
The Partial Specification of
Microprocessor Instruction Set

Architectures

William R. Bevier

Technical Report 51
November 1989

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This work was sponsored in part at Computational Logic,
Inc., by the Defense Advanced Research Projects Agency,
ARPA Orders 6082 and 9151. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of Computational
Logic, Inc., the Defense Advanced Research Projects
Agency or the U.S. Government.

1

1. Introduction

The purpose of the work described in this paper is to formally specify an instruction set architecture in a

way that avoids over-specification. We wish our specification to permit reasonable implementation

alternatives. For instance, our instruction set specification does not require a particular instruction format.

Relaxation of requirements extends to machine size. We do not require a particular register file length, for

example. The result is a specification method not for a single architecture, but for a class of instruction set

architectures.

In this paper we describe our approach to specification, giving examples which are drawn from our formal

specification for an instruction set for a RISC architecture. Our specification is written in the Boyer-

Moore logic [Boyer & Moore 88]. Appendix A contains a brief summary of the Boyer-Moore logic.

1.1 Overview of the Approach

A machine instruction is modeled as a function I which takes a machine state to a machine state. If P is a

predicate which recognizes a valid machine state, we expect the following theorem to hold on P and I.

(IMPLIES (P X) (P (I X)))

In our approach to instruction set specification, we do not define P or I. We instead constrain them to

satisfy certain properties. The instruction set specification consists of a set of constraints: some on the

machine state, and others on machine instructions. The specification therefore defines a class of

machines. It is possible to prove that a fully specified architecture satisfies the constraints, and is

therefore an instance of the class of machines. Theorems proven about a class of machines also apply to

any instance it.

This formalization can be done in the Boyer-Moore logic with a new feature called functional

instantiation [Boyer, Goldschlag, Kaufmann, and Moore 89]. The feature permits two new actions.

CONSTRAIN declares a new function symbol and its arguments, and states properties of the function

without defining the function. To prove that introduction of the function symbol does not create an

inconsistency there is an obligation to exhibit a witness to the constrained function that satisfies the

constraints. The action FUNCTIONALLY-INSTANTIATE allows one to establish that a given function G

is an instance of the class of functions described by a given functional variable H.

The Boyer-Moore theorem prover provides mechanical support for these features. For a CONSTRAIN

event, it automatically generates the formulas necessary to prove that the witness function satisfies the

2

constraints, and it attempts the proof of these formulas. The event is successful when all of the formulas

are proved. For a FUNCTIONALLY-INSTANTIATE event, the prover automatically generates the

formulas required to prove that a function is an instance of a functional variable, and attempts their proof.

Again, the event is successful when all the formulas are proved. The implementation of functional

instantiation guarantees the consistency of the theory being developed.

The remaining sections of this paper are organized as follows. Section 2 outlines some primitive functions

necessary for specifying machine states and instructions. Section 3 shows how we specify an instruction

set architecture by constraints. Section 4 demonstrates how we formally prove that a particular

architecture satisfies the constraints.

2. Formal Preliminaries

In this section we introduce some primitive functions necessary to describe machine resources. Three

data types are used: booleans, bit vectors, and lists of bit vectors. They are used, respectively, to represent

bits, bit strings and arrays of bit strings (e.g., memories).

2.1 Bits

Individual bits are represented by the boolean data type. T represents 1 or ON, F represents 0 or OFF.

2.2 Bit Vectors

Strings of bits (e.g., bytes, words) are represented by bit vectors. A bit vector can be though of as a list (of

arbitrary length) whose elements are restricted to the boolean values T and F. A bit vector is defined in

the Boyer-Moore logic by the shell BV. This axiomatization follows Hunt’s [Hunt 87].

(ADD-SHELL BV BV-NIL BVP
((BV-BIT (ONE-OF FALSEP TRUEP) FALSE)
(BV-VEC (ONE-OF BVP) BV-NIL)))

Addition of the shell BV introduces five new functions: BV, BVP, BV-NIL, BV-BIT and BV-VEC. The

following axioms are asserted about these function symbols. (Others not mentioned are asserted as well.)

(BVP (BV-NIL))

(BVP (BV A B))

(EQUAL (BV-BIT (BV A B)) A)

(EQUAL (BV-VEC (BV A B)) B)

(BV-NIL) represents the empty bit vector. BV contructs a bit vector from a bit and another bit vector.

For example, the expression (BV F (BV-NIL)) represents the bit string "0", and

3

(BV F (BV T (BV F (BV T (BV-NIL)))))

represents the bit string "0101".

The function BVP recognizes a bit vector. The formula (BVP (BV-NIL)) is true. The function BV

applied to any arguments satisfies BVP. That is, (BVP (BV A B)) is true for any A and B. BVP

applied to a value not constructed from an application of either BV-NIL or BV is false. For example,

(BVP 1) is false.

BV-BIT accesses the first bit of a bit vector. For example,

(BV-BIT (BV F (BV T (BV-NIL))))

equals F. BV-VEC accesses the remainder of a bit vector following the first bit. The expression

(BV-VEC (BV F (BV T (BV-NIL))))

equals (BV T (BV-NIL)).

The following defined functions apply to bit vectors. BV-NILP recognizes a value which is either the

constant (BV-NIL) or is not a bit vector. The function BV-LENGTH returns the length of a bit vector.

(DEFN BV-NILP
(A)
(IF (BVP A) (EQUAL A (BV-NIL)) T))

(DEFN BV-LENGTH
(BV)
(IF (BV-NILP BV)

0
(ADD1 (BV-LENGTH (BV-VEC BV)))))

The function BV-WORDP recognizes a bit vector of a given length. For example, If X is an object for

which (BV-WORDP X 8) holds, then X represents a byte. (The function FIX coerces a non-number to

0.)

(DEFN BV-WORDP
(X BVLENGTH)
(AND (BVP X)

(EQUAL (BV-LENGTH X) (FIX BVLENGTH))))

The functions BV-TO-NAT and BV-TO-INT give the unsigned and 2s-complement interpretation,

respectively, of a bit-vector. These functions treat the first argument of a bit vector as the least significant

bit. For instance, the expression

(BV-TO-NAT (BV T (BV T (BV F (BV T (BV-NIL))))))

equals 11 (in decimal). For the 2s-complement interpretation of a bit vector, the high order bit (innermost

in the BV representation) is the sign bit. The expression

4

(BV-TO-INT (BV T (BV T (BV F (BV T (BV-NIL))))))

equals -5. The functions NAT-TO-BV and INT-TO-BV are the inverses, respectively, of BV-TO-NAT

and BV-TO-INT.

2.3 Lists of Bit Vectors

Arrays of bit strings (e.g., memories, register files) are represented by lists of bit vectors. Lists are a

primitive data type in the Boyer-Moore logic, and we do not discuss them at length here. Appendix A

introduces lists (i.e., ordered pairs) briefly.

Here are a few essential functions on lists. The symbol NIL represents an empty list. APPEND appends

two lists. (APPEND ’(A B C) ’(X Y)) equals ’(A B C X Y). LENGTH returns the length of a

list.

The functions GET and PUT provide direct access to elements of lists. All access uses zero-based

indexing. We do not present the definitions of these functions, but instead describe their properties. The

form (GET N L) returns the Nth element of a list L. (PUT N V L) takes as arguments an index N, a

value V and a list L. It returns a list identical to L everywhere except location N, and the value V is

guaranteed to occur at location N if N is a valid index (i.e., less than the length of the list).

The lemmas GET-PUT-COINCIDENCE and GET-PUT-NON-INTERFERENCE state the crucial

relationship between GET and PUT. First, GET retrieves a value placed at a given index by PUT, where

the index is required to be less than the length of the list. Second, PUT alters no element of a list other

than the one indexed.

(PROVE-LEMMA GET-PUT-COINCIDENCE
NIL
(IMPLIES (LESSP N (LENGTH L))

(EQUAL (GET N (PUT N V L)) V)))

(PROVE-LEMMA GET-PUT-NON-INTERFERENCE
NIL
(IMPLIES (NOT (EQUAL (FIX I) (FIX J)))

(EQUAL (GET I (PUT J V L))
(GET I L))))

Lists of bit vectors are used to represent memories. The function BV-WORDLISTP recognizes a list of

words. Each element of a word list is a bit vector of a given length. The lemma BV-WORDP-GET states

the fact that getting an element of a word list returns a word.

5

(DEFN BV-WORDLISTP
(L BVLENGTH)
(IF (LISTP L)

(AND (BV-WORDP (CAR L) BVLENGTH)
(BV-WORDLISTP (CDR L) BVLENGTH))

T))

(PROVE-LEMMA BV-WORDP-GET NIL
(IMPLIES (AND (BV-WORDLISTP L BVLENGTH)

(LESSP N (LENGTH L)))
(BV-WORDP (GET N L) BVLENGTH)))

3. Specifying a Class of Machines

In this section we explain how we formally constrain a specification for an instruction set architecture. As

an example, we have chosen a simple RISC machine architecture to demonstrate the technique. The

architecture is based on the description of a MIPS instruction set given by Firth [Firth 87]. The MIPS

architecture was originally designed at Stanford University [Hennessey 82] and a successor is now

available commercially. We make no claims that our specification is faithful to any existing MIPS

machine.

3.1 Constraining the Machine State

We have the following information about the user-visible state of a MIPS machine from [Firth 87].

• The processor is a 32-bit machine. Words are 32 bits wide, each consisting of four 8-bit
bytes.

• Processor resources include at least sixteen 32-bit general purpose registers and a number of
special purpose registers. Among the special purpose registers are a program counter and
status register, which are assumed to be disjoint from the general purpose registers.

• Fixed point numbers are represented in the 2s-complement notation.

• Memory is byte-addressable, and can be accessed in units of bytes, halfwords and words.
There are address alignment requirements for memory access.

We specify the instruction set in terms of its effect on four resources: a register file, a program counter, a

status register and a memory. The widths of all words is 32 bits. We do not specify a register file length.

Memory is assumed to be a single segment of 32-bit words. The length of memory is not specified. We

require that all of these resources are disjoint. The shell STATE defines a 4-tuple consisting of these

resources. Axioms introduced by the Boyer-Moore shell mechanism guarantee that the resources are

disjoint.

6

(ADD-SHELL STATE
NIL STATEP
((REGFILE (NONE-OF) ZERO)
(PC (NONE-OF) ZERO)
(SR (NONE-OF) ZERO)
(MEMORY (NONE-OF) ZERO)))

The shell declaration places no type restrictions on the components of a machine state. We introduce a

function symbol, GOOD-STATE, to constrain the type of each component. The constraints on

GOOD-STATE are given by the CONSTRAIN event GOOD-STATE-CONSTRAINTS below. A constraint

is a list of the form (CONSTRAIN <name> <type> <form> (...(<new > <old >)...)),i i

where <name> is a symbol which is the name of the event, <type> is a directive to the theorem prover

which we can ignore, each <new > is a new function symbol, each <old > (the witness function fori i

<new >) is a previously introduced function symbol or a lambda-expression consisting of previouslyi

introduced function symbols, and <form> (the constraint) is a formula presumably with occurences of

the <new >. The CONSTRAIN event is successful if <form>, with <old > substituted for <new >, is ai i i

theorem. See [Boyer, Goldschlag, Kaufmann, and Moore 89] for details.

The constraints on GOOD-STATE say three things.

• The type of GOOD-STATE: boolean.

• What can be inferred from GOOD-STATE: The register file is a list of bit vectors, at least 16
long, each element of which is 32 bits wide. The program counter is 32 bits wide. The
status register is 32 bits wide. The memory is a list of bytes, whose length is divisible by 4.

• Necessary conditions to infer GOOD-STATE. That is, if we know the above facts about the
register file, program counter, status register and memory, then GOOD-STATE can be
inferred.

As a witness to the constraint, we supply a function which recognizes a state in which the size of the

register file is exactly 16 and in which the length of memory is 0. In response to the constrain event, the

Boyer-Moore theorem prover automatically generates the formulas necessary to establish that the witness

function satisfies the constraints. The constraint is successfully processed when the formulas are proved,

assuring the consistency of the axioms introduced for the new function symbol GOOD-STATE.

7

(CONSTRAIN
GOOD-STATE-CONSTRAINTS NIL
(AND (OR (TRUEP (GOOD-STATE S))

(FALSEP (GOOD-STATE S)))
(IMPLIES (GOOD-STATE S)

(AND (STATEP S)
(BV-WORDLISTP (REGFILE S)

(WORD-LENGTH))
(EQUAL (LESSP (LENGTH (REGFILE S)) 16)

F)
(BV-WORDP (PC S) (WORD-LENGTH))
(BV-WORDP (SR S) (WORD-LENGTH))
(BV-WORDLISTP (MEMORY S)

(BYTE-LENGTH))
(EQUAL (REMAINDER (LENGTH (MEMORY S)) 4)

0)))
(IMPLIES (AND (GOOD-STATE STATE)

(STATEP S)
(BV-WORDLISTP (REGFILE S)

(WORD-LENGTH))
(EQUAL (LENGTH (REGFILE S))

(LENGTH (REGFILE STATE)))
(BV-WORDP (PC S) (WORD-LENGTH))
(BV-WORDP (SR S) (WORD-LENGTH))
(BV-WORDLISTP (MEMORY S)

(BYTE-LENGTH))
(EQUAL (LENGTH (MEMORY S))

(LENGTH (MEMORY STATE))))
(GOOD-STATE S)))

((GOOD-STATE
(LAMBDA (S)

(AND (STATEP S)
(BV-WORDLISTP (REGFILE S)

(WORD-LENGTH))
(EQUAL (LENGTH (REGFILE S)) 16)
(BV-WORDP (PC S) (WORD-LENGTH))
(BV-WORDP (SR S) (WORD-LENGTH))
(EQUAL (LENGTH (MEMORY S)) 0))))))

(DEFN BYTE-LENGTH NIL 8)

(DEFN HALFWORD-LENGTH NIL 16)

(DEFN WORD-LENGTH NIL 32)

In addition to formally characterizing the size of machine resources, constraints can be used to specify the

format of resources. Consider, for instance, the format of the status register. We require that the status

register contain certain flags and other fields, but we do not care which bits are assigned to these roles.

For our instruction set architecture, the status register is required to contain flags for signalling the

following conditions: arithmetic overflow, address error, and request for user trap. In addition, it is

required to have an 8-bit field that contains a trap code which a program uses to identify a trap.

8

We can state a constraint which requires that all of these fields occur within the status register, and that

they all be disjoint. The constraint introduces eight new function symbols, four for accessing the fields

described above, and four for constructing a new status register value given an old status register and a

new field value. For the sake of brevity, we display only some of the constraints on the function symbols

OVERFLOW? and SET-OVERFLOW, the accessor function and constructor function, respectively, for the

overflow flag. The witnesses for these two functions assign bit 8 of the status register to be the overflow

flag.

(CONSTRAIN
SR-ACCESS-CONSTRAINTS NIL
(AND (OR (TRUEP (OVERFLOW? SR))

(FALSEP (OVERFLOW? SR)))
(IMPLIES (BV-WORDP SR (WORD-LENGTH))

(BV-WORDP (SET-OVERFLOW BIT SR)
(WORD-LENGTH)))

(IMPLIES (AND (BV-WORDP SR (WORD-LENGTH))
(EQUAL (BV-LENGTH BV) (BYTE-LENGTH)))

(EQUAL (OVERFLOW? (SET-OVERFLOW B SR))
(TRUEP B))))

((OVERFLOW? (LAMBDA (SR) (BV-GET 8 SR)))
(SET-OVERFLOW (LAMBDA (BIT SR) (BV-PUT 8 BIT SR)))))

3.2 Constraining an Instruction

Having stated constraints on a machine state, we now turn to the problem of specifying machine

instructions. We specify an ADD instruction as an example.

First, we give some functions which specify the behavior of an ALU when supplied with two bit vector

arguments for addition. The function BV-IPLUS specifies signed addition. It returns the bit vector

representation of the integer that is the sum of the integer representation of the two arguments. (The

function IPLUS returns the signed sum of two signed numbers.) ALU-ADD specifies the full behavior of

the ALU for an ADD. A 2-tuple is returned. The first element is the sum as defined by BV-IPLUS, and

the second element is the overflow condition. The overflow condition occurs when the sum is not

2s-complement representable in a bit vector of a given length.

(DEFN BV-IPLUS
(BV1 BV2)
(INT-TO-BV (IPLUS (BV-TO-INT BV1)

(BV-TO-INT BV2))
(BV-LENGTH BV1)))

9

(DEFN ALU-ADD
(BV1 BV2)
(ALU-RESULT

(BV-IPLUS BV1 BV2)
(NOT (TC-REPRESENTABLE-INTEGER (IPLUS (BV-TO-INT BV1)

(BV-TO-INT BV2))
(BV-LENGTH BV1)))))

The remaining part of the specification of the ADD instruction states where operands occur within the

machine state, and how state is updated as a result of instruction execution. Since we are modeling a RISC

architecture, we consider only a register-to-register address mode.

We introduce the new function symbol EXECUTE-ADD to specify the ADD instruction. It takes four

arguments: S, a machine state; DST, the bit-vector representation of the destination register number;

SRC1 and SRC2, the bit vector representations of the register numbers of the two operands.

EXECUTE-ADD returns an updated machine state.

We introduce EXECUTE-ADD by constraining its behavior on each of the four components of a machine

state. The constraints are as follows.

• Register File: If the addition occurs without overflow, the destination register receives the
sum. If overflow occurs then the instruction is unspecified with respect to the register file.
(Therefore the implementation is free to store a result, leave the destination unchanged, or
take some other action.)

• Status Register: If the addition occurs without overflow, then the status register remains
unchanged, otherwise the overflow bit it set.

• Program Counter: Unchanged.

• Memory: Unchanged.

In addition to the resource constraints, we require that the addition return a "good state" as specified by

the constraints on the predicate GOOD-STATE.

The witness function for EXECUTE-ADD leaves the destination register unchanged on an overflow

condition. In the witness, the only state change that occurs on an overflow is the setting of the overflow

bit in the status register.

10

(CONSTRAIN
EXECUTE-ADD-CONSTRAINT NIL
(LET

((NEWSTATE (EXECUTE-ADD S DST SRC1 SRC2))
(RESULT (ALU-ADD (GET (BV-TO-NAT SRC1) (REGFILE S))

(GET (BV-TO-NAT SRC2) (REGFILE S)))))
(AND (IMPLIES (NOT (ALU-ERROR RESULT))

(EQUAL (REGFILE NEWSTATE)
(PUT (BV-TO-NAT DST)

(ALU-VALUE RESULT)
(REGFILE S))))

(EQUAL (SR NEWSTATE)
(IF (ALU-ERROR RESULT)

(SET-OVERFLOW T (SR S))
(SR S)))

(EQUAL (PC NEWSTATE) (PC S))
(EQUAL (MEMORY NEWSTATE) (MEMORY S))
(IMPLIES (AND (GOOD-STATE S)

(LESSP (BV-TO-NAT DST)
(LENGTH (REGFILE S)))

(LESSP (BV-TO-NAT SRC1)
(LENGTH (REGFILE S)))

(LESSP (BV-TO-NAT SRC2)
(LENGTH (REGFILE S))))

(GOOD-STATE NEWSTATE))))
((EXECUTE-ADD
(LAMBDA
(S DST SRC1 SRC2)
(LET
((RESULT (ALU-ADD (GET (BV-TO-NAT SRC1) (REGFILE S))

(GET (BV-TO-NAT SRC2) (REGFILE S)))))
(IF (ALU-ERROR RESULT)

(SET-SR (SET-OVERFLOW T (SR S)) S)
(SET-REGFILE (PUT (BV-TO-NAT DST)

(ALU-VALUE RESULT)
(REGFILE S))

S)))))))

This completes our specification example. In this section we have discussed three functions which

constrain various aspects of the architecture:

• GOOD-STATE-CONSTRAINTS constrains the size of machine resources,

• SR-ACCESS-CONSTRAINTS constrains the format of the status register, and

• EXECUTE-ADD-CONSTRAINT constrains the ADD machine instruction.

We have used this specification style to complete a specification for a machine architecture that includes a

number of additional ALU operations, load and store instructions, conditional and unconditional branch,

subroutine call and return, load address, and a trap instruction. This collection of constrained functions

specifies a class of architectures. The Boyer-Moore theorem prover processes these constraints so as to

which guarantee the consistency of the specification.

11

4. Instantiating the Specification

In this section we exhibit a part of a concrete specification for an instruction set architecture, called the X

machine for example machine. In the X machine, the size of all resources, the format of the status register,

and the effect of each instruction is completely specified. We show how the specification is proved to be

compliant with the constraints, and thus a member of the class of architectures defined by the constraints.

4.1 Instantiating the Machine State

We define functions which give the size of the register file and memory. We have chosen a register file

32length of 32, and a memory length of 2 .

(DEFN XREGFILE-LENGTH NIL 32)

(DEFN XMEMORY-LENGTH
NIL
(EXP 2 (WORD-LENGTH)))

The predicate GOOD-XSTATE recognizes an acceptable X machine state.

(DEFN GOOD-XSTATE
(S)
(AND (STATEP S)

(BV-WORDLISTP (REGFILE S)
(WORD-LENGTH))

(EQUAL (LENGTH (REGFILE S))
(XREGFILE-LENGTH))

(BV-WORDP (PC S) (WORD-LENGTH))
(BV-WORDP (SR S) (WORD-LENGTH))
(BV-WORDLISTP (MEMORY S)

(BYTE-LENGTH))
(EQUAL (LENGTH (MEMORY S))

(XMEMORY-LENGTH))))

To prove that GOOD-XSTATE conforms to the constraints established by GOOD-STATE, we give to the

Boyer-Moore theorem prover a FUNCTIONALLY-INSTANTIATE event. This event generates and

attempts to prove the formulas necessary to establish that GOOD-XSTATE satisfies the constraints

established for the functional variable GOOD-STATE. This event has the form

(FUNCTIONALLY-INSTANTIATE <name> <type> <form> <old-name> <fsubst>),

where <name> is a symbol that is the name of the event, <type> is a directive to the theorem prover

(which we will ignore), <old-name> is the name of a previous CONSTRAIN event, <fsubst> is a

functional substitution list, and <form> is the constraint contained in <old-name> with <fsubst>

applied. To succeed, the instantiation event must prove <form> as well as some other automatically

generated formulas. See [Boyer, Goldschlag, Kaufmann, and Moore 89] for details.

12

(FUNCTIONALLY-INSTANTIATE
GOOD-XSTATE-SATISFIES-CONSTRAINTS NIL
(AND (OR (TRUEP (GOOD-XSTATE S))

(FALSEP (GOOD-XSTATE S)))
(IMPLIES (GOOD-XSTATE S)

(AND (STATEP S)
(BV-WORDLISTP (REGFILE S)

(WORD-LENGTH))
(EQUAL (LESSP (LENGTH (REGFILE S)) 16)

F)
(BV-WORDP (PC S) (WORD-LENGTH))
(BV-WORDP (SR S) (WORD-LENGTH))
(BV-WORDLISTP (MEMORY S)

(BYTE-LENGTH))
(EQUAL (REMAINDER (LENGTH (MEMORY S)) 4)

0)))
(IMPLIES (AND (GOOD-XSTATE STATE)

(STATEP S)
(BV-WORDLISTP (REGFILE S)

(WORD-LENGTH))
(EQUAL (LENGTH (REGFILE S))

(LENGTH (REGFILE STATE)))
(BV-WORDP (PC S) (WORD-LENGTH))
(BV-WORDP (SR S) (WORD-LENGTH))
(BV-WORDLISTP (MEMORY S)

(BYTE-LENGTH))
(EQUAL (LENGTH (MEMORY S))

(LENGTH (MEMORY STATE))))
(GOOD-XSTATE S)))

GOOD-STATE-CONSTRAINTS
((GOOD-STATE GOOD-XSTATE)))

In a similar event, we instantiate the functions that constrain the format of the status register. We assign

specific bits within the status register to the interpretations required by the constraint. Recall from Section

3.1 that four fields are required: an overflow bit, and address error bit, a trap bit, and a trap code field. The

specification of the status register leaves room for assigning additional fields in the status register. In the X

architecture, another bit is used to flag an opcode error. We can make this assignment without affecting

the correctness of the other assignments. (We do not display the instantiation event here.)

4.2 Instantiating an Instruction

In this section we display a concrete specification for the ADD instruction with the function

XEXECUTE-ADD. This function makes explicit what happens on an ADD when an overflow occurs. In

this architecture, the destination register is updated with a truncated value on overflow. (The fact that

ALU-ADD returns a truncated value is a result of the specification function BV-IPLUS.)

13

(DEFN XEXECUTE-ADD
(S DST SRC1 SRC2)
(LET

((RESULT (ALU-ADD (GET (BV-TO-NAT SRC1) (REGFILE S))
(GET (BV-TO-NAT SRC2) (REGFILE S)))))

(IF (ALU-ERROR RESULT)
(SET-SR (XSET-OVERFLOW T (SR S))

(SET-REGFILE (PUT (BV-TO-NAT DST)
(ALU-VALUE RESULT)
(REGFILE S))

S))
(SET-REGFILE (PUT (BV-TO-NAT DST)

(ALU-VALUE RESULT)
(REGFILE S))

S))))

The instantiation event XEXECUTE-ADD-SATISFIES-CONSTRAINT establishes that

XEXECUTE-ADD satisfies the constraints established by EXECUTE-ADD.

(FUNCTIONALLY-INSTANTIATE
XEXECUTE-ADD-SATISFIES-CONSTRAINT NIL
(LET

((NEWSTATE (XEXECUTE-ADD S DST SRC1 SRC2))
(RESULT (ALU-ADD (GET (BV-TO-NAT SRC1) (REGFILE S))

(GET (BV-TO-NAT SRC2) (REGFILE S)))))
(AND (IMPLIES (NOT (ALU-ERROR RESULT))

(EQUAL (REGFILE NEWSTATE)
(PUT (BV-TO-NAT DST)

(ALU-VALUE RESULT)
(REGFILE S))))

(EQUAL (SR NEWSTATE)
(IF (ALU-ERROR RESULT)

(XSET-OVERFLOW T (SR S))
(SR S)))

(EQUAL (PC NEWSTATE) (PC S))
(EQUAL (MEMORY NEWSTATE) (MEMORY S))
(IMPLIES (AND (GOOD-XSTATE S)

(LESSP (BV-TO-NAT DST)
(LENGTH (REGFILE S)))

(LESSP (BV-TO-NAT SRC1)
(LENGTH (REGFILE S)))

(LESSP (BV-TO-NAT SRC2)
(LENGTH (REGFILE S))))

(GOOD-XSTATE NEWSTATE))))
EXECUTE-ADD-CONSTRAINT
((GOOD-STATE GOOD-XSTATE)
(EXECUTE-ADD XEXECUTE-ADD)
(TRAPCODE XTRAPCODE)
(OVERFLOW? XOVERFLOW?)
(ADDRESS-ERROR? XADDRESS-ERROR?)
(TRAPFLAG? XTRAPFLAG?)
(SET-TRAPCODE XSET-TRAPCODE)
(SET-OVERFLOW XSET-OVERFLOW)
(SET-ADDRESS-ERROR XSET-ADDRESS-ERROR)
(SET-TRAPFLAG XSET-TRAPFLAG)))

14

We have defined a complete X architecture, and proved that it satisfies the constraints stated for the

specification architecture. The specification stops with a collection of constrained functions that describe

the state and instruction set. The X specification is carried further to define a complete fetch-execute

cycle. The function XFETCH-EXECUTE below takes a machine state as argument, fetches and interprets

the current instruction according to a particular instruction format, and returns an updated machine state.

(DEFN XFETCH-EXECUTE
(S)
(IF (XVALID-ADDRESS (XINSTRUCTION-FETCH-ADDRESS (PC S))

(XFULLWORD-MODE)
(MEMORY S))

(XEXECUTE-INSTRUCTION (XFETCH-INSTRUCTION S)
(XINCREMENT-PC S))

(SET-SR (XSET-ADDRESS-ERROR T (SR S))
S)))

5. Summary

The use of functional instantiation makes it possible to specify a family of instruction set architectures.

The elements of the specification method are:
1. Introduce a "good state" predicate to constrain the size of machine resources.

2. Introduce any necessary constraints on the format of resources, as was done with the status
register above.

3. Introduce a constraint for each machine instruction. A constraint should state how an
instruction modifies each of the machine resources, and should require the instruction to
preserve a "good state".

The Boyer-Moore theorem prover provides mechanical support for checking the consistency of these

specifications. The prover can also be used to mechanically check the proof that a particular architecture

specification satisfies the constraints established by the constrained specification. Any properties proved

of the constrained architecture specification are inherited by a particular architecture.

We have carried out these steps for a simple RISC architecture modeled after a MIPS machine. The

specification for the concrete architecture X is at the same level of abstraction as Hunt’s specification for

FM8502 [Hunt 87]. The techniques used by Hunt to verify a gate-level implementation of FM8502 can

be used to verify an implementation of the X machine.

15

Appendix A

The Boyer-Moore Logic

A complete and precise definition of the logic can be found in [Boyer & Moore 88].

We use the prefix syntax of Pure Lisp to write down terms. For example, we write (PLUS I J) where

others might write PLUS(I,J) or I+J. We write (IMPLIES (P X) (EQUAL (F X) (G X))) in

place of P(X) → F(X) = G(X).

The logic is first-order and contains no quantifiers. It is defined as an extension of propositional calculus

with variables, function symbols, and the equality relation. Axioms define the following:

• the Boolean objects (TRUE) and (FALSE), abbreviated T and F;

• The if-then-else function, IF, with the property that (IF X Y Z) is Z if X is F and Y
otherwise;

• the Boolean "connector functions" AND, OR, NOT, and IMPLIES; for example, (NOT P) is
T if P is F and F otherwise;

• the equality function EQUAL, with the property that (EQUAL X Y) is T or F according to
whether X is Y;

• inductively constructed objects, including:
• Natural Numbers. Natural numbers are built from the constant (ZERO) by

successive applications of the constructor function ADD1. The function NUMBERP
recognizes natural numbers, e.g., is T or F according to whether its argument is a
natural number or not. The function SUB1 returns the predecessor of a non-0 natural
number.

• Ordered Pairs. Given two arbitrary objects, the function CONS returns an ordered
pair containing them. The function LISTP recognizes such pairs. The functions
CAR and CDR return the two components of such a pair.

• Each of the classes above is called a "shell", which can be thought of as a data type. T and F
are each considered the elements of two singleton shells. Axioms insure that all shell
classes are disjoint;

• the definitions of several useful functions, including:
• LESSP which, when applied to two natural numbers, returns T or F according to

whether the first is smaller than the second;

• COUNT which, when applied to an inductively constructed object, returns its "size;"
for example, the COUNT of an ordered pair is one greater than the sum of the
COUNTs of the components.

The user can add of new shells, i.e., new data types. A shell defines a new class of n-tuples with type

restrictions on each component. For each shell there is a recognizer (e.g., LISTP for the ordered pair

shell), a constructor (e.g., CONS), an optional empty object (e.g., there is none for the ordered pairs but

(ZERO) is the empty natural number), and n accessors (e.g., CAR and CDR).

16

The logic provides a principle of recursive definition under which new function symbols may be

introduced. Consider the definition of the list concatenation function APPEND.

(DEFN APPEND
(X Y)
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y))
Y))

The equations submitted as definitions are accepted as new axioms under certain conditions that guarantee

that one and only one function satisfies the equation. One of the conditions is that certain derived

formulas be theorems. Intuitively, these formulas insure that the recursion "terminates" by exhibiting a

"measure" of the arguments that decreases, in a well-founded sense, in each recursion. A suitable derived

formula for APPEND is the following.

(IMPLIES (LISTP X)
(LESSP (COUNT (CDR X)) (COUNT X)))

However, in general the user of the logic is permitted to choose an arbitrary measure function (COUNT

was chosen above) and one of several relations (LESSP above).

The rules of inference of the logic, in addition to those of propositional calculus and equality, include

mathematical induction. The formulation of the induction principle is similar to that of the definitional

principle. To justify an induction schema it is necessary to prove certain theorems that establish that,

under a given measure, the inductive hypotheses are about "smaller" objects than the conclusion.

Using induction it is possible to prove such theorems as the associativity of APPEND.

(PROVE-LEMMA ASSOCIATIVITY-OF-APPEND
NIL
(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C))))

Acknowledgements

Thanks to Bishop Brock, Matt Wilding and Bill Young for reading drafts of this paper.

18

References

[Boyer & Moore 88]
R. S. Boyer and J S. Moore.
A Computational Logic Handbook.
Academic Press, Boston, 1988.

[Boyer, Goldschlag, Kaufmann, and Moore 89]
R.S. Boyer, D. Goldschlag, M. Kaufmann, J S. Moore.
Functional Instantiation in First Order Logic.
Technical Report 44, Computational Logic, Inc., 1717 West Sixth Street, Suite 290

Austin, TX 78703, May, 1989.

[Firth 87] R. Firth.
Core Set of Assembly Language Instructions for MIPS-based Microprocessors.
Technical Report, Software Engineering Institute, 580 South Aiken Avenue, Pittsburgh,

PA, 15213, January, 1987.

[Hennessey 82] J.L. Hennessey, N. Jouppi, J. Gill, F. Baskett, A. Strong, T. Gross, C. Rowen,
J. Leonard.
The MIPS Machine.
In IEEE Compcon. 1982.

[Hunt 87] Warren A. Hunt, Jr.
The Mechanical Verification of a Microprocessor Design.
Technical Report CLI-6, Computational Logic, Inc., 1717 West Sixth Street, Suite 290

Austin, TX 78703, 1987.

Table of Contents

1. Introduction . 1
1.1. Overview of the Approach . 1

2. Formal Preliminaries . 2
2.1. Bits . 2
2.2. Bit Vectors . 2
2.3. Lists of Bit Vectors . 4

3. Specifying a Class of Machines . 5
3.1. Constraining the Machine State . 5
3.2. Constraining an Instruction . 8

4. Instantiating the Specification . 11
4.1. Instantiating the Machine State . 11
4.2. Instantiating an Instruction . 12

5. Summary . 14

Appendix A. The Boyer-Moore Logic . 15

Acknowledgements . 17

i

