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Abstract

This report describes the proof of an application on the CLI short stack de-
scribed in [2]. The application generates moves in a game of Nim. We describe
Nim and formalize the notion of optimal play. We develop a specification that
also includes some simple real-time constraints. A Piton program that imple-
ments the specification is presented, along with an Nqthm-checked correctness
proof. We make some observations about proving Piton programs correct, and
describe the use of the fabricated FM9001 to run the compiled program.

1 Introduction

Improvement in computer hardware has led to computer control of power
plants, aircraft, pacemakers, chemical processes, and many other things. Relia-
bility 1s particularly important in these kinds of applications in order to ensure
safety, but hardware improvement has also led to software so complex that it
is unpredictable and therefore undependable. The application of software engi-
neering practices such as rigorous testing can improve matters somewhat, but
the correctness of a computer system can not be guaranteed this way.

Correct operation of these sorts of control programs require not just func-
tional correctness — that the program produce the correct answer. A correct
control program must operate in real-time, so it must produce answers in a
timely fashion.

One approach to developing dependable software is to formalize a problem
specification in a logic, formalize the semantics of a computer language in the
logic, and prove that a particular program written in the computer language
meets the requirements of the problem specification. Extra reliability can be
achieved by checking the proof mechanically. This report describes a small
application proved to have certain desirable properties. Some of these properties
involve a simple characterization of the program’s timeliness.

We discuss briefly some related work in Section 2. In Section 3 we develop a
specification for a program that plays Nim, a mathematical game that has been
played for centuries. Section 4 describes an algorithm and implementation of
this program, and a correctness proof is discussed in Section 5. Appendix A lists
the program, and Appendix B lists the input to a mechanical theorem prover
that constitutes a mechanical proof of the correctness theorem.

2 Background

Ngthm is the name of both a logic and an associated theorem-proving system
that are documented in [4]. A large number of mathematical theorems from
many disparate domains have been proved using Nqthm. One of these domains
1s computer systems verification.
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Figure 1: The Piton correctness proof.

[8] describes the implementation of a compiler for the language Piton and
the associated mechanically-checked correctness theorem. A formal semantics
for Piton, a formal description of the FM9001 microprocessor, and the Piton
compiler are introduced as Nqthm functions. The compiler correctness theorem
relates the data values after running a Piton program (using Piton’s formal
semantics) to the data values computed by the FM9001 running a compiled
Piton program.

The semantics of Piton is described using an interpreter function. A Piton
state consists of elements that comprise a programmer’s model of how Piton
executes: a list of Piton programs to run, a user-addressable stack, a current
instruction pointer, a subroutine calling stack, a data area, the word size, stack
size limits, and a program status flag. The interpreter function P takes as
arguments a Piton state and the number of Piton instructions to run and returns
the Piton state resulting from the computation.

The semantics of FM9001 is also described using an interpreter function. An
FM9001 state consists of elements that comprise a programmer’s model for the
FM9001 design: values for the register file, the condition flags, and the memory.
The interpreter function FM9001-DESIGN takes as arguments an FM9001
state and the number of FM9001 instructions to run and returns the FM9001
state resulting from the computation.

The Piton correctness theorem is suggested by Figure 1. LOAD is the Piton
compiler, and DISPLAY is a function that extracts a Piton data segment from
an FM9001 image. Roughly speaking, the theorem states that the data segment
calculated by a Piton program running on the Piton interpreter and the data
segment calculated by running a compiled Piton program on the FM9001 are
identical.

An interpreter function serves as a precise specification for the expected be-
havior of a system component. This general approach to system verification is
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described fully in [2]. Interpreter functions can be very complex: Piton has 71
instructions and some high-level features, and the definition of P in the Nqthm
logic requires about 50 pages. Two other related projects have used the inter-
preter approach. [11] describes a verified compiler for the Pascal-like language
Micro-Gypsy that generates Piton code. [6] and [1] describe a microprocessor
design that is proved to satisfy the behavior formalized by the FM9001 specifica-
tion. Since these proofs use the same interpreter functions as in the Piton proof,
the correctness theorems of these three projects can be “stacked” to derive a
single correctness theorem that relates Micro-Gypsy semantics to a compiled
Micro-Gypsy image running on an FM9001. Taken together these projects are
known as the CLI short stack.

Recent work on fabricating and making usable the FM9001 has progressed.
It is possible to run a Piton program on an actual FM9001 using a specially-
constructed test board. (See [1] for a description of this effort, including details
of three trivial but currently unverified changes made to the Piton compiler to
make the compiled Piton code usable on the FM9001 test board.)

Real-time programs are programs that have real, “clock on the wall” | timing
requirements. In this project we prove that the number of Piton instructions a
program executes is within a specified range. This is a natural sort of proof to
accomplish given the interpreter-based approach used to formalize programming
languages in [2]. We will call this kind of constraint a simple real-time property
of the program since, by knowing the bounds of the Piton instruction execution
times, we can in principle derive execution time bounds from bounds on the
execution times of the individual instructions. Nevertheless, this sort of program
and specification is unlike what is commonly thought of as “real-time” program
in at least two important ways.

e Correctness i1s not cast directly in terms of time. Bounds on the number
of executed instructions can be related to time, although we do not do
this. The timing behavior of the underlying machine that executes the
program is ignored.

e Real-time programs are complicated, requiring timely reaction to inputs
received unpredictably. The example program discussed later in this re-
port does not receive input other than the parameters with which it is
called, and it has a relatively simple functional specification.

With these caveats, we will use the expression “simple real-time property” to
characterize a constraint on the number of instructions a program will execute.



A Proved Application with 4
Simple Real-Time Properties
Technical Report #78

Figure 2: An Example Nim Game

3 A specification for a good Nim program

3.1 Good Nim Play

Nim is one of the oldest and one of the most engaging mathematical games
[5]. The game is played with piles of stones and two players who alternate turns.
On his turn a player removes at least one stone from exactly one pile. The player
who removes the final stone loses. Figure 2 shows an example game.

A Nim state consists of a list of numbers that represents the number of
stones 1n each of the piles. A strategy is a function that maps non-empty Nim
states to Nim states in a way consistent with the notion of a legal Nim move.
A winning strategy is a strategy that guarantees for a particular NIM state that
the player who 1s about to take a turn will win. An optimal move for a particular
non-empty Nim state is the first step in some winning strategy if one exists, or
any legal move otherwise.

Sometimes there is no winning strategy. For example, if a player has to take
a turn and there are two piles left each with two stones, there will be a winning
strategy for his opponent on the next move regardless of the move he makes, and
thus there 1s no winning strategy for the player and all legal moves are optimal.
Sometimes there is a move a player can make that will cause his opponent in
his next turn to have no winning strategy. For example, if the player is left
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Figure 3: State-space search for an optimal move

with two piles with 4 and 2 stones respectively, he can remove 2 stones from
the 4 pile and leave his opponent in the 2 piles of 2 situation. Thus, there is a
winning strategy for the current player which begins with a move that ends in
a state from which there is no winning strategy.

For any non-empty Nim state, there either is one stone left, or there is a
winning strategy for the next player, or there will a winning strategy for the
opponent on his next move. We can therefore search for an optimal move from
any Nim state. Figure 3 depicts the search tree of the search for an optimal
move from a state. The nodes in the tree in bold type are losing states from
which there is no winning strategy.

We formalize this search idea using the Ngthm function WSP. (WSP state
t) returns false if state is a losing state, and an optimal move otherwise.
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; wsp searchs for a successor to the current state on
; a path to a guaranteed win.
; if flag

state is a nim state - return state if all zeros.
Return a successor state not wsp if one exists, f otherwise

; if not flag

state is a list of states - return member of list if it is
not wsp, f is no such member.

(defn wsp (state flag)

(if flag

(if (or (all-zero-bitvp state) (not (nat-listp-simple state)))
state
(wsp (all-valid-moves state) f))
(if (listp state)
(if (not (wsp (car state) t))
(car state)
(wsp (cdr state) f))
£)))

Ngthm provides a facility for executing functions on constants and a trace

facility. Figure 4 is a trace of the calculation of an optimal move from the same
state whose search tree was presented in Figure 3. The result is ’(1 1 1), which
i1s an optimal move as expected.

3.2

A Nim-Playing Program Specification

Having formalized the notion of an optimal move in Nim, we can construct
a specification for a program that plays Nim optimally and efficiently.
The specification uses the following five undefined functions.

CM-PROG : the Piton program

COMPUTER-MOVE-CLOCK : the number of piton instructions the program will
execute

NIM-PITON-CTRL-STK-REQUIREMENT : an upper bound on the amount of
control stack space

NIM-PITON-TEMP-STK-REQUIREMENT : an upper bound on the amount of
temporary stack space

COMPUTER-MOVE : the algorithm by which moves are computed

In the following subsections we constrain these functions in a way that spec-
ifies the program.
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*(wsp (1 2 1) t)
1> (K<WSP>> (LIST ’(1 2 1) T))
2> (K<WSP>> (LIST ’((0 2 1) (1 11) (101)(120))F))
3> (K<KWSP>> (LIST ’(0 2 1) T)
4> (<<KWSP>> (LIST ’((0 1 1) (0 0 1) (0 2 0)) F))
5> (K<KWSP>> (LIST (01 1) T)
6> (K<KWSP>> (LIST ’((0 0 1) (0 1 0)) F))
7> (<<WSP>> (LIST °(0 0 1) T))
8> (K<KWSP>> (LIST ’((0 0 0)) F))
9> (K<WSP>> (LIST ’(0 0 0) T))
<9 (K<WSP>> ’(0 0 0))
9> (<K<KWSP>> (LIST NIL F))
<9 (K<WSP>> F)
<8 (K<WSP>> F)
<7 (<<WSP>> F)
<6 (<<WSP>> ’(0 0 1))
<5 (<<WSP>> ’(0 0 1))
5> (<<KWSP>> (LIST ’((0 0 1) (0 2 0)) F))
6> (<<KWSP>> (LIST ’(0 0 1) T))
™ (<<WSP>> (LIST ’((0 0 D)) F))
8> (K<WSP>> (LIST ’(0 0 0) T))
<8 (K<WSP>> ’(0 0 0))
8> (<<WSP>> (LIST NIL F))
<8 (K<KWSP>> F)
<7 (<<WSP>> F)
<6 (K<WSP>> F)
<5 (K<WSP>> (0 0 1))
<4 (<<WSP>> ’(0 0 1))
<3 (K<WSP>> ’(0 0 1))
3> (K<KWSP>> (LIST ’((1 1 1) (1 01) (120))F))
4> (K<KWSP>> (LIST °(1 11) T)
5> (K<KWSP>> (LIST ’((0 1 1) (1 01) (110))F))
6> (K<KWSP>> (LIST (0 1 1) T
7> (K<WSP>> (LIST *((0 0 1) (0 1 0)) F))
8> (K<KWSP>> (LIST ’(0 0 1) T))
9> (KKWSP>> (LIST *((0 0 0)) F))
10> (<<WSP>> (LIST ’(0 0 0) T))
<10 (K<WSP>> *(0 0 0))
10> (<<WSP>> (LIST NIL F))
<10 (KKWSP>> F)
<9 (KKWSP>> F)
<8 (KKWSP>> F)
<7 (KKWSP>> *(0 0 1))
<6 (K<KWSP>> ’(0 0 1))
6> (<<KWSP>> (LIST ’((1 0 1) (1 1 0)) F))
7> (K<WSP>> (LIST ’(1 0 1) T)
8> (K<KWSP>> (LIST ’((0 0 1) (1 0 0)) F))
9> (K<KWSP>> (LIST ’(0 0 1) T))
10> (K<WSP>> (LIST ’((0 0 0)) F))
11> (K<WSP>> (LIST ’(0 0 0) T))
<11 (<<WSP>> ’(0 0 0))
11> (<<WSP>> (LIST NIL F))
<11 (<<WSP>> F)
<10 (<<WSP>> F)
<9 (KKWSP>> F)
<8 (K<KWSP>> ’(0 0 1))
<7 (K<KWSP>> (0 0 1))
7> (K<KWSP>> (LIST °((1 1 0)) F))
8> (K<KWSP>> (LIST ’(1 1 0) T))
9> (K<KWSP>> (LIST ’((0 1 0) (1 0 0)) F))
10> (K<WSP>> (LIST ’(0 1 0) T))
11> (K<WSP>> (LIST ’((0 0 0)) F))
12> (<<WSP>> (LIST ’(0 0 0) T))
<12 (<<WSP>> ’(0 0 0))
12> (<<WSP>> (LIST NIL F))
<12 (<<WSP>> F)
<11 (<<WSP>> F)
<10 (<<WSP>> F)
<9 (K<WSP>> ’(0 1 0))
<8 (K<KWSP>> (0 10
8> (K<WSP>> (LIST NIL F))
<8 (K<KWSP>> F)
<7 (K<KWSP>> F)
<6 (<<KWSP>> F)
<5 (K<KWSP>> F)
<4 (<<WSP>> F)
<3 (K<WSP>> ’(111))
<2 (K<KWSP>> (11 1))
<1 (K<WSP>> ’(111))
(111)
f

Figure 4: WSP trace
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3.2.1 Algorithm Legality

We require that the function COMPUTER-MOVE returns valid Nim moves.

(implies
(good-non-empty-nim-statep state ws)
(valid-movep state (computer-move state ws)))

3.2.2 Algorithm Optimality

We require that the function COMPUTER-MOVE return an optimal move from
non-losing Nim states

(implies

(and
(good-non-empty-nim-statep state ws)
(wsp state t))

(not (wsp (computer-move state ws) t)))

3.2.3 Algorithm Implementation

We require that a program that produces the same result as COMPUTER-MOVE
be implemented in Piton. We represent the Nim state by an array of naturals
and a length that is passed to the program as parameters. We call the Piton
program computer-move!.

When the Piton subroutine computer-move in a list of programs returned
by the function CM-PROG? is executed using the Piton interpreter on a “reason-
able” Piton state for COMPUTER-MOVE-CLOCK “ticks” the resulting state has the
program counter incremented by 1, the program status word set to 'run, and
the naturals array representing the Nim state replaced by a new array with the
same value as that calculated by COMPUTER-MOVE. (See [8] for a full description
of the Piton interpreter P and the significance of the program status word and
program counter.)

1We use upper case for Nqthm event names such as lemma names and function definition
names and lower case for the name of Piton subroutine names. So, COMPUTER-MOVE is an
Ngthm function and computer-move is the name of a Piton subroutine.

21t is disappointing that CM-PROG, the function that returns the Piton program that im-
plements this specification, is a function of one argument rather than a constant. We wish to
use bit vectors in our program and also write Piton programs that are machine independant.
Unfortunately, because of an oversight in the Piton language design, there is no way to use
bit-vectors without knowledge of the word size. The only subprogram that uses the word size
in the implementation is push-1-vector, which is a one-line program that pushes a vector onto
the stack. Perhaps future versions of Piton will have an instruction that pushes a 1-vector
onto the stack.
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(implies
(and
(equal p0 (p-state pc ctrl-stk
(cons wa (cons np (cons s temp-stk)))
(append (cm-prog word-size) prog-segment)
data-segment max-ctrl-stk-size max-temp-stk-size
word-size ’run))
(equal (p-current-instruction p0) ’(call computer-move))
(computer-move-implemented-input-conditionp p0))
(let ((result
(p pO
(computer—move—clock
(untag-array (array (car (untag s)) data-segment))
word-size))))
(and
(equal (p-pc result) (addi-addr pc))
(equal (p-psw result) ’run)
(equal
(untag-array
(array (car (untag s)) (p-data-segment result)))
(computer-move
(untag-array (array (car (untag s)) data-segment))
word-size)))))

COMPUTER-MOVE-IMPLEMENTED-INPUT-CONDITIONP above identifies “reason-
able” Piton states from which we expect our program to work properly. The
conditions that must be met are:

e The control stack is non-empty.
e The word-size is at least 8 bits.

e At least NIM-PITON-CTRL-STK-REQUIREMENTS bytes are available on the
control stack.

e At least NIM-PITON-TEMP-STK-REQUIREMENTS bytes are available on the
temporary stack

e A naturals array address is first on the temporary stack. (This array is
used to represent the Nim state.)

e The length of the naturals array is second on the temporary stack.

e An array address is third on the temp stack. (This array is used as a work
area for the program.)

e The array of naturals whose address is first on the stack contains at least
one non-zero element.

Precise Ngthm definitions are contained in Appendix B.
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3.2.4 Fast Response

We require that the program return a calculated move within a window of
time. The program must execute between 10,000 and 20,000 Piton instructions.
We assume the word size is at most of length 32, and the Nim state has no more
than 6 piles.

(implies (and (nat-listp state ws)
(lessp O ws)
(not (lessp 32 ws))
(lessp 1 (length state))
(not (lessp 6 (length state))))
(and (lessp 10000 (computer-move-clock state ws))
(lessp (computer-move-clock state ws) 20000)))

Note that this part of the specification eliminates several possible implemen-
tations. One is the blind search implementation suggested by the definition of
WSP, since the first level of the search tree has as many as 6 * 232 nodes, and
there are as many as 6 * 232 levels to the tree.

3.2.5 Realistic memory use

We require a very modest use of stack space. (Note that these function are
contained in COMPUTER-MOVE-IMPLEMENTED-INPUT-CONDITIONP above)

(lessp (plus (nim-piton-ctrl-stk-requirement)
(nim-piton-temp-stk-requirement))
1000)

This part of the specification eliminates, for example, a table-driven imple-
mentation since there are 2'77 distinct states.

3.2.6 FMO9001 Loadability

We require that the program work on an FM9001 and that it meet the re-
quirements of the compiler correctness proof of [8]. This requires among other
things that the compiled Piton programs fit into the FM9001 address space and
that the Piton programs be well-formed. For some PO for which

(COMPUTER-MOVE-IMPLEMENTED-INPUT-CONDITIONP PO)

holds, we require that

(and (proper-p-statep p0)
(p-loadablep p0 0)
(equal (p-word-size p0) 32))
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This part of the specification allows us to apply the compiler correctness
proof. It also eliminates some possible implementation approaches that we don’t
want. A program that uses alternation to solve the Nim problem by cases will
be so large that it will not fit into the FM9001 address space, and will therefore
not meet the requirements of this part of the specification.

4 The Nim Implementation

In this section we develop an algorithm for efficient calculation of optimal
moves, and present a Piton program that implements this algorithm. In Sec-
tion 5 we discuss the mechanical proof that this implementation meets the
specification developed in Section 3.

Since a formal specification has been developed for this program as well as a
mechanical proof that the program meets the specification, a reader interested
only in the behavior of the Nim software would best skip this section. Note
that as a part of the correctness proof, for example, each of the hundreds of
instructions in the program has been proved to execute on arguments of the
expected Piton type, each loop is proved to terminate, the stacks are proved
never to be exhausted, etc. In contrast to conventional program development
efforts where the program source code is the only place where an absolutely
dependable description of the behavior of the system can be found, in this
effort the specification in Section 3 is dependable because the correctness proof
outlined in Section 5 guarantees that it is a correct description of the program’s
behavior.

We present the program because we hope to demonstrate how verified soft-
ware for the short stack can be developed and to make more concrete the de-
scription of the development effort.

4.1 An efficient Nim algorithm

In Section 3 we defined WSP. Recall that (WSP state t) is false if no winning
strategy exists for state, and non-false otherwise.
Let (BIGP state) = number of piles with at least 2 stones.

Let the bit-vector representation of a number be the conventional low-order-bit-
first base 2 representation for some large number of bits.

Let (XOR-BVS state) — bitwise exclusive-or of the bit-vector representations
of the number of stones in each pile.

Let (GREEN-STATEP state) = (BIGP state)>0 <> (XOR-BVS state)#0-vector.
Theorem: (GREEN-STATEP state) < (WSP state t).

This remarkable property was rediscovered at Computational Logic, but has
in fact been known at least since its publication in 1901 [3]. The most obvious
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Figure 5: State-space search for an optimal move with green states starred

proof uses an induction on the search tree. The mechanical proof was achieved
as a part of this effort since it is a needed lemma in the proof of program
correctness that we will discuss later. (See WSP-GREEN-STATE in appendix B.)

Figure 5 is the search tree of Figure 3 except that stars are added to nodes
where (GREEN-STATEP state) is non-false. Note that, as guaranteed by the
theorem above, the non-bold nodes from which there is a winning strategy are
exactly the nodes that are marked with stars.

We can exploit this theorem in the following algorithm that computes opti-
mal moves efficiently.

If (BIGP state) < 2 and there are an even number of non-empty
piles, remove all the stones from a largest pile.

If (BIGP state) < 2 and there are an odd number of non-empty
piles, remove all but one stone from a largest pile.

If (BIGP state) > 1, find a pile whose binary representation has
a 1-bit in the position of the highest 1-bit in (XOR-BVS state), and
remove enough stones so that the new pile’s binary representation
is the XOR of the binary representations of the other piles.

From the previous theorem one can prove that this algorithm efficiently
generates optimal moves when a winning strategy exists. A mechanical proof of
this was constructed. (See COMPUTER-MOVE-WORKS in appendix B.)
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SUBROUTINE NAT-TO-BV SUBROUTINE NAT-TO-BV-LIST
(VALUE) (CURRENT-BIT TEMP) (NAT-LIST BV-LIST LENGTH) (I 0)
CALL PUSH-1-VECTOR LOOP: PUSH-LOCAL NAT-LIST
POP-LOCAL CURRENT-BIT FETCH
CALL PUSH-1-VECTOR CALL NAT-TO-BV
RSH-BITV PUSH-LOCAL BV-LIST
LOOP: PUSH-LOCAL VALUE DEPOSIT
TEST-NAT-AND-JUMP ZERO DONE PUSH-LOCAL I
PUSH-LOCAL VALUE ADD1-NAT
DIV2-NAT SET-LOCAL I
POP-LOCAL TEMP PUSH-LOCAL LENGTH
POP-LOCAL VALUE EQ
PUSH-LOCAL TEMP TEST-BOOL-AND-JUMP T DONE
TEST-NAT-AND-JUMP ZERO LAB PUSH-LOCAL NAT-LIST
PUSH-LOCAL CURRENT-BIT PUSH-CONSTANT (NAT 1)
XOR-BITV ADD-ADDR
LAB: PUSH-LOCAL CURRENT-BIT POP-LOCAL NAT-LIST
LSH-BITV PUSH-LOCAL BV-LIST
POP-LOCAL CURRENT-BIT PUSH-CONSTANT (NAT 1)
JUMP LOOP ADD-ADDR
DONE: RET POP-LOCAL BV-LIST
JUMP LOOP
DONE: RET

Figure 6: Two example Piton subroutines

4.2 The Piton Nim program

A Piton program that implements this algorithm has been coded. It appears
as the Ngqthm definition CM-PROG in appendix B. A version with all the sub-
sidiary definitions expanded and with some cosmetic syntactic changes intended
to enhance readability appears in Appendix A. Figure 6 lists two of the routines
in that appendix.

5 The Ngthm correctness proof

5.1 Different types of theorems in the proof

The proof that the Piton program meets the specification uses the default
arithmetic library [9] and the Piton interpreter definitions [8]. Most of the
lemmas in the proof script fall into one of the following four categories or are
designed specifically to support a lemma in one of the categories.
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e Many lemmas relate the behavior of Piton loops and subroutines when
interpreted by the Piton interpreter to an Nqthm function. Typically,
a special Ngthm function that calculates a result in precisely the same
manner as the Piton program in question is defined. A clock function
that computes the number of Piton instructions the loop or subroutine
will execute is defined. A correctness lemma for a loop or subroutine
states that the Piton interpreter running the loop or subroutine for the
number of instructions computed by the clock function yields the same
result as the Ngthm function.

We call proofs of this kind of lemma code correctness proofs.

e Some lemmas demonstrate the equivalence of Nqthm functions that mimic
Piton programs to Nqthm functions defined more naturally that are easier
to reason about.

We call proofs of this kind of lemma specification proofs.

e Some lemmas are used to prove optimality of COMPUTER-MOVE. That 1s,
that the algorithm outlined in Section 4 works.

We call proofs of this kind of lemma algorithm proofs.

e Some lemmas establish bounds on the clock functions.

We call proofs of this kind of lemma tzming proofs.

The timing proofs were done using PC-Nqthm [7], the interactive enhance-
ment to Ngthm. All other proofs require only Nqthm. The algorithm proofs
and time bound proofs are fairly standard mechanical proofs of a type done
often before, so we will not discuss them in detail. We instead focus on the
Piton-related lemmas in the proof.

5.2 An example subroutine proof

For each loop and subroutine, we characterize precisely the conditions under
which 1t is supposed to work, and the effect it will have when executed. As an
example, we focus on the correctness proof of the Piton subroutine nat-to-bv
in figure 6.

Like most Nqthm prove-lemma commands, CORRECTNESS—-0F-NAT-T0-BV has
two important properties. First, since it is accepted by the Ngthm prover, we
believe that it represents mathematical truth. Second, it is an instruction to
the prover about how to prove future theorems. By constructing the exact form
of the theorem mindful of the theorem’s interpretation in later proof efforts, we
add to the prover’s ability to reason about programs.

The prove-lemma command (modified slightly for readability) is:
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(prove-lemma correctness-of-nat-to-bv (rewrite)
(implies
(and
(equal p0 (p-state pc ctrl-stk (cons v temp-stk)
prog-segment data-segment max-ctrl-stk-size
max-temp-stk-size word-size ’run))
(equal (p-current-instruction p0) ’(call nat-to-bv))
(nat-to-bv-input-conditionp p0))
(equal
(p p0 (nat-to-bv-clock num))
(p-state
(add1-addr pc) ctrl-stk
(cons (list ’bitv (nat-to-bv (cadr v) word-size))
temp-stk)
prog-segment data-segment
max-ctrl-stk-size max-temp-stk-size
word-size ’rumn))))

The function NAT-TO-BV-INPUT-CONDITIONP contains additional precondi-
tions that this subprogram requires in order to run correctly. There must be
enough stack space to do the calculation, the value at the top of the stack must
be a natural number representable on the machine, and the program segment
must have the needed programs loaded. NAT-TO-BV-CLOCK is a function that
computes the number of instructions the Piton subroutine nat-to-bv executes
when called.

This lemma is useful because it equates the behavior of a Piton subprogram
as defined by the Piton interpreter to an Nqthm term that does not involve the
interpreter. By applying this lemma we are able to reason about this program
without regard to the semantics of Piton. This makes proofs achievable, since
as a practical matter proofs involving Piton programs running on the very com-
plicated Piton interpreter are much more complex than proofs about Nqthm
functions that compute similar results.

The lemma is stored in Nqthm as a replacement rule, and has been con-
structed so that later proofs can apply this lemma automatically during proofs.
The subroutine nat-to-bv-1list contains several kinds of Piton instructions,
and the proof of the correctness of nat-to-bv-1ist depends on the semantics of
these instructions as defined in the Piton interpreter. For example, PUSH-LOCAL
is defined in the Piton interpreter and the theorem prover uses the definitions
that describe the effect of executing a PUSH-LOCAL instruction automatically.
Similarly, the instruction CALL NAT-TO-BV in the subprogram is reasoned about
by Ngthm automatically using CORRECTNESS-0F-NAT-TO-BV.

Once a carefully-constructed correctness theorem about a subroutine is added
to the database of proved lemmas, a call to that subroutine in a Piton program
is reasoned about just as easily as any built-in Piton instruction.
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5.3 Proof Statistics

The correctness proof of the specification in Section 3 required about 3
man-months, and consists of an approximately 800 event 220K events file listed
in appendix B.?> Approximately 40% of the man-hours were spent on code
correctness proofs, 30% on specification proofs, 20% on algorithm proofs, and
10% on timing proofs.

6 Conclusions

Mechanical verification of programs in this manner is time-consuming and
difficult. Nevertheless, and quite remarkably, the experience of building the Nim
program suggests that development time scales linearly with program length.
Once a Piton subroutine has been proved correct, a call to this subroutine can
be reasoned about as easily as any basic Piton statement.

A modest but non-trivial application has been constructed for use on the ver-
ified CLI short stack. Its functional correctness has been verified using Nqthm.
Mechanically-checked proofs of bounds on the number of executed instructions
have been constructed. The formalization of a programming language with an
interpreter as in [8] is particularly well-suited to proving program timing prop-
erties.

An FM9001 has been fabricated by LSI logic, and has run a compiled version
of the Nim program. Some FM9001 code was written that allows the Piton Nim
program to be run interactively. See [1] for details.

The FM9001 microprocessor, the Piton compiler, and the Nim program were
never tested in a conventional manner. Even so, they each worked the first time
and we would have been surprised if they had not.

3This does not include the events of the Piton compiler or arithmetic library. It does not
include the time to accomplish an earlier proof related to Nim [10]. Tt does not include the
time taken to prepare a report and a talk on this project.
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A Nim-playing Piton program listing

This appendix contains a listing of the Nim Piton program. Appendix B
contains the “official” version about which the correctness proofs have been
accomplished in function CM-PROG. The listing in this appendix has been changed
into a more-standard syntax for readability.

SUBROUTINE XOR-BVS (VECS-ADDR NUMVECS)

PUSH-LOCAL VECS-ADDR
FETCH
PUSH-LOCAL NUMVECS
SUB1-NAT
POP-LOCAL NUMVECS

LOOP: PUSH-LOCAL NUMVECS
TEST-NAT-AND-JUMP ZERO DONE
PUSH-LOCAL NUMVECS
SUB1-NAT
POP-LOCAL NUMVECS
PUSH-LOCAL VECS-ADDR
PUSH-CONSTANT (NAT 1)
ADD-ADDR
SET-LOCAL VECS-ADDR
FETCH XOR-BITV
JUMP LOOP

DONE: RET

SUBROUTINE PUSH-1-VECTOR. NIL,
PUSH-CONSTANT (BITV (0000000 1))
RET

SUBROUTINE NAT-TO-BV (VALUE) (CURRENT-BIT TEMP)
CALL PUSH-1-VECTOR
POP-LOCAL CURRENT-BIT
CALL PUSH-1-VECTOR
RSH-BITV

LOOP: PUSH-LOCAL VALUE
TEST-NAT-AND-JUMP ZERO DONE
PUSH-LOCAL VALUE
DIV2-NAT
POP-LOCAL TEMP
POP-LOCAL VALUE
PUSH-LOCAL TEMP
TEST-NAT-AND-JUMP ZERO LAB
PUSH-LOCAL CURRENT-BIT
XOR-BITV

LAB: PUSH-LOCAL CURRENT-BIT
LSH-BITV
POP-LOCAL CURRENT-BIT
JUMP LOOP

DONE: RET

SUBROUTINE BV-TO-NAT
(BV) (CURRENT-BIT CURRENT-2POWER)
PUSH-CONSTANT (NAT 1)
POP-LOCAL CURRENT-2POWER
CALL PUSH-1-VECTOR
POP-LOCAT, CURRENT-BIT
PUSH-CONSTANT (NAT 0)
LOOP: PUSH-LOCAL BV

PUSH-LOCAT, CURRENT-BIT
AND-BITV
TEST-BITV-AND-JUMP ALL-ZERO LAB
PUSH-LLOCAT, CURRENT-2POWER
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ADD-NAT

LAB: PUSH-LOCAL CURRENT-BIT
LSH-BITV
SET-LOCAL CURRENT-BIT
TEST-BITV-AND-JUMP ALL-ZERO DONE
PUSH-LOCAL CURRENT-2POWER
MULT2-NAT
POP-LOCAL CURRENT-2POWER
JUMP LOOP

DONE: RET

SUBROUTINE NUMBER-WITH-AT-LEAST
(NUMS-ADDR NUMNUMS MIN) (T)
PUSH-CONSTANT (NAT 0)
SET-LOCAL T
LOOP: PUSH-LOCAL NUMS-ADDR
FETCH
PUSH-LOCAT MIN
LT-NAT
TEST-BOOL-AND-JUMP T LAB
ADDI1-NAT
LAB: PUSH-LOCAL NUMNUMS
PUSH-LOCAL I
ADD1-NAT
SET-LOCAL T
SUB-NAT
TEST-NAT-AND-JUMP ZERO DONE
PUSH-LOCAL NUMS-ADDR
PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCAI NUMS-ADDR
JUMP LOOP
DONE: RET

SUBROUTINE HIGHEST-BIT (BV) (CB)

CALT, PUSH-1-VECTOR
SET-LOCAL CB
RSH-BITV

LOOP: PUSH-LOCAL CB
TEST-BITV-AND-JUMP ALL-ZERO DONE
PUSH-LOCAL BV
PUSH-LOCAT CB
AND-BITV
TEST-BITV-AND-JUMP ALL-ZERO LAB
POP
PUSH-LOCAL CB

LAB: PUSH-LOCAL CB
LSH-BITV
POP-LOCAL CB
JUMP LOOP

DONE: RET

SUBROUTINE MATCH-AND-XOR
(VECS NUMVECS MATCH XOR-VECTOR) (I)
PUSH-CONSTANT (NAT 0)
POP-LOCAL I
LOOP: PUSH-LOCAL VECS

FETCH
PUSH-LOCAL MATCH
AND-BITV
TEST-BITV-AND-JUMP NOT-ALL-ZEROS FOUND
PUSH-LOCAL I
ADDI-NAT
SET-LOCAL I
PUSH-LOCAL NUMVECS
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LT-NAT
TEST-BOOL-AND-JUMP F DONE
PUSH-LOCAL VECS
PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCAL VECS
JUMP LOOP

FOUND: PUSH-LOCAL VECS
FETCH
PUSH-LOCAL XOR-VECTOR
XOR-BITV
PUSH-LOCAL VECS
DEPOSIT

DONE: RET

SUBROUTINE REPLACE-VALUE (LIST OLDVAL NEWVAL)

LOOP: PUSH-LOCAL LIST
FETCH
PUSH-LOCAL OLDVAL
EQ
TEST-BOOL-AND-JUMP T DONE
PUSH-LOCAL LIST
PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCAL LIST
JUMP LOOP

DONE: PUSH-LOCAL NEWVAL
PUSH-LOCAL LIST
DEPOSIT RET

SUBROUTINE NAT-TO-BV-LIST
(NAT-LIST BV-LIST LENGTH) (I 0)

LOOP: PUSH-LOCAL NAT-LIST
FETCH
CALI NAT-TO-BV
PUSH-LOCAT BV-LIST
DEPOSIT
PUSH-LOCAL I
ADDI1-NAT
SET-LOCAL T
PUSH-LOCATL LENGTH
EQ
TEST-BOOL-AND-JUMP T DONE
PUSH-LOCAL NAT-LIST
PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCAT, NAT-LIST
PUSH-LOCAL BV-LIST
PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCATL BV-LIST
JUMP LOOP

DONE: RET

SUBROUTINE BV-TO-NAT-LIST
(BV-LIST NAT-LIST LENGTH) (I 0)
LOOP: PUSH-LOCAL BV-LIST

FETCH CALL BV-TO-NAT
PUSH-LOCAL NAT-LIST
DEPOSIT  PUSH-LOCAL T
ADDI1-NAT
SET-LOCAL T
PUSH-LOCAL LENGTH EQ
TEST-BOOL-AND-JUMP T DONE
PUSH-LOCAL NAT-LIST
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PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCAL NAT-LIST
PUSH-LOCAL BV-LIST
PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCAL BV-LIST
JUMP LOOP

DONE: RET

SUBROUTINE MAX-NAT (NAT-LIST LENGTH) (I 0 J)

PUSH-CONSTANT (NAT 0)

LOOP: SET-LOCALJ
PUSH-LOCAL J
PUSH-LOCAL NAT-LIST
FETCH
SET-LOCAL J LT-NAT
TEST-BOOL-AND-JUMP F LAB
POP
PUSH-LOCAL J

LAB: PUSH-LOCALI
ADDI-NAT
SET-LOCAL I
PUSH-LOCAL LENGTH
EQ
TEST-BOOL-AND-JUMP T DONE
PUSH-LOCAL NAT-LIST
PUSH-CONSTANT (NAT 1)
ADD-ADDR
POP-LOCAL NAT-LIST
JUMP LOOP

DONE: RET

SUBROUTINE SMART-MOVE
(STATE NUMPILES WORK-AREA) (1)

PUSH-LOCAL STATE
PUSH-LOCAL NUMPILES
PUSH-CONSTANT (NAT 2)
CALT, NUMBER-WITH-AT-TLEAST
PUSH-CONSTANT (NAT 2)
LT-NAT
TEST-BOOL-AND-JUMP T LAB
PUSH-LOCAL STATE
PUSH-LOCAT, WORK-AREA
PUSH-LOCAL NUMPILES
CALI NAT-TO-BV-LIST
PUSH-LOCAL, WORK-AREA
PUSH-LOCAL NUMPILES
PUSH-LOCAL WORK-AREA
PUSH-LOCAT, NUMPILES
CALT, XOR-BVS
SET-LOCAL I
CALT, HIGHEST-BIT
PUSH-LOCAL I
CALI, MATCH-AND-XOR
PUSH-LOCAL WORK-AREA
PUSH-LOCAL STATE
PUSH-LOCATL NUMPILES
CALI BV-TO-NAT-LIST
RET

LAB: PUSH-LOCAL STATE
PUSH-LOCAL STATE
PUSH-LOCAL NUMPILES
CALT, MAX-NAT
PUSH-LOCAL STATE
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PUSH-LOCAL NUMPILES
PUSH-CONSTANT (NAT 1)

CALL NUMBER-WITH-AT-LEAST
DIV2-NAT

POP-LOCAL I

POP

PUSH-LOCAL I

CALL REPLACE-VALUE

RET

SUBROUTINE DELAY (TIME)
LAB: PUSH-LOCAL TIME
SUB1-NAT
SET-LOCAL TIME
NO-OP NO-OP NO-OP NO-OP

TEST-NAT-AND-JUMP ZERO DONE

NO-OP
JUMP LAB
DONE: RET

SUBROUTINE COMPUTER-MOVE

(STATE NUMPILES WORK-AREA) (1)

PUSH-CONSTANT (NAT 250)
CALL DELAY

PUSH-CONSTANT (NAT 250)
CALL DELAY

PUSH-CONSTANT (NAT 250)
CALL DELAY

PUSH-CONSTANT (NAT 250)
CALL DELAY

PUSH-LOCAL STATE
PUSH-LOCAL NUMPILES
PUSH-CONSTANT (NAT 2)

CALL NUMBER-WITH-AT-LEAST
TEST-NAT-AND-JUMP ZERO LAB
PUSH-LOCAL STATE
PUSH-LOCAL WORK-AREA
PUSH-LOCAL NUMPILES

CALL NAT-TO-BV-LIST
PUSH-LOCAL WORK-AREA
PUSH-LOCAL NUMPILES

CALL XOR-BVS

TEST-BITV-AND-JUMP ALL-ZERO LAB

PUSH-LOCAL STATE
PUSH-LOCAL NUMPILES
PUSH-LOCAL WORK-AREA
CALL SMART-MOVE
RET

LAB: PUSH-LOCAL STATE
PUSH-LOCAL STATE
PUSH-LOCAL NUMPILES
CALL MAX-NAT
POP-LOCAL I
PUSH-LOCAL I
PUSH-LOCAL I
SUB1-NAT
CALL REPLACE-VALUE
RET

21
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B Nim Correctness proof

These events constitute a proof of the correctness of the Nim program except
for some events regarding timing bounds that were proved separately using PC-
Ngthm([7] and are not included here.

(proveall ”nim?”

;3 NIM Piton proof
;3 Matt Wilding 4-15-92

;; modified 7-92 to work on Piton library
;; This script takes 10 hours to run on a 64 meg Sparc2

i3 This work is described in Technical Report #78. A presentation
;; about this work was made at the CLI research review in April 92.

#—
Nim is a game played with piles of matches. Two opponents alternate
taking at least one match from exactly one pile until there are no
matches left. The player who takes the last match loses.

Piton is an assembly-level language with a formal semantics and a
verified compiler. Piton is described in CLI tech report #22. One of
the machines to which Piton is targeted is FM8001, a microprocessor
that has a formal semantics and that has been fabricated.

This proof script leads NQTHM to a proof that a Piton program that
»plays” Nim does so optimally. Informally, this means

(a) A Piton program (see function CM-PROG) when run on the Piton
interpreter and given as input a reasonable Nim state yields a new
Nim state equal to what is calculated by function COMPUTER-MOVE.
(See event COMPUTER-MOVE-IMPLEMENTED.)

(b) COMPUTER-MOVE generates valid moves. That is, it removes at
least one match from exactly one pile. (VALID-MOVEP-COMPUTER-MOVE)

(c) Depth-first search of the state space of all possible moves is
used to define what is meant by optimal Nim play. Exhaustive search
is used to find if there is a strategy for a Nim player to ensures
eventual victory from the current Nim state. An optimal strategy
transforms any state for which there exists such a winning strategy
into a state from which exhaustive search can find no winning
strategy.
Exhaustive search of all possible moves from a NIM state is
formalized in the function WSP. The optimalilty of the strategy
COMPUTER-MOVE is proved in the event COMPUTER-MOVE-WORKS.

(d) The FM9001 Piton compiler correctness theorem assumes that the
Piton state that is to be run contains valid Piton code, fit into

an FM9001’s memory, and use constants of word size 32. A Piton
state (used in the Indiana test described below) was constructed

that contains the Nim program, and is proved to meet the compiler
correctness constraints (CM-PROG-FM9001-LOADABLE)

The algorithm used by the program is non-obvious and very efficient,
avoiding the need to search. (I invented the programming trick only
to subsequently discover that it has been known since the beginning
of the century.) See tech report #78 for a description.

(Constant bounds on the number of Piton instructions executed while
running this program have been proved using PC-NQTHM. These events
are not included in this NQTHM-processable script, but the theorem is
included in comments later in this file for completeness.)

This script was developed using only those events from the Piton
library necessary to define the interpreter and the naturals library.

In July 92 it was modified somewhat to ”fit” onto the Piton library
that sits on top of the FM9001 library. The immediate motivation was
to make it easier to include in the upcoming NQTHM-1992 proveall
release being put together by Boyer. The Piton library contains the
events of the FM9001 library. The FM9001 library contains an older
version of the naturals library (though not explicitly with a

note-lib). Thus, this script requires only the Piton library.

In May 92, in consultation with researchers at Indiana University, I

compiled the Nim Piton program for the FM9001 and sent the image to
Indiana. They ran the image and generated an optimal NIM move on a
fabricated FM9001 they had wired up. The intial image and part of the
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resulting image is included in a comment at the end of this script. A
non-trivial program compiled using a reasonably-complex compiler for a
small microprocessor worked without any conventional testing done on
any of the components, and everyone was pleased but not surprised.

In August 92, it was run on the CLI FM9001.

#
(note-lib » fartist-local/src/nqthm-1992/examples/fm9001-piton/piton” t)

(set-status addition-on addition ((otherwise enable)))

(set-status multiplication-on multiplication ((otherwise enable)))
(set-status remainders-on remainders ((otherwise enable)))
(set-status quotients-on quotients ((otherwise enable))

(set-status exponentiation-on exponentiation ((otherwise enable)))
(set-status logs-on logs ((otherwise enable)))

(set-status geds-on geds ((otherwise enable)))

(defn clock-plus (x y)
(plus x y))

(prove-lemma p-addl (rewrite)
(equal
(p p0 (addl n))
(p (p-step p0) n))
((disable p-step)))

(prove-lemma p-0 (rewrite)
(implies
(zerop n)
(equal (p p0 1) p0)))

(prove-lemma clock-plus-function (rewrite)
(equal
(p pO (clock-plus x y))
(p (p PO x) ¥))
((induct (p po x))
(disable p p-step)))

(disable p-addl)

(prove-lemma clock-plus-add1l (rewrite)
(equal
(p pO (clock-plus (addl x) y))
(p pO (addl (clock-plus x y)))))

(disable clock-plus)

(prove-lemma clock-plus-0 (rewrite)
(implies
(zerop x)
(equal
(clock-plus x y)
(fix ¥)))
((enable clock-plus)))

(prove-lemma fix-clock-plus (rewrite)
(equal
(fix (clock-plus x y))
(clock-plus x y))
((enable clock-plus)))

(prove-lemma p-stepl-opener (rewrite)
(equal (p-stepl (cons opcode operands) p)

(if (p-ins-okp (cons opcode operands) p)

(p-ins-step (cons opcode operands) p)

(p-halt p (x-y-error-msg ’'p opcode))))

((disable p-ins-okp p-ins-step)))
(disable p-stepl)

(prove-lemma p-opener (rewrite)
(and (equal (p s 0) 5)
(equal (p (p-state pc ctrl temp prog data max-ctrl max-temp word-size
psw)
(add1 n))
(p (p-step (p-state pec ctrl temp prog data max-ctrl max-temp
word-size psw))

n)))
((disable p-step)))
(disable p)

(defn at-least-morep (base delta value)
(not (lessp value (plus base delta))))
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(prove-lemma at-least-morep-normalize (rewrite)

(and

(equal
(at-least-morep (addl base) delta value)
(at-least-morep base (add1l delta) value))
(equal
(at-least-morep base (addl delta) (addl value))
(at-least-morep base delta value))))

(prove-lemma at-least-morep-linear (rewrite)
(implies
(and
(at-least-morep base d1 value)
(not (lessp d1 d2)))
(at-least-morep base d2 value)))

(prove-lemma lessp-as-at-least-morep (rewrite)
(implies
(at-least-morep base delta value)
(and
(equal
(lessp value x)
(not (at-least-morep x 0 value)))
(equal
(lessp x value)
(at-least-morep x 1 value)))))

(disable at-least-morep)

(defn nat-to-bv (nat size)
(if (zerop size)
nil
(if (lessp nat (exp 2 (subl size)))
(cons 0 (nat-to-bv nat (subl size)))
(cons 1 (nat-to-bv (difference nat (exp 2 (subl size)))

(subl size))))))

(defn nat-to-bv-state (state size)
(if (listp state)
(cons (nat-to-by (car state) size)
(nat-to-bv-state (cdr state) size))
nil))

i; a more elegant way to write this program would be to use the
i bit-vector of all 0’s initially, then xor all the elements of

;; the array. But we don’t want a pointer to memory to

i; ever have an improper value, so we write things this way

(defn xor-bvs-program nil

'(xor-bvs (vecs-addr numvecs)
nil
(push-local vecs-addr)
(fetch)
(push-local numvecs)
(subl-nat)
(pop-local numvecs)

(dl loop ()
(push-local numvecs))
(test-nat-and-jump zero done)
(push-local numvecs)
(subl-nat)
(pop-local numvecs)
(push-local vecs-addr)
(push-constant (nat 1))
(add-addr)
(set-local vecs-addr)
(fetch)
(xor-bitv)
(jump loop)
(dl done ()

(ret))))

(defn bit-vectors-piton (array size)
(if (listp array)
(and
(listp (car array))
(equal (caar array) ’bitv)
(bit-vectorp (cadar array) size)
(equal (cddar array) nil)
(bit-vectors-piton (cdr array) size))
(equal array nil)))

(defn array (name segment)
(cdr (assoc name segment)))

i; vecs is name of state
(defn xor-bvs-input-conditionp (p0)

24
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(and

(equal (car (top (p-temp-stk p0))) 'nat)
(equal (car (top (cdr (p-temp-stk p0)))) ’addr)
(equal (cdadr (top (cdr (p-temp-stk p0)))) 0)
(listp (cadr (top (cdr (p-temp-stk p0)))))
(equal (cddr (top (p-temp-stk p0))) nil)

(equal (cddr (top (cdr (p-temp-stk p0)))) nil)

(definedp (caadr (top (cdr (p-temp-stk p0)))) (p-data-segment p0))
(bit-vectors-piton (array (caadr (top (cdr (p-temp-stk p0))))
(p-data-segment p0))

(p-word-size p0))
(equal (cadr (top (p-temp-stk p0)))

(length (array (caadr (top (cdr (p-temp-stk p0))))
(p-data-segment p0))))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
4 (p-max-ctrl-stk-size p0))

(at-least-morep (length (p-temp-stk p0))

(p-max-tem p-stk-size p0))
(not (zerop (untag (top (p-temp-stk p0)))))
(lessp (untag (top (p-temp-stk p0))) (exp 2 (p-word-size p0)))
(listp (p-ctrl-stk p0))))

; time to run loop
(defn xor-bvs-clock-loop (numvecs)
(if (zerop numvecs)
3
(plus 12 (xor-bvs-clock-loop (subl numvecs)))))

; time to run xor-bvs, including call and ret

(defn xor-bvs-clock (numvecs)
(plus 6 (xor-bvs-clock-loop (subl numvecs))))

(defn xor-bvs-array (current array n array-size)
(if (zerop n)
current
(xor-bvs-array
(xor-bitv current (untag (get (difference array-size n) array)))
array (subl n) array-size)))

(prove-lemma lessp-1-exp (rewrite)
(equal
(lessp 1 (exp a b))
(and (lessp 1 a) (not (zerop b))))
((enable exp)))

(prove-lemma bit-vectors-piton-means (rewrite)

(implies

(and
(bit-vectors-piton state size)
(lessp p (length state)))

(and
(equal (car (get p state)) ’bitv)
(listp (get p state))
(bit-vectorp (cadr (get p state)) size)
(equal (cddr (get p state)) nil))))

(defn xor-bvs-loop-correctness-general-induct (i current n s data-segment)
(if (zerop i) t
(xor-bvs-loop-correctness-general-induct
(subl i)
(xor-bitv
current
(cadr (get (difference n i) (array s data-segment))))
n s data-segment)))

;s in Piton library
;(prove-lemma bit-vectorp-xor-bitv (rewrite)
; (implies

(and

(bit-vectorp x size)

(bit-vectorp y size))

(bit-vectorp (xor-bitv x y) size)))

H
H
H
H

(enable bit-vectorp-xor-bitv)

(prove-lemma xor-bvs-loop-correctness-general nil
(implies
(and
(lessp (length (array s data-segment))
(exp 2 word-size))
(not (zerop word-size))
(listp ctrl-stk)
(bit-vectors-piton (array s data-segment) word-size)
(at-least-morep (length temp-stk) 3 max-temp-stk-size)
(equal (definition ’xor-bvs prog-segment)
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(xor-bvs-program))
(definedp s data-segment)
(numberp i)
(lessp i n)
(bit-vectorp current word-size)
(equal n (length (array s data-segment))))
(equal
(p (p-state '(pc (xor-bvs . 5))

(cons (list

(list
(cons ’vecs-addr
(list ’addr
(cons
s
(sub1
(difference n 1)))))
(cons ‘numvecs (list 'nat i)))
ret-pe)
ctrl-stk)
(cons (list *bitv current)
temp-stk)

prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size

‘run)
(xor-bvs-clock-loop i))
(p-state ret-pc
ctrl-stk
(cons (list 'bitv (xor-bvs-array
current
(array s data-segment)
in))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((induct (xor-bvs-loop-correctness-general-induct
i current n s data-segment))))

(prove-lemma difference-x-subl-x-better (rewrite)
(equal (difference x (subl x))
(if (lessp 0 x) 1 0)))

(prove-lemma xor-bvs-loop-correctness nil
(implies
(and
(lessp (length (array s data-segment))
(exp 2 word-size))
(not (zerop word-size))
(listp ctrl-stk)
(bit-vectors-piton (array s data-segment) word-size)
(at-least-morep (length temp-stk) 3 max-temp-stk-size)
(equal (definition 'xor-bvs prog-segment)
(xor-bvs-program))
(definedp s data-segment)
(lessp 0 n)
(bit-vectorp current word-size)
(equal n (length (array s data-segment))))
(equal
(p (p-state '(pc (xor-bvs . 5))
(cons (list
(list
(cons ’vecs-addr
(list ’addr (cons s 0)))
(cons 'mnumvecs
(list ’nat (subl n))))
ret-pe)
ctrl-stk)
(cons (list ’bitv current) temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(xor-bvs-clock-loop (subl n)))
(p-state ret-pc
ctrl-stk
(cons (list ’bitv (xor-bvs-array
current
(array s data-segment)
(subl n) n))
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temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size

‘run)))

((use (xor-bvs-loop-correctness-general (i (subl n))))))

(prove-lemma exp-0 (rewrite)
(implies
(zerop x)
(and (equal (exp x y) (if (zerop y) 1 0))
(equal (exp y x) 1))
((enable exp)))

(prove-lemma bit-vectors-piton-means-more (rewrite)
(implies
(and
(listp x)
(bit-vectors-piton x size))
(equal
(LIST "BITV (CADAR x))
(car x))))

;; xor-bvs of an array of at least one bit vector
(defn xor-bvs (array)
(if (listp array)
(xor-bitv (car array) (xor-bvs (cdr array)))

nil))

(defn untag-array (array)
(if (listp array)
(cons (untag (car array))
(untag-array (cdr array)))
nil))

(prove-lemma bit-vectorp-get (rewrite)
(implies
(bit-vectors-piton array size)
(equal
(bit-vectorp (untag (get n array)) size)
(lessp n (length array))))

i(prove-lemma difference-subl-arg2 (rewrite)

; (equal

; (difference a (subl n))

; (if (zerop n) (fix a)

; (if (lessp a n) 0 (add1 (difference a n))))))
(enable difference-subl-arg2)

(prove-lemma xor-bitv-commutative (rewrite)
(implies
(equal (length a) (length b))
(equal (xor-bitv a b) (xor-bitv b a))))

(prove-lemma xor-bitv-commutative2 (rewrite)
(implies
equal (length a) (length b
8 )
(equal (xor-bitv a (xor-bitv b c))
(xor-bitv b (xor-bitv a c)))))

(prove-lemma xor-bitv-associative (rewrite)
(implies
equal (length a) (length b
g 5
(equal (xor-bitv (xor-bitv a b) c)
(xor-bitv a (xor-bitv b ¢)))))

(prove-lemma length-from-bit-vectorp (rewrite)
(implies
(bit-vectorp x s)
(equal (length x) (fix s))))

(prove-lemma length-xor-bitv (rewrite)
(equal
(length (xor-bitv a b))
(length a)))

(prove-lemma length-cadr-get-bit-vectors-piton (rewrite)
(implies
(and
(bit-vectors-piton x 1)
(lessp i (length x)))
(equal (length (cadr (get i x))) (fix 1))))
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(prove-lemma equal-xor-bitv-x-x (rewrite)

(implies

(and
(bit-vectorp b (length a))
(bit-vectorp c (length a)))

(equal
(equal (xor-bitv a b) (xor-bitv a c))
(equal b <))

(defn bit-vectorp-induct (size a b)
(if (zerop size) t
(bit-vectorp-induct (subl size) (cdr a) (cdr b))))

(prove-lemma bit-vectorp-xor-bitv2 (rewrite)
(equal
(bit-vectorp (xor-bitv a b) size)
(equal (length a) (fix size)))
((induct (bit-vectorp-induct size a b))))

(defn bit-vectorsp (bvs size)
(if (listp bvs)
(and
(bit-vectorp (car bvs) size)
(bit-vectorsp (cdr bvs) size))
(equal bys nil)))

(prove-lemma length-xor-bvs (rewrite)
(implies
(bit-vectorsp bvs (length (car bvs)))
(equal (length (xor-bvs bvs)) (length (car bvs)))))

(prove-lemma bit-vectorsp-untag (rewrite)
(implies
(bit-vectors-piton x s)
(bit-vectorsp (untag-array x) s)))

(prove-lemma bit-vectorsp-cdr-untag (rewrite)
(implies
(bit-vectors-piton (cdr x) s)
(bit-vectorsp (cdr (untag-array x)) s)))

i; actually part of npiton-defs, but not supporter of p

3
{(DEFN NTHCDR
; (N L)

; (IF (ZEROP N)

; L

;

; (NTHCDR (SUB1 N) (CDR L))))
(enable nthedr)

(prove-lemma bit-vectorsp-nthedr (rewrite)
(implies
(and
(bit-vectorsp x s)
(lessp n (length x)))
(bit-vectorsp (nthedr n x) s))
((enable nthedr)))

(prove-lemma bit-vectorp-xor-bvs (rewrite)
(implies
(and
(bit-vectorsp x size)
(listp x))
(bit-vectorp (xor-bvs x) size)))

prove-lemma length-untag-array (rewrite
8 8
(equal (length (untag-array x)) (length x)))

i(prove-lemma listp-nthedr (rewrite)
; (equal

; (listp (nthedr n x))

; (lessp n (length x)))

; ((enable nthedr)))
(enable listp-nthedr)

(prove-lemma nthedr-open (rewrite)
(implies
(lessp n (length x))
(equal
(nthedr n x)
(cons (get n x) (nthedr (addl n) x))))
((enable nthedr)))

(prove-lemma get-untag-array (rewrite)
(implies
(lessp n (length x))
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(equal
(get n (untag-array x))
(cadr (get n x))))

(prove-lemma equal-xor-bitv-x-x-special (rewrite)

(implies

(and
(bit-vectorp b (length a))
(bit-vectorp (xor-bitv z ¢) (length a)))

(equal
(equal (xor-bitv a b) (xor-bitv z (xor-bitv a c)))
(equal b (xor-bitv z c)))))

(defn fix-bit (b)
(if (equal b 0) 0 1))

(prove-lemma xor-bitv-0 (rewrite)
(and
(equal (xor-bit x 0) (fix-bit x))
(equal (xor-bit 0 x) (fix-bit x))))

(prove-lemma xor-bitv-nlistp (rewrite)
(implies
(not (listp <))
(equal (xor-bitv a (xor-bitv b c))
(xor-bitv a b))))

(prove-lemma xor-bitv-nlistp2 (rewrite)
(implies
(and
(bit-vectorp a b)
(not (listp c)))
(equal (xor-bitv a c) a)))

(prove-lemma xor-bvs-array-rewrite (rewrite)
(implies
(and
(bit-vectors-piton array (length current))
(bit-vectorp current (length current))
(lessp n (length array))
(equal (length array) as))
(equal
(xor-bvs-array current array n as)
(xor-bitv current
(xor-bvs
(nthedr (difference as n)
(untag-array array))))))
((induct (xor-bvs-array current array n as))
(enable nthedr)))

;; in npiton-defs but not a supporter of p
{(PROVE-LEMMA EQUAL-LENGTH-0

; (REWRITE)

; (EQUAL (EQUAL (LENGTH X) '0)
; (NLISTP X)))

(enable equal-length-0)

(prove-lemma correctness-of-xor-bvs-helper
(rewrite)
(implies
(and (equal po
(p-state pc ctrl-stk
(append (list (tag 'nat numvecs)
(tag)’addr (cons state 0)))
temp-stk
prog-segment data-segment max-ctrl-stk-size
max-temp-stk-size word-size 'run))
(equal (p-current-instruction p0)
*(call xor-bvs
(equal((definition ’)x)or—bvs prog-segment)
(xor-bvs-program))
(xor-bvs-input-conditionp p0))
(equal
(p PO (xor-bvs-clock numvecs))
(p-state (addl-addr pc)
ctrl-stk
(cons (list *bitv
(xor-bvs-array (untag (car (array state data-segment)))
(array state data-segment)
subl numvecs
Elumvecs)) )
temp-stk)
prog-segment data-segment max-ctrl-stk-size max-temp-stk-size
word-size ‘run)))
((use

(xor-bvs-loop-correctness (current (untag (car (array state data-segment))))
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(s state)
(n numvecs)
(ret-pc (add-addr pe 1))))))

(prove-lemma length-cadar-bvs (rewrite)
(implies
(and
(bit-vectors-piton x s)
(listp x))
(equal (length (cadar x)) (fix s))))

(prove-lemma bit-vectorp-from-bit-vectors-piton (rewrite)
(implies
(bit-vectors-piton x s)
(and
(equal
(bit-vectorp (cadar x) s)
(listp x))
(equal
(bit-vectorp (cadr (get n x)) s)
(lessp n (length x))))))

(prove-lemma nthedr-1 (rewrite)
(equal
(nthedr 1 a)
(cdr a))
((enable nthedr)))

(prove-lemma listp-untag-array (rewrite)
(equal
(listp (untag-array x))

(listp x)))

(prove-lemma xor-bvs-input-conditionp-means-xor-bvs-hack (rewrite)

(implies
(and
(xor-bvs-input-conditionp
(p-state
pe
ctrl-stk
(cons (list ’nat numvecs)
(cons (list ’addr (cons state 0))
temp-stk))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(lessp 0 word-size))
(equal
(xor-bvs-array
(untag

(car (array state data-segment)))
(array state data-segment)
(subl numvecs) numvecs)
(xor-bvs (untag-array (array state data-segment)))))
((enable nthedr)))

(prove-lemma correctness-of-xor-bvs (rewrite)
(implies
(and
(equal p0 (p-state

pe
ctrl-stk
(cons n (cons s temp-stk))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(lessp 0 word-size)
(equal (p-current-instruction p0) *(call xor-bvs))
(equal (definition 'xor-bvs prog-segment)
(xor-bvs-program))
(xor-bvs-input-conditionp po))
(equal
(p (p-state

pc
ctrl-stk

(cons n (cons s temp-stk))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
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‘run)
(xor-bvs-clock (cadr n)))
(p-state (addl-addr pc)
ctrl-stk
(cons (list ’bitv
(xor-bvs (untag-array
(array (caadr s) data-segment))))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
run)))
((disable xor-bvs-clock)
(use (correctness-of-xor-bvs-helper
(state (caadr s)) (numvecs (cadr n)))
(xor-bvs-input-conditionp-means-xor-bvs-hack
(state (caadr s)) (numvecs (cadr n))))))

(defn example-xor-bvs-p-state ()
(p-state ’(pc (main . 0))
'((nil (pe (main . 0))))
nil
(list *(main nil nil
(push-constant (addr (arr . 0)))
(push-constant (nat 3))
(call xor-bvs)
(ret))
(xor-bvs-program))
*((arr (bitv (0101100 1))

(bitv (0 0000 00 1))
(bitv (0110100 1))))
10
8
8
‘run))

3353 push-1-vector
;; Piton currently does not provide any mechanism for creating a
i; bit vector except as an operation on other bit vectors. Until

i; this apparent flaw is fixed, we’ll write our program as a

;; function of the word size.

(defn one-bit-vector (wordsize)
(if (lessp wordsize 2)
(list 1)
(cons 0 (one-bit-vector (subl wordsize)))))

(defn push-1-vector-program (wordsize)
ist 'push-l-vector nil ni
list ’push il nil
(list 'push-constant (list *bitv (one-bit-vector wordsize)))
(list ’ret)))

(defn example-push-1-vector-state ()
(p-state ’(pc (main . 0))

*((nil (pe (main . 0))))

nil

(list *(main nil nil
(call push-1-vector)
(ret))

(push-1-vector-program 8))

nil

10

8

8

‘run))

(defn push-1-vector-input-conditionp (p0)
(and
(not (lessp (p-max-ctrl-stk-size p0)
(plus 2 (p-ctrl-stk-size (p-ctrl-stk p0)))))
(not (lessp (p-max-temp-stk-size p0
(plus 1 (length (p-temp-stk p0)))))
(listp (p-ctrl-stk p0))))

i(prove-lemma length-append (rewrite)

; (equal

(length (append a b))

; (plus (length a) (length b))))
(enable length-append)

H

(prove-lemma equal-assoc-cons (rewrite)
(implies
(equal (assoc k a) (coms x y))
(and
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(equal (car (assoc k a)) x)
(equal (cdr (assoc k a)) v))))

(prove-lemma correctness-of-push-1-vector (rewrite)

(implies
(and
(equal p0 (p-state
pc
ctrl-stk
temp-stk

prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0)
‘(eall push-1-vector))
(equal (definition ’push-1-vector prog-segment)
(push-1-vector-program word-size))
(push-1-vector-input-conditionp p0))
(equal
(p pO 3)
(p-state (addl-addr pc)
ctrl-stk
(cons (list "bitv (one-bit-vector word-size))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size

‘run))))
5355 nat-to-bv

(defn nat-to-bv-program nil
*(nat-to-bv (value)

((current-bit (nat 0)) (temp (nat 0)))
(call push-1-vector)
(pop-local current-bit)
(call push-1-vector)
(rsh-bitv)

(dl loop ()
(push-local value))
(test-nat-and-jump zero done)
(push-local value)
(div2-nat)
(pop-local temp)
(pop-local value)
(push-local temp)
(test-nat-and-jump zero lab)
(push-local current-bit)
(xor-bitv)

(dl lab ()
(push-local current-bit))
(Ish-bitv)
(pop-local current-bit)
(jump loop)

(dl done ()
(ret))))

(defn example-nat-to-bv-state ()
(p-state ’'(pc (main . 0))
'((nil (pe (main - 0))))
nil
(list *(main nil nil
(push-constant (nat 86))
(call nat-to-bv)
(ret))
(push-1-vector-program 8)
(nat-to-bv-program))
nil
10
8
8
‘run))

(defn zero-bit-vector (size)
(if (zerop size) mil
(cons 0 (zero-bit-vector (subl size)))))

(defn nat-to-bv2-helper (value current-bit bit-vector)
(if (zerop value)
bit-vector
(nat-to-bv2-helper (quotient value 2)
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(append (cdr current-bit) (list 0))
(if (equal (remainder value 2) 1)
(xor-bitv current-bit bit-vector)
bit-vector))))

efn nat-to-bv2 (value size
def: b lue si
nat-to-bv2-helper value (one-bit-vector size
bv2-hel 1 bi i
(zero-bit-vector size)))

(defn nat-to-bv-loop-clock (value)
(if (zerop value)

(plus
(if (equal (remainder value 2) 0) 12 14)
(nat-to-bv-loop-clock (quotient value 2)))))

(defn correctness-of-nat-to-bv-general-induct (value cb temp bv)
(if (zerop value) t
(correctness-of-nat-to-bv-general-induct
(quotient value 2)
(append (cdr cb) (list 0))
(list 'nat (remainder value 2))
(if (equal (remainder value 2) 0) bv (xor-bitv bv cb)))))

(prove-lemma lessp-remainder-simple (rewrite)
(implies
(not (zerop y))
(lessp (remainder x y) y)))

(prove-lemma lessp-exp-simple (rewrite)
(implies
(and
(lessp x y)
(not (zerop 2)))
(lessp x (exp ¥ 2)))
((enable exp)))

(prove-lemma lessp-1 (rewrite)
(equal
(lessp x 1)
(zerop x)))

(prove-lemma lessp-remainder-x-exp-x (rewrite)
(equal
(lessp (remainder x y) (exp y 7))
(or
(and
(zerop z)
(equal (remainder x y) D))
(and
(not (zerop 7))
(not (zerop ¥)))))
((enable exp)))

(prove-lemma bit-vectorp-append (rewrite)

implies

P

(bit-vectorp x x-size)

(equal
(bit-vectorp (append x y) size)
(and

(bit-vectorp y (difference size x-size))
(not (lessp size x-size))))))

(prove-lemma correctness-of-nat-to-bv-general (rewrite)
(implies
(and
(listp ctrl-stk)
(at-least-morep (length temp—stkg
3 max-temp-stk-size
(equa; (definition ’nat—to;;)\' prog-segment)
nat-to-bv-program
(numberp value)
(lessp 0 word-size)
(lessp value (exp 2 word-size))
(bit-vectorp bv word-size)
(bit-vectorp cb word-size))
(equal
(p (p-state '(pc (nat-to-bv . 4))
(cons (list
(list
(cons *value (list ’nat value))
(cons ‘current-bit (list ’bitv cb))
(cons)’temp temp))
ret-pc
ctrl-stk)
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(cons (list ’bitv bv)
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(nat-to-bv-loop-clock value))
(p-state ret-pc
ctrl-stk
(cons (list 'bitv (nat-to-bv2-helper
value cb bv))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((induct (correctness-of-nat-to-bv-general-induct
value cb temp bv))))

(defn nat-to-bv-clock (value)
(plus 9 (nat-to-bv-loop-clock value)))

(defn nat-to-bv-input-conditionp (p0)
(and
(lessp (cadr (top (p-temp-stk p0))) (exp 2 (p-word-size p0)))
(numberp (cadr (top (p-temp-stk p0))))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
7 (p-max-ctrl-stk-size p0))
(lessp 0 (p-word-size p0))
(at-least-morep (length (p-temp-stk p0))
2 (p-max-temp-stk-size p0))
(listp (p-ctrl-stk p0))))

(prove-lemma bit-vectorp-one-bit-vector (rewrite)
(equal
(bit-vectorp (one-bit-vector s) s)
(lessp 0 5)))

(prove-lemma bit-vectorp-zero-bit-vector (rewrite)
(bit-vectorp (zero-bit-vector s) s))

(prove-lemma all-but-last-one-bit-vector (rewrite)
(equal
(all-but-last (one-bit-vector s))
(zero-bit-vector (subl s))))

(prove-lemma correctness-of-nat-to-bv-helper nil

(implies
(and
(equal p0 (p-state
pc
ctrl-stk

(cons (list 'nat value) temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0) ’(call nat-to-bv))
(equal (definition ’nat-to-bv prog-segment)
(nat-to-bv-program))
(equal (definition ’'push-1l-vector prog-segment)
(push-1-vector-program word-size))
(nat-to-bv-input-conditionp p0))
(equal
(p PO (nat-to-bv-clock value))
(p-state (add1-addr pc)
ctrl-stk
(cons (list ’bitv
(nat-to-bv2 value word-size))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size

‘run))))

(defn bv-to-nat (bv)
(if (listp bv)
(plus (times (fix-bit (car bv)) (exp 2 (length (cdr bv))))
(bv-to-nat (cdr bv)))
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0))

prove-lemma length-nat-to-bv (rewrite
1 length b i
(equal (length (nat-to-bv nat size)) (fix size)))

(prove-lemma bv-to-nat-nat-to-bv (rewrite)
(equal (bv-to-nat (nat-to-bv nat size))
(if (lessp nat (exp 2 size))
(fix nat)
(subl (exp 2 size))))
((enable exp)))

(enable exp)

(prove-lemma nat-to-bv-simple (rewrite)
(implies
(zerop x)
(and
(equal (nat-to-bv x y) (zero-bit-vector y))
(equal (nat-to-bv y x) nil))))

(prove-lemma nat-to-bv-bv-to-nat (rewrite)
(implies
(bit-vectorp bv size)
(equal (nat-to-bv (bv-to-nat bv) size) bv)))

(prove-lemma bv-to-nat-append (rewrite)
(equal
(bv-to-nat (append x y))
(plus
(bv-to-nat y)
(times (exp 2 (length y)) (bv-to-nat x)))))

(prove-lemma lessp-plus-hacks (rewrite)

(and

(equal

(lessp
(plus a (plus b (plus ¢ (plus (times d e) (times d ¢)))))
(plus e e))

(and
(zerop d)
(lessp (plus a (plus b c)) (plus e e))))

(equal

(lessp
(plus a (plus b (plus ¢ (plus e (plus (times d g) h)))))
8.

(and
(zerop d)
(lessp (plus a (plus b (plus ¢ (plus e h)))) g)))))

(prove-lemma bv-to-nat-xor-bitv (rewrite)
(implies
(and
(bit-vectorp x size)
(bit-vectorp y size)
(equal (and-bitv x y) (zero-bit-vector size)))
(equal
(bv-to-nat (xor-bitv x
(plus (bv-to-nat x) (bv-to-nat y)))))

(prove-lemma lessp-bv-to-nat-exp-2 (rewrite)
(implies
(bit-vectorp x size)
(equal (lessp (bv-to-nat x) (exp 2 size)) t)))

(prove-lemma equal-nat-to-bv (rewrite)

(implies

(and
(bit-vectorp bv size)
(lessp y (exp 2 size)))

(and
(equal
(equal (nat-to-bv y size) bv)
(equal (bv-to-nat bv) (fix y)))
(equal
(equal bv (nat-to-bv y size))
(equal (fix y) (bv-to-nat bv))))))

(defn least-bit-higher-than-high-bit (x y)
(if (listp x)

(and

(equal (length x) (length y))

(if (not (equal (car y) 0))

(all-zero-bitvp x)
(least-bit-higher-than-high-bit (cdr x) (cdr y))))
(nlistp y)))
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(prove-lemma least-bit-higher-means-and-0 (rewrite)

(implies

(and
(bit-vectorp x size)
(bit-vectorp y size)
(least-bit-higher-than-high-bit x y))

(and
(equal (and-bitv x y) (zero-bit-vector size))
(equal (and-bitv y x) (zero-bit-vector size)))))

(prove-lemma all-zero-bitvp-zero-bit-vector (rewrite)
(all-zero-bitvp (zero-bit-vector size)))

(prove-lemma bv-to-nat-one-bit-vector (rewrite)
(equal (bv-to-nat (ome-bit-vector size)) 1))

;; renamed from firstn to avoid conflict with similar but different
;; definition in piton library
(defn make-list-from (n list)
(if (zerop n)
nil

(cons (car list) (make-list-from (subl n) (cdr list)))))

(prove-lemma length-make-list-from (rewrite)
(equal (length (make-list-from n list)) (fix n)))

(prove-lemma make-list-from-1 (rewrite)
(equal
(make-list-from 1 x)

(list (car x))))

(prove-lemma listp-make-list-from (rewrite)
(equal
(listp (make-list-from n x))
(not (zerop n))))

(defn double-cdr-induct (x z)
(if (listp x)
(double-cdr-induct (cdr x) (cdr z))

t))

(prove-lemma all-zero-bitvp-append (rewrite)
(equal
(all-zero-bitvp (append x y))
(and
(all-zero-bitvp x)
(all-zero-bitvp v))))

(prove-lemma least-bit-higher-than-high-bit-append-0s (rewrite)
(implies
(and
(all-zero-bitvp y)
(equal (length z) (length (append x y))))
(equal
(least-bit-higher-than-high-bit (append x y) z)
(least-bit-higher-than-high-bit
x (make-list-from (length x) z))))
((induct (double-cdr-induct x z))))

(prove-lemma equal-xor-bitv-x-y-1 (rewrite)
(equal
(equal (xor-bitv a b) b)
(and
(bit-vectorp b (length a))
(all-zero-bitvp a))))

(prove-lemma equal-xor-bitv-x-y-2 (rewrite)
equal
(equal (xor-bitv a b) a)
(and
(all-zero-bitvp (make-list-from (length a) b))
(bit-vectorp a (length a)))))

(prove-lemma least-bit-higher-than-high-bit-simple (rewrite)
(implies
(all-zero-bitvp x)
(equal
(least-bit-higher-than-high-bit x y)
(equal (length x) (length y)))))

(prove-lemma make-list-from-is-all-but-last (rewrite)
(implies
(equal (length x) (add1l n))
(equal
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(make-list-from n x)
(all-but-last x))))

(prove-lemma least-bit-higher-all-but-last (rewrite)
(implies
(least-bit-higher-than-high-bit a b)
(equal
(least-bit-higher-than-high-bit
a (cons 0 (all-but-last b)))

(listp a))))

(defn at-most-one-bit-on (bv)
(if (listp bv)
(if (equal (car bv) 0)
(at-most-one-bit-on (cdr bv))
(all-zero-bitvp (cdr bv)))

t))

;
i(prove-lemma length-all-but-last (rewrite)

; (equal

; (length (all-but-last x))

; (if (listp x) (subl (length x)) 0)))
(enable length-all-but-last)

(prove-lemma listp-xor-bitv (rewrite)
(equal
(listp (xor-bitv a b))

(listp 2)))

(prove-lemma all-zero-bitvp-means-at-most-one-bit-on (rewrite)
(implies
(all-zero-bitvp x)
(at-most-one-bit-on x)))

(prove-lemma at-most-one-bit-on-append (rewrite)
(equal
(at-most-one-bit-on (append a b))
(or
(and
(all-zero-bitvp a)
(at-most-one-bit-on b))
(and
(at-most-one-bit-on a)
(all-zero-bitvp b)))))

(defn fix-bitv (list)
(if (listp list)
(cons (if (equal (car list) 0) 0 1) (fix-bitv (cdr list)))

nil))

(prove-lemma xor-bitv-nlistp3 (rewrite)
(implies
(not (listp x))
(and
(equal (xor-bitv x y) nil)
(equal (xor-bitv y x) (fix-bitv y)))))

(disable xor-bitv-nlistp)
(disable xor-bitv-nlistp2)

(prove-lemma fix-bitv-all-but-last (rewrite)
(equal
(fix-bitv (all-but-last x))
(all-but-last (fix-bitv x))))

(prove-lemma all-but-last-xor-bitv (rewrite)
(equal
(all-but-last (xor-bitv a b))
(if (lessp (length b) (length a))
(xor-bitv (all-but-last a) b
(xor-bitv (all-but-last a) (all-but-last b)))))

(prove-lemma least-bit-higher-cons-xor-bitv-hack (rewrite)
(implies
(and
(least-bit-higher-than-high-bit (cdr x) a)
(least-bit-higher-than-high-bit (cdr x) b))
(equal
(least-bit-higher-than-high-bit
x (cons 0 (xor-bitv a b)))

(listp x))))

(prove-lemma least-bit-higher-cdr-all-but-last (rewrite)
(implies
(least-bit-higher-than-high-bit a b)
(least-bit-higher-than-high-bit (cdr a) (all-but-last b))))
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(prove-lemma least-bit-higher-x-all-but-last-x (rewrite)
(implies
(at-most-one-bit-on x)
(least-bit-higher-than-high-bit
(cdr x) (all-but-last x))))

(prove-lemma nat-to-bv-equiv-helper nil
(implies
(and
(bit-vectorp cb size)
(bit-vectorp bv size)
(lessp 0 size)
(lessp (plus (bv-to-nat bv)
(times (bv-to-nat cb) value))
(exp 2 size))
(at-most-one-bit-on cb)
(least-bit-higher-than-high-bit cb bv))
(equal
(nat-to-bv2-helper value cb bv)
(nat-to-bv (plus (times (bv-to-nat cb) value)
(bv-to-nat bv))
size)))

((induct (nat-to-bv2-helper value cb bv))))

(prove-lemma at-most-one-bit-on-one-bit-vector (rewrite)
(at-most-one-bit-on (one-bit-vector size)))

(prove-lemma bv-to-nat-all-zero-bitvp (rewrite)
(implies
(all-zero-bitvp x)
(equal (bv-to-nat x) 0)))

(prove-lemma least-bit-higher-than-high-bit-simple2 (rewrite)
(implies
(all-zero-bitvp x)
(equal
(least-bit-higher-than-high-bit y x)
(equal (length x) (length y)))))

(prove-lemma length-zero-bit-vector (rewrite)
(equal (length (zero-bit-vector size)) (fix size)))

prove-lemma length-one-bit-vector (rewrite
1 length bi i
(equal (length (one-bit-vector size))
(if (zerop size) 1 size)))

(prove-lemma nat-to-bv-equivalence (rewrite)
(implies
(and
(lessp value (exp 2 size))
(lessp 0 size))
(equal
(nat-to-bv2 value size)
(nat-to-bv value size)))
((use (nat-to-bv-equiv-helper
(cb (ome-bit-vector size))
(bv (zero-bit-vector size))))))

(prove-lemma correctness-of-nat-to-bv (rewrite)

(implies
(and
(equal p0 (p-state
pc
ctrl-stk

(cons v temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (car v) 'nat)
(equal (cddr v) nil)
(equal (p-current-instruction p0) *(call nat-to-bv))
(equal (definition 'nat-to-bv prog-segment)
(nat-to-bv-program))
(equal (definition 'push-1-vector prog-segment)
(push-1-vector-program word-size))
(equal num (cadr v))
(nat-to-bv-input-conditionp p0))

(equal
(p (p-state
pe
ctrl-stk

(cons v temp-stk)
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prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(nat-to-bv-clock num))
(p-state (addl-addr pc)
ctrl-stk
(cons (list ’bitv
(nat-to-bv (cadr v) word-size))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((disable-theory t)
(enable nat-to-bv-input-conditionp p-state
p-word-size-p-state p-temp-stk-p-state top)
(enable-theory ground-zero)
(use (correctness-of-nat-to-bv-helper (value (cadr v)))
(nat-to-bv-equivalence (size word-size

(value (cadr v))))))
5333 bv-to-nat

(defn bv-to-nat-program nil
*(bv-to-nat (bv)

((current-bit (nat 0)) (current-2power (nat 0)))
(push-constant (nat 1))
(pop-local current-2power)
(call push-1-vector)
(pop-local current-bit)
(push-constant (nat 0))

(dl loop ()
(push-local bv))
(push-local current-bit)
(and-bitv)
(test-bitv-and-jump all-zero lab)
(push-local current-2power)
(add-nat)

(dl lab ()
(push-local current-bit))
(Ish-bitv)
(set-local current-bit)
(test-bitv-and-jump all-zero done)
(push-local current-2power)
(mult2-nat)
(pop-local current-2power)
(jump loop)

(dl done ()
(ret))))

(defn example-bv-to-nat-state ()
(p-state *(pc (main . 0))
((nil (pe (main . 0))))
nil
(list *(main nil nil

(push-constant (bitv (1 011 00 0 1)))

(call bv-to-nat)

(ret))
(push-1-vector-program 8)
(bv-to-nat-program))

nil

10

8

8
‘run))

(defn trailing-zeros-helper (list acc)
(if (listp list)
(trailing-zeros-helper
(cdr list) (if (equal (car list) 0) (addl acc) 0))
(fix acc)))

defn trailing-zeros (list
&
(trailing-zeros-helper list 0))

(prove-lemma trailing-zeros-of-all-zero-bitvp (rewrite)
(implies
(all-zero-bitvp bv)
(equal (trailing-zeros-helper bv n)
(plus (length bv) n))))

(prove-lemma non-zero-means-acc-irrelevant-spec (rewrite)
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(implies

(not (all-zero-bitvp bv))

(equal (trailing-zeros-helper bv (add1l x))
(trailing-zeros-helper bv x))))

(prove-lemma non-zero-means-acc-irrelevant (rewrite)
(implies
(and
(not (all-zero-bitvp bv))
(not (equal x 0)))
(equal (trailing-zeros-helper bv x)
(trailing-zeros-helper bv 0))))

(prove-lemma trailing-zeros-helper-append (rewrite)
(equal
(trailing-zeros-helper (append x y) acc)
(if (all-zero-bitvp y)
(plus (trailing-zeros-helper x acc) (length y))
(trailing-zeros-helper y acc))))

(prove-lemma trailing-zeros-append (rewrite)
(equal
(trailing-zeros (append x y))
(if (all-zero-bitvp y)
(plus (trailing-zeros x) (length y))
(trailing-zeros y))))

(prove-lemma lessp-trailing-zeros-helper (rewrite)
(implies
(not (lessp n (plus acc (length x))))
(equal (lessp n (trailing-zeros-helper x acc)) f)))

(defn last (list)
(if (listp list)
(if (listp (cdr list))
(last (cdr list))
(car list))
0))

(prove-lemma equal-trailing-zeros-helper-0 (rewrite)
(equal
(equal (trailing-zeros-helper x acc) 0)
(or (and (zerop acc) (mlistp x))
(not (equal (last x) 0)))))

(prove-lemma lessp-length-cdr-trailing (rewrite)

(implies

(and
(lessp (length (cdr x)) (trailing-zeros-helper x acc))
(listp x))

(and
(all-zero-bitvp x)
(all-zero-bitvp (cdr x)))))

(prove-lemma not-all-zero-bitvp-cdr-means (rewrite)
implies
(imp
(not (all-zero-bitvp (cdr x)))
(equal
(trailing-zeros-helper x acc)
(trailing-zeros-helper (cdr x) 0))))

(defn bv-to-nat2-helper (bv cb current-2power)
(if (all-zero-bitvp cb)
0
(plus
(if (all-zero-bitvp (and-bitv bv cb)) O current-2power)
(bv-to-nat2-helper
bv (append (cdr cb) (list 0)) (times 2 current-2power))))
((lessp (difference (length cb) (trailing-zeros cb)))))

(defn bv-to-nat2 (bv)
(bv-to-nat2-helper bv (one-bit-vector (length bv)) 1))

(prove-lemma lessp-length-trailing-zeros-hack (rewrite)
(implies
(zerop acc)
(not (lessp (length x) (trailing-zeros-helper x acc)))))

(defn bv-to-nat-loop-clock (cb bv)
(if (all-zero-bitvp (cdr cb))
(if (or (equal (car cb) 0) (equal (car bv) 0)) 9 11)
(plus (if (all-zero-bitvp (and-bitv cb bv)) 12 14)
(bv-to-nat-loop-clock (append (cdr cb) ’(0)) bv)))
((lessp (difference (length cb) (trailing-zeros cb)))))

(defn bv-to-nat-induct (value bv cb current-2power)
(if (all-zero-bitvp cb)



A Proved Application with
Simple Real-Time Properties
Technical Report #78

]
(bv-to-nat-induct
(plus (if (all-zero-bitvp (and-bitv bv cb)) 0 current-2power)
value)
bv (append (cdr cb) (list 0)) (times 2 current-2power)))
((lessp (difference (length cb) (trailing-zeros cb)))))

efn double-cdr-with-subl-induct (x y n
defn double-cdr-with-subl-ind
(if (listp x)
(double-cdr-with-subl-induct (cdr x) (cdr y) (subl n))

t))

(prove-lemma bit-vectorp-and-bitv-better (rewrite)
(equal
(bit-vectorp (and-bitv x y) size)
(equal (length x) (fix size)))
((induct (double-cdr-with-subl-induct x y size))))

(prove-lemma lessp-bv-to-nat-exp (rewrite)
(implies
(bit-vectorp x size)
(lessp (bv-to-nat x) (exp 2 size))))

(prove-lemma equal-bv-to-nat-0 (rewrite)
(implies
(bit-vectorp x size)
(equal
(equal (bv-to-nat x) 0)
(all-zero-bitvp x))))

;(prove-lemma commutativity-of-and-bitv (rewrite)
; (implies

; (equal (length x) (length y))

; (equal (and-bitv x y) (and-bitv y x))))
(enable commutativity-of-and-bitv)

(prove-lemma commutativity2-of-and-bitv (rewrite)
(implies
(equal (length x) (length y))
(equal (and-bitv x (and-bitv y z))
(and-bitv y (and-bitv x z)))))

(prove-lemma associativity-of-and-bitv (rewrite)
(implies
(equal (length x) (length y))
(equal (and-bitv (and-bitv x y) z)
(and-bitv x (and-bitv y 2)))))

(prove-lemma all-zero-bitvp-and-bitv (rewrite)
(implies
(all-zero-bitvp x)
(and
(all-zero-bitvp (and-bitv x y))
(all-zero-bitvp (and-bitv y x)))))

(prove-lemma bv-to-nat-loop-clock-open (rewrite)
(implies
(all-zero-bitvp x)
(equal (bv-to-nat-loop-clock x y) 9)))

(prove-lemma bv-to-nat2-helper-hack (rewrite)
(implies
(and
(all-zero-bitvp z)
(equal (length d) (length z)))
(equal (bv-to-nat2-helper (cons 1 d) (cons 1 z) v)
(fix v)))
((expand (bv-to-nat2-helper (cons 1 d) (cons 1 z) v))))

(prove-lemma bv-to-nat2-helper-hack2 (rewrite)
implies
(and
(all-zero-bitvp z)
(equal (length d) (length z)))
(equal (bv-to-nat2-helper (cons 0 d) (cons 1 z) v) 0))
((expand (bv-to-nat2-helper (cons 0 d) (cons 1 z) v))))

(prove-lemma correctness-of-bv-to-nat-general (rewrite)
(implies
(and
(listp ctrl-stk)
(at-least-morep (length temp-stk)
3 max-temp-stk-size)
(equal (definition ’bv-to-nat prog-segment)
(bv-to-nat-program))
(numberp c2p)
(lessp 0 word-size)
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(at-most-one-bit-on cb)
(equal c2p (bv-to-nat cb))
(bit-vectorp bv word-size)
(bit-vectorp cb word-size)
(numberp value)
(lessp value c2p))
(equal
(p (p-state ’(pc (bv-to-nat . 5))
(cons (list
(list
(cons 'bv (list ’bitv bv))
(cons ’current-bit (list 'bitv cb))
(cons ’current-2power
(list ’nat c2p)))
ret-pc)
ctrl-stk)
(cons (list 'nat value)
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run
(bv-to-nat-loop-clock cb bv))
(p-state ret-pc
ctrl-stk
(cons
(list 'nat
(plus (bv-to-nat2-helper bv cb c2p)
value))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))

)
((induct (bv-to-nat-induct value bv cb ¢2p))))

(defn bv-to-nat-clock (word-size bv)
(plus 8 (bv-to-nat-loop-clock (one-bit-vector word-size) bv)))

(defn bv-to-nat-input-conditionp (p0)
(and
(equal (car (top (p-temp-stk p0))) *bitv)
(equal (cddr (top (p-temp-stk p0))) nil)
(bit-vectorp (cadr (top (p-temp-stk p0))) (p-word-size p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
7 (p-max-ctrl-stk-size p0))
(lessp O (p-word-size p0))
(at-least-morep (length (p-temp-stk p0))
2 (p-max-temp-stk-size p0))
(listp (p-ctrl-stk p0))))

(prove-lemma correctness-of-bv-to-nat-helper nil

(implies
(and
(equal p0 (p-state
pc
ctrl-stk

(cons (list ’bitv bv) temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction po) ’(call bv-to-nat))
(equal (definition ’bv-to-nat prog-segment
(bv-to-nat-program))
(equal (definition ’push-1-vector prog-segment)
(push-1-vector-program word-size))
(bv-to-nat-input-conditionp p0))
(equal
(p PO (bv-to-nat-clock word-size bv))
(p-state (addl-addr pc)
ctrl-stk
(coms (list 'nat (bv-to-nat2 bv)) temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size

‘run))))
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(prove-lemma bit-vectorp-append-better (rewrite)
(implies
(bit-vectorp x (length x))
(equal (bit-vectorp (append x y) size)
(and
(bit-vectorp y (length y))
(equal (fix size)
(plus (length x) (length ¥))))))
((induct (make-list-from size x))))

(prove-lemma bit-vectorp-hack (rewrite)
(equal
(bit-vectorp x (plus a (length (cdr x))))
and
(if (listp x) (equal a 1) (zerop a))
(bit-vectorp x (length x))))
use (length-from-bit-vectorp
)
(x x) (s (plus a (length (cdr x))))))
(disable length-from-bit-vectorp)))

(prove-lemma bv-to-nat-one-bit (rewrite)
(implies
(and
(not (all-zero-bitvp x))
(at-most-one-bit-on x)
(bit-vectorp x size))
(equal (bv-to-nat x) (exp 2 (trailing-zeros x)))))

(prove-lemma lessp-subl-plus-hack (rewrite)
(equal
(lessp (subl x) (plus y x))
(or (not (zerop x)) (not (zerop y)))))

(prove-lemma quotient-plus-hack (rewrite)
(equal
(quotient (plus a b b) 2)
(plus (quotient a 2) b)))

(prove-lemma bv-to-nat-all-but-last (rewrite)
(implies
(bit-vectorp x size)
(equal
(bv-to-nat (all-but-last x))
(quotient (bv-to-nat x) 2))))

(prove-lemma make-list-from-cons (rewrite)
(equal
(make-list-from n (cons a b))
(if (zerop n) nil (cons a (make-list-from (subl n) b)))))

(prove-lemma equal-plus-times-hack (rewrite)
(equal
(equal (plus a (times a b) (times a c)) (times a d))
(or (zerop a) (equal (plus 1 b c) d)
((use (equal-times-argl (a a) (x (plus 1 b ¢)) (v d)))))

;j(defn nth (n list)

i (if (zerop n)

; (car list)

i (nth (subl n) (cdr list))))
(enable nth)

(prove-lemma last-make-list-from (rewrite)
(equal (last (make-list-from n x))
(if (zerop n) O (nth (subl n) x))))

(prove-lemma make-list-from-nlistp (rewrite)
(implies
(nlistp x)
(equal (make-list-from n x) (zero-bit-vector n))))

(prove-lemma nth-nlistp (rewrite)
(implies
(nlistp x)
(equal (nth n x) 0)))

(prove-lemma bit-vectorp-make-list-from (rewrite)
(implies
(bit-vectorp x size)
(bit-vectorp (make-list-from n x) n)))

(prove-lemma equal-bv-to-nat-0-2 (rewrite)
(implies
(bit-vectorp x (length x))
(equal
(equal (bv-to-nat x) 0)
(all-zero-bitvp x))))
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(prove-lemma bv-to-nat-make-list-from-from-subl-make-list-from (rewrite)
(implies
(equal (bv-to-nat (make-list-from (subl n) v)) 0)
(equal (bv-to-nat (make-list-from n v)
(if (zerop n) 0 (fix-bit (nth (subl n) v))))))

(prove-lemma plus-bv-to-nat-make-list-from (rewrite)
(equal
(plus (bv-to-nat (make-list-from (subl z) v))
(bv-to-nat (make-list-from (subl z) v)))
(difference (bv-to-nat (make-list-from z v))
(fix-bit (last (make-list-from z v)))))
((induct (make-list-from z v))))

(prove-lemma equal-bv-to-nat-1 (rewrite)

(implies
(bit-vectorp x (length x))
(equal

(equal (bv-to-nat x) 1)
(and

(all-zero-bitvp (all-but-last x))
(equal (last x) 1))))
((induct (all-but-last x))))

(prove-lemma lessp-1-hack (rewrite)
(equal
(lessp 1 a)
(and
(not (zerop a))
(not (equal a 1)))))

(prove-lemma not-equal-nth-0-means (rewrite)
(implies
(and
(not (equal (nth n v) 0))
(lessp n s))
(not (all-zero-bitvp (make-list-from s v)))))

(prove-lemma all-zero-bitvp-all-but-last-means nil
(implies
(and
(all-zero-bitvp (all-but-last x))
(equal (length x) (length y))
(lessp 0 (trailing-zeros-helper y acc)))
(all-zero-bitvp (and-bitv x y))))

(prove-lemma all-zero-bitvp-all-but-last-means-spec (rewrite)
(implies
(and
(all-zero-bitvp (all-but-last x))
(equal (length x) (length y))
(lessp O (trailing-zeros-helper y 0)))
(all-zero-bitvp (and-bitv x y)))
((use (all-zero-bitvp-all-but-last-means (acc 0)))))

(prove-lemma all-zero-means-to-and-bitv (rewrite)
(implies
(all-zero-bitvp x)
(and
(equal (and-bitv x y) (zero-bit-vector (length x)))
(equal (and-bitv y x) (zero-bit-vector (length y))))))

(prove-lemma trailing-zeros-nth-proof nil

(implies

(and
(equal n

(subl (difference (length x)
(trailing-zeros-helper x acc))))

(not (all-zero-bitvp x)))

(not (equal (nth n x) 0))))

(prove-lemma trailing-zeros-nth-spec (rewrite)
(implies
(and
(equal n
(subl (difference (length x)
(trailing-zeros-helper x 0))))
(not (all-zero-bitvp x)))
(not (equal (nth n x) 0)))
((use (trailing-zeros-nth-proof (acc 0)))))

(prove-lemma and-bitv-special (rewrite)
(implies
(and
(equal (nth n w) 0)
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(not (equal (nth n x) 0))

(equal (Iength x) (length x))

(at-most-one-bit-on x))

(equal (and-bitv w x) (zero-bit-vector (length w)))))

(prove-lemma equal-trailing-zeros-length-spec nil
(equal
(equal (trailing-zeros-helper x acc) (plus acc (length x)))
(all-zero-bitvp x)))

(prove-lemma equal-trailing-zeros-length (rewrite)
(implies
(zerop acc)
(equal
(equal (trailing-zeros-helper x acc) (length x))
(all-zero-bitvp x)))
((use (equal-trailing-zeros-length-spec))))

(prove-lemma bit-vectorp-trailing-zeros (rewrite)
(equal
(bit-vectorp x (trailing-zeros-helper x acc))
(and
(all-zero-bitvp x)
(bit-vectorp x (length x))
(zerop acc)))
((use (equal-trailing-zeros-length-spec)
(length-from-bit-vectorp
(s (trailing-zeros-helper x acc))))
(disable length-from-bit-vectorp)))

(prove-lemma quotient-exp-hack (rewrite)
(implies
(not (zerop b))
(equal (quotient (plus x (exp b y)) b)
(if (zerop y)
(quotient (addl x) b)
(plus (exp b (subl y)) (quotient x b))))))

i(defn properp (list)
i (if (listp list)

; (properp (cdr list))
. (equal list nil)))

(prove-lemma bit-vectorp-means-properp (rewrite)
(implies
(bit-vectorp x (length x))
(properp x)))

(prove-lemma make-list-from-simplify (rewrite)
(implies
(and
(equal n (length x))
(properp x))
(equal (make-list-from n x) x)))

(prove-lemma equal-add1-plus-hack (rewrite)
(and
(equal
(equal (add1 (plus a b)) (plus ¢ (plus d a)))
((equal (add1 b) (plus ¢ d)))
equal
(equal (add1 (plus a b)) (plus c a))
(equal (add1 bB) (fix c)))
(equal
(equal (add1 a) (plus b a))
(equal 1 (fix b)))))

(prove-lemma plus-quotient-bv-to-nat (rewrite)
(equal
(plus (quotient (bv-to-nat x) 2)
(quotient (bv-to-nat x) 2)
(difference (bv-to-nat x) (fix-bit (last x)))))

(prove-lemma equal-plus-times-hack2 (rewrite)
(equal
(equal (plus (times a b) (times a c)) (times a d))
(or (zerop a)
(equal (plus b <) (fix d))))
((use (equal-times-argl (a a) (x (plus b)) (y d)))))

(prove-lemma and-bitv-special-special (rewrite)
(implies
(and
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(equal (last w) 0)

(not (equal (last x) 0))

(equal (Iength x) (length w))

(at-most-one-bit-on x))

(equal (and-bitv w x) (zero-bit-vector (length w)))))

(prove-lemma and-bitv-special-3 (rewrite)
(implies
(and
(equal (length x) (length y))
(not (equal (last x) 0))
(not (equal (last y) 0)))
(not (all-zero-bitvp (and-bitv x y)))))

(prove-lemma and-bitv-special-4 (rewrite)
(implies
(and
(not (equal (nth n w) D))
(not (equal (nth n x) 0))
(equal (length x) (length x)))
(not (all-zero-bitvp (and-bitv w x)))))

(prove-lemma and-bitv-special-5 (rewrite)
(implies
(and
(equal (last w) 0)
(not (equal (last x) 0))
(equal (add1 (length x)) (length w))
(at-most-one-bit-on x))
(equal (and-bitv w (cons 0 x))
(zero-bit-vector (length w)))))

(prove-lemma and-bitv-special-6 (rewrite)
(implies
(and
(not (equal (last w) 0))
(not (equal (last x) 0))
(equal (add1 (length x)) (length w)))
(not (all-zero-bitvp (and-bitv w (cons 0 x))))))

(prove-lemma not-last-0-means-not-all-0 (rewrite)
(implies
(not (equal (last x) 0))
(not (all-zero-bitvp x))))

(prove-lemma bit-vectorp-plus-length-hack (rewrite)
(and
(equal
(bit-vectorp x (plus z (length x)))
(and
(bit-vectorp x (length x))
(zerop 2)))
(equal
(bit-vectorp x (plus (addl z) (length (cdr x))))
(and
(bit-vectorp x (length x))
(listp x)

(zerop 2)))))

(prove-lemma last-append (rewrite)
(equal
(last (append x y))
(if (listp y) (last y) (last x))))

(prove-lemma bv-to-nat2-helper-bv-to-nat (rewrite)
(implies
(and
(at-most-one-bit-on cb)
(bit-vectorp cb size)
(bit-vectorp bv size)
(equal c2 (bv-to-nat cb)))
(equal
(bv-to-nat2-helper bv cb c2)
(bv-to-nat (append
(make-list-from (difference (length bv)
(trailing-zeros cb))
bv)
(zero-bit-vector (trailing-zeros cb)))))))

(prove-lemma bv-to-nat2-helper-bv-to-nat-better (rewrite)
(implies
(and
(at-most-one-bit-on cb)
(bit-vectorp cb (length cb))
(bit-vectorp bv (length cb))
(equal c2 (bv-to-nat cb)))
(equal
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v-to-nat2-helper bv cb c2
b helper bv cb
v-to-nat (appen
b d
(make-list-from (difference (length bv)
(trailing-zeros cb))
bv)
(zero-bit-vector (trailing-zeros cb)))))))

(prove-lemma nlistp-bv-to-nat2 (rewrite)
(implies
(not (listp x))
(equal (bv-to-nat2-helper x a b) 0)))

(prove-lemma bv-to-nat2-bv-to-nat-helper nil
(implies (nlistp x)
(equal (bv-to-nat2 x) (bv-to-nat x))))

(prove-lemma bit-vectorp-one-bit-vector-rewrite (rewrite)
(equal
(bit-vectorp (one-bit-vector s) n)
(if (zerop s) (equal n 1) (equal (fix s) (fix n))))
((induct (lessp s n))))

(prove-lemma trailing-zeros-helper-one-bit-vector (rewrite)
(equal
(trailing-zeros-helper (one-bit-vector n) acc)
0))

(prove-lemma bv-to-nat2-bv-to-nat (rewrite)
(implies
(bit-vectorp x (length x))
(equal (bv-to-nat2 x) (bv-to-nat x)))
((use (bv-to-nat2-bv-to-nat-helper))))

(prove-lemma bv-length-weaker (rewrite)
(implies
(bit-vectorp x s)
(bit-vectorp x (length x))))

(prove-lemma correctness-of-bv-to-nat (rewrite)

(implies
(and
(equal p0 (p-state
pc
ctrl-stk

(cons b temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0) ’(call bv-to-nat))
(equal (definition 'bv-to-nat prog-segment)
(bv-to-nat-program))
(equal (definition 'push-1-vector prog-segment)
(push-1-vector-program word-size))
(equal bv (cadr b))
(bv-to-nat-input-conditionp p0))

(equal
(p (p-state
pe
ctrl-stk

(cons b temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)

(bv-to-nat-clock word-size bv))

(p-state (addl-addr pc)

ctrl-stk
(cons (list 'nat (bv-to-nat bv)) temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((use (correctness-of-bv-to-nat-helper)
(bv-to-nat2-bv-to-nat (x bv)))

(disable-theory t)

(enable bv-to-nat-input-conditionp p-state
p-word-size-p-state bv-length-weaker
top p-temp-stk-p-state)

(enable-theory ground-zero)))
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533 number-with-at-least

(defn number-with-at-least-program nil
‘(number-with-at-least (nums-addr numnums min) ((i (nat 0)))
(push-constant (nat 0))
(set-local i)
(d1 1oop ()

(push-local nums-addr))
(fetch)
(push-local min)
(1t-nat)
(test-bool-and-jump t lab)
(add1-nat)

(dl lab ()
(push-local numnums))
(push-local i)
(add1-nat)
(set-local i)
(sub-nat)
(test-nat-and-jump zero done)
(push-local nums-addr)
(push-constant (nat 1))
(add-addr)
(pop-local nums-addr)
(jump loop)

(a1 done ()
(ret))))

(defn example-number-with-at-least-state ()
(p-state '(pc (main . 0))
'((nil (pe (main . 0))))
nil
(list *(main nil nil
(push-constant (addr (nums . 0)))
(push-constant (nat 5))
(push-constant (nat 3))
(call number-with-at-least)
(ret))
(number-with-at-least-program))
'((nums (nat 3) (nat 8) (nat 9) (nat 2) (nat 100)))
10

8
8
‘run))

(defn number-with-at-least (numlist min)
(if (listp numlist)
(if (lessp (car numlist) min)
(number-with-at-least (cdr numlist) min)
(add1 (number-with-at-least (cdr numlist) min)))

0))

(defn nat-list-piton (array word-size)
(if (listp array)
(and
(listp (car array))
(equal (caar array) 'nat)
(numberp (cadar array))
(equal (cddar array) nil)
(lessp (cadar array) (exp 2 word-size))
(nat-list-piton (cdr array) word-size))
(equal array nil)))

(defn number-with-at-least-general-induct (i current n s min data-segment)
(if (lessp i n)
(number-with-at-least-general-induct
(add1 i)
(if (lessp (cadr (get i (array s data-segment))) min)
current (addl current))
n s min data-segment)
t)
((lessp (difference n i))))

(defn number-with-at-least-clock-loop (i min array)
(if (not (lessp i (length array))) 0
(plus
(if (lessp (cadr (get i array)) min) 0 1)
(if (equal (add1 i) (length array))
12

(plus 16 (number-with-at-least-clock-loop (add1 i) min array)))))
((lessp (difference (length array) i))))

(prove-lemma equal-difference-1 (rewrite)
(equal
(equal (difference x y) 1)
(equal x (addl y))))
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(prove-lemma nat-list-piton-means (rewrite)

(implies

(and
(nat-list-piton state size)
(lessp p (length state)))

(and
(equal (car (get p state)) 'nat)
(listp (get p state))
(numberp (cadr (get p state)))
(lessp (cadr (get p state)) (exp 2 size))
(equal (cddr (get p state)) mil))))

(prove-lemma number-with-at-least-nlistp (rewrite)
(implies
(not (listp x))
(equal (number-with-at-least x min) 0)))

(prove-lemma equal-addl-length (rewrite)
(equal
(equal (add1l x) (length y))
(and
(listp y)
(equal (fix x) (length (cdr ¥))))))

(disable number-with-at-least-clock-loop)

(prove-lemma length-cdr-untag-array (rewrite)
(equal
(length (cdr (untag-array x)))
(length (cdr x))))

(prove-lemma number-with-at-least-correctness-general nil
(implies
(and
(lessp (length (array s data-segment))
(exp 2 word-size))
(not (zerop word-size))
(listp ctrl-stk)
(nat-list-piton (array s data-segment) word-size)
(at-least-morep (length temp-stk)
3 max-temp-stk-size)
(equal (definition 'number-with-at-least prog-segment)
(number-with-at-least-program))
(definedp s data-segment)
(lessp min (exp 2 word-size))
(numberp min)
(lessp i n)
(numberp i)
(lessp n (exp 2 word-size))
(numberp current)
(not (lessp i current))
(equal n (length (array s data-segment))))
(equal
(p (p-state '(pc (number-with-at-least . 2))
(cons (list
(list
(cons 'nums-addr
(list *addr (cons s i)))
(cons ‘mumnums (list 'nat n))
(cons *min (list 'nat min))
(cons *i (list 'nat i)))
ret-pe)
ctrl-stk)
(cons (list 'nat current)
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run
(number-with-at-least-clock-loop
i min (array s data-segment)))
(p-state ret-pc
ctrl-stk
(cons
(list 'nat
(plus current
(number-with-at-least
(nthedr i (untag-array
(array s data-segment)))
min)))

temp-stk)
prog-segment
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data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))

((induct (number-with-at-least-general-induct
i current n s min data-segment))

(expand (NUMBER-WITH-AT-LEAST-CLOCK-LOOP
1 MIN (CDR (ASSOC S DATA-SEGMENT))))))

(defn number-with-at-least-clock (min array)
(plus 3 (number-with-at-least-clock-loop 0 min array)))

(defn number-with-at-least-input-conditionp (p0)
(and
(equal (car (car (p-temp-stk p0))) ’nat)
(equal (cddr (car (p-temp-stk p0))) nil)
(equal (car (cadr (p-temp-stk p0))) 'nat)
(equal (cddr (cadr (p-temp-stk p0))) nil)
(equal (car (caddr (p-temp-stk p0))) *addr)
(equal (cdadr (caddr (p-temp-stk p0))) 0)
(equal (cddr (caddr (p-temp-stk p0))) nil)
(listp (cadr (caddr (p-temp-stk p0))))
(lessp (length (array (car (cadr (caddr (p-temp-stk p0))))
(p-data-segment p0)))
(exp 2 (p-word-size p0)))
(not (zerop (p-word-size p0)))
(listp (p-ctrl-stk p0))
(nat-list-piton (array (car (cadr (caddr (p-temp-stk p0))))
(p-data-segment p0))
(p-word-size p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
6 (p-max-ctrl-stk-size p0))
(at-least-morep (length (p-temp-stk p0))
0 (p-max-temp-stk-size p0))
(equal (definition 'number-with-at-least (p-prog-segment p0))
(number-with-at-least-program))
(definedp (car (cadr (caddr (p-temp-stk p0)))) (p-data-segment p0))
(lessp (cadr (car (p-temp-stk p0))) (exp 2 (p-word-size p0)))
(numberp (cadr (car (p-temp-stk p0))))
(lessp 0 (cadr (cadr (p-temp-stk p0))))
(equal (cadr (cadr (p-temp-stk p0)))
(length (array (car (cadr (caddr (p-temp-stk p0))))
(p-data-segment p0))))))

(prove-lemma correctness-of-number-with-at-least (rewrite)

(implies
(and
(equal p0 (p-state
pc
ctrl-stk

(cons m (cons n (cons s temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0)

*(call number-with-at-least))
(number-with-at-least-input-conditionp p0)
(equal minc (cadr m))

(equal arrayc (array (car (cadr s)) data-segment)))

(equal
(p (p-state
pe
ctrl-stk

(cons m (cons n (cons s temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run
(number-with-at-least-clock minc arrayc))
(p-state (add1-addr pc)
ctrl-stk
(cons (list 'nat
(number-with-at-least
(untag-array
(array (car (cadr s))
data-segment))
(cadr m)))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
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max-temp-stk-size
word-size
‘run)))
((use (number-with-at-least-correctness-general
(i 0) (current 0) (s (car (cadr s)))
(ret-pc (addl-addr pc))
(n (cadr n)) (min (cadr m))))
(disable number-with-at-least-clock-loop)))

;; highest-bit

(defn highest-bit-program nil
'(highest-bit (bv) ((cb (nat 0)))

(call push-1-vector)
(set-local cb)
(rsh-bitv)

(dl loop ()
(push-local cb))
(test-bitv-and-jump all-zero done)
(push-local bv)
(push-local cb)
(and-bitv)
(test-bitv-and-jump all-zero lab)
(pop)
(push-local cb)

(dl 1ab ()
(push-local cb))
(Ish-bitv)
(pop-local cb)
(jump loop)
(dl done ()

(ret))))

(defn example-highest-bit-state ()
(p-state '(pc (main . 0))
((nil (pe (main . 0))))
nil
(list ’(main nil nil
(push-constant (bitv (0 000 0 0 0 0)))
(call highest-bit)
(push-constant (bitv (001 10 1 0 0)))
(call highest-bit)
(push-constant (bitv (101 101 0 0)))
(call highest-bit)
(ret))
(highest-bit-program)
(push-1-vector-program 8))
nil
10
8
8
‘run))

(defn highest-bit (x)
(if (listp x)
(if (equal (car x) 0)
(cons 0 (highest-bit (cdr x))
(cons 1 (zero-bit-vector (length (cdr x)))))

nil))

(prove-lemma listp-highest-bit (rewrite)
(equal (listp (highest-bit x)) (listp x)))

prove-lemma length-highest-bit (rewrite
8 8
(equal (length (highest-bit x)) (length x)))

(defn highest-bit-loop-clock (cb bv)
(if (all-zero-bitvp cb)
3
(plus
10 (if (all-zero-bitvp (and-bitv cb bv)) 0 2)
(highest-bit-loop-clock (append (cdr cb) ’(0)) bv)))
((lessp (difference (length cb) (trailing-zeros cb)))))

defn highest-bit-induct (current bv cb
3
(if (all-zero-bitvp cb)
t

(highest-bit-induct
(if (all-zero-bitvp (and-bitv cb bv)) current cb)
bv
(append (cdr cb) *(0))))
((lessp (difference (length cb) (trailing-zeros cb)))))

(prove-lemma bit-vectorp-simple-not (rewrite)
(implies
(not (equal (Iength x) (fix y)))
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(not (bit-vectorp x y))))

(prove-lemma at-most-one-bit-on-cdr (rewrite)
(implies
(at-most-one-bit-on x
(at-most-one-bit-on (cdr x))))
(prove-lemma equal-one-bit-vector (rewrite)
(equal
(equal x (one-bit-vector z))
(or
(and
(zerop z)

(equal x *(1)))

and
(bit-vectorp x z)
(all-zero-bitvp (all-but-last x))

(not (equal (last x) 0))))))

(prove-lemma at-most-one-bit-is-all-zeros (rewrite)
(implies

(not (equal (last x) 0))
(equal
(at-most-one-bit-on x
(all-zero-bitvp (all-but-last x)))))
(defn highest-bit2-helper (current cb bv)
(if (all-zero-bitvp cb)
current

(highest-bit2-helper

(if (all-zero-bitvp (and-bitv bv cb)) current cb)
(append (cdr cb) *(0))
b

v
((lessp (difference (length cb) (trailing-zeros cb)))))

(prove-lemma equal-x-zero-bit-vector (rewrite)
(equal

(and
(all-zero-bitvp x)
(bit-vectorp x y))))

(equal x (zero-bit-vector y))

(prove-lemma all-zero-bitvp-all-but-last-simple (rewrite)
(implies
(all-zero-bitvp x)

(all-zero-bitvp (all-but-last x))))

(prove-lemma equal-trailing-zeros-acc-irrelevant (rewrite)
(equal

(equal (trailing-zeros-helper x accl)
(trailing-zeros-helper x acc2))
(or
(equal (fix accl) (fix acc2))
(not (all-zero-bitvp x)))))
(prove-lemma lessp-trailing-zeros (rewrite)
(implies
(not (all-zero-bitvp z))
(lessp (trailing-zeros-helper z acc)
(length z))))
(prove-lemma nthedr-append (rewrite)
(equal (nthedr n (append x y))
(if (lessp (length x) n

(nthedr (difference n (length x)) y)
(append (nthedr n x) y)))

(prove-lemma listp-zero-bit-vector (rewrite)
(equal

(listp (zero-bit-vector x))

(not (zerop x))))

(prove-lemma and-bitv-append (rewrite)
(equal
(and-bitv (append x y) z)
(append

(and-bitv x (make-list-from (length x) z))
(and-bitv y (nthedr (length x) z))))
((induct (double-cdr-induct x z))))

(prove-lemma and-bitv-append2 (rewrite)
(implies

((equal (length (append x y)) (length z))
equal

(and-bitv z (append x y))
(append
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(and-bitv x (make-list-from (length x) z))
(and-bitv y (nthedr (length x) z)))))
((induct (double-cdr-induct x z))))

(prove-lemma all-zero-bitvp-and-bitv-append (rewrite)
(equal
(all-zero-bitvp (and-bitv z (append x y)))
(and
(all-zero-bitvp (and-bitv (make-list-from (length x) z) x))
(all-zero-bitvp (and-bitv (nthedr (length x) z) y))))
((induct (double-cdr-induct x z))))

(prove-lemma length-cdr-zero-bit-vector (rewrite)
(equal
(length (cdr (zero-bit-vector x)))
(subl x)))

(prove-lemma length-nthedr (rewrite)
(equal
(length (nthedr n x))
(difference (length x) n)))

(disable and-bitv-special)
(disable and-bitv-special-special)
(disable and-bitv-special-3)
(disable and-bitv-special-4)
(disable and-bitv-special-5)
(disable and-bitv-special-6)

(prove-lemma bit-vectorp-zero-bit-vector-better (rewrite)
(equal
(bit-vectorp (zero-bit-vector x) size)
(equal (fix x) (fix size))))

(prove-lemma highest-bit-correctness-general nil
(implies
(and
(not (zerop word-size))
(at-most-one-bit-on cb)
(listp ctrl-stk)
(at-least-morep (length temp-stk)
3 max-temp-stk-size)
(equal (definition ’highest-bit prog-segment)
(highest-bit-program))
(bit-vectorp bv word-size)
(bit-vectorp cb word-size)
(bit-vectorp current word-size))
(equal
(p (p-state '(pc (highest-bit . 3))
(cons (list
(list
(cons 'bv (list 'bitv bv))
(cons 'cb (list 'bitv cb)))
ret-pc)
ctrl-stk)
(cons (list ’bitv current) temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(highest-bit-loop-clock cb bv))
(p-state ret-pc
ctrl-stk
(cons
(list “bitv
(highest-bit2-helper current cb bv))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((induct (highest-bit-induct current bv cb))))

(prove-lemma make-list-from-simple (rewrite)
(implies
(zerop n)
(equal (make-list-from n x) nil)))

(prove-lemma not-all-zero-bitvp-make-list-from (rewrite)
(implies
(and
(all-zero-bitvp (make-list-from nl x))
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(not (lessp n1 n2)))
(all-zero-bitvp (make-list-from n2 x))))

(disable nthedr-open)

i(prove-lemma listp-append (rewrite)
; (equal

; (listp (append x y))

; (or (listp x) (listp y))))
(enable listp-append)

(prove-lemma highest-bit2-helper-cons-1 (rewrite)
(implies
(and
(not (all-zero-bitvp cb))
(at-most-one-bit-on cb)
(equal (length cb) (length bv))
(bit-vectorp cb (length cb))
(equal (car bv) 1))
(equal
(highest-bit2-helper current cb bv
(cons 1 (zero-bit-vector (length (cdr bv)))))))

(prove-lemma bit-vectorp-append-cdr-hack (rewrite)
(implies
(bit-vectorp x n)
(equal (bit-vectorp (append (cdr x) *(0)) n)
(listp x))))

(defn triple-cdr-with-subl-induct (x y z n)
(if (zerop n) t
(triple-cdr-with-subl-induct (cdr x) (cdr y) (edr z) (subl n))))

(prove-lemma car-append-better (rewrite)
(equal
(car (append x y))
(if (listp x)
(car x)

(car y¥))))

(prove-lemma open-highest-when-and-not-0 (rewrite)
(implies
(and
(not (all-zero-bitvp (and-bitv x y)))
(equal (length x) (length y)))
(equal (highest-bit2-helper ¢ x y)
(highest-bit2-helper x (append (cdr x) ’(0)) ¥))))

i(prove-lemma cdr-append (rewrite)

; (equal

; (cdr (append x y))

; (if (listp x)

; (append (edr x) y)
(cdr ¥))))

;
(enable cdr-append)

(prove-lemma highest-bit2-helper-cons-0 (rewrite)

(implies

(and

(not (all-zero-bitvp cb))

(at-most-one-bit-on cb)

(bit-vectorp cb size)

(bit-vectorp bv size)

(bit-vectorp current size)

(equal (car bv) 0)

(equal (car current) 0))
(equal

(highest-bit2-helper current cb bv)
(cons 0 (highest-bit2-helper

(cdr current) (cdr cb) (cdr bv)))))

((expand (highest-bit2-helper z x v))))

(prove-lemma highest-bit2-helper-cons-O-rewrite (rewrite)
(implies
(and
(not (all-zero-bitvp cb))
(at-most-one-bit-on cb)
(bit-vectorp cb (length cb))
(bit-vectorp bv (length cb))
(bit-vectorp current (length cb))
(equal (car bv) 0)
(equal (car current) 0))
(equal
(highest-bit2-helper current cb bv)
(cons 0 (highest-bit2-helper
(cdr current) (cdr cb) (edr bv)))))



A Proved Application with 55
Simple Real-Time Properties
Technical Report #78

((use (highest-bit2-helper-cons-0 (size (length cb))))))

(prove-lemma append-zeros-0 (rewrite)
(implies
(and
(all-zero-bitvp x)
(properp x))
(equal (append x '(0)) (cons 0 x))))

(prove-lemma highest-bit2-helper-cons-helper nil

(implies
(and

(bit-vectorp bv size)

(bit-vectorp cb size)

(at-most-one-bit-on cb)

(at-most-one-bit-on current)

(not (all-zero-bitvp cb))

(or

(all-zero-bitvp current)

(lessp (trailing-zeros current) (trailing-zeros cb)))

(bit-vectorp current size)

(not (zerop size)))

(equal

(highest-bit2-helper current cb bv)

(if (equal (car bv) 0)

(cons 0 (highest-bit2-helper (cdr current)
cdr cb) (cdr bv)))
(cons 1 (zero-bit-vector (subl size))))))
((induct (triple-cdr-with-subl-induct
bv cb current size))))

(prove-lemma highest-bit2-helper-cons-helper-rewrite (rewrite)

(implies
(and

(bit-vectorp bv (length bv))

(bit-vectorp cb (length bv))

(at-most-one-bit-on cb)

(at-most-one-bit-on current)

(not (all-zero-bitvp cb))

(or

(all-zero-bitvp current)

(lessp (trailing-zeros current) (trailing-zeros cb)))

(bit-vectorp current (length bv))

(listp bv))

(equal

(highest-bit2-helper current cb bv)

(if (equal (car bv) 0)

(cons 0 (highest-bit2-helper (cdr current)
(cdr cb) (cdr bv)))
(cons 1 (zero-bit-vector (subl (length bv)))))))

((use (highest-bit2-helper-cons-helper (size (length bv))))
(disable-theory t)
(enable equal-length-0)
(enable-theory ground-zero)))

(prove-lemma bit-vectorp-cdr-from-free (rewrite)
(implies
(bit-vectorp x n)
(equal (bit-vectorp (cdr x) s)
(equal (add1 s) n))))

(prove-lemma all-zero-bitvp-one-bit-vector (rewrite)
(not (all-zero-bitvp (one-bit-vector x))))

prove-lemma trailing-zeros-one-bit-vector (rewrite
3
(equal (trailing-zeros (one-bit-vector n)) 0))

(prove-lemma cdr-zero-one-bit-vector (rewrite)
(and
(equal (cdr (one-bit-vector x))
(if (lessp x 2) nil (one-bit-vector (subl x))))
(equal (cdr (zero-bit-vector x))
(if (zerop x) O (zero-bit-vector (subl x))))))

(prove-lemma highest-bit2-helper-highest-bit (rewrite)
(implies
(and
(bit-vectorp bv word-size)
(not (zerop word-size)))
(equal
(highest-bit2-helper (zero-bit-vector word-size)
(one-bit-vector word-size) bv)
(highest-bit bv)))
((induct (bit-vectorp bv word-size))
(disable-theory t)
(enable-theory ground-zero naturals)
(enable highest-bit2-helper-cons-helper-rewrite
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bv-length-weaker LENGTH-FROM-BIT-VECTORP
at-most-one-bit-on-one-bit-vector

*1%zero-bit-vector *1*one-bit-vector
*1*highest-bit2-helper bitp

bit-vectorp cdr-zero-one-bit-vector
ALL-ZERO-BITVP-ZERO-BIT-VECTOR
bit-vectorp-simple-not length highest-bit
TRAILING-ZEROS-OF-ALL-ZERO-BITVP
bit-vectorp-zero-bit-vector-better
length-zero-bit-vector

trailing-zeros-one-bit-vector
all-zero-bitvp-one-bit-vector
ALL-ZERO-BITVP-MEANS-AT-MOST-ONE-BIT-ON
bit-vectorp-one-bit-vector-rewrite)))

(defn highest-bit-input-conditionp (p0)
(and
(equal (car (top (p-temp-stk p0))) *bitv)
(equal (cddr (top (p-temp-stk p0))) nil)
(not (zerop (p-word-size p0)))
(listp (p-ctrl-stk p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
6 (p-max-ctrl-stk-size p0))
(at-least-morep (length (p-temp-stk p0))
2 (p-max-temp-stk-size p0))
(equal (definition *highest-bit (p-prog-segment p0))
(highest-bit-program))
(equal (definition 'push-1-vector (p-prog-segment p0))
(push-1-vector-program (p-word-size p0)))
(bit-vectorp (cadr (top (p-temp-stk p0))) (p-word-size p0))))

efn hi est-bit-cloc v
defn highest-bit-clock (b
(plus 6 (highest-bit-loop-clock (one-bit-vector (length bv)) bv)))

(prove-lemma cons-0-zero-bit-vector (rewrite)
(equal
(cons 0 (zero-bit-vector x))
(zero-bit-vector (addl x))))

(disable cons-0-zero-bit-vector)

(prove-lemma correctness-of-highest-bit (rewrite)

(implies
(and
(equal p0 (p-state
pc
ctrl-stk

(cons b temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))

(equal (p-current-instruction p0)

*(call highest-bit))
(equal be (cadr b))
(highest-bit-input-conditionp p0))

(equal
(p (p-state
pe
ctrl-stk

(cons b temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size

‘run)
(highest-bit-clock bc))
(p-state (add1-addr pc)
ctrl-stk
(cons (list 'bitv (highest-bit (cadr b)))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((use (highest-bit-correctness-general
(ret-pc (add1-addr pc))
(current (zero-bit-vector word-size))
(cb (ome-bit-vector word-size))
(bv (cadr b))))
(expand (highest-bit-clock (cadr b)))
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(enable cons-O-zero-bit-vector)
disable highest-bit-loop-clock zero-bit-vector
3

;; match-and-xor

(defn match-and-xor-program ()
'(match-and-xor (vecs numvecs match xor-vector) ((i (nat 0)))

(push-constant (nat 0))
(pop-local i)

(d1 1oop ()
(push-local vecs))
(fetch)
(push-local match)
(and-bitv)
(test-bitv-and-jump not-all-zeros found)
(push-local i)
(add1-nat)
(set-local i)
(push-local numvecs)
(1t-nat)
(test-bool-and-jump f done)
(push-local vecs)
(push-constant (nat 1))
(add-addr)
(pop-local vecs)
(jump loop)

(dl found ()
(push-local vecs))
(fetch)
(push-local xor-vector)
(xor-bitv)
(push-local vecs)
(deposit)

(d1 done ()
(ret))))

(defn example-match-and-xor-p-state ()
(p-state *(pc (main . 0))
'((nil (pe (main . 0))))
nil
(list *(main nil nil
(push-constant (addr (arr . 0)))
(push-constant (nat 6))
(push-constant (bitv (0
(push-constant (bitv (1
(call match-and-xor)
(ret))
(match-and-xor-program))
*((arr (bitv (0100100 1))

=0
=0

(bitv (0000000 1))
(bitv (0001000 1))
(bitv (0 0000 00 1))
(bitv (0 001000 1))
(bitv (0110100 1))))

10

8

8

‘run))

(defn match-and-xor (bvs match xor-vector)
(if (listp bvs)
(if (all-zero-bitvp (and-bitv (car bvs) match))
(cons (car bvs) (match-and-xor (cdr bvs) match xor-vector))
(cons (xor-bitv (car bvs) xor-vector) (cdr bvs)))

nil))

(defn match-and-xor-loop-clock (bvs match)
(if (listp bvs)
(if (all-zero-bitvp (and-bitv (car bvs) match))
(if (listp (cdr bvs))
(plus 16 (match-and-xor-loop-clock (cdr bvs) match))
12)
12)

0))

(defn tag-array (tag array)
(if (listp array)
(cons (tag tag (car array))
(tag-array tag (cdr array)))
nil))
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efn match-and-xor-general-induct (numvecs i
def h-and g l-ind i
(if (lessp i numvecs)
(match-and-xor-general-induct numvecs (add1 i))
t)
((lessp (difference numvees i))))
(prove-lemma tag-array-untag-array (rewrite)
(implies
(bit-vectors-piton x (length (untag (car x))))
(equal (tag-array ’bitv (untag-array x)) x)))

(prove-lemma bit-vectors-piton-free-means (rewrite)

(implies
(bit-vectors-piton x size)
(and
(bit-vectors-piton x (length (cadr (car x))))
(equal

(bit-vectors-piton (cdr x) (length (cadr (cadr x))))

(listp x)))))

(prove-lemma listp-cdr-nthecdr (rewrite)
(equal
(listp (cdr (nthedr i x)))
(lessp i (length (cdr x)))))

(prove-lemma nthedr-untag-array (rewrite)
(equal
(nthedr i (untag-array x))
(if (lessp i (length x))
(untag-array (nthedr i x))
(if (equal (fix i) (length x)) nil 0))))

(prove-lemma put-length-cdr (rewrite)
(implies
(properp x)
(equal
(put val (length (cdr x)) x)
(append (all-but-last x) (list val)))))

(prove-lemma nthedr-length-cdr (rewrite)
(implies
(properp x)
(equal
(nthedr (length (cdr x)) x)
(if (listp x) (list (last x)) nil))))

(prove-lemma get-length-cdr (rewrite)
(equal
(get (length (cdr x)) x)
(if (listp x) (last x) 0)))

(prove-lemma append-all-but-last-last (rewrite)
(implies
(properp x)
(equal
(append (all-but-last x) (list (last x)))
(if (nlistp x) (list (last x)) x))))

(prove-lemma listp-cdr-untag-array (rewrite)
(equal
(listp (cdr (untag-array x)))
(listp (cdr x))))

(prove-lemma bit-vectorp-last (rewrite)
(implies
(bit-vectors-piton bvs s)
(equal (bit-vectorp (cadr (last bvs)) s) (listp bvs))))

(prove-lemma bit-vectors-piton-means-properp (rewrite)
(implies
(bit-vectors-piton x s)
(properp x)))

(prove-lemma bit-vectors-piton-means-last (rewrite)
(implies
(and
(bit-vectors-piton state size)
(listp state))
(and
(equal (car (last state)) ’bitv)
(listp (last state))
(bit-vectorp (cadr (last state)) size)
(equal (cddr (last state)) nil)
(equal (length (cadr (last state))) (fix size))))
((disable bit-vectorp-last)))
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(prove-lemma list-bitv-cadr-bitvp (rewrite)
(implies
(and
(equal (car x) ’bitv)
(equal (cddr x) nil))
(equal (list bitv (cadr x)) x)))

(prove-lemma equal-x-put-assoc-x (rewrite)
(equal
(equal x (put-assoc val name x))
or
(not (definedp name x))
(equal (assoc name x) (cons name val)))))

(prove-lemma cons-n-assoc-n (rewrite)
(implies
(listp (assoc n d))
(equal (cons n (cdr (assoc n d)))
(if (definedp n d)
(assoc n d)

(cons n 0)))))

(prove-lemma cons-n-cadr-list-assoc-n (rewrite)
(implies
(equal (cddr (assoc n d)) nil)
(equal (list n (cadr (assoc n d)))
(if (definedp n d)
(assoc n d)

(cons n 0)))))

(prove-lemma cons-n-assoc-n-hack (rewrite)
(implies
(listp (cdr (assoc n d)))
(equal (coms n (cdr (assoc n d)))
(if (definedp n d
(assoc n a)

(cons n 0)))))

(prove-lemma car-untag-array (rewrite)
(equal
(car (untag-array x))
(untag (car x))))

(prove-lemma car-nthedr (rewrite)
(equal
(car (nthedr i x))

(get i x)))

(prove-lemma tag-array-cdr-untag-array-hack (rewrite)
(implies
(bit-vectors-piton x (length (untag (car x))))
(equal
(tag-array ’bitv (cdr (untag-array x)))
(if (listp x) (cdr x) nil))))

(prove-lemma bit-vectors-piton-means-car (rewrite)
(implies
(and
(bit-vectors-piton state size)
(listp state))
(and
(equal (caar state) ’bitv)
(listp (car state))
(bit-vectorp (cadr (car state)) size)
(equal (cddr (car state)) nil)
(equal (length (cadr (car state))) (fix size)))))

(prove-lemma equal-put-assoc (rewrite)
(equal
(equal (put-assoc v1 n s) (put-assoc v2 n s))
(or
(not (definedp n s))
(equal v1 v2))))

(prove-lemma get-nlistp-better (rewrite)
(implies
(not (lessp i (length x)))
(equal (get i x) 0)))

(prove-lemma equal-append-zero-bit-vector-zero-bit-vector (rewrite)
(equal
(equal (append (zero-bit-vector n1) x)
(append (zero-bit-vector n2) y))
(if (lessp n1 n2)
(equal
x (append (zero-bit-vector (difference n2 n1)) y))
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(equal
y (append (zero-bit-vector (difference nl n2)) x)))))

(prove-lemma append-make-list-from-cons-get-hack (rewrite)
(equal
(append (make-list-from i x) (cons (get i x) y))
(append (make-list-from (addl i) x) y)))

(prove-lemma cdr-untag-array-nthedr (rewrite)
(implies
(lessp i (length x))
(equal
(cdr (untag-array (nthedr i x)))
(untag-array (nthedr i (cdr x))))))

(prove-lemma equal-nil-nthedr-length (rewrite)
(equal
(equal nil (nthedr (length x) x))
(properp x)))

(prove-lemma lessp-0-length-better (rewrite)
(implies
(zerop x)
(equal (lessp x (length y)) (listp v))))

(prove-lemma bit-vectors-piton-means-get-cdr (rewrite)
(implies
(bit-vectors-piton state size)
(and
(equal (car (get i (cdr state)))
(if (lessp i (length (cdr state))) *bitv 0))
(equal (listp (get i (cdr state)))
(lessp i (length (cdr state))))
(equal (bit-vectorp (cadr (get i (cdr state))) size)
(lessp i (length (cdr state))))
(equal (cddr (get i (cdr state)))
(if (lessp i (length (cdr state))) nil 0))
(equal (length (cadr (get i (cdr state))))
(if (lessp i (length (cdr state))) (fix size) 0))))
((induct (get i state))))

(prove-lemma bit-vectors-piton-nthedr (rewrite)
(implies
(bit-vectors-piton x s1)
(and
(equal (bit-vectors-piton (nthedr i x) s)
(or
(and
(lessp i (length x))
(equal (fix s1) (fix s)))
(equal (fix i) (length x))))
(equal (bit-vectors-piton (nthedr i (cdr x)) s)
(and
(lessp i (length x))
(or (equal (fix s) (fix s1))
(equal (fix i) (length (cdr x)))))))))

(prove-lemma tag-array-untag-array-nthedr-cddr-hack (rewrite)
implies
(o
(and
(lessp i (length x))
bit-vectors-piton x s
- ¢
(equal
(tag-array ’bitv (untag-array (nthedr i (cdr x))))
(nthedr i (cdr x))))
((use (tag-array-untag-array (x (nthedr i (cdr x)))))))

(prove-lemma append-make-list-from-put-hack (rewrite)
(implies
(lessp i (length x))
(equal
(append
(make-list-from i x
(cons v (nthedr i (cdr x))))
(put v i x))))

(enable lessp-subl-x-x)
(enable lessp-x-x)

(prove-lemma correctness-of-match-and-xor-general nil
(implies
(and
(listp ctrl-stk)
(at-least-morep (p-ctrl-stk-size ctrl-stk)
7 max-ctrl-stk-size)
(at-least-morep (length temp-stk)
4 max-temp-stk-size)
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(equal (definition 'match-and-xor prog-segment) (match-and-xor-program))
(bit-vectorp match word-size)
(bit-vectorp xor-vector word-size)
(equal numvecs (length (array vecs data-segment)))
(bit-vectors-piton (array vecs data-segment) word-size)
(definedp vecs data-segment)
(numberp i)
(lessp i numvecs)
(lessp (length (array vecs data-segment)) (exp 2 word-size)))
(equal

P
(p-state *(pc (match-and-xor . 2))
(cons (list
(list
(cons 'vecs (list ‘addr (cons vecs i)))
(cons 'numvecs (list 'nat numvecs))
(cons 'match (list ’bitv match)
(cons *xor-vector (list ’bitv xor-vector))
(cons i (list ’nat i)))
ret-pe)
ctrl-stk)
temp-stk
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(match-and-xor-loop-clock
(nthedr i (untag-array (array vecs data-segment))) match))
(p-state
ret-pc
ctrl-stk
temp-stk
prog-segment
(put-assoc
(append (make-list-from i (array vecs data-segment))
(tag-array ’bitv
(match-and-xor
(untag-array (nthedr i (array vecs data-segment)))
match xor-vector)))
vecs data-segment)
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((induct (match-and-xor-general-induct numvecs i))
(disable bit-vectors-piton)
(expand
(match-and-xor-loop-clock
(untag-array (nthedr i (cdr (assoc vecs data-segment))))
match)
(match-and-xor-loop-clock
(untag-array (nthedr (length (cddr (assoc vecs data-segment)))
(cdr (assoc vecs data-segment))))
match))))

(defn match-and-xor-clock (bvs match)
(plus 3 (match-and-xor-loop-clock bvs match)))

(defn match-and-xor-input-conditionp (p0)
(and
(equal (car (top (p-temp-stk p0))) *bitv)
(equal (cddr (top (p-temp-stk p0))) nil)
(equal (car (top (cdr (p-temp-stk p0)))) ’bitv)
(equal (cddr (top (cdr (p-temp-stk p0)))) nil)
(equal (car (top (cddr (p-temp-stk p0)))) 'nat)
(equal (cddr (top (cddr (p-temp-stk p0)))) nil)
(equal (car (top (cdddr (p-temp-stk p0)))) *addr
(equal (cdr (cadr (top (cdddr (p-temp-stk p0))))) 0)
(listp (cadr (top (cdddr (p-temp-stk p0)))))
(equal (cddr (top (cdddr (p-temp-stk p0)))) mil)
(not (zerop (cadr (top (cddr (p-temp-stk p0))))))
(listp (p-ctrl-stk p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
7 (p-max-ctrl-stk-size p0))
(at-least-morep (length (p-temp-stk p0))
0 (p-max-temp-stk-size p0))
(equal (definition *match-and-xor (p-prog-segment p0))
(match-and-xor-program))
(bit-vectorp (cadr (top (cdr (p-temp-stk p0)))) (p-word-size p0))
(bit-vectorp (cadr (top (p-temp-stk p0))) (p-word-size p0))
(equal (cadr (top (cddr (p-temp-stk p0))))
(length (array (car (cadr (top (cdddr (p-temp-stk p0)))))
(p-data-segment p0)
(definedp (car (cadr (top (cdddr (p-temp-stk p0)))))
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(p-data-segment p0))
(lessp (length (array (car (cadr (top (cdddr (p-temp-stk p0)))))
(p-data-segment p0)))
(exp 2 (p-word-size p0)))
(bit-vectors-piton
(array (car (cadr (top (cdddr (p-temp-stk p0)))))
(p-data-segment p0))
(p-word-size p0))))

(prove-lemma correctness-of-match-and-xor (rewrite)
(implies
(and
(equal p0 (p-state

pe
ctrl-stk
(cons x (cons m (cons n (cons v temp-stk))))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0) ’(call match-and-xor))
(match-and-xor-input-conditionp p0)
(equal match (cadr m))
(equal vecs-to-match
(untag-array (array (caadr v) data-segment))))

(equal
(p (p-state
pe
ctrl-stk

(cons x (cons m (coms n (cons v temp-stk))))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)

(match-and-xor-clock vecs-to-match match))

(p-state (addl-addr pc)

ctrl-stk

temp-stk

prog-segment

(put-assoc

(tag-array ’bitv
(match-and-xor
(untag-array
(array (caadr v) data-segment))
(cadr m) (cadr x)))
(caadr v) data-segment)

max-ctrl-stk-size

max-temp-stk-size

word-size

‘run)))

((disable match-and-xor-loop-clock)

(use (correctness-of-match-and-xor-general
(ret-pc (addl-addr pc)) (i 0)
(xor-vector (cadr x)) (match (cadr m))
(numvecs (cadr n)) (vecs (caadr v))))))

33 nat-to-bv-list

(defn nat-to-bv-list-program ()
'(nat-to-bv-list (nat-list bv-list length) ((i (nat 0)))
(dl 1oop ()
(push-local nat-list))
(fetch)
(call nat-to-bv)
(push-local by-list)
(deposit)
(push-local i)
(add1-nat)
(set-local i)
(push-local length)
(ea)
(test-bool-and-jump t done)
(push-local nat-list)
(push-constant (nat 1))
(add-addr)
(pop-local nat-list)
(push-local by-list)
(push-constant (nat 1))
(add-addr)
(pop-local by-list)
(jump loop)

(d1 done () (ret))))
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(defn example-nat-to-bv-list-p-state ()
(p-state ’(pc (main . 0))
*((nil (pe (main . 0))))
nil
(list *(main nil nil
(push-constant (addr (arr . 0)))
(push-constant (addr (arr2 . 0)))
(push-constant (nat 6))
(call nat-to-bv-list)
(ret))
(nat-to-bv-list-program)
(nat-to-bv-program)
(push-1-vector-program 8))
‘((arr (nat 3)

(nat 5)
(nat 8)
(nat 0)
(nat 23)
(nat 9))
(arr2 nil nil nil nil nil nil))
100
80
8
‘run))

(defn nat-to-bv-list (nat-list size)
(if (listp nat-list)
(cons
(nat-to-bv (car mat-list) size)
(nat-to-bv-list (cdr nat-list) size))

nil))

(defn nat-to-bv-list-loop-clock (i nats)
if (lessp i (length nats
if (1 i (length
(clock-plus ’2
clock-plus (nat-to-bv-clock (unta et i nats
lock-pl bv-clock g (get i
(if (lessp i (length (cdr nats)))
(clock-plus '17
(nat-to-bv-list-loop-clock (add1l i) nats))

. 9)))
((lessp (difference (length nats) i))))

(defn nat-to-bv-list-loop-induct (i nats bvs-name word-size data-segment)
(if (and (lessp i (length nats))
(lessp i (length (cdr nats))))
(nat-to-bv-list-loop-induct
(add1l i) nats bvs-name word-size
(put-assoc (append
(make-list-from i (cdr (assoc bvs-name data-segment)))
(cons
(list *bitv (nat-to-bv (untag (get i nats)) word-size))
(nthedr (add1 i) (cdr (assoc bvs-name data-segment)))))
bvs-name data-segment))
)
((lessp (difference (length nats) i))))

(prove-lemma nat-list-piton-means-car (rewrite)
(implies
(and
(nat-list-piton state size)
(listp state))
(and
(equal (caar state) 'nat)
(listp (car state))
(numberp (cadr (car state)))
(lessp (cadr (car state)) (exp 2 size))
(equal (lessp (cadr (car state)) (exp 2 size)) t)
(equal (cddr (car state)) nil))))

(defn array-pitonp (array length)
(if (listp array)

(and
(not (zerop length))
(array-pitonp (cdr array) (subl length)))

(and

(equal array nil)

(zerop length))))

(prove-lemma nat-list-piton-means-last (rewrite)
(implies
(nat-list-piton state size)
(and
(equal (car (last state)) (if (listp state) 'nat 0))
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(equal (listp (last state)) (listp state))

(numberp (cadr (last state)))

(equal (lessp (cadr (last state)) (exp 2 size)) t)
(equal (cddr (last state)) (if (listp state) mil 0)))))

(prove-lemma nat-list-piton-means-last-cdr (rewrite)

(implies

(and
(nat-list-piton state size)
(listp state))

(and
(equal (car (last (cdr state)))

(if (listp (cdr state)) 'nat 0))

(equal (listp (last (cdr state))) (listp (cdr state)))
(numberp (cadr (last (cdr state))))

(equal (lessp (cadr (last (cdr state))) (exp 2 size)) t)

(equal (cddr (last (cdr state)))
(if (listp (cdr state)) nil 0)))))

i(prove-lemma definedp-put-assoc (rewrite)
; (equal

; (definedp n (put-assoc v nl a))
; (definedp n a)))

(enable definedp-put-assoc)

(prove-lemma assoc-put-assoc-better (rewrite)
(equal (assoc nl1 (put-assoc v n2 a))
(if (definedp n1 a)
(if (equal n1 n2)
(cons n1 v)
(assoc n1 a))

)
(disable nat-to-bv-list-loop-clock)

(prove-lemma get-add1 (rewrite)
(implies
(lessp n 4)
(equal (get (addl n) x) (get n (cdr x)))))

(prove-lemma get-O-better (rewrite)
(implies
(zerop n)
(equal (get n x) (car x))))

(prove-lemma length-cdr-tag-array (rewrite)
(equal
(length (cdr (tag-array 1 x)))
(length (cdr x))))

(prove-lemma length-nat-to-bv-list (rewrite)
(equal
(length (nat-to-bv-list x s))
(length x)))

(prove-lemma length-cdr-nat-to-bv-list (rewrite)
(equal
(length (cdr (nat-to-bv-list x s)))
(length (cdr x))))

(prove-lemma length-tag-array (rewrite)
(equal
(length (tag-array 1 x))
(length x)))

(prove-lemma listp-tag-array (rewrite)
(equal
(listp (tag-array 1 x))

(listp x)))

(prove-lemma listp-nat-to-bv-list (rewrite)
(equal
(listp (nat-to-bv-list x s))

(listp x)))

(prove-lemma array-pitonp-tag-array (rewrite)
(equal
(array-pitonp (tag-array I x) length)
(equal (length x) (fix length)))
((induct (array-pitonp x length))))

(prove-lemma array-pitonp-append (rewrite)
(equal
(array-pitonp (append x y) size)
(and
(not (lessp size (Iength x)))
(array-pitonp y (difference size (length x)))))
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((induct (get size x))))

(prove-lemma nat-list-piton-means-cadr (rewrite)
(implies
(and
(nat-list-piton state size)
(listp (cdr state)))
(and
(equal (caadr state) 'nat)
(listp (cadr state))
(numberp (cadr (cadr state)))
(lessp (cadr (cadr state)) (exp 2 size))
(equal (lessp (cadr (cadr state)) (exp 2 size)) t)
(equal (cddr (cadr state)) nil))))

(prove-lemma array-pitonp-addl (rewrite)
(equal
(array-pitonp x (addl n))
(and
(listp x)
(array-pitonp (cdr x) n))))

i(prove-lemma put-assoc-put-assoc (rewrite)
; (equal

; (put-assoc v n (put-assoc v2 n a))
; (put-assoc v n a)))

(enable put-assoc-put-assoc)

(prove-lemma length-cdr-nlistp (rewrite)
(implies
(not (listp (cdr x))
(equal (length x) (if (listp x) 1 0))))

(prove-lemma equal-nil-cdr-tag-array-hack (rewrite)
(equal
(equal nil (cdr (tag-array 1 x)))
(equal (length x) 1)))

(prove-lemma length-from-array-pitonp (rewrite)
(implies
(array-pitonp x s)
(equal (length x) (fix s))))

(disable nat-to-bv-clock)
(disable nat-to-bv-list-loop-clock)

(prove-lemma nat-list-piton-means-get (rewrite)
(implies
(nat-list-piton state size)
(and
(equal (car (get p state))
(if (lessp p (length state)) 'nat 0))
(equal (listp (get p state)) (lessp p (length state)))
(numberp (cadr (get p state)))
(equal (lessp (cadr (get p state)) (exp 2 size)) t)
(equal (cddr (get p state)
(if (lessp p (length state)) mil 0)))))

(prove-lemma nat-list-piton-means-get-cdr (rewrite)
(implies
(and
(nat-list-piton state size)
(listp state))
(and
(equal (car (get p (cdr state)) )
(if (lessp p (length (cdr state))) ’nat 0))
(equal (listp (get p (cdr state))) (lessp p (length (cdr state))))
(numberp (cadr (get p (cdr state))))
(equal (lessp (cadr (get p (cdr state))) (exp 2 size)) t)
(equal (cddr (get p (cdr state))
(if (lessp p (length (cdr state))) nil 0)))))

(disable nat-list-piton-means)

(prove-lemma length-put-better (rewrite)
equal (length (put v n a
&
(if (lessp n (length a)) (length a) (addl n))))

(prove-lemma cons-car-x-put-append-make-list-from-hack (rewrite)
(equal
(cons (car (put v x b))
(append (make-list-from x (cdr (put v x b))) y))
(append (make-list-from x b) (cons v y))

(prove-lemma array-pitonp-put (rewrite)
(implies
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(and

(array-pitonp a 1)

(equal (fix 1) (fix length)))
(equal

(array-pitonp (put v n a) length)
(lessp n (length a)))))

(prove-lemma array-pitonp-means-properp (rewrite)
(and
(implies (array-pitonp x s) (properp x))
(implies (array-pitonp (cdr x) s) (properp x))))

(prove-lemma put-length-cdr-general (rewrite)
(implies
(and
(properp x)
(equal (length x) (length y)))
(equal
(put val (length (cdr y)) x)
(append (all-but-last x) (list val)))))

(prove-lemma nthedr-x-cdr-put-x (rewrite)
(implies
(properp a)
(equal
(nthedr x (cdr (put val x a)))
(if (lessp x (length a))
(nthedr x (cdr a))

nil))))

(prove-lemma equal-append-a-append-a (rewrite)
(equal
(equal (append a b) (append a c))
(equal b c)))

;The correctness lemma of nat-to-bv-list could be more general -
jthe proof assumes the data areas are distinct, though the program
;works when they’re not. I did it this way because I had assumed
;I’d need distinct arrays in NIM, and designed the proof accordingly.
;This is a weakness I should correct in this proof as it will lead

ito sloppy use of memory in the program, but it takes so long

ito do these proofs I’ll wait.

(prove-lemma correctness-of-nat-to-by-list-general nil
(implies
(and
(listp ctrl-stk)
(at-least-morep (p-ctrl-stk-size ctrl-stk)
13 max-ctrl-stk-size)
(at-least-morep (length temp-stk)
3 max-temp-stk-size)
(equal (definition ’nat-to-bv-list prog-segment)
(nat-to-bv-list-program))
(equal (definition ’nat-to-bv prog-segment)
(nat-to-bv-program))
(equal (definition ’*push-1-vector prog-segment)
(push-1-vector-program word-size))
(equal length (length (array nats data-segment)))
(array-pitonp (array bvs data-segment) length)
(nat-list-piton (array nats data-segment) word-size)
(definedp nats data-segment)
(definedp bvs data-segment)
(not (zerop word-size))
(numberp i)
(lessp i length)
(lessp length (exp 2 word-size))
(not (equal nats bvs))
(equal natlist (array nats data-segment)))
(equal
(p
(p-state *(pec (nat-to-bv-list . 0))
(cons (list
(list
(cons ‘nat-list
(list "addr (cons nats i)))
(cons ’by-list
(list ’addr (cons bvs i)))
(cons ’length (list ’nat length))
(cons 'i (list "nat i)))
ret-pe)
ctrl-stlk)
temp-stk
prog-segment
data-segment
max-ctrl-stk-size
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max-temp-stk-size
word-size
‘run)
(nat-to-bv-list-loop-clock i natlist))
(p-state
ret-pc
ctrl-stk
temp-stk
prog-segment
(put-assoc
(append (make-list-from i (array bvs data-segment))
(tag-array ’bitv
(nat-to-bv-list
(untag-array
(nthedr i (array nats data-segment)))
word-size)))
bvs data-segment)
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))

((induct (nat-to-bv-list-loop-induct
i natlist bvs word-size data-segment))

(disable nat-list-piton)

(expand (ARRAY-PITONP (CDR (ASSOC BVS DATA-SEGMENT)) 1)
(UNTAG-ARRAY (CDR (ASSOC NATS DATA-SEGMENT)))
(UNTAG-ARRAY (CDR (ASSOC BVS DATA-SEGMENT)))
(NAT-TO-BV-LIST-LOOP-CLOCK 0
(CDR (ASSOC NATS DATA-SEGMENT)))
(nat-to-bv-list-loop-clock i natlist)
(NAT-TO-BV-LIST-LOOP-CLOCK i
(CDR (ASSOC NATS DATA-SEGMENT))))))

(defn nat-to-bv-list-clock (natlist)
(clock-plus 1 (nat-to-bv-list-loop-clock 0 natlist)))

(defn nat-to-bv-list-input-conditionp (p0)

(and
(listp (p-ctrl-stk p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
13 (p-max-ctrl-stk-size p0))
(at-least-morep (length (p-temp-stk p0))
0 (p-max-temp-stk-size p0))
(equal (definition 'nat-to-bv-list (p-prog-segment p0))
(nat-to-bv-list-program))
(equal (definition ’nat-to-bv (p-prog-segment p0))
(nat-to-bv-program))
(equal (definition *push-1-vector (p-prog-segment p0))
(push-1-vector-program (p-word-size p0)))

(equal (cadr (top (p-temp-stk p0))) (length (array (caadr (top (cddr (p-temp-stk p0)))) (p-data-

segment p0))))

stk p0))))

(array-pitonp (array (caadr (top (cdr (p-temp-stk p0)))) (p-data-segment p0)) (cadr (top (p-temp-

(nat-list-piton (array (caadr (top (cddr (p-temp-stk p0)))) (p-data-segment p0)) (p-word-size p0))
(definedp (caadr (top (cddr (p-temp-stk p0)))) (p-data-segment p0))
(definedp (caadr (top (cdr (p-temp-stk p0)))) (p-data-segment p0))
(equal (p-current-instruction p0)
'(call nat-to-bv-list))
(not (zerop (p-word-size p0)))
(not (equal (caadr (top (cddr (p-temp-stk p0)))) (caadr (top (cdr (p-temp-stk p0))))))
(equal (car (top (p-temp-stk p0))) ’nat)
(not (zerop (cadr (top (p-temp-stk p0)))))
(lessp (cadr (top (p-temp-stk p0))) (exp 2 (p-word-size p0)))
(equal (cddr (top (p-temp-stk p0))) mnil)
(equal (car (top (cdr (p-temp-stk p0)))) ’addr)
(listp (cadr (top (cdr (p-temp-stk p0)))))
(equal (cdadr (top (cdr (p-temp-stk p0)))
(equal (cddr (top (cdr (p-temp-stk p0)))) nil)
(equal (car (top (cddr (p-temp-stk p0))))

(listp (cadr (top (cddr (p-temp-stk p0)))))
(equal (cdadr (top (cddr (p-temp-stk p0)))) 0)
(equal (cddr (top (cddr (p-temp-stk p0)))) mil)))

(prove-lemma correctness-of-nat-to-bv-list (rewrite)

(implies

(and
(equal po
(p-state pc

ctrl-stk
(cons I (coms b (cons n temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
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(nat-to-bv-list-input-conditionp p0)
(equal natlist (array (caadr n) data-segment)))
(equal

P
(p-state pc
ctrl-stk
(cons | (cons b (cons n temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(nat-to-bv-list-clock natlist))
(p-state
(add1l-addr pc)
ctrl-stk
temp-stk
prog-segment
(put-assoc
(tag-array ’bitv
(nat-to-bv-list
(untag-array
(array (caadr n) data-segment))
word-size))
(caadr b) data-segment)
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((use (correctness-of-nat-to-bv-list-general
(i 0)
(ret-pc (LIST (CAR PC) (CONS (CAADR PC) (ADD1 (CDADR PC)))))
(nats (caadr n))
(bvs (caadr b))
(length (cadr 1))))))

(disable nat-to-bv-list-program)
(disable match-and-xor-program)
(disable highest-bit-program)

(disable number-with-at-least-program)
(disable bv-to-nat-program)

(disable nat-to-bv-program)

(disable push-1-vector-program)
(disable xor-bvs-program)

;3 bv-to-nat-list

(defn by-to-nat-list-program ()
'(bv-to-nat-list (bv-list nat-list length) ((i (nat 0)))
(d1 Toop ()
(push-local bv-list))
(fetch)
(call bv-to-nat)
(push-local nat-list)
(deposit)
(push-local i)
(add1-nat)
(set-local i)
(push-local length)
(ea)
(test-bool-and-jump t done)
(push-local nat-list)
(push-constant (nat 1))
(add-addr)
(pop-local nat-list)
(push-local by-list)
(push-constant (nat 1))
(add-addr)
(pop-local by-list)
(jump loop)
(dl done () (ret))))

(defn example-bv-to-nat-list-p-state ()
(p-state ’(pc (main . 0))
((nil (pe (main - 0))))
nil
(list *(main nil nil
(push-constant (addr (arr . 0)))
(push-constant (addr (arr2 . 0)))
(push-constant (nat 6))
(call bv-to-nat-list)

(ret))
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(bv-to-nat-list-program)

(bv-to-nat-program)

(push-1-vector_program 8))
*((arr (bitv (01010 10 0))

(bitv (1111111 1))
(bitv (010101 00))
(bitv (01 0101 00))
(bitv (0 0000 00 0))
(bitv (010101 00)))
(arr2 nil nil nil nil nil nil))

100

80

8

‘run))

(defn bv-to-nat-list-input-conditionp (p0)
(and
(listp (p-ctrl-stk p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
13 (p-max-ctrl-stk-size p0))
(at-least-morep (length (p-temp-stk p0))
0 (p-max-temp-stk-size p0))
(equal (definition ’'bv-to-nat-list (p-prog-segment p0))
(bv-to-nat-list-program))
(equal (definition 'bv-to-nat (p-prog-segment p0))
(bv-to-nat-program))
(equal (definition 'push-l-vector (p-prog-segment p0))
(push-1-vector-program (p-word-size p0)))
(equal (cadr (top (p-temp-stk p0))) (length (array (caadr (top (cddr (p-temp-stk p0)))) (p-data-
segment p0))))
(array-pitonp (array (caadr (top (cdr (p-temp-stk p0)))) (p-data-segment p0)) (cadr (top (p-temp-
stk p0))))
(bit-vectors-piton (array (caadr (top (cddr (p-temp-stk p0)))) (p-data-segment p0)) (p-word-size p0))
(definedp (caadr (top (cddr (p-temp-stk p0)))) (p-data-segment p0))
(definedp (caadr (top (cdr (p-temp-stk p0)))) (p-data-segment p0))
(equal (p-current-instruction p0)
*(call bv-to-nat-list))
(not (zerop (p-word-size p0)))
(not (equal (caadr (top (cddr (p-temp-stk p0)))) (caadr (top (cdr (p-temp-stk p0))))))
(equal (car (top (p-temp-stk p0))) ’nat)
(not (zerop (cadr (top (p-temp-stk p0)))))
(lessp (cadr (top (p-temp-stk p0))) (exp 2 (p-word-size p0)))
(equal (cddr (top (p-temp-stk p0))) mnil)
(equal (car (top (cdr (p-temp-stk p0)))) ’addr)
(listp (cadr (top (cdr (p-temp-stk p0)))))
(equal (cdadr (top (cdr (p-temp-stk p0)))) 0)
(equal (cddr (top (cdr (p-temp-stk p0))))
(equal (car (top (cddr (p-temp-stk p0))))

(listp (cadr (top (cddr (p-temp-stk p0)))))
(equal (cdadr (top (cddr (p-temp-stk p0)))) 0)
(equal (cddr (top (cddr (p-temp-stk p0)))) mil)))

(defn bv-to-nat-list-loop-clock (wordsize i bvs)
(if (lessp i (length bvs))
(clock-plus ’2
(clock-plus (bv-to-nat-clock wordsize (untag (get i bvs)))
(if (lessp i (length (cdr bvs)))
(clock-plus 17

(bv-to-nat-list-loop-clock

wordsize (addl i) bvs))

. '9)))
((lessp (difference (length bvs) i))))

(defn bv-to-nat-list (bv-list)
(if (listp bv-list)
(cons
(bv-to-nat (car bv-list))
(bv-to-nat-list (cdr bv-list)))
nil))

(defn bv-to-nat-list-loop-induct (i bvs nats-name data-segment)
(if (and (lessp i (length bvs))
(lessp i (length (cdr bvs))))
(bv-to-nat-list-loop-induct
(add1l i) bvs nats-name
(put-assoc (append
(make-list-from i (cdr (assoc nats-name data-segment)))
(cons
(list *nat (bv-to-nat (untag (get i bvs))))
(nthedr (add1 i) (cdr (assoc nats-name data-segment)))))
nats-name data-segment))
£)
((lessp (difference (Iength bvs) 1))))

(disable bv-to-nat-clock)
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(prove-lemma correctness-of-bv-to-nat-list-general nil
(implies
(and
(listp ctrl-stk)
(at-least-morep (p-ctrl-stk-size ctrl-stk)
13 max-ctrl-stk-size)
(at-least-morep (length temp-stk)
3 max-temp-stk-size)
(equal (definition 'bv-to-nat-list prog-segment)
(bv-to-nat-list-program))
(equal (definition 'bv-to-nat prog-segment)
(bv-to-nat-program))
(equal (definition 'push-1-vector prog-segment)
(push-1-vector-program word-size))
(equal length (length (array bvs data-segment)))
(bit-vectors-piton (array bvs data-segment)
word-size)
(array-pitonp (array nats data-segment) length)
(definedp nats data-segment)
(definedp bvs data-segment)
(not (zerop word-size))
(numberp i)
(lessp i length)
lessp length (exp 2 word-size
3
(not (equal nats bvs))
( (eqlual bvlist (array bvs data-segment)))
equal

P
(p-state *(pc (bv-to-nat-list . 0))
(cons (list
(list
(cons "bv-list
(list *addr (cons bvs i)))
(cons ’nat-list
(list ’addr (cons nats i)))
(cons ’length (list 'nat length))
(cons *i (list ’nat i)))
ret-pe)
ctrl-stk)
temp-stk
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run
(bv-to-nat-list-loop-clock word-size i bvlist))
(p-state
ret-pc
ctrl-stk
temp-stk
prog-segment
(put-assoc
(append (make-list-from i (array nats data-segment))
(tag-array ’'nat
(bv-to-nat-list
(untag-array
(nthedr i (array bvs data-segment))))))
nats data-segment)
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))

((induct (bv-to-nat-list-loop-induct
i bvlist nats data-segment))

(disable bit-vectors-piton)

(expand (ARRAY-PITONP (CDR (ASSOC BVS DATA-SEGMENT)) 1)
(UNTAG-ARRAY (CDR (ASSOC NATS DATA-SEGMENT)))
(UNTAG-ARRAY (CDR (ASSOC BVS DATA-SEGMENT)))
(BV-TO-NAT-LIST-LOOP-CLOCK wordsize 0
(CDR (ASSOC NATS DATA-SEGMENT)))
(bv-to-nat-list-loop-clock wordsize i bvlist)
(BV-TO-NAT-LIST-LOOP-CLOCK wordsize i
(CDR (ASSOC NATS DATA-SEGMENT))))))

(defn bv-to-nat-list-clock (word-size natlist)
(clock-plus 1 (bv-to-nat-list-loop-clock word-size 0 natlist)))
(disable bv-to-nat-list-loop-clock)
disable bv-to-nat-list-program
prog:
(prove-lemma correctness-of-bv-to-nat-list (rewrite)

(implies
(and
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(equal po
(p-state pc

ctrl-stk

(cons | (cons n (cons b temp-stk)))

prog-segment

data-segment

max-ctrl-stk-size

max-temp-stk-size

word-size

‘run))
(bv-to-nat-list-input-conditionp p0)
(equal bylist (array (caadr b) data-segment)))
(equal

P
(p-state pc
ctrl-stk
(cons | (cons n (cons b temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(bv-to-nat-list-clock word-size bvlist))
(p-state
(add1-addr pc)
ctrl-stk
temp-stk
prog-segment
(put-assoc
(tag-array ’'nat
(bv-to-nat-list
(untag-array
(array (caadr b) data-segment))))
(caadr n) data-segment)
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((use (correctness-of-bv-to-nat-list-general
(i 0)
(ret-pc (LIST (CAR PC) (CONS (CAADR PC) (ADD1 (CDADR PCQ)))))
(nats (caadr n))
(bvs (caadr b))
(length (cadr 1))))))

;; max-nat

(defn max-nat-program ()
'(max-nat (nat-list length) ((i (nat 0)) (j (nat 0)))
(push-constant (nat 0))

(dl loop ()
(set-local j))
(push-local j)
(push-local nat-list)
(fetch)
(set-local j)
(lt-nat)
(test-bool-and-jump f lab)
(pop)
(push-local j)

(dl lab ()
(push-local i))
(add1-nat)
(set-local i)
(push-local length)
(ea)
(test-bool-and-jump t done)
(push-local nat-list)
(push-constant (nat 1))
(add-addr)
(pop-local nat-list)
(jump loop)

(d1 done () (ret))))

(defn example-max-nat-p-state ()
(p-state ’(pc (main . 0))
'((nil (pe (main . 0))))
nil
(list *(main nil nil
(push-constant (addr (arr . 0)))
(push-constant (nat 6))
(call max-nat)

(ret))

(max-nat-program))
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‘((arr (nat 3) (nat 10) (nat 3) (nat 6) (nat 9) (nat 0))
(arr2 nil nil nil nil nil nil))

100

80

8

‘run))

(defn max-list-helper (val x)
(if (listp x)
(if (lessp val (car x))
(max-list-helper (car x) (cdr x))
(max-list-helper val (cdr x)))
(fix val)))

(defn max-list (x)
(if (listp x)
(if (lessp (max-list (cdr x)) (car x))
(max-list (cdr x)))

0))

(prove-lemma max-list-helper-max-list (rewrite)
(equal (max-list-helper val x)
(if (lessp (max-list x) val)
val
(max-list x))))

prove-lemma max-list-helper-max-list-0 (rewrite
1 list-hel li i
(equal (max-list-helper 0 x)
(max-list x)))

(disable max-list-helper-max-list)

(defn max-nat-loop-clock (val i nats)
(if (lessp i (length nats))
(if (lessp val (untag (get i nats)))
(if (lessp i (length (cdr nats)))
(clock-plus 20
(max-nat-loop-clock
(untag (get i nats)) (add1 i) nats))
16)
(if (lessp i (length (cdr nats)))
(clock-plus 18 (max-nat-loop-clock val (add1 i) nats))

14))
0)
((lessp (difference (length nats) i))))

(defn max-nat-loop-induct (i j x natlist length)

(if (lessp i length)
(max-nat-loop-induct
(add1 i) (get i natlist)
(if (lessp (untag (get i natlist)) (untag x))

(list ’nat (untag x)) (list *nat (untag (get i natlist))))
natlist length)
t)
((lessp (difference length i))))

(prove-lemma list-nat-from-assoc-nat-list-piton-hack (rewrite)
(implies
(nat-list-piton nl s)
(and
(implies
(lessp z (length (cdr nl)))
(equal (list 'nat (cadr (get z (cdr nl))))
( (get z (cdr nl))))
implies
(listp nl)
(and
(equal
(list 'nat (cadr (last nl)))
(1ast n1))
(equal
(list ’nat (cadr (car nl)))
(car nl1)))
((induct (get z nl))))

(prove-lemma correctness-of-max-nat-general nil
(implies
(and
(listp ctrl-stk)
(at-least-morep (p-ctrl-stk-size ctrl-stk)
4 max-ctrl-stk-size)
(at-least-morep (length temp-stk)
4 max-temp-stk-size)
(equal (definition *max-nat prog-segment)
(max-nat-program))
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(equal length (length (array nats data-segment)))
(nat-list-piton (array nats data-segment) word-size)
(definedp nats data-segment)

(not (zerop word-size))

(numberp i)

(lessp i length)

(numberp (untag x))

(lessp (untag x) (exp 2 word-size))

(equal (car x) ’'nat)

(equal (cddr x) nil)

(lessp length (exp 2 word-size))

(equal natlist (array nats data-segment)))

(equal

P
(p-state '(pc (max-nat . 1))
(cons (list
(list
(cons ’nat-list
(list ’addr (cons nats i)))
(cons 'length (list 'nat length))
(cons ’i (list 'nat i))
(cons ’j j))
ret-pc)
ctrl-stk)
(cons x
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(max-nat-loop-clock (untag x) i (array nats data-segment)))
(p-state
ret-pc
ctrl-stk
(cons
(list 'nat
(max-list-helper (untag x)
(untag-array
(nthedr i (array nats data-segment)))))
temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((expand (MAX-NAT-LOOP-CLOCK
(cadr X) I (CDR (ASSOC NATS DATA-SEGMENT))))
(induct (max-nat-loop-induct i j x natlist length))))

(defn max-nat-clock (natlist)
(clock-plus 2 (max-nat-loop-clock 0 0 natlist)))

(defn max-nat-input-conditionp (p0)
(and
(listp (p-ctrl-stk p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
6 (p-max-ctrl-stk-size p0))
(at-least-morep (length (p-temp-stk p0))
2 (p-max-temp-stk-size p0))
(equal (definition 'max-nat (p-prog-segment p0))
(max-nat-program))
(equal (untag (top (p-temp-stk p0)))
(length (array (car (untag (top (cdr (p-temp-stk p0)))))
(p-data-segment p0))))
(nat-list-piton (array (car (untag (top (cdr (p-temp-stk p0)))))
(p-data-segment po))
(p-word-size p0))
(definedp (car (untag (top (cdr (p-temp-stk p0)))))
(p-data-segment p0))
(not (zerop (p-word-size p0)))
(not (zerop (untag (top (p-temp-stk p0)))))
(equal (car (top (p-temp-stk p0))) ’nat)
(equal (car (top (cdr (p-temp-stk p0)))) ’addr)
(listp (untag (top (cdr (p-temp-stk p0)))))
(lessp (untag (top (p-temp-stk p0))) (exp 2 (p-word-size p0)))
(equal (cddr (top (cdr (p-temp-stk p0)))) nil)
(equal (cddr (top (p-temp-stk po))) nil
(equal (cdr (untag (top (cdr (p-temp-stk p0))))) 0)))

(prove-lemma correctness-of-max-nat (rewrite)
(implies
(and
(equal p0 (p-state
pe
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ctrl-stk
(cons n (cons s temp-stk))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0)
‘(call max-nat))
(max-nat-input-conditionp p0)
(equal natlist (array (car (untag s)) data-segment)))

(equal

(p (p-state
pe
ctrl-stk

(cons n (cons s temp-stk))

prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)

(max-nat-clock natlist))

(p-state (addl-addr pc)

ctrl-stk

(cons

(list 'nat (max-list (untag-array natlist)))
temp-stk)

prog-segment

data-segment

max-ctrl-stk-size

max-temp-stk-size

word-size

run)))

((use (correctness-of-max-nat-general
(i 0) (i *(nat 0)) (x (list *nat 0))
(nats (caadr s))

(ret-pc (addl-addr pc))
(length (cadr n))))))

disable max-nat-program
[
;; replace-value

;; replace the first occurrence of oldval by newval in list
;; of naturals (assumes oldval occurs in list)

(defn replace-value-program ()
‘(replace-value (list oldval newval) ()
(d1 Toop ()
(push-local list))
(fetch)
(push-local oldval)
(ea)
(test-bool-and-jump t done)
(push-local list)
(push-constant (nat 1))
(add-addr)
(pop-local list)
(jump loop)
(d1 done ()
(push-local newval))
(push-local list)
(deposit)

(ret)))

(defn example-replace-value-p-state ()
(p-state '(pc (main . 0))
'((nil (pe (main . 0))))
nil
(list *(main nil nil
(push-constant (addr (arr . 0)))
(push-constant (nat 3))
(push-constant (nat 4))
(call replace-value)
(ret))
(replace-value-program)
‘((arr (nat 9) (nat 10) (nat 3) (nat 6) (nat 9) (nat 0)))
100
80
8
‘run))

(defn replace-value-loop-clock (i list oldvalue)
(if (lessp i (length list))
(if (equal (get i list) oldvalue)
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9
(clock-plus
10 (replace-value-loop-clock (add1l i) list oldvalue)))
0)
((lessp (difference (length list) i))))

(defn replace-value-loop-induct (i list list-addr)
(if (lessp i (length list))
(replace-value-loop-induct (addl i) list (addl-addr list-addr))
t)
((lessp (difference (length list) i))))

(defn replace-value (list oldvalue newvalue)
(if (listp list)
(if (equal (car list) oldvalue)
(cons newvalue (cdr list))
(cons (car list) (replace-value (cdr list) oldvalue newvalue)))
nil))

(prove-lemma member-nthcdr-means (rewrite)
(implies
(member x (nthedr i y))
(member x y)))

(prove-lemma member-of-natlist-means (rewrite)

(implies

(and
(nat-list-piton y s)
(member x y))

(and

(listp x)

(equal (car x) 'nat)
(numberp (cadr x))
(lessp (cadr x) (exp 2 s))
(equal (cddr x) nil))))

(prove-lemma replace-value-nthedr-open (rewrite)
(implies
(and
(not (equal (get x a) old))
(lessp x (length a)))
(equal
(replace-value (nthedr x a) old new)
(cons (get x a)
(replace-value (nthedr x (cdr a)) old new)))))

(prove-lemma list-nat-cadr-get-hack (rewrite)
(implies
(and
(nat-list-piton y s)
(lessp x (length y)))
(equal
(list 'nat (cadr (get x y)))

(et x ¥))))

(prove-lemma member-nthecdr-simplify (rewrite)

(implies

(and

(lessp i (length x))

(not (member a (nthedr i (cdr x)))))
(equal

(member a (nthedr i x))

(equal a (get i x)))))

(PROVE-LEMMA APPEND-MAKE-LIST-FROM-CONS-CDR
(REWRITE)
(IMPLIES (LESSP I (LENGTH Y))
(EQUAL (APPEND (MAKE-LIST-FROM I Y)
(CONS V (CDR (NTHCDR 1 Y))))
(PUT V IY))))

(prove-lemma correctness-of-replace-value-general nil
(implies
(and
(listp ctrl-stk)
(at-least-morep (length temp-stk)
2 max-temp-stk-size)
(equal (definition 'replace-value prog-segment)
(replace-value-program))
(nat-list-piton (array list data-segment) word-size)
(definedp list data-segment)
(not (zerop word-size))
(numberp i)
(equal vallist (array list data-segment))
(equal (car list-addr) ’addr)
(equal (cddr list-addr) nil)
(listp (untag list-addr))
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(equal (car (untag list-addr)) list)
(equal (cdr (untag list-addr)) i)
(equal (car newvalue) nat)
(equal (cddr newvalue) nil)
(equal (car oldvalue) ’nat)
(equal (cddr oldvalue) nil)
(numberp (cadr oldvalue))
(lessp (cadr oldvalue) (exp 2 word-size))
(numberp (untag newvalue))
(lessp (untag newvalue) (exp 2 word-size))
(member oldvalue (nthedr i vallist)))
(equal

P
(p-state *(pe (replace-value . 0))
(cons (list
(list
(cons ’list list-addr)
(cons ’oldval oldvalue)
(cons ’newval newvalue))
ret-pe)
ctrl-stk)
temp-stk
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(replace-value-loop-clock i vallist oldvalue))
(p-state
ret-pc
ctrl-stk
temp-stk
prog-segment
(put-assoc
(append
(make-list-from i (array list data-segment))
(replace-value (nthedr i (array list data-segment))
oldvalue newvalue))
list data-segment)
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((expand
(REPLACE-VALUE-LOOP-CLOCK
(CDADR LIST-ADDR)
(CDR (ASSOC (CAADR LIST-ADDR)
DATA-SEGMENT))
OLDVALUE))
(induct (replace-value-loop-induct i vallist list-addr))
(disable member-of-natlist-means)))

(defn replace-value-clock (list ov)
(clock-plus 1 (replace-value-loop-clock 0 list ov)))

(defn replace-value-input-conditionp (p0)
(and
(listp (p-ctrl-stk p0))
(at-least-morep (length (p-temp-stk p0))
0 (p-max-temp-stk-size p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
5 (p-max-ctrl-stk-size p0))
(equal (definition ’replace-value (p-prog-segment p0))
(replace-value-program))
(nat-list-piton
(array (car (untag (top (cddr (p-temp-stk p0)))))
(p-data-segment p0))
(p-word-size p0))
(definedp (car (untag (top (cddr (p-temp-stk p0)))))
(p-data-segment p0))
(not (zerop (p-word-size p0)))
(equal (car (top (cddr (p-temp-stk p0)))) ’addr)
(equal (cddr (top (cddr (p-temp-stk p0)))) nil)
(listp (untag (top (cddr (p-temp-stk p0)))))
(equal (cdr (untag (top (cddr (p-temp-stk p0))))) 0)
(equal (car (top (p-temp-stk p0))) ’nat)
(equal (cddr (top (p-temp-stk p0))) nil)
(numberp (untag (top (p-temp-stk p0))))
(lessp (untag (top (p-temp-stk p0))) (exp 2 (p-word-size p0)))
(member (top (cdr (p-temp-stk p0)))
(array (car (untag (top (cddr (p-temp-stk p0)))))
(p-data-segment p0)))))

(prove-lemma correctness-of-replace-value (rewrite)
(implies
(and
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(equal p0 (p-state
pe
ctrl-stk
(cons nv (coms ov (cons nats temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0)
*(call replace-value))
(replace-value-input-conditionp p0)
(equal natlist
(array (car (untag nats)) data-segment))
(equal ov ov2))

(equal
(p (p-state
pc
ctrl-stk
(cons nv (cons ov (cons nats temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run
(replace-value-clock natlist ov2))
(p-state
(add1-addr pc)
ctrl-stk
temp-stk

prog-segment
(put-assoc
(replace-value natlist ov nv)
(caadr nats) data-segment)
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((disable replace-value-loop-clock
nat-list-piton-means-car)
(use (correctness-of-replace-value-general
(newvalue nv) (oldvalue ov) (list-addr nats)
(i 0) (vallist natlist) (list (caadr nats))
(ret-pc (addl-addr pc))))))

(disable replace-value-program)
;; smart-move

(defn smart-move-program ()
'(smart-move (state numpiles work-area) ((i (nat 0)))
(push-local state)
(push-local numpiles)
(push-constant (nat 2))
(call number-with-at-least)
(push-constant (nat 2))
(It-nat)
(test-bool-and-jump t lab)
(push-local state)
(push-local work-area)
(push-local numpiles)
(call nat-to-bv-list)
(push-local work-area)
(push-local numpiles)
(push-local work-area)
(push-local numpiles)
(call xor-bvs)
(set-local i)
(call highest-bit)
(push-local i)
(call match-and-xor)
(push-local work-area)
(push-local state)
(push-local numpiles)
(call bv-to-nat-list)
(ret)
(dl lab ()

(push-local state))
(push-local state)
(push-local numpiles)
(call max-nat)
(push-local state)
(push-local numpiles)
(push-constant (nat 1))
(call number-with-at-least)
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(div2-nat)
(pop-local i)

(pop)

(push-local i)

(call replace-value)

(ret)))

(defn example-smart-move-p-state ()
(p-state '(pc (main . 0))

'((nil (pe (main - 0))))

nil

(list *(main nil nil

(push-constant (addr (arr . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call smart-move)
(push-constant (addr (arr2 . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call smart-move)
(push-constant (addr (arr3 . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call smart-move)
(push-constant (addr (arra . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call smart-move)
(ret))
(replace-value-program)
(max-nat-program)
(bv-to-nat-list-program)
(nat-to-bv-list-program)
(match-and-xor-program)
(highest-bit-program)
(number-with-at-least-program)
(bv-to-nat-program)
(nat-to-bv-program)
(push-1-vector-program 8)
(xor-bvs-program)
(smart-move-program))

‘((arr (nat 3) (nat 4) (nat 2) (nat 1))
(arr2 (nat 1) (nat 1) (nat 1) (nat 9))
(arr3 (nat 1) (nat 1) (nat 0) (nat 9))
(arr4 (nat 0) (nat 0) (nat 0) (nat 0))
(arr5 (nat 3) (nat 4) (nat 2) (nat 1)))

100

80

8

‘run))

(defn smart-move (state wordsize)
(if (lessp (number-with-at-least state 2) 2)

(replace-value
state (max-list state)
(remainder (number-with-at-least state 1) 2))

(bv-to-nat-list

(match-and-xor

(nat-to-bv-list state wordsize)

(highest-bit (xor-bvs (nat-to-bv-list state wordsize)))
(xor-bvs (nat-to-bv-list state wordsize))))))

(defn smart-move-clock (state wordsize)
(clock-plus 4
(clock-plus (number-with-at-least-clock 2 (tag-array ’'nat state))
(clock-plus 3
(if (lessp (number-with-at-least state 2) 2)
(clock-plus 3
(clock-plus (max-nat-clock (tag-array ’nat state))
(clock-plus 3
(clock-plus (number-with-at-least-clock
1 (tag-array ’nat state))
(clock-plus 4
(clock-plus (replace-value-clock (tag-array ’'nat state)
(list *nat (max-list state)))
1))

(clock-plus 3
(clock-plus (nat-to-bv-list-clock (tag-array ’nat state))
(clock-plus 4
(clock-plus (xor-bvs-clock (length state))
(clock-plus 1
clock-plus (highest-bit-clock
g
(xor-bys (nat-to-bv-list state wordsize)))
(clock-plus 1
(clock-plus (match-and-xor-clock
(nat-to-bv-list state wordsize)
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(highest-bit
(xor-bvs (nat-to-bv-list state wordsize))))
(clock-plus 3
(clock-plus (bv-to-nat-list-clock
wordsize
(tag-array
"bity
(match-and-xor
(nat-to-bv-list state wordsize)
(highest-bit
(xor-bvs (nat-to-bv-list state wordsize)))
(xor-bvs (nat-to-bv-list state wordsize)))))

DNNNNINN)

(disable replace-value-clock)
(disable max-nat-clock)

(disable bv-to-nat-list-clock)
(disable nat-to-bv-list-clock)
(disable match-and-xor-clock)
(disable highest-bit-clock)

(disable number-with-at-least-clock)
Edisable b\'—to—nat—clock;

disable nat-to-bv-clock

(disable xor-bvs-clock)

(disable replace-value-program)
(disable max-nat-program)

(disable bv-to-nat-list-program)
(disable nat-to-bv-list-program)
(disable match-and-xor-program)
(disable highest-bit-program)
(disable number-with-at-least-program)
(disable bv-to-nat-program)
(disable nat-to-bv-program)
(disable push-1-vector-program)
(disable *1*xor-bvs-program)
(disable *1*replace-value-program)
(disable *1*max-nat-program)
(disable *1*bv-to-nat-list-program)
(disable *1*nat-to-bv-list-program)
(disable *1*match-and-xor-program)
(disable *1*highest-bit-program)
(disable *1*number-with-at-least-program)
(disable *1*bv-to-nat-program)
(disable *1*nat-to-bv-program)
(disable *1*push-1-vector-program)
(disable *1*xor-bvs-program)

(defn nat-listp (list size)
(if (listp list)
(and
(numberp (car list))
(lessp (car list) (exp 2 size))
(nat-listp (cdr list) size))
(equal list nil)))

(prove-lemma bv-to-nat-list-nat-to-bv-list (rewrite)
(implies
(nat-listp x size)
(equal
(bv-to-nat-list (nat-to-bv-list x size))

x)))

(prove-lemma bit-vectorsp-nat-to-bv-list (rewrite)
(bit-vectorsp (nat-to-bv-list x size) size))

(prove-lemma nat-to-bv-list-bv-to-nat-list (rewrite)
(implies
(bit-vectorsp x size)
(equal
(nat-to-bv-list (bv-to-nat-list x) size)
x)))

(prove-lemma bit-vectorsp-match-and-xor (rewrite)
(implies
(bit-vectorsp x size)
(bit-vectorsp (match-and-xor x y z) size)))

(prove-lemma equal-subl-add1 (rewrite)
(and
(equal
(equal (subl x) (addl y))
(equal x (add1 (addl y))))
(equal
(equal (subl x) 0)
(or (zerop x) (equal x 1)))))

; part of more recent naturals library that’s missing from Piton library
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(PROVE-LEMMA EQUAL-TIMES-X-X
(REWRITE)
(AND (EQUAL (EQUAL (TIMES X Y) X)
(OR (AND (NUMBERP X) (EQUAL Y 1))
(EQUAL X 0)))
(EQUAL (EQUAL (TIMES Y X) X)
(OR (AND (NUMBERP X) (EQUAL Y 1))
EQUAL X 0))))
((INDUCT (TIMES Y X))))

(prove-lemma equal-exp-x-y-x (rewrite)
(equal
(equal (exp x y) x)
(or
(equal x 1)
(and
(equal x 0)
(not (zerop ¥)))
(and
(numberp x)

(equal y 1)))))

(prove-lemma lessp-number-with-at-least (rewrite)
(not (lessp (length x) (number-with-at-least x min))))

(prove-lemma bit-vectors-piton-tag-array (rewrite)
(implies
(bit-vectorsp x size)
(bit-vectors-piton (tag-array ’bitv x) size)))

(prove-lemma tag-array-untag-array-of-nat-list-piton (rewrite)
(implies
(nat-list-piton x size)
(equal (tag-array ’'nat (untag-array x)) x)))

(prove-lemma tag-array-untag-array-of-bit-vectors-piton (rewrite)
(implies
(bit-vectors-piton x size)
(equal (tag-array ’bitv (untag-array x)) x)))

(prove-lemma bit-vectorp-xor-bvs-nat-to-bv-list (rewrite)
(equal
(bit-vectorp (xor-bvs (nat-to-bv-list x s)) s)
(or
(listp x)

(zerop 5))))

(prove-lemma listp-cdr-assoc-hack-from-free (rewrite)
(implies
(and
(equal (length (cdr (assoc x y))) free)
(not (zerop free)))
(listp (cdr (assoc x y)))))

(prove-lemma bit-vectorp-highest-bit (rewrite)
(implies
(bit-vectorp x s)
(bit-vectorp (highest-bit x) s)))

(prove-lemma length-match-and-xor (rewrite)
(equal
(length (match-and-xor list m v))
(length list)))

(prove-lemma array-pitonp-from-nat-list-piton (rewrite)
(implies
(nat-list-piton x s)
(equal
(array-pitonp x length)
(equal (fix length) (length x)))))

(prove-lemma untag-array-tag-array-of-bit-vectorsp (rewrite)
(implies
(bit-vectorsp x size)
(equal (untag-array (tag-array I x)) x)))

(prove-lemma untag-array-tag-array-of-nat-to-bv-list (rewrite)
(equal
(untag-array (tag-array 1 (nat-to-bv-list x size)))
(nat-to-bv-list x size)))

(prove-lemma untag-array-tag-array-of-match-and-xor-hack (rewrite)
(equal
(untag-array
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(tag-array | (match-and-xor (nat-to-bv-list x s) y z)))
(match-and-xor (nat-to-bv-list x s) y 7))

(prove-lemma member-list-max-list (rewrite)
(implies
(nat-list-piton x s)
(equal
(member (list 'nat (max-list (untag-array x))) x)

(listp x))))

(prove-lemma tag-array-replace-value-untag-array (rewrite)
implies
i
nat-list-piton x s
i
(equal
(tag-array 'nat (replace-value (untag-array x) y z))
(replace-value x (list 'nat y) (list 'nat z))))

(defn smart-move-input-conditionp (p0)
(and
(listp (p-ctrl-stk p0))
(at-least-morep (length (p-temp-stk p0))
3 (p-max-temp-stk-size p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
19 (p-max-ctrl-stk-size p0))
(lessp 1 (p-word-size p0))
(equal (cddr (top (p-temp-stk p0))) nil)
(equal (cddr (top (cdr (p-temp-stk p0)))) nil)
(equal (cddr (top (cddr (p-temp-stk p0)))) nil)
(equal (car (top (p-temp-stk p0))) ’'addr)
(equal (car (top (cdr (p-temp-stk p0)))) 'nat)
(lessp (untag (top (cdr (p-temp-stk p0)))) (exp 2 (p-word-size p0)))
(not (zerop (untag (top (cdr (p-temp-stk p0))))))
(equal (car (top (cddr (p-temp-stk p0)))) 'addr)
(listp (untag (top (p-temp-stk p0))))
(listp (untag (top (cddr (p-temp-stk p0)))))
(equal (cdr (untag (top (p-temp-stk p0)))) 0)
(equal (cdr (untag (top (cddr (p-temp-stk p0))))) 0)
(definedp (car (untag (top (p-temp-stk p0)))) (p-data-segment p0))
(definedp (car (untag (top (cddr (p-temp-stk p0))))) (p-data-segment p0))
(not (equal (car (untag (top (p-temp-stk p0)))) (car (untag (top (cddr (p-temp-stk p0)))))))
(nat-list-piton (array (car (untag (top (cddr (p-temp-stk p0))))) (p-data-segment p0))
(p-word-size p0))
(array-pitonp (array (car (untag (top (p-temp-stk p0)))) (p-data-segment p0))
(untag (top (cdr (p-temp-stk p0)))))
(equal (length (array (car (untag (top (cddr (p-temp-stk p0))))) (p-data-segment p0)))
(untag (top (cdr (p-temp-stk p0)))))
(equal (assoc 'smart-move (p-prog-segment p0))
(smart-move-program))
(equal (assoc ‘replace-value (p-prog-segment p0))
(replace-value-program))
(equal (assoc 'max-nat (p-prog-segment p0))
(max-nat-program))
equal (assoc ’bv-to-nat-list (p-prog-segment p0
i g-seg
(bv-to-nat-list-program))
equal (assoc 'nat-to-bv-list (p-prog-segment p0
i g-seg
(nat-to-bv-list-program))
(equal (assoc 'match-and-xor (p-prog-segment p0))
(match-and-xor-program))
(equal (assoc ’highest-bit (p-prog-segment p0))
(highest-bit-program))
(equal (assoc 'number-with-at-least (p-prog-segment p0))
(number-with-at-least-program))
(equal (assoc 'bv-to-nat (p-prog-segment p0))
(bv-to-nat-program))
(equal (assoc ’'nat-to-bv (p-prog-segment p0))
(nat-to-bv-program))
(equal (assoc 'push-l-vector (p-prog-segment p0))
(push-1-vector-program (p-word-size p0)))
(equal (assoc ’xor-bvs (p-prog-segment p0))
(xor-bvs-program))))

(prove-lemma correctness-of-smart-move (rewrite)
(implies
(and
(equal p0 (p-state

pe
ctrl-stk
(cons wa (cons np (cons s temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0)
'(call smart-move))
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(equal state
(untag-array (array (car (untag s)) data-segment)))
(equal word-size word-size2)
(smart-move-input-conditionp p0))
(equal
(p (p-state
pc
ctrl-stk
(cons wa (cons np (cons s temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(smart-move-clock state word-size2))
(p-state
(add1l-addr pc)
ctrl-stk
temp-stk
prog-segment
(put-assoc
(tag-array 'nat (smart-move state word-size))
(car (untag s))
(if (lessp (number-with-at-least state 2) 2)
data-segment
(put-assoc
(tag-array ’bitv
(nat-to-bv-list (smart-move state word-size)
word-size))
(car (untag wa)) data-segment)))
max-ctrl-stk-size
max-temp-stk-size
word-size

‘run))))
(disable smart-move-clock)
(disable smart-move-program)
(disable *1*smart-move-program)

5 delay

(defn delay-program ()
‘(delay (time) ()

(dl lab ()
(push-local time))
(subl-nat)
(set-local time)
(no-op)
(no-op)
(no-op)
(no-op)
(test-nat-and-jump zero done)
(no-op)
(jump lab)

(a1 done () (ret))))

(defn example-delay-p-state ()
(p-state '(pc (main . 0))

'((nil (pe (main - 0))))

nil

(list *(main nil nil
(push-constant (nat 4))
(call delay)
(ret))

(delay-program))

nil

100

80

8

‘run))

(defn delay-loop-clock (time)
(if (lessp time 2) 9 (plus 10 (delay-loop-clock (subl time)))))

(prove-lemma correctness-of-delay-general nil

(implies

(and
(listp ctrl-stk)
(equal (definition 'delay prog-segment)

(delay-program))

(at-least-morep (length temp-stk) 1 max-temp-stk-size)
(lessp 0 time)
(lessp time (exp 2 word-size)))

(equal
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P
(p-state '(pc (delay . 0))
(cons (list
(list
(cons 'time (list 'nat time)))
ret-pc)
ctrl-stk)
temp-stk
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run
(delay-loop-clock time))
(p-state
ret-pc
ctrl-stk
temp-stk
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((induct (times time y))))

(defn delay-input-conditionp (p0)

(and

(listp (p-ctrl-stk p0))

(equal (definition ‘delay (p-prog-segment p0)) (delay-program))

(equal (car (top (p-temp-stk p0))) 'nat)

(at-least-morep (length (p-temp-stk p0)) 0 (p-max-temp-stk-size p0))

(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0)) 3
(p-max-ctrl-stk-size p0))

(lessp 0 (cadr (top (p-temp-stk p0))))

(lessp (cadr (top (p-temp-stk p0))) (exp 2 (p-word-size p0)))

(equal (cddr (top (p-temp-stk p0))) nil)))

(defn delay-clock (time)
(add1l (delay-loop-clock time)))

(prove-lemma correctness-of-delay (rewrite)
(implies
(and
(equal p0 (p-state

pec
ctrl-stk
(cons n temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0) *(call delay))
(delay-input-conditionp po)
(equal time (cadr n)))
(equal
(p (p-state

pc
ctrl-stk
(cons n temp-stk)
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(delay-clock time))
(p-state
(add1-addr pc)
ctrl-stk
temp-stk
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((use (correctness-of-delay-general
(time (cadr n
(ret-pc (addl-addr pc))))))

i; computer-move

(defn computer-move-program ()
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‘(computer-move (state numpiles work-area) ((i (nat 0)))
(push-constant (nat 250))
(call delay)

(push-constant (nat 250))
(call delay)
(push-constant (nat 250))
(call delay)
(push-constant (nat 250))
(call delay)
(push-local state)
(push-local numpiles)
(push-constant (nat 2))
(call number-with-at-least)
(test-nat-and-jump zero lab)
(push-local state)
(push-local work-area)
(push-local numpiles)
(call nat-to-bv-list)
(push-local work-area)
(push-local numpiles)
(call xor-bvs)
(test-bitv-and-jump all-zero lab)
(push-local state)
(push-local numpiles)
(push-local work-area)
(call smart-move)
(ret)

(dl lab ()
(push_local state))
(push-local state)
(push-local numpiles)
(call max-nat)
(pop-local i)
(push-local i)
(push-local i)
(subl-nat)
(call replace-value)

(ret)))

(defn example-computer-move-p-state ()
(p-state ’(pc (main . 0))

'((nil (pe (main - 0))))

nil

(list *(main nil nil

(push-constant (addr (arr . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call computer-move)
(push-constant (addr (arr2 . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call computer-move)
(push-constant (addr (arr3 . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call computer-move)
(push-constant (addr (arrd . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call computer-move)
(ret))
(computer-move-program)
(delay-program)
(replace-value-program)
(max-nat-program)
(bv-to-nat-list-program)
(nat-to-bv-list-program)
(match-and-xor-program)
(highest-bit-program)
(number-with-at-least-program)
(bv-to-nat-program)
(nat-to-bv-program)
(push-1-vector-program 8)
(xor-bvs-program)
(smart-move-program))

‘((arr (nat 3) (nat 4) (nat 2) (nat 1))
(arr2 (nat 1) (nat 1) (nat 1) (nat 0))
(arr3 (nat 1) (nat 1) (nat 0) (nat 9))
(arr4 (nat 7) (nat 4) (nat 2) (nat 2))
(arr5 (nat 3) (nat 4) (nat 2) (nat 1)))

100

80

8

‘run))

(defn computer-move (state wordsize)
(if (or (equal (number-with-at-least state 2) 0)
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(all-zero-bitvp (xor-bvs (nat-to-bv-list state wordsize))))
(replace-value state (max-list state) (subl (max-list state)))
smart-move state wordsize

i

(disable delay-clock)

(defn computer-move-clock (state wordsize)
(clock-plus

2
(clock-plus (delay-clock 250)
(clock-plus 1 (clock-plus (delay-clock 250)
(clock-plus 1 (clock-plus (delay-clock 250)
(clock-plus 1 (clock-plus (delay-clock 250)
(clock-plus
3
(clock-plus
(number-with-at-least-clock 2 (tag-array 'nat state))
(clock-plus
1
(if (equal (number-with-at-least state 2) 0)
(clock-plus
3
(clock-plus
(max-nat-clock (tag-array ’nat state))
(clock-plus
4
(clock-plus
(replace-value-clock
(tag-array 'nat state)
()1)1;; ‘nat (max-list state)))
1
(clock-plus
3
(clock-plus
(nat-to-bv-list-clock (tag-array 'mat state))
(clock-plus
2
(clock-plus
(xor-bvs-clock (length state))
(clock-plus
1
(if (all-zero-bitvp (xor-bvs (nat-to-bv-list state wordsize)))
(clock-plus
3
(clock-plus
(max-nat-clock (tag-array ’nat state))
(clock-plus
4
(clock-plus
(replace-value-clock
(tag-array 'nat state)
()1)1;; ‘nat (max-list state)))
1
(clock-plus
3
(clock-plus
(smart-move-clock state wordsize)

DINHNNNNININ)

(defn computer-move-input-conditionp (p0)
(and
(not (all-zero-bitvp
(untag-array
(array (car (untag (top (cddr (p-temp-stk p0)))))
(p-data-segment p0)))))
(listp (p-ctrl-stk p0))
(at-least-morep (length (p-temp-stk p0))
3 (p-max-temp-stk-size p0))
(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))
25 (p-max-ctrl-stk-size p0))
(lessp 7 (p-word-size p0))
(not (zerop (p-word-size p0)))
(not (equal (p-word-size p0) 1))
(equal (cddr (top (p-temp-stk p0))) nil)
(equal (cddr (top (cdr (p-temp-stk p0)))) nil)
(equal (cddr (top (cddr (p-temp-stk p0)))) nil)
(equal (car (top (p-temp-stk p0))) ’addr)
(equal (car (top (cdr (p-temp-stk p0)))) ’nat)
(lessp (untag (top (cdr (p-temp-stk p0)))) (exp 2 (p-word-size p0)))
(not (zerop (untag (top (cdr (p-temp-stk p0))))))
(equal (car (top (cddr (p-temp-stk p0)))) ’addr)
(listp (untag (top (p-temp-stk p0))))
(listp (untag (top (cddr (p-temp-stk p0)))))
(equal (cdr (untag (top (p-temp-stk p0)))) 0)
(equal (cdr (untag (top (cddr (p-temp-stk p0))))) 0)
(definedp (car (untag (top (p-temp-stk p0)))) (p-data-segment po))

(definedp (car (untag (top (cddr (p-temp-stk p0))))) (p-data-segment p0))
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(not (equal (car (untag (top (p-temp-stk p0)))) (car (untag (top (cddr (p-temp-stk p0)))))))
(nat-list-piton (array (car (untag (top (cddr (p-temp-stk p0))))) (p-data-segment p0))
(p-word-size p0))
(array-pitonp (array (car (untag (top (p-temp-stk p0)))) (p-data-segment p0))
(untag (top (cdr (p-temp-stk p0)))))
(equal (length (array (car (untag (top (cddr (p-temp-stk p0))))) (p-data-segment p0)))
(untag (top (cdr (p-temp-stk p0)))))
(equal (assoc ’delay (p-prog-segment p0))
(delay-program))
(equal (assoc 'computer-move (p-prog-segment p0))
(computer-move-program))
(equal (assoc 'smart-move (p-prog-segment p0))
(smart-move-program))
(equal (assoc ’replace-value (p-prog-segment po))
(replace-value-program))
(equal (assoc 'max-nat (p-prog-segment p0))
(max-nat-program))
(equal (assoc ’'bv-to-nat-list (p-prog-segment p0))
(bv-to-nat-list-program))
(equal (assoc ’nat-to-bv-list (p-prog-segment po))
(nat-to-bv-list-program))
(equal (assoc 'match-and-xor (p-prog-segment p0))
(match-and-xor-program))
(equal (assoc ’highest-bit (p-prog-segment p0))
(highest-bit-program))
(equal (assoc 'number-with-at-least (p-prog-segment p0))
(number-with-at-least-program))
(equal (assoc 'bv-to-nat (p-prog-segment p0))
(bv-to-nat-program))
(equal (assoc 'nat-to-bv (p-prog-segment p0))
(nat-to-bv-program))
(equal (assoc 'push-1-vector (p-prog-segment p0))
(push-1-vector-program (p-word-size p0)))
(equal (assoc ’xor-bvs (p-prog-segment p0))
(xor-bvs-program))))

(prove-lemma numberp-max-list (rewrite)
(numberp (max-list x)))

(prove-lemma max-0-means (rewrite)
(implies
(nat-list-piton x s)
(equal
(equal (max-list (untag-array x)) 0)
(all-zero-bitvp (untag-array x)))))

(prove-lemma max-list-not-too-big (rewrite)

(implies

(and
(nat-list-piton x s)
(not (zerop s)))

(and
(lessp (max-list (untag-array x)) (exp 2 s))
(equal (lessp (subl (max-list (untag-array x))) (exp 2 s)) t))))

(disable delay-clock)
(disable *1*delay-clock)

(prove-lemma lessp-exp-2-8-hack (rewrite)
(implies
(and
(lessp 7 free)
(equal x free)
(lessp val 256))
(equal (lessp val (exp 2 x)) t)))

(prove-lemma correctness-of-computer-move (rewrite)
(implies
(and
(equal p0 (p-state

pe
ctrl-stk
(cons wa (cons np (cons s temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0)
'(call computer-move))
(equal state
(untag-array (array (car (untag s)) data-segment)))
(equal word-size word-size2)
(computer-move-input-conditionp p0))
(equal
(p (p-state
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pc
ctrl-stk
(cons wa (cons np (cons s temp-stk)))
prog-segment
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)
(computer-move-clock state word-size2))
(p-state
(add1l-addr pc)
ctrl-stk
temp-stk
prog-segment
(put-assoc
(tag-array 'nat (computer-move state word-size))
(car (untag s))
(if (equal (number-with-at-least state 2) 0)
data-segment
(put-assoc
(if (or (all-zero-bitvp
(xor-bvs (nat-to-bv-list state word-size)))
(lessp (number-with-at-least state 2) 2))
(tag-array ’bitv
(nat-to-bv-list state word-size))
(tag-array ’bitv
nat-to-bv-list (computer-move state word-size)
word-size)))
(car (untag wa)) data-segment)))
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run)))
((disable smart-move)))

3335

5335 Having proved the behavior of the programs, we now introduce

the spec to which we’ve been writing code.

3335

3335

3335

(defn sum (list)
(if (listp list)
(plus (car list) (sum (cdr list)))
0))

(prove-lemma sum-append (rewrite)
(equal
(sum (append x y))
(plus (sum x) (sum y))))

i; returns a list of states that are valid moves from
(defn all-valid-moves-helper (old val origval new)
(if (zerop val)
(if (nlistp new)
nil
(all-valid-moves-helper (append old (list origval))
(car new) (car new) (cdr new)))
(cons (append old (cons (subl val) new))
(all-valid-moves-helper old (subl val) origval new)))
((ord-lessp (cons (addl (length new)) (fix val)))))

(defn all-valid-moves (x)
(all-valid-moves-helper nil (car x) (car x) (cdr x)))

(defn max-sum (list)
(if (listp list)
(if (lessp (sum (car list))
(max-sum (cdr list)))
(max-sum (cdr list))
(sum (car list)))

0))

(prove-lemma nat-listp-append (rewrite)

(implies

(properp x)

(equal

(nat-listp (append x y) size)
(and

(nat-listp x size)
(nat-listp y size)))))
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i(prove-lemma properp-append (rewrite)
; (equal

; (properp (append x y))

; (properp y)))

(enable properp-append)

(defn nat-listp-simple (list)
(if (listp list)
(and
(numberp (car list))
(nat-listp-simple (cdr list)))
(equal list nil)))

(prove-lemma nat-listp-simple-append (rewrite)
(implies
(properp x)
(equal
(nat-listp-simple (append x y))
(and (nat-listp-simple x) (nat-listp-simple ¥)))))

(prove-lemma lessp-max-sum-helper nil
(implies
(and
(not (lessp ¢ temp))
(properp x)
(nat-listp-simple (append x (cons ¢ y)))
(not (all-zero-bitvp (append x (cons ¢ ¥)))))
(lessp
(max-sum (all-valid-moves-helper x temp ¢ y))
(sum (append x (cons ¢ y))))))

(prove-lemma lessp-max-sum-all-valid-moves (rewrite)
(implies
(and
(nat-listp-simple s)
(not (all-zero-bitvp s)))
(equal (lessp (max-sum (all-valid-moves s)) (sum s)) t))
((use (lessp-max-sum-helper (c (car 5)) (temp (car s)) (x nil)

(y (edr s))))))

(prove-lemma lessp-sum-max-sum (rewrite)
(not (lessp (max-sum x) (sum (car x)))))

(disable all-valid-moves)

(defn wsp-measure (state flag)
(cons (if flag (add1 (sum state)) (addl (max-sum state)))
(if flag 0 (length state))))

;; wsp searchs for a successor to the current state on

;; a path to a guaranteed win.

53 if flag

5 state is a nim state - return state if all zeros.

5 Return a successor state not wsp if one exists, f otherwise
;3 if not flag

5 state is a list of states - return member of list if it is

5 not wsp, f is no such member.

(defn wsp (state flag)
(if flag
(if (or (all-zero-bitvp state) (not (nat-listp-simple state)))

state

(wsp (all-valid-moves state) f))

(if (listp state)
(if (not (wsp (car state) t))
(car state)

(wsp (cdr state) f))

((ord-lessp (wsp-measure state flag))))

(defn green-statep (state wordsize)
(equal
(zerop (number-with-at-least state 2))
(all-zero-bitvp (xor-bvs (nat-to-by-list state wordsize)))))

(defn non-green-in-list (list wordsize)
(if (listp list)
(or
(not (greem-statep (car list) wordsize))
(non-green-in-list (cdr list) wordsize))

)

(prove-lemma nat-listp-means-nat-listp-simple (rewrite)
(implies
(nat-listp x s)
(nat-listp-simple x)))
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(prove-lemma xor-bitv-zero-bit-vector (rewrite)
(implies
(all-zero-bitvp x)
(equal (xor-bitv x y)
(make-list-from (length x) (fix-bitv y)))))

(prove-lemma fix-bitv-xor-bitv (rewrite)
(equal (fix-bitv (xor-bitv x y)) (xor-bitv x y)))

(prove-lemma fix-bitv-and-bitv (rewrite)
(equal (fix-bitv (and-bitv x y)) (and-bitv x y)))

(prove-lemma fix-bitv-xor-bvs (rewrite
(equal (fix-bitv (xor-bvs x)) (xor-bvs x)))

(prove-lemma all-zero-bitvp-make-list-from-simple (rewrite)
(implies
(all-zero-bitvp x)
(all-zero-bitvp (make-list-from n x))))

(prove-lemma all-zero-bitvp-xor-bvs-nat-to-bv-list-zeros (rewrite)
(implies
(all-zero-bitvp x)
(all-zero-bitvp (xor-bvs (nat-to-bv-list x 5)))))

(prove-lemma number-with-at-least-of-all-zeros (rewrite)
(implies
(all-zero-bitvp x)
(equal (number-with-at-least x m)
(if (zerop m) (length x) 0))))

(defn nat-listp-listp (list wordsize)
(if (listp list)
(and
(nat-listp (car list) wordsize)
(nat-listp-listp (cdr list) wordsize))

t))

(prove-lemma nat-listp-listp-all-valid-moves-helper (rewrite)
(implies
(and
(nat-listp a s)
(lessp b (exp 2 5))
(lessp ¢ (exp 2 s))
(numberp b)
(numberp c)
(nat-listp d s)
(properp a))
(nat-listp-listp (all-valid-moves-helper a b c d) s)))

(prove-lemma nat-listp-listp-all-valid-moves (rewrite)
(implies
(nat-listp a s)
(nat-listp-listp (all-valid-moves a) s))
((enable all-valid-moves)))

(prove-lemma listp-all-valid-move-helper (rewrite)
(implies
(nat-listp-simple d)
(equal (listp (all-valid-moves-helper a b ¢ d))
(or
(not (all-zero-bitvp d))

(not (zerop b))))))

(prove-lemma listp-all-valid-move (rewrite)
(implies
(nat-listp-simple x)
(equal (listp (all-valid-moves x))
(not (all-zero-bitvp x))))
((enable all-valid-moves)))

(prove-lemma number-with-at-least-append (rewrite)
(equal
(number-with-at-least (append x y) m)
(plus
(number-with-at-least x m)
(number-with-at-least y m))))

(prove-lemma length-xor-bvs2 (rewrite)
(implies
(bit-vectorsp x s)
(equal (length (xor-bvs x))

(if (listp x) (fix s) 0))))

(prove-lemma xor-bitv-xor-bvs-hack (rewrite)
(implies
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(bit-vectorsp z (length y))
(equal
(xor-bitv (xor-bitv y (xor-bvs z)) x)
(if (listp z)
(xor-bitv y (xor-bitv (xor-bvs z) x))
(xor-bitv y x)))))

(prove-lemma xor-bitv-fix-bitv (rewrite)
(and
(equal (xor-bitv (fix-bitv x) y) (xor-bitv x y))
(equal (xor-bitv x (fix-bitv y)) (xor-bitv x y))))

(prove-lemma xor-bvs-append (rewrite)

(implies

(and

(bit-vectorsp x s)

(bit-vectorsp y s)

(numberp s))
(equal

(xor-bvs (append x y))

(if (listp x)

(xor-bitv (xor-bvs x) (xor-bvs y))

(xor-bvs ¥)))))

(prove-lemma xor-bvs-append-hack (rewrite)

(implies
(bit-vectorsp y ws)
(equal
(xor-bvs (append (nat-to-bv-list a ws) y))
(if (listp a)

(xor-bitv (xor-bvs (nat-to-bv-list a ws))

(xor-bvs y))
(xor-bvs 3))))
((use (xor-bvs-append
(x (nat-to-bv-list a ws))

(s ws)))))

(prove-lemma nat-to-bv-list-append (rewrite)
(equal
(nat-to-bv-list (append x y) s)
(append
(nat-to-bv-list x s)
(nat-to-bv-list y s))))

(prove-lemma bit-vectorp-nat-to-bv (rewrite)
(equal
(bit-vectorp (nat-to-bv x s) s2)
(equal (fix s) (fix 52))))

(prove-lemma fix-bitv-nat-to-bv (rewrite)
(equal (fix-bitv (nat-to-bv x s)) (nat-to-bv x s)))

(prove-lemma fix-bitv-zero-bit-vector (rewrite)
(equal
(fix-bitv (zero-bit-vector x))
(zero-bit-vector x)))

(prove-lemma all-zero-bitvp-nat-to-bv (rewrite)
(equal
(all-zero-bitvp (nat-to-bv x s))
(or
(zerop x)

(zerop 5))))

(prove-lemma all-zero-bitvp-xor-bitv-better (rewrite)
(equal
(all-zero-bitvp (xor-bitv x y))
(equal
(fix-bitv x)
(make-list-from (length x) (fix-bitv y)))))

(prove-lemma length-xor-bvs-nat-to-bv-list (rewrite)
(equal
(length (xor-bvs (nat-to-bv-list x s)))
(if (listp x) (fix s) 0)))

(prove-lemma fix-bitv-make-list-from (rewrite)
(equal
(fix-bitv (make-list-from s x))
(make-list-from s (fix-bitv x))))

(defn double-subl-cdr (nl n2 1)
(if (or (zerop n1) (zerop n2))
t

(double-subl-cdr (subl n1) (subl n2) (edr 1))))
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(prove-lemma make-list-from-make-list-from (rewrite)
(equal
(make-list-from s1 (make-list-from s2 x))
(if (lessp s2 s1)
(append (make-list-from s2 x)
(zero-bit-vector (difference s1 52)))
(make-list-from s1 x))))

i(prove-lemma associativity-of-append (rewrite)
; (equal

; (append (append a b) <)

; (append a (append b c))))

(enable associativity-of-append)

i(prove-lemma append-cons (rewrite)
; (equal

; (append (cons a b) <)

; (cons a (append b c))))
(enable append-cons)

(prove-lemma properp-xor-bvs (rewrite)
(properp (xor-bvs x)))

(prove-lemma properp-xor-bitv (rewrite)
(properp (xor-bitv x y)))

(defn member-number-with-at-least (x min)
(if (listp x)
(if (not (zerop (number-with-at-least (car x) min)))
(car x)
(member-number-with-at-least (cdr x) min))

)

(prove-lemma xor-bvs-nat-to-bv-list-zerop-ws (rewrite)
(implies
(zerop ws)
(equal (xor-bvs (nat-to-bv-list x ws)) nil)))

(defn nat-listp-listp-simple (x)
(if (listp x)
(and
(nat-listp-simple (car x))
(nat-listp-listp-simple (cdr x)))
(equal x nil)))

(prove-lemma non-green-in-list-zerop-ws (rewrite)
(implies
(and
(zerop ws)
(nat-listp-listp-simple x))
(iff
(non-green-in-list x ws)
(member-number-with-at-least x 2))))

(prove-lemma nat-listp-listp-simple-means-properp (rewrite)
(implies
(nat-listp-listp-simple x)
(properp x)))

(prove-lemma nat-listp-simple-means-properp (rewrite)
(implies
(nat-listp-simple x)
(properp x)))

(prove-lemma make-list-from-xor-bvs-nat-to-bv-list (rewrite)

(implies

(equal (fix ws) (fix s))

(equal

(make-list-from ws (xor-bvs (nat-to-bv-list x s)))

(if (listp x)

(xor-bvs (nat-to-by-list x s))
(zero-bit-vector ws)))))

(prove-lemma last-xor-bitv (rewrite)
(equal
(last (xor-bitv x y))
(if (listp x)
(xor-bit (last x) (nth (subl (length x)) y))

0)))

(prove-lemma last-one-bit-vector (rewrite)
(equal (last (ome-bit-vector x)) 1))

(prove-lemma nth-as-last (rewrite)



A Proved Application with
Simple Real-Time Properties
Technical Report #78

(implies
(equal (add1 n) (length x))
(equal (nth n x) (last x))))

(prove-lemma listp-nat-to-bv (rewrite)
(equal
(listp (nat-to-bv x s))
(not (zerop s))))

i(prove-lemma remainder-plus-x-x-2 (rewrite)
; (equal (remainder (plus x x) 2) 0))
(enable remainder-plus-x-x-2)

(prove-lemma last-nat-to-bv (rewrite)
(equal
(last (nat-to-bv x s))
(if (or (zerop s)
(an
(lessp x (exp 2 3))
(equal (remainder x 2) 0)))

0

1)))
(prove-lemma fix-bitv-one-bit-vector (rewrite)

(equal

(fix-bitv (ome-bit-vector x))
(one-bit-vector x)))

(prove-lemma nat-to-bv-1 (rewrite)
(equal
(nat-to-bv 1 x)
(if (zerop x) nil (one-bit-vector x))))

(prove-lemma last-zero-bit-vector (rewrite)
(equal (last (zero-bit-vector x)) 0))

(prove-lemma nat-to-bv-2 (rewrite)
(equal
(nat-to-bv x 2)
(i (zerop x)
(list 0 0)
(if (equal x 1)
(list 0 1)
(if (equal x 2)
(list 1 0)
(list 1 1)))))
((expand (nat-to-bv x 2))))

(prove-lemma all-zero-bitvp-all-but-last-nat-to-bv (rewrite)
(equal
(all-zero-bitvp (all-but-last (nat-to-bv x s)))
(or
(lessp x 2)

(lessp 5 2))))

(prove-lemma xor-bvs-of-list-of-0s-and-1s (rewrite)

(implies

(zerop (number-with-at-least ¢ 2))
(equal

(xor-bvs (nat-to-bv-list ¢ ws))

(if (or (mlistp c) (zerop ws)) nil

(if (equal (remainder (sum c) 2) 0)
(zero-bit-vector ws)
(one-bit-vector ws))))))

(prove-lemma equal-nat-to-bv-nlistp (rewrite)
(implies
(nlistp x)
(equal
(equal x (nat-to-bv y s))
(and (equal x nil) (zerop s)))))

(prove-lemma different-lengths-means-different-hack nil
(implies
(not (equal (fix s1) (fix s2)))
(not (equal (length (nat-to-bv x s1))
(length (nat-to-bv y 52))))))

(prove-lemma different-lengths-means-different (rewrite)
(implies
(not (equal (fix s1) (fix 52)))
(not (equal (nat-to-bv x s1) (nat-to-bv y 52))))
((use (different-lengths-means-different-hack))
(disable-theory t)
(enable-theory ground-zera)))

(defn nat-to-bv-induct (x y sl s2)
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(if (zerop s1) t
(nat-to-bv-induct
(if (lessp x (exp 2 (subl s1))) x
(difference x (exp 2 (subl s1))))
(if (lessp y (exp 2 (subl 52))) y
(difference y (exp 2 (subl s2)) ))
(subl s1)

(subl s2))))

(defn all-ones-vector (x)
(if (zerop x)
nil
(cons 1 (all-ones-vector (subl x)))))

(prove-lemma not-lessp-exp-means-all-ones (rewrite)
(implies
(not (lessp x (subl (exp 2 s5))))
(equal (nat-to-bv x s) (all-ones-vector s))))

(prove-lemma lessp-subl-plus-subl-hack (rewrite)
(implies
(not (zerop y))
(equal
(lessp (subl (plus x y))
(plus (subl y) 7))

(lessp x 7))))

(prove-lemma equal-cons-zero-bit-vector-nat-to-bv (rewrite)
(equal
(equal (cons 0 (zero-bit-vector x)) (nat-to-bv a b))
(and
(equal (add1 x) (fix b))
(zerop a)))

(prove-lemma equal-all-ones-vector-all-ones-vector (rewrite)
(equal
(equal (all-ones-vector x) (all-ones-vector y))
(equal (fix x) (fix y)))
((induct (double-subl-cdr x y 1))))

(prove-lemma equal-all-ones-vector-cons (rewrite)
(equal
(equal (all-ones-vector x) (cons a b))
(and
(not (zerop x))
(equal a 1)
(equal (all-ones-vector (subl x)) b))))

(prove-lemma different-lengths-obvious nil
(implies
(equal x y)
(equal (length x) (length y))))

(prove-lemma equal-all-ones-vector-nlistp (rewrite)
(implies
(nlistp x)
(equal
(equal (all-ones-vector y) x)
(and
(equal x nil)

(zerop ¥)))))

(prove-lemma length-all-ones-vector (rewrite)
(equal (length (all-ones-vector x)) (fix x)))

(prove-lemma different-lengths-hack (rewrite)
(implies
(not (equal (fix x) (fix y)))
(not (equal (all-ones-vector x) (nat-to-bv a y))))
((use (different-lengths-obvious
(x (all-ones-vector x))
(y (nat-to-bv a y))))
(disable equal-all-ones-vector-nlistp)))

(prove-lemma lessp-difference-argl (rewrite)
(implies
(not (lessp x y))
(equal (lessp (difference x y) z)
(lessp x (plus y 2)))))

(prove-lemma equal-difference (rewrite)
(implies
(not (lessp x y))
(equal
(equal (difference x y) z)
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(and
(equal (fix x) (plus y z))
(numberp 2)))))

(prove-lemma equal-exp (rewrite)

(implies
(equal (fix a) (fix b))
(equal

Eequal (exp a c) (exp b d))

(equal a 1)
(and (zerop a) (equal (zerop c) (zerop d)))
(equal (fix c) (fix d)))))

((induct (double-subl-cdr c d 1))))

(prove-lemma equal-all-ones-nat-to-bv (rewrite)
(equal
(equal (all-ones-vector x) (nat-to-bv a b))
(and
(equal (fix x) (fix b))
(not (lessp a (subl (exp 2 b))))))
((induct (nat-to-bv-induct q a x b))))

(prove-lemma equal-nat-to-bv-nat-to-bv (rewrite)
(equal
(equal (nat-to-bv x s1) (nat-to-bv y 52))

(and
Eequal (fix s1) (fix 52))
(equal (fix x) (fix y))
(and (not (lessp x (subl (exp 2 s1))))
(not (lessp y (subl (exp 2 51));3)))))

((induct (nat-to-bv-induct x y sl s2)

(prove-lemma listp-xor-bvs (rewrite)
(equal
(listp (xor-bvs x))

(listp (car x))))

(prove-lemma car-nat-to-bv-list (rewrite)
(equal
(car (nat-to-bv-list x s))
(if (listp x)
(nat-to-bv (car x) s)

0)))

;; from later version of naturals that is used in this proof
(PROVE-LEMMA QUOTIENT-DIFFERENCE
(REWRITE)
(EQUAL (QUOTIENT (DIFFERENCE X Y) Z)
(IF (LESSP (REMAINDER X Z)
(REMAINDER Y Z))
(SUB1 (DIFFERENCE (QUOTIENT X Z)
(QUOTIENT Y 7)))
(DIFFERENCE (QUOTIENT X Z)
(QUOTIENT Y Z))))
((DISABLE QUOTIENT-DIFFERENCE1 QUOTIENT-DIFFERENCE2
QUOTIENT-DIFFERENCES)
(INDUCT (QUOTIENT Y Z))))

(enable DIFFERENCE-X-SUB1-X)

(prove-lemma all-but-last-nat-to-bv (rewrite)
(equal
(all-but-last (nat-to-bv x s))
(i (zerop s)
nil
(nat-to-bv (quotient x 2) (subl s)))))

(prove-lemma equal-last-xor-bvs-1 (rewrite)
(equal
(equal (last (xor-bvs x)) 1)
(not (equal (last (xor-bvs x)) 0))))

(prove-lemma not-green-state-means (rewrite)
(implies
(and
(not (green-statep (append a (cons b <)) ws))
(lessp d (exp 2 ws))
(lessp b d))
(equal
(green-statep (append a (cons d c)) ws)
(or (not (zerop ws))
(zerop (number-with-at-least
(append a (cons d <)) 2))))))

(prove-lemma green-in-list-all-valid-moves-helper nil
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(implies
(and
(nat-listp a ws)
(nat-listp d ws)
(numberp <)
(lessp ¢ (exp 2 ws))
(properp a)
(non-green-in-list
(all-valid-moves-helper a b ¢ d) ws)
(not (lessp c b))
(numberp b))
(green-statep (append a (cons c d)) ws))
((disable green-statep)))

prove-lemma green-in-list-all-valid-moves-means (rewrite
8
(implies
(and
(nat-listp x ws)
(non-green-in-list (all-valid-moves x) ws))
reen-statep x ws
g
disable green-statep
3
(enable all-valid-moves)
use (green-in-list-all-valid-moves-helper
3

(a nil) (b (car x)) (c (car x)) (d (cdr x))))))

(defn valid-movep (sl s2)
(it Eand (listp s1) (listp s2))

(and
(lessp (car s2) (car s1))
(numberp (car 52)
(equal (cdr s1) (cdr 52)))
(and
(equal (car s1) (car 52))
(valid-movep (cdr s1) (cdr s2))))

)

(defn match-member (m list)
(if (listp list)
(if (not (all-zero-bitvp (and-bitv (car list) m)))
(car list)
(match-member m (cdr list)))

)

(prove-lemma xor-bvs-match-and-xor (rewrite)

(implies
(bit-vectorsp list (length value))
(equal
(xor-bvs (match-and-xor list match value))
(if (match-member match list)

(xor-bitv value (xor-bvs list))

(xor-bvs list)))))

(defn remove-highest-bits (x)
(if (listp x)
(cons (cdar x) (remove-highest-bits (cdr x)))

nil))

(prove-lemma car-remove-highest-bits (rewrite)
(equal
(car (remove-highest-bits x))

(cdr (car x))))

(prove-lemma equal-car-highest-bit-1 (rewrite)
(equal
(equal (car (highest-bit x)) 1)
(equal
(highest-bit x)
(cons 1 (zero-bit-vector (subl (length x)))))))

(prove-lemma car-xor-bitv (rewrite)
(equal
(car (xor-bitv x y))
(if (listp x)
(xor-bit (car x) (car y))

0)))

(prove-lemma match-member-cons-0 (rewrite)
(iff
(match-member (cons 0 x) y)
(match-member x (remove-highest-bits y))))

(prove-lemma match-member-cons (rewrite)
(implies
(and
(bit-vectorsp v (length (cons a b)))
(not (equal (car (xor-bvs v)) 0)))
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(iff
(match-member (cons a b) v)
(or
(not (equal a D))
(match-member b (remove-highest-bits v))))))

(prove-lemma equal-highest-bit-cons-1 (rewrite)
(equal
(equal (highest-bit x) (cons 1 y))
(and
(not (equal (car x) 0))
(equal y (zero-bit-vector (subl (length x)))))))

(prove-lemma length-cdr-xor-bitv (rewrite)
(equal
(length (cdr (xor-bitv x y)))
(length (cdr x))))

(prove-lemma length-fix-bitv (rewrite)
(equal (length (fix-bitv x)) (length x)))

(prove-lemma length-cdr-xor-bvs (rewrite)
(implies
(bit-vectorsp x s)
(equal
(length (cdr (xor-bvs x)))
(if (listp x) (subl s) 0))))

(defn highest-bits-induct (x s)
(if (listp x)
(if (listp (car x))
(if (equal (car (highest-bit (xor-bvs x))) 1)
t

(highest-bits-induct (remove-highest-bits x) (subl s)))
t)

£)
((lessp (length (car x)))))

(prove-lemma bit-vectorsp-remove-highest-bits (rewrite)
(implies
(bit-vectorsp x (addl s))
(bit-vectorsp (remove-highest-bits x) s)))

(prove-lemma xor-bvs-remove-highest-bits (rewrite)
(implies
(bit-vectorsp x s)
(equal
(xor-bvs (remove-highest-bits x))
(if (and (listp x) (not (zerop s)))
(cdr (xor-bvs x))

nil))))

(prove-lemma match-member-highest-bit-xor-bvs nil
(implies
(bit-vectorsp x s)
(iff
(match-member (highest-bit (xor-bvs x)) x)
(not (all-zero-bitvp (xor-bvs x)))))
((induct (highest-bits-induct x 3))))

(prove-lemma match-member-highest-bit-xor-bvs-rewrite (rewrite)
(implies
(bit-vectorsp x (length (xor-bvs x)))
(iff
(match-member (highest-bit (xor-bvs x)) x)
(not (all-zero-bitvp (xor-bvs x)))))
((use (match-member-highest-bit-xor-bvs
(s (length (xor-bvs x)))))))

(prove-lemma bit-vectorsp-nat-to-bv-list-better (rewrite)
equal
(bit-vectorsp (nat-to-bv-list x size) size2)
(or
(nlistp x)
(equal (fix size) (fix size2)))))

(prove-lemma match-member-at-least-min-means (rewrite)
(implies
(and
(match-member y (nat-to-bv-list x ws))
(not (lessp
(bv-to-nat
(match-member y (nat-to-bv-list x ws)))
min)))
(not (equal (number-with-at-least x min) 0))))

(prove-lemma bit-vectorp-highest-bit-xor-bvs (rewrite)
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equal

q

(bit-vectorp (highest-bit (xor-bvs x)) ws)
(bit-vectorp (xor-bvs x) ws)))

(prove-lemma number-with-at-least-match-and-xor (rewrite)
(implies
(and
(nat-listp x ws)
(bit-vectorp y ws)
(bit-vectorp z ws))
(equal
(number-with-at-least
(bv-to-nat-list (match-and-xor
(nat-to-bv-list x ws)
y 2))
min)

(if (match-member y (nat-to-bv-list x ws))
(difference
(plus
(number-with-at-least x min)
(if (lessp
(bv-to-nat
(xor-bitv z
(match-member y (nat-to-bv-list x ws))))
min) 0 1))
(if (lessp
(bv-to-nat
(match-member y (nat-to-bv-list x ws)))
min) 0 1))
(number-with-at-least x min)))))

(prove-lemma number-with-at-least-replace-value (rewrite)
(equal
(number-with-at-least (replace-value x e v) min)
(if (member e x)
(difference
(plus
(number-with-at-least x min)
(if (lessp v min) 0 1))
(if (lessp e min) 0 1))
(number-with-at-least x min))))

(prove-lemma max-list-means-number-0 (rewrite)
(implies
(and
(equal (max-list x) n)
(lessp n m))
(equal (number-with-at-least x m) 0)))

(prove-lemma member-max-list (rewrite)
(implies
(nat-listp-simple x)
(equal
(member (max-list x) x)

(listp x))))

(prove-lemma listp-replace-value (rewrite)
(equal
(listp (replace-value x e v))

(listp x)))

(prove-lemma member-means-lessp-sum (rewrite)
(implies
(member e x)
(not (lessp (sum x) e))))

(prove-lemma sum-replace-value (rewrite)
(equal
(sum (replace-value x e v))
(if (member e x)
(difference (plus (sum x) v) e)

(sum x))))

(prove-lemma remainder-difference-2 (rewrite)
(equal
(remainder (difference x y) 2)
(if (lessp x y) 0
(if (equal (remainder x 2) (remainder y 2))

0
M

(prove-lemma lessp-max-list (rewrite)
(not (lessp (sum x) (max-list x))))

(prove-lemma remainder-plus-remainder (rewrite)
(and
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(equal (remainder (plus (remainder x y) z) y)
(remainder (plus x z) y))

(equal (remainder (plus z (remainder x y)) y)
(remainder (plus x z) y))))

(prove-lemma remainder-plus-remainder2 (rewrite)

(and

(equal (remainder (plus z (plus a (remainder x y))) y)
(remainder (plus z (plus a x)) y))

(equal (remainder (plus z (plus (remainder x y) a)) y)
(remainder (plus z (plus a x)) y))

((use (remainder-plus-remainder (z (plus z a))))

(disable remainder-plus-remainder)))

(prove-lemma lessp-max-list-from-number-with-at-least (rewrite)
(implies
(and
(equal (number-with-at-least x m) 0)
(not (zerop m)))
(lessp (max-list x) m)))

(prove-lemma number-with-at-least-as-sum (rewrite)
(implies
(zerop (number-with-at-least x 2))
(equal
(number-with-at-least x 1)

(sum x))))

(prove-lemma equal-remainder-add1-2 (rewrite)
(equal
(equal (remainder (addl x) 2) (remainder (addl y) 2))
(equal (remainder x 2) (remainder y 2))))

prove-lemma remainder-plus-sum-number-hack (rewrite
1 ind 1 b hack i
implies
(o
(equal (number-with-at-least x 2) 1)
(equal
(remainder (plus (sum x) (number-with-at-least x 1)) 2)
(remainder (add1 (max-list x)) 2))))

(prove-lemma equal-remainder-add1 (rewrite)
(equal
(equal (remainder (addl x) y) (remainder x y))
(equal y 1)))

(prove-lemma max-0-means-sum-0 (rewrite)
(equal
(equal (sum x) 0)
(equal (max-list x) 0)))

(prove-lemma max-0-means-all-zero-bitvp (rewrite)
(implies
(and
(equal (max-list x) 0)
(nat-listp-simple x))
(all-zero-bitvp x)))

(prove-lemma remainder-add1-2 (rewrite)
(and
(equal
(equal (remainder (add1 x) 2) 0)
(equal (remainder x 2) 1))
(equal
(equal (remainder (add1 x) 2) 1)
(equal (remainder x 2) 0))))

(prove-lemma remainder-subl1-2 (rewrite)

(implies

(not (zerop x))

(and

(equal
(equal (remainder (subl x) 2) 0)
(equal (remainder x 2) 1))
(equal
(equal (remainder (subl x) 2) 1)
(equal (remainder x 2) 0)))))

(prove-lemma equal-x-remainder-subl-x (rewrite)
(equal
(equal (remainder (subl x) y) x)
(equal x 0)))

(prove-lemma computer-move-makes-non-green nil
(implies
(and
(green-statep x ws)
(nat-listp x ws)
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(listp x)
(not (zerop ws))
(not (all-zero-bitvp x)))

(not (green-statep (computer-move x ws) ws)))

((disable nat-to-bv bv-to-nat lessp-number-with-at-least)))

(prove-lemma nat-listp-simplify (rewrite)
(implies
(zerop ws)
(equal (nat-listp x ws)
(and
(properp x)
(all-zero-bitvp x)))))

(prove-lemma computer-move-makes-non-green-rewrite (rewrite)

(implies

(and

(green-statep x ws)

(nat-listp x ws)

(not (all-zero-bitvp x)))

(not (green-statep (computer-move x ws) ws)))
((use (computer-move-makes-non-green))
(disable-theory t)

(enable nat-listp all-zero-bitvp nat-listp-simplify)
(enable-theory ground-zero)))

(defn make-properp (x)
(if (listp x)
(cons (car x) (make-properp (cdr x)))

nil))

(prove-lemma properp-make-properp (rewrite)
(implies
(properp x)
(equal (make-properp x) x)))

(prove-lemma replace-value-simplify (rewrite)
(implies
(not (member x y))
(equal (replace-value y x z) (make-properp y))))

(prove-lemma member-make-properp (rewrite)
(equal
(member x (make-properp y))
(member x y)))

(prove-lemma valid-movep-x-x (rewrite)
(not (valid-movep x x)))

(prove-lemma valid-movep-replace-value (rewrite)

(implies
(properp x)
(equal
(valid-movep x (replace-value x y 7))
(and
(member y x)
(lessp z y)

(numberp 2)))))

(prove-lemma number-with-at-least-max-list (rewrite)
implies
(imp
(and
(equal (number-with-at-least x m) v)
(lessp 0 v))
(not (lessp (max-list x) m))))

(prove-lemma valid-movep-match-and-xor (rewrite)
(implies
(and
(nat-listp x ws)
(bit-vectorp y ws)
(bit-vectorp z ws))
(equal
valid-movep x
( P
(bv-to-nat-list
(match-and-xor (nat-to-bv-list x ws) y z)))
(and
(match-member y (nat-to-bv-list x ws))
(lessp
(bv-to-nat (xor-bitv z
(match-member y (nat-to-bv-list x ws))))
(bv-to-nat (match-member y (nat-to-bv-list x ws)))))))
((induct (length x))))

(defn lessp-bv (x y)
(if (and (listp x) (listp y))
(if (equal (fix-bit (car x)) (fix-bit (car y)))
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(lessp-bv (cdr x) (cdr y))
(equal (car x) 0))
£))

(prove-lemma lessp-bv-to-nat (rewrite)
(lessp (bv-to-nat x) (exp 2 (length x))))

(prove-lemma lessp-as-lessp-bv (rewrite)
implies
(it
(equal (length x) (length y))
(equal
(lessp (bv-to-nat x) (bv-to-nat y))
(lessp-bv x ¥))))

(prove-lemma fix-bitv-highest-bit (rewrite)
equal (fix-bitv (highest-bit x ighest-bit x
I (fix-bitv (highest-bi highest-bi

(prove-lemma properp-highest-bit (rewrite)
(properp (highest-bit x)))

(prove-lemma bit-vectorp-fix-bitv (rewrite)
(equal
(bit-vectorp (fix-bitv x) s)
(equal (length x) (fix s))))

(prove-lemma lessp-bv-xor-bitv (rewrite)
(implies
(equal (length x) (length y))
(equal
(lessp-bv (xor-bitv x y) y)
(not (all-zero-bitvp (and-bitv y (highest-bit x)))))))

(prove-lemma length-match-member-nat-to-bv-list (rewrite)
(equal
(length (match-member a (nat-to-bv-list x ws)))
(if (match-member a (nat-to-bv-list x ws))
(fix ws)

0)))

(prove-lemma bit-vectorsp-remove-highest-bits2 (rewrite)

implies
P
bit-vectorsp x sl
P
(equal
(bit-vectorsp (remove-highest-bits x) s2)
(or

(equal (add1 s2) s1)

(not (listp 1))

(prove-lemma match-member-high-bit-xor-bvs-helper nil
(implies
(bit-vectorsp x ws)
(iff
(match-member (highest-bit (xor-bvs x)) x)
(not (all-zero-bitvp (xor-bvs x)))))
((induct (highest-bits-induct x ws))))

(prove-lemma match-member-high-bit-xor-bvs (rewrite)
(iff
(match-member
(highest-bit (xor-bvs (nat-to-bv-list y ws)))
(nat-to-bv-list y ws))
(not (all-zero-bitvp (xor-bvs (nat-to-bv-list y ws)))))
((use (match-member-high-bit-xor-bvs-helper
(x (nat-to-bv-list y ws))))
(disable-theory t)
(enable-theory ground-zero)
(enable bit-vectorsp-nat-to-bv-list-better)))

(prove-lemma length-match-member (rewrite)
(implies
(match-member a (nat-to-bv-list x ws))
(equal
(length (match-member a (nat-to-bv-list x ws)))

(fix ws))))

(prove-lemma all-zero-bitvp-and-match-member (rewrite)
(implies
(bit-vectorsp b (length a))
(equal
(all-zero-bitvp (and-bitv a (match-member a b)))
(not (match-member a b))))
((induct (match-member a b))))

(prove-lemma valid-movep-computer-move-helper nil
(implies
(and
(nat-listp x ws)
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(not (all-zero-bitvp x))
(not (zerop ws))
(listp x))
(valid-movep x (computer-move x ws)))
((disable all-zero-bitvp nat-to-bv bv-to-nat-list match-and-xor)))

533 PART OF SPECIFICATION
(prove-lemma valid-movep-computer-move (rewrite)
(implies
(and
(nat-listp x ws
(not (all-zero-bitvp x)))
(valid-movep x (computer-move x ws)))
((use (valid-movep-computer-move-helper))
(disable-theory t)
(enable-theory ground-zero)
(enable nat-listp-simplify all-zero-bitvp)))

(prove-lemma nthedr-cdr (rewrite)
(equal
(nthedr n (cdr x))
(cdr (nthedr n x))))

(prove-lemma make-list-from-append (rewrite)
(equal
(make-list-from n (append a b))
if (lessp (length a) n
i g
(append a (make-list-from (difference n (length a)) b))
(make-list-from n a))))

(prove-lemma make-list-from-simplify-better (rewrite)
(implies
(equal n (length x))
(equal (make-list-from n x) (make-properp x))))

i(prove-lemma length-cons (rewrite)
; (equal (length (cons a b)) (addl (length b))))
(enable length-cons)

(prove-lemma cdr-nthedr-cons (rewrite)
(equal
(cdr (nthedr n (cons a b)))
(nthedr n b)))

(prove-lemma equal-append-2 (rewrite)

(equal

(equal x (append a b))

(and
(not (lessp (length x) (length a)))
(equal (make-list-from (length a) x) (make-properp a))
(equal (nthedr (length a) x) b)))

((induct (double-cdr-induct x a))

(disable length)))

(prove-lemma member-cons-all-valid-moves-helperl (rewrite)
(implies
(listp a)
(equal
(member (cons x y) (all-valid-moves-helper a b ¢ d))
(and
(equal x (car a))
(member y (all-valid-moves-helper (cdr a) b ¢ d))))))

(prove-lemma member-all-valid-moves-means-prefix (rewrite)
(implies
(properp a)
(implies
(member x (all-valid-moves-helper a b ¢ d))
(equal (make-list-from (length a) x) a))))

(prove-lemma equal-nthedr-cons (rewrite)
(implies
(not (lessp n (length x)))
(not (equal (nthedr n x) (cons a b)))))

(prove-lemma lessp-length-simple-member-all-valid-moves (rewrite)
(implies
(not (lessp (length a) (length x)))
(not (member x (all-valid-moves-helper a b ¢ d)))))

(prove-lemma nth-cons (rewrite)
(equal (nth n (cons a b)
(if (zerop n) a (nth (subl n) b))))

(prove-lemma nth-1 (rewrite)
(equal (nth 1 x) (cadr x)))
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(prove-lemma get-as-nth (rewrite)
(equal (get n x) (nth n x)))

(prove-lemma equal-cons-make-properp (rewrite)
(equal
(equal (cons a b) (make-properp x))
(and
(listp x)
(equal a (car x))
(equal b (make-properp (cdr x))))))

(prove-lemma nthecdr-cons-make-list-from-hack (rewrite)
(equal
(nthedr n (cons a (make-list-from n z)))
(if (zerop n) (list a) (list (nth (subl n) 2)))))

(prove-lemma lessp-subl-as-equal (rewrite)
(implies
(lessp a b)
(equal (lessp a (subl b)) (not (equal (addl a) b)))))

(prove-lemma equal-nthcdr-cons-better (rewrite)
(equal
(equal (nthedr n x) (cons a b))
(and
(lessp n (length x))
(equal (nth n x) a)
(equal (nthedr (add1 n) x) b))))

(prove-lemma member-all-valid-moves-helper (rewrite)
(implies
(and
(nat-listp-simple a)
(nat-listp-simple d)
(numberp b)
(numberp c))
(equal
(member x (all-valid-moves-helper a b ¢ d))
(and
(equal (make-list-from (length a) x) (make-properp a))
(or
(and
(lessp (nth (length a) x) b)
(numberp (nth (length a) x))
(equal (nthedr (add1 (length a)) x) d))
(and
(equal (nth (length a) x) c
(valid-movep d (cdr (nthedr (length a) x)))))))))

(prove-lemma member-all-valid-moves (rewrite)
(implies
(nat-listp-simple x)
(equal
(member y (all-valid-moves x))
(valid-movep x y)))
((enable all-valid-moves)))

(prove-lemma valid-movep-and-makes-nongreen-means (rewrite)
(implies
(and
(member x y)
(not (green-statep x ws)))
(non-green-in-list y ws))
((disable green-statep)))

(prove-lemma green-means-non-green-in-valid-moves (rewrite)

(implies

(and

(nat-listp s ws)

(not (all-zero-bitvp s))

(green-statep s ws

(non-green-in-list (all-valid-moves s) ws))
((use (valid-movep-and-makes-nongreen-means

(x (computer-move s ws)) (y (all-valid-moves s))))

(disable green-statep computer-move)))

(prove-lemma green-in-list-all-valid-moves (rewrite)
(implies
(and
(nat-listp s ws)
(not (all-zero-bitvp s)))
(iff
(non-green-in-list (all-valid-moves s) ws)
(green-statep s ws)))
((disable green-statep)))

(prove-lemma sum-when-all-zero (rewrite)
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(implies
(all-zero-bitvp x)
(equal (sum x) 0)))

(prove-lemma green-statep-all-zero-bitvp (rewrite)
(implies
(all-zero-bitvp x)
(green-statep x s)))

(prove-lemma wsp-green-state-proof nil
(implies
(and
(or
(and flag (nat-listp s wordsize))
(and (not flag) (nat-listp-listp s wordsize)))
(listp 3))
(iff
(wsp s flag)
(if flag
(green-statep s wordsize)
(non-green-in-list s wordsize))))
((disable green-statep)))

(prove-lemma wsp-green-state (rewrite)
(implies
(nat-listp s wordsize)
(iff
(wsp s t)
(green-statep s wordsize)))
((use (wsp-green-state-proof (flag t)))
(disable green-statep)))

(prove-lemma nat-listp-replace-value (rewrite)
(implies
(and
(nat-listp s ws)
(lessp new (exp 2 ws))
(numberp new))
(nat-listp (replace-value s y new) ws)))

(prove-lemma nat-listp-bv-to-nat-list (rewrite)
(implies
(bit-vectorsp x s)
(nat-listp (bv-to-nat-list x) s)))

(prove-lemma nat-listp-smart-move nil
(implies
(and
(nat-listp s ws)
(not (zerop ws)))
(nat-listp (smart-move s ws) ws))
((disable-theory t)
(enable-theory ground-zero naturals)

(enable smart-move bit-vectorsp-nat-to-bv-list-better

nat-listp-replace-value
nat-listp-bv-to-nat-list

lessp-exp-simple lessp-remainder-x-exp-x)

(use (bit-vectorsp-match-and-xor
(size ws)
(x (nat-to-bv-list s ws))

(v (highest-bit (xor-bvs (nat-to-bv-list s ws))))

(z (xor-bvs (nat-to-bv-list s ws)))))))

(prove-lemma all-zero-bitvp-max-list (rewrite)
(implies
(all-zero-bitvp s)
(equal (max-list s) 0)))

(prove-lemma replace-value-x-x (rewrite)
(implies
(properp x)
(equal (replace-value x y y) x)))

(prove-lemma smart-move-small-ws (rewrite)
(implies
(and
(nat-listp s ws)
(zerop ws))
(equal (smart-move s ws) s)))

(prove-lemma lessp-max-list-from-nat-listp (rewrite)
(implies
(nat-listp s ws)
(lessp (max-list 5) (exp 2 ws))))

103



A Proved Application with
Simple Real-Time Properties
Technical Report #78

(prove-lemma nat-listp-computer-move (rewrite)

(implies

(nat-listp s ws)

(nat-listp (computer-move s ws) ws))

((use (nat-listp-smart-move))

(disable-theory t)

(enable-theory ground-zero)

(enable lessp-max-list-from-nat-listp
smart-move-small-ws computer-move
nat-listp-replace-value)))

;; PART OF SPECIFICATION
(prove-lemma computer-move-works (rewrite)
(implies
(and
(nat-listp state ws)
(not (all-zero-bitvp state))
(wsp state t))
(not (wsp (computer-move state ws) t)))
((disable computer-move green-statep
nat-listp-computer-move)
(use (nat-listp-computer-move (s state)))))

(defn nim-piton-ctrl-stk-requirement ()
25)

(defn nim-piton-temp-stk-requirement ()
3)

(defn computer-move-implemented-input-conditionp (p0)

(and
(listp (p-ctrl-stk p0))
(lessp 7 (p-word-size p0))

(lessp 1 (p-word-size p0)) ; useful to prover, but subsumed

;; there is some room on the stacks

at-least-morep (length (p-temp-stk p0
&

(nim-piton-temp-stk-requirement) (p-max-temp-stk-size p0))

(at-least-morep (p-ctrl-stk-size (p-ctrl-stk p0))

(nim-piton-ctrl-stk-requirement) (p-max-ctrl-stk-size p0))

;; the third thing on the stack is an address to the state array

(equal (car (top (cddr (p-temp-stk p0)))) ’addr)
(equal (cddr (top (cddr (p-temp-stk p0)))) nil)
(listp (untag (top (cddr (p-temp-stk p0)))))

(equal (cdr (untag (top (cddr (p-temp-stk p0))))) 0)

(definedp (car (untag (top (cddr (p-temp-stk p0))))) (p-data-segment p0))
(nat-list-piton (array (car (untag (top (cddr (p-temp-stk p0)))))

(p-data-segment po0))
(p-word-size p0))

;; the second thing on the stack is the length of the state

(equal (car (top (cdr (p-temp-stk p0)))) ’nat)
(equal (cddr (top (cdr (p-temp-stk p0)))) nil)

(equal (length (array (car (untag (top (cddr (p-temp-stk p0)))))

(p-data-segment p0)))
(untag (top (cdr (p-temp-stk p0)))))

(lessp (untag (top (cdr (p-temp-stk p0)))) (exp 2 (p-word-size p0)))

(not (zerop (untag (top (cdr (p-temp-stk p0))))))

;; the top thing on the stack is a pointer to an array
;; that is the same size as the state array but distinct
(equal (car (top (p-temp-stk p0))) ’addr)
(equal (cddr (top (p-temp-stk p0))) nil)
(listp (untag (top (p-temp-stk p0))))
(equal (cdr (untag (top (p-temp-stk p0)))) 0)

(definedp (car (untag (top (p-temp-stk p0)))) (p-data-segment po))
)]

(array-pitonp (array (car (untag (top (p-temp-stk p0))
(p-data-segment po))
(untag (top (cdr (p-temp-stk p0)))))
(not (equal (car (untag (top (p-temp-stk p0))))
(car (untag (top (cddr (p-temp-stk p0)))))))

;; at least one pile has one match
(not (all-zero-bitvp
(untag-array
(array (car (untag (top (cddr (p-temp-stk p0)))))
(p-data-segment p0)))))))

i; cm-prog is the Nim program. It may be disappointing to see that it is

;; a function of one argument rather than a constant, as programs ought to
i; be. This is because we wish to use bit vectors in our program, and

i; because of a weakness in the Piton design there is no way to push

i3 a bit-vector on the stack without knowing the word-size.
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;; subprogram that uses the word-size is push-1-vector, which is a
;; one-line program that pushes a one-vector onto the stack.
(defn cm-prog (word-size)

(list

(xor-bvs-program)

(push-1-vector-program word-size)

(nat-to-bv-program)

(bv-to-nat-program)

(number-with-at-least-program)

(highest-bit-program)

(match-and-xor-program)

(nat-to-bv-list-program)

(bv-to-nat-list-program)

(max-nat-program)

(replace-value-program)

(smart-move-program)

(delay-program)

(computer-move-program)))

(disable computer-move-program)
(disable *1*computer-move-program)

prove-lemma car-xor-bvs-program (rewrite
3
(equal (car (xor-bvs-program)) ’xor-bvs)
((enable xor-bvs-program)))

(prove-lemma car-push-1-vector-program (rewrite)
(equal (car (push-1-vector-program word-size))
’push-1-vector)
((enable push-1-vector-program)))

prove-lemma car-nat-to-bv-program (rewrite
3
(equal (car (nat-to-bv-program)) 'nat-to-bv)
((enable nat-to-bv-program)))

prove-lemma car-bv-to-nat-program (rewrite
3
(equal (car (bv-to-nat-program)) ’bv-to-nat)
((enable bv-to-nat-program)))

(prove-lemma car-number-with-at-least-program (rewrite)
(equal (car (number-with-at-least-program))
‘number-with-at-least)
((enable number-with-at-least-program)))

prove-lemma car-highest-bit-program (rewrite

1 highest-bi g i
(equal (car (highest-bit-program)) ’highest-bit)
((enable highest-bit-program)))

(prove-lemma car-match-and-xor-program (rewrite)
(equal (car (match-and-xor-program)) 'match-and-xor)
((enable match-and-xor-program)))

(prove-lemma car-nat-to-bv-list-program (rewrite)
(equal (car (nat-to-bv-list-program))
‘nat-to-bv-list)
((enable nat-to-bv-list-program)))

(prove-lemma car-bv-to-nat-list-program (rewrite)
(equal (car (bv-to-nat-list-program)) ’'bv-to-nat-list)
((enable bv-to-nat-list-program)))

prove-lemma car-max-nat-program (rewrite
3
(equal (car (max-nat-program)) *max-nat)
((enable max-nat-program)))

prove-lemma car-replace-value-program (rewrite
8
(equal (car (replace-value-program)) 'replace-value)
((enable replace-value-program)))

prove-lemma car-smart-move-program (rewrite

1 g i
(equal (car (smart-move-program)) ’smart-move)
((enable smart-move-program)))

(prove-lemma car-delay-program (rewrite)
(equal (car (delay-program)) ‘delay))

disable delay-program
[

prove-lemma car-computer-move-program (rewrite
3
(equal (car (computer-move-program)) ’computer-move)
((enable computer-move-program)))

(prove-lemma equal-untag-array-tag-array-x-x (rewrite)
(equal
(equal (untag-array (tag-array | x)) x)
(properp x)))
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(prove-lemma properp-replace-value (rewrite)
(implies
(properp x)
(properp (replace-value x y 2))))

(prove-lemma properp-bv-to-nat-list (rewrite)
(properp (bv-to-nat-list x)))

(prove-lemma properp-nat-to-bv-list (rewrite)
(properp (nat-to-bv-list x ws)))

(prove-lemma properp-computer-move (rewrite)
(implies
(properp x)
(properp (computer-move x s)))
((disable-theory t)
(enable-theory ground-zero)
(enable properp-replace-value properp-bv-to-nat-list
smart-move computer-move)))

(prove-lemma properp-untag-array (rewrite)
(properp (untag-array x)))

(prove-lemma properp-tag-array (rewrite)
(properp (tag-array I x)))

(prove-lemma computer-move-implemented (rewrite)
(implies
(and
(equal p0 (p-state

pe
ctrl-stk
(cons wa (cons np (cons s temp-stk)))
(append (cm-prog word-size) prog-segment)
data-segment
max-ctrl-stk-size
max-temp-stk-size
word-size
‘run))
(equal (p-current-instruction p0)
'(call computer-move))
(computer-move-implemented-input-conditionp p0))
(let ((result
(p PO (computer-move-clock
(untag-array (array (car (untag s)) data-segment))
word-size))))
(and
(equal (p-pe result) (addl-addr pc))
(equal (p-psw result) 'run)
(equal (untag-array
(array (car (untag s)) (p-data-segment result)))
(computer-move
(untag-array (array (car (untag s)) data-segment))
word-size)))))
((disable computer-move computer-move-clock
p-current-instruction
lessp-max-list max-list
all-zero-bitvp sum member-of-natlist-means
lessp-subl-x-y-crock all-zero-bitvp-max-list
max-list-not-too-big)))

#—
A proof of some constant bounds on the computer-move-clock function
was developed that makes slight use of the proof-checker enhancement of
NQTHM. For completeness, here is the final theorem of that

digression, with no proof included so that this script is executable

in NQTHM without the enhancement

(implies (and (nat-listp state ws)
(lessp 0 ws)
(not (lessp 32 ws))
(lessp 1 (length state))
(not (lessp 6 (length state))))
(and (lessp 10000
(computer-move-clock state ws))
(lessp (computer-move-clock state ws)
20000)))

—#

(prove-lemma nim-piton-space-reasonable (rewrite)
(not (lessp 1000 (plus (nim-piton-ctrl-stk-requirement)
(nim-piton-temp-stk-requirement)))))

;; bind up defns for presentation purposes
(defn good-non-empty-nim-statep (state ws)
(and
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(nat-listp state ws)
(not (all-zero-bitvp state))))

(prove-lemma valid-movep-computer-move-better (rewrite)
(implies
(good-non-empty-nim-statep state ws)
(valid-movep state (computer-move state ws)))
((use (valid-movep-computer-move (x state)))
(disable-theory t)
(enable good-non-empty-nim-statep)
(enable-theory ground-zero)))

(prove-lemma computer-move-works-better (rewrite)
(implies
(and
(good-non-empty-nim-statep state ws)
(wsp state t))
(not (wsp (computer-move state ws) t)))
((use (computer-move-works))
(disable-theory t)
(enable good-non-empty-nim-statep)
(enable-theory ground-zero)))

; An initial p-state to run the program on a particular NIM state, then

i5; enter an infinite loop.

(defn example2-computer-move-p-state ()

(p-state ’(pc (main . 0))

‘((nil (pe (main - 0))))

nil

(cons ’(main nil nil

(push-constant (addr (arr . 0)))
(push-constant (nat 4))
(push-constant (addr (arr5 . 0)))
(call computer-move)
(push-constant (nat 1))
(push-constant (addr (flag . 0)))
(deposit)
(al loop () (jump laop))
(ret))

(cm-prog 32))

‘((arr (nat 15) (nat 4) (nat 7) (nat 1))
(arr5 (nat 3) (nat 4) (nat 2) (nat 1))
(flag (nat 0)))

30

10
32
‘run))

i3; Extra event that shows that the program is compilable and loadable
onto FM9001, and that the correctness lemma for the Piton interpreter
i35 therefore holds. (ref: J's e-mail of 10 April 92.)

(prove-lemma cm-prog-fm9001-loadable nil
(let ((p0 (example2-computer-move-p-state)))
(and (proper-p-statep p0)
(p-loadablep p0 0)
(equal (p-word-size p0) 32)))

((enable XOR-BVS-PROGRAM PUSH-1-VECTOR-PROGRAM NAT-TO-BV-PROGRAM
BV-TO-NAT-PROGRAM NUMBER-WITH-AT-LEAST-PROGRAM HIGHEST-BIT-PROGRAM
MATCH-AND-XOR-PROGRAM NAT-TO-BV-LIST-PROGRAM BV-TO-NAT-LIST-PROGRAM
MAX-NAT-PROGRAM REPLACE-VALUE-PROGRAM SMART-MOVE-PROGRAM
DELAY-PROGRAM COI\,’IPUTER-MOVE-PROGRAM)))
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