
The Proof of Correctness of a
Fault-Tolerant Circuit Design

William R. Bevier
William D. Young

Technical Report 57
August 1990

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This work was sponsored in part at Computational Logic,
Inc. by National Aeronautics and Space Administration
Langley Research Center (NAS1-18878). The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of
Computational Logic, Inc., NASA Langley Research
Center or the U.S. Government.

1

Abstract

We describe a formally verified implementation of the ‘‘Oral Messages’’ algorithm of Pease,
Shostak, and Lamport [4, 5]. An abstract implementation of the algorithm has been verified to
achieve interactive consistency in the presence of faults [1]. This abstract characterization is
then mapped down to a hardware level implementation which inherits the fault-tolerant
characteristics of the abstract version. The proof that the hardware level description is a correct
implementation of the ‘‘Oral Messages’’ algorithm has been fully checked with a mechanical
theorem prover. A significant result of this work is the demonstration of a fault-tolerant device
that is formally specified and whose implementation is proved correct with respect to this
specification.

Key words. Fault tolerance, mechanical theorem proving, program verification, specification.

2

1. Introduction

A key problem facing the designers of systems which attempt to ensure fault tolerance by redundant

processing is how to guarantee that the processors reach agreement, even when one or more processing

units are faulty. Pease, Shostak and Lamport [5, 4] have devised the notion of interactive consistency,

which formally characterizes what it means for non-faulty processors to reach agreement. They prove that,

given certain assumptions about the type of inter-process communication, interactive consistency can be

achieved if and only if the total number of processors exceeds three times the number of faulty processors.

They also provide a clever algorithm which achieves interactive consistency.

Our goal was a verified hardware implementation of the ‘‘Oral Messages’’ (OM) algorithm of Pease,

Shostak, and Lamport. Our approach to achieving this was to proceed in several phases. In the first

phase, we defined an ‘‘abstract implementation’’ of the algorithm in the Boyer-Moore logic and proved

that this high-level formalization achieved interactive consistency. We then defined a low-level

characterization of the algorithm and proved that our low-level version is a correct implementation of our

high-level version. As a consequence of this proof, we are guaranteed that our low-level implementation

achieves interactive consistency.

An earlier paper [1] reports on our work to describe our abstract implementation of the algorithm in the

Boyer-Moore logic. We stated the interactive consistency conditions in the logic, and used the Boyer-

Moore theorem prover to check a proof that our formalization of OM satisfies these conditions. We also

mechanically checked the result presented by Lamport, Shostak and Pease that OM provides an optimal

solution: no algorithm exists which achieves interactive consistency via an exchange of oral messages if

the number of faulty processors is at least one third of the total.

In this paper we present the design of a hardware implementation of OM(1)— the instance of OM which

tolerates one faulty process when there are at least three non-faulty processes. We have mechanically

checked the proof that the hardware design implements OM(1), and therefore achieves interactive

consistency.

The paper is organized as follows. The following section describes our formal specification of the Oral

Messages algorithm and its correctness properties. Section 3 describes our implementation of the

algorithm and Section 4 sketches the proof that our implementation satisfies its specification. Finally,

Section 5 gives some of our conclusions and observations on this development process.

3

2. The Specification

2.1 Interactive Consistency & The Function OM

The problem addressed by the interactive consistency algorithm is the following: given a number of

communicating processors, how can they arrive at a consistent view of the system if there are faulty

processors among them which potentially send conflicting information to different parts of the system.

Lamport, Shostak, and Pease [4] describe the problem in terms of the metaphor of Byzantine Generals

attempting to arrive at a common battle plan through an exchange of messages. One or more of the

generals may be traitorous and attempt to thwart the loyal generals by preventing them from reaching

agreement.

It is straightforward to state the problem in terms of a single commanding general communicating with a

number of lieutenant generals. In this case we desire an algorithm which guarantees the following.

A commanding general must send an order to his n - 1 lieutenant generals such that

IC1. All loyal lieutenants obey the same order;

IC2. If the commanding general is loyal, then every loyal lieutenant obeys the order he
sends.

Conditions IC1 and IC2 are called the interactive consistency conditions. [4]

The interactive consistency conditions can be formalized fairly straightforwardly. Let n be some number

− −of processes. Let v be a vector of length n, where v [i] is the local value of process i, i ∈ {0, ..., n − 1}. Let

−L be the set {0, ..., n − 1} of indices into v . This serves as the set of process names.

We assume a predicate faulty : L → {T, F} that identifies a potentially faulty process. A faulty process

Lmay or may not forward a message correctly. We also assume a function faults : 2 → N that counts the

number of potentially faulty processes in a set of process names. The functions faulty and faults serve

only in the specification of the problem; they are not computable.

− −Let g (the general) be a member of L and w be a vector of length n, where each entry w [i] is the valueg g
−which process i concludes is process g’s local value. w satisfies the interactive consistency conditions ifg

for each i, j ∈ L − {g} we have the following.

− −IC1. ¬ faulty(i) & ¬ faulty(j) → w [i] = w [j]g g
− −IC2. ¬ faulty(g) & ¬ faulty(i) → w [i] = v [g]g

4

We have formalized in the Boyer-Moore logic a version of the Oral Messages algorithm of Pease,

Shostak, and Lamport [5]. This algorithm, and our (abstract) implementation of it in the form of a

−function OM in the Boyer-Moore logic, produces a vector w which satisfies the interactive consistency

conditions. The vector is computed after some number of rounds of information exchange among the

processes.

Our Boyer-Moore function OM takes four parameters: n, the number of processes; g, the name of the

−general; x = v [g], the general’s local value; and m, an integer which determines the number of rounds of

information exchange to take place. Lamport, Shostak and Pease [4] prove that OM is guaranteed to

achieve interactive consistency only if n is greater than three times the number of faulty processes. The

number of rounds of information exchange m must be at least the number of faulty processes.

An accompanying paper [1] presents our formal definition of OM, and describes our mechanically

checked proof that our formalization of the algorithm produces a vector which satisfies the interactive

consistency conditions. Our formal statements of the two theorems that OM satisfies IC1 and IC2,

respectively, are given below. We believe that these are an intuitive and straightforward formalization of

the interactive consistency conditions.

¬ faulty(i)
& ¬ faulty(j)

.& 3 faults(L) < n
& faults(L) ≤ m

→
OM(n, g, x, m)[i] = OM(n, g, x, m)[j],

¬ faulty(g)
& ¬ faulty(i)

.& 3 faults(L) < n
& faults(L) ≤ m

→
OM(n, g, x, m)[i] = x

2.2 Multiple Applications of OM

To reach agreement, each process among a set of processes must act in turn as the general in an

application of OM. We define the function OML recursively to apply OM to each member of a list of

1process names.

i− − −1The notation |v | denotes the length of vector v , which in this case gives the number of processes n. The notation v | denotes ax
vector with the following property.

i− −v | [j] ≡ if j = i then x else v [j]x

5

−OML(nil, v , m) ≡ nil

g− − − −OML(cons(g, l), v , m) ≡ cons(OM(|v |, g, v [g], m) | , OML(l, v , m))−v [g]

The expression

g− −OM(|v |, g, v [g], m) | −v [g]
− −in this definition denotes the vector w in which, for each i ≠ g ∈ L, w[i] records the value which process i

− −concludes is process g’s local value, after m rounds of information exchange. The value of w[g] is v [g],

g’s local value.

− −thOML produces an n × n matrix in which the i row is a vector w of values such that w [j] is j’s guess ati i
thi’s local value. The i column of the matrix is the interactive consistency vector for process i. This vector

−contains the values which process i concludes is the local value for each process. OML(L, v , m)[i, g] is

the value which process i concludes is process g’s local value.

We can derive the following two facts about OML as a result of the interactive consistency conditions

proved of OM.

1. In the matrix value of OML, any two non-faulty processes agree on the local value of all
other processes.

2. Each non-faulty process has the correct value for a non-faulty general.

These facts correspond to IC1 and IC2, respectively. The formal versions are displayed below.

¬ faulty(i)
& ¬ faulty(j)

.& 3 faults(L) < n
& faults(L) ≤ m

→
- -OML(L, v, m)[i, g] = OML(L, v, m)[j, g]

¬ faulty(g)
& ¬ faulty(i)

.& 3 faults(L) < n
& faults(L) ≤ m

→
- -OML(L, v, m)[i, g] = v[g]

From these two properties, we can prove that two non-faulty processes have identical interactive

consistency vectors. That is,

6

¬ faulty(i)
& ¬ faulty(j)

.& 3 faults(L) < n
& faults(L) ≤ m

→
- -OML(L, v, m)[i] = OML(L, v, m)[j].

2.3 Traces of OM Applications

The function OML formally describes a single instance of n processes reaching agreement through m

rounds of information interchange. This formalization is not conducive to mapping down to a lower-level

implementation which executes the algorithm in a number of ‘‘steps.’’ Therefore, we define a trace

* *function O to model n processes attempting to reach agreement through time. The input to O is

− thsequence of n-tuples of sensed values where element s of the sequence is a vector in which the i element

* −represents the input to process i. O produces a sequence of output vectors. Each element o of the output

thsequence is a vector in which the i element represents the output from process i.

−At each step, the trace function applies a step function O. The input to O is one of the input n-tuples s ,

−and its output is one of the vectors o. The function O involves an application of OML, and of a filter

function which computes an output value based on an interactive consistency vector. An example of such

a filter function is Majority. O is defined by the following formula. For j ∈ L = {0, ..., n − 1},

− −O(s , m)[j] ≡ filter(OML(L, s , m)[j])

The trace function can be written as follows.

*O (nil, m) ≡ nil

* − − *O (cons(s , l), m) ≡ cons(O(s , m), O (l, m))

* *An elementary theorem about O is that for an input sequence Σ, O (Σ, m)[i] = O(Σ[i], m).

The Byzantine properties of OML are provably inherited by the trace version. In particular, we can prove

that, given a sufficiently small number of faulty processes, two non-faulty processes always agree on their

outputs. That is, for a trace of input n-tuples l, and for index k into that trace,

¬ faulty(i)
& ¬ faulty(j)

.& 3 faults(L) < n
& faults(L) ≤ m

→
* *O (l, m)[k][i] = O (l, m)[k][j].

This conclusion follows from the fact that processes i and j have identical interactive consistency vectors,

7

and therefore filter must produce the same value for both processes.

Instantiating this trace function with n = 4 and m = 1 gives us a specification for a system of four

redundant processes that achieve Byzantine agreement, and which can tolerate up to one faulty process.

The architecure of this system is illustrated in Figure 1.

Figure 1: Four Redundant Processes

3. The Implementation

Implementing of our circuit entails describing the internal logic of each of the four processes represented

by the boxes in Figure 1. These processes achieve agreement after exchanging messages. A goal of our

design was for the four processes to be identical; this goal was achieved.

Each process has five inputs: an sensor value, clock, and data lines from each of the other three processes.

Additionally, each process has four outputs: an actuator and data lines out to each of the other processes.

These inputs and outputs are listed below. In our formal description of the circuit the widths of these data

paths are not fixed. This leaves the implementor free to choose a data width.

• sense. A sensed value.

• clock. A clock waveform.

• data_in. Inputs from the three other processes.

8

• data_out. Outputs to the three other processes.

• actuator. Output to some actuator.

sense

clock

actuator

M M M

filter

counter matrix

icv
 icv

data_in

data_out

Figure 2: The Internal State of a Process

Figure 2 shows the internal state of a single process, along with some of the internal data paths. The

internal state of a process contains the following components.

• counter. A 3-bit counter, used to cycle a process through 8 steps.

• matrix. A 3 × 3 matrix of data used to store values received during the information
exchange.

• icv. The 1 × 4 interactive consistency vector for this process. ICV[3] holds the process’s
local value, derived from the sense input.

The inter-connection of the processes to accomplish information exchange is depicted in Figure 3. Each

arrow represents one-way communication. For each i ∈ {0, 1, 2, 3}, and j ∈ {0, 1, 2}, data_in[j] for

process i is connected to data_out[2 − j] of process (i + j) mod 4. The interconnection scheme is

9

2designed to assure that all of the processes are identical.

Each process cycles through the 8 steps described in Figure 4. The purpose of each step is described

below. The steps are numbered by the value of the 3-bit counter. The four processes share the clock input

and hence perform these steps synchronously.

0. Read the sensed input. Save this as the process’s local value in ICV[3]. Also, place this
value on the output lines to the other three processes. This begins the report of each
process’s local value to all of the other processes.

1. Receive the local values of the other three processes, and store them in row 0 of the matrix.

2,3. Fill the remaining rows of each matrix with the reports of each process’s value. In steps 2
and 3 each process receives two values from each of the other three processes. At the end of
step 3, the information exchange required for the four instances of OM(1) is complete, as
depicted in Figure 5.

4. Compute the interactive consistency vector. This is accomplished by computing the majority
of the three reported values for each of the other processes. (The circle labeled M in Figure 2
represents a 3-input majority circuit.)

5. Compute the actuator output based on the value of the interactive consistency vector. This is
represented by a call to a function filter. In our specification filter is not defined, but is
constrained to be invariant under rotation of its argument

6,7. No state change other than incrementing the counter.

1

1 20
2

0

1

1
2

20

0

1

1
2

20

0

1

1
2

20

0

Figure 3: Process Interconnections

The behavior of this circuit can be summarized as follows. Each process senses its input simultaneously,

goes through three steps of information exchange, determines an interactive consistency vector, and then

produces an actuator value 5 steps after the input was sensed. The actuator value is fixed until a new

2A result is that the interactive consistency vectors computed by two non-faulty processes are not actually identical, but are, in
fact, rotations of one another. This implies that the filter function defined on the interactive consistency vector must be invariant
under rotations of its vector argument.

10

actuator value is computed on the next cycle.

Case Counter:

0: data_out[i] ← sense, i ∈ {0, 1, 2}
icv[3] ← sense
clock ← clock+1

1: matrix[0,i] ← input[i], i ∈ {0, 1, 2}
data_out[0] ← input[1]
data_out[1] ← input[0]
data_out[2] ← input[0]
clock ← clock+1

2: matrix[1,i] ← input[i], i ∈ {0, 1, 2}
data_out[0] ← matrix[0,2]
data_out[1] ← matrix[0,2]
data_out[2] ← matrix[0,1]
clock ← clock+1

3: matrix[2,i] ← input[i], i ∈ {0, 1, 2}
clock ← clock+1

4: icv[0] ← majority(matrix[0,0], matrix[1,2], matrix[2,1])
icv[1] ← majority(matrix[0,1], matrix[1,0], matrix[2,2])
icv[2] ← majority(matrix[0,2], matrix[1,1], matrix[2,0])
clock ← clock+1

5: Actuator ← filter(icv)
clock ← clock+1

6: clock ← clock+1

7: clock ← clock+1

Figure 4: Process Steps

4. The Proof of Correctness

We want to be able to assert about our circuit design that the actuator values for all non-faulty processes

agree, even in the presence of a single faulty process. How can we convince ourselves that this is true?

Our design is fairly simple, but has some tricky details where mistakes can easily be made.

To convince ourselves of this assertion we have proved the design correct, and mechanically checked the

proof with the Boyer-Moore theorem prover [2, 3]. The specification and proof of correctness consists of

the following elements.

11

Figure 5: Rounds of Information Exchange for OM(1)

• Correctness of the function OM. The function OM is defined in the Boyer-Moore logic,
and is proved to satisfy interactive consistency conditions.

*• The Circuit Specification Function. The trace function O described in Section 2 of this
paper is defined in the logic. This function includes a call to OM to perform the information
exchange. Because OM achieves interactive consistency, it is possible to prove that at any
point in the trace all non-faulty processes agree if there are a sufficient number of non-faulty
processes. The instance of this trace function with n = 4 and m = 1 serves as a specification
function for our circuit design.

• The Circuit Implementation Function. The design of the circuit is formalized in the
Boyer-Moore logic. A function named LOCAL−STEP is defined to formally express the
state changes to a single process as described in Figure 4. A function GLOBAL−STEP
applies LOCAL−STEP on each clock tick to each of the four processes. GLOBAL−STEP also

*formally describes the data flow among processes. A trace function C uses GLOBAL−STEP
* *as its step function. C is proved to ‘‘correspond’’ to the function O (defined in Section 2).

Describing the sense in which these functions correspond is the purpose of the remainder of
this section.

* − *The trace function C is defined as follows. Let st be a vector of four process states, and let G be the

*trace of these states. Each G [k] contains a 4-tuple with the state of each process after k applications of

GLOBAL−STEP.

* −G (nil, st) ≡ nil

* − − − * − −G (cons(s , l), st) ≡ cons(st, G (l, global−step(s , st)))

* *The trace function C is defined in terms of G by projecting out of the state of each process the value of

* *its actuator at each step of the trace. The relationship between G and C is depicted in Figure 6. For

i ∈ {0, 1, 2, 3} and for k an index into the trace,

* − * −C (l, st)[k][i] = actuator(G (l, st)[k])[i].

12

* * *The time granularity of C is greater than that of O . It takes C five clock ticks to compute actuator

values in response to a set of sense inputs. The intermediate steps of the trace are not of interest in the

statement of interactive consistency. It is useful to define the notion of trace selection. The n−selection of

st 3a trace t is the trace consisting of successive (n − 1) elements of t. .

Select (n, t) ≡ if |t| ≥ n then cons (t[n − 1], Select (n, NthCdr(t, n))) else nil

*The proof of correctness of the circuit design requires the proof that some selection on C equals the trace

*O . We have chosen n = 7 as the selector value in our proof. The following theorem formally relates the

behavior of the circuit design to the specification function. Figure 6 depicts this relationship proved

* *between C and O .

* − *Select(7, C (l, st)) = O (l, 1)

*Recall the following fact about O (discussed in Section 2.3) which says that two non-faulty processes

agree on their outputs. For a trace of input n-tuples l, and for index k into that trace,

¬ faulty(i)
& ¬ faulty(j)

.& 3 faults(L) < n
& faults(L) ≤ m

→
* *O (l, m)[k][i] = O (l, m)[k][j].

* −Substituting Select(7, C (l, st)) into this lemma, with n = 4, m = 1 and L = {0, 1, 2, 3} gives a theorem

*which says that the circuit design, as defined by C , achieves agreement every 7th ‘‘tick’’ of the clock.

¬ faulty(i)
& ¬ faulty(j)

.& 3 faults(L) < n
& faults(L) ≤ m

→
− −* *Select(7, C (l, st))[k][i] = Select(7, C (l, st))[k][j].

We take the proof of this theorem as a satisfactory formal demonstration of the correctness of the circuit

design.

3The function NthCdr(t, n) returns the list of length |l| − n, where NthCdr(l,n)[i] = l[i + n]

13

G*

C*

O*

Figure 6: Correspondence among Trace Functions

5. Conclusion

We have verified a low-level hardware implementation of the Oral Messages algorithm of Pease, Shostak,

and Lamport using a high-level abstract implementation as its specification. Because this abstract

implementation has been formally proven to achieve interactive consistency, we are assured that our

low-level implementation is fault-tolerant as well.

The main achievement of this work is the demonstration of a fault-tolerant device that can be formally

specified, and whose implementation can be proved correct. We have shown how to formally relate an

abstract algorithm like OM to a design which is implementable in hardware.

The main limitation of our device specification is that it does not explicitly account for distributed

processes. Processes are described as operating synchronously. This simplifies the problem dramatically.

Addressing this limitation is a future goal of our work.

All of the proofs, from the proof of correctness of the general Oral Messages Algorithm to the proof of the

hardware implementation were fully machine checked. Proponents of the view that such fully formal and

14

machine checked proofs do not contribute materially to mathematics or engineering may feel that our

effort was superfluous.

From a mathematical perspective, we believe that two important goals of proof are to increase one’s

understanding and intuition about the content and significance of a theorem, and to provide a convincing

argument that it is, in fact, valid. Our proof efforts led us to develop a very clean and unambiguous

statement of the algorithm and its correctness properties. We believe that we understand this quite subtle

algorithm and the reason it works much better for the effort. Moreover, our success in convincing a

congenitally skeptical mechanical proof checker of the validity of this theorem practically guarantees that

we have eliminated any errors which the much touted ‘‘social process’’ might overlook. Such confidence

is particularly comforting in domains such as fault-tolerant and real-time computing where a well-

developed intuition is difficult to cultivate; the theorem prover is not subject to being misled by the

urgings of a misguided or ill-informed intuition.

From an engineering perspective, we feel that our approach has several benefits. By proving properties

such as the interactive consistency conditions with respect to our high-level abstract implementation, we

retain the clarity and abstractness of the published algorithm and benefit from the intuitions derived from

the published proof. By then mapping down to a more concrete characterization, but one which provably

retains the fault-tolerant characteristics of the abstract version, we are able to derive a hardware level

characterization of the algorithm which is trivial to implement. We suspect that an attempt to implement

the Oral Messages algorithm directly from the published abstract presentation would be extremely error-

prone.

15

References

1. W.R. Bevier and W.D. Young. Machine Checked Proofs of a Byzantine Agreement Algorithm.
Technical Report 55, Computational Logic, Inc., June, 1990.

2. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

3. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, Boston, 1988.

4. {Leslie Lamport, Robert Shostak, and Marshall Pease
. "The Byzantine Generals Problem". ACM TOPLAS 4, 3 (July 1982), 382-401.}

5. {Marshall Pease, Robert Shostak, and Leslie Lamport
. "Reaching Agreement in the Presence of Faults". JACM 27, 2 (April 1980), 228-234.}

Table of Contents

1. Introduction . 2
2. The Specification . 3

2.1. Interactive Consistency & The Function OM . 3
2.2. Multiple Applications of OM . 4
2.3. Traces of OM Applications . 6

3. The Implementation . 7
4. The Proof of Correctness . 10
5. Conclusion . 13

i

List of Figures

Figure 1: Four Redundant Processes 7
Figure 2: The Internal State of a Process 8
Figure 3: Process Interconnections 9
Figure 4: Process Steps 10
Figure 5: Rounds of Information Exchange for OM(1) 11
Figure 6: Correspondence among Trace Functions 13

ii

