-CAPACITY))
(EQUAL (LENGTH (AK-MBUFFERS AK)) (AK-TASKIDLUB))
(GOOD-TASK-BUFFER-TABLE (AK-MBUFFERS AK)

(AK-TASKIDLUB)
(TASK-MBUFFER-CAPACITY))

(PLISTP (AK-READYQ AK))
(LESSP (LENGTH (AK-READYQ AK)) (ADD1 (AK-TASKIDLUB)))
(FINITE-NUMBER-LISTP (AK-READYQ AK) (AK-TASKIDLUB))
(EQUAL (LENGTH (AK-STATUS AK)) (AK-TASKIDLUB))
(GOOD-STATUS-LIST (AK-STATUS AK))
(FINITE-NUMBERP (AK-RWSTATE AK) 2)
(FINITE-NUMBERP (AK-CLOCK AK) (TM-WORDLUB))
(PLISTP (AK-IPORTS AK))
(EQUAL (LENGTH (AK-IPORTS AK)) (TM-PORT-LENGTH))
(GOOD-TM-IPORT-ARRAY (AK-IPORTS AK))
(PLISTP (AK-OPORTS AK))
(EQUAL (LENGTH (AK-OPORTS AK)) (TM-PORT-LENGTH))
(GOOD-TM-OPORT-ARRAY (AK-OPORTS AK))
(PERMUTATION (AK-READYQ AK) (AK-READY-SET AK))
(IFF (AK-WAITING AK) (QEMPTYP (AK-READYQ AK))))

Definition {357}.
(FINITE-NUMBERP N LUB) = (AND (NUMBERP N) (LESSP N LUB))

Definition {359}.
(FINITE-NUMBER-LISTP L LUB)

=
(IF (LISTP L)

(AND (FINITE-NUMBERP (CAR L) LUB)
(FINITE-NUMBER-LISTP (CDR L) LUB))

T)

The interpreter function which defines the transitions on the abstract kernel is AK-PROCESSOR. The
argument AK represents the state of the abstract kernel. The oracle argument is a list. Each element of the
list is either an input interrupt, an output interrupt or neither. An input interrupt is a 2-tuple containing a
device identifier and a character. An output interrupt is a 1-tuple containing only a device identifier. The
function AK-POST-INTERRUPT incorporates an interrupt into the state of the machine by updating one of the
ports. AK-POST-INTERRUPT raises the interrupt flag in an input port on an input interrupt, and writes the
character into a character buffer in the port. Similarly, AK-POST-INTERRUPT raises an interrupt in an
output port on an output interrupt. When an oracle element is not an I/O interrupt, no state change is made
by AK-POST-INTERRUPT. The abstract kernel is defined to post interrupts in a way identical to the target
machine. Chapter 4 contains the formal details about the structure of ports and I/O interrupt posting.

Definition {1516}.
(AK-PROCESSOR AK ORACLE)

=
(IF (LISTP ORACLE)

(AK-PROCESSOR (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))

AK)

The function AK-STEP defines the single-step function of the abstract kernel. Input and output interrupt
processing has the highest priority. The functions AK-INPUT-INTERRUPT-HANDLER and

18

AK-OUTPUT-INTERRUPT-HANDLER define the input and output interrupt handlers. AK-WAITING determines if
the machine is in the wait state. If so, no state change occurs. If none of the above conditions hold, the
error status of the current task is checked. The function AK-ERROR-HANDLER defines the kernel’s error
handler. A clock interrupt signals the end of the current task’s time slice. The function
AK-CLOCK-INTERRUPT-HANDLER defines the task switch on a clock interrupt. The function
AK-SVC-INTERRUPTP detects a request to call a kernel function in behalf of the current task ("svc"
abbreviates "supervisor call"). The services provided by the kernel are exactly the communication
primitives of the task layer: send, receive, input and output. The function AK-SVC-HANDLER defines these
operations at the abstract kernel layer. Finally, if none of the above conditions hold, the current task takes
a private step as defined by AK-PRIVATE-STEP.

Like the private step function at the task layer, AK-PRIVATE-STEP depends on the target machine’s fetch-
execute function, TM-FETCH-EXECUTE. AK-PRIVATE-STEP applies TM-FETCH-EXECUTE to the current task’s
private state. More precisely, the ith element of the private state array is replaced by the application of
TM-FETCH-EXECUTE to that element, where i is the identifier of the current task. The isolation of private
states is a simple result.

Definition {1514}.
(AK-STEP AK)

=
(IF (AK-INPUT-INTERRUPTP AK)

(AK-INPUT-INTERRUPT-HANDLER
(AK-INTERRUPTING-INPUT-PORT (AK-IPORTS AK))
AK)

(IF (AK-OUTPUT-INTERRUPTP AK)
(AK-OUTPUT-INTERRUPT-HANDLER

(AK-INTERRUPTING-OUTPUT-PORT (AK-OPORTS AK))
AK)

(IF (AK-WAITING AK)
AK

(IF (AK-ERRORP AK)
(AK-ERROR-HANDLER AK)

(IF (AK-CLOCK-INTERRUPTP AK)
(AK-CLOCK-INTERRUPT-HANDLER AK)

(IF (AK-SVC-INTERRUPTP AK)
(AK-SVC-HANDLER AK)

(AK-PRIVATE-STEP AK)))))))

Definition {1505}.
(AK-PRIVATE-STEP AK)

=
(AK (AK-FETCH-EXECUTE (AK-TASKID AK) (AK-PSTATES AK))

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(AK-RWSTATE AK)
(SUB1 (AK-CLOCK AK))
(AK-IPORTS AK)
(AK-OPORTS AK))

Definition {1461}.
(AK-FETCH-EXECUTE ID PSTATES)

=
(PUTNTH (TM-FETCH-EXECUTE (GETNTH ID PSTATES))

ID
PSTATES)

19

Definition {1446}.
(AK-TASKID AK) = (QFIRST (AK-READYQ AK))

An AK step is an application of one of five interrupt functions, or is a private step, or is a noop in the case
of a waiting machine with no I/O interrupts. The definitions of the five AK interrupt handlers provide a
specification for the services which must be provided by the implementation of KIT on the target
machine. The definition of a private step establishes a constraint on the protection mechanism provided
by the target machine’s architecture. In the remainder of this section we examine each of the five interrupt
handlers, beginning with the simplest.

3.2.1 The Clock Interrupt Handler

AK-CLOCK-INTERRUPT-HANDLER defines a simple round-robin scheduling algorithm. The identifier of the
current task is the first element of the ready queue. On a clock interrupt, the first element of the ready
queue is removed and enqueued at the end of the ready queue. The dispatcher senses an empty ready
queue and sets the kernel state accordingly: the kernel is put in the wait state if the ready queue is empty,
otherwise the kernel is put in the run state and the program clock is initialized. On a clock interrupt the
length of the ready queue is not changed, so the former condition does not hold. The same primitives
which manipulate buffers also manipulate the ready queue. All are finite queues represented as list
structures.

Definition {1490}.
(AK-CLOCK-INTERRUPT-HANDLER AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(ENQ (AK-TASKID AK) (DEQ (AK-READYQ AK)))
(AK-STATUS AK)
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1489}.
(AK-DISPATCHER AK)

=
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(IF (QEMPTYP (AK-READYQ AK))

(AK-WAIT-STATE)
(AK-RUN-STATE))

(IF (QEMPTYP (AK-READYQ AK))
(AK-CLOCK AK)
(AK-TIME-SLICE))

(AK-IPORTS AK)
(AK-OPORTS AK))

20

3.2.2 The Error Handler

A clock interrupt does not change the length of the ready queue or the status of a task. The error trap
mechanism illustrates these situations. The error handler aborts the current task and prevents it from
running again by removing its identifier from the head of the ready queue and updating its status to
indicate an error condition. The status is updated by storing the 2-tuple (LIST (AK-ERROR-STATUS) 0) in
the entry of AK-STATUS indexed by the current task identifier. An element of the status array is a 2-tuple
(status-flag taskid). A task’s status is one of ready, error, waiting-to-send, waiting-to-receive,
waiting-to-input or waiting-to-output. When a task is marked waiting to send or receive, the identifier of
the task upon which it is waiting is recorded in the second element of the status tuple. For the other
status-flag values a 0 is stored in the second element.

Definition {1491}.
(AK-ERROR-HANDLER AK)

=
(AK-DISPATCHER
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-ERROR-STATUS) 0)

(AK-TASKID AK)
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

3.2.3 The Supervisor Call Handler

The function AK-SVC-HANDLER interprets a request for one of a set of services provided by the kernel.
These are exactly the communication primitives defined at the task layer: send, receive, input and output.
AK-SVC-HANDLER itself is just a case split on the requested service. The functions AK-SRCID, AK-DESTID
and AK-MESSAGE define conventions by which tasks pass arguments to the supervisor call handler.

The functions which define the services are given below. These services perform transitions on the
buffers. In addition, they define operations on the kernel data structures which manage task activations.

Definition {1504}.
(AK-SVC-HANDLER AK)

=
(IF (AK-SEND-INSTRUCTIONP AK)

(AK-EXECUTE-SEND (AK-MESSAGE AK) (AK-TASKID AK) (AK-DESTID AK) AK)

(IF (AK-RECEIVE-INSTRUCTIONP AK)
(AK-EXECUTE-RECEIVE (AK-SRCID AK) (AK-TASKID AK) AK)

(IF (AK-TYO-INSTRUCTIONP AK)
(AK-EXECUTE-OUTPUT (AK-MESSAGE AK) (AK-TASKID AK) AK)

(AK-EXECUTE-INPUT (AK-TASKID AK) AK))))

3.2.3-A Send

The form (AK-EXECUTE-SEND MSG SRCID DESTID AK) gives an AK state which defines the send transition.
If the buffer which implements communication from task SRCID to task DESTID is full, then the sending
task is made to wait. Otherwise, the message is delivered and the destination task is made ready if it had
been waiting for a message from the sender. The function AK-UPDATE-CONTROL updates the control state of

21

the sending task to step beyond the send request.

Definition {1494}.
(AK-EXECUTE-SEND MSG SRCID DESTID AK)

=
(IF (QFULLP2 SRCID DESTID (AK-MBUFFERS AK) (TASK-MBUFFER-CAPACITY))

(AK-BLOCK-SEND SRCID DESTID AK)
(AK-EXECUTE-SEND-TO-BUFFER MSG SRCID DESTID AK))

Definition {1492}.
(AK-BLOCK-SEND SRCID DESTID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-SEND-STATUS) DESTID)

SRCID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1493}.
(AK-EXECUTE-SEND-TO-BUFFER MSG SRCID DESTID AK)

=
(AK (AK-UPDATE-CONTROL SRCID (AK-PSTATES AK))

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(ENQ2 MSG SRCID DESTID (AK-MBUFFERS AK))
(IF (AK-WAITING-TO-RECEIVEP SRCID DESTID AK)

(ENQ DESTID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-RECEIVEP SRCID DESTID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0)

DESTID
(AK-STATUS AK))

(AK-STATUS AK))
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK))

3.2.3-B Receive

The form (AK-EXECUTE-RECEIVE SRCID DESTID AK) gives an AK state which defines the receive
operation. If the buffer which implements communication from task SRCID to task DESTID is empty, then
the receiving task is made to wait. Otherwise, the message is dequeued from the buffer and delivered to
the receiving task. If the sender is waiting on a full buffer, it is made ready again. The function
AK-STORE-MESSAGE defines the convention by which messages are delivered to the private state of a task.

Definition {1497}.
(AK-EXECUTE-RECEIVE SRCID DESTID AK)

=
(IF (QEMPTYP2 SRCID DESTID (AK-MBUFFERS AK))

(AK-BLOCK-RECEIVE SRCID DESTID AK)
(AK-EXECUTE-RECEIVE-FROM-BUFFER SRCID DESTID AK))

22

Definition {1495}.
(AK-BLOCK-RECEIVE SRCID DESTID AK)

=
(AK-DISPATCHER
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-RECEIVE-STATUS) SRCID)

DESTID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1496}.
(AK-EXECUTE-RECEIVE-FROM-BUFFER SRCID DESTID AK)

=
(AK (AK-UPDATE-CONTROL

DESTID
(AK-STORE-MESSAGE (QFIRST2 SRCID DESTID (AK-MBUFFERS AK))

DESTID
(AK-PSTATES AK)))

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(DEQ2 SRCID DESTID (AK-MBUFFERS AK))
(IF (AK-WAITING-TO-SENDP SRCID DESTID AK)

(ENQ SRCID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-SENDP SRCID DESTID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0)

SRCID
(AK-STATUS AK))

(AK-STATUS AK))
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK))

3.2.3-C Input

The input supervisor service handles a request by a task for a character from an input device. The abstract
kernel buffers characters arriving from each input port and delivers them to the owning task on request.
The function AK-EXECUTE-INPUT defines the input supervisor service. It accesses the input buffer indexed
by the formal argument ID. If the buffer is empty, it blocks the requesting task. Otherwise, it removes the
first character on the device input buffer and delivers it to the requesting task.

Definition {1503}.
(AK-EXECUTE-INPUT ID AK)

=
(IF (QEMPTYP (GETNTH ID (AK-IBUFFERS AK)))

(AK-BLOCK-INPUT ID AK)
(AK-EXECUTE-INPUT-FROM-BUFFER ID AK))

23

Definition {1501}.
(AK-BLOCK-INPUT ID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-INPUT-STATUS) 0)

ID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1502}.
(AK-EXECUTE-INPUT-FROM-BUFFER ID AK)

=
(AK (AK-UPDATE-CONTROL

ID
(AK-STORE-MESSAGE (QFIRST (GETNTH ID (AK-IBUFFERS AK)))

ID
(AK-PSTATES AK)))

(PUTNTH (DEQ (GETNTH ID (AK-IBUFFERS AK)))
ID
(AK-IBUFFERS AK))

(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK))

3.2.3-D Output

The output supervisor service handles a request by a task to send a character to an output device. The
abstract kernel buffers characters waiting to be sent to a device, delivering one each time an output buffer
is non-empty and its associated device is idle. The function AK-EXECUTE-OUTPUT defines the output
supervisor service. It accesses the output buffer indexed by the formal argument ID. If the buffer is full,
the requesting task is blocked. Otherwise, a character is enqueued on the buffer. If the associated device is
idle, an output interrupt is triggered, causing the output interrupt handler to initiate an output to the device.
I/O ports and I/O interrupts at the abstract kernel layer are defined to coincide with the implementation at
the target machine layer.

Definition {1500}.
(AK-EXECUTE-OUTPUT CHAR ID AK)

=
(IF (QFULLP (GETNTH ID (AK-OBUFFERS AK))

(TASK-OBUFFER-CAPACITY))
(AK-BLOCK-OUTPUT ID AK)
(AK-EXECUTE-OUTPUT-TO-BUFFER CHAR ID AK))

24

Definition {1498}.
(AK-BLOCK-OUTPUT ID AK)

=
(AK-DISPATCHER
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-OUTPUT-STATUS) 0)

ID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1499}.
(AK-EXECUTE-OUTPUT-TO-BUFFER CHAR ID AK)

=
(AK (AK-UPDATE-CONTROL ID (AK-PSTATES AK))

(AK-IBUFFERS AK)
(ENQ-ITH-BUFFER CHAR ID (AK-OBUFFERS AK))
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(IF (AK-OPORT-IDLEP ID (AK-OPORTS AK))

(AK-POST-OUTPUT-INTERRUPT ID (AK-OPORTS AK))
(AK-OPORTS AK)))

3.2.4 The Input Interrupt Handler

An input interrupt is a non-deterministic event supplied by AK’s oracle. It signals the arrival of a character
from an input device. The main functions of the input interrupt handler are: to enqueue the arriving input
character on the designated buffer, to clear the input interrupt signal, and to make the owning task ready if
it is waiting for input. The state in which the input interrupt handler leaves the kernel depends on whether
the kernel is waiting. When waiting, the ready queue is empty. If the task which owns the interrupting
input device is waiting on input that task is made ready and is dispatched, otherwise the kernel remains
waiting. If the kernel is running, the current task is resumed without calling the dispatcher.

Definition {1509}.
(AK-INPUT-INTERRUPT-HANDLER ID AK)

=
(IF (AK-WAITING AK)

(AK-WAITING-INPUT-INTERRUPT-HANDLER ID AK)
(AK-RUNNING-INPUT-INTERRUPT-HANDLER ID AK))

25

Definition {1507}.
(AK-WAITING-INPUT-INTERRUPT-HANDLER ID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-UPDATE-IBUFFER ID AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-INPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-INPUTP ID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-CLEAR-INPUT-INTERRUPT ID (AK-IPORTS AK))
(AK-OPORTS AK)))

Definition {1508}.
(AK-RUNNING-INPUT-INTERRUPT-HANDLER ID AK)

=
(AK (AK-PSTATES AK)

(AK-UPDATE-IBUFFER ID AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-INPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-INPUTP ID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-CLEAR-INPUT-INTERRUPT ID (AK-IPORTS AK))
(AK-OPORTS AK))

The function AK-UPDATE-IBUFFER updates the input buffer. The I/O interface does not allow the kernel to
make an input device wait. The condition of overflow is signaled by delivering to the buffer an overflow
character, which is a message larger than the greatest possible character. This gives the owning task a
method of detecting overflow. If an input buffer is full, AK-UPDATE-IBUFFER replaces the last character on
the queue with an overflow character. If the buffer is not full but the input port indicates an overflow, an
overflow character is enqueued on the input buffer. Otherwise, no overflow error has occurred either at
the buffer or port, and the character is enqueued.

3.2.5 The Output Interrupt Handler

An output interrupt signals that an output has been completed and an output device is idle. Our definition
of the abstract kernel is not comprehensive enough to specify the precise relationship between a command
to start output to a device and the corresponding output interrupt signaling completion of the output.
Output interrupts can be treated only as non-deterministic events supplied by AK’s oracle.

An output interrupt transition is defined as follows. In all cases, the output interrupt is cleared. If the
corresponding output buffer is non-empty, then a new output is started. If the owning task had been
waiting on a full output buffer, it is made ready again. The conditions of full buffer and empty buffer are
mutually exclusive, so a task cannot be waiting when a buffer is empty. Like the input interrupt handler,
the state in which the output interrupt handler leaves the kernel also depends on whether or not the kernel
is waiting. When waiting, the ready queue is empty. If the task which owns the interrupting output device
is waiting on output that task is made ready and is dispatched, otherwise the kernel remains waiting. If the
kernel is running, the current task is resumed without calling the dispatcher.

26

Definition {1512}.
(AK-OUTPUT-INTERRUPT-HANDLER ID AK)

=
(IF (AK-WAITING AK)

(AK-WAITING-OUTPUT-INTERRUPT-HANDLER ID AK)
(AK-RUNNING-OUTPUT-INTERRUPT-HANDLER ID AK))

Definition {1510}.
(AK-WAITING-OUTPUT-INTERRUPT-HANDLER ID AK)

=
(AK-DISPATCHER
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-OBUFFERS AK)
(DEQ-ITH-BUFFER ID (AK-OBUFFERS AK)))

(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-OUTPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-OUTPUTP ID AK)
(PUTNTH ’(0 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-CLEAR-OUTPUT-INTERRUPT ID (AK-OPORTS AK))
(AK-START-OUTPUT (QFIRST (GETNTH ID (AK-OBUFFERS AK)))

ID
(AK-OPORTS AK)))))

Definition {1511}.
(AK-RUNNING-OUTPUT-INTERRUPT-HANDLER ID AK)

=
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-OBUFFERS AK)
(DEQ-ITH-BUFFER ID (AK-OBUFFERS AK)))

(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-OUTPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-OUTPUTP ID AK)
(PUTNTH ’(0 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-CLEAR-OUTPUT-INTERRUPT ID (AK-OPORTS AK))
(AK-START-OUTPUT (QFIRST (GETNTH ID (AK-OBUFFERS AK)))

ID
(AK-OPORTS AK))))

This concludes our excursion through the definition of the abstract kernel. The remaining details of the
kernel’s definition occur in the proof script. Like the task layer, AK relies on the target machine’s
definition of the fetch-execute step on the private state of a task. It also uses the target machine’s
implementation of communication with I/O devices. AK is abstract in the following ways.

• The private state spaces of tasks are transparently isolated. This provides an important
constraint on the implementation.

• The data structures used to manage tasks are represented as high-level list structures.

• The transitions on the kernel state are specified functionally. All kernel operations take place
in a single abstract step.

27

Chapter 4

THE IMPLEMENTATION OF KIT

In this chapter we define the target machine upon which we implement KIT. We then present the kernel
source code. We include the code in the text not because we find it particularly readable, but because the
existence of this verified low-level code is one of the most important characteristics of this work.

4.1 The Target Machine

We arrive at the bottom rung of the ladder in Figure 2-2 to discuss the target machine TM. The target
machine is a simple von Neumann computer. It is not based on any existing physical machine because we
are not interested in the task of formalizing an existing machine. We intend for TM to be straightforward.

TM has simple architectural support for multi-programming. This support consists of a base/limit register
pair mechanism for memory protection, and a supervisor/user mode flag for protecting privileged

16operations. TM is a 16-bit machine. Main memory consists of 2 16-bit words. The processor state
contains 8 general purpose registers, one of which is the program counter and another a stack pointer.
There are four flag fields: a 2-bit condition code, a 6-bit error code, a supervisor call flag, and a 7-bit
supervisor call identifier. Processor registers which are accessible only in the supervisor mode are the
base/limit register pair, a supervisor address limit register, the supervisor/user mode flag, a running/wait
state flag and the program clock. TM is capable of asynchronous character I/O. It communicates with 16
input devices and 16 output devices by an array of input ports and an array of output ports. Table 4-1
gives a summary of the TM architecture in PMS notation [Bell 71].

The structure of the target machine is described in the Boyer-Moore logic by the shell TM. The fields
defined by the shell correspond to the fields described in Table 4-1.

Shell Definition {668}.
Add the shell TM with recognizer TM-SHELLP,
defining the record structure
<TM-MEMORY, TM-REGS, TM-CC, TM-ERROR, TM-SVCFLAG, TM-SVCID,
TM-BASE, TM-LIMIT, TM-SLIMIT, TM-SVMODE, TM-RWSTATE, TM-CLOCK,
TM-IPORTS, TM-OPORTS>.

The predicate GOOD-TM defines the target machine state space. Each TM component is represented as a
natural number, a list of natural numbers, or, in the case of I/O ports, a tuple of natural numbers. The
maximum sizes of the components are defined by constant functions, some of which are given below.
This is a slightly more abstract representation of a machine than one which uses sequences of bits (bit
vectors). We justify this level of abstraction by observing that there is a 1-1 mapping between bit vectors
of a given size and the set of natural numbers from 0 to the maximum number representable by the bit
vector. Therefore the natural number representation for a machine is isomorphic to a bit vector

28

Memory state

16Mp[0:65535]<0:15> main memory of 2 16-bit words

Pc state

R[0:7]<0:15> 8 general purpose registers;
R[0] is the PC; R[1] is the SP

CC<0:1> 2-bit condition code
ERROR<0:5> 6-bit error code
SVCFLAG 1-bit svc call flag
SVCID<0:6> 7-bit svc identifier

BASE<0:15> 16-bit address base register
LIMIT<0:15> 16-bit address limit register
SLIMIT<0:15> 16-bit address defining the upper limit

of the supervisor based at address 0 in
memory

SVMODE supervisor/user mode flag
RWSTATE running/wait state flag
CLOCK<0:15> program clock used for time slicing

I/O interface

IPORTS[0:15](<0:1>;<0:1>;<0:7>) an array of 16 input ports;
each port is a 3-tuple
(interrupt-flag, error-flag, character-buffer)

OPORTS[0:15](<0:1>;<0:1>;<0:7>) an array of 16 output ports;
each port is a 3-tuple
(interrupt-flag, busy-flag, character-buffer)

Table 4-1: PMS Description of TM

representation. In addition, if we had chosen to go all the way down to a bit vector representation we
would have been obliged to verify TM’s ALU, a problem treated by Hunt [Hunt 85] and beyond the scope
of this work.

29

Definition {907}.
(GOOD-TM TM)

=
(AND (TM-SHELLP TM)

(PLISTP (TM-MEMORY TM))
(EQUAL (LENGTH (TM-MEMORY TM)) (TM-MEMLENGTH))
(FINITE-NUMBER-LISTP (TM-MEMORY TM)

(TM-WORDLUB))
(PLISTP (TM-REGS TM))
(EQUAL (LENGTH (TM-REGS TM)) (TM-REGLENGTH))
(FINITE-NUMBER-LISTP (TM-REGS TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-CC TM) (TM-CCLUB))
(FINITE-NUMBERP (TM-ERROR TM) (TM-ERRORLUB))
(FINITE-NUMBERP (TM-SVCFLAG TM) (TM-SVCFLAGLUB))
(FINITE-NUMBERP (TM-SVCID TM) (TM-SVCIDLUB))
(FINITE-NUMBERP (TM-BASE TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-LIMIT TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-SLIMIT TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-SVMODE TM) 2)
(FINITE-NUMBERP (TM-RWSTATE TM) 2)
(FINITE-NUMBERP (TM-CLOCK TM) (TM-WORDLUB))
(PLISTP (TM-IPORTS TM))
(EQUAL (LENGTH (TM-IPORTS TM))(TM-PORT-LENGTH))
(GOOD-TM-IPORT-ARRAY (TM-IPORTS TM))
(PLISTP (TM-OPORTS TM))
(EQUAL (LENGTH (TM-OPORTS TM)) (TM-PORT-LENGTH))
(GOOD-TM-OPORT-ARRAY (TM-OPORTS TM)))

Definition {613}.
(TM-WORDSIZE) = 16

Definition {614}.
(TM-WORDLUB) = (EXP 2 (TM-WORDSIZE))

Definition {682}.
(TM-PORT-LENGTH) = 16

The structure of input and output ports is formalized using shells. An input port is a 3-tuple containing an
interrupt flag, an error flag which is used to indicate overflow on the input port, and a character buffer. An
output port is a 3-tuple containing an interrupt flag, a busy flag, and a character buffer. The functions
GOOD-TM-IPORT-ARRAY and GOOD-TM-OPORT-ARRAY recognize fixed-length arrays of I/O ports with
bounded components.

Shell Definition {748}.
Add the shell TM-IPORT with recognizer TM-IPORTP,
defining the record structure
<TM-IINTERRUPT-FLAG, TM-IERROR-FLAG, TM-ICHAR>.

Shell Definition {749}.
Add the shell TM-OPORT with recognizer TM-OPORTP,
defining the record structure
<TM-OINTERRUPT-FLAG, TM-OBUSY-FLAG, TM-OCHAR>.

The function TM-PROCESSOR is the interpreter function which defines the transitions on a TM state. The
formal argument TM represents a machine state, and the formal argument ORACLE represents an oracle
identical to an abstract kernel oracle. That is, an oracle is a list some of whose elements are I/O interrupts.
An input interrupt is a 2-tuple which gives an input character and a device id, accessed by the functions
TM-IDATUM and TM-IDEVID, respectively. An output interrupt merely contains a device id, accessed by the
function TM-ODEVID.

30

Definition {883}.
(TM-PROCESSOR TM ORACLE)

=
(IF (LISTP ORACLE)

(TM-PROCESSOR (TM-STEP (TM-POST-INTERRUPT (CAR ORACLE) TM))
(CDR ORACLE))

TM)

TM-POST-INTERRUPT incorporates interrupts into the state of the machine so that they can be sensed. An
input interrupt for device i is posted by changing the value of the ith input port as follows: the interrupt
flag is raised, the error flag gets the previous value of the interrupt flag to signal an overflow condition,
the input character is written to the character buffer. An output interrupt for device i is posted by changing
the value of the ith output port as follows: the interrupt flag is raised, the busy flag is cleared, the character
buffer is cleared (although this action is superfluous). When the current oracle element is not an I/O
interrupt, TM-POST-INTERRUPT makes no change to the state of the machine.

Definition {881}.
(TM-POST-INTERRUPT EVENT TM)

=
(IF (TM-DEVICE-INPUT-EVENTP EVENT)

(TM-SET-IPORTS (TM-POST-INPUT-INTERRUPT (REMAINDER (TM-IDATUM EVENT)
(TM-CHARLUB))

(REMAINDER (TM-IDEVID EVENT)
(TM-PORT-LENGTH))

(TM-IPORTS TM))
TM)

(IF (TM-DEVICE-OUTPUT-EVENTP EVENT)
(TM-SET-OPORTS (TM-POST-OUTPUT-INTERRUPT (REMAINDER (TM-ODEVID EVENT)

(TM-PORT-LENGTH))
(TM-OPORTS TM))

TM)
TM))

Definition {752}.
(TM-POST-INPUT-INTERRUPT CHAR ID PORTS)

=
(PUTNTH (TM-IPORT 1

(TM-IINTERRUPT-FLAG (GETNTH ID PORTS))
CHAR)

ID
PORTS)

Definition {755}.
(TM-POST-OUTPUT-INTERRUPT ID PORTS)

=
(PUTNTH (TM-OPORT 1 0 0) ID PORTS)

The function TM-STEP defines the single step function for the TM interpreter. It gives the interrupt structure
of the target machine. Each of the interrupt branches of TM-STEP (an input interrupt, an output interrupt, an
error trap, a clock interrupt and a supervisor call interrupt) does a PSW swap, which partially saves the
state of the CPU in a fixed location of memory and loads a new program counter giving the address of an
operating system interrupt handling routine. When no I/O interrupt occurs and TM is in the wait state,
TM-STEP returns the current machine state unchanged. The function TM-FETCH-EXECUTE defines the
instruction fetch-execute cycle of the target machine.

31

Definition {882}.
(TM-STEP TM)

=
(IF (TM-INPUT-INTERRUPTP TM)

(TM-EXECUTE-INPUT-INTERRUPT TM)

(IF (TM-OUTPUT-INTERRUPTP TM)
(TM-EXECUTE-OUTPUT-INTERRUPT TM)

(IF (TM-WAITING TM)
TM

(IF (TM-ERRORP TM)
(TM-EXECUTE-ERROR-INTERRUPT TM)

(IF (TM-CLOCK-INTERRUPTP TM)
(TM-EXECUTE-CLOCK-INTERRUPT TM)

(IF (TM-SVC-INTERRUPTP TM)
(TM-EXECUTE-SVC-INTERRUPT TM)

(TM-FETCH-EXECUTE TM)))))))

We wish to examine interrupts and the fetch-execute cycle more closely. Before doing so, we examine
some of the primitive functions in the definition of TM which update the TM state. In particular, we examine
memory and register access. First, for every field in the TM structure we have defined a function which
updates that field and no other. For instance, the function TM-SET-CC returns a TM state with an updated
condition code.

Definition {687}.
(TM-SET-CC CC TM)

=
(TM (TM-MEMORY TM)

(TM-REGS TM)
CC
(TM-ERROR TM)
(TM-SVCFLAG TM)
(TM-SVCID TM)
(TM-BASE TM)
(TM-LIMIT TM)
(TM-SLIMIT TM)
(TM-SVMODE TM)
(TM-RWSTATE TM)
(TM-CLOCK TM)
(TM-IPORTS TM)
(TM-OPORTS TM))

The interface to memory and register access is defined by the functions TM-FETCH and TM-STORE. An
address argument to these functions is a 2-tuple constructed by the function REAL-ADDR. The
REAL-ADDR-NUM field is a number used as a datum or an address. The REAL-ADDR-SOURCE field indicates
how the number is used: as a datum, as a register address, or as a memory address. TM-FETCH and
TM-STORE follow the convention that a REAL-ADDR-SOURCE value of 0 indicates a datum, a value of 1

indicates a register address, and otherwise a memory address. Given a REAL-ADDR, TM-FETCH returns
either the datum portion of the address, or the contents of a register, or the contents of a memory word.
TM-STORE makes no state change when given a REAL-ADDR with source 0, and otherwise updates a location
in either the registers or memory. Notice that when the machine is in user mode, a memory address is
treated as a displacement from the current base register.

32

Definition {773}.
(TM-FETCH ADDR TM)

=
(IF (ZEROP (REAL-ADDR-SOURCE ADDR))

(REAL-ADDR-NUM ADDR)

(IF (EQUAL (REAL-ADDR-SOURCE ADDR) 1)
(TM-FETCH-FROM-REGMEM (REAL-ADDR-NUM ADDR) TM)

(TM-FETCH-FROM-MEMORY (REAL-ADDR-NUM ADDR) TM)))

Definition {774}.
(TM-STORE VALUE ADDR TM)

=
(IF (ZEROP (REAL-ADDR-SOURCE ADDR))

TM

(IF (EQUAL (REAL-ADDR-SOURCE ADDR) 1)
(TM-STORE-IN-REGMEM VALUE (REAL-ADDR-NUM ADDR) TM)

(TM-STORE-IN-MEMORY VALUE (REAL-ADDR-NUM ADDR) TM)))

Definition {757}.
(REAL-ADDR SOURCE NUM) = (LIST SOURCE NUM)

Definition {758}.
(REAL-ADDR-SOURCE REAL-ADDR) = (CAR REAL-ADDR)

Definition {759}.
(REAL-ADDR-NUM REAL-ADDR) = (CADR REAL-ADDR)

Definition {769}.
(TM-FETCH-FROM-MEMORY ADDR TM)

=
(IF (TM-IN-SUPERVISOR-MODE TM)

(GETNTH ADDR (TM-MEMORY TM))
(GETNTH (PLUS (TM-BASE TM) ADDR) (TM-MEMORY TM)))

Definition {770}.
(TM-STORE-IN-MEMORY VALUE ADDR TM)

=
(IF (TM-IN-SUPERVISOR-MODE TM)

(TM-SET-MEMORY (PUTNTH VALUE ADDR (TM-MEMORY TM)) TM)
(TM-SET-MEMORY (PUTNTH VALUE

(PLUS (TM-BASE TM) ADDR)
(TM-MEMORY TM))

TM))

Definition {771}.
(TM-FETCH-FROM-REGMEM ADDR TM)

=
(GETNTH ADDR (TM-REGS TM))

Definition {772}.
(TM-STORE-IN-REGMEM VALUE ADDR TM)

=
(TM-SET-REGS (PUTNTH VALUE ADDR (TM-REGS TM)) TM)

Now we return to the subject of interrupts. Table 4-2 describes what happens on a clock interrupt: the
current program counter, stack pointer and flags fields are stored in memory locations [0:2]. A new
program counter is loaded from a fixed location in memory giving the address of the clock interrupt
handler, the stack pointer is loaded with the supervisor limit address (a stack occupies the high address
end of a memory segment), and the machine is put in supervisor mode.

We explore the formal definition of the clock interrupt given by TM-EXECUTE-CLOCK-INTERRUPT. The
machine is put in supervisor mode (the TM-SET-SVMODE expression), the program counter, stack pointer,
and flags are saved in location 0 through 2 of memory (the call to TM-STORE-OLD-PSW-ON-INTERRUPT), the
program counter is loaded with a new value (the call to TM-FETCH-NEW-PC-ON-INTERRUPT), and the stack

33

mem[0:2] <- [pc,sp,flags]
pc <- mem[3]
sp <- slimit - 1
svmode <- supervisor-mode

Table 4-2: The TM Clock Interrupt

pointer is set to one less than the supervisor limit register (the TM-SET-SP expression). In
TM-STORE-OLD-PSW-ON-INTERRUPT, the function TM-INCRN-ADDRESS increments an address a given
number of times. This is how we arrange to store CPU state in three successive memory locations.
TM-PACK-PSW packs the flags fields into a single number. All of the other interrupt transitions referenced
in TM-STEP are defined in a similar fashion.

Definition {862}.
(TM-EXECUTE-CLOCK-INTERRUPT TM)

=
(TM-SET-SP (TM-DECR (TM-SLIMIT TM))
(TM-FETCH-NEW-PC-ON-INTERRUPT (TM-CLOCK-NEW-PC-ADDR)
(TM-STORE-OLD-PSW-ON-INTERRUPT (TM-REGISTER-SAVE-AREA-ADDR)
(TM-SET-SVMODE (TM-SUPERVISOR-MODE)

TM))))

Definition {859}.
(TM-FETCH-NEW-PC-ON-INTERRUPT ADDR TM)

=
(TM-SET-PC (TM-FETCH-FROM-MEMORY ADDR TM) TM)

Definition {860}.
(TM-STORE-OLD-PSW-ON-INTERRUPT ADDR TM)

=
(TM-STORE (TM-PC TM)

(REAL-ADDR 2 ADDR)
(TM-STORE (TM-SP TM)

(TM-INCRN-ADDRESS 1 (REAL-ADDR 2 ADDR))
(TM-STORE (TM-PACK-PSW (TM-CC TM)

(TM-ERROR TM)
(TM-SVCFLAG TM)
(TM-SVCID TM))

(TM-INCRN-ADDRESS 2 (REAL-ADDR 2 ADDR))
TM)))

Definition {721}.
(TM-REGISTER-SAVE-AREA-ADDR) = 0

We have seen the function TM-FETCH-EXECUTE referenced at the task and abstract kernel layers. It defines
TM’s fetch-execute cycle. The function TM-GOOD-PC-ADDRESS determines if the address contained in the
program counter causes a protection error as defined by the current contents of the limit register. If so, the
error flag is set. Otherwise, the current instruction is fetched and executed. In addition, the program clock
is decremented. The function TM-EXECUTE fetches the current instruction’s arguments and computes
absolute addresses based on the indicated address mode. TM has four address modes: immediate, memory
direct, register, and register indirect. Memory addresses must be less than the current value of the limit
register, otherwise causing a protection error. When running in user mode a memory address supplied by
an instruction is treated as a displacement from the current base register.

Definition {858}.
(TM-FETCH-EXECUTE TM)

=
(IF (TM-GOOD-PC-ADDRESS TM)

(TM-EXECUTE (TM-FETCH-OPCODE TM) (TM-DECREMENT-CLOCK TM))
(TM-SET-ERROR (TM-PC-ADDRESS-ERROR) (TM-DECREMENT-CLOCK TM)))

Table 4-3 documents TM’s small instruction set. The purpose of the table is to suggest the extent of the

34

instruction set. We have defined only those instructions required to program the operating system. Other
instructions can be added with the cost of proving that each one satisfies the GOOD-TM invariant. TM has
instructions of zero, one and two arguments. The parameters which occur in Table 4-3 should be
interpreted as real addresses: one of memory address, register address or immediate operand. In the case
of binary operations, a result is stored at the location indicated by the first argument. The condition code is
a 2-bit value which indicates two ALU conditions: zero/non-zero and carry/no-carry.

Non-Privileged Operations

ADD a b add, set the condition code
BR a set the pc unconditionally
BRZ a set the pc if cc = <zero,non-overflow>
BRNZ a set the pc if cc #≠# <zero,non-overflow>
CALL a save the pc on the stack, load a new pc
COMPARE a b set the condition code based on numerically

comparing a and b
DECR a decrement, set the condition code
DECR-MOD a b decrement a modulo b, set the condition code
INCR a increment, set the condition code
INCR-MOD a b increment a modulo b, set the condition code
MOD a b a mod b, set the condition code
MOVE a b move b to location indicated by a
MULT a b multiply, set the condition code
RETURN set the pc to the top element of the stack
SVC addr raise the svcflag, set the svcid

Privileged Operations

LBASE a load the base register
LLIMIT a load the limit register
LPSW a load the pc, sp and flags; put the machine in user mode
POST a raise the output interrupt flag in the output

port given by the argument
RUN put the machine in the run state
TIME a set the clock
STOUT a b start output on the device indicated by a;

the output character is given by b
SVCR a load the pc, sp and flags; put the machine

in user mode; clear the svcflag
TESTI a test the indicated input port for an overflow error
TESTO a test the indicated output port for busy
WAIT put the machine in the wait state

Table 4-3: TM’s Instruction Set

We give the formal definition of the addition operation, TM-EXECUTE-ADD. It takes three arguments, two
real addresses indicating the addition operands, and the current state of the machine. TM-EXECUTE-ADD
returns a new machine state by storing the the result of the addition at the location indicated by the first
address, and updating the condition code to reflect two conditions: whether the result is zero, and whether
the result has a carry out.

Definition {778}.
(TM-EXECUTE-ADD ADDR1 ADDR2 TM)

=
(TM-STORE (ALU-VALUE (TM-ALU-PLUS (TM-FETCH ADDR1 TM)

(TM-FETCH ADDR2 TM)))
ADDR1
(TM-SET-CC (TM-CC-VALUE (TM-ALU-PLUS (TM-FETCH ADDR1 TM)

(TM-FETCH ADDR2 TM)))
TM))

35

Definition {707}.
(TM-CC-VALUE ALU-RESULT)

=
(IF (ZEROP (ALU-VALUE ALU-RESULT))

(IF (FALSEP (ALU-CARRY ALU-RESULT))
(TM-ZERO-NO-CARRY-CONDITION)
(TM-ZERO-CARRY-CONDITION))

(IF (FALSEP (ALU-CARRY ALU-RESULT))
(TM-NON-ZERO-NO-CARRY-CONDITION)
(TM-NON-ZERO-CARRY-CONDITION)))

TM’s ALU performs the following operations: plus, difference, times, remainder, increment, decrement,
increment-mod and decrement-mod. Increment-mod takes two arguments and increments its first
argument modulo its second argument. Decrement-mod decrements its first argument modulo its second
argument. Besides returning an integer value, each ALU operation also sets a carry bit. Remainder is a
powerful operation. The kernel in fact uses this operation only to take the remainder of a number by some
power of two. Therefore the remainder operation in the ALU could be replaced by a simpler mask
operation to satisfy the needs of the kernel.

This completes our summary of TM. It is a very simple von Neumann machine. It provides some support
for the implementation of tasks, but cannot accomplish this on its own. The operating system kernel which
must be written for TM has the significant job of spanning the gap to the abstract kernel.

4.2 The Code

In this section we present the source code of KIT. We present it as a listing in an assembler language
written for TM, annotated with comments. A quoted list containing each line (minus comments) of the
source code is equal to the function OS-SOURCE. This function, which appears in the script, is a constant
function defining a list containing the assembler language source. The source code contains routines
which correspond to the interrupt handlers specified at the abstract kernel level.

The kernel resides in a segment of memory beginning at location 0. Remaining memory segments are
occupied by tasks. Figure 4-1 describes the memory layout of the kernel segment. It identifies the data
structures required by the kernel.

• Register Save Area. This is a 3-word segment built into the definition of TM which is used to
partially save the CPU state on an interrupt.

• Interrupt Vector. These addresses, also built into TM’s definition, contain the addresses of the
interrupt handlers.

• Locals. A set of local variables used by the operating system.

• Task Table. This is a kernel data structure which contains the CPU state of each task.

• Segment Table. The table contains a base/limit register pair for each task, defining the
location and length of each task’s memory segment.

• Ready Queue. An implementation of the ready queue.

• Status Table. An implementation of the task status table.

• Ibuffer, Obuffers, Mbuffers. Implementations of the buffer tables.

• Code. The kernel machine code.

• Stack. The kernel’s stack.

The assembler is a simple one written in the Boyer-Moore logic. It plays no part in the proof since we

36

Figure 4-1: Layout of Kernel

verify the output of the assembler, which is a list of numbers that TM interprets. The grammar accepted by
the assembler is given in Table 4-4. The primitives of the grammar are <SYMBOL> and <NATNUM>.
<NATNUM> is understood to be a number bounded by TM’s wordsize. The grammar defines six forms. A
<SYMBOL> makes an entry in the symbol table, associating a symbol with a displacement from the start of
the source code. A <DCL> makes an entry in the symbol table to associate a symbol with a user supplied
number. The <DC> form initializes a contiguous sequence of memory words and is used for declaring data
storage. The remaining forms define the syntax of nullary, unary and binary operations. An <ARG> is a
list containing an address mode, a value and an optional displacement. In the syntax for <ARG>, <SYMBOL>
is an abbreviation for (0 <SYMBOL> 0) and (<MODE> <VALUE>) is an abbreviation for
(<MODE> <VALUE> 0).

This description of the grammar, plus the informal documentation of the instruction set in Table 4-3
should make it possible to read the assembler language source. Of course, all questions about details must
be answered by consulting the definition of TM in the script. The assembler packs operations into one, two
or three machine words. The format of machine instructions is not important. To be able to read the source
code, the following facts should be understood about TM’s interpretation of instructions.

• The address modes are as follows: 0 - immediate operand, 1- register, 2 - memory, 3 -
register indirect.

37

<GRAM> ::= <FORM>*

<FORM> ::= <SYMBOL> | <DCL> | <DC> | <0ARY-OP> |
<1ARY-OP> | <2ARY-OP>

<DCL> ::= (DCL <SYMBOL> <NATNUM>)

<DC> ::= (DC <NATNUM> <VALUE>)

<0ARY-OP> ::= (<SYMBOL>)

<1ARY-OP> ::= (<SYMBOL> <ARG>)

<2ARY-OP> ::= (<SYMBOL> <ARG> <ARG>)

<ARG> ::= <SYMBOL> | (<MODE> <VALUE>) |
(<MODE> <VALUE> <DISP>)

<MODE> ::= <NATNUM>[0..3]

<DISP> ::= <NATNUM>[0..7]

<VALUE> ::= <NATNUM> | <SYMBOL>

Table 4-4: Grammar for TM Assembler

• Data movement in a binary operation is from right to left. For the instruction (ADD A B),
the sum of A and B is placed in the location indicated by A unless A is an immediate
operand, in which case a result is not stored.

• Register 0 is the program counter, and register 1 is the stack pointer.

The source listing contains three sections. First is a series of DCL forms, defining symbols for the
assembler. Next is a series of DC forms defining the data areas. The remainder contains programs.

We provide a guide to one part of the source, the clock interrupt handler, exhibiting small portions of the
listing. Consult the definition of AK-CLOCK-INTERRUPT handler in Section 3.2.1 for the specification. The
clock interrupt handler begins at the address with label CLOCK-INTERRUPT-HANDLER. Control passes to the
clock interrupt handler after a clock interrupt. The routine SAVE-STATE is called to save the state of the
current task in the task table. Upon return, the clock interrupt handler loads the address of the ready queue
into register 3, and then calls QFIRST, which places the first element of a queue into register 2. DEQUEUE is
called to remove the first element from the ready queue. And then ENQUEUE is called to place what was the
first queue element at the end of the queue. Finally, control branches to the dispatcher to resume the next
task.

CLOCK-INTERRUPT-HANDLER
(call save-state) ;; First, save the state of the current task.
trace-label1
(move (1 r3) readyq) ;; R3 points to readyq
(call qfirst) ;; Put current taskid in R2
(call dequeue) ;; DEQUEUE the current task from the READYQ
(call enqueue) ;; ENQUEUE the current task
trace-label2
(br dispatcher) ;; Resume next task

The function AK-DISPATCHER in Section 3.2.1 specifies the dispatching operation. The dispatcher checks
for an empty ready queue. If empty, the machine is put in the wait state. Otherwise, QFIRST is called to
obtain the taskid which as the first element of the ready queue. RESTORE-STATE is called to initialize the
CPU with most of this task’s CPU state - all but the program counter, stack pointer and flags. Upon return,

38

the program clock is reset, and an LPSW instruction is done to complete the context switch.

DISPATCHER ;; Allocate CPU to first task on readyq.
(move (1 r3) readyq) ;; Point R3 to readyq
(call qemptyp) ;; Readyq empty?
dispatcher-trace-label1
(brz readyq-empty)
(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
dispatcher-trace-label2
(time (2 time-slice 0)) ;; set clock
(lpsw (2 reg-save-area))

READYQ-EMPTY
(wait)

39

;; ------------- Beginning of KIT source --------------
;; ---------- Assembler symbolic declarations ----------
(dcl r0 0)
(dcl r1 1)
(dcl r2 2)
(dcl r3 3)
(dcl r4 4)
(dcl r5 5)
(dcl r6 6)
(dcl r7 7)

;; format of interrupt save-area
(dcl interrupt-pc-field 0)
(dcl interrupt-sp-field 1)
(dcl interrupt-flag-field 2)
(dcl svcid-addr 8)
(dcl input-devid-addr 8)
(dcl input-char-addr 9)
(dcl output-devid-addr 9)
(dcl charlub 256)

;; svcids
(dcl send-svcid 0)
(dcl receive-svcid 1)
(dcl tyo-svcid 2)
(dcl tyi-svcid 3)

;; format of a task table entry
(dcl task-table-length 144)
(dcl task-table-entry-length 9)
(dcl pc-field 0)
(dcl sp-field 1)
(dcl r2-field 2)
(dcl r3-field 3)
(dcl r4-field 4)
(dcl r5-field 5)
(dcl r6-field 6)
(dcl r7-field 7)
(dcl flag-field 8) ;; displacement after bumping base register

;; format of a queue entry: [headaddr tailaddr currlength maxlength qarry]
;; where qarry is reserved for length maxlength
(dcl readyq-length 20)
(dcl qhead-field 0)
(dcl qtail-field 1)
(dcl qcurrlength-field 2)
(dcl qmaxlength-field 3)
(dcl qarray-field 4)

;; format of segment table
(dcl segment-table-length 32)
(dcl base-field 0)
(dcl limit-field 1)

;; format of status table
(dcl status-entry-length 2)
(dcl status-flag-field 0)
(dcl status-taskid-field 1)
(dcl ready-status 0)
(dcl error-status 1)
(dcl send-status 2)
(dcl receive-status 3)
(dcl output-status 4)
(dcl input-status 5)

;; Buffer lengths
(dcl input-buffer-length 8)
(dcl output-buffer-length 8)
(dcl message-buffer-length 8)

40

;; Values for access 2D array of message buffers
;; The address of MBUFFER[sourceid,destid] is
;; MBUFFERS + (sourceid * SOURCE-MULTIPLIER) + (destid * DEST-MULTIPLIER)
(dcl source-multiplier 128)
(dcl dest-multiplier 8)
(dcl taskidlub 16)

;; ---------- Data areas in operating system ----------
reg-save-area (dc 3 0) ;; [pc sp flags]
clock-new-pc (dc 1 clock-interrupt-handler)
error-new-pc (dc 1 error-interrupt-handler)
svc-new-pc (dc 1 svc-interrupt-handler)
input-new-pc (dc 1 input-interrupt-handler)
output-new-pc (dc 1 output-interrupt-handler)
interrupt-data (dc 2 0) ;; various interrupts cause information to be stored here
branch-address (dc 1 0)
time-slice (dc 1 1000)
current-taskid (dc 1 0)
temp-r2 (dc 1 0)
temp-r3 (dc 1 0)
task-table (dc 144 0)
segment-table (dc 32 0)
readyq (dc 20 0)
status-table (dc 32 0)
ibuffers (dc 128 0)
obuffers (dc 128 0)
mbuffers (dc 512 0)

(dc 512 0)
(dc 512 0)
(dc 512 0)

;; ---------- KIT Source Code ----------
SAVE-STATE
(move (2 temp-r2) (1 r2)) ;; Save R2
(move (2 temp-r3) (1 r3)) ;; Save R3
(move (1 r3) readyq) ;; R3 points to ready queue
(call qfirst) ;; R2 has current task id
save-state-return
(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length
(add (1 r2) task-table) ;; R2 points to current task table entry
(move (3 r2 pc-field) (2 reg-save-area interrupt-pc-field))
(move (3 r2 sp-field) (2 reg-save-area interrupt-sp-field))
(move (3 r2 r2-field) (2 temp-r2))
(move (3 r2 r3-field) (2 temp-r3))
(move (3 r2 r4-field) (1 r4))
(move (3 r2 r5-field) (1 r5))
(move (3 r2 r6-field) (1 r6))
(move (3 r2 r7-field) (1 r7))
(add (1 r2) flag-field) ;; bump index register
(move (3 r2) (2 reg-save-area interrupt-flag-field))
(move (1 r2) (2 temp-r2)) ;; Restore R2 & R3.
(move (1 r3) (2 temp-r3)) ;; This is necessary for SVC interrupts.
(return)

RESTORE-STATE
;; Assume R2 has id of selected task.
(move (1 r3) (1 r2)) ;; R3 has next taskid, too
(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length
(add (1 r2) task-table) ;; R2 now points to the next task table entry
(mult (1 r3) 2)
(add (1 r3) segment-table) ;; R3 pts to segment table entry for next task
(lbase (3 r3 base-field)) ;; restore base register
(llimit (3 r3 limit-field)) ;; restore limit register
(move (1 r3) (1 r2))
(add (1 r3) flag-field) ;; R3 points to flag field of task table entry
(move (2 reg-save-area interrupt-pc-field) (3 r2 pc-field))
(move (2 reg-save-area interrupt-sp-field) (3 r2 sp-field))
(move (2 reg-save-area interrupt-flag-field) (3 r3))
(move (1 r7) (3 r2 r7-field))

41

(move (1 r6) (3 r2 r6-field))
(move (1 r5) (3 r2 r5-field))
(move (1 r4) (3 r2 r4-field))
(move (1 r3) (3 r2 r3-field))
(move (1 r2) (3 r2 r2-field))
;; We must leave R0 & R1 alone since they’re the PC & SP.
;; A LPSW will restore them from the register save area.
(return)

CLOCK-INTERRUPT-HANDLER
(call save-state) ;; First, save the state of the current task.
trace-label1
(move (1 r3) readyq) ;; R3 points to readyq
(call qfirst) ;; Put current taskid in R2
(call dequeue) ;; DEQUEUE the current task from the READYQ
(call enqueue) ;; ENQUEUE the current task
trace-label2
(br dispatcher) ;; Resume next task

ERROR-INTERRUPT-HANDLER
(call save-state) ;; First, save the state of the current task.
trace-label3
(move (1 r3) readyq) ;; R3 points to readyq
(call qfirst) ;; Put current taskid in R2
(call dequeue) ;; DEQUEUE the current task from the READYQ
trace-label4
(mult (1 r2) status-entry-length)
(add (1 r2) status-table) ;; r2 points to entry for current task in status table
(move (3 r2 status-flag-field) error-status)
(move (3 r2 status-taskid-field) 0)
(br dispatcher) ;; Resume next task

SVC-INTERRUPT-HANDLER
;; The memory location SVCID-ADDR contains the svcid.
(call save-state)
trace-label5
(mod (2 svcid-addr) 4) ;; Fix the svcid to a number less than 4.
(compare (2 svcid-addr) send-svcid) ;; is it a request to SEND?
(brz send-svc-handler)
(compare (2 svcid-addr) receive-svcid) ;; is it a request to RECEIVE?
(brz receive-svc-handler)
(compare (2 svcid-addr) tyo-svcid) ;; a TYO request?
(brz tyo-svc-handler)
(br tyi-svc-handler)

SEND-SVC-HANDLER
;; Conventions:
;; Low order bits of R2 contain destination id
;; R3 contains message.
;; Move these to R6 and R7.
(move (1 r6) (1 r2))
(mod (1 r6) taskidlub) ;; R6 has destination id
(move (1 r7) (1 r3)) ;; R7 has message
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label6
(move (2 current-taskid) (1 r2)) ;; save current taskid

;; Compute address of MBUFFER[source, dest], and test for a full buffer.
(move (1 r4) (1 r6)) ;; R4 contains destination id
(mult (1 r4) dest-multiplier)
(move (1 r3) (1 r2)) ;; R3 contains source id (i.e. current id)
(mult (1 r3) source-multiplier)
(add (1 r3) (1 r4))
(add (1 r3) mbuffers) ;; R3 points to message buffer
trace-label7
(call qfullp)
(brz block-send) ;; If buffer full, block the sending task.

42

;; Else, message buffer isn’t full. Perform send and resume task.
(move (1 r2) (1 r7)) ;; R2 has the message
(call enqueue) ;; R3 still points to the message buffer
trace-label8

;; Check for destination task waiting. R6 has destination taskid.
(move (1 r3) (1 r6)) ;; Move destination id to R3.
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(compare (3 r3 status-flag-field) receive-status) ;; Waiting to receive?
(brnz svc-resume-task) ;; If not, resume task.
(compare (3 r3 status-taskid-field) (2 current-taskid)) ;; Else, from current task?
(brnz svc-resume-task) ;; If not, resume task
;; Else the destination task was waiting to receive from the current task.
;; Make it ready.
(move (3 r3 status-flag-field) ready-status)
(move (3 r3 status-taskid-field) 0)
(move (1 r2) (1 r6)) ;; R2 has destination id
(move (1 r3) readyq) ;; R3 points to readyq
(call enqueue)
trace-label9
(br svc-resume-task)

BLOCK-SEND
;; Remove the current task from the readyq and mark it waiting to send.
(move (1 r3) readyq)
(call dequeue)
trace-label10
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) send-status)
(move (3 r3 status-taskid-field) (1 r6))
(br dispatcher)

RECEIVE-SVC-HANDLER
;; Conventions:
;; Low order bits of R2 contain source id
;; Put message in R3 of current task.
(move (1 r6) (1 r2))
(mod (1 r6) taskidlub) ;; R6 has source id
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label11
(move (2 current-taskid) (1 r2)) ;; save current taskid

;; Compute address of MBUFFER[source, dest], and test for a full buffer.
(move (1 r4) (1 r2)) ;; R4 contains destination id (i.e. current id)
(mult (1 r4) dest-multiplier)
(move (1 r3) (1 r6)) ;; R3 contains source id
(mult (1 r3) source-multiplier)
(add (1 r3) (1 r4))
(add (1 r3) mbuffers) ;; R3 points to message buffer
trace-label12
(call qemptyp)
(brz block-receive) ;; If buffer empty, block the receiving task.

;; Else, message buffer isn’t empty. Perform receive and resume task.
(call qfirst) ;; R2 has the message.
(call dequeue) ;; Dequeue the message buffer.
trace-label13
(move (1 r3) (2 current-taskid))
(mult (1 r3) task-table-entry-length) ;; multiply by task table entry length
(add (1 r3) task-table) ;; R3 points to current task table entry
(move (3 r3 r3-field) (1 r2)) ;; Move message to current task’s R3.
trace-label14

;; Check for source task waiting. R6 has source taskid.
(move (1 r3) (1 r6)) ;; Move source id to R3.

43

(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(compare (3 r3 status-flag-field) send-status) ;; Waiting to send?
(brnz svc-resume-task) ;; If not, resume task.
(compare (3 r3 status-taskid-field) (2 current-taskid)) ;; Send to current task?
(brnz svc-resume-task) ;; If not, resume task
;; Else the destination task was waiting to receive from the current task.
;; Make it ready.
(move (3 r3 status-flag-field) ready-status)
(move (3 r3 status-taskid-field) 0)
(move (1 r2) (1 r6)) ;; R2 has destination id
(move (1 r3) readyq) ;; R3 points to readyq
(call enqueue)
trace-label15
(br svc-resume-task)

BLOCK-RECEIVE
;; Remove the current task from the readyq and mark it waiting to receive.
(move (1 r3) readyq)
(call dequeue)
trace-label16
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) receive-status)
(move (3 r3 status-taskid-field) (1 r6))
(br dispatcher)

TYO-SVC-HANDLER
;; Conventions:
;; Low order bits of R3 contain character.
;; The current taskid is also the device id.
;; Move this to R7.
(move (1 r7) (1 r3)) ;; R7 has character
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label17
(move (2 current-taskid) (1 r2)) ;; save current taskid (equals device id)

;; Compute address of OBUFFER[devid], and test for a full buffer.
(move (1 r3) (1 r2)) ;; R3 contains devid (i.e. current taskid)
(mult (1 r3) output-buffer-length)
(add (1 r3) obuffers) ;; R3 points to the current output buffer
trace-label18
(call qfullp)
(brz block-tyo) ;; If buffer full, block the sending task.

;; Else, message buffer isn’t full. Perform send and resume task.
(move (1 r2) (1 r7)) ;; R2 has the character.
(call enqueue) ;; R3 still points to the message buffer
trace-label19

;; Check for idle output device. If idle, post an output interrupt
(testo (2 current-taskid)) ;; Test for idle device
(brnz svc-resume-task) ;; If not idle, resume task
(post (2 current-taskid)) ;; Else, post an output interrupt so the
;; output interrupt handler starts an output.
(br svc-resume-task)

BLOCK-TYO
;; Remove the current task from the readyq and mark it waiting to output.
(move (1 r3) readyq)
(call dequeue)
trace-label20
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) output-status)
(move (3 r3 status-taskid-field) 0)

44

(br dispatcher)

TYI-SVC-HANDLER
;; Conventions:
;; The current taskid is also the device id.
;; Put the input character in R3 of the current task.
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label21
(move (2 current-taskid) (1 r2)) ;; save current taskid (equals device id)

;; Compute address of IBUFFER[devid], and test for a empty buffer.
(move (1 r3) (1 r2)) ;; R3 contains devid (i.e. current taskid)
(mult (1 r3) input-buffer-length)
(add (1 r3) ibuffers) ;; R3 points to the current input buffer
trace-label22
(call qemptyp)
(brz block-tyi) ;; If buffer empty, block the current task.

;; Else, input buffer isn’t empty. Perform input and resume task.
(call qfirst) ;; R2 has the next input character.
(call dequeue) ;; Dequeue the input buffer.
trace-label23
(move (1 r3) (2 current-taskid))
(mult (1 r3) task-table-entry-length) ;; multiply by task table entry length
(add (1 r3) task-table) ;; R3 points to current task table entry
(move (3 r3 r3-field) (1 r2)) ;; Move message to current task’s R3.
(br svc-resume-task)

BLOCK-TYI
;; Remove the current task from the readyq and mark it waiting to input.
(move (1 r3) readyq)
(call dequeue)
trace-label24
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) input-status)
(move (3 r3 status-taskid-field) 0)
(br dispatcher)

INPUT-INTERRUPT-HANDLER
;; The memory location INPUT-DEVID-ADDR contains the ID of the interrupting device.
;; The memory location INPUT-CHAR-ADDR contains the input character.
;;
;; Pseudo Code:
;;
;; If the owning task is waiting to input
;; then put the ID on the readyq
;; update the status of the task
;; endif
;;
;; If the input buffer is full
;; then replace the last queue element with the overflow character
;; else if the input device signals an overflow error
;; then enqueue an overflow character on the input buffer
;; else enqueue the character on the input buffer
;; endif
;; endif
;;
(move (2 branch-address) dispatcher) ;; initialize BRANCH-ADDRESS to DISPATCHER

;; exit via dispatcher when waiting
(move (2 temp-r3) (1 r3)) ;; Save R3 because we must use it.
(move (1 r3) readyq) ;; R3 points to readyq
(call qemptyp) ;; check for empty readyq;

;; if empty, no need to save state
trace-label25
(brz iih-skip-save-state)
(move (2 branch-address) resume-task) ;; We’ll exit via RESUME-TASK

45

(move (1 r3) (2 temp-r3)) ;; Restore R3 for save-state
(call save-state)
trace-label26

iih-skip-save-state
(move (1 r5) (2 input-devid-addr)) ;; R5 has devid
(mult (1 r5) status-entry-length) ;; R5 has displacement to status entry
(add (1 r5) status-table) ;; R5 has absolute address of status entry
(compare (3 r5 status-flag-field) input-status) ;; Waiting to input?
(brnz check-for-full-input-buffer)
;; The task which owns this device is waiting to input; Make it ready to run.
(move (1 r2) (2 input-devid-addr)) ;; R2 has taskid
(move (1 r3) readyq) ;; R3 points to readyq
(call enqueue) ;; enq taskid on readyq
trace-label27
(move (3 r5 status-flag-field) ready-status)
(move (3 r5 status-taskid-field) 0)
trace-label28

check-for-full-input-buffer
(move (1 r3) (2 input-devid-addr)) ;; R3 has devid
(mult (1 r3) input-buffer-length)
(add (1 r3) ibuffers) ;; R3 points to the current input buffer
(call qfullp)
(brnz check-for-iport-error)
;; The input buffer is full. Replace the last queue element with the new character,
;; with the overflow bit set.
(move (1 r2) (2 input-char-addr))
(add (1 r2) charlub) ;; R2 now has character with the overflow bit set
(call qreplace) ;; R3 still points to the current input buffer
trace-label29
(br (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TASK

check-for-iport-error
(testi (2 input-devid-addr)) ;; Test input device for overflow error
(brnz enqueue-input-character) ;; if no error, enqueue the current character
;; Else, enqueue the overflow character
(move (1 r2) (2 input-char-addr))
(add (1 r2) charlub) ;; R2 now has character with the overflow bit set
(call enqueue) ;; R3 still points to the current input buffer
trace-label30
(br (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TASK

enqueue-input-character
(move (1 r2) (2 input-char-addr))
(call enqueue) ;; R3 still points to the current input buffer
trace-label31
(br (2 branch-address))

OUTPUT-INTERRUPT-HANDLER
;; The location OUTPUT-DEVID-ADDR of memory contains id of the interrupting device.
;; This also happens to be the id of the process which owns that output device.
;;
;; Pseudo Code:
;;
;; If the owning task is waiting to output
;; then put the id on the readyq
;; update to status of the task
;; endif
;;
;; if the output buffer is empty
;; then clear the output interrupt
;; else start another output
;; deq the output buffer
;; endif
;;
;; Resume the current task
;;
;; End of Pseudo Code

46

;;
(move (2 branch-address) dispatcher) ;; initialize BRANCH-ADDRESS to DISPATCHER

;; exit via dispatcher when waiting
(move (2 temp-r3) (1 r3)) ;; Save R3 because we must use it.
(move (1 r3) readyq) ;; R3 points to readyq
(call qemptyp) ;; check for empty readyq;

;; if empty, no need to save state
trace-label32
(brz oih-skip-save-state)
(move (2 branch-address) resume-task) ;; We’ll exit via RESUME-TASK
(move (1 r3) (2 temp-r3)) ;; Restore R3 for save-state
(call save-state)
trace-label33

oih-skip-save-state
(move (1 r5) (2 output-devid-addr)) ;; R5 has devid
(mult (1 r5) status-entry-length) ;; R5 has displacement to status entry
(add (1 r5) status-table) ;; R5 has absolute address of status entry
(compare (3 r5 status-flag-field) output-status) ;; Waiting to output?
(brnz check-for-empty-output-buffer)
;; The task which owns this device is waiting to output; Make it ready to run.
(move (1 r2) (2 output-devid-addr)) ;; R2 has taskid
(move (1 r3) readyq) ;; R3 points to readyq
(call enqueue) ;; enq taskid on readyq
trace-label34
(move (3 r5 status-flag-field) ready-status)
(move (3 r5 status-taskid-field) 0)
trace-label35

check-for-empty-output-buffer
(move (1 r3) (2 output-devid-addr)) ;; R3 has devid
(mult (1 r3) output-buffer-length)
(add (1 r3) obuffers) ;; R3 points to the current output buffer
(call qemptyp)
(brz (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TASK
;; Else the buffer is not empty, start the next output
(call qfirst) ;; Put the next output character in R2
(stout (2 output-devid-addr) (1 r2))
(call dequeue) ;; Deq the output buffer
trace-label36
(br (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TASK

DISPATCHER ;; Allocate CPU to first task on readyq.
(move (1 r3) readyq) ;; Point R3 to readyq
(call qemptyp) ;; Readyq empty?
dispatcher-trace-label1
(brz readyq-empty)
(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
dispatcher-trace-label2
(time (2 time-slice 0)) ;; set clock
(lpsw (2 reg-save-area))

READYQ-EMPTY
(wait)
pc-after-wait

SVC-RESUME-TASK ;; Return to current task (readyq is not empty).
(move (1 r3) readyq) ;; Point R3 to readyq
(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
svc-resume-task-trace-label1
(svcr (2 reg-save-area))

RESUME-TASK ;; Return to current task (readyq is not empty).
(move (1 r3) readyq) ;; Point R3 to readyq
(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
resume-task-trace-label1

47

(lpsw (2 reg-save-area))

ENQUEUE
;; Assume R2 contains item to enqueue
;; R3 points to queue
;; this routine assumes queue not currently full
;; pseudo-code:
;; store the item where ever the tail index points
;; increment the current length
;; increment the tail index (mod max-index)
(move (1 r4) (1 r3))
(add (1 r4) qarray-field)
(add (1 r4) (3 r3 qtail-field)) ;; r4 has address of free slot
(move (3 r4) (1 r2)) ;; store item
(incr (3 r3 qcurrlength-field)) ;; increment current length
(incrm (3 r3 qtail-field) (3 r3 qmaxlength-field)) ;; increment tail
(return)

QREPLACE
;; Assume R3 points to non-empty queue.
;; Replace last queue element with contents of R2.
;;
(move (1 r4) (3 r3 qtail-field)) ;; R4 has queue tail index
(decrm (1 r4) (3 r3 qmaxlength-field)) ;; decrement tail pointer
(add (1 r4) (1 r3)) ;; add address of queue
(add (1 r4) qarray-field) ;; R4 has address of last slot in queue
(move (3 r4) (1 r2)) ;; store item
(return)

DEQUEUE
;; assume R3 points to queue;
;; this routine assumes queue not currently empty
;; pseudo-code:
;; decrement current queue length
;; increment head index (mod maxlength)
(decr (3 r3 qcurrlength-field)) ;; decrement the current length of the queue
(incrm (3 r3 qhead-field) (3 r3 qmaxlength-field))
(return)

QFIRST
;; Assume R3 points to queue.
;; Put first queue item in R2.
;; This routine assumes queue not currently empty.
(move (1 r2) (1 r3)) ;; R2 points to queue
(add (1 r2) qarray-field) ;; R2 points to the qarray
(add (1 r2) (3 r3 qhead-field)) ;; R2 points to the first queue element
(move (1 r2) (3 r2)) ;; put the first element into R2
(return)

QEMPTYP
;; assume R3 points to queue
;; set CC to zero if queue is empty
(compare (3 r3 qcurrlength-field) 0)
(return)

QFULLP
;; assume R3 points to queue
;; set CC to zero if queue is full
(compare (3 r3 qcurrlength-field) (3 r3 qmaxlength-field))
(return)

END-OF-OS-SOURCE

48

4.3 Flowcharts

As an aid to following the kernel, we present flowcharts for each interrupt handler. The flowcharts are not
design aids, but were created after the fact to depict the control flow through each interrupt handler. There
are 38 final states which can be reached after entering the kernel at the start of one of the interrupt
handlers. These 38 final states are depicted by 38 exit boxes. Oval boxes are used to depict kernel entry
and exit points. An oval box with a line beneath is a continuation onto a following page.

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Chapter 5

THE VERIFICATION OF KIT

In this chapter we outline the correctness proof for the kernel. In Section 5.1 we define an interpreter
OS-PROCESSOR which is intermediate between the target machine and abstract kernel. This machine
captures the state transitions accomplished by the operating system implementation. We prove an
equivalence theorem between a TM-PROCESSOR running KIT and an OS-PROCESSOR. The proof of
CORRECTNESS-OF-OPERATING-SYSTEM (see Section 2.3) then reduces to proving that OS-PROCESSOR

implements AK-PROCESSOR. Figure 5-1 is a modification of Figure 2-2 which reveals the role of
OS-PROCESSOR. In subsequent sections of this chapter we discuss the proofs of OS-IMPLEMENTS-AK and
AK-IMPLEMENTS-PARALLEL-TASKS.

5.1 The Operating System Layer

The operating system layer defines an interpreter which mediates between the target machine and the
abstract kernel. It defines the transitions accomplished by KIT’s interrupt handlers on the target machine.
An operating system state is a TM loaded with a particular program. Therefore, the shell TM gives the
structure of an OS state as well as a TM state. The predicate GOOD-OS defines the operating system layer
state set and formalizes the pictorial description of the kernel layout given by Figure 4-1. GOOD-OS places
constraints on various registers and memory locations.

We examine the conjuncts of GOOD-OS. First, an OS state must be a GOOD-TM. The next five of conjuncts of
GOOD-OS define the contents of the interrupt vector. The predicate (GOOD-CPU-LIST

(TABLE (TM-CPU-LENGTH) (OS-TASK-TABLE OS))) states that each entry of the task table is a valid CPU
state. (We define the function TABLE below.) The next three conjuncts constrain the segment table. The
segments defined by the segment table must all lie within main memory, they must be mutually disjoint
and they must be disjoint from the kernel. The predicate (FINITE-NUMBER-QUEUEP (OS-READYQ OS)

(AK-TASKIDLUB) (AK-TASKIDLUB)) states that the ready queue is a bounded queue containing only valid
task identifiers. The predicate (GOOD-STATUS-LIST (TABLE (AK-STATUS-LENGTH)

(OS-STATUS-TABLE OS))) recognizes a valid status table implementation. The next three conjuncts define
valid implementations of the three buffer tables. The formula (EQUAL (OS-CODE OS)

(OS-MACHINE-CODE)) states that the code segment of the kernel contains a particular constant, the kernel
machine code. The identity (EQUAL (TM-SLIMIT OS) (OS-LIMIT)) requires the target machine slimit
register to be equal to a particular number, defined by (OS-LIMIT), large enough to contain the kernel.
The predicate (EQUAL (GETNTH (OS-TIME-SLICE-ADDRESS) (TM-MEMORY OS)) (AK-TIME-SLICE))

ensures that the time slice granted to tasks by the kernel is exactly the value specified by the abstract
kernel.

64

Figure 5-1: Revised KIT Proof Structure

65

Definition {1874}.
(GOOD-OS OS)

=
(AND
(GOOD-TM OS)
(EQUAL (GETNTH (TM-CLOCK-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-CLOCK-INTERRUPT-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-ERROR-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-ERROR-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-SVC-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-SVC-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-INPUT-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-INPUT-INTERRUPT-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-OUTPUT-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-OUTPUT-INTERRUPT-HANDLER-ADDRESS))
(GOOD-CPU-LIST (TABLE (TM-CPU-LENGTH) (OS-TASK-TABLE OS)))
(FINITE-SEGMENT-TABLEP (TABLE 2 (OS-SEGMENT-TABLE OS)) (TM-MEMLENGTH))
(MUTUALLY-DISJOINT (TABLE 2 (OS-SEGMENT-TABLE OS)))
(DISJOINT-EVERYWHERE 0 (OS-LIMIT) (TABLE 2 (OS-SEGMENT-TABLE OS)))
(FINITE-NUMBER-QUEUEP (OS-READYQ OS) (AK-TASKIDLUB) (AK-TASKIDLUB))
(GOOD-STATUS-LIST (TABLE (AK-STATUS-LENGTH) (OS-STATUS-TABLE OS)))
(FINITE-NUMBER-QUEUE-LISTP (TABLE (OS-IBUFFER-LENGTH) (OS-IBUFFERS OS))

(TASK-IBUFFER-CAPACITY)
(TM-WORDLUB))

(FINITE-NUMBER-QUEUE-LISTP (TABLE (OS-OBUFFER-LENGTH) (OS-OBUFFERS OS))
(TASK-OBUFFER-CAPACITY)
(TM-WORDLUB))

(FINITE-NUMBER-QUEUE-LISTP (TABLE (OS-MBUFFER-LENGTH) (OS-MBUFFERS OS))
(TASK-MBUFFER-CAPACITY)
(TM-WORDLUB))

(EQUAL (OS-CODE OS) (OS-MACHINE-CODE))
(EQUAL (TM-SLIMIT OS) (OS-LIMIT))
(EQUAL (GETNTH (OS-TIME-SLICE-ADDRESS) (TM-MEMORY OS))

(AK-TIME-SLICE))
(NOT (TM-IN-SUPERVISOR-MODE OS))
(PERMUTATION (MAPUP-QUEUE (OS-READYQ OS)) (OS-READY-SET OS))
(IFF (TM-WAITING OS) (ARRAY-QEMPTYP (OS-READYQ OS)))
(IMPLIES
(NOT (TM-WAITING OS))
(AND (EQUAL (TM-BASE OS)

(BASE (GETNTH (OS-CURRENT-TASKID OS)
(TABLE 2 (OS-SEGMENT-TABLE OS)))))

(EQUAL (TM-LIMIT OS)
(LIMIT (GETNTH (OS-CURRENT-TASKID OS)

(TABLE 2 (OS-SEGMENT-TABLE OS))))))))

The remaining conjuncts of GOOD-OS define invariants on the operating system layer. First, the operating
system interpreter is always in user mode. We next have two invariants that are present at the abstract
kernel layer: the ready queue is a permutation of the set of ready tasks as defined by the status table, and
the operating system is waiting if and only if the ready queue is empty. The final conjunct of GOOD-OS

identifies the current base/limit register pair with a particular entry in the segment table.

The function TABLE referenced above is an abstraction function, which unflattens a flat representation of a
table consisting of fixed-length elements of size N.

Definition {409}.
(TABLE N L)

=
(IF (ZEROP N)

L
(IF (LISTP L)

(CONS (GETSEG 0 N L)
(TABLE N (NTHCDR N L)))

NIL))

66

The function OS-PROCESSOR is the interpreter function for the operating system layer. It takes as arguments
an OS state and an oracle which is identical to a TM oracle. OS-STEP is the single step function at the
operating system layer. It defines an interrupt structure identical to TM’s. Recall that the state returned by
TM-STEP on an interrupt is described by a simple PSW swap. The state returned by OS-STEP on an interrupt
is not a PSW swap, but a machine state describing the effect of an interrupt handler. An OS interrupt step
equals some positive number of TM steps occurring after the same interrupt.

Definition {3635}.
(OS-PROCESSOR OS ORACLE)

=
(IF (LISTP ORACLE)

(OS-PROCESSOR (OS-STEP (TM-POST-INTERRUPT (CAR ORACLE) OS))
(CDR ORACLE))

OS)

Definition {3634}.
(OS-STEP OS)

=
(IF (TM-INPUT-INTERRUPTP OS)

(OS-INPUT-INTERRUPT-HANDLER OS)

(IF (TM-OUTPUT-INTERRUPTP OS)
(OS-OUTPUT-INTERRUPT-HANDLER OS)

(IF (TM-WAITING OS)
OS

(IF (TM-ERRORP OS)
(OS-ERROR-HANDLER OS)

(IF (TM-CLOCK-INTERRUPTP OS)
(OS-CLOCK-INTERRUPT-HANDLER OS)

(IF (TM-SVC-INTERRUPTP OS)
(OS-SVC-HANDLER OS)

(TM-FETCH-EXECUTE OS)))))))

We now provide more detailed information on the definitions of GOOD-OS and OS-STEP to make clear how
the machine code program which defines KIT fits into the definition of the OS layer.

We examine the conjunct (EQUAL (OS-CODE OS) (OS-MACHINE-CODE)) of GOOD-OS in some detail to see
how GOOD-OS incorporates the assembled machine code into the definition of the OS layer. The function
OS-CODE (see below) is defined to be a particular segment of memory. (GETSEG N K L) is the segment of
list L beginning at location N with length K. The address and length of OS-CODE is determined by the
values of particular labels in the symbol table constructed by the assembler. OS-MACHINE-CODE is that
segment of the assembled source code which contains the machine code which we wish to have
interpreted by the target machine. The value of OS-MACHINE-CODE is a list of numbers bounded by
TM-WORDLUB which results from assembling the KIT source code. Other segments of memory which are
mentioned in GOOD-OS are defined similarly.

Definition {1770}.
(OS-CODE OS)

=
(GETSEG (OS-CODE-ADDRESS)

(OS-CODE-LENGTH)
(TM-MEMORY OS))

Definition {1751}.
(OS-CODE-ADDRESS) = (LOOKUP ’SAVE-STATE (OS-SYMTAB))

67

Definition {1755}.
(OS-CODE-LENGTH)

=
(DIFFERENCE (LOOKUP ’END-OF-OS-SOURCE (OS-SYMTAB))

(OS-CODE-ADDRESS))

Definition {1761}.
(OS-MACHINE-CODE)

=
(GETSEG (OS-CODE-ADDRESS)

(OS-CODE-LENGTH)
(CAR (ASSEMBLE (OS-SOURCE))))

GOOD-OS constrains the target machine to be loaded with a particular program. The function OS-STEP gives
the state changes produced by executing the program. We examine the clock interrupt handler in some
detail. When in a state recognized by GOOD-OS, a clock interrupt causes the target machine to be placed in
the supervisor mode, and places the address of the clock interrupt handler in the program counter. When
in the supervisor mode TM is not interruptible. Therefore, TM will take some number of steps until the clock
interrupt handler relinquishes control by resuming a task in user mode. The function
OS-CLOCK-INTERRUPT-HANDLER defines the change to the state of the machine produced by the clock
interrupt handler. (See the function OS-STEP.)

Definition {2288}.
(OS-CLOCK-INTERRUPT-HANDLER OS)

=
(TM
(PUTNTH
(GETNTH (TIMES (TM-CPU-LENGTH)

(ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)))
(OS-NEW-TASK-TABLE OS))

0
(PUTNTH
(GETNTH (PLUS 1

(TIMES (TM-CPU-LENGTH)
(ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS))))

(OS-NEW-TASK-TABLE OS))
1
(PUTNTH
(GETNTH (PLUS 8

(TIMES (TM-CPU-LENGTH)
(ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS))))

(OS-NEW-TASK-TABLE OS))
2
(PUTNTH (TM-R2 OS) (OS-TEMP-R2-ADDRESS)
(PUTNTH (TM-R3 OS) (OS-TEMP-R3-ADDRESS)
(PUTSEG (OS-NEW-TASK-TABLE OS) (OS-TASK-TABLE-ADDRESS)
(PUTSEG (OS-SEGMENT-TABLE OS) (OS-SEGMENT-TABLE-ADDRESS)
(PUTSEG (OS-CLOCK-NEW-READYQ OS) (OS-READYQ-ADDRESS)
(PUTSEG (OS-CODE OS) (OS-CODE-ADDRESS)
(PUTNTH (OS-SAVE-STATE-RETURN-ADDRESS)

(SUB1 (SUB1 (OS-LIMIT)))
(PUTNTH (OS-DISPATCHER-TRACE-LABEL2) (SUB1 (OS-LIMIT))

(TM-MEMORY OS))))))))))))
(OS-NEW-REGS (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-CC (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-ERROR (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-SVCFLAG (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-SVCID (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-BASE (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-LIMIT (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(TM-SLIMIT OS)
(TM-USER-MODE)
(TM-RUN-STATE)
(AK-TIME-SLICE)
(TM-IPORTS OS)
(TM-OPORTS OS))

68

OS-CLOCK-INTERRUPT-HANDLER is a large function. We let the theorem prover help us construct it as
follows. We present to the theorem prover the event TRACE-CLOCK-INTERRUPT-HANDLER (see below),
where OS-INTENDED-CLOCK-INTERRUPT defines the TM clock interrupt transition for a GOOD-OS, and
OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER is an oracle giving the number of steps required to complete
execution of the clock interrupt handler (a list of ticks). Notice that the lemma states an equality which
we do not expect to prove: that running the clock interrupt handler produces no state change.

Proposition. TRACE-CLOCK-INTERRUPT-HANDLER (rewrite):
(IMPLIES

(AND (GOOD-OS OS)
(NOT (TM-WAITING OS)))

(EQUAL (TM-PROCESSOR (OS-INTENDED-CLOCK-INTERRUPT OS)
(OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER OS))

OS))

In letting the theorem prover attempt a proof, the left hand side of the equality is rewritten to a form not
involving calls to TM-PROCESSOR by replacing the call to TM-PROCESSOR with as many nested calls of
TM-STEP as indicated by OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER. The nested calls to TM-STEP are
opened up and simplified. The resulting expression describes the final state of the clock interrupt handler.
The rewriter in effect symbolically executes the operating system. We intercept the output of the theorem
prover when the final state expression is generated, edit it to clean it up a bit, and use the resulting
expression to define OS-CLOCK-INTERRUPT-HANDLER. We then submit the event
TRACE-CLOCK-INTERRUPT-HANDLER again, this time placing the form (OS-CLOCK-INTERRUPT-HANDLER OS)

on the right hand side of the equation.

Theorem {2296}. TRACE-CLOCK-INTERRUPT-HANDLER (rewrite):
(IMPLIES

(AND (GOOD-OS OS)
(NOT (TM-WAITING OS)))

(EQUAL (TM-PROCESSOR (OS-INTENDED-CLOCK-INTERRUPT OS)
(OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER OS))

(OS-CLOCK-INTERRUPT-HANDLER OS)))

The definition of OS-STEP is possible only when all paths through all interrupt handlers have been traced
with such lemmas. The tracing lemmas and their support lemmas form a large part of the KIT script. The
story sounds simple, but in fact the tracing lemmas are the most difficult to get the theorem prover to
check. The lemmas require getting correct all the details of addressing complicated data structures.

The definition of OS-STEP handles the issue of time abstraction with respect to the correspondence of TM
and AK. Figure 5-2 compares the trace of a TM running KIT with a trace of an OS machine. In a TM trace, an
interrupt step is followed by some number of fetch-execute steps occurring in supervisor mode. A
contiguous number of such steps is accomplished in a single OS step. OS-PROCESSOR handles the time
differential between TM and AK. As a by-product of the definition of OS-PROCESSOR, we get termination of
the operating system. OS-PROCESSOR can be defined only after running each path of the operating system
to termination.

5.2 The Target Machine Implements the Operating System

In this section we discuss the equivalence of the target machine loaded with KIT and the operating system
layer described in the previous section. The identity function is the abstraction function from a target
machine state to an operating system state. TM-PROCESSOR and OS-PROCESSOR differ in the way they
consume the oracle. As explained in Section 5.1, an interrupt step defined by OS-STEP comprehends
multiple steps of the target machine. The exact relationship can be established by defining an intermediate
processor TIMED-TM-PROCESSOR, which calls TM-PROCESSOR on each interrupt for as many steps as

69

Figure 5-2: Traces of TM and OS

necessary to complete execution of the interrupt handler.

Definition {3639}.
(TIMED-TM-PROCESSOR TM ORACLE)

=
(IF (LISTP ORACLE)

(TIMED-TM-PROCESSOR
(TIMED-TM-STEP (TM-POST-INTERRUPT (CAR ORACLE) TM))
(CDR ORACLE))

TM)

Definition {3638}.
(TIMED-TM-STEP TM)

=
(IF (TM-INPUT-INTERRUPTP TM)

(TM-PROCESSOR (TM-EXECUTE-INPUT-INTERRUPT TM)
(OS-TIME-FOR-INPUT-INTERRUPT-HANDLER TM))

(IF (TM-OUTPUT-INTERRUPTP TM)
(TM-PROCESSOR (TM-EXECUTE-OUTPUT-INTERRUPT TM)

(OS-TIME-FOR-OUTPUT-INTERRUPT-HANDLER TM))

(IF (TM-WAITING TM)
TM

(IF (TM-ERRORP TM)
(TM-PROCESSOR (TM-EXECUTE-ERROR-INTERRUPT TM)

(OS-TIME-FOR-ERROR-HANDLER TM))

(IF (TM-CLOCK-INTERRUPTP TM)
(TM-PROCESSOR (TM-EXECUTE-CLOCK-INTERRUPT TM)

(OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER TM))

(IF (TM-SVC-INTERRUPTP TM)
(TM-PROCESSOR (TM-EXECUTE-SVC-INTERRUPT TM)

(OS-TIME-FOR-SVC-HANDLER TM))

(TM-FETCH-EXECUTE TM)))))))

Speaking loosely, TIMED-TM-PROCESSOR and OS-PROCESSOR run "faster" than TM-PROCESSOR.

70

TIMED-TM-PROCESSOR and OS-PROCESSOR consume a single element of the oracle to handle an interrupt
while TM-PROCESSOR requires more than one. The function OS-ORACLE constructs from an OS-PROCESSOR

oracle an oracle with enough "ticks" inserted to enable TM-PROCESSOR to match the operation of
OS-PROCESSOR.

Definition {3641}.
(OS-ORACLE OS ORACLE)

=
(IF (LISTP ORACLE)

(APPEND
(OS-ORACLE-STEP (CAR ORACLE)

(TM-POST-INTERRUPT (CAR ORACLE) OS))
(OS-ORACLE (TIMED-TM-STEP (TM-POST-INTERRUPT (CAR ORACLE) OS))

(CDR ORACLE)))
ORACLE)

Definition {3640}.
(OS-ORACLE-STEP EVENT OS)

=
(IF (TM-INPUT-INTERRUPTP OS)

(CONS EVENT (OS-TIME-FOR-INPUT-INTERRUPT-HANDLER OS))

(IF (TM-OUTPUT-INTERRUPTP OS)
(CONS EVENT (OS-TIME-FOR-OUTPUT-INTERRUPT-HANDLER OS))

(IF (TM-WAITING OS)
(LIST EVENT)

(IF (TM-ERRORP OS)
(CONS EVENT (OS-TIME-FOR-ERROR-HANDLER OS))

(IF (TM-CLOCK-INTERRUPTP OS)
(CONS EVENT (OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER OS))

(IF (TM-SVC-INTERRUPTP OS)
(CONS EVENT (OS-TIME-FOR-SVC-HANDLER OS))

(LIST EVENT)))))))

The lemma TM-IMPLEMENTS-TIMED-TM establishes the correspondence between TM-PROCESSOR and
TIMED-TM-PROCESSOR. The interrupt branches of TIMED-TM-PROCESSOR-STEP have the form of the tracing
lemmas used to generate the definition of OS-STEP. It therefore is a simple matter to prove that
TIMED-TM-PROCESSOR is identical to OS-PROCESSOR, that is they describe the same function on a GOOD-OS

state. We therefore get the implements relation between the TM and OS layers, stated in
TM-IMPLEMENTS-OS. The theorem states that the TM layer implements the OS layer if I/O interrupts are
adequately spaced - long enough to execute a path of the operating system. The longest path in our system
takes 112 steps. So 112 is a crude measure of the minimum gap between I/O interrupts. This requirement
carries up through higher layers of the proof.

Theorem {3644}. TM-IMPLEMENTS-TIMED-TM (rewrite):
(EQUAL (TM-PROCESSOR TM (OS-ORACLE TM ORACLE))

(TIMED-TM-PROCESSOR TM ORACLE))

Theorem {3654}. TM-IMPLEMENTS-OS (rewrite):
(IMPLIES (GOOD-OS OS)

(EQUAL (TM-PROCESSOR OS (OS-ORACLE OS ORACLE))
(OS-PROCESSOR OS ORACLE)))

71

5.3 The Operating System Implements the Abstract Kernel

The proof that the operating system layer implements the abstract kernel is the heart of the verification of
KIT. This result is established by the theorem OS-IMPLEMENTS-AK. Its proof is long. The abstraction
function MAPUP-OS is large since there are many state components to map, and their mapping is non-trivial.

Theorem {4620}. OS-IMPLEMENTS-AK (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE))
(EQUAL (MAPUP-OS (OS-PROCESSOR OS ORACLE))

(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

MAPUP-OS constructs an abstract kernel state from an operating system state. We will examine the mapping
of each component, dispatching the simple ones first. Observe that the running/wait state flag, the
program clock, the input ports and the output ports are mapped up to the abstract kernel with no
transformation. The status table is mapped by the function TABLE, which collects a flat list into a list of
tuples of a given size.

Definition {1953}.
(MAPUP-OS OS)

=
(AK (MAPUP-OS-TASKS OS)

(MAPUP-OS-IBUFFERS OS)
(MAPUP-OS-OBUFFERS OS)
(MAPUP-OS-MBUFFERS OS)
(MAPUP-QUEUE (OS-READYQ OS))
(TABLE (AK-STATUS-LENGTH)

(OS-STATUS-TABLE OS))
(TM-RWSTATE OS)
(TM-CLOCK OS)
(TM-IPORTS OS)
(TM-OPORTS OS))

The mappings of the ready queue and buffer tables make use of a common abstraction function
MAPUP-QUEUE, which maps an implementation of finite queues up to list structures. The formal details of
MAPUP-QUEUE and a description of how we verify queue operations appears in Chapter 6. Suffice it to say
for the present that the operating system uses a circular implementation of finite queues.

Definition {1949}.
(MAPUP-QUEUE-LIST L)

=
(IF (LISTP L)

(CONS (MAPUP-QUEUE (CAR L))
(MAPUP-QUEUE-LIST (CDR L)))

NIL)

Definition {1950}.
(MAPUP-OS-IBUFFERS OS)

=
(MAPUP-QUEUE-LIST (TABLE (OS-IBUFFER-LENGTH)

(OS-IBUFFERS OS)))

Definition {1951}.
(MAPUP-OS-OBUFFERS OS)

=
(MAPUP-QUEUE-LIST (TABLE (OS-OBUFFER-LENGTH)

(OS-OBUFFERS OS)))

Definition {1952}.
(MAPUP-OS-MBUFFERS OS)

=
(TABLE (AK-TASKIDLUB)

(MAPUP-QUEUE-LIST (TABLE (OS-MBUFFER-LENGTH)
(OS-MBUFFERS OS))))

72

The function MAPUP-OS-TASKS maps out of the operating system state a list of task address spaces. An
address space is defined as a target machine which contains just that portion of the machine which is
visible to a single task running in user mode. The function MAPUP-ADDRESS-SPACE formalizes this notion.
It builds a target machine which contains a given CPU state (general purpose registers and flags) and a
segment of memory defined by a given base and limit. The base register is initialized to 0, and the limit
register is initialized to the given limit. The machine is put in the user operating mode. Remaining target
machine components have don’t care values since they are not accessible in user mode.

Definition {1948}.
(MAPUP-OS-TASKS OS) = (MAPUP-TASKS 0 OS)

Definition {1947}.
(MAPUP-TASKS TASKID OS)

=
(IF (LESSP TASKID (AK-TASKIDLUB))

(CONS (MAPUP-TASK TASKID OS)
(MAPUP-TASKS (ADD1 TASKID) OS))

NIL)

Definition {1946}.
(MAPUP-TASK TASKID OS)

=
(MAPUP-ADDRESS-SPACE (TM-MEMORY OS)

(MAPUP-REGS TASKID OS)
(MAPUP-CC TASKID OS)
(MAPUP-ERROR TASKID OS)
(MAPUP-SVCFLAG TASKID OS)
(MAPUP-SVCID TASKID OS)
(MAPUP-BASE TASKID OS)
(MAPUP-LIMIT TASKID OS))

Definition {1266}.
(MAPUP-ADDRESS-SPACE MEMORY REGS CC ERROR SVCFLAG SVCID BASE LIMIT)

=
(TM (GETSEG BASE LIMIT MEMORY)

REGS CC ERROR SVCFLAG SVCID 0 (FIX LIMIT)
0 (TM-USER-MODE) 0 0 0 0)

The values chosen to initialize a task’s address space (i.e. the values occurring as arguments to
MAPUP-ADDRESS-SPACE in MAPUP-TASK) are extracted from the state of the operating system. The ith task’s
memory segment is defined by the segment of memory identified by the ith base/limit register pair in the
segment table. The ith task’s CPU state depends on whether or not the operating system is in the wait
state, and the identity of the current task. If the operating system state is waiting, then the CPU state of
task i is contained in the ith entry of the task table. If the operating system state is running, the CPU state
of the current task is the current state of the CPU. The contents of the task table is not up to date for this
task. Otherwise, the CPU state of the ith task is extracted from the task table. These points are formalized
in the function MAPUP-CPU.

Definition {1939}.
(MAPUP-REGS TASKID OS)

=
(GETSEG 0 (TM-REGLENGTH) (MAPUP-CPU TASKID OS))

Definition {1940}.
(MAPUP-CC TASKID OS)

=
(TM-UNPACK-CC (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

Definition {1941}.
(MAPUP-ERROR TASKID OS)

=
(TM-UNPACK-ERROR (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

73

Definition {1942}.
(MAPUP-SVCFLAG TASKID OS)

=
(TM-UNPACK-SVCFLAG (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

Definition {1943}.
(MAPUP-SVCID TASKID OS)

=
(TM-UNPACK-SVCID (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

Definition {1944}.
(MAPUP-BASE TASKID OS)

=
(BASE (GETNTH TASKID (TABLE 2 (OS-SEGMENT-TABLE OS))))

Definition {1945}.
(MAPUP-LIMIT TASKID OS)

=
(LIMIT (GETNTH TASKID (TABLE 2 (OS-SEGMENT-TABLE OS))))

Definition {1938}.
(MAPUP-CPU TASKID OS)

=
(IF (TM-WAITING OS)

(GETNTH TASKID
(TABLE (TM-CPU-LENGTH)

(OS-TASK-TABLE OS)))
(IF (EQUAL TASKID (OS-CURRENT-TASKID OS))

(TM-CPU OS)
(GETNTH TASKID

(TABLE (TM-CPU-LENGTH)
(OS-TASK-TABLE OS)))))

We now can define a function required for the definition of the task layer, GOOD-ADDRESS-SPACE. This
predicate must hold on the private state of a task. GOOD-ADDRESS-SPACE recognizes a TM with a memory
of a given length, and running in user mode. MAPUP-ADDRESS-SPACE satisfies GOOD-ADDRESS-SPACE when it
is constructed from a valid target machine.

Definition {1194}.
(GOOD-ADDRESS-SPACE X MEMLENGTH)

=
(AND (TM-SHELLP X)

(NUMBERP MEMLENGTH)
(LEQ MEMLENGTH (TM-MEMLENGTH))
(PLISTP (TM-MEMORY X))
(FINITE-NUMBER-LISTP (TM-MEMORY X) (TM-WORDLUB))
(EQUAL (LENGTH (TM-MEMORY X)) MEMLENGTH)
(PLISTP (TM-REGS X))
(FINITE-NUMBER-LISTP (TM-REGS X) (TM-WORDLUB))
(EQUAL (LENGTH (TM-REGS X)) (TM-REGLENGTH))
(FINITE-NUMBERP (TM-CC X) (TM-CCLUB))
(FINITE-NUMBERP (TM-ERROR X) (TM-ERRORLUB))
(FINITE-NUMBERP (TM-SVCFLAG X) (TM-SVCFLAGLUB))
(FINITE-NUMBERP (TM-SVCID X) (TM-SVCIDLUB))
(EQUAL (TM-BASE X) 0)
(EQUAL (TM-LIMIT X) MEMLENGTH)
(EQUAL (TM-SVMODE X) (TM-USER-MODE)))

The proof of OS-IMPLEMENTS-AK is by induction over the oracle argument to AK-PROCESSOR. It is a simple
consequence of the theorem OS-STEP-IMPLEMENTS-AK-STEP, whose proof we give.

Theorem {4612}. OS-STEP-IMPLEMENTS-AK-STEP (rewrite):
(IMPLIES (GOOD-OS OS)

(EQUAL (MAPUP-OS (OS-STEP OS))
(AK-STEP (MAPUP-OS OS))))

Proof:

74

This conjecture simplifies, rewriting with
OS-NOT-IN-SUPERVISOR-MODE, AK-SVC-INTERRUPTP-MAPUP-OS,
AK-CLOCK-INTERRUPTP-MAPUP-OS, AK-ERRORP-MAPUP-OS,
AK-WAITING-MAPUP-OS, AK-OUTPUT-INTERRUPTP-MAPUP-OS, and
AK-INPUT-INTERRUPTP-MAPUP-OS, and unfolding TM-OUTPUT-INTERRUPTP,
TM-INPUT-INTERRUPTP, OS-STEP, AK-INTERRUPTING-OUTPUT-PORT,
AK-INTERRUPTING-INPUT-PORT, and AK-STEP, to the following six new
formulas:

Case 6. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))

(EQUAL
(MAPUP-OS (OS-OUTPUT-INTERRUPT-HANDLER OS))
(AK-OUTPUT-INTERRUPT-HANDLER

(TM-INTERRUPTING-OUTPUT-PORT (AK-OPORTS (MAPUP-OS OS)))
(MAPUP-OS OS)))).

But this again simplifies, applying the lemma
CORRECTNESS-OF-OUTPUT-INTERRUPT-HANDLER, to:

T.

Case 5. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(TM-ERRORP OS))

(EQUAL (MAPUP-OS (OS-ERROR-HANDLER OS))
(AK-ERROR-HANDLER (MAPUP-OS OS)))),

which again simplifies, rewriting with
CORRECTNESS-OF-OS-ERROR-HANDLER, to:

T.

Case 4. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS))
(NOT (TM-CLOCK-INTERRUPTP OS))
(TM-SVC-INTERRUPTP OS))

(EQUAL (MAPUP-OS (OS-SVC-HANDLER OS))
(AK-SVC-HANDLER (MAPUP-OS OS)))).

However this again simplifies, rewriting with the lemma
CORRECTNESS-OF-SVC-HANDLER, to:

T.

Case 3. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS))
(NOT (TM-CLOCK-INTERRUPTP OS))
(NOT (TM-SVC-INTERRUPTP OS)))

(EQUAL (MAPUP-OS (TM-FETCH-EXECUTE OS))
(AK-PRIVATE-STEP (MAPUP-OS OS)))),

which again simplifies, applying the lemma
CORRECTNESS-OF-TM-FETCH-EXECUTE, to:

T.

75

Case 2. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS))
(TM-CLOCK-INTERRUPTP OS))

(EQUAL (MAPUP-OS (OS-CLOCK-INTERRUPT-HANDLER OS))
(AK-CLOCK-INTERRUPT-HANDLER (MAPUP-OS OS)))),

which again simplifies, rewriting with
CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER, to:

T.

Case 1. (IMPLIES
(AND (GOOD-OS OS)

(TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(EQUAL
(MAPUP-OS (OS-INPUT-INTERRUPT-HANDLER OS))
(AK-INPUT-INTERRUPT-HANDLER

(TM-INTERRUPTING-INPUT-PORT (AK-IPORTS (MAPUP-OS OS)))
(MAPUP-OS OS)))).

This again simplifies, applying the lemma
CORRECTNESS-OF-INPUT-INTERRUPT-HANDLER, to:

T.

Q.E.D.

The lemmas CORRECTNESS-OF-OUTPUT-INTERRUPT-HANDLER,
CORRECTNESS-OF-INPUT-INTERRUPT-HANDLER, CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER,
CORRECTNESS-OF-OS-ERROR-HANDLER and CORRECTNESS-OF-SVC-HANDLER establish the correctness of each
of the interrupt handlers and have identical form. The theorem
CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER is stated as an example.

Theorem {3680}. CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS)))

(EQUAL (MAPUP-OS (OS-CLOCK-INTERRUPT-HANDLER OS))
(AK-CLOCK-INTERRUPT-HANDLER (MAPUP-OS OS))))

The proof of each interrupt handler correctness theorem follows the same pattern: open up the definition
of MAPUP-OS and prove that the abstraction of each OS field equals the corresponding AK field. The proof is
therefore a large case split, the details of which we leave to the script.

The verification of the interrupt handlers gives five of the six cases required to prove
OS-STEP-IMPLEMENTS-AK-STEP. The remaining case requires a proof that a fetch-execute step at the OS

layer implements a fetch-execute step at the AK layer. This result is stated by the theorem
CORRECTNESS-OF-TM-FETCH-EXECUTE.

[Theorem {2078}. CORRECTNESS-OF-TM-FETCH-EXECUTE (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NOT (TM-CLOCK-INTERRUPTP OS)))

(EQUAL (MAPUP-OS (TM-FETCH-EXECUTE OS))
(AK-FETCH-EXECUTE (MAPUP-OS OS))))

Recall that AK-FETCH-EXECUTE is defined as the application of TM-FETCH-EXECUTE to the current abstract
address space. Therefore the proof of CORRECTNESS-OF-TM-FETCH-EXECUTE is a result about the interaction
of TM-FETCH-EXECUTE and the address space abstraction. At the AK layer, address spaces are clearly

76

isolated. Each address space is an element of the array AK-PSTATES. There is no sharing of data among
address spaces. Therefore address space isolation is a simple result of the properties of array access. At
the OS layer address space isolation is not nearly as transparent. A task’s address space is computed from a
segment of memory, the current CPU state and the current contents of the data structure OS-TASK-TABLE.

The proof of CORRECTNESS-OF-TM-FETCH-EXECUTE is accomplished by a case split on the current task
identifier. The theorem MAPUP-CURRENT-TASK-TM-FETCH-EXECUTE states that TM-FETCH-EXECUTE behaves
as desired on the current address space, and MAPUP-TASK-SEPARATION states the property that
TM-FETCH-EXECUTE has no effect on an address space which is not current.

Theorem {2069}. MAPUP-CURRENT-TASK-TM-FETCH-EXECUTE (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS)))
(EQUAL (MAPUP-TASK (OS-CURRENT-TASKID OS)

(TM-FETCH-EXECUTE OS))
(TM-FETCH-EXECUTE (MAPUP-TASK (OS-CURRENT-TASKID OS)

OS))))

Theorem {2070}. MAPUP-TASK-SEPARATION (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NUMBERP TASKID)
(LESSP TASKID (AK-TASKIDLUB))
(NOT (EQUAL TASKID (OS-CURRENT-TASKID OS))))

(EQUAL (MAPUP-TASK TASKID (TM-FETCH-EXECUTE OS))
(MAPUP-TASK TASKID OS)))

These lemmas in turn rely on important properties of TM’s architecture.
TM-FETCH-EXECUTE-COMMUTES-WITH-MAPUP-ADDRESS-SPACE states that TM-FETCH-EXECUTE, when in user
mode, may be applied to the entire state of the target machine, or to just a single address space, with
identical effect on that address space. It is this theorem which allows us to apply TM-FETCH-EXECUTE at all
levels of the specification and definition of KIT. And it is this theorem which formalizes our intuitive
understanding of what an address space is. The invariant defined by GOOD-OS ensures that the conditions
required by this theorem always hold.

Theorem {1382}. TM-FETCH-EXECUTE-COMMUTES-WITH-MAPUP-ADDRESS-SPACE (rewrite):
(IMPLIES

(AND (GOOD-TM TM)
(LEQ (PLUS (TM-BASE TM) (TM-LIMIT TM))

(TM-MEMLENGTH))
(NOT (TM-IN-SUPERVISOR-MODE TM)))

(EQUAL (TM-FETCH-EXECUTE (MAPUP-ADDRESS-SPACE (TM-MEMORY TM)
(TM-REGS TM)
(TM-CC TM)
(TM-ERROR TM)
(TM-SVCFLAG TM)
(TM-SVCID TM)
(TM-BASE TM)
(TM-LIMIT TM)))

(MAPUP-ADDRESS-SPACE (TM-MEMORY (TM-FETCH-EXECUTE TM))
(TM-REGS (TM-FETCH-EXECUTE TM))
(TM-CC (TM-FETCH-EXECUTE TM))
(TM-ERROR (TM-FETCH-EXECUTE TM))
(TM-SVCFLAG (TM-FETCH-EXECUTE TM))
(TM-SVCID (TM-FETCH-EXECUTE TM))
(TM-BASE (TM-FETCH-EXECUTE TM))
(TM-LIMIT (TM-FETCH-EXECUTE TM)))))

The theorem TM-FETCH-EXECUTE-MAPUP-ADDRESS-SPACE-SEPARATION states the main protection theorem.
In a machine state for which GOOD-OS holds, applying TM-FETCH-EXECUTE has no effect on the address
space of a task which is not the current task.

77

Theorem {2048}. TM-FETCH-EXECUTE-MAPUP-ADDRESS-SPACE-SEPARATION (rewrite):
(IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NUMBERP TASKID)
(LESSP TASKID (AK-TASKIDLUB))
(NOT (EQUAL TASKID (OS-CURRENT-TASKID OS))))

(EQUAL
(MAPUP-ADDRESS-SPACE (TM-MEMORY (TM-FETCH-EXECUTE OS))

REGS CC ERROR SVCFLAG SVCID
(BASE (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS))))
(LIMIT (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS)))))
(MAPUP-ADDRESS-SPACE (TM-MEMORY OS)

REGS CC ERROR SVCFLAG SVCID
(BASE (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS))))
(LIMIT (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS)))))))

5.4 The Abstract Kernel Implements Tasks

The correctness theorem for the abstract kernel establishes that the kernel implements a set of independent
tasks. The commutativity diagram in Figure 5-3 depicts the relation which theorem
AK-IMPLEMENTS-PARALLEL-TASKS states.

Figure 5-3: AK Implements Parallel Tasks

78

Theorem {1689}. AK-IMPLEMENTS-PARALLEL-TASKS (rewrite):
(IMPLIES (AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE))))

The abstraction function is PROJECT, which projects the state of the ith task out of an abstract kernel state.
PROJECT composes a task state from the ith address space and the shared buffers.

Definition {1672}.
(PROJECT I AK)

=
(TASK (GETNTH I (AK-PSTATES AK))

(AK-CHANNELS AK))

Definition {1671}.
(AK-CHANNELS AK)

=
(LIST (AK-IBUFFERS AK) (AK-OBUFFERS AK) (AK-MBUFFERS AK))

In AK-IMPLEMENTS-PARALLEL-TASKS, TASK-PROCESSOR’s oracle is a function of the task identifier, the
initial abstract kernel state and the abstract kernel’s oracle. CONTROL-ORACLE mirrors AK-PROCESSOR. It
constructs an oracle for the task layer by building a list which at each step contains T if the indicated task
is current in the abstract kernel, or contains the shared state which results from a step of the abstract
kernel.

Definition {1674}.
(CONTROL-ORACLE I AK ORACLE)

=
(IF (LISTP ORACLE)

(CONS
(CONTROL-ORACLE-STEP I (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

NIL)

79

Definition {1673}.
(CONTROL-ORACLE-STEP I AK)

=
(IF (AK-INPUT-INTERRUPTP AK)

(AK-CHANNELS
(AK-INPUT-INTERRUPT-HANDLER
(TM-INTERRUPTING-INPUT-PORT (AK-IPORTS AK))
AK))

(IF (AK-OUTPUT-INTERRUPTP AK)
(AK-CHANNELS

(AK-OUTPUT-INTERRUPT-HANDLER
(TM-INTERRUPTING-OUTPUT-PORT (AK-OPORTS AK))
AK))

(IF (AK-WAITING AK)
(AK-CHANNELS AK)

(IF (AK-ERRORP AK)
(AK-CHANNELS (AK-ERROR-HANDLER AK))

(IF (AK-CLOCK-INTERRUPTP AK)
(AK-CHANNELS (AK-CLOCK-INTERRUPT-HANDLER AK))

(IF (AK-SVC-INTERRUPTP AK)
(IF (EQUAL I (AK-TASKID AK))

T
(AK-CHANNELS (AK-SVC-HANDLER AK)))

(IF (EQUAL I (AK-TASKID AK))
T
(AK-CHANNELS (AK-PRIVATE-STEP AK)))))))))

The proof of AK-IMPLEMENTS-PARALLEL-TASKS is by induction on ORACLE and is given below. The
induction step, CASE 2, is proved by a case split which considers whether or not the task identifier I

indicates an active task. We must have that an AK step implements a step on an active task as specified by
the task layer. On a non-active task, the control oracle constructed by CONTROL-ORACLE-STEP must contain
the shared state which AK generates.

Theorem {1689}. AK-IMPLEMENTS-PARALLEL-TASKS (rewrite):
(IMPLIES (AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE))))

Proof:

This conjecture can be simplified, using the abbreviations
FINITE-NUMBERP, IMPLIES, NOT, OR, AND, ACCESS-AK-POST-INTERRUPT,
and LENGTH-AK-PSTATES-AK-STEP, to two new formulas:

Case 2. (IMPLIES
(AND
(LISTP ORACLE)
(IMPLIES
(AND

(GOOD-AK (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
(FINITE-NUMBERP I

(LENGTH (AK-PSTATES AK))))
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

80

(TASK-PROCESSOR
(PROJECT I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))))

(GOOD-AK AK)
(NUMBERP I)
(LESSP I (LENGTH (AK-PSTATES AK))))

(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))
(TASK-PROCESSOR (PROJECT I AK)

I
(CONTROL-ORACLE I AK ORACLE)))),

which simplifies, applying GOOD-AK-AK-POST-INTERRUPT,
GOOD-AK-AK-STEP, CDR-CONS, and CAR-CONS, and opening up
FINITE-NUMBERP, AND, IMPLIES, AK-PROCESSOR, CONTROL-ORACLE, and
TASK-PROCESSOR, to the following two new formulas:

Case 2.2.
(IMPLIES
(AND
(LISTP ORACLE)
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(PROJECT I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))

(GOOD-AK AK)
(NUMBERP I)
(LESSP I (LENGTH (AK-PSTATES AK)))
(NOT
(TASK-ACTIVEP

(CONTROL-ORACLE-STEP I
(AK-POST-INTERRUPT (CAR ORACLE)

AK)))))
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(TASK-UPDATE-SHARED-STATE
(PROJECT I AK)
(CONTROL-ORACLE-STEP I

(AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))).

This again simplifies, using linear arithmetic, rewriting with
the lemma AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP, and expanding the
function FINITE-NUMBERP, to:

T.

Case 2.1.
(IMPLIES
(AND
(LISTP ORACLE)

81

(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(PROJECT I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))

(GOOD-AK AK)
(NUMBERP I)
(LESSP I (LENGTH (AK-PSTATES AK)))
(TASK-ACTIVEP
(CONTROL-ORACLE-STEP I

(AK-POST-INTERRUPT (CAR ORACLE) AK))))
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(TASK-STEP (PROJECT I AK) I)
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))),

which again simplifies, using linear arithmetic, applying the
lemma AK-IMPLEMENTS-ACTIVE-TASK-STEP, and expanding
FINITE-NUMBERP, to:

T.

Case 1. (IMPLIES
(AND (NOT (LISTP ORACLE))

(GOOD-AK AK)
(NUMBERP I)
(LESSP I (LENGTH (AK-PSTATES AK))))

(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))
(TASK-PROCESSOR (PROJECT I AK)

I
(CONTROL-ORACLE I AK ORACLE)))),

which simplifies, opening up the functions AK-PROCESSOR,
CONTROL-ORACLE, LISTP, and TASK-PROCESSOR, to:

T.

Q.E.D.

The critical support lemmas used in AK-IMPLEMENTS-PARALLEL-TASKS are given below.
AK-IMPLEMENTS-ACTIVE-TASK-STEP establishes that the abstract kernel’s transition on the current task is
identical to a step on an active task at the task layer. This requires checking that the communication
primitives are implemented correctly, which is not difficult since the representation of buffers is identical
at the abstract kernel and task layers. The lemma AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP is a matter of
demonstrating that CONTROL-ORACLE contains the appropriate shared state on a non-active task step, and
that no transition occurs on the indicated task’s private state.

82

Theorem {1688}. AK-IMPLEMENTS-ACTIVE-TASK-STEP (rewrite):
(IMPLIES
(AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK)))
(TASK-ACTIVEP

(CONTROL-ORACLE-STEP I
(AK-POST-INTERRUPT (CAR ORACLE) AK))))

(EQUAL (PROJECT I (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
(TASK-STEP (PROJECT I AK) I)))

Theorem {1681}. AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP (rewrite):
(IMPLIES
(AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK)))
(NOT (TASK-ACTIVEP

(CONTROL-ORACLE-STEP I
(AK-POST-INTERRUPT (CAR ORACLE)

AK)))))
(EQUAL (PROJECT I (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))

(TASK-UPDATE-SHARED-STATE
(PROJECT I AK)
(CONTROL-ORACLE-STEP I

(AK-POST-INTERRUPT (CAR ORACLE)
AK)))))

5.5 Composing the Interpreter Equivalence Theorems

We have described the correctness proof between each consecutive pair of layers in Figure 5-1. These
lemmas can be used to prove a single theorem which spans all layers. Using TM-IMPLEMENTS-OS and
OS-IMPLEMENTS-AK we get the theorem CORRECTNESS-OF-OPERATING-SYSTEM which is the main operating
system correctness theorem. Recall from Section 5.2 that the theorem states that the TM layer matches the
AK layer if I/O interrupts occur at the TM layer with a frequency low enough to always allow an interrupt
handler to complete. The longest time span taken by an interrupt handler in KIT is 112 steps, so this is a
crude measure of the minimum gap between I/O interrupts. This figure is fairly small, so the frequency of
interrupts is not required to be very low. If the frequency condition is violated at the TM layer, then an
interrupt will be ignored, and process isolation will still be preserved.

Theorem {4621}. CORRECTNESS-OF-OPERATING-SYSTEM (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE))
(EQUAL (MAPUP-OS (TM-PROCESSOR OS (OS-ORACLE OS ORACLE)))

(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

Combining this result with AK-IMPLEMENTS-PARALLEL-TASKS gives the result which spans the entire ladder
of Figure 5-1. The theorem OS-IMPLEMENTS-PARALLEL-TASKS establishes the result that the operating
system running on the target machine TM implements our abstract definition of a parallel process.

Theorem {4623}. OS-IMPLEMENTS-PARALLEL-TASKS:
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE)
(FINITE-NUMBERP I (LENGTH (AK-PSTATES (MAPUP-OS OS)))))

(EQUAL (PROJECT-ITH-TASK I
(TM-PROCESSOR OS

(OS-ORACLE OS ORACLE)))
(TASK-PROCESSOR (PROJECT-ITH-TASK I OS)

I
(CONTROL-ORACLE I

(MAPUP-OS OS)
ORACLE))))

83

Chapter 6

QUEUES

In this chapter we take a detailed look at how we verify operations on queues. The buffers and ready
queue of the abstract kernel are implemented as bounded queues, so this explanation reveals much of the
effort involved in proving that the operating system implements the abstract kernel.

6.1 An Implementation of Queues

We have already seen the queue primitives at the abstract kernel level. We repeat them here.

Definition {470}.
(QFIRST TABLE) = (CAR TABLE)

Definition {471}.
(ENQ ITEM TABLE) = (APPEND TABLE (LIST ITEM))

Definition {472}.
(DEQ TABLE) = (CDR TABLE)

Definition {473}.
(QEMPTYP TABLE) = (EQUAL (LENGTH TABLE) 0)

Definition {474}.
(QFULLP TABLE MAX) = (NOT (LESSP (LENGTH TABLE) MAX))

Definition {475}.
(QREPLACE ITEM QUEUE) = (ENQ ITEM (NONLAST QUEUE))

Definition {458}.
(NONLAST L) = (GETSEG 0 (SUB1 (LENGTH L)) L)

We wish to implement queues of finite length in the store of a computer. We choose to implement them
circularly. That is, a head and tail pointer cycle around a fixed size segment of memory. We call our
queue implementation an array queue, suggesting an implementation in a memory array. We implement
queues whose contents are single memory words.

The format of an array queue is a 4-tuple appended to a memory segment containing the queue elements.
We give the format of the 4-tuple, where QARRAY refers to the appended memory segment.

• HEAD : An index into QARRAY giving the location of the first queue element.

• TAIL : An index into QARRAY giving the location of the first free slot at the end of the queue.

• CURRLENGTH : The current length of the queue.

• MAXLENGTH : The maximum length of the queue. The length of QARRAY.

The format of an ARRAY-QUEUE is formalized by the following definitions, which give indices to the

84

various queue fields within an ARRAY-QUEUE.

Definition {494}.
(QHEAD-FIELD) = 0

Definition {495}.
(QTAIL-FIELD) = 1

Definition {496}.
(QCURRLENGTH-FIELD) = 2

Definition {497}.
(QMAXLENGTH-FIELD) = 3

Definition {498}.
(QARRAY-FIELD) = 4

The predicate ARRAY-QUEUEP recognizes a segment of memory which contains a well formed
ARRAY-QUEUE. It states all the required relationships among the fields of a queue. The most intricate
property is expressed by the function ARRAY-QINDEX-RELATION which relates the HEAD and TAIL positions
to the current length of the queue. Figure 6-1 depicts the measurement made by the function DELTA, the
"wrap around" distance from HEAD to TAIL in a queue. ARRAY-QINDEX-RELATION states that if HEAD and
TAIL are identical, then the queue length is QMAXLENGTH (i.e. the queue is full), otherwise the queue length
is QCURRLENGTH.

Figure 6-1: Delta

Definition {506}.
(ARRAY-QUEUEP QUEUE)

=
(AND (PLISTP QUEUE)

(EQUAL (LENGTH QUEUE)
(PLUS (QARRAY-FIELD)

(GETNTH (QMAXLENGTH-FIELD) QUEUE)))
(NUMBERP (GETNTH (QHEAD-FIELD) QUEUE))
(NUMBERP (GETNTH (QTAIL-FIELD) QUEUE))
(NUMBERP (GETNTH (QCURRLENGTH-FIELD) QUEUE))
(NOT (ZEROP (GETNTH (QMAXLENGTH-FIELD) QUEUE)))
(LESSP (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(LESSP (GETNTH (QTAIL-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(LESSP (GETNTH (QCURRLENGTH-FIELD) QUEUE)

(ADD1 (GETNTH (QMAXLENGTH-FIELD) QUEUE)))
(ARRAY-QINDEX-RELATION QUEUE))

85

Definition {505}.
(ARRAY-QINDEX-RELATION QUEUE)

=
(EQUAL (DELTA (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QTAIL-FIELD) QUEUE)
(GETNTH (QMAXLENGTH-FIELD) QUEUE))

(IF (ZEROP (GETNTH (QCURRLENGTH-FIELD) QUEUE))
(GETNTH (QMAXLENGTH-FIELD) QUEUE)
(GETNTH (QCURRLENGTH-FIELD) QUEUE)))

Definition {499}.
(DELTA A B MAX)

=
(IF (LEQ B A)

(PLUS (DIFFERENCE MAX A) B)
(DIFFERENCE B A))

The following functions define ARRAY-QUEUE primitives which correspond to the abstract queue primitives.
They state precisely how the state of an ARRAY-QUEUE is changed by each operation. Recall that the form
(PUTNTH V N L) is the list which is identical to L except for the Nth element, which is equal to V.
(GETNTH N L) is the Nth element of L.

Definition {520}.
(ARRAY-ENQ ITEM QUEUE)

=
(PUTNTH (INCR-MOD (GETNTH (QTAIL-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(QTAIL-FIELD)
(PUTNTH (ADD1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
(PUTNTH ITEM

(PLUS (QARRAY-FIELD)
(GETNTH (QTAIL-FIELD) QUEUE))

QUEUE)))

Definition {521}.
(ARRAY-DEQ QUEUE)

=
(PUTNTH (INCR-MOD (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(QHEAD-FIELD)
(PUTNTH (SUB1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
QUEUE))

Definition {522}.
(ARRAY-QFIRST QUEUE)

=
(GETNTH (PLUS (QARRAY-FIELD)

(GETNTH (QHEAD-FIELD) QUEUE))
QUEUE)

Definition {523}.
(ARRAY-QFULLP QUEUE)

=
(EQUAL (GETNTH (QCURRLENGTH-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))

Definition {524}.
(ARRAY-QEMPTYP QUEUE)

=
(ZEROP (GETNTH (QCURRLENGTH-FIELD) QUEUE))

Definition {560}.
(ARRAY-QREPLACE ITEM QUEUE)

=
(ARRAY-ENQ ITEM (ARRAY-NONLAST QUEUE))

86

Definition {547}.
(ARRAY-NONLAST QUEUE)

=
(PUTNTH (DECR-MOD (GETNTH (QTAIL-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(QTAIL-FIELD)
(PUTNTH (SUB1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
QUEUE))

Definition {464}.
(INCR-MOD N LUB)

=
(IF (LESSP (ADD1 N) LUB) (ADD1 N) 0)

Definition {465}.
(DECR-MOD N LUB)

=
(IF (ZEROP N) (SUB1 LUB) (SUB1 N))

6.2 The Correctness of the Queue Implementation

MAPUP-QUEUE is the abstraction function from ARRAY-QUEUEs to abstract queues. DELTA-SEGMENT is the
workhorse. In the definition of DELTA-SEGMENT, S is a list and A and B are indices into the list.
DELTA-SEGMENT constructs the segment which wraps around S, whose first element is S(A) and whose last
element is the one preceding S(B).

Definition {579}.
(MAPUP-QUEUE QUEUE)

=
(IF (ARRAY-QEMPTYP QUEUE)

NIL
(DELTA-SEGMENT (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QTAIL-FIELD) QUEUE)
(GETSEG (QARRAY-FIELD)

(GETNTH (QMAXLENGTH-FIELD) QUEUE)
QUEUE)))

Definition {574}.
(DELTA-SEGMENT A B S)

=
(IF (LEQ B A)

(APPEND (GETSEG A (DIFFERENCE (LENGTH S) A) S)
(GETSEG 0 B S))

(GETSEG A (DIFFERENCE B A) S))

The relationship between DELTA and DELTA-SEGMENT is expressed by the theorem
DELTA-EQUALS-LENGTH-DELTA-SEGMENT.

Theorem {575}. DELTA-EQUALS-LENGTH-DELTA-SEGMENT (rewrite):
(IMPLIES (AND (LESSP A (LENGTH S))

(LESSP B (LENGTH S)))
(EQUAL (LENGTH (DELTA-SEGMENT A B S))

(DELTA A B (LENGTH S))))

We prove the correctness of the ARRAY-QUEUE implementation before we consider any machine code. The
following theorems establish the correctness of each of the queue primitives.

Theorem {585}. CORRECTNESS-OF-ARRAY-ENQ (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QFULLP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-ENQ ITEM QUEUE))

(ENQ ITEM (MAPUP-QUEUE QUEUE))))

87

Theorem {593}. CORRECTNESS-OF-ARRAY-DEQ (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-DEQ QUEUE))

(DEQ (MAPUP-QUEUE QUEUE))))

Theorem {594}. CORRECTNESS-OF-ARRAY-QFIRST (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (ARRAY-QFIRST QUEUE)

(QFIRST (MAPUP-QUEUE QUEUE))))

Theorem {595}. CORRECTNESS-OF-ARRAY-QEMPTYP (rewrite):
(IMPLIES (ARRAY-QUEUEP QUEUE)

(EQUAL (ARRAY-QEMPTYP QUEUE)
(QEMPTYP (MAPUP-QUEUE QUEUE))))

Theorem {596}. CORRECTNESS-OF-ARRAY-QFULLP:
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(EQUAL MAX
(GETNTH (QMAXLENGTH-FIELD) QUEUE)))

(EQUAL (ARRAY-QFULLP QUEUE)
(QFULLP (MAPUP-QUEUE QUEUE) MAX)))

Theorem {602}. CORRECTNESS-OF-ARRAY-NONLAST (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-NONLAST QUEUE))

(NONLAST (MAPUP-QUEUE QUEUE))))

Theorem {603}. CORRECTNESS-OF-ARRAY-QREPLACE (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-QREPLACE ITEM QUEUE))

(QREPLACE ITEM (MAPUP-QUEUE QUEUE))))

6.3 Using the Queue Correctness Theorems

We explain how the queue correctness theorems are used in the verification of KIT. The KIT source code
contains subroutines for queue manipulations. The annotated text of the subroutine ENQUEUE is displayed
below. See Section 4.2 for comments on how to read the source code.

ENQUEUE
;; Assume R2 contains item to enqueue
;; R3 points to queue
;; this routine assumes queue not currently full
;; pseudo-code:
;; store the item where ever the tail index points
;; increment the current length
;; increment the tail index (mod max-index)
(move (1 r4) (1 r3))
(add (1 r4) qarray-field)
(add (1 r4) (3 r3 qtail-field)) ;; r4 has address of free slot
(move (3 r4) (1 r2)) ;; store item
(incr (3 r3 qcurrlength-field)) ;; increment current length
(incrm (3 r3 qtail-field) (3 r3 qmaxlength-field)) ;; increment tail
(return)

One might expect that we would state an entry and exit specification for ENQUEUE and prove a theorem
which embodies its correctness. We have not chosen this approach because of the ugly theorem which
arises. Recall that we are verifying at the machine code level. Programs reside in a flat address space. The
statement of a correctness theorem for ENQUEUE must include conditions such as "the program counter
contains the address of the first instruction in ENQUEUE". Due to the flat address space, the statement of the
theorem would change whenever we make a change to KIT which moves the starting address of ENQUEUE.

88

Our approach is to ignore subroutines. When we prove a lemma which traces a path through a call to
ENQUEUE, we recognize an expression which matches the definition of ARRAY-ENQ and arrange for the
rewriter to fold the expression up into a call to ARRAY-ENQ. The lemma CONTRACT-ARRAY-ENQ accomplishes
this. Immediately upon encountering a sequence of PUTNTHs which matches the form of the definition of
ARRAY-ENQ, the rewriter replaces the expression by an ARRAY-ENQ form.

Theorem {2079}. CONTRACT-ARRAY-ENQ (rewrite):
(IMPLIES
(EQUAL MAXLENGTH (GETNTH (QMAXLENGTH-FIELD) QUEUE))
(EQUAL (PUTNTH (INCR-MOD (GETNTH (QTAIL-FIELD) QUEUE) MAXLENGTH)

(QTAIL-FIELD)
(PUTNTH (ADD1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
(PUTNTH ITEM

(PLUS (QARRAY-FIELD)
(GETNTH (QTAIL-FIELD) QUEUE))

QUEUE)))
(ARRAY-ENQ ITEM QUEUE)))

The functions like OS-CLOCK-INTERRUPT-HANDLER which express the state of the machine at the end of an
OS interrupt handler have already made a small step across the gap from the operating system layer to the
abstract kernel layer. Array manipulation expressions are bundled up into calls to the ARRAY-QUEUE

primitives, which have been independently verified to implement abstract queues.

89

Chapter 7

CONCLUSION

7.1 Related Work

We review three areas of related work: the program verification techniques upon which our work is based,
previous attempts to verify operating systems, and microprogram verification.

7.1.1 Specification and Proof Methods

Our approach to the specification and verification of KIT derives from well known earlier work. The
implements relation established by an interpreter equivalence theorem is an instance of Milner’s weak
simulation relation [Milner 71]. Hoare’s approach to proving the correctness of data representations
[Hoare 72], similar to Milner’s work, is also a precursor. The application of Hoare’s method can be most
clearly seen in our treatment of queues.

Several attempts to verify operating systems cite the work of Milner, Hoare and others who have
suggested similar approaches to verification. The methodology for designing operating system software
proposed by Robinson and his co-workers [Robinson 77] calls for a sequence of abstract machines, each
related by an implements relation. Kemmerer [Kemmerer 82] acknowledges a debt to Milner and Hoare in
applying the Alphard methodology [Wulf 76] to the verification of a portion of the security kernel of
UCLA Secure Unix. Rushby [Rushby 81a] described an approach to kernel verification similar to ours.
Hunt [Hunt 85] proved an interpreter equivalence theorem to establish the correctness of a
microprocessor.

7.1.2 Operating System Verification

Two areas predominate in operating system verification: verification of parallel processes, and verification
of security properties.

The correctness of parallel programs is a large area we do not attempt to review exhaustively. The area of
parallelism is primarily concerned with proving safety and liveness properties of sets of processes under
various models of process communication. Above the kernel level, an operating system can be viewed as
a set of cooperating parallel processes. So, techniques for verifying parallel processes can be applied to
operating system verification above the kernel level. Our work logically supports this work. The purpose
of our work is to verify a kernel implementation. We don’t reason about the correctness of a particular set
of concurrent processes, but prove that any set of processes which can be implemented on KIT is
implemented without errors introduced by KIT.

We mention a number of efforts in operating system verification whose main contributions are in

90

techniques for verifying parallel programs. The seminal work in this area is the "THE"-
multiprogramming system [Dijkstra 68] in which process synchronization via semaphores is implemented
at the lowest layer. This work reveals to what advantage an operating system can be designed as a system
of communicating sequential processes.

Saxena [Saxena 76] considers low level issues of processor and memory sharing in a multiprogrammed
operating system. The design of a scheduler and memory manager, synchronized via monitors, is verified.
A design methodology involving hierarchical decomposition and structured programming is discussed.

Flon’s dissertation [Flon 77] treats two subjects related to the correctness of operating systems. First, a
methodology for the design, implementation and verification of operating systems is discussed. This
methodology employs data abstraction to implement modular programs. A simple process dispatcher is
specified, implemented and verified. Second, the problem of the total correctness of parallel programs is
considered.

Karp [Karp 83] proposes an extension of Pascal to include a method of process communication called a
module, similar to a Simula Class. Concurrent systems expressed in this language can be demonstrated to
be failure free, which is a notion of non-termination. The application of this communication model to
operating systems is demonstrated.

Security is the other major area in operating system verification. In the early seventies the notion became
current that a security policy should be implemented in the nucleus of an operating system, a security
kernel. A number of efforts attempted to design, implement and verify a security kernel. A security policy
given by Bell and LaPadula [Bell 75] was the first attempt to formalize a specification for a security
kernel. Alternative formulations of security were given by Feiertag, Levitt and Robinson [Feiertag 77],
and by Popek and Farber [Popek 78].

The goals of each security kernel project were similar in outline: design a security kernel, prove that the
design satisfies a formally described security policy, implement the kernel, and prove the implementation
correct. Some projects were intended to complete only an initial portion of this sequence of goals. The
goals were met with varying success.

Neumann and co-workers designed a provably secure operating system (PSOS) [Feiertag 79, Neumann
77] based on a capability mechanism. Parts of the design proof were sketched. An implementation was
not completed. The main result of the project was a hierarchical methodology for operating system design
[Robinson 77].

A group at Ford Aerospace designed a kernelized secure operating system (KSOS) [McCauley 79, Berson
79] intended to provide a secure operating system with an interface compatible with UNIX. The security
policy for KSOS was approximately the Bell and LaPadula model. Information flow theorems at the
design level were checked on the Boyer-Moore theorem prover. An implementation was written in
MODULA, but code proofs were not anticipated and not done. The KSOS project benefited from the
design methodology developed for PSOS.

The UCLA Secure Unix project [Popek 79, Walker 80] had a goal similar to the KSOS project: a Unix
system built on a security kernel. The top level security policy was based on Popek and Farber’s security
model. The policy was enforced by a policy manager process outside the kernel. The kernel is responsible
for manipulating processes and capabilities as allowed by the policy manager. This security kernel is more
completely verified than the others. Kemmerer’s dissertation [Kemmerer 82] reports on a design proof for
the security kernel. The kernel was implemented in an extended version of Pascal, and some code level

91

proofs were completed in the XIVUS verification system [Good 75].

Other security kernels are reported in the literature, including the KVM/370 project [Gold 79], and
SCOMP [Fraim 83]. The Secure Ada Target (SAT, now called LOCK) [Boebert 85] is an ongoing project
at Honeywell. Landwehr [Landwehr 83] gives a useful summary of the state of the art circa 1983.

Rushby criticizes the kernel approach to system security [Rushby 81b]. We do not repeat his argument,
but point out that the alternative approach to security which he proposes results in a mandate for the type
of verification carried out for KIT: a proof of the isolation of processes implemented in a shared
environment.

The relationship between our work and that reported in the literature can be summarized as follows. There
are two main threads in operating system verification: verification of parallel processes, and verification
of security. The work in parallel processes lies inherently above the level of verification reported for KIT.
The work in security reaches in principle down to the implementation level of KIT, but no one has
previously reached that level.

7.1.3 Microprogram Verification

We mention the subject of microprogram verification to indicate its relation to our work. The goal of
microprogram verification is to prove the correctness of an implementation of a machine architecture.
Our work is based on a specification for a machine architecture, so our work lies logically just above the
level of microprogram verification. Conceptually, the two areas can be merged. By targeting a verified
kernel to a verified architecture we can combine the two levels of verification to span a much larger
implementation gap.

The techniques of microprogram verification are similar to ours. The correctness theorem is stated as a
machine simulation relation - an architecture level at the abstract end, and a register-transfer level at the
low end. Paths through microcode are traced to relate a series of low steps to a high step. See [Hunt 85],
[Joyner 76], [Marcus 84] for examples of this work.

7.2 Comments and Summary

7.2.1 The Size of the KIT Project

The KIT project was conceived as an attempt to prove task isolation in a kernel written for a very simple
von Neumann machine. We placed the following requirements on the problem. We felt that the
combination of these constraints would force us to confront issues not before treated in operating system
verification.

• Tasks must be able to communicate by some means. Therefore, task isolation really means
limited task communication.

• The target machine’s architecture must contain a very simple protection mechanism. We did
not want the architecture to be so powerful that the entire problem would be solved at that
level.

• The target machine must permit communication with asynchronous devices. Therefore, the
operating system must field interrupts.

• All code must be verified. This meant that we would verify machine code.

The first three months were spent in an attempt to define the problem in such a way that the only property

92

which required verification was task isolation. We felt, for instance, that the verification of a particular
scheduling algorithm was beyond the scope of this work. We also felt that the verification of various data
structure implementations, particularly queues, were not of primary concern. We failed in our attempt to
separate concerns. The reason for this was our requirement for an extremely simple target machine. With
such a simple machine, we could not isolate the aspects we hoped not to verify. Therefore, everything
necessary to create a completely operational, but simple, kernel was included.

A year passed. In that time we defined a prototype task, abstract kernel and target machine. We proved
that the abstract kernel implemented a task. We proved several kernel routines including the clock
interrupt handler and error handler. In doing so we learned the overall structure of the kernel proof. We
learned our technique for making the theorem prover symbolically execute machine code. We went
through several revisions of our theory of arrays. This was our first experience in using the Boyer-Moore
theorem prover for a proof deeper than ASSOCIATIVITY-OF-APPEND, although we were already familiar
with the Boyer-Moore logic.

At this point, with our support theories well in hand, we started the project almost from scratch. We
defined the target machine to be simpler than the prototype had been. We revised our specifications for
the abstract kernel. We wrote the complete kernel and proved its correctness. This took three months.

The size of the script is extremely large. We attribute this primarily to the inherent complexity of the
problem. There is simply a large gap to span from a target machine as simple as TM to the level of our
abstract kernel. The bulk of our script is devoted to three areas.

• The trace lemmas which result in the definition of the operating system layer.

• The proof of the operating system layer invariant.

• The proof of the correctness of the operating system layer - i.e. that the operating system
layer implements the abstract kernel.

These are large because an enormous number of cases must be considered. We must prove that each of
thirty-eight paths through the kernel correctly manipulates each of ten abstract kernel fields, most of
which are structured objects. The trace lemmas were the most difficult to check. The theorem prover
required much help by way of rewrite lemmas to symbolically execute the address computations which
occurred in each path. We found, though, that while the initial lemmas in each of the three proofs above
were slow going, later proofs became progressively easier. Toward the end we generated the lemmas we
needed by merely editing previous lemmas.

To understand the size of the script, one must also consider the starting point: the elementary theory of
numbers and lists built into the Boyer-Moore theorem prover. Much groundwork was required in terms of
facts about arithmetic, sets and arrays. The script contains a complete target machine definition and
operating system specification. There is much more in the script than the KIT code and its proof.

The verification revealed bugs in the operating system code. Simple bugs, like naming an incorrect
register, or using the wrong address mode, were revealed at the time a tracing lemma was proved. During
tracing it became obvious when a data structure was addressed incorrectly. More difficult bugs were
revealed during the proof that each KIT routine implements the corresponding abstract kernel operation.
The most insidious bug revealed at this stage was one in which the state of the current task was not
accurately restored after processing an I/O interrupt. The bug would have caused a supervisor call request
to be ignored if an I/O interrupt occurred immediately after the request, but before the request had been
handled. Such time-dependent errors are difficult to find by testing.

KIT is so small that it is likely that a group of competent programmers could produce in a short time a
highly reliable version using traditional coding and testing techniques. Without the goal of mechanical

93

verification, it is unlikely that the specification for KIT would be stated as explicitly as we have done.
Therefore, it is questionable whether all the issues which we encountered during our proof would be
considered by traditional means. In particular, the proof that the target machine permits the
implementation of isolated address spaces would likely have to be assumed. If a programming team got so
far as to state a specification in as much detail as our abstract kernel, it is unlikely that a hand proof of
KIT with respect to this specification would be convincing. The proof is so large that a mechanical check
is virtually a necessity in making sure that all cases have been considered.

7.2.2 The Significance of the KIT Project

The purpose of KIT is to provide verified task isolation. That is, tasks can communicate only in specified
ways. As a result, a verified set of communicating processes will run as specified on KIT provided there
are no hardware errors. KIT is guaranteed not to introduce implementation bugs, since all code is verified.

A number of significant results are required to establish the main theorem.

• The termination of kernel routines.

• The correctness of the address space abstraction, i.e., that an address space can be viewed as
an independent machine.

• The isolation of the operating system from tasks on the target machine.

• The inability of a task to enter supervisor mode.

Therefore, the verification of KIT checks important security properties. We have proved task isolation,
the protection of the operating system from tasks, and the inability of tasks to enter supervisor mode. Our
small system is tamper proof. These results are fundamental to computer security but have received scant
attention in formal verification. Previous attempts to verify security have been concerned with models of
security in which data and processes are tagged with security levels. The issues involved in correctly
implementing multiple processes on shared resources have been largely ignored.

The proof is accomplished by establishing a machine simulation theorem which relates KIT to a definition
of a process which appears to be running on its own machine. KIT is shown to implement a fixed number
of conceptually distributed communicating processes. The specification machine is so abstract that the
proof of its properties is quite tractable. An example of a property which is trivial to establish at this level
is the protection of a process’s private state. We have not stated and proved other properties, but clearly it
is preferable to do so at the high end than at the low end. Because the implements relation is proved,
properties established at the high end hold (under some state space mapping) at the low end.

There is a technical advantage in pushing operational specifications to as abstract a level as possible in the
Boyer-Moore logic, and using machine simulation theorems to establish correctness. The advantage is that
the Boyer-Moore theorem prover’s definitional principle gives a proof of the unique existence of every
function defined, and therefore a proof of consistency of the specification. If our method had been to
prove a set of properties stated directly about the implementation of KIT, then not only would their
statement have been difficult, but the consistency issue would have been confronted.

Nearly all the difficulties in our proof occurred in establishing the implements relation between the
operating system running on the target machine (the OS layer, see Figure 5-1) and the abstract kernel.
These difficulties were largely due to issues unrelated to task isolation: the verification of queues, tracing
paths through the operating system code. We have found no good solutions to the problem of verifying
machine code. Our method is shown to work for a small example, but whether it is tractable for a large
system is an open question.

94

What we can learn from the exercise is the structure which the proof of a kernel may take: a machine
simulation theorem between an abstract kernel and the kernel implementation. The abstract kernel makes
much simpler a number of issues which are quite complex at the kernel implementation level: the
termination of kernel operations, low level representation of data structures, isolation of processes.
Making sure that the interrupt structure of the abstract kernel is identical to the interrupt structure of the
target machine makes possible an inductive proof of the machine simulation theorem. Even if, in a larger
system, a mechanical proof of a kernel implementation is unfeasible, the existence of a specification at the
level of KIT’s abstract kernel gives a good guide for hand verification.

The exercise of verifying KIT also reveals some necessary properties at the architecture level which make
the proof possible. We have formalized the notion of an address space for our simple target machine, and
proved the correctness and protection theorems which make it possible to view an address space as an
isolated private machine. In a future in which hardware is formally specified and verified, such theorems
can be checked early about a hardware design.

7.2.3 Future Work

This work can be carried forward. More complex phenomena in several areas may be considered. At the
top end, more sophisticated methods of inter-task communication may be specified, e.g. shared segments
and files. An obvious deficiency in KIT from the point of view of general purpose operating systems is the
absence of dynamic process and channel creation. These issues should get attention if we hope to verify
usable general purpose systems. Fixed systems like KIT, though, do have their applications, such as
communications processing. Due to the difficulty of verifying large amounts of machine code, these
issues may not be tractable until we find a way to verify a high-level language version of the kernel.

At the low end, more complex architectures can be considered to great advantage. We restricted this work
to an extremely simple hardware protection mechanism. A more sophisticated protection mechanism can
make the isolation proof much easier. Of great interest, and in a slightly different vein, are the real-time
properties of a system. Although we have not proved such properties, it is possible to consider proofs of
response time to external events. It would be worthwhile to relax the property of the non-interruptibility of
the supervisor for such proofs. Considering such low-level phenomena at the hardware/software boundary
may have some immediate impact since, if our experience with KIT is any indication, proofs at this level
tend to be relatively short.

KIT’s message passing mechanism is a subset of that specified for the programming language Gypsy
[Good 86, Good 79]. Given the right compiler, it is possible to think of KIT as a verified run-time

environment for a subset of Gypsy. Accomplishing this is another goal for the future.

95

Appendix A
1The Boyer-Moore Logic and its Theorem Prover

In [Boyer 79] we describe a quantifier free first-order logic and a large and complicated computer
program that proves theorems in that logic. The major application of the logic and theorem prover is the
formal verification of properties of computer programs, algorithms, system designs, etc. In this section
we describe the logic and the theorem prover.

A.1 The Logic

A complete and precise definition of the logic can be found in Chapter III of [Boyer 79] together with the
minor revisions detailed in section 3.1 of [Boyer 81].

We use the prefix syntax of Pure Lisp to write down terms. For example, we write (PLUS I J) where
others might write PLUS(I,J) or I+J.

The logic is first-order, quantifier free, and constructive. It is formally defined as an extension of
propositional calculus with variables, function symbols, and the equality relation. We add axioms
defining the following:

• the Boolean objects (TRUE) and (FALSE), abbreviated T and F;

• The if-then-else function, IF, with the property that (IF x y z) is z if x is F and y
otherwise;

• the Boolean "connector functions" AND, OR, NOT, and IMPLIES; for example, (NOT p) is
T if p is F and F otherwise;

• the equality function EQUAL, with the property that (EQUAL x y) is T or F according to
whether x is y;

• inductively constructed objects, including:
• Natural Numbers. Natural numbers are built from the constant (ZERO) by

successive applications of the constructor function ADD1. The function NUMBERP
recognizes natural numbers, e.g., is T or F according to whether its argument is a
natural number or not. The function SUB1 returns the predecessor of a non-0 natural
number.

• Ordered Pairs. Given two arbitrary objects, the function CONS returns an ordered
pair containing them. The function LISTP recognizes such pairs. The functions
CAR and CDR return the two components of such a pair.

• Literal Atoms. Given an arbitrary object, the function PACK constructs an atomic
symbol with the given object as its "print name." LITATOM recognizes such objects
and UNPACK returns the print name.

• We call each of the classes above a "shell." T and F are each considered the elements of two
singleton shells. Axioms insure that all shell classes are disjoint;

• the definitions of several useful functions, including:
• LESSP which, when applied to two natural numbers, returns T or F according to

whether the first is smaller than the second;

1Written by Boyer and Moore. Taken with permission from [Boyer 87].

96

• LEX2, which, when applied to two pairs of naturals, returns T or F according as
whether the first is lexicographically smaller than the second; and

• COUNT which, when applied to an inductively constructed object, returns its "size;"
for example, the COUNT of an ordered pair is one greater than the sum of the
COUNTs of the components.

The logic provides a principle under which the user can extend it by the addition of new shells. By
instantiating a set of axiom schemas the user can obtain a set of axioms describing a new class of
inductively constructed n-tuples with type-restrictions on each component. For each shell there is a
recognizer (e.g., LISTP for the ordered pair shell), a constructor (e.g., CONS), an optional empty object
(e.g., there is none for the ordered pairs but (ZERO) is the empty natural number), and n accessors (e.g.,
CAR and CDR).

The logic provides a principle of recursive definition under which new function symbols may be
introduced. Consider the definition of the list concatenation function:

Definition.
(APPEND X Y)

=
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y))
Y).

The equations submitted as definitions are accepted as new axioms under certain conditions that guarantee
that one and only one function satisfies the equation. One of the conditions is that certain derived
formulas be theorems. Intuitively, these formulas insure that the recursion "terminates" by exhibiting a
"measure" of the arguments that decreases, in a well-founded sense, in each recursion. A suitable derived
formula for APPEND is:

(IMPLIES (LISTP X)
(LESSP (COUNT (CDR X))

(COUNT X))).

However, in general the user of the logic is permitted to choose an arbitrary measure function (COUNT
was chosen above) and one of several relations (LESSP above).

The rules of inference of the logic, in addition to those of propositional calculus and equality, include
mathematical induction. The formulation of the induction principle is similar to that of the definitional
principle. To justify an induction schema it is necessary to prove certain theorems that establish that,
under a given measure, the inductive hypotheses are about "smaller" objects than the conclusion.

Using induction it is possible to prove such theorems as the associativity of APPEND:

Theorem.
(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C))).

A.2 The Mechanization of the Logic

The theorem prover for the logic, as it stood in 1979, is described completely in [Boyer 79]. Many
improvements have been added since. In [Boyer 81] we describe a "metafunction" facility which permits
the user to define new proof procedures in the logic, prove them correct mechanically, and have them used
efficiently in subsequent proof attempts. During the period 1980-1985 a linear arithmetic decision
procedure was integrated into the rule-driven simplifier. The problems of integrating a decision procedure
into a heuristic theorem prover for a richer theory are discussed in [Boyer 85]. The theorem prover is
briefly sketched here.

97

The theorem prover is a computer program that takes as input a term in the logic and repeatedly
transforms it in an effort to reduce it to non-F. The theorem prover employs eight basic transformations:

• decision procedures for propositional calculus, equality, and linear arithmetic;

• term rewriting based on axioms, definitions and previously proved lemmas;

• application of verified user-supplied simplifiers called "metafunctions;"

• renaming of variables to eliminate "destructive" functions in favor of "constructive" ones;

• heuristic use of equality hypotheses;

• generalization by the replacement of terms by type-restricted variables;

• elimination of apparently irrelevant hypotheses; and

• mathematical induction.
The theorem prover contains many heuristics to control the orchestration of these basic techniques.

In a shallow sense, the theorem prover is fully automatic: the system accepts no advice or directives from
the user once a proof attempt has started. The only way the user can alter the behavior of the system
during a proof attempt is to abort the proof attempt. However, in a deeper sense, the theorem prover is
interactive: the system’s behavior is influenced by the data base of lemmas which have already been
formulated by the user and proved by the system. Each conjecture, once proved, is converted into one or
more "rules" which guide the theorem prover’s actions in subsequent proof attempts.

A data base is thus more than a logical theory: it is a set of rules for proving theorems in the given theory.
The user leads the theorem prover to "difficult" proofs by "programming" its rule base. Given a goal
theorem, the user generally discovers a proof himself, identifies the key steps in the proof, and then
formulates them as lemmas, paying particular attention to their interpretation as rules.

The key role of the user in our system is guiding the theorem prover to proofs by the strategic selection of
the sequence of theorems to prove and the proper formulation of those theorems. Successful users of the
system must know how to prove theorems in the logic and must understand how the theorem prover
interprets them as rules.

98

References

[Bach 86] M.J. Bach.
The Design of the UNIX Operating System.
Prentice-Hall, Englewood Cliffs, N.J., 1986.

[Bell 71] C. Gordon Bell, Allen Newell.
Computer Structures: Readings and Examples.
McGraw-Hill, New York, 1971.

[Bell 75] D.E. Bell, L.J. LaPadula.
Secure Computer Systems: Unified Exposition and Multics Interpretation.
Technical Report MTR-2997, The Mitre Corporation, July, 1975.

[Berson 79] T.A. Berson, G.L. Barksdale, Jr.
KSOS - Development Methodology for a Secure Operating System.
In AFIPS Conference Proceedings, pages 365-371. 1979.

[Boebert 85] W.E. Boebert, W.D. Young, R.Y. Kain, S.A. Hansohn.
Secure Ada Target: Issues, System, Design, and Verification.
In Proceedings of the Symposium on Security and Privacy, pages 176-183. 1985.

[Boyer 79] R.S. Boyer, J S. Moore.
A Computational Logic.
Academic Press, New York, 1979.

[Boyer 81] R.S. Boyer, J S. Moore.
Metafunctions: Proving Them Correct and Using them Efficiently as New Proof

Procedures.
The Correctness Problem in Computer Science.
Academic Press, London, 1981.

[Boyer 85] R.S. Boyer, J S. Moore.
Integrating Decision Procedures into Heuristic Theorem Provers: A Case Study of

Linear Arithmetic.
Technical Report ICSCA-CMP-44, Institute for Computing Science, University of

Texas at Austin, January, 1985.

[Boyer 87] R.S. Boyer, J S. Moore.
The Addition of Bounded Quantification and Partial Functions to A Computational

Logic and its Theorem Prover.
Technical Report ICSCA-CMP-52, Institute for Computing Science, University of

Texas at Austin, January, 1987.

[BrinchHansen 70]
P. Brinch Hansen.
The Nucleus of a Multiprogramming System.
CACM 13(4):238-241,250, April, 1970.

[Dijkstra 68] E.W. Dijkstra.
The Structure of the "THE"-Multiprogramming System.
CACM 11(5):341-346, May, 1968.

[Feiertag 77] R.J. Feiertag, K.N. Levitt, L. Robinson.
Proving Multilevel Security of a System Design.
In Proceedings 6th ACM Symposium on Operating System Principles, pages 57-65.

1977.

[Feiertag 79] R.J. Feiertag, P.G. Neumann.
The Foundations of a Provably Secure Operating System (PSOS).
In AFIPS Conference Proceedings, pages 329-334. 1979.

99

[Flon 77] L. Flon.
On the Design and Verification of Operating Systems.
PhD thesis, Carnegie-Mellon University, 1977.

[Fraim 83] L. Fraim.
Scomp: A Solution to the Multilevel Security Problem.
Computer 16(7):26-34, July, 1983.

[Gold 79] B.D. Gold, R.R.Linde, R.J. Peeler, M. Schaefer, J.F. Scheid, P.D. Ward.
A Security Retrofit of VM/370.
In AFIPS Conference Proceedings, pages 335-344. 1979.

[Good 75] D.I. Good, R.L. London, W.W. Bledsoe.
An Interactive Program Verification System.
IEEE Transactions on Software Engineering 1(1):59-67, March, 1975.

[Good 79] D.I. Good, R.M. Cohen, J. Keeton-Williams.
Principles of Proving Concurrent Programs in Gypsy.
Technical Report ICSCA-CMP-15, Institute for Computing Science, University of

Texas at Austin, January, 1979.

[Good 86] D.I. Good, R.L. Akers, L.M. Smith.
Report on Gypsy 2.05.
Technical Report 1, Computational Logic, Inc, October, 1986.

[Hoare 72] C.A.R. Hoare.
Proof of Correctness of Data Representations.
Acta Informatica 1:271-281, 1972.

[Hunt 85] Warren A. Hunt, Jr.
FM8501: A Verified Microprocessor.
Technical Report 47, Institute for Computing Science, University of Texas at Austin,

December, 1985.

[Joyner 76] W.H. Joyner, G.B. Leeman, W.C. Carter.
Automated Verification of Microprograms.
Technical Report, IBM Thomas J. Watson Research Center, April, 1976.

[Karp 83] R.A. Karp.
Proving Operating Systems Correct.
UMI Research Press, Ann Arbor, Michigan, 1983.

[Kemmerer 82] Richard A. Kemmerer.
Formal Verification of an Operating System Security Kernel.
UMI Research Press, Ann Arbor, Michigan, 1982.

[Landwehr 83] C.E. Landwehr.
The Best Available Technologies for Computer Security.
Computer 16(7):86-100, July, 1983.

[Marcus 84] L. Marcus, S.D. Crocker, J.R. Landauer.
SDVS: A System for Verifying Microcode Correctness.
In The Seventh Annual Microprogramming Workshop, pages 246-255. 1984.

[McCauley 79] E.J. McCauley, P.J. Drongowski.
KSOS - The Design of a Secure Operating System.
In AFIPS Conference Proceedings, pages 345-353. 1979.

[Milner 71] Robin Milner.
An Algebraic Definition of Simulation Between Programs.
Technical Report AIM-142, Stanford AI Project, February, 1971.

100

[Neumann 77] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, L. Robinson.
A Provably Secure Operating System: The System, Its Applications, and Proofs.
Technical Report, SRI, February, 1977.

[Popek 78] G.J. Popek, D.A. Farber.
A Model for Verification of Data Security in Operating Systems.
CACM 21(9):737-749, September, 1978.

[Popek 79] G.J. Popek, M. Kampe, C.S. Kline, A. Stoughton, M. Urban, E. Walton.
UCLA Secure Unix.
In AFIPS Conference Proceedings, pages 355-364. 1979.

[Robinson 77] L. Robinson, K.N. Levitt, P.G. Neumann, A.R. Saxena.
A Formal Methodology for the Design of Operating System Software.
Current Trends in Programming Methodology, Volume I: Software Specification and

Design.
Prentice-Hall, Englewood Cliffs, N.J., 1977.

[Rushby 81a] John Rushby.
Proof of Separability: A Verification Technique for a Class of Security Kernels.
Technical Report SSM/8, Computing Laboratory, University of Newcastle upon Tyne,

May, 1981.

[Rushby 81b] John Rushby.
Specification and Design of Secure Systems.
Technical Report SSM/6, Computing Laboratory, University of Newcastle upon Tyne,

March, 1981.

[Saxena 76] A.R. Saxena.
A Verified Specification of a Hierarchical Operating System.
PhD thesis, Stanford University, 1976.

[Walker 80] B.J. Walker, R.A. Kemmerer, G.J. Popek.
Specification and Verification of the UCLA Unix Security Kernel.
CACM 23(2):118-131, February, 1980.

[Wulf 76] W.A. Wulf, R.L. London, M. Shaw.
Abstraction and Verification in Alphard: Introduction to Language and Methodology.
Technical Report ISI/RR-76-46, USC Information Sciences Institute, June, 1976.

Index

AK 16
AK-BLOCK-INPUT 22
AK-BLOCK-OUTPUT 23
AK-BLOCK-RECEIVE 21
AK-BLOCK-SEND 21
AK-CHANNELS 78
AK-CLOCK 16
AK-CLOCK-INTERRUPT-HANDLER 19
AK-DISPATCHER 19
AK-ERROR-HANDLER 20
AK-EXECUTE-INPUT 22
AK-EXECUTE-INPUT-FROM-BUFFER 23
AK-EXECUTE-OUTPUT 23
AK-EXECUTE-OUTPUT-TO-BUFFER 24
AK-EXECUTE-RECEIVE 21
AK-EXECUTE-RECEIVE-FROM-BUFFER 22
AK-EXECUTE-SEND 21
AK-EXECUTE-SEND-TO-BUFFER 21
AK-FETCH-EXECUTE 18
AK-IBUFFERS 16
AK-IMPLEMENTS-ACTIVE-TASK-STEP 81
AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP 82
AK-IMPLEMENTS-PARALLEL-TASKS 9, 77, 79
AK-INPUT-INTERRUPT-HANDLER 24
AK-IPORTS 16
AK-MBUFFERS 16
AK-OBUFFERS 16
AK-OPORTS 16
AK-OUTPUT-INTERRUPT-HANDLER 25
AK-PRIVATE-STEP 18
AK-PROCESSOR 17
AK-PSTATES 16
AK-READYQ 16
AK-RUNNING-INPUT-INTERRUPT-HANDLER 25
AK-RUNNING-OUTPUT-INTERRUPT-HANDLER 26
AK-RWSTATE 16
AK-SHELLP 16
AK-STATUS 16
AK-STEP 18
AK-SVC-HANDLER 20
AK-TASKID 18
AK-TASKIDLUB 16
AK-WAITING-INPUT-INTERRUPT-HANDLER 24
AK-WAITING-OUTPUT-INTERRUPT-HANDLER 26
ARRAY-DEQ 85
ARRAY-ENQ 85
ARRAY-NONLAST 85
ARRAY-QEMPTYP 85
ARRAY-QFIRST 85
ARRAY-QFULLP 85
ARRAY-QINDEX-RELATION 84
ARRAY-QREPLACE 85
ARRAY-QUEUEP 84
CONTRACT-ARRAY-ENQ 88
CONTROL-ORACLE 78
CONTROL-ORACLE-STEP 78
CORRECTNESS-OF-ARRAY-DEQ 86
CORRECTNESS-OF-ARRAY-ENQ 86
CORRECTNESS-OF-ARRAY-NONLAST 87
CORRECTNESS-OF-ARRAY-QEMPTYP 87
CORRECTNESS-OF-ARRAY-QFIRST 87
CORRECTNESS-OF-ARRAY-QFULLP 87
CORRECTNESS-OF-ARRAY-QREPLACE 87
CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER 75
CORRECTNESS-OF-OPERATING-SYSTEM 9, 82
CORRECTNESS-OF-TM-FETCH-EXECUTE 75
DECR-MOD 86
DELTA 85
DELTA-EQUALS-LENGTH-DELTA-SEGMENT 86
DELTA-SEGMENT 86
DEQ 15, 83
ENQ 15, 83
FINITE-NUMBER-LISTP 17
FINITE-NUMBERP 17
GETNTH 15
GOOD-ADDRESS-SPACE 73
GOOD-AK 17
GOOD-OS 63
GOOD-TASK 12

102

GOOD-TM 28
INCR-MOD 86
MAPUP-ADDRESS-SPACE 72
MAPUP-BASE 73
MAPUP-CC 72
MAPUP-CPU 73
MAPUP-CURRENT-TASK-TM-FETCH-EXECUTE 76
MAPUP-ERROR 72
MAPUP-LIMIT 73
MAPUP-OS 71
MAPUP-OS-IBUFFERS 71
MAPUP-OS-MBUFFERS 71
MAPUP-OS-OBUFFERS 71
MAPUP-OS-TASKS 72
MAPUP-QUEUE 86
MAPUP-QUEUE-LIST 71
MAPUP-REGS 72
MAPUP-SVCFLAG 72
MAPUP-SVCID 73
MAPUP-TASK 72
MAPUP-TASK-SEPARATION 76
MAPUP-TASKS 72
NONLAST 83
OS-CLOCK-INTERRUPT-HANDLER 67
OS-CODE 66
OS-CODE-ADDRESS 66
OS-CODE-LENGTH 66
OS-IMPLEMENTS-AK 71
OS-IMPLEMENTS-PARALLEL-TASKS 9, 82
OS-MACHINE-CODE 67
OS-ORACLE 70
OS-ORACLE-STEP 70
OS-PROCESSOR 66
OS-STEP 66
OS-STEP-IMPLEMENTS-AK-STEP 73
PROJECT 78
PUTNTH 15
QARRAY-FIELD 84
QCURRLENGTH-FIELD 84
QEMPTYP 15, 83
QFIRST 15, 83
QFULLP 15, 83
QHEAD-FIELD 84
QMAXLENGTH-FIELD 84
QREPLACE 15, 83
QTAIL-FIELD 84
REAL-ADDR 32
REAL-ADDR-NUM 32
REAL-ADDR-SOURCE 32
TABLE 65
TASK 11
TASK-ACTIVEP 13
TASK-CHANNELS 11
TASK-EXECUTE-INPUT 14
TASK-EXECUTE-OUTPUT 14
TASK-EXECUTE-RECEIVE 14
TASK-EXECUTE-SEND 14
TASK-FETCH-EXECUTE 15
TASK-IBUFFERS 12
TASK-MBUFFERS 12
TASK-OBUFFERS 12
TASK-PRIVATE-STEP 13
TASK-PROCESSOR 13
TASK-PSTATE 11
TASK-SHELLP 11
TASK-STEP 13
TASK-UPDATE-CHANNELS 13
TIMED-TM-PROCESSOR 69
TIMED-TM-STEP 69
TM 27
TM-BASE 27
TM-CC 27
TM-CC-VALUE 34
TM-CLOCK 27
TM-ERROR 27
TM-EXECUTE-ADD 34
TM-EXECUTE-CLOCK-INTERRUPT 33
TM-FETCH 31
TM-FETCH-EXECUTE 33
TM-FETCH-EXECUTE-COMMUTES-WITH-MAPUP-ADDRESS-SPACE 76
TM-FETCH-EXECUTE-MAPUP-ADDRESS-SPACE-SEPARATION 76
TM-FETCH-FROM-MEMORY 32
TM-FETCH-FROM-REGMEM 32
TM-FETCH-NEW-PC-ON-INTERRUPT 33

103

TM-ICHAR 29
TM-IERROR-FLAG 29
TM-IINTERRUPT-FLAG 29
TM-IMPLEMENTS-OS 70
TM-IMPLEMENTS-TIMED-TM 70
TM-IPORT 29
TM-IPORTP 29
TM-IPORTS 27
TM-LIMIT 27
TM-MEMORY 27
TM-OBUSY-FLAG 29
TM-OCHAR 29
TM-OINTERRUPT-FLAG 29
TM-OPORT 29
TM-OPORTP 29
TM-OPORTS 27
TM-PORT-LENGTH 29
TM-POST-INPUT-INTERRUPT 30
TM-POST-INTERRUPT 30
TM-POST-OUTPUT-INTERRUPT 30
TM-PROCESSOR 29
TM-REGISTER-SAVE-AREA-ADDR 33
TM-REGS 27
TM-RWSTATE 27
TM-SET-CC 31
TM-SHELLP 27
TM-SLIMIT 27
TM-STEP 30
TM-STORE 32
TM-STORE-IN-MEMORY 32
TM-STORE-IN-REGMEM 32
TM-STORE-OLD-PSW-ON-INTERRUPT 33
TM-SVCFLAG 27
TM-SVCID 27
TM-SVMODE 27
TM-WORDLUB 29
TM-WORDSIZE 29
TRACE-CLOCK-INTERRUPT-HANDLER 68

Table of Contents

Chapter 1. Introduction . 3

1.1. The Thesis . 3
1.2. Process Isolation . 4
1.3. A Characterization of this Work . 5
1.4. Plan of Dissertation . 5
1.5. The Boyer-Moore Logic and its Proof Checker . 6

Chapter 2. Defining Finite State Machines with Recursive Functions 7

2.1. Interpreters . 7
2.2. Interpreter Equivalence Theorems . 8
2.3. The KIT Proof Structure . 9

Chapter 3. The Specification of KIT . 11

3.1. The Task Layer . 11
3.2. The Abstract Kernel Layer . 16

3.2.1. The Clock Interrupt Handler . 19
3.2.2. The Error Handler . 20
3.2.3. The Supervisor Call Handler . 20

3.2.3-A. Send . 20
3.2.3-B. Receive . 21
3.2.3-C. Input . 22
3.2.3-D. Output . 23

3.2.4. The Input Interrupt Handler . 24
3.2.5. The Output Interrupt Handler . 25

Chapter 4. The Implementation of KIT . 27

4.1. The Target Machine . 27
4.2. The Code . 35
4.3. Flowcharts . 48

Chapter 5. The Verification of KIT . 63

5.1. The Operating System Layer . 63
5.2. The Target Machine Implements the Operating System . 68
5.3. The Operating System Implements the Abstract Kernel . 71
5.4. The Abstract Kernel Implements Tasks . 77
5.5. Composing the Interpreter Equivalence Theorems . 82

i

Chapter 6. Queues . 83

6.1. An Implementation of Queues . 83
6.2. The Correctness of the Queue Implementation . 86
6.3. Using the Queue Correctness Theorems . 87

Chapter 7. Conclusion . 89

7.1. Related Work . 89
7.1.1. Specification and Proof Methods . 89
7.1.2. Operating System Verification . 89
7.1.3. Microprogram Verification . 91

7.2. Comments and Summary . 91
7.2.1. The Size of the KIT Project . 91
7.2.2. The Significance of the KIT Project . 93
7.2.3. Future Work . 94

2Appendix A. The Boyer-Moore Logic and its Theorem Prover 95

A.1. The Logic . 95
A.2. The Mechanization of the Logic . 96

Index . 101

2Written by Boyer and Moore. Taken with permission from [Boyer 87].

ii

List of Figures

Figure 2-1: Interpreter Equivalence 8
Figure 2-2: KIT Proof Structure 10

Figure 3-1: Network 12

Figure 4-1: Layout of Kernel 36

Figure 5-1: Revised KIT Proof Structure 64
Figure 5-2: Traces of TM and OS 69
Figure 5-3: AK Implements Parallel Tasks 77

Figure 6-1: Delta 84

iii

List of Tables

Table 4-1: PMS Description of TM 28
Table 4-2: The TM Clock Interrupt 33
Table 4-3: TM’s Instruction Set 34
Table 4-4: Grammar for TM Assembler 37

iv

