
The nanoAVA Definition

Dan Craigen, Mark Saaltink, Michael K. Smith

Technical Report 21 June, 1988

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This work was sponored in part by the Defense Advanced
Research Projects Agency, ARPA Orders 6082 and 9151.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies either expressed or
implied, of the Defense Advanced Research Projects
Agency, the U.S. Government, or Computational Logic,
Inc.

Abstract

This document comprises a complete description (formal and informal) of the nanoAVA subset of Ada.
As such, it represents our first attempt at a complete formal and informal description of AVA (A
Verifiable Ada). The intent of this work was twofold. First, we wanted to set a least upper bound. We
wanted to be sure that we could formally specify an extremely trivial subset of Ada before embarking on a
more ambitious subset. Secondly we wanted to experiment with the technical approach to the definition
and its presentation to the reader.

Two definitional techniques were experimented with. Included in this report is

1. A denotational definition of nanoAVA and a Boyer-Moore translation of it.

2. A Lisp based definition of nanoAVA.

This reflects the past experience of the project members. Smith originally did a somewhat clumsy Lisp
description of the static and dynamic semantics. Saaltink responded with a very clean denotational
definition which fed back into the Lisp definition presented here. We have done proofs using the Boyer
Moore description derived from the denotational definition and have executed the Lisp version.

This document consists of three primary parts.

1. nanoAVA Language Reference Manual: This informal description was produced largely by
subsetting the Ada Language Reference Manual [DoD 83].

2. Denotational Definition:

a. The Static and Dynamic Semantics of nanoAVA: This very brief section
demonstrates the compactness and readability of the denotational approach.

b. Following this section is a translation to Boyer Moore with the statement of some
associated proofs.

3. Lisp Definition: The elements of the Lisp definition have been tied together so that, in
conjunction with a lexical scanner (again in Lisp), we can parse in a nanoAVA program,
check its semantics, and interpret it.

a. Syntax of nanoAVA: The grammar presented accepts a strict subset of Ada.
Associated with each rule is a form that describes how an internal representation (the
input to static semantic analysis) is constructed.

b. Static Semantics of nanoAVA: This section describes the semantic constraints that
are placed on the output of the syntactic component. Forms are analyzed in the
context of an environment, which contains descriptors for defined objects
(predefined types, user defined types, routine definitions, etc.). Forms that are
accepted semantically are converted to the internal form expected by the interpreter
definition. Some of these converted forms augment the environment is specified
ways.

c. Dynamic Semantics of nanoAVA: The dynamic semantics of the language are
described operationally, via an interpreter definition.

2 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 3
Introduction

PART I: INTRODUCTION

AVA (A Verifiable Ada) is intended to be a formally defined subset of the Ada programming language
that is large enough to support simple, standalone applications.

This document comprises a complete description (formal and informal) of the nanoAVA subset of Ada.
As such, it represents our first attempt at a complete formal and informal description of AVA. The intent
of this work was twofold. First, we wanted to set a least upper bound. We wanted to be sure that we
could formally specify an extremely trivial subset of Ada before embarking on a more ambitious subset.
Secondly we wanted to experiment with the technical approach to the definition and its presentation to the
reader.

In some cases these goals conflict. That is, nanoAVA does not require a number of features that we are
relatively certain will be needed for the AVA definition. At some points in this document we have
included mechanisms more complex than strictly required for nanoAVA due to an inability to refrain from
looking ahead to AVA.

The prototypical nanoAVA program is the swap procedure below.

procedure swap (x, y: in out INTEGER) is
temp: constant INTEGER := x;

begin
x := y;
y := temp;

end ;

A nanoAVA program consists of a single procedure definition. The only data types are INTEGER and
BOOLEAN. There are no control structures other than BEGIN - END statement sequencing. The only
statement is assignment. Expressions are of the form IDENTIFIER or IDENTIFIER OPERATOR
IDENTIFIER, where the operator must be one of the relational operators, "=", "<", ">", "<=", and ">=".

We have attempted to thoroughly cross-reference this document. In addition to the index there are
pointers in the text between the various definitional components. For example, where the null statement is

DRAFT 19 Oct 88 at 5:28 p.m.

defined in the reference manual part there are pointers to the pages where the syntax and the denotational,
static and dynamic semantics are defined.

null_statement ::= null; [Deno: 52,Syntax: 69,Static: 77,Dynamic: 81]

Similarly, in the semantic definitions you will see a pointer back to the definition of the language element
in the Reference Manual part of the document.

nanoAVA 5
Language Reference Manual

PART II: LANGUAGE REFERENCE MANUAL

As modified by
Dan Craigen and Mark Saaltink

The numbering of sections in this part of the nanoAVA description are taken from the full Ada Language
reference Manual for ease of reference.

DRAFT 19 Oct 88 at 5:28 p.m.

6 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 7
Language Reference Manual

Chapter II-1

INTRODUCTION

n-AVA (nanoAVA) is a subset of Ada.

II-1.1 Scope of the Standard

This standard specifies the form and meaning of program units written in n-AVA. Its purpose is to
promote the portability of n-AVA programs to a variety of data processing systems.

II-1.1.1 Extent of the Standard

This standard specifies:

(a) The form of a program unit written in n-AVA.

(b) The effect of translating and executing such a program unit.

(c) The manner in which program units may be combined to form n-AVA
programs.

(d) The predefined program units that a conforming implementation must
supply.

(e) The permissible variations within the standard, and the manner in
which they must be specified.

(f) Those violations of the standard that a conforming implementation is
required to detect, and the effect of attempting to translate or
execute a program unit containing such violations.

(g) Those violations of the standard that a conforming implementation is
not required to detect.

This standard does not specify:

(h) The means whereby a program unit written in n-AVA is transformed into
object code executable by a processor.

(i) The means whereby translation or execution of program units is invoked
and the executing units are controlled.

(j) The size or speed of the object code, or the relative execution speed

DRAFT 19 Oct 88 at 5:28 p.m.

8 nanoAVA

of different language constructs.

(k) The form or contents of any listings produced by implementations; in
particular, the form or contents of error or warning messages.

(l) The effect of executing a program unit that contains any violation
that a conforming implementation is not required to detect.

(m) The size of a program or program unit that will exceed the capacity of
a particular conforming implementation.

Where this standard specifies that a program unit written in n-AVA has an exact effect, this effect is the
operational meaning of the program unit and must be produced by all conforming implementations.
Where this standard specifies permissible variations in the effects of constituents of a program unit written
in n-AVA, the operational meaning of the program unit as a whole is understood to be the range of
possible effects that result from all these variations, and a conforming implementation is allowed to
produce any of these possible effects.

II-1.1.2 Conformity of an Implementation With the Standard

A conforming implementation is one that:

(a) Correctly translates and executes legal program units written in n-AVA,
provided that they are not so large as to exceed the capacity of the
implementation.

(b) Rejects all program units that are so large as to exceed the capacity
of the implementation.

(c) Rejects all program units that contain errors whose detection is
required by the standard.

(d) Supplies all predefined program units required by the standard.

(e) Contains no variations except where the standard permits.

(f) Specifies all such permitted variations in the manner prescribed by
the standard.

II-1.2 Structure of the Standard

This reference manual contains various chapters, annexes, and appendices. Each is numbered to
correspond to a section of the Ada Reference Manual.

Each chapter is divided into sections that have a common structure. Each section introduces its subject,
gives any necessary syntax rules, and describes the semantics of the corresponding language constructs.
Examples and notes, and then references, may appear at the end of a section.

Examples are meant to illustrate the possible forms of the constructs described. Notes are meant to
emphasize consequences of the rules described in the section or elsewhere. References are meant to
attract the attention of readers to a term or phrase having a technical meaning defined in another section.

The standard definition of the n-AVA programming language consists of the chapters and the annexes,
subject to the following restriction: the material in each of the items listed below is informative, and not
part of the standard definition of the n-AVA programming language:

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 9
Language Reference Manual

- Section 1.4 Language summary

- The examples, notes, and references given at the end of each section

- Each section whose title starts with the word "Example" or "Examples"

II-1.3 Design Goals and Sources: Removed

II-1.4 Language Summary

An n-AVA program is composed of one program unit. Program units are subprograms (which define
executable algorithms).

Program Units

A subprogram is the basic unit for expressing an algorithm. There is one kind of subprogram: procedures.
A procedure is the means of invoking a series of actions. For example, it may read data, update variables,
or produce some output. It may have parameters, to provide a controlled means of passing information
between the procedure and the point of call.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.

The declarative part associates names with declared entities. For example, a name may denote a constant
or a variable.

The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession.

An assignment statement changes the value of a variable.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations.

An enumeration type defines an ordered set of distinct enumeration literals. The enumeration type
BOOLEAN is predefined.

Numeric types provide a means of performing numerical computations. Exact computations use integer
types, which denote sets of consecutive integers. The numeric type INTEGER is predefined.

DRAFT 19 Oct 88 at 5:28 p.m.

10 nanoAVA

II-1.5 Method of Description and Syntax Notation

The form of n-AVA program units is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of n-AVA program units is described by means of narrative rules defining both the effects of
each construct and the composition rules for constructs. This narrative employs technical terms whose
precise definition is given in the text (references to the section containing the definition of a technical term
appear at the end of each section that uses the term).

All other terms are in the English language and bear their natural meaning, as defined in Webster’s Third
New International Dictionary of the English Language.

The context-free syntax of the language is described using a simple variant of Backus-Naur-Form. In
particular,

(a) Lower case words, some containing embedded underlines, are used to
denote syntactic categories, for example:

adding_operator

Whenever the name of a syntactic category is used apart from the
syntax rules themselves, spaces take the place of the underlines
(thus: adding operator).

(b) Boldface words are used to denote reserved words, for example:

array

(c) Square brackets enclose optional items. Thus the two following rules
are equivalent.

return_statement ::= return [expression];
return_statement ::= return; | return expression;

(d) Braces enclose a repeated item. The item may appear zero or more
times; the repetitions occur from left to right as with an equivalent
left-recursive rule. Thus the two following rules are equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

(e) A vertical bar separates alternative items unless it occurs
immediately after an opening brace, in which case it stands for
itself:

letter_or_digit ::= letter | digit
component_association ::= [choice {| choice} =>] expression

(f) If the name of any syntactic category starts with an italicized part,
it is equivalent to the category name without the italicized part.
The italicized part is intended to convey some semantic information.
For example type_name and task_name are both equivalent to name alone.

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 11
Language Reference Manual

II-1.6 Classification of Errors

The language definition classifies errors into a single category:

(a) Errors that must be detected at compilation time by every n-AVA
compiler.

These errors correspond to any violation of a rule given in this
reference manual. In particular, violation of any rule that uses the terms
must, allowed, legal, or illegal belongs to this category. Any
program that contains such an error is not a legal n-AVA program; on
the other hand, the fact that a program is legal does not mean, per
se, that the program is free from other forms of error.

[We did not include (b) because it would introduce exceptions. Our
section 10.1 allows for abandonment of programs.]

DRAFT 19 Oct 88 at 5:28 p.m.

12 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 13
Language Reference Manual

Chapter II-2

LEXICAL ELEMENTS

The text of a program consists of the text of a compilation. The text of a compilation is a sequence of
lexical elements, each composed of characters; the rules of composition are given in this chapter.

References: character 2.1, compilation 10.1, lexical element 2.2

II-2.1 Character Set

The only characters allowed in the text of a program are the graphic characters and format effectors. Each
graphic character corresponds to a unique code of the ISO seven-bit coded character set (ISO standard
646), and is represented (visually) by a graphical symbol. Some graphic characters are represented by
different graphical symbols in alternative national representations of the ISO character set. The
description of the language definition in this standard reference manual uses the ASCII graphical symbols,
the ANSI graphical representation of the ISO character set.

graphic_character ::= basic_graphic_character | lower_case_letter | other_special_character

basic_graphic_character ::= upper_case_letter | digit
| special_character | space_character

basic_character ::= basic_graphic_character | format_effector

The basic character set is sufficient for writing any program. The characters included in each of the
categories of basic graphic characters are defined as follows:

(a) upper case letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(b) digits 0 1 2 3 4 5 6 7 8 9

(c) special characters " # & ’ () * + , - . / : ; < = > _ |

(d) the space character

Format effectors are the ISO (and ASCII) characters called horizontal tabulation, vertical tabulation,
carriage return, line feed, and form feed.

The characters included in each of the remaining categories of graphic characters are defined as follows:

(e) lower case letters a b c d e f g h i j k l m n o p q r s t u v w x y z

(f) other special characters ! $ % ? @ [\] ^ ‘ { }

DRAFT 19 Oct 88 at 5:28 p.m.

14 nanoAVA

Notes:

The ISO character that corresponds to the sharp graphical symbol in the ASCII representation appears as a
pound sterling symbol in the French, German, and United Kingdom standard national representations. In
any case, the font design of graphical symbols (for example, whether they are in italic or bold typeface) is
not part of the ISO standard.

The meanings of the acronyms used in this section are as follows: ANSI stands for American National
Standards Institute, ASCII stands for American Standard Code for Information Interchange, and ISO
stands for International Organization for Standardization.

The following names are used when referring to special characters and other special characters:

symbol name symbol name

" quotation > greater than
sharp _ underline
& ampersand | vertical bar
’ apostrophe ! exclamation mark
(left parenthesis $ dollar
) right parenthesis % percent
* star, multiply ? question mark
+ plus @ commercial at
, comma [left square bracket
- hyphen, minus \ back-slash
. dot, point, period] right square bracket
/ slash, divide ^ circumflex
: colon ‘ grave accent
; semicolon { left brace
< less than } right brace
= equal ‘ tilde

II-2.2 Lexical Elements, Separators, and Delimiters

The text of a program consists of the text of a compilation. The text of each compilation is a sequence of
separate lexical elements.

Each lexical element is either a delimiter, an identifier (which may be a reserved word), or a comment.
The effect of a program depends only on the particular sequences of lexical elements that form its
compilation, excluding the comments, if any.

In some cases an explicit separator is required to separate adjacent lexical elements (namely, when
without separation, interpretation as a single lexical element is possible). A separator is any of a space
character, a format effector, or the end of a line. A space character is a separator except within a
comment. Format effectors other than horizontal tabulation are always separators. Horizontal tabulation
is a separator except within a comment.

The end of a line is always a separator. The language does not define what causes the end of a line.
However if, for a given implementation, the end of a line is signified by one or more characters, then these
characters must be format effectors other than horizontal tabulation. In any case, a sequence of one or
more format effectors other than horizontal tabulation must cause at least one end of line.

One or more separators are allowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier or a numeric literal
and an adjacent identifier or numeric literal.

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 15
Language Reference Manual

A delimiter is either one of the following special characters (in the basic character set)

& ’ () * + , - . / : ; < = > |

or one of the following compound delimiters each composed of two adjacent special characters

=> .. ** := /= >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string literal,
character literal, or numeric literal.

The remaining forms of lexical element are described in other sections of this chapter.

Notes:

Each lexical element must fit on one line, since the end of a line is a separator. The quotation, sharp, and
underline characters, likewise two adjacent hyphens, are not delimiters, but may form part of other lexical
elements.

The following names are used when referring to compound delimiters:

delimiter name

=> arrow
.. double dot
** double star, exponentiate
:= assignment (pronounced: "becomes")
/= inequality (pronounced: "not equal")
>= greater than or equal
<= less than or equal
<< left label bracket
>> right label bracket
<> box

References: comment 2.7, compilation 10.1, format effector 2.1, identifier 2.3, reserved word 2.9, space
character 2.1, special character 2.1

II-2.3 Identifiers

Identifiers are used as names and also as reserved words.

identifier ::= letter {[underline] letter_or_digit}

letter_or_digit ::= letter | digit
letter ::= upper_case_letter | lower_case_letter

All characters of an identifier are significant, including any underline character inserted between a letter
or digit and an adjacent letter or digit. Identifiers differing only in the use of corresponding upper and
lower case letters are considered as the same.

Examples:

COUNT X get_symbol Ethelyn Marion

SNOBOL_4 X1 PageCount STORE_NEXT_ITEM

DRAFT 19 Oct 88 at 5:28 p.m.

16 nanoAVA

Note:

No space is allowed within an identifier since a space is a separator.

References: digit 2.1, lower case letter 2.1, name 4.1, reserved word 2.9, separator 2.2, space character
2.1, upper case letter 2.1

II-2.4 Numerica Literals: Removed

II-2.5 Character Literals: Removed

II-2.6 String Literals: Removed

II-2.7 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line. A comment can
appear on any line of a program. The presence or absence of comments has no influence on whether a
program is legal or illegal. Furthermore, comments do not influence the effect of a program; their sole
purpose is the enlightenment of the human reader.

Examples:

-- the last sentence above echoes the Algol 68 report

end; -- processing of LINE is complete

-- a long comment may be split onto
-- two or more consecutive lines

---------------- the first two hyphens start the comment

Note:

Horizontal tabulation can be used in comments, after the double hyphen, and is equivalent to one or more
spaces (see 2.2).

References: end of a line 2.2, illegal 1.6, legal 1.6, space character 2.1

II-2.8 Pragmas

II-2.9 Reserved Words

The identifiers listed below are called reserved words and are reserved for special significance in the
language. For readability of this manual, the reserved words appear in lower case boldface.

abort declare generic of select
abs delay goto or separate
accept delta others subtype
access digits if out

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 17
Language Reference Manual

all do in task
and is package terminate
array pragma then
at else private type

elsif limited procedure
end loop

begin entry raise use
body exception range

exit mod record when
rem while

new renames with
case for not return
constant function null reverse xor

A reserved word must not be used as a declared identifier.

Notes:

Reserved words differing only in the use of corresponding upper and lower case letters are considered as
the same (see 2.3).

References: declaration 3.1, identifier 2.3, lower case letter 2.1, upper case letter 2.1

II-2.10 Allowable Replacements of Characters: Removed

DRAFT 19 Oct 88 at 5:28 p.m.

18 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 19
Language Reference Manual

Chapter II-3

DECLARATIONS AND TYPES

This chapter describes the types in the language and the rules for declaring constants and variables.

II-3.1 Declarations

The language defines several kinds of entities that are declared, either explicitly or implicitly, by
declarations. Such an entity can be an object, a type, a subprogram, a formal parameter (of a
subprogram), or an operation (see 3.3.3).

There are several forms of declaration. A basic declaration is either an object declaration, a type
declaration, or a subprogram body. [How do we handle predefined operators? Are they subprograms?]

Certain forms of declaration always occur (explicitly) as part of another declaration; these forms are
parameter specifications. [This is a prevarication. LEFT and RIGHT parameters may be implicitly
declared. See ARM 4.5.]

The remaining forms of declaration are implicit. Certain operations are implicitly declared (see 3.3.3).

For each form of declaration the language rules define a certain region of text called the scope of the
declaration (see 8.2). Several forms of declaration associate an identifier with a declared entity. Within
its scope, and only there, there are places where it is possible to use the identifier to refer to the associated
declared entity; these places are defined by the visibility rules (see 8.3). At such places the identifier is
said to be a name of the entity (its simple name); the name is said to denote the associated entity.

Certain forms of declaration associate some notation with an explicitly or implicitly declared operation.

The process by which a declaration achieves its effect is called the elaboration of the declaration; this
process happens during program execution.

After its elaboration, a declaration is said to be elaborated. Prior to the completion of its elaboration
(including before the elaboration), the declaration is not yet elaborated. The elaboration of any
declaration has always at least the effect of achieving this change of state (from not yet elaborated to
elaborated). The phrase "the elaboration has no other effect" is used in this manual whenever this change
of state is the only effect of elaboration for some form of declaration. An elaboration process is also
defined for declarative parts, declarative items, and compilation units (see 3.9 and 10.5).

Note:

The syntax rules use the term identifier for the first occurrence of an identifier in some form of
declaration; the term simple name is used for any occurrence of an identifier that already denotes some
declared entity.

DRAFT 19 Oct 88 at 5:28 p.m.

20 nanoAVA

References: declarative item 3.9, declarative part 3.9, elaboration 3.9, identifier 2.3, name 4.1, object
declaration 3.2.1, operation 3.3, operator symbol 6.1, parameter specification 6.1, scope 8.2, simple name
4.1, subprogram body 6.3, subprogram specification 6.1, visibility 8.3

II-3.2 Objects

An object is an entity that contains (has) a value of a given type. An object is one of the following:

- an object declared by an object declaration, or

- a formal parameter of a subprogram.

object_declaration ::= identifier_list : [constant] type_mark := expression;

identifier_list ::= identifier {, identifier} [Syntax: 68]

An object declaration is called a single object declaration if its identifier list has a single identifier; it is
called a multiple object declaration if the identifier list has two or more identifiers. A multiple object
declaration is equivalent to a sequence of the corresponding number of single object declarations. For
each identifier of the list, the equivalent sequence has a single object declaration formed by this identifier,
followed by a colon and by whatever appears at the right of the colon in the multiple object declaration;
the equivalent sequence is in the same order as the identifier list.

A similar equivalence applies also for the identifier lists of parameter specifications.

In the remainder of this reference manual, explanations are given for declarations with a single identifier;
the corresponding explanations for declarations with several identifiers follow from the equivalence stated
above.

Example:

-- the multiple object declaration

JOHN, PAUL : INTEGER := GEORGE;

-- is equivalent to the two single object declarations in the order given

JOHN : INTEGER := GEORGE;
PAUL : INTEGER := GEORGE;

References: declaration 3.1, expression 4.4, formal parameter 6.1, identifier 2.3, parameter specification
6.1, scope 8.2, simple name 4.1, subprogram 6, type 3.3, type_mark 3.3.2

II-3.2.1 Object Declarations

An object declaration declares an object whose type is given by a type mark. The expression specifies an
initial value for the declared object; the type of the expression must be that of the object.

The declared object is a constant if the reserved word constant appears in the object declaration. The
value of a constant cannot be modified after initialization.

An object that is not a constant is called a variable (in particular, the object declared by an object
declaration that does not include the reserved word constant is a variable). The only way to change the
value of a variable is directly by an assignment.

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 21
Language Reference Manual

The elaboration of an object declaration proceeds as follows:

(b) The initial value is obtained by evaluating the corresponding
expression.

(c) The object is created.

(d) The initial value is assigned to the object.

The steps (b) to (d) are performed in the order indicated.

Examples of variable declarations:

COUNT, SUM : INTEGER := ZERO;

Examples of constant declarations:

LIMIT : constant INTEGER := SUM;

References: assignment 5.2, declaration 3.1, elaboration 3.9, evaluation 4.5, expression 4.4, formal
parameter 6.1, reserved word 2.9, subprogram 6, type 3.3, type mark 3.3.2

II-3.2.2 Number Declarations: Removed

II-3.3 Types

A type is characterized by a set of values and a set of operations.

There exists a single class of types. Scalar types are integer types and types defined by enumeration of
their values.

The name of a class of types is used in this manual as a qualifier for objects and values that have a type of
the class considered. For example, the term "integer object" is used for an object whose type is an integer
type.

References: integer type 3.5.4, object 3.2.1, operation 3.3.3

[We omitted 3.3.1 since type declarations are implicit in n-AVA. We are drawing an analogy with the
definition of literals within package STANDARD -- in full Ada.]

II-3.3.1 Type Declarations: Removed

II-3.3.2 Subtype Declarations

type_mark ::= type_name [ARM: 21,Static: 76,Dynamic: 81]

A type mark denotes a type.

References: name 4.1

DRAFT 19 Oct 88 at 5:28 p.m.

22 nanoAVA

II-3.3.3 Classification of Operations

The set of operations of a type includes the explicitly declared subprograms that have a parameter or result
of the type; such subprograms are necessarily declared after the type declaration.

The remaining operations are each implicitly declared for a given type declaration, immediately after the
type definition. These implicitly declared operations comprise the basic operations and the predefined
operators.

A basic operation is an operation that is inherent in one of the following:

- An assignment (in assignment statements and initializations)

References: assignment 5.2, formal parameter 6.1, initial value 3.2.1, subprogram 6, type 3.3

Note:

Assignment is an operation that operates on an object and a value.

II-3.4 Derived Types: Removed

II-3.5 Scalar Types

Scalar types comprise enumeration types and integer types. Enumeration types and integer types are
called discrete types. Integer types are called numeric types. All scalar types are ordered, that is, all
relational operators are predefined for their values.

References: integer type 3.5.4, relational operator 4.5 4.5.2

II-3.5.1 Enumeration Types

II-3.5.2 Character Types

II-3.5.3 Boolean Types

There is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and TRUE
ordered with the relation FALSE < TRUE.

References: type 3.3

II-3.5.4 Integer Types

The predefined integer type is the type INTEGER. The range of this type must be symmetric about zero,
excepting an extra negative value which may exist in some implementations.

References: type 3.3

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 23
Language Reference Manual

II-3.5.5 Operations of Discrete Types

The basic operations of a discrete type include the operations involved in assignment.

Besides the basic operations, the operations of a discrete type include the predefined relational operators.

References: assignment 5.2, basic operation 3.3.3, discrete type 3.5, operation 3.3, relational operator 4.5
4.5.2, type 3.3

II-3.5.6 Real Types: Removed

II-3.5.7 Floating Point Types: Removed

II-3.5.8 Operations of Floating Point Types Types: Removed

II-3.5.9 Fixed Point Types: Removed

II-3.6 Array Types: Removed

II-3.7 Record Types: Removed

II-3.8 Access Types: Removed

II-3.9 Declarative Parts

A declarative part contains declarative items (possibly none).

declarative_part ::= {basic_declarative_item} [Deno: 49,Syntax: 68,Static: 76,Dynamic: 81]

basic_declarative_item ::= object_declaration [Deno: 49,Syntax: 68,Static: 76,Dynamic: 81]

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the
order in which they are given in the declarative part. After its elaboration, a declarative item is said to be
elaborated. Prior to the completion of its elaboration (including before the elaboration), the declarative
item is not yet elaborated.

For several forms of declarative item, the language rules (in particular scope and visibility rules) are such
that it is either impossible or illegal to use an entity before the elaboration of the declarative item that
declares this entity.

References: scope 8.2, visibility 8.3, object declaration 3.2.1,

Elaboration of declarations: 3.1, object declaration 3.2.1

DRAFT 19 Oct 88 at 5:28 p.m.

24 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 25
Language Reference Manual

Chapter II-4

NAMES AND EXPRESSIONS

The rules applicable to the different forms of name and expression, and to their evaluation, are given in
this chapter.

II-4.1 Names

Names can denote declared entities.

name ::= simple_name [Syntax: 68]

simple_name ::= identifier

A simple name for an entity is the identifier associated with the entity by its declaration.

The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect.

Examples of simple names:

LIMIT -- the simple name of a constant (see 3.2.1)
COUNT -- the simple name of a scalar variable (see 3.2.1)

References: declaration 3.1, entity 3.1, evaluation 4.5, identifier 2.3, object 3.2.1

II-4.2 Literals: Removed

II-4.3 Aggregates: Removed

II-4.4 Expressions

An expression is a formula that defines the computation of a value.

expression ::= relation [Deno: 49,Syntax: 69,Static: 78,Dynamic: 81]

relation ::= [Deno: 49,Syntax: 69,Static: 78,Dynamic: 81]
simple_expression |
simple_expression relational_operator simple_expression

simple_expression ::= term

DRAFT 19 Oct 88 at 5:28 p.m.

26 nanoAVA

term ::= factor
factor ::= primary
primary ::= name

Each primary has a value and a type. The only names allowed as primaries are names denoting objects
(the value of such a primary is the value of the object).

The type of an expression depends only on the type of its constituents and on the operators applied; for an
overloaded constituent or operator, the determination of the constituent type, or the identification of the
appropriate operator, is determinable by overload resolution (8.7). For each predefined operator, the
operand and result types are given in section 4.5.

Examples of primaries:

SUM -- variable

Examples of expressions:

VOLUME -- primary
NATURAL_E < PI -- expression

References: name 4.1, object 3.2, operator 4.5, overload resolution 8.7, relation 4.5.1, relational operator
4.5 4.5.2, type 3.3, variable 3.2.1

II-4.5 Operators and Expression Evaluation

The language defines the following class of operators:

relational_operator ::= = | /= | < | <= | > | >= [Deno: 49,Syntax: 69,Static: 78,Dynamic: 81]

II-4.5.1 Logical Operatiors and Short Circuit Control Forms: Removed

II-4.5.2 Relational Operators

The equality and inequality operators are predefined for any type. The other relational operators are the
ordering operators < (less than), <= (less than or equal), > (greater than), and >= (greater than or equal).
The ordering operators are predefined for any scalar type. The operands of each predefined relational
operator [must] have the same type. The result type is the predefined type BOOLEAN.

The relational operators have their conventional meaning: the result is equal to TRUE if the
corresponding relation is satisfied; the result is FALSE otherwise. The inequality operator gives the
complementary result to the equality operator: FALSE if equal, TRUE if not equal.

Operator Operation Operand type Result type

= /= equality and inequality any type BOOLEAN

< <= > >= test for ordering any scalar type BOOLEAN

Equality for the discrete types is equality of the values.

References: boolean predefined type 3.5.3, operator 4.5, predefined operator 4.5, type 3.3

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 27
Language Reference Manual

II-4.6 4.6 through 4.10 Removed

DRAFT 19 Oct 88 at 5:28 p.m.

28 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 29
Language Reference Manual

Chapter II-5

STATEMENTS

A statement defines an action to be performed; the process by which a statement achieves its action is
called execution of the statement.

II-5.1 Simple and Compound Statements - Sequences of Statements

sequence_of_statements ::= statement {statement} [Deno: 51,Syntax: 69,Static: 77,Dynamic: 81]

statement ::= simple_statement [Deno: 49,Syntax: 69,Static: 77,Dynamic: 81]

simple_statement ::= null_statement [Syntax: 69,Static: 77,Dynamic: 81]
| assignment_statement

null_statement ::= null; [Deno: 52,Syntax: 69,Static: 77,Dynamic: 81]

Execution of a null statement has no other effect than to pass to the next action.

The execution of a sequence of statements consists of the execution of the individual statements in
succession until the sequence is completed.

References: assignment statement 5.2

II-5.2 Assignment Statement

An assignment statement replaces the current value of a variable with a new value specified by an
expression. The named variable and the right-hand side expression must be of the same type.

assignment_statement ::= [Deno: 52,Syntax: 69,Static: 77,Dynamic: 81]
variable_name := expression;

For the execution of an assignment statement, the variable name and the expression are first evaluated, in
some order that is not defined by the language. Finally, the value of the expression becomes the new
value of the variable.

Examples:

SHADE := BLUE;
FLAG := LOWER < HIGHER

References: evaluation 4.5, expression 4.4, name 4.1, type 3.3, variable 3.2.1

DRAFT 19 Oct 88 at 5:28 p.m.

30 nanoAVA

II-5.3 5.3 through 5.9: Removed

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 31
Language Reference Manual

Chapter II-6

SUBPROGRAMS

A subprogram is a program unit whose execution is invoked as part of the execution of a program (see
10.1). There is one form of subprogram: procedures.

References: procedure 6.1

II-6.1 Subprogram Specifications

A subprogram specification defines the calling conventions of a procedure.

subprogram_specification ::= [Syntax: 69,Static: 76,Dynamic: 81]
procedure identifier [formal_part]

formal_part ::= [Syntax: 69,Static: 76]
(parameter_specification {; parameter_specification})

parameter_specification ::= [Syntax: 70]
identifier_list : mode type_mark

mode ::= in out [Syntax: 70]
[Static: 76]

The specification of a procedure specifies its identifier and its formal parameters (if any).

A parameter specification with several identifiers is equivalent to a sequence of single parameter
specifications, as explained in section 3.2. Each single parameter specification declares a formal
parameter.

The elaboration of a subprogram specification elaborates the corresponding formal part. The elaboration
of a formal part has no other effect.

Examples of subprogram specifications:

procedure TRAVERSE_TREE
procedure INCREMENT(X : in out INTEGER)

References: elaboration 3.9, identifier 2.3, identifier list 3.2, elaboration has no other effect 3.1, procedure
6, type mark 3.3.2

DRAFT 19 Oct 88 at 5:28 p.m.

32 nanoAVA

II-6.2 Formal Parameter Modes: Removed

II-6.3 Subprogram Bodies

A subprogram body declares a procedure and specifies its execution.

subprogram_body ::= [Deno: 49,Syntax: 70,Static: 76,Dynamic: 81]
subprogram_specification is

[declarative_part]
begin

sequence_of_statements
end ;

[We have deleted the optional trailing simple name, due to AI-253.]

The elaboration of a subprogram body elaborates its subprogram specification.

The execution of a subprogram body is invoked as part of the execution of a program (see 10.1). For this
execution the declarative part of the body is elaborated, and the sequence of statements of the body is then
executed.

References: declaration 3.1, declarative part 3.9, elaboration 3.9, formal parameter 6.1, sequence of
statements 5.1, subprogram 6, subprogram specification 6.1

II-6.4 6.4 through 6.7: Removed

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 33
Language Reference Manual

Chapter II-7

PACKAGES: REMOVED

DRAFT 19 Oct 88 at 5:28 p.m.

34 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 35
Language Reference Manual

Chapter II-8

VISIBILITY RULES

The rules defining the scope of declarations and the rules defining which identifiers are visible at various
points in the text of the program are described in this chapter. The formulation of these rules uses the
notion of a declarative region.

References: declaration 3.1, declarative region 8.1, identifier 2.3, scope 8.2, visibility 8.3

II-8.1 Declarative Region

A declarative region is a portion of the program text. A single declarative region is formed by the text of
each of the following:

- A subprogram body

- Package STANDARD

In the first of the above cases, the declarative region is said to be associated with the corresponding
declaration. A declaration is said to occur immediately within a declarative region if this region is the
innermost region that encloses the declaration, not counting the declarative region (if any) associated with
the declaration itself.

If any rule defines a portion of text as the text that extends from some specific point of a declarative
region to the end of this region, then this portion is the corresponding subset of the declarative region.

Notes:

As defined in section 3.1, the term declaration includes basic declarations, implicit declarations, and those
declarations that are part of basic declarations, for example, parameter specifications. It follows from the
definition of a declarative region that a parameter specification occurs immediately within the region
associated with the enclosing subprogram body.

The package STANDARD forms a declarative region which encloses all library units (see sections 8.6
and 10.1).

Declarative regions can be nested within other declarative regions.

References: basic declaration 3.1, declaration 3.1, library unit 10.1, parameter specification 6.1, standard
package 8.6, subprogram body 6.3

DRAFT 19 Oct 88 at 5:28 p.m.

36 nanoAVA

II-8.2 Scope of Declarations

For each form of declaration, the language rules define a certain portion of the program text called the
scope of the declaration. The scope of a declaration is also called the scope of any entity declared by the
declaration. Furthermore, if the declaration associates some notation with a declared entity, this portion of
the text is also called the scope of this notation (either an identifier, an operator symbol, or the notation for
a basic operation). Within the scope of an entity, and only there, there are places where it is legal to use
the associated notation in order to refer to the declared entity. These places are defined by the rules of
visibility and overloading.

The scope of a declaration that occurs immediately within a declarative region extends from the beginning
of the declaration to the end of the declarative region; this part of the scope of a declaration is called the
immediate scope.

Note:

The above scope rules apply to all forms of declaration defined by section 3.1; in particular, they apply
also to implicit declarations.

References: basic operation 3.3.3, declaration 3.1, declarative region 8.1, extends 8.1, identifier 2.3,
implicit declaration 3.1, occur immediately within 8.1, overloading 8.7, visibility 8.3

II-8.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility rules
and also, in the case of overloaded declarations, by the overloading rules. The identifiers considered in
this chapter include any identifier other than a reserved word. The places considered in this chapter are
those where a lexical element (such as an identifier) occurs. The overloaded declarations considered in
this chapter are those for operations (including basic operations).

For each identifier and at each place in the text, the visibility rules determine a set of declarations (with
this identifier) that define possible meanings of an occurrence of the identifier. A declaration is said to be
visible at a given place in the text when, according to the visibility rules, the declaration defines a possible
meaning of this occurrence. Two cases arise.

- The visibility rules determine at most one possible meaning. In such
a case the visibility rules are sufficient to determine the
declaration defining the meaning of the occurrence of the identifier,
or in the absence of such a declaration, to determine that the
occurrence is not legal at the given point.

- The visibility rules determine more than one possible meaning. In
such a case the occurrence of the identifier is legal at this point if
and only if exactly one visible declaration is acceptable for the
overloading rules (see section 8.7 for overload resolution).

A declaration is only visible within a certain part of its scope; this part starts at the end of the declaration,
except for a subprogram body, where it starts at the reserved word is appearing in the body. (This rule
applies, in particular, for implicit declarations.)

A declaration is visible within a certain part of its immediate scope; this part extends to the end of the
immediate scope of the declaration, but excludes places where the declaration is hidden as explained
below.

A declaration is said to be hidden within (part of) an inner declarative region if the inner region contains a
homograph of this declaration; the outer declaration is then hidden within the immediate scope of the

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 37
Language Reference Manual

inner homograph. Each of two declarations is said to be a homograph of the other if both declarations
have the same identifier.

Two declarations that occur immediately within the same declarative region must not be homographs.

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the
declared entity (if any) are also said to be visible from that point. Visibility is likewise defined for
operator symbols. An operator is visible if and only if the corresponding operator declaration is visible.
The notation associated with a basic operation is visible within the entire scope of this operation.

Note on immediate scope, hiding, and visibility:

The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier within its
own declaration is illegal (except for a subprogram body). The identifier hides outer homographs within
its immediate scope, that is, from the start of the declaration; on the other hand, the identifier is visible
only after the end of the declaration. For this reason, all but the last of the following declarations are
illegal:

K : INTEGER := K * K; -- illegal
T : T; -- illegal
procedure R(R : INTEGER); -- an inner declaration is legal

References: basic operation 3.3.3, declaration 3.1, declarative region 8.1, extends 8.1, identifier 2.3,
immediate scope 8.2, lexical element 2.2, occur immediately within 8.1, reserved word 2.9, scope 8.2,
subprogram 6, subprogram specification 6.1

II-8.4 Use Clauses: Removed

II-8.5 Renaming Declarations: Removed

II-8.6 The Package Standard

The predefined types BOOLEAN and INTEGER are implicitly declared in a declarative region called
package STANDARD. The package STANDARD is described in Annex C.

The package STANDARD forms a declarative region which encloses every library unit and consequently
the main program.

References: declaration 3.1, declarative region 8.1, implicit declaration 3.1, library unit 10.1, main
program 10.1, occur immediately within 8.1, type 3.3

II-8.7 Overload Resolution

Overloading is defined for operators and also for the basic operation assignment. [We do not know what
‘‘assignment’’ and ‘‘assignment operations’’ are. Note inconsistency, within ARM, between 3.3.3(3) and
here.]

For overloaded entities, overload resolution determines the actual meaning that an occurrence of an
operator [symbol] or [the notation for] some basic operation, whenever the visibility rules have
determined that more than one meaning is acceptable at the place of this occurrence.

At such a place all visible declarations are considered. The occurrence is only legal if there is exactly one

DRAFT 19 Oct 88 at 5:28 p.m.

38 nanoAVA

interpretation of each constituent.

When considering possible interpretations, the only rules considered are the syntax rules, the scope and
visibility rules, and the rules of the form described below.

(a) Any rule that requires a name or expression to have a certain type, or
to have the same type as another name or expression.

References: assignment 5.2, basic operation 3.3.3, class of type 3.3, declaration 3.1, expression 4.4, formal
part 6.1, identifier 2.3, legal 1.6, name 4.1, operation 3.3.3, operator 4.5, statement 5, subprogram 6,
visibility 8.3

Rules of the form (a): assignment 5.2

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 39
Language Reference Manual

Chapter II-9

TASKS: REMOVED

DRAFT 19 Oct 88 at 5:28 p.m.

40 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 41
Language Reference Manual

Chapter II-10

PROGRAM STRUCTURE AND COMPILATION ISSUES

The overall structure of programs is described in this chapter. A program is a compilation unit submitted
to a compiler in a compilation. A compilation unit specifies the compilation of a construct which is a
subprogram body.

References: compilation 10.1, compilation unit 10.1, subprogram body 6.3

II-10.1 Compilation Units - Library Units

The text of a program is submitted to the compiler in a compilation. Each compilation is a compilation
unit.

compilation ::= compilation_unit [Deno: 49,Syntax: 70,Static: 75,Dynamic: 81]

compilation_unit ::= library_unit [Deno: 49,Syntax: 70,Static: 75,Dynamic: 81]

library_unit ::= subprogram_body

For the visibility rules, each library unit acts as a declaration that occurs immediately within the package
STANDARD.

A subprogram that is a library unit can be used as a main program in the usual sense. The means by
which this execution is initiated are not prescribed by the language definition. An implementation may
impose certain requirements on the parameters of a main program (these requirements must be stated in
Appendix F). In any case, every implementation is required to allow, at least, main programs that are
parameterless procedures, and every main program must be a subprogram that is a library unit.

Execution of a main program may be abandoned due to an implementation’s limitations.

The name of the main program may not be any of the following: INTEGER, BOOLEAN, FLOAT,
CHARACTER, ASCII, NATURAL, POSITIVE, STRING, DURATION, CONSTRAINT_ERROR,
NUMERIC_ERROR, PROGRAM_ERROR, STORAGE_ERROR, TASKING_ERROR, TRUE, or
FALSE. An implementation may further restrict the name of the program as recorded in Annex F.

References: allow 1.6, declaration 3.1, library unit 10.5, occur immediately within 8.1, parameter of a
subprogram 6.2, procedure 6.1, program unit 6, standard package 8.6, subprogram 6, subprogram body
6.3, visibility 8.3

DRAFT 19 Oct 88 at 5:28 p.m.

42 nanoAVA

II-10.2 Subunits of Compilation Units: Removed

II-10.3 Order of Compilation: Removed

II-10.4 The Program Library: Removed

II-10.5 Elaboration of Library Units

Before the execution of a main program, its subprogram body is elaborated.

References: elaboration 3.1, main program 10.1, subprogram body 6.3

II-10.6 Program Optimization: Removed

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 43
Language Reference Manual

Appendix A

Predefined Language Attributes: Removed

DRAFT 19 Oct 88 at 5:28 p.m.

44 nanoAVA

Appendix B

Predefined Language Pragmas: Removed

19 Oct 88 at 5:28 p.m. ***DRAFT***

Appendix C

Predefined Language Environment

Package STANDARD contains implicit declarations of the predefined entities of n-AVA. These declared
entities are:

- type BOOLEAN

- the boolean relational operators "=", "/=", "<",
"<=", ">" and ">=" are defined.

- the basic operation inherent in assignment of booleans

- type INTEGER

- the integer relational operators "=", "/=", "<",
"<=", ">" and ">=" are defined.

- the basic operation inherent in assignment of integers

References: assignment 5.2, basic operation 3.3.3, types 3.3

46 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 47
The Denotational Semantics of NanoAVA (Version 1)

PART III: THE DENOTATIONAL SEMANTICS

OF NANOAVA (VERSION 1)

Mark Saaltink

DRAFT 19 Oct 88 at 5:28 p.m.

48 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 49
The Denotational Semantics of NanoAVA (Version 1)

Chapter III-1

THE DENOTATIONAL DEFINITION

III-1.1 Notations

Π(S) powerset of S
f[x ← v] λ y . if y=x then v else f(y)
〈x,y〉 ordered pair

*S the set of sequences composed of elements of set S
Λ empty sequence
x; y prefix element x to sequence y
x • y append sequence y to sequence x

* *If i is defined as a variable ranging over set I, then i is implicitly defined as a variable ranging over I .

III-1.2 Abstract Syntax

c ∈ Cmp compilations [ARM: 41,Syntax: 70,Static: 75,Dynamic: 81]
p ∈ Sub subprogram bodies [ARM: 32,Syntax: 70,Static: 76,Dynamic: 81]
bdi ∈ BDI basic declarative items [ARM: 23,Syntax: 68,Static: 76,Dynamic: 81]
ps ∈ Ps parameter specifications [ARM: 31,Syntax: 70,Static: 76]
s ∈ Stm statements [ARM: 29,Syntax: 69,Static: 77,Dynamic: 81]
tm ∈ Tm type marks [ARM: 21,Syntax: 68,Static: 76,Dynamic: 81]
e ∈ Exp expressions [ARM: 25,Syntax: 69,Static: 78,Dynamic: 81]
O ∈ Opr relational operators [ARM: 26,Syntax: 69,Static: 78,Dynamic: 81]
i ∈ Ide identifiers

c ::= p
* * *p ::= proc i ps bdi s

*ps ::= inout i tm
* *bdi ::= var i tm e const i tm e

s ::= null i := e
tm ::= i
e ::= i i O i
O ::= = /= < <= > >=

DRAFT 19 Oct 88 at 5:28 p.m.

50 nanoAVA

III-1.3 Static Semantics

III-1.3.1 Domains

di ∈ Din declaration info
ρ ∈ Env static environments

di ::= type var(tm) const(tm) proc
Env = Π(Ide) x (Ide ⇒ Π(Din))

The static environment used in the analysis of some part of a program is intended to represent the
declarations visible in that part of the program. In this formalism, we record some information derived
from the visible declarations rather than the declarations themselves. We allow for a set of declarations
that might define a meaning of an identifier (although this set can contain at most one member in n-AVA).
It is also necessary to keep track of the names declared immediately within the current declarative region
in order to be able to check compliance with rule [ARM 8.3(17)]. Therefore, the environment has two
parts: a set of locally declared names, and a mapping from identifiers to the set of (declaration info
associated with) visible declarations of this identifier.

The environment is not used to associate meanings with ‘‘notations associated with basic operations’’; it
should be in order to more closely correspond to the rules as they are expressed in the ARM.

Five basic functions act on environments:

locals: Env ⇒ Π(Ide)
lookup: Ide x Env ⇒ Π(Din)
start_declarative_region: Env ⇒ Env
hide_homographs: Ide x Env ⇒ Env
add_decl: Ide x Din x Env ⇒ Env

Functions ‘‘locals’’ and ‘‘lookup’’ merely extract the appropriate component of the environment.
Function ‘‘start_declarative_region’’ modifies the environment when a new declarative region is entered.
Function ‘‘hide_homographs’’ removes homographs of a particular identifier (when the scope of a new
declaration is entered), and function ‘‘add_decl’’ adds the declaration info associated with a declaration
(when the declaration becomes visible).

locals(〈l,m〉) = l
lookup(i, 〈l,m〉) = m(i)
start_declarative_region(〈l,m〉)= 〈φ,m〉
hide_homographs(i, 〈l,m〉) = 〈l, m [i ← φ]〉
add_decl(i, di, 〈l,m〉) = 〈l ∪ { i } , m [i ← m(i)∪ { di }]〉

Relating the formal static semantics with the narrative rules of scoping and visibility is not trivial. Two
ideas are central: (1) the basic functions on the environment modify it in appropriate ways (reflecting the
correct locals and visible declarations after each event mentioned informally above); and (2) these
functions are applied appropriately in the static semantics (so that an appropriate environment in used in
the analysis of each part of a program).

We also use two derived syntactic domains:

nps ∈ nPs normalized parameter specifications
nbdi ∈ nBDI normalized basic declarative items

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 51
The Denotational Semantics of NanoAVA (Version 1)

nps ::= inout i tm
nbdi ::= var i tm e const i tm e

Various normalization functions act on these domains:

* *N : Ps ⇒ nPs*ps
*N : Ps ⇒ nPsps

* *N : BDI ⇒ nBDI*bdi
*N : BDI ⇒ nBDIbdi

These new domains and normalization functions are used to reflect the rules [ARM 3.2(10)] on multiple
object declarations and [ARM 6.1(4)] on multiple parameter specifications.

N (Λ) = Λ*ps
* *N (ps; ps) = N (ps) • N (ps)* *ps ps ps

N (inout Λ tm) = Λps
* *N (inout (i;i) tm) = ({inout i tm}); N (inout i tm)ps ps

N (Λ) = Λ*bdi
* *N (bdi; bdi) = N (bdi) • N (bdi)* *bdi bdi bdi

N (var Λ tm e) = Λbdi
* *N (var (i;i) tm e) = (var i tm e); N (var i tm e)bdi bdi

N (const Λ tm e) = Λbdi
* *N (const (i;i) tm e) = (const i tm e); N (const i tm e)bdi bdi

III-1.3.2 Static semantics functions

The following functions are used in well-formedness testing:

W : Cmp ⇒ Bool [ARM: 41,Syntax: 70,Static: 75,Dynamic: 81]c
W : Sub x Env ⇒ Bool [ARM: 32,Syntax: 70,Static: 76,Dynamic: 81]sub

*W : Ps x Env ⇒ Bool [ARM: 31,Syntax: 70,Static: 76]*ps
*W : nPs x Env ⇒ Bool*nps

W : nPs x Env ⇒ Boolnps
*W : BDI x Env ⇒ Bool [ARM: 23,Syntax: 68,Static: 76,Dynamic: 81]*bdi

*W : nBDI x Env ⇒ Bool*nbdi
W : nBDI x Env ⇒ Boolnbdi

*W : Stm x Env ⇒ Bool [ARM: 29,Syntax: 69,Static: 77,Dynamic: 81]*s
W : Stm x Env ⇒ Bools
W : Tm x Env ⇒ Bool [ARM: 21,Syntax: 68,Static: 76,Dynamic: 81]tm
W : Exp x Tm x Env ⇒ Bool [ARM: 25,Syntax: 69,Static: 78,Dynamic: 81]e

The only unusual functions here are W and W . W (c) is true iff c is a well-formed compilation unit.c e c
W (e, t, ρ) is true iff e is a well-formed expression of type t with respect to environment ρ. Each of thee
other functions is true iff its first argument is well-formed with respect to the second argument (the
environment).

The following functions are used in expressing modifications of the environment:

DRAFT 19 Oct 88 at 5:28 p.m.

52 nanoAVA

X : Sub x Env ⇒ Envsub
*X : Ps x Env ⇒ Env*ps

*X : nPs x Env ⇒ Env*nps
X : nPs x Env ⇒ Envnps

*X : BDI x Env ⇒ Env*bdi
*X : nBDI x Env ⇒ Env*nbdi

X : nBDI x Env ⇒ Envnbdi

III-1.3.3 Static Semantic Definitions

W (c) = W (c, 〈l,m〉)c sub
where l = { INTEGER, BOOLEAN, FLOAT, ... }
and m = (λ i ∈ Ide . φ) [BOOLEAN ← { type } , INTEGER ← { type }]

* * *W (proc i ps bdi s , ρ) =sub
let ρ’ = hide_homographs(i, start_declarative_region(ρ))

* * *and ρ’’ = X (proc i ps bdi s , ρ’) insub
i ∉ locals(ρ)

*∧ W (ps , ρ’)*ps
* *∧ W (bdi , X (ps , ρ’’))* *bdi ps

* * *∧ W (s , X (bdi , X (ps , ρ’’)))* * *s bdi ps

* *W (ps , ρ) = W (N (ps), ρ)* * *ps nps ps

W (Λ, ρ) = true*nps
* *W (nps; nps , ρ) = W (nps, ρ) ∧W (nps , X (nps, ρ))* *nps nps nps nps

W (inout i tm, ρ) = i ∉ locals(ρ) ∧ W (tm, hide_homographs(i, ρ))nps tm

* *W (bdi , ρ) = W (N (bdi), ρ)* * *bdi nbdi bdi

W (Λ, ρ) = true*nbdi

* *W (nbdi; nbdi , ρ) = W (nbdi, ρ) ∧W (nbdi , X (nbdi, ρ))* *nbdi bdi nbdi nbdi
W (var i tm e, ρ) =nbdi
W (const i tm e, ρ) =nbdi

i ∉ locals(ρ)
∧ W (tm, hide_homographs(i, ρ))tm
∧ W (e, tm, hide_homographs(i, ρ))e

W (Λ, ρ) = true*s
* *W (s; s , ρ) = W (s, ρ) ∧ W (s , ρ)* *s s s

W (null, ρ) = true [ARM: 29,Syntax: 69,Static: 77,Dynamic: 81]s
W (i := e, ρ) = ∃ t ∈ Tm . lookup(i, ρ) = { var(t) } ∧ W (e, t, ρ)s e

[ARM: 29,Syntax: 69,Static: 77,Dynamic: 81]

W (i, ρ) = (lookup(i, ρ) = { type })tm

W (i, tm, ρ) = lookup(i, ρ) ∈ { {var(tm) } , { const(tm) } }e
W (i O i’, tm, ρ) = (tm = BOOLEAN) ∧ ∃ tm’ . W (i, tm’, ρ) ∧ W (i’, tm’, ρ)e e e

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 53
The Denotational Semantics of NanoAVA (Version 1)

* * *X (proc i ps bdi s , ρ) = add_decl(i, proc, ρ)sub

* *X (ps , ρ) = X (N (ps), ρ)* * *ps nps ps

X (Λ, ρ) = ρ*nps
* *X (nps; nps , ρ) = X (nsp , X (nps, ρ))* *nps nps nps

X (inout i tm, ρ) = add_decl(i, var(tm), hide_homographs(i, ρ))nps

* *X (bdi , ρ) = X (N (bdi), ρ)* * *bdi nbdi bdi

X (Λ, ρ) = ρ*nbdi
* *X (nbdi; nbdi , ρ) = X (nbdi , X (nbdi, ρ))* *nbdi nbdi nbdi

X (const i tm e, ρ) = add_decl(i, const(tm), hide_homographs(i, ρ))nbdi
X (var i tm e, ρ) = add_decl(i, var(tm), hide_homographs(i, ρ))nbdi

III-1.4 Dynamic Semantics

The dynamic semantics of n-AVA are very simple. The significant domain is the state, mapping
identifiers to their values. The state collects together the current values of all objects, and is changed to
reflect changes in the values of any objects. For nanoAVA, we can take objects to be the same as
identifiers.

The nanoAVA reference manual says little about how a compilation unit (subprogram) is invoked. The
formal definition captures the effects described in [ARM 6.3]. However, we have no notion of ‘‘calling’’
the main procedure; rather, we just execute the subprogram body. The initial state for this execution is
presumed to be established in some implementation-dependent way (and so is not specified by the formal
definition).

III-1.4.1 Domains

v ∈ Val values
σ ∈ Σ states

Val = Bool ∪ Int
Σ = Ide ⇒ Val

III-1.4.2 Dynamic Functions (signatures)

The following functions express the effect of elaborating, evaluating, or executing the various constructs:

E : Cmp x Σ ⇒ Σc
*E : BDI x Σ ⇒ Σ*bdi

*E : nBDI x Σ ⇒ Σ*nbdi
E : nBDI x Σ ⇒ Σbdi

*E : Stm x Σ ⇒ Σ*s
E : Stm x Σ ⇒ Σs
E : Exp x Σ ⇒ Vale
E : Opr x Val x Val ⇒ Valo

DRAFT 19 Oct 88 at 5:28 p.m.

54 nanoAVA

III-1.4.3 Dynamic Semantics Definitions

** * * *E (proc i ps bdi s , σ) =E (s , E (bdi , σ))* *c s bdi

* *E (bdi , σ) = E (N (bdi), σ)* * *bdi nbdi bdi

E (Λ, σ) = σ*nbdi
* *E (nbdi; nbdi , σ) = E (nbdi , E (nbdi, σ))* *nbdi nbdi nbdi

E (var i tm e, σ) =nbdi
E (const i tm e, σ) = σ [i ← E (e, σ)]nbdi e

E (Λ, σ) = σ*s
* *E (s; s , σ) = E (s , E (s, σ))* *s s s

E (null, σ) = σs
E (i := e, σ) = σ [i ← E (e, σ)]s e

E (i, tm, σ) = σ(i)e
E (i O i’, tm, σ) =E (O, E (i, σ), E (i’, σ))e o e e

E (=, v, v’) = if v = v’ then true else falseo
E (/=, v, v’) = if v ≠ v’ then true else falseo
E (<, v, v’) = if v < v’ in Int ∨ (v = false ∧ v’ = true) then true else falseo
E (<=, v, v’) = if v <= v’ in Int ∨ (v = false ∨ v’ = true) then true else falseo
E (>, v, v’) = if v > v’ in Int ∨ (v = true ∧ v’ = false) then true else falseo
E (>=, v, v’) = if v >= v’ in Int ∨ (v = true ∨ v’ = false) then true else falseo

III-1.5 Inadequacies

Several aspects of this definition are disturbing, or will not work in a larger subset of Ada:

• There is no dynamic environment. As soon as we have subprograms and calls, we will need
one. To conform to the form of the ARM, we should perhaps use a dynamic environment to
record which declarations have been elaborated yet (although this doesn’t appear to matter
in n-AVA).

• Should there be a domain of ‘‘interpretations’’? (This would correspond to Mike’s second
prefix form.) Interpretations would let us reflect the overloading rules, and would allow us
to pass extra information to the dynamic semantics. (For example, we could disambiguate
the relational operators.)

• Some of the environment manipulations (such as hiding homographs) appear in both the W
functions and the X functions. It would be nice to avoid this duplication.

• In the ARM, parameter specifications and basic declarative items are lumped under
declarations, with general rules applying to both. Should that be reflected in the formalism?

• There is a lack of parallelism in the definitions of X on one hand, and X and X onsub nps nbdi
the other. (This may relate to the preceding item.)

• Should the static environment contain info for ‘‘notations associated with basic operations’’
[ARM 8.13 (18)]?

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 55
The Denotational Semantics of NanoAVA (Version 1)

Chapter III-2

THE BOYER MOORE DEFINITION

;;; -*- Mode: LISP; Syntax: Zetalisp; Package: USER; Base: 10 -*-

(boot-strap)

;;; some basic functions
;;;

(defn append (x y)
(if (listp x)

(cons (car x) (append (cdr x) y))
y))

(defn a-lookup (key alist not-found)
(if (listp alist)

(if (and (listp (car alist))
(equal key (caar alist)))

(cdar alist)
(a-lookup key (cdr alist) not-found))

not-found))

;;; finite functions
;;;
;;; we have functions that are constant except on a finite subdomain
;;; represented by (constant-value . exception-alist)

(defn constant-function (val)
(cons val nil))

(defn apply-function (fn x)
(a-lookup x (cdr fn) (car fn)))

(defn update-function (fn x val)
(cons (car fn)

(cons (cons x val) (cdr fn))))

(prove-lemma apply-constant-function (rewrite)
(equal (apply-function (constant-function c) x)

c))

(prove-lemma apply-update-function (rewrite)
(equal (apply-function (update-function fn x v) y)

(if (equal x y)
v
(apply-function fn y))))

(disable constant-function)
(disable apply-function)
(disable update-function)

;;; sets

DRAFT 19 Oct 88 at 5:28 p.m.

56 nanoAVA

;;;

(defn set-p (x)
(if (listp x)

(and (not (member (car x) (cdr x)))
(set-p (cdr x)))

(equal x nil)))

(defn set-size (x)
(if (listp x)

(add1 (set-size (cdr x)))
0))

(defn null-set () nil)

(defn unit-set (x) (cons x nil))

(defn unit-set-p (x)
(and (listp x)

(equal (cdr x) nil)))

(defn unit-set-member (x)
(car x))

(defn set-intersection (x y)
(if (listp x)

(if (member (car x) y)
(cons (car x) (set-intersection (cdr x) y))
(set-intersection (cdr x) y))

nil))

(defn set-union (x y)
(if (listp x)

(if (member (car x) y)
(set-union (cdr x) y)
(cons (car x) (set-union (cdr x) y)))

y))

(prove-lemma member-null-set (rewrite)
(equal (member x (null-set))

(false)))

(prove-lemma member-unit-set (rewrite)
(equal (member x (unit-set y))

(equal x y)))

(prove-lemma member-set-intersection (rewrite)
(implies (and (set-p x) (set-p y))

(equal (member a (set-intersection x y))
(and (member a x)

(member a y)))))

(prove-lemma member-set-union (rewrite)
(implies (and (set-p x) (set-p y))

(equal (member a (set-union x y))
(or (member a x)

(member a y)))))

(prove-lemma unit-set-p-unit-set (rewrite)
(unit-set-p (unit-set x)))

(prove-lemma unit-set-p-characterization ()
(equal (unit-set-p x)

(equal x (unit-set (unit-set-member x)))))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 57
The Denotational Semantics of NanoAVA (Version 1)

III-2.1 Abstract syntax

;;; macros for declaring record-like structures
;;;
;;; (defrecord foo (bar baz ...)) expands to
;;; (defn mk-foo (bar baz ...) (list ’foo bar baz ...))
;;; (defn foo-p (x) (and (listp x) (equal (car x) ’foo)))
;;; (defn foo-bar (x) (car (cdr x)))
;;; (defn foo-baz (x) (car (cdr (cdr x))))
;;; ...

(defmacro defrecord (name fields)
‘(progn

(defn ,(intern (string-upcase (string-append "mk-" (string name)))) ,fields
(list ’,name ,@fields))

(defn ,(intern (string-upcase (string-append (string name) "-p"))) (x)
(and (listp x) (equal (car x) ’,name)))

,@(declare-fields (string name) fields ’(cdr x))))

(defun declare-fields (name fields acc)
(if (null fields)

nil
(cons ‘(defn ,(intern (string-upcase (string-append name "-" (string (car fields)))))

(x) (car ,acc))
(declare-fields name (cdr fields) (list ’cdr acc)))))

;;; abstract syntax

(defrecord opr-eq ())
(defrecord opr-ne ())
(defrecord opr-lt ())
(defrecord opr-le ())
(defrecord opr-gt ())
(defrecord opr-ge ())

(defrecord exp-ide (ide))
(defrecord exp-rel (lhs opr rhs))

(defrecord stm-null ())
(defrecord stm-asg (var exp))

(defrecord ps (ide-list tm))

(defrecord bdi-const (ide-list tm exp))
(defrecord bdi-var (ide-list tm exp))

(defrecord sub (ide ps-list bdi-list stm-list))

III-2.2 Normalization

(defrecord nps (ide tm))

(defrecord nbdi-const (ide tm exp))
(defrecord nbdi-var (ide tm exp))

(defn n-ps-sub (i-list tm)
(if (listp i-list)

(cons (mk-nps (car i-list) tm)
(n-ps-sub (cdr i-list) tm))

nil))

(defn n-ps (x) (n-ps-sub (ps-ide-list x) (ps-tm x)))

(defn n-ps-list (x)

DRAFT 19 Oct 88 at 5:28 p.m.

58 nanoAVA

(if (listp x)
(append (n-ps (car x)) (n-ps-list (cdr x)))
nil))

(prove-lemma n-ps-alt-def () ; this shows equivalence to the defn in the DS
(equal (n-ps ps)

(if (listp (ps-ide-list ps))
(cons (mk-nps (car (ps-ide-list ps)) (ps-tm ps))

(n-ps (mk-ps (cdr (ps-ide-list ps)) (ps-tm ps))))
nil)))

(defn n-bdi-const (i-list tm e)
(if (listp i-list)

(cons (mk-nbdi-const (car i-list) tm e)
(n-bdi-const (cdr i-list) tm e))

nil))

(defn n-bdi-var (i-list tm e)
(if (listp i-list)

(cons (mk-nbdi-var (car i-list) tm e)
(n-bdi-var (cdr i-list) tm e))

nil))

(defn n-bdi (x)
(if (bdi-const-p x)

(n-bdi-const (bdi-const-ide-list x) (bdi-const-tm x) (bdi-const-exp x))
(n-bdi-var (bdi-var-ide-list x) (bdi-var-tm x) (bdi-var-exp x))))

(defn n-bdi-list (x)
(if (listp x)

(append (n-bdi (car x)) (n-bdi-list (cdr x)))
nil))

III-2.3 Static Domains

;;; declaration info is represented using records

(defrecord di-type ())
(defrecord di-proc ())
(defrecord di-const (tm))
(defrecord di-var (tm))

;;; envs are pairs (set of local, mapping from ide to set of decl info)
;;; using the representations defined above

(defn env-locals (env) (car env))

(defn env-lookup (i env) (apply-function (cdr env) i))

(defn start-dr (env) (cons (null-set)
(cdr env)))

(defn hide-homog (i env) (cons (car env)
(update-function (cdr env) i (null-set))))

(defn add-decl (i di env) (cons (set-union (unit-set i) (env-locals env))
(update-function (cdr env)

i
(set-union (unit-set di)

(env-lookup i env)))))
;; basic properties

(prove-lemma env-locals-start-dr ()
(equal (env-locals (start-dr env))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 59
The Denotational Semantics of NanoAVA (Version 1)

(null-set)))

(prove-lemma env-lookup-start-dr ()
(equal (env-lookup i (start-dr env))

(env-lookup i env)))

(prove-lemma env-locals-hide-homog ()
(equal (env-locals (hide-homog i env))

(env-locals env)))

(prove-lemma env-lookup-hide-homog ()
(equal (env-lookup i (hide-homog j env))

(if (equal i j)
(null-set)
(env-lookup i env))))

(prove-lemma env-locals-add-decl ()
(equal (env-locals (add-decl i di env))

(set-union (unit-set i) (env-locals env))))

(prove-lemma env-lookup-add-decl ()
(equal (env-lookup i (add-decl j di env))

(if (equal i j)
(set-union (unit-set di) (env-lookup i env))
(env-lookup i env))))

III-2.4 Well-formedness predicates

;;; X (extension) function

(defn x-nbdi (nbdi env)
(if (nbdi-const-p nbdi)

(add-decl (nbdi-const-ide nbdi)
(mk-di-const (nbdi-const-tm nbdi))
(hide-homog (nbdi-const-ide nbdi) env))

(add-decl (nbdi-var-ide nbdi)
(mk-di-var (nbdi-var-tm nbdi))
(hide-homog (nbdi-var-ide nbdi) env))))

(defn x-nbdi-list (nbdi-list env)
(if (listp nbdi-list)

(x-nbdi-list (cdr nbdi-list) (x-nbdi (car nbdi-list) env))
env))

(defn x-bdi-list (bdi-list env)
(x-nbdi-list (n-bdi-list bdi-list) env))

(defn x-nps (nps env)
(add-decl (nps-ide nps)

(mk-di-var (nps-tm nps))
(hide-homog (nps-ide nps) env)))

(defn x-nps-list (nps-list env)
(if (listp nps-list)

(x-nps-list (cdr nps-list) (x-nps (car nps-list) env))
env))

(defn x-ps-list (ps-list env)
(x-nps-list (n-ps-list ps-list) env))

(defn x-sub (sub env)
(add-decl (sub-ide sub)

(mk-di-proc)
env))

DRAFT 19 Oct 88 at 5:28 p.m.

60 nanoAVA

;;; W (well-formedness) functions
;;;
;;; W-exp has been modified; rather than taking a type-mark and returning a boolean,
;;; it returns either nil or (cons ’type tm)
;;; so that We(e, tm, env) is equivalent to (equal (w-exp e env) (cons ’type tm))

(defn w-exp (e env)
(if (exp-rel-p e)

(if (and (w-exp (exp-rel-lhs e) env)
(equal (w-exp (exp-rel-lhs e) env)

(w-exp (exp-rel-rhs e) env)))
(cons ’type ’boolean)
nil)

(if (and (unit-set-p (env-lookup (exp-ide-ide e) env))
(or (di-const-p (unit-set-member (env-lookup (exp-ide-ide e) env)))

(di-var-p (unit-set-member (env-lookup (exp-ide-ide e) env)))))
(cons ’type

(if (di-const-p (unit-set-member (env-lookup (exp-ide-ide e) env)))
(di-const-tm (unit-set-member (env-lookup (exp-ide-ide e) env)))
(di-var-tm (unit-set-member (env-lookup (exp-ide-ide e) env)))))

nil)))

(defn w-tm (tm env)
(equal (env-lookup tm env)

(unit-set (mk-di-type))))

(defn w-s (s env)
(or (stm-null-p s)

(and (stm-asg-p s)
(unit-set-p (env-lookup (stm-asg-var s) env))
(di-var-p (unit-set-member (env-lookup (stm-asg-var s) env)))
(equal (w-exp (stm-asg-exp s) env)

(cons ’type
(di-var-tm (unit-set-member (env-lookup (stm-asg-var s) env))))))))

(defn w-s-list (s-list env)
(if (listp s-list)

(and (w-s (car s-list) env)
(w-s-list (cdr s-list) env))

(equal s-list nil)))

(defn w-nbdi (x env)
(if (nbdi-const-p x)

(and (not (member (nbdi-const-ide x) (env-locals env)))
(w-tm (nbdi-const-tm x) (hide-homog (nbdi-const-ide x) env))
(equal (w-exp (nbdi-const-exp x) (hide-homog (nbdi-const-ide x) env))

(cons ’type (nbdi-const-tm x))))
(and (not (member (nbdi-var-ide x) (env-locals env)))

(w-tm (nbdi-var-tm x) (hide-homog (nbdi-var-ide x) env))
(equal (w-exp (nbdi-var-exp x) (hide-homog (nbdi-var-ide x) env))

(cons ’type (nbdi-var-tm x))))))

(defn w-nbdi-list (nbdi-list env)
(if (listp nbdi-list)

(and (w-nbdi (car nbdi-list) env)
(w-nbdi-list (cdr nbdi-list) (x-nbdi (car nbdi-list) env)))

(equal nbdi-list nil)))

(defn w-bdi-list (bdi-list env) (w-nbdi-list (n-bdi-list bdi-list) env))

(defn w-nps (nps env)
(and (not (member (nps-ide nps) (env-locals env)))

(w-tm (nps-tm nps) (hide-homog (nps-ide nps) env))))

(defn w-nps-list (nps-list env)
(if (listp nps-list)

(and (w-nps (car nps-list) env)

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 61
The Denotational Semantics of NanoAVA (Version 1)

(w-nps-list (cdr nps-list) (x-nps (car nps-list) env)))
(equal nps-list nil)))

(defn w-ps-list (ps-list env) (w-nps-list (n-ps-list ps-list) env))

(defn w-sub (x env)
(and (not (member (sub-ide x) (env-locals env)))

(w-ps-list (sub-ps-list x)
(hide-homog (sub-ide x) (start-dr env)))

(w-bdi-list (sub-bdi-list x)
(x-ps-list (sub-ps-list x)

(hide-homog (sub-ide x) (start-dr env))))
(w-s-list (sub-stm-list x)

(x-bdi-list (sub-bdi-list x)
(x-ps-list (sub-ps-list x)

(hide-homog (sub-ide x) (start-dr env)))))))

(defn w-c (c)
(w-sub c

(add-decl ’boolean (mk-di-type)
(add-decl ’integer (mk-di-type)

(cons ’(float character ascii natural positive string duration
constraint-error numeric-error program-error
storage-error tasking-error true false)

(constant-function (null-set)))))))

III-2.5 Test Cases for the Static Semantics

;;; test cases for the static semantics

(prove ’(w-c (mk-sub ’swap
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp))))))

(prove ’(w-c (mk-sub ’swap-2
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(boolean) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’boolean))))))

(prove ’(not (w-c (mk-sub ’swap
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(boolean)

’boolean ; should fail
(mk-exp-rel (mk-exp-ide’x)

(mk-opr-ne)
(mk-exp-ide ’y))))

(list (mk-stm-asg ’x (mk-exp-ide ’y))
(mk-stm-asg ’y (mk-exp-ide ’y)))))))

(prove ’(not (w-c (mk-sub ’integer ; should fail
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp)))))))

(prove ’(not (w-c (mk-sub ’swap
(list (mk-ps ’(x y) ’float)) ; should fail
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp)))))))
(prove ’(not (w-c (mk-sub ’swap

(list (mk-ps ’(x y) ’integer))

DRAFT 19 Oct 88 at 5:28 p.m.

62 nanoAVA

(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’temp))) ; should fail
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp)))))))

(prove ’(w-c (mk-sub ’swap
(list (mk-ps ’(swap y) ’integer))
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’swap)))
(list (mk-stm-asg ’swap (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp))))))

(prove ’(not (w-c (mk-sub ’swap
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’temp (mk-exp-ide ’y))))))) ; should fail

(prove ’(not (w-c (mk-sub ’swap
(list (mk-ps ’(x x) ’integer)) ; should fail
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’x (mk-exp-ide ’x))

(mk-stm-asg ’x (mk-exp-ide ’temp)))))))

(prove ’(not (w-c (mk-sub ’swap
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(y) ’integer (mk-exp-ide ’x))) ; should fail
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’y)))))))

(prove ’(not (w-c (mk-sub ’swap
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x))

(mk-bdi-var ’(temp) ’integer (mk-exp-ide ’y))) ; should fail
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp)))))))

(prove ’(w-c (mk-sub ’compare
(list (mk-ps ’(x y) ’integer)

(mk-ps ’(b) ’boolean))
(list (mk-bdi-const ’(temp)

’boolean
(mk-exp-rel (mk-exp-ide ’x)

(mk-opr-le)
(mk-exp-ide ’y)))

(mk-bdi-var ’(xx yy) ’boolean (mk-exp-ide ’temp)))
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’b (mk-exp-ide ’xx))
(mk-stm-null)
(mk-stm-asg ’b (mk-exp-ide ’yy))))))

III-2.6 Dynamic Semantics

;;;
;;; dynamic semantics
;;;

;;; states are represented by finite functions

(defn e-opr (opr v1 v2)
(if (opr-eq-p opr) (if (equal v1 v2) ’true ’false)
(if (opr-ne-p opr) (if (not (equal v1 v2)) ’true ’false)
(if (opr-lt-p opr) (if (or (and (equal v1 ’false) (equal v2 ’true))

(lessp v1 v2))
’true
’false)

(if (opr-le-p opr) (if (or (or (equal v1 ’false) (equal v2 ’true))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 63
The Denotational Semantics of NanoAVA (Version 1)

(equal v1 v2)
(lessp v1 v2))

’true
’false)

(if (opr-gt-p opr) (if (or (and (equal v1 ’true) (equal v2 ’false))
(lessp v2 v1))

’true
’false)

(if (opr-ge-p opr) (if (or (or (equal v1 ’true) (equal v2 ’false))
(equal v1 v2)
(lessp v1 v2))

’true
’false)

0)))))))

(defn e-e (x store)
(if (exp-rel-p x)

(e-opr (exp-rel-opr x)
(e-e (exp-rel-lhs x) store)
(e-e (exp-rel-rhs x) store))

(apply-function store (exp-ide-ide x))))

(defn e-s (x store)
(if (stm-null-p x)

store
(update-function store

(stm-asg-var x)
(e-e (stm-asg-exp x) store))))

(defn e-s-list (x store)
(if (listp x)

(e-s-list (cdr x)
(e-s (car x) store))

store))

(defn e-nbdi (x store)
(if (nbdi-const-p x)

(update-function store
(nbdi-const-ide x)
(e-e (nbdi-const-exp x) store))

(update-function store
(nbdi-var-ide x)
(e-e (nbdi-var-exp x) store))))

(defn e-nbdi-list (x store)
(if (listp x)

(e-nbdi-list (cdr x)
(e-nbdi (car x) store))

store))

(defn e-bdi-list (x store)
(e-nbdi-list (n-bdi-list x) store))

(defn e-c (x store)
(e-s-list (sub-stm-list x)

(e-bdi-list (sub-bdi-list x) store)))

DRAFT 19 Oct 88 at 5:28 p.m.

III-2.7 Test Cases for the Dynamic Semantics

;;; test cases for the dynamic semantics

(prove ’(equal
(apply-function

(e-c (mk-sub ’swap
(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp))))
store)

’x)
(apply-function store ’y)))

(prove ’(equal
(apply-function
(e-c (mk-sub ’swap

(list (mk-ps ’(x y) ’integer))
(list (mk-bdi-const ’(temp) ’integer (mk-exp-ide ’x)))
(list (mk-stm-asg ’x (mk-exp-ide ’y))

(mk-stm-asg ’y (mk-exp-ide ’temp))))
store)

’y)
(apply-function store ’x)))

(prove-lemma stm-cant-clobber-const (rewrite)
(implies (and (equal (env-lookup x env)

(unit-set (mk-di-const tm)))
(w-s s env))

(equal (apply-function (e-s s store) x)
(apply-function store x))))

(disable e-s)
(disable w-s)

(prove-lemma stm-list-cant-clobber-const (rewrite)
(implies (and (equal (env-lookup x env)

(unit-set (mk-di-const tm)))
(w-s-list s-list env))

(equal (apply-function (e-s-list s-list store) x)
(apply-function store x)))

((induct (e-s-list s-list store))
(use (stm-cant-clobber-const (s (car s-list))))))

nanoAVA 65
The Lisp Definition

PART IV: THE LISP DEFINITION

Michael K. Smith

DRAFT 19 Oct 88 at 5:28 p.m.

66 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 67
The Lisp Definition

Chapter IV-1

SYNTAX: THE GRAMMAR

The syntax of these grammar rules should be obvious except for the constructors, which follow the
symbol "==". (Note that as a typing convenience we have used "-" rather than "_" to separate the
component parts of non-terminal names.) A vertical bar separates alternative realizations of a non-
terminal.

The form following "==" is a Lisp form that describes how to compute a representation for the non-
terminal out of its subcomponents. The dollar-signed integers are variables such that $i is bound to the
representation of ith element of the right hand side of the production. An object declaration (see below)
has, according to its first rule, 6 components. Some of these are syntactic sugar of no interest to us

[ARM (3.2)]
object-declaration ::=

identifier-list : type-mark := expression ; == ‘(<VARIABLE-DECL> ,$1 ,$3 ,$5)
| identifier-list : CONSTANT type-mark := expression ;

== ‘(<CONSTANT-DECL> ,$1 ,$4 ,$6)

e.g. the colon, semi-colon, and assignment operator. We build a list with the following components: the
first element (normally the operator) indicates what sort of form we have, the second is an identifier list of
the objects to be declared, the third is the type of these objects, and the fourth is the initial value of the
objects. Thus,

a,b : integer := x;

would result in the form:

(<VARIABLE-DECL> (<ID-LIST> A B) (<TYPE-MARK> INTEGER) X)

We are using the Common Lisp [Steele 84] backquote notation extensively, since most of these
constructions are so simple. The backquoted form evaluates to a result that is identical to the original
form, but with all expressions preceded by a comma replaced by the result of evaluating them. The ",@"
prefix works similarly to the "," prefix within a backquote, except that the resulting list is spliced into
place. Suppose X = 1.

‘(TEST ,(LIST X) Z) => (TEST (1) Z)
‘(TEST ,@(LIST X) Z) => (TEST 1 Z)

The grammar depends on the lexical scanner to some extent, in that the scanner distinguishes reserved
words, identifiers, special symbols, and literals. In particular, it is important that while nAVA does not
use the reserved word task, it nonetheless prevents the user from using it as an identifier.

DRAFT 19 Oct 88 at 5:28 p.m.

68 nanoAVA

IV-1.1 Syntactic Rules

The form of these rules should be fairly clear. The form is:

[ARM (3.2)]
non-terminal ::= [Defined: 1, Static: 24, Dynamic 35]

pattern == (function $1 $3 $5)1 1
| pattern == (function $1 $2)2 2

...
| pattern == (function $1 $4 $6)n n

"[ARM (3.2)]" points to the location of the corresponding Ada construct in the Ada Language Reference
Manual. The cross reference we have discussed previously (see page 3). It indicates that the non-terminal
is defined informally on page 1 of the reference manual, its static semantics can be found on page 24, and
its dynamic semantics on page 35.

Each pattern after "::=" is one realization of the non-terminal. A pattern is a list of non-terminals,
terminals (in nanoAVA, just identifiers), reserved words and/or special-symbols. The "==" indicates the
constructor for a branch of the rule. This constructor takes as arguments the values produced (recursively)
for each element of the pattern (indicated by the positional variables $1, $2, etc.). Identifiers, reserved
words and special-symbols just return their value (as a symbol). We will use the term operator to refer to
the first element (CAR) of these lists and arguments to refer to the rest of the list (CDR).

[ARM (3.2)]
object-declaration ::=

identifier-list : type-mark := expression ;
== ‘(<VARIABLE-DECL> ,$1 ,$3 ,$5)

| identifier-list : CONSTANT type-mark := expression ;
== ‘(<CONSTANT-DECL> ,$1 ,$4 ,$6)

[ARM (3.2)]
identifier-list ::= [Defined: 20]

identifier == ‘(<ID-LIST> ,$1)
| identifier , identifier-list == ‘(<ID-LIST> ,$1 ,@(CDR $3))

[ARM (3.3.2)]
type-mark ::= [Defined: 21,Static: 76]

name ==‘(<TYPE-MARK> ,$1)
[ARM (3.9)]

declarative-part ::= [ARM: 23,Deno: 49,Static: 76,Dynamic: 81]
basic-decls == ‘(<DECLARATIVE-PART> ,@$1)

basic-decls ::=

basic-declarative-item == (LIST $1)
| basic-declarative-item basic-decls == (CONS $1 $2)

[ARM (3.9)]
basic-declarative-item ::= [ARM: 23,Deno: 49,Static: 76,Dynamic: 81]

object-declaration == $1
[ARM (4.1)]

name ::= [Defined: 25]
simple-name == $1

simple-name ::= [ARM (4.1)]
identifier == $1

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 69
The Lisp Definition

[ARM (4.4)]
expression ::= [ARM: 25,Deno: 49,Static: 78,Dynamic: 81]

relation == $1
[ARM (4.4)]

relation ::= [ARM: 25,Deno: 49,Static: 78,Dynamic: 81]
simple-expression == $1

| simple-expression relational-operator simple-expression
== (LIST $2 $1 $3)

simple-expression ::= term == $1

term ::= [ARM (4.4)]
factor == $1

factor ::= [ARM (4.4)]
primary == $1

primary ::= [ARM (4.4)]
name == $1

[ARM (4.5)]
relational-operator ::= [ARM: 26,Deno: 49,Static: 78,Dynamic: 81]

= == ’<EQUAL>
| /= == ’<NE>
| < == ’<LT>
| <= == ’<LE>
| > == ’<GT>
| >= == ’<GE>

[ARM (5.1)]
sequence-of-statements ::= [ARM: 29,Deno: 51,Static: 77,Dynamic: 81]

statements == ‘(<SEQ-OF-STMTS> ,@$1)

statements ::=

statement == (LIST $1)
| statement statements == (CONS $1 $2)

[ARM (5.1)]
statement ::= [ARM: 29,Deno: 49,Static: 77,Dynamic: 81]

simple-statement == $1

simple-statement ::= [ARM (5.1)]
null-statement == $1

| assignment-statement == $1
;; Documentation for Main Procedure invocation.
;; Not contained in the nanoAVA grammar.
;; | procedure-call-statement == $1

[ARM (5.1)]
null-statement ::= [ARM: 29,Deno: 52,Static: 77,Dynamic: 81]

NULL ; == ’(<NULL-STMT>)
[ARM (5.2)]

assignment-statement ::= [ARM: 29,Deno: 52,Static: 77,Dynamic: 81]
name := expression ; == ‘(<ASSIGN-STMT> ,$1 ,$3)

[ARM (6.1)]
subprogram-specification ::= [ARM: 31,Static: 76,Dynamic: 81]

PROCEDURE identifier == ‘(<PROCEDURE-SPEC> ,$2 NIL)
| PROCEDURE identifier formal-part == ‘(<PROCEDURE-SPEC> ,$2 ,$3)

formal-part ::= [ARM (6.1)]
(formal-part2 == ‘(<FORMAL-PART> ,@$2)

DRAFT 19 Oct 88 at 5:28 p.m.

70 nanoAVA

formal-part2 ::=

parameter-specification) == (LIST $1)
| parameter-specification ; formal-part2 == (CONS $1 $3)

;; No default value for parameters
[ARM (6.1)]

parameter-specification ::= [Defined: 31]
identifier-list : mode type-mark == ‘(<PARM-SPEC> ,$1 ,$3 ,$4)

[ARM (6.1)]
mode ::= [Defined: 31,Static: 76]

IN OUT == ’(<MODE> *IN-OUT*)
[ARM (6.3)]

subprogram-body ::= [ARM: 32,Deno: 49,Static: 76,Dynamic: 81]
subprogram-specification sub-decl

BEGIN sequence-of-statements END ; == ‘(,@$1 ,$2 ,$4)

sub-decl ::=

IS == ’(<DECLARATIVE-PART> NIL)
| IS declarative-part == $2

compilation ::= [ARM: 41,Deno: 49,Static: 75,Dynamic: 81]
compilation-unit == ‘(<COMPILATION> ,$1)

[ARM (10.1)]
compilation-unit ::= [ARM: 41,Deno: 49,Static: 75,Dynamic: 81]

library-unit == ‘(<COMPILATION-UNIT> ,$1)
[ARM (10.1)]

library-unit ::= [ARM: 41,Static: 75,Dynamic: 81]
subprogram-body == $1

The procedure call description below is provided so that we have somewhere to stand when describing the
invocation of the main program. These productions are not part of the nanoAVA grammar.

procedure-call-statement ::= [ARM (6.4)]
name ; == ‘(<PROCEDURE-CALL-STMT> ,$1 NIL)

| name actual-parameter-part ; == ‘(<PROCEDURE-CALL-STMT> ,$1 ,$2)

actual-parameter-part ::= [ARM (6.4)]
(actual-parameter-part2 == ‘(<ACTUAL-PARAMETER-PART> ,@$2)

actual-parameter-part2 ::=

parameter-association)
== (LIST $1)

| parameter-association , actual-parameter-part2
== (CONS $1 $3)

parameter-association ::= [ARM (6.4)]
actual-parameter == ‘(<PARM-ASSOC> ,$1)

actual-parameter ::= [ARM (6.4)]
expression == $1

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 71
The Lisp Definition

IV-1.2 Syntactic Output

The result of a successful syntactic pass is a compilation, whose structure is described below. A "!"
indicates a list of elements. The form (A . B) indicates that A is to be CONSed onto the list B. That is, A
is the first element of the list and B contains the rest of the list.

compilation =
(<compilation>
(<compilation-unit>
(<procedure-spec> identifier
(<formal-part> . parameter-specification!)
(<declarative-part> . object-declaration!)
(<seq-of-stmts> . simple-statement!))))

parameter-specification =
(<parm-spec> identifier-list (<mode> *in-out*) type)

type =
(<type-mark> identifier)

object-declaration =
(<variable-decl> identifier-list type expression)

| (<constant-decl> identifier-list type expression)

identifier-list =
(<id-list> . identifer!)

expression =
identifier

| (<EQUAL> identifier identifier) | (<NE> identifier identifier)
| (<LT> identifier identifier) | (<LE> identifier identifier)
| (<GT> identifier identifier) | (<GE> identifier identifier)

simple-statement =
(<null-stmt>)

| (<assign-stmt> identifier expression)

The procedure call description below is provided so that we can talk about the invocation of the main
program. But it will not be produced by the parser and we do not need to provide static semantic routines
to check it.

simple-statement =
;; previous simple-statement plus ...
(<procedure-call-stmt> identifier

(<actual-parameter-part> . parameter-association!))

parameter-association = (<parm-assoc> expression)

DRAFT 19 Oct 88 at 5:28 p.m.

72 nanoAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 73
The Lisp Definition

Chapter IV-2

STATIC SEMANTICS

This section presents the complete functional description of the static semantic checks performed over the
syntactic output. Two basic definitional approaches are used. We define a number of Lisp functions
(using DEFUN) and we define a set of semantic analysis routines (using DEFSEMANTICS) that key off
of the operators in the syntactic output.

The entry point to static semantic checking is the function semantic-check-and-convert. It takes as
argument the syntactically analyzed program. The function normalizes the input, checks that program is
a compilation and then checks the static semantics of the program by applying the function WF. If
semantically ok, it returns the transformed internal form to pass on to the dynamic semantics.

This input form is the program to be passed to INTERPRET. (For more detail on this process and its
supporting data structures see page 81).

The defsemantics form is used to define semantic checks and transformations for the syntactic
output. The form of a call to defsemantics is:

(defsemantics prefix-template
[Let v1 = value1

[[and] vn = valuen]]
[WF = [test { string }]+]
[Transform = sexpr]
[Declare = sexpr]
[Normalize = sexpr])

prefix-template ::= (opr arg ... arg) | (opr &repeating args)1 n

The prefix-template is a syntactic type descriptor. Its car is the type name (or operator) and its cdr is a list
of argument names. There are two basic forms of prefix, one with a fixed number of arguments, each of
which may be of a different type, and the second with an unspecified number of arguments of a
homogeneous type. The "&repeating" keyword supports the later form. Contrast

(<procedure-spec> swap formal-part decl-part seq-of-stmts)
vs.

(<id-list> x y z)

Defsemantics creates a set of functions that are associated with prefix forms headed by opr. When
evaluating the forms in the definition the following additional bindings will be in effect:

• ENV - the environment in which the semantics of the form are being evaluated.

• OPR - the operator name.

• FORM - the entire prefix form being analyzed.

• arg - for each named argument of the prefix template, the corresponding element of then
form being evaluated.

DRAFT 19 Oct 88 at 5:28 p.m.

74 nanoAVA

Each of the clauses (LET, WF, TRANSFORM, DECLARE, NORMALIZE) are optional.

LET introduces some local variables and their bindings, just to clean up the definition textually, if the user
wishes.

WF introduces a sequence of predicates and optional associated error message. The convention is that a
form is well formed if all of the predicates evaluate to true. If a test fails and it has an associated string,
the string constitutes its error message.

TRANSFORM provides a means to convert the input form, perhaps without overloading computed, into
an alternative form containing more semantic information.

DECLARE states how this form modifies the environment. The sexpr returns an environment.

The above keywords are also the names of functions which apply the corresponding operation to a piece
of prefix.

If a component fails its semantic check then prefix of the form (*semantic-error* form
reason) should be returned. (This allows us to continue applying semantic checks after we have
encountered a first error, in an effort to wring as much information out of the input as we can. This is
peripheral to the determination of what the dynamic semantics accepts, but the capability for evaluation
provides a useful check on the adequacy of our definition.)

This modified version of the Lisp form is based in large part on the denotational definition of nanoAVA
(see 47).

IV-2.1 Static Semantics Entry Point

;; Uses support in denotation.lisp.
;;
;; Tue May 24 19:23:37 1988, by MKSmith

(defun semantic-check-and-convert (program)
;; Takes the result of the syntactic pass, PROGRAM, checks its
;; static semantics, and converts to interpreter input form. The
;; value returned by this function is the LIBRARY to be passed to
;; AUGMENT-AND-RUN.
;;
;; First we normalize, then make sure we are dealing with a full
;; syntactic compilation.
;; Elsewhere we check to ensure that no programs containing
;; syntactic errors are passed to this function.
;;
(let ((np (normalize program)))
(cond ((not (eqopr np ’<compilation>))

(semantic-error "Program is not a compilation" np standard-env))
((wf np standard-env)
(transform np standard-env))

(t (format t "~%Semantic errors in program.~%")
(transform np standard-env)))))

;; ENV (the environment) is a pair of a set of local names and an
;; alist of declarations.

(defvar standard-env
’((INTEGER BOOLEAN FLOAT CHARACTER

ASCII NATURAL POSITIVE STRING DURATION
CONSTRAINT_ERROR NUMERIC_ERROR PROGRAM_ERROR
STORAGE_ERROR TASKING_ERROR
TRUE FALSE)

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 75
The Lisp Definition

((integer *type*)
(boolean *type*))))

IV-2.2 Basic Support Function Definitions

(defun locals (env) (car env))
(defun M (env) (cadr env))

;; The declarations are stored in an alist. Each entry is of the
;; form:
;; (name . declarative-info)
;;
;; There may not be more than one element in the cdr of the list that
;; contains declarative info. This will change with AVA.
;;
;; Declarative info may be one of:
;; (*var* typename) (*const* typename) (*proc*) (*type*)

(defun lookup (id env)
(cdr (assoc id (M env))))

(defun hide-homograph (name env)
;; The meaning of the name is changed, to undefined.
(list (locals env) (cons (cons name nil) (M env))))

(defun start-declarative-region (env)
(list nil (M env))

(defun set-decl (id decl env)
;; The id get decl as its meaning. Overwrites. This seems to be
;; ok for nanoAVA.
(list (enter id (locals env))

(cons (cons id decl) (M env))))

(defun kind-in-env (id env)
;; Elements of env are
;; (*var* typename) or (*const* typename) or (*proc*) or (*type*)
;; Assumes (lookup id env)
(opr (lookup id env)))

(defun type-in-env (id env)
;; Assumes (lookup id env)
;; May return NIL for (*proc*) and (*type*).
(arg1 (lookup id env)))

IV-2.3 Compilation

(defsemantics (<compilation> unit) [ARM: 41,Deno: 49,Syntax: 70,Dynamic: 81]

WF = (WF unit env)
Transform = (Transform unit env))

(defsemantics (<compilation-unit> unit) [ARM: 41,Deno: 49,Syntax: 70,Dynamic: 81]

WF = (WF unit env)
Transform = (Transform unit env))

;; Note that there is no reason to declare a procedure. In particular
;; there is no reason to add the procedure declaration to env. It can never be used.
;; It can be replaced in the environment by a formal or local declaration, but

DRAFT 19 Oct 88 at 5:28 p.m.

76 nanoAVA

;; there is no need to distinguish this replacement from the declaration of a variable
;; that does not have the same name as the procedure.

(defsemantics (<procedure-spec> name formal-part decl-part seq-of-stmts)

LET env1 = (start-declarative-region env)

WF = (not (member name (locals env)))
"Redefining STANDARD predefined name"

(WF formal-part env1)
(WF decl-part (declare formal-part env1))
(WF seq-of-stmts (declare decl-part (declare formal-part env1)))

[ARM: 32,Deno: 49,Syntax: 70,Dynamic: 81]
Transform = (prefix ’*procedure-spec* name

(transform formal-part env1)
(transform decl-part (declare formal-part env1))
(transform seq-of-stmts

(declare decl-part (declare formal-part env1)))))

(defsemantics (<formal-part> &repeating parameters) [ARM: 31,Syntax: 69,Dynamic: 81]
Normalize = (prefix ’<formal-part> (mapcan #’normalize-parm-spec parameters))
WF = (WF-map parameters env)
Declare = (declare-map (args (transform form env)) env)
Transform = (prefix ’*formal-part* (transform-map parameters env)))

(defsemantics (<single-parm-spec> id type) [Static: 76]
;; Mode is gone
;; Type is (<type-mark> typename)

WF = (not (member id (locals env)))
"Attempt to redefine predefined unit or local name"

(WF type (hide-homograph id env))

Declare = (set-decl id (list ’*VAR* (arg1 type)) env)
Transform = (prefix ’*single-parm-spec* id (transform type env)))

#| Naming and Visibility: some examples.

procedure foo (foo : T) is ... OK, procedure foo hides homographs.
procedure float (x : boolean) is ... NO, can’t use predefined identifiers for main.
float : boolean := x; OK, not in same local declarative region.
begin
x : boolean := foo;
x : integer := bar; ... Can’t redefine within same declarative region. |#

IV-2.4 Types and Declarations

;; Already checked mode in syntax.

(defsemantics (<mode> mode) [Syntax: 70,Static: 76]

WF = TRUE
Transform = (prefix ’*mode* (list mode)))

(defsemantics (<type-mark> id)
[Deno: 49,Syntax: 68,Static: 76]

WF = (member id (locals env)) "Unknown type"
(equal (lookup id env) ’(*TYPE*)) "Not a type"

Transform = id)

(defsemantics (<declarative-part> &repeating objects)

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 77
The Lisp Definition

[ARM: 23,Deno: 49,Syntax: 68,Dynamic: 81]
Normalize = (prefix ’<declarative-part> (mapcan #’normalize-decl objects))

WF = (WF-map objects env)
Transform = (prefix ’*declarative-part* (transform-map objects env))
Declare = (declare-map (args (transform form env)) env))

(defsemantics (<single-variable-decl> id type value)

WF = (not (member id (locals env)))
"Redefining predefined unit or local name"

(WF type (hide-homograph id env)) ;; ??
(WF-expression value type (hide-homograph id env))

Transform = (prefix ’*variable-decl* id
(transform type env)
(transform-expression value type env))

Declare = (set-decl id (list ’*VAR* (arg1 type)) env))

(defsemantics (<single-constant-decl> id type value)

WF = (not (member id (locals env)))
"Attempt to redefine predefined unit or local name"

(WF type (hide-homograph id env)) ;; ??
(WF-expression value type (hide-homograph id env))

Transform = (prefix ’*constant-decl* id
(transform type env)
(transform-expression value type env))

Declare = (set-decl id (list ’*CONST* (arg1 type)) env))

IV-2.5 Statements

(defsemantics (<seq-of-stmts> &repeating statements) [ARM: 29,Deno: 51,Syntax: 69,Dynamic: 81]

WF = (WF-map statements env)
Transform = (prefix ’*seq-of-stmts* (transform-map statements env)))

(defsemantics (<null-stmt>) [ARM: 29,Deno: 52,Syntax: 69,Dynamic: 81]

WF = true
Transform = (prefix ’*null-stmt* nil))

(defsemantics (<assign-stmt> id value) [ARM: 29,Deno: 52,Syntax: 69,Dynamic: 81]

WF = (equal (kind-in-env id env) ’*VAR*)
"Assignment can only be to a variable"

(wf-expression value (type-in-env id env) env)
"Value ill-formed"

Transform = (prefix ’*assign-stmt*
(list id (transform-expression value (type-in-env id env) env))))

DRAFT 19 Oct 88 at 5:28 p.m.

78 nanoAVA

IV-2.6 Expressions

(defun wf-expression (e type env) [ARM: 25,Deno: 49,Syntax: 69,Dynamic: 81]
(if (identifier-p e)

(and (member e (locals env))
(member (kind-in-env e env) ’(*VAR* *CONST*))
(equal (type-in-env e env) type))

(if (lookup (arg1 e) env)
(let ((type2 (type-in-env (arg1 e) env)))

(and (equal type ’boolean)
(wf-expression (arg1 e) type2 env)
(wf-expression (arg2 e) type2 env)))

FALSE)))

(defun transform-expression (e t env)
(if (identifier-p e)

e
(prefix (unload-type (opr e) (type-in-env (arg1 e) env))

(arg1 e) (arg2 e))))

(defun unload-type (op type) [ARM: 26,Deno: 49,Syntax: 69,Dynamic: 81]
(if (equal type ’integer)

(case op
(<equal> ’*equal-int*)
(<ne> ’*neq-int*)
(<lt> ’*lt-int*)
(<le> ’*le-int*)
(<gt> ’*gt-int*)
(<ge> ’*ge-int*))

;; Else must be boolean.
(case op

(<equal> ’*equal-bool*)
(<ne> ’*neq-bool*)
(<lt> ’*lt-bool*)
(<le> ’*le-bool*)
(<gt> ’*gt-bool*)
(<ge> ’*ge-bool*))))

IV-2.7 Normalization Functions

;; Unwind multiple declarations.
;;
;; (<variable-decl> identifier-list (<type-mark> identifier) expression)
;; becomes
;; ((<single-variable-decl> identifier (<type-mark> identifier) expression)*)
;;
;; And similarly for <constant-decl>.

(defun normalize-decl (form)
(if (eqopr form ’<variable-decl>)

(normalize-variable-decl form)
(normalize-constant-decl form)))

(defun normalize-variable-decl (form)
;; (<variable-decl> ids type value)
(let ((ids (arg1 form))

(type (arg2 form))
(value (arg3 form)))

(mapcar (f-l (x)
(prefix ’<single-variable-decl> (list x type value)))

ids)))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 79
The Lisp Definition

(defun normalize-constant-decl (form)
;; (<constant-decl> ids type value)
(let ((ids (arg1 form))

(type (arg2 form))
(value (arg3 form)))

(mapcar (f-l (x)
(prefix ’<single-constant-decl> (list x type value)))

ids)))

;; Do the same for <parm-spec>s.
;;
;; (<parm-spec> identifier-list (<mode> *in-out*) (<type-mark> identifier))
;; becomes
;; ((<single-parm-spec> identifier (<type-mark> identifier))*)

(defun normalize-parm-spec (form)
;; (<parm-spec> ids mode type)
(let ((ids (arg1 form))

(mode (arg2 form))
(type (arg3 form)))

(mapcar (f-l (x)
(prefix ’<single-parm-spec> (list x type)))

ids)))

IV-2.8 Static Semantic Output

We have taken a slight liberty with parentheses in the interest of readability. The actual internal form
looks like

(opr (arg ... arg) (annotation .. annotation))1 n 1 m

Which we write here as

(opr arg ... arg {annotation .. annotation })1 n 1 m

In this version there will be no annotations.

After static semantic analysis the internal form of a nAVA program is as follows:

program ::=
procedure-spec

procedure-spec ::=
(*PROCEDURE-SPEC* identifier

(*FORMAL-PART* . parameter-specification!)
(*DECLARATIVE-PART* . object-declaration!)
(*SEQ-OF-STMTS* . simple-statement!))

parameter-specification ::=
(*SINGLE-PARM-SPEC* identifier type)

object-declaration ::=
(*VARIABLE-DECL* identifier type expression)
(*CONSTANT-DECL* identifier type expression)

expression ::=
simple-expression
(op simple-expression simple-expression)

op ::=
EQUAL-INT | *EQUAL-BOOL* |
NEQ-INT | *NEQ-BOOL* |

DRAFT 19 Oct 88 at 5:28 p.m.

80 nanoAVA

LT-INT | *LT-BOOL* |
LE-INT | *LE-BOOL* |
GT-INT | *GT-BOOL* |
GE-INT | *GE-BOOL*

simple-expression ::=
identifier | TRUE | FALSE | number

simple-statement ::=
(*NULL-STMT*)
(*ASSIGN-STMT* identifier expression)

Programs containing semantic errors will contain occurences of an error form. The FORM argument is
the internal representation that was under analysis when the error was detected. The string should contain
a description of the error.

error-form ::= (*SEMANTIC-ERROR* form string)

The integer and boolean prefix values below are added to expressions so that the primitive operations can
be defined over literals. This also allows the calling environment of the main program to provide actual
values for main parameters.

expression ::=
;; previous expression plus
FALSE | TRUE | integer

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 81
The Lisp Definition

Chapter IV-3

DYNAMIC SEMANTICS: THE INTERPRETER DEFINITION

IV-3.1 Entry Point

The initial state is a list of variable bindings of the form (variable-name . value). Run-program
intreprets the program form in initial-state.

(defvar initial-state nil)
(defvar program nil)

(defun run-program (program)
(interpret program initial-state))

;;; BASIC INTERPRETER ENTRY POINT

(defun INTERPRET (x s)
;; X is a statement, S is a state.
;;
(case (opr x)

(*PROCEDURE-SPEC* [ARM: 32,Deno: 49,Syntax: 70,Static: 76]
(interpret (get-stmts x) (interpret (get-decls x) s)))

(*DECLARATIVE-PART* [ARM: 23,Deno: 49,Syntax: 68,Static: 76]
(if (null (args x)) s

(Interpret (rest-of-decls x)
(Interpret (arg1 x) s))))

(*CONSTANT-DECL* (set-value (arg1 x) (evaluate (arg3 x) s) s))
(*VARIABLE-DECL* (set-value (arg1 x) (evaluate (arg3 x) s) s))
(*SEQ-OF-STMTS* [ARM: 29,Deno: 51,Syntax: 69,Static: 77]
(if (null (args x)) s

(Interpret (rest-of-stmts x)
(Interpret (arg1 x) s))))

(*NULL-STMT* s) [ARM: 29,Deno: 52,Syntax: 69,Static: 77]
(*ASSIGN-STMT* [ARM: 29,Deno: 52,Syntax: 69,Static: 77]
(set-value (arg1 x) (evaluate (arg2 x) s) s))))

(defun evaluate (exp s) [ARM: 25,Deno: 49,Syntax: 69,Static: 78]
(if (identifier-p exp)

(get-value exp s)
(eval-fun (opr exp)

(evaluate (arg1 exp) s)
(evaluate (arg2 exp) s))))

(defun eval-fun (opr x y)
(case opr

(*equal-int* (if (equal x y) true false))
(*neq-int* (if (not (equal x y)) true false))
(*lt-int* (if (lt x y) true false))
(*le-int* (if (le x y) true false))

DRAFT 19 Oct 88 at 5:28 p.m.

82 nanoAVA

(*gt-int* (if (gt x y) true false))
(*ge-int* (if (ge x y) true false))
(*equal-bool* (if (equal x y) true false))
(*neq-bool* (if (not (equal x y)) true false))
(*lt-bool* (if (and (equal x false) (equal y true)) true false))
(*le-bool* (if (or (equal x false) (equal y true)) true false))
(*gt-bool* (if (and (equal x true) (equal y false)) true false))
(*ge-bool* (if (or (equal x true) (equal y false)) true false))))

(defun rest-of-stmts (stmtlist)
(if (args stmtlist)

(prefix ’*SEQ-OF-STMTS* (cdr (args stmtlist)))
(prefix ’*SEQ-OF-STMTS* nil)))

(defun rest-of-decls (decllist)
(if (args decllist)

(prefix ’*DECLARATIVE-PART* (cdr (args decllist)))
(prefix ’*DECLARATIVE-PART* nil)))

(defun get-decls (proc) (arg3 proc))

(defun get-stmts (proc) (arg4 proc))

(defun normal-state (s)
(not (equal s ’abnormal-state)))

(defun set-value (id value s)
(cons (cons id value) s))

(defun get-value (id s)
(cdr (assoc id s)))

;; Example

(setq initial-state ’((a . 1) (b . 2)))

(setq program
’(*procedure-spec* swap

(*formal-part*
(*single-parm-spec* x integer)
(*single-parm-spec* y integer))

(*declarative-part*
(*constant-decl* temp integer x))

(*seq-of-stmts*
(*assign-stmt* x y)
(*assign-stmt* y temp))))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 83
The Lisp Definition

Chapter IV-4

UTILITY AND DENOTATIONAL SUPPORT FUNCTIONS

;;; Denotational Definition Support.

;;; This file provides a harness for defining and evaluating a
;;; denotational style of static semantics in Lisp.
;;; Effort inspired by Mark Saaltink’s denotational nanoAVA
;;; definition.

;;; Implementation dialect: Common Lisp
;;; Fri May 27 17:33:35 1988, by MKSmith

(defmacro defsemantics (form &rest arguments)
;;
;; (defsemantics (opr . args)
;; [Let v1 = value1
;; [[and] vn = valuen]]
;; [WF = [test { string }]+]
;; [Transform = sexpr]
;; [Declare = sexpr]
;; [Normalize = sexpr])

;; FORM is a syntactic type descriptor. Its car is the type name
;; (or operator) and its cdr is a list of argument names. When
;; evaluating the forms in the definition the following bindings
;; will be in effect:

;; ENV - the environment in which the semantics of the form are
;; being evaluated
;; OPR - the operator name
;; argn - for each named element of args, the corresponding
;; element of the form being evaluated.

;; Each of the clauses (LET, WF, TRANSFORM, DECLARE, NORMALIZE) are
;; optional.

;; LET introduces some local variables and their bindings, just to
;; clean up the definition textually, if the user wishes.

;; WF introduces a sequence of predicates and optional associated
;; error message. The convention is that a form is well formed if
;; all of the predicates evaluate to true. If a test fails and it
;; has an associated string, the string constitutes its error
;; message.

;; TRANSFORM provides a means to convert the input form, perhaps
;; without overloading computed, into an alternative form containing
;; more semantic information. The variable TRANSFORM is bound to
;; the result of evaluating sexpr.

;; DECLARE states how this form modifies the environment. The sexpr
;; returns an environment.

DRAFT 19 Oct 88 at 5:28 p.m.

84 nanoAVA

;;
‘(let ((opr (opr ,form))

; returns a list of binding pairs
(let-clauses (extract-let ,arguments opr))

; returns a COND
(wf-clauses (extract-wf ,arguments opr))
(normalize-clause (extract-normalize ,arguments opr))
(transform-clause (extract-transform ,arguments opr))
(declare-clause (extract-transform ,arguments opr)))

;;
(if let-clauses

(put opr ’let-variables let-clauses))
;;
(if wf-clauses

(put opr ’wf-function (build-function form wf-clauses)))
;;
(if normalize-clause

(put opr ’normalize-function (build-function form normalize-clause)))
;;
(if transform-clause

(put opr ’transform-function (build-function form transform-clause)))
;;
(if declare-clause

(put opr ’declare-function (build-function form declare-clause)))))

(defun extract-wf (l name)
(let ((wf (cdr (member ’wf l))))
(if (and wf (equal (car wf) ’=)) (setq wf (cdr wf)))
(if wf (cons ’cond (build-wf-cond wf name)))))

(defun build-wf-cond (wf name)
(cond ((null wf) (cons ’(t true) nil))

((member (car wf) ’(LET TRANSFORM DECLARE NORMALIZE)) (cons ’(t true) nil))
((equal (car wf) ’=) (format t "~%Error in WF component of ~A" name) nil)
((stringp (cadr wf))
(cons (list (list ’not (car wf)) ‘(semantic-error form ,(cadr wf)))

(build-wf-cond (cddr wf) name)))
(t (cons (list (list ’not (car wf)) ‘(semantic-error form "Error"))

(build-wf-cond (cdr wf) name)))))

;; Semantic Error

(defvar *semantic-error* ’*semantic-error*)

(defun semantic-error (msg form)
(prefix *semantic-error* ‘(,form ,msg)))

(defun extract-let (l name)
(let ((let (cdr (member ’let l))))
(if (and let (equal (car let) ’=)) (setq let (cdr let)))
(if let (build-let let name))))

(defun build-let (let name)
(cond ((null let) nil)

((member (car let) ’(TRANSFORM DECLARE NORMALIZE)) nil)
((equal (car let) ’=) (format t "~%Error in LET component of ~A" name) nil)
((equal (car let) ’and) (build-let (cdr let) name))
((equal (car let) ’in) (build-let (cdr let) name))
((symbolp (car let))
(cons (list (car let) (extract-let-value (cdr let)))

(build-let (after-let-value let) name)))
(t (format t "~%Error in LET component of ~A" name) nil)))

(defun extract-let-value (let-tail)
(cond ((equal (car let-tail) ’=)

(cadr let-tail))
(t (format t "~%Error in let component of ~A" name) nil)))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 85
The Lisp Definition

(defun after-let-value (let-tail)
(cond ((equal (car let-tail) ’=)

(cddr let-tail))
(t (format t "~%Error in let component of ~A" name) nil)))

(defun extract-normalize (l name)
(let ((rest (cdr (member ’normalize l))))
(if (and rest (equal (car rest) ’=)) (setq rest (cdr rest)))
(cond ((null rest))

((or (null (cdr rest)) (member (cadr rest) ’(let wf transform declare)))
(car rest))
(t (format t "~%Error in normalize component of ~A" name) nil))))

(defun extract-transform (l name)
(let ((rest (cdr (member ’transform l))))
(if (and rest (equal (car rest) ’=)) (setq rest (cdr rest)))
(cond ((null rest))

((or (null (cdr rest)) (member (cadr rest) ’(let wf normalize declare)))
(car rest))
(t (format t "~%Error in transform component of ~A" name) nil))))

(defun extract-declare (l name)
(let ((rest (cdr (member ’declare l))))

(if (and rest (equal (car rest) ’=)) (setq rest (cdr rest)))
(cond ((null rest))

((or (null (cdr rest))
(member (cadr rest) ’(let wf transform normalize)))

(car rest))
(t (format t "~%Error in declare component of ~A" name) nil))))

DRAFT 19 Oct 88 at 5:28 p.m.

86 nanoAVA

;; In order to apply the WF, Transform, or Declare just
;; call them on an object. These functions will get the version
;; appropriate to the type of the expression and apply it.

(defun WF (expr env)
;;
;; For every type of expression that we apply WF to there should be
;; an associated test. If not, our definition contains an error.
;; So we do not make the application of the function conditional on
;; it existing. If it isn’t there we break.
;;
(static-trace-entry expr)
(static-trace-exit (apply (WF-function expr) (list expr env)) expr))

(defun WF-map (expr-list env)
(cond ((null expr) true)

((WF (car expr-list) env)
(WF-map (cdr expr-list) (declare (car expr-list) env)))

(t nil)))

(defun Transform (expr env)
;; If there is no transform, leave it alone.
(let ((fun (Transform-function expr)))
(if fun

(apply fun (list expr env))
expr)))

(defun Transform-map (expr env)
(if (null expr)

nil
(cons (transform (car expr-list) env)

(transform-map (cdr expr-list) (declare (car expr-list) env)))))

(defun Declare (expr env)
;;
;; If there is no declare, return env. We do this because declare
;; is applied in places where we don’t know if one has been defined
;; for the type, e.g. the -map functions just above.
;;
(let ((fun (Declare-function expr)))
(if fun

(apply fun (list expr env))
env)))

(defun Declare-map (expr env)
(if (null expr)

env
(declare-map (cdr expr-list) (declare (car expr-list) env))))

;; Normalize works a differently from the others. It is meant to be
;; done before anything else. The entire program should be normalized
;; before any other operation. E.g. (NORMALIZE program).

(defun normalize (expr)
(if (opr expr)

(let ((norm (normalize-function (opr expr))))
(if norm

(apply norm (list expr))
(prefix (opr expr) (mapcar #‘normalize (args expr)))))

expr))

(defun WF-function (expr) (get (opr expr) ’wf-function))
(defun Transform-function (expr) (get (opr expr) ’transform-function))
(defun Declare-function (expr) (get (opr expr) ’declare-function))
(defun normalize-function (expr) (get (opr expr) ’normalize-function))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 87
The Lisp Definition

(defvar *arg-extraction-fns* ’(arg1 arg2 arg3 arg4 arg5
arg6 arg7 arg8 arg9 arg10))

(defun build-function (form function)
;;
;; FORM is of the form (opr arg1 ... argn) or (opr &repeating args).
;; E.g. (<assign-stmt> id expr) or (<parameter-list> &repeating parameters).
;;
;; We build a form like
;; (function (lambda (form env)
;; (let ((opr (opr form))
;; (id (arg1 form))
;; (expr (arg2 form)))
;; function)))
;; And return it. The caller stores it.
;;
;; The function we compute has the variables FORM (the whole
;; expression), OPR (the operator), the argument names, and ENV (the
;; environment). We also provide TRANSFORM as a variable bound to
;; (Transform FORM).
;;;
;; First we bind the variables according of form.
;; The definition may have included LET variables. They will be
;; stored as properties under the car of form.
;;
‘(function (lambda (form env)

(let ((opr (opr yyy))
,@(extract-args (cdr form) ’yyy))

(let* ,(get (car form) ’*let-variables*)
(let ((transform (transform form)))

,function))))))

(defun extract-args (args argname)
;; Args is either a list of atomic argument names or a repeating group
;; which is indicated by (&repeating list-parameter).
(cond ((null args) nil)

((equal (car args) ’&repeating)
(list (list (cadr args) (list ’args argname))))

(t (extract-args2 args argname))))

(defun extract-args2 (args argname)
(mapcar (function (lambda (x argfn) ‘(,x (,argfn ,argname))))

args *arg-extraction-fns*))

(defparameter *trace-static-indent* 1)

(defparameter *trace-static* nil)

(defun static-trace-entry (expr)
(when *trace-static*

(when (or (member ’all *trace-static*)
(member (opr expr) *trace-static*))

(format t "~%~VTEnter Static Semantic: ~A"
trace-static-indent expr)

(incf *trace-static-indent*)
nil)))

(defun static-trace-exit (result expr)
(when *trace-static*

(if (or (member ’all *trace-static*)
(member (opr expr) *trace-static*))

(format t "~%~VTExit Static Semantic: ~A"
(decf *trace-static-indent*) result)))

result)

(defmacro static-trace (&rest l)
‘(let ((l2 ’,l))

(cond ((null l2) *trace-static*)

DRAFT 19 Oct 88 at 5:28 p.m.

88 nanoAVA

((consp (car l2))
(setq *trace-static* (union (car l2) *trace-static*)))

((consp l2)
(setq *trace-static* (union (list l2) *trace-static*)))

(t (format t "~%Bad argument to static-trace.~%")))))

(defmacro static-untrace (&rest l)
‘(let ((l2 ’,l))

(cond ((null l2) *trace-static*)
((equal l2 ’(all)) (setq *trace-static* nil))
((consp (car l2))
(setq *trace-static* (set-difference *trace-static* (car l2))))

(t (format t "~%Bad argument to static-trace.~%")))))

IV-4.1 Parser Utilities

;; Macros, especially for reading/printing with column location knowledge.

;; Module and Package manipulation

(in-package "PRS")

(export ’(write-errors ll=line-errors) ; (export symbols &optional package)
(find-package "PRS"))

;; Completed module and package manipulation

(eval-when (load compile eval)

;; Basic. Should be in init file.

(defmacro memq (a l) ‘(member ,a ,l :test #’eq))

(defmacro nconc1 (l a) ‘(nconc ,l (list ,a)))

;; To record read location.

(defvar charcolumn 0) ; 0 means we have not printed a character yet.
(defvar charline 1)

(defvar charcolumn-linelength 80)

(defun bump-charcolumn (x &optional (n 0))
(setq charcolumn (+ charcolumn (flatc x) n)))

(defun ll-terpri () (setq charcolumn 0) (incf charline))

(defun ll-tab (n)
;; This is tab-to. After tabbing, the next character will
;; print in column n (0 based, i.e. 0 is the beginning of the line).
(cond ((eql n charcolumn))

((> n charcolumn)
(sloop for i from 1 to (- n charcolumn)

do (princ ’#\space)))
(t (ll-terpri) (ll-tab n)))

(setq charcolumn n))

(defun ll-princ (x) (princ x) (bump-charcolumn x))

(defmacro peekc () ‘(peek-char nil *standard-input* nil eof-value))

(defvar last-character-read nil)

(defmacro tyi ()

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 89
The Lisp Definition

’(progn (setq last-character-read
(read-char *standard-input* nil eof-value))

(if echo (write-char last-character-read *terminal-io*))
(incf charcolumn)
(when (newlinep last-character-read)

(setq charcolumn 0)
(setq charline (+ charline 1)))

last-character-read))

;; utility

(defmacro if-echo (&rest x)
‘(if echo (let ((*standard-output* *terminal-io*))

(progn . ,x))))

(defun string-append (a &rest b)
(string-append2 a b))

(defun stringify (a)
(cond ((null a) "")

((consp a)
(concatenate ’string (stringify (car a)) (stringify (cdr a))))

(t (string a))))

(defun string-append2 (a b)
(if (null b)

(stringify a)
(concatenate ’string (stringify a)

(string-append2 (car b) (cdr b)))))

(defun pack2 (a b) (intern (string-append a b)))

(defun flatc (x) (length (princ-to-string x)))

(defun flatsize (x) (length (prin1-to-string x)))

(defun explode (x)
(setq x (string x))
(sloop for i from 0 to (1- (flatc x))

collecting (char x i)))

(defun explodec (x)
(setq x (string x))
(sloop for i from 0 to (1- (flatc x))

collecting (char-code (char x i))))
)

;; Parser utilities

(proclaim ’(special ll=line-errors token token-type token-loc
previous-token previous-token-type previous-token-loc))

(defun write-errors ()
;; This was derived from code that worked for semantic errors also.
;; This function only applies to syntactic errors.
;; ll=line-errors is of the form
;; (((line-of-token column-of-token) . error-msg-string) ...)
;; Errors will appear as:
;; foo := from + or x;
;; ^1 ^2
;; 1: Expected identifier, parens, ...
;; 2: Expected <expression>
;; 18 October 1983 by MKSmith
(let ((pos 0) nextpos (num 0))

;; First print carats under positions at which tokens in errors begin.
;; NUM indicates the correspondence between token and msg.
(mapc (function (lambda (err)

(setq nextpos (cadr (car err)))
(cond ((< pos nextpos)

DRAFT 19 Oct 88 at 5:28 p.m.

90 nanoAVA

(ll-tab nextpos)
(setq pos nextpos)
(ll-princ ’^)
(ll-princ (incf num))))))

ll=line-errors)
;; NUM indicates the correspondence between token and msg.
(setq num 0)
(mapc (function (lambda (err) (format t " ~a: ~a" (incf num) (cdr err))))

ll=line-errors)
(setq ll=line-errors nil)))

(defun msg-print (n msg)
;; Print n: <elements of MSG seperated by spaces>
(let (max)
(setq max charcolumn-linelength)
(format t "~% ~a : " n)
(mapc (function (lambda (entry)

(if (< (+ charcolumn (flatc entry)) max)
(format t " ~a" entry)
(format t "~% ~a" entry))

(bump-charcolumn entry 1)))
msg)))

(defun ada-error (string)
(format t "~%Error in interpreter: ~A~%" string)
nil)

(defun ps1-error (x)
;; Modified to interact with the array form of Ada linereading.
;; X should be a string equal to the error message.
(declare (special prs\err))
(setq prs\err t)
(setq ll=line-errors (nconc1 ll=line-errors (cons token-loc x))))

(defun ps1-warning (x)
;; Modified to interact with the array form of Ada linereading. X
;; should be a list equal to the error message. We do not set
;; PRS\ERR, so hopefully this will print as a warning, but not
;; destroy the syntactic parse.
(setq ll=line-errors (nconc1 ll=line-errors (cons token-loc x))))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 91
The Lisp Definition

References

[DoD 83] Reference Manual for the Ada Programming Language
United States Department of Defense, New York, 1983.
ANSI/MIL-STD-1815A-1983.

[Steele 84] Guy L. Steele Jr.
Common LISP: The Language.
Digital Press, 1984.

DRAFT 19 Oct 88 at 5:28 p.m.

Index

<assign-stmt> 71 denotation 49
<compilation-unit> 71 dynamic 81
<compilation> 71 static 75
<constant-decl> 71 syntax 70
<declarative-part> 71 Constant decl
<EQUAL> 71 dynamic 81
<formal-part> 71
<GE> 71 Declarative part
<GT> 71 defined 23
<id-list> 71 denotation 49
<LE> 71 dynamic 81
<LT> 71 static 76
<NE> 71 syntax 68
<null-stmt> 71 Digits
<parm-spec> 71 defined 13
<procedure-spec> 71
<seq-of-stmts> 71 Expression
<type-mark> 71 defined 25
<variable-decl> 71 denotation 49, 51, 54

dynamic 81
Actual parameter static 78

syntax 70 syntax 69
Actual parameter part

syntax 70 Factor
Actual parameter part2 defined 26

syntax 70 syntax 69
Assignment statement Formal part

defined 29 defined 31
denotation 52 dynamic 81
dynamic 81 static 76
static 77 syntax 69
syntax 69 Formal part2

syntax 69
Basic character

defined 13 Graphic character
Basic declarative item defined 13

defined 23
denotation 49, 51, 54 Identifier
dynamic 81 defined 15
static 76 denotation 49
syntax 68 Identifier list

Basic decls defined 20
syntax 68 syntax 68

Basic graphic character
defined 13 Letter

defined 15
Compilation Letter or digit

defined 41 defined 15
denotation 49, 54 Library unit
dynamic 81 defined 41
static 75 dynamic 81
syntax 70 static 75

Compilation unit syntax 70
defined 41 Lisp Functions

nanoAVA 93
Index

ada-error 90 static-trace-entry 87
after-let-value 84 static-trace-exit 87
build-function 87 string-append 89
build-let 84 string-append2 89
build-wf-cond 84 stringify 89
bump-charcolumn 88 Transform 86
Declare 86 transform-expression 78
Declare-function 86 Transform-function 86
Declare-map 86 Transform-map 86
defsemantics 83 tyi 88
eval-fun 81 type-in-env 75
evaluate 81 unload-type 78
explode 89 WF 86
explodec 89 wf-expression 78
extract-args 87 WF-function 86
extract-args2 87 WF-map 86
extract-declare 85 write-errors 89
extract-let 84 Lisp Variables
extract-let-value 84 charcolumn 88
extract-normalize 85 charcolumn-linelength 88
extract-transform 85 charline 88
extract-wf 84 last-character-read 88
flatc 89 Lower case letters
flatsize 89 defined 13
get-decls 82
get-stmts 82 Mode
get-value 82 defined 31
hide-homograph 75 static 76
if-echo 89 syntax 70
INTERPRET 81
kind-in-env 75 Name
ll-princ 88 defined 25
ll-tab 88 syntax 68
ll-terpri 88 Null statement
locals 75 defined 29
lookup 75 denotation 52
M 75 dynamic 81
memq 88 static 77
msg-print 90 syntax 69
nconc1 88
normal-state 82 Object declaration
normalize 86 defined 20
normalize-constant-decl 79 syntax 68
normalize-decl 78 Other special characters
normalize-function 86 defined 13
normalize-parm-spec 79
normalize-variable-decl 78 Parameter association
pack2 89 syntax 70
peekc 88 Parameter specification
ps1-error 90 defined 31
ps1-warning 90 denotation 49, 51
rest-of-decls 82 static 76
rest-of-stmts 82 syntax 70
run-program 81 Primary
semantic-check-and-convert 74 defined 26
semantic-error 84 syntax 69
set-decl 75 Procedure call statement
set-value 82 dynamic 81
start-declarative-region 75 syntax 70

94 nanoAVA
Index

Relation Term
defined 25 defined 25
denotation 49 syntax 69
dynamic 81 Type mark
static 78 defined 21
syntax 69 denotation 49, 51

Relational operator dynamic 81
defined 26 static 76
denotation 49 syntax 68
dynamic 81
static 78 Upper case letters
syntax 69 defined 13

Sequence of statements Variable decl
defined 29 dynamic 81
denotation 51
dynamic 81
static 77
syntax 69

Simple expression
defined 25
syntax 69

Simple name
defined 25
syntax 68

Simple statement
defined 29
dynamic 81
static 77
syntax 69

Single parm spec
static 76

Single variable decl
static 77

Single-constant-decl
static 77

Special characters
defined 13

Statement
defined 29
denotation 49, 51, 54
dynamic 81
static 77
syntax 69

Statements
syntax 69

Sub decl
syntax 70

Subprogram body
defined 32
denotation 49, 51
dynamic 81
static 76
syntax 70

Subprogram specification
defined 31
dynamic 81
static 76
syntax 69

Table of Contents

PART I
Introduction

PART II
Language Reference Manual

Chapter II-1. Introduction . 7

II-1.1. Scope of the Standard . 7
II-1.1.1. Extent of the Standard . 7
II-1.1.2. Conformity of an Implementation With the Standard . 8

II-1.2. Structure of the Standard . 8
II-1.3. Design Goals and Sources: Removed . 9
II-1.4. Language Summary . 9
II-1.5. Method of Description and Syntax Notation . 10
II-1.6. Classification of Errors . 11

Chapter II-2. Lexical Elements . 13

II-2.1. Character Set . 13
II-2.2. Lexical Elements, Separators, and Delimiters . 14
II-2.3. Identifiers . 15
II-2.4. Numerica Literals: Removed . 16
II-2.5. Character Literals: Removed . 16
II-2.6. String Literals: Removed . 16
II-2.7. Comments . 16
II-2.8. Pragmas . 16
II-2.9. Reserved Words . 16
II-2.10. Allowable Replacements of Characters: Removed . 17

Chapter II-3. Declarations and Types . 19

II-3.1. Declarations . 19
II-3.2. Objects . 20

II-3.2.1. Object Declarations . 20
II-3.2.2. Number Declarations: Removed . 21

II-3.3. Types . 21
II-3.3.1. Type Declarations: Removed . 21
II-3.3.2. Subtype Declarations . 21
II-3.3.3. Classification of Operations . 22

II-3.4. Derived Types: Removed . 22
II-3.5. Scalar Types . 22

II-3.5.1. Enumeration Types . 22
II-3.5.2. Character Types . 22

i

II-3.5.3. Boolean Types . 22
II-3.5.4. Integer Types . 22
II-3.5.5. Operations of Discrete Types . 23
II-3.5.6. Real Types: Removed . 23
II-3.5.7. Floating Point Types: Removed . 23
II-3.5.8. Operations of Floating Point Types Types: Removed . 23
II-3.5.9. Fixed Point Types: Removed . 23

II-3.6. Array Types: Removed . 23
II-3.7. Record Types: Removed . 23
II-3.8. Access Types: Removed . 23
II-3.9. Declarative Parts . 23

Chapter II-4. Names and Expressions . 25

II-4.1. Names . 25
II-4.2. Literals: Removed . 25
II-4.3. Aggregates: Removed . 25
II-4.4. Expressions . 25
II-4.5. Operators and Expression Evaluation . 26

II-4.5.1. Logical Operatiors and Short Circuit Control Forms: Removed 26
II-4.5.2. Relational Operators . 26

II-4.6. 4.6 through 4.10 Removed . 27

Chapter II-5. Statements . 29

II-5.1. Simple and Compound Statements - Sequences of Statements 29
II-5.2. Assignment Statement . 29
II-5.3. 5.3 through 5.9: Removed . 30

Chapter II-6. Subprograms . 31

II-6.1. Subprogram Specifications . 31
II-6.2. Formal Parameter Modes: Removed . 32
II-6.3. Subprogram Bodies . 32
II-6.4. 6.4 through 6.7: Removed . 32

Chapter II-7. Packages: Removed . 33

Chapter II-8. Visibility Rules . 35

II-8.1. Declarative Region . 35
II-8.2. Scope of Declarations . 36
II-8.3. Visibility . 36
II-8.4. Use Clauses: Removed . 37
II-8.5. Renaming Declarations: Removed . 37
II-8.6. The Package Standard . 37
II-8.7. Overload Resolution . 37

ii

Chapter II-9. Tasks: Removed . 39

Chapter II-10. Program Structure and Compilation Issues . 41

II-10.1. Compilation Units - Library Units . 41
II-10.2. Subunits of Compilation Units: Removed . 42
II-10.3. Order of Compilation: Removed . 42
II-10.4. The Program Library: Removed . 42
II-10.5. Elaboration of Library Units . 42
II-10.6. Program Optimization: Removed . 42

Appendix A. Predefined Language Attributes: Removed . 43

Appendix B. Predefined Language Pragmas: Removed . 44

Appendix C. Predefined Language Environment . 45

PART III
The Denotational Semantics of NanoAVA (Version 1)

Chapter III-1. The Denotational Definition . 49

III-1.1. Notations . 49
III-1.2. Abstract Syntax . 49
III-1.3. Static Semantics . 50

III-1.3.1. Domains . 50
III-1.3.2. Static semantics functions . 51
III-1.3.3. Static Semantic Definitions . 52

III-1.4. Dynamic Semantics . 53
III-1.4.1. Domains . 53
III-1.4.2. Dynamic Functions (signatures) . 53
III-1.4.3. Dynamic Semantics Definitions . 54

III-1.5. Inadequacies . 54

Chapter III-2. The Boyer Moore Definition . 55

III-2.1. Abstract syntax . 57
III-2.2. Normalization . 57
III-2.3. Static Domains . 58
III-2.4. Well-formedness predicates . 59
III-2.5. Test Cases for the Static Semantics . 61
III-2.6. Dynamic Semantics . 62
III-2.7. Test Cases for the Dynamic Semantics . 64

iii

PART IV
The Lisp Definition

Chapter IV-1. Syntax: The Grammar . 67

IV-1.1. Syntactic Rules . 68
IV-1.2. Syntactic Output . 71

Chapter IV-2. Static Semantics . 73

IV-2.1. Static Semantics Entry Point . 74
IV-2.2. Basic Support Function Definitions . 75
IV-2.3. Compilation . 75
IV-2.4. Types and Declarations . 76
IV-2.5. Statements . 77
IV-2.6. Expressions . 78
IV-2.7. Normalization Functions . 78
IV-2.8. Static Semantic Output . 79

Chapter IV-3. Dynamic Semantics: The Interpreter Definition 81

IV-3.1. Entry Point . 81

Chapter IV-4. Utility and Denotational Support Functions 83

IV-4.1. Parser Utilities . 88

Index . 92

iv

List of Figures

v

List of Tables

vi

