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Abstract

A compiler for a subset of the Nqthm logic and a mechanically checked proof of its
correctness is described. The Ngthm logic defines an applicative programming lan-
guage very similar to McCarthy’s pure Lisp[20]. The compiler compiles programs
in the Nqthm logic into the Piton assembly level language [23]. The correctness
of the compiler is proven by showing that the result of executing the Piton code
is the same as produced by the Nqthm interpreter V&C$. The Ngthm logic defines
several different abstract data types, or shells, as they are called in Nqthm. The
user can also define additional shells. The definition of a shell includes the def-
inition of a constructor function that returns new objects with the type of that
shell. These objects can become garbage, so the run-time system of the compiler
includes a garbage collector. The proof of the correctness of the compiler has not
been entirely mechanically checked. A plan for completing the proof is described.
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Chapter 1

Introduction

This dissertation describes a compiler for a subset of the Boyer-Moore logic, a
formal statement of its correctness and the mechanically checked proof of that
statement. The Boyer-Moore logic (hereafter referred to simply as the Logic) de-
fines an applicative programming language similar to pure Lisp. The compiler
produces code in the high-level assembly language Piton [23]. The proof has been
broken down into steps in anticipation of its eventual extension to handle all of
the Logic. The compiler for the full Logic is described and how the mechanically
checked proof for the prototype can be extended is explained.

The Logic includes functions to construct new objects of various “types”; for
instance, CONS. This requires an implementation to allocate storage dynamically
and makes a garbage collector highly desirable.

The goal of this work is an implementation of a programming language that
is shown to be correct via a machine-checked proof. Since the assembly language
Piton, which is the output language of the compiler, has an assembler and linker
that have been proven correct, and the gate-level description of FM8502, the ma-
chine that Piton is implemented on, has also been proven correct, we have a great
deal of assurance that programs compiled by the compiler will be executed cor-
rectly. Moreover, the programming language is not a toy. The implementation has
a substantial run-time support system, including dynamic memory allocation and
automatic recovery of unused memory.

1.1 Motivation

More and more, computer systems are being used to control systems whose failure
or unexpected behavior would be catastrophic, such as nuclear power plants and
airplanes. These computer systems must behave correctly in order to minimize the
chances of such a catastrophe. The correct behavior of a computer system depends
on the correctness of the programs as well as the correct implementation of the
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programming language in which the programs are written.

A correct implementation of a programming language must faithfully preserve
the semantics of the programming language. Such an implementation typically
includes a compiler, some run-time support routines for the compiler, an assembler,
a linker, a loader, and some hardware. A correct implementation requires that all
of these components function properly.

The most rigorous method of assuring that a program meets its specification is
to produce a formal proof that it does and to have the proof checked by a machine.
But even such assurance is of questionable value if similar rigor has not been
applied to the implementation of the source programming language. An incorrect
implementation could cause a program to behave differently from its specification.
Ideally, verified programs should be run by verified implementations.

One might wonder how the compiler fits into the program development process.
Suppose a programmer has written a program, P, in the Ngthm Logic and that
it is desired to evaluate P on some concrete data, D. One way this can be done
is to submit P and D to the compiler described here; the compiler will produce
a Piton core image. That “initial” Piton core image can be executed via the
Piton interpreter to produce a “final” Piton core image. Then, using an algorithm
described in Chapter 4, a Nqthm object (e.g., a list) can be abstracted from the
final Piton core image. That object is allegedly the value of the Nqgthm program P
on the data D.

The correctness theorem for the compiler (which is described in Chapter 4) says
that under certain conditions the abstracted object is indeed the value of P on D.
The conditions can be broken up into three categories. First, P on D must terminate
(that is the Nqthm interpreter V&C$ must return non-F). Second, P and D must be
syntactically well-formed. Finally the Piton machine must have enough resources
(stack and memory space) to correctly execute the program. All three of these
things potentially can be proven about a particular program and data using the
Ngthm theorem prover. Proving that the program terminates and is syntactically
well-formed are relatively straightforward tasks. Unfortunately, proving that a
program can be executed by Piton within a fixed set of resources requires much
knowledge about the implementation.

At first glance, it seems unusual that the correctness of the compiler depends on
the existence of sufficient resources in the target machine. The semantics (whether
formally defined or not) of most programming languages allow one to determine
the result of some computation. The semantics do not take into account resource
limitations—the semantics of a program does not depend the amount of memory in
the underlying machine. Certainly the semantics of the logic (as defined by V&C$)
do not depend on any resource assumptions. However all programming language
implementations have only finite resources. Many implementations will either com-
pute the result of a program or report an error if there are not enough resources to
do the computation. The compiler for the Logic uses a different approach: it does
not check if resource errors occur. Rather, provided there are enough resources,
the result of running the Piton machine on a Piton state produced by the compiler
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is correct. This allows the implementation to blindly push arguments on the stack,
allocate memory in the heap, etc. without ever checking whether this will cause an
error. This results in a somewhat smaller implementation and the code produced
runs faster, but there is a price. The user must ensure that there are sufficient
resources for the computation.

The work described here includes a formal definition of what is meant by ”suf-
ficient resources” for a given P and D. This definition necessarily involves imple-
mentation details, e.g., how much stack space is used by the compiled code for a
function call. The third set of hypotheses on our correctness result are phrased in
terms of these concepts. As previously noted, it is thus possible, in principle, to use
the theorem prover to establish that a given amount of resources are sufficient for
a given P and D. But we do not give the programmer any assistance in proving this
last set of hypotheses. It is conceivable that tools could be developed that would
provide assistance with this task. It seems reasonable to believe that a tool could
be constructed that could take a program in the Logic and produce formulae in the
Logic, that if proven, could ensure that resource errors do not occur when executing
the Piton code output by the compiler. This hypothetical tool could hide some of
the details of the Piton implementation from the programmer. This research does
not address the task of proving that a program does not cause resource errors.

The difficulty of doing the resource analysis is unclear. It would be nice if
the amount of resources required could be computed by a simple function of the
actual arguments to the program. For instance, to compute (APPEND X Y), the
amount of heap space required is proportional to (LENGTH X). However for more
complex programs computing the amount of resources required would likely be
quite difficult. Analyzing the resource requirements of programs in the Logic is
in principle no different from analyzing the resource requirements of programs in
other languages. Other research in this area can be used to help with the resource
analysis required by the correctness theorem.

1.2 Achievements
Among the significant achievements of this project are the following:

1. A mechanically verified implementation for a subset of the Logic has been
produced. This subset includes variables, Boolean and list constants and
(possibly recursive) function application. The primitive functions supported
are: CAR, CDR, CONS, FALSE, FALSEP, IF, LISTP, NLISTP, TRUE, and TRUEP.
User-defined functions are supported. Most of the problems raised in imple-
menting the entire Logic, or indeed, any conventional applicative language
are solved in the current implementation, because the implemented subset
includes CONS (and thus requires dynamic storage allocation), function ap-
plication, and several data types. The mechanically verified implementation
lacks a garbage collector.
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2. An extension to the above implementation — and an extension of its proof
— to add a reference count garbage collector and additional data types,
including user-defined ones is described.

3. Neither the source language of the compiler — the Logic — nor the target
language of the compiler — Piton — have been changed to support a proof
of correctness. Some proofs of compilers have used languages designed to
make such proofs easier. The Logic is a small language, but it is hardly a
toy language. It is very similar to a small but useful subset of Common Lisp
[15]. Since Piton has been implemented on an actual machine, the compiler
proof had to deal with the finite resources of that machine.

4. The abstract data-types of the Logic (e.g. CONS) are different from the con-
crete data-type of Piton (a large array). The compiler is proven to implement
correctly these abstract data-types in Piton memory.

5. The run-time system, which includes dynamic storage allocation, has a me-
chanically checked proof of correctness. A proof of run-time system that
includes a reference count garbage collector is in progress. There have been
proofs of garbage collection algorithms in the past (e.g., [13] and [27]) but no
proofs of actual code that include a garbage collector.

6. This work provides a solid base for a verified implementation of an important
subset of Common Lisp. Common Lisp is a relatively widely used “real”
programming language. There are many programs written in Common Lisp,
in particular, the Boyer-Moore theorem prover. It would be quite useful to
have a very reliable implementation of the Boyer-Moore theorem prover.

1.3 Related Work

The first attempt to prove the correctness of a compiler using an interpreter equiv-
alence proof seems to be the work of McCarthy and Painter [21]. They prove by
hand the correctness of a compiler for a simple expression language. Burstall [7]
develops a theory for proving properties of programs with structural induction.
He uses these techniques to prove the same expression compiler as McCarthy and
Painter. Milner and Weyhrauch [22] give a machine checked proof of an expression
compiler similar to that of McCarthy and Painter. This is part of a larger compiler
that includes assignment, conditional, and while statements. Cartwright [8] and
Aubin [1] also prove versions of the McCarthy-Painter compiler.

Boyer and Moore [4] prove mechanically the correctness of a compiler similar
to that of McCarthy and Painter. Their target machine has an unbounded stack,
infinite precision, an unbounded number of registers and the operations of the
target machine are the same as the expression language. Their compiler implements
a simple constant folding optimization.
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London [18] proves by hand the correctness of two versions of a compiler for a
subset of Lisp. The second version contains more optimizations than the first.

Morris [24] uses algebraic semantics to specify and partially prove by hand a
simple compiler for an Algol like language. Cohn [11] use Edinburgh LCF to prove
the correctness of a simple compiling algorithm.

Chirica and Martin [9] use axiomatic semantics to specify and prove a simple
compiler. Lynn [19] uses Hoare-style axiomatic semantics to specify source and
target languages of a slightly modified version of London’s compiler. He also uses
the same technique to prove a slightly modified version of McCarthy and Painter’s
compiler. The former proof was done mostly by hand, the latter with machine
assistance.

Levy [17] gives an approach to proving the correctness of compilers by using
interpretations between theories.

There have been many proofs of garbage collection algorithms. Topor [29] gives
a proof of the Schorr-Waite list marking algorithm. Dijkstra et. al. [13] gives a
proof of an algorithm that allows the garbage collector and the user’s program
to run concurrently. Russinoff [27] gives a machine checked proof of an improved
version of that algorithm. Baker [2] gives an algorithm that allows the garbage
collector to run in real-time. He also gives an informal proof of the correctness of
the algorithm.

There have been three previous large compiler verification efforts. Polak [26]
verified a compiler for a substantial subset of Pascal. The semantics of his source
language and target language were specified using denotational semantics. Polak
verified the lexical analyzer, parser, type checker, and code generator. The target
machine of his compiler is a stack machine. However, the target machine does
not impose resource limitations on the compiler or the correctness theorem. The
memory of the target machine is infinite and each memory location can hold ar-
bitrarily large integers. He does handle the Pascal predefined procedure NEW to
allocate memory dynamically. However, his target machine has direct support for
this feature in the form of an instruction that does the allocation. This is not a
feature of most microprocessors.

Moore [23] verifies that an implementation of the language Piton is correctly
implemented on the FM8502 microprocessor. The implementation consists of a
compiler, an assembler and a linker. Piton is a stack-based, high-level assembly
language (see Chapter 2 for more details about the Piton language). The data-types
of Piton were designed to fit into one FM8502 word. Piton also provides global
arrays that are implemented in the memory of FM8502, which is a large array.
Piton provides two stacks which are also implemented in the FM8502 memory. One
of the most difficult parts of the Piton proof is verifying the correct implementation
of the stacks on FM8502.

Young [30] compiles a subset of Gypsy 2.05 [14], called Micro-Gypsy, into Piton.
Micro-Gypsy is a von Neumann language similar to a subset of Pascal. The prin-
cipal difference between Young’s work and this one are:
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1. Micro-Gypsy is a substantially smaller language than the Logic. There are
only eight statements in Micro-Gypsy.

2. The data types of Micro-Gypsy are almost the same as the data types of
the target language Piton. Micro-Gypsy allows the following simple types:
integers (which have the same range as the target machine), Booleans and
characters. These are directly representable in Piton. In addition Micro-
Gypsy allows arrays containing elements of one of the simple types.

Subsequent to the Piton and Micro-Gypsy effort, Curzon [12] has proved the
correctness of an assembly-level language implementation. However the target
machine is an idealization of a real machine with infinite memory.

Oliva and Wand [25] give a denotational specification for a restricted subset
of Scheme called PreScheme and derive a compiling algorithm for PreScheme.
The output of the compiler is a byte-code for an abstract machine. The byte-
code machine is implemented on a MC68020 (this last step has not been verified).
PreScheme does not appear to do any dynamic memory allocation and thus the
implementation does not have a garbage collector.

1.4 Project History

This project started in the spring of 1989 during a class taught by J Moore. Work
began in earnest in October 1989. By December 1989, the proof of the correctness
of the first phase of the compiler was complete. The first phase of the compiler is
designed to eliminate common sub-expressions. The current version of the compiler
does not eliminate common sub-expressions; however, the proof is general enough
to be extended easily if a routine to eliminate common sub-expressions is added.
A routine to eliminate common sub-expressions needs to maintain a syntactic in-
variant in order to be added to the compiler and have the majority of the proof
remain unchanged.

The second part of the compiler represents the abstract objects of the Logic
in the concrete memory of Piton. The proof of the correctness of this part was
the most difficult part of the proof. The proof of a prototype without a garbage
collector was completed in December 1991.

The final part of the compiler translates the programs into Piton. The proof of
this (without the garbage collector) was completed in January 1992.

After completion of the prototype, the garbage collector was added. The proof
of the first part of the compiler did not need to be changed. The proof of the
second part is almost complete and continues.

The current version of the compiler only has 10 of the 61 predefined functions
of the Boyer-Moore logic implemented. In addition, user-defined shells need to be
added. Adding these predefined functions is straight-forward — most can be com-
piled as user-defined functions. User-defined shells can be handled the same as the
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predefined shells. Only numbers and literal atoms are treated specially. Extending
the compiler to handle all of the Logic is discussed more fully in section 7.1.

1.5 The Boyer-Moore Logic

The source language of the compiler is a subset of the Boyer-Moore Logic which
has been discussed in several places, most notably in [6] where it is completely and
precisely described. Readers not familiar with the Logic should refer to [6]. As in
Pure Lisp, all the partial recursive functions can be defined in the Logic.

1.6 Outline of the Presentation

This dissertation describes a simple compiler for the Boyer-Moore logic and a proof
that the compiler does its job correctly. Unless indicated by a footnote, any for-
mula displayed in any of the chapters of this dissertation as a theorem has been
proven and the proof has been mechanically checked. There are only four so foot-
noted formulas. Chapter 2 describes the target language of the compiler, Piton.
Chapter 3 gives an informal description of the implementation of the Logic. Chap-
ter 4 explains the compiler’s correctness theorem. This chapter also describes the
restrictions on programs that can be compiled. Chapter 5 gives a formal descrip-
tion of the compiler in the Boyer-Moore logic. Some of the interesting parts of the
proof of the correctness theorem are described in Chapter 6. Finally, Chapter 7
describes how this work can be extended.
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Chapter 2

Piton

Piton is a high-level assembly language developed by J Moore [23]. Piton was
designed for verified applications and as the target for verified compilers for higher-
level languages.

An unusual aspect of Piton is that it provides execute-only programs. It is
impossible for a correct Piton program to overwrite itself. The subroutine call and
return mechanism is more sophisticated than that of most assembly languages.
Subroutines have named formal parameters, and parameter are passed to subrou-
tines on a stack. There are seven abstract data types in Piton: integers, natural
numbers, bit vectors, Booleans, data addresses, program addresses (labels), and
subroutine names. The compiler described here does not use all of the data types,
e.g., it does not use bit vectors and subroutine names. Piton is formally specified
by an interpreter (P) in the Logic.

The rest of this chapter is an informal description of Piton, along with a listing
of the Piton definition. It is taken with permission and minor editing from the
Piton report by J Moore [23].

2.1 An Informal Sketch of Piton

Among the features provided by Piton are:
e execute-only program space

e named read/write global data spaces randomly accessed as one-dimensional
arrays

e recursive subroutine call and return
e provision of named formal parameters and stack-based parameter passing

e provision of named temporary variables allocated and initialized to constants
on call
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e a user-visible temporary stack
e seven abstract data types:

— integers
— natural numbers

bit vectors

— Booleans

data addresses

program addresses (labels)

— subroutine names
e stack-based instructions for manipulating the various abstract objects
e standard flow-of-control instructions

e instructions for determining resource limitations

2.1.1 An Example Piton Program

We begin our presentation of Piton with a simple example. Below we exhibit a
Piton program named DEMO. The program is a list constant in the computational
logic of Boyer and Moore[6] and is displayed in the traditional Lisp-like notation.
Comments are written in the right-hand column, bracketed by the comment delim-
iters semi-colon and end-of-line. The DEMO program has three formal parameters,
X, Y, and Z, and two temporary variables, 4 and I.

(DEMO (X Y Z)
((a (INT -1))

(I (NAT 2)))
(PUSH-LOCAL Y)
(PUSH-CONSTANT (NAT 4))
(ADD-NAT)

(RET))

Formals X, Y, and Z
Temporary A, initial value -1
Temporary I, initial value 2
Push the value of Y

Push the natural number 4
Add the top two items
Return

When DEMO is called, the topmost three items from Piton’s temporary stack are
popped off and used as the actual values of the formals X, Y, and Z. In addition, A
is initialized to the integer —1, and I is initialized to the natural number 2. The
values of all five of these “local” variables are restored when DEMO returns to its
caller.

The body of DEMO contains four Piton instructions. The first, (PUSH-LOCAL Y),
pushes the value of the local variable Y onto the temporary stack. The second,
(PUSH-CONSTANT (NAT 4)), pushes the natural number 4 onto the temporary
stack. The third, (ADD-NAT), pops the topmost two items off the temporary stack,
adds them together (expecting both to be naturals), and pushes the result onto the
temporary stack. The last instruction returns control to the calling environment.
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The sum just computed is on top of the stack and is considered the result. In
summary, this silly program adds 4 to the value of its second argument and ignores
the other arguments. Its two temporary variables are not used.

Now consider the following sequence of Piton instructions.

(PUSH-CONSTANT (ADDR (DELTA1 . 25)))
(PUSH-CONSTANT (NAT 17))
(PUSH-CONSTANT (BOOL T))

(CALL DEMO)

This sequence pushes three items onto the stack and then calls DEMO. The CALL
pops the three objects off the stack and uses them as the actuals. DEMO’s first
formal, X, is bound to the data address (DELTA1 . 25) — the address of the 25"
location of the global array named DELTA1. DEMO’s second argument, Y, is bound
to the natural number 17. Its third argument, Z, is bound to the Boolean value T.
The execution of DEMO pushes 21 (the sum of 17 and 4) and returns. Thus, the net
effect of the four instructions above — barring a variety of run-time errors such as
stack overflow — is to push a 21 onto the stack.

2.1.2 Piton States

The Piton machine is a conventional von Neumann state transition machine. Rough-
ly speaking, a particular instruction is singled out as the “current instruction” in
any Piton state. When “executed”, each instruction changes the state in some
way, including changing the identity of the current instruction. The Piton machine
operates on an initial state by iteratively executing the current instruction until
some termination condition is met.

A Piton state, or p-state, is a 9-tuple with the following components:

e a program counter, indicating which instruction in which subroutine is the
next to be executed;

e a control stack, recording the hierarchy of subroutine invocations leading to
the current state;

e a temporary stack, containing intermediate results as well as the arguments
and results of subroutine calls;

e a program segment, defining a system of Piton programs or subroutines;

e a data segment, defining a collection of disjoint named indexed data spaces
(i.e., global arrays);

e a mazimum control stack size;
e a mazimum temporary stack size;

e a word size, which governs the size of numeric constants and bit vectors; and
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e a program status word (psw).

The formalization of this concept is embodied in the function P-STATE. P-STATE
takes nine arguments and returns a p-state with the appropriate nine components.
Thus, (P-STATE PC CSTK TSTK PROGS DATA MAXC MAXT W PSW) is a p-state.

We put a variety of additional restrictions on the components of a p-state.
For example, we require that every instruction in every program be syntactically
well formed and mention no variable other than the locals of the containing pro-
gram or the globals declared in the data segment. We also require that every
data object occurring in the state be compatible with the state, e.g., every object
tagged “address” must be a legal address in that state, etc. We call such p-states
proper p-states. The formalization of this concept is embodied in the function
PROPER-P-STATEP.

The program counter of a p-state names one of the programs in the program
segment, which we call the current program, and gives the position of one of the
instructions in that program’s body, which we call the current instruction. We say
control is in the current program and at the current instruction.

The control stack of the p-state is a stack of frames, the topmost frame describ-
ing the currently active subroutine invocation and the successive frames describing
the hierarchy of suspended invocations. The topmost frame is the only frame
directly accessible to Piton instructions. Each frame contains two fields. One con-
tains the bindings of the local variables of the invoked program. The other contains
the return program counter, which is the program counter to which control is to
return when the subroutine exits.

When a subroutine is called or invoked, a new frame is pushed onto the control
stack. The local variables of the called subroutine are bound to the appropriate
values, and the return program counter is saved. Then control is transferred to
the first instruction in the body of the subroutine. All references to local variables
in the instructions of the called subroutine refer implicitly to the current bindings.
When the subroutine returns to its caller, the top frame of the control stack is
popped off, thus restoring the current bindings of the caller extant at the time of
call. In short, the values assigned to the local variables of a subroutine are local to
a particular invocation and cannot be accessed or changed by any other subroutine
or recursive invocation. We define “local variables” and what we mean by the
“appropriate values” when we discuss Piton programs.

2.1.3 Type Checking

Piton programs manipulate seven types of data: integers, natural numbers, Bool-
eans, fixed length bit vectors, data addresses, program addresses, and subroutine
names.

All objects are “first class” in the sense that they can be passed around and
stored into arbitrary variable, stack, and data locations. There is no type checking
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tn the Piton syntaz. A variable can hold an integer value now and a Boolean value
later, for example.

Each type comes with a set of Piton instructions designed to manipulate objects
of that type. For example, the ADD-NAT instruction adds two naturals together to
produce a natural; the ADD-ADDR instruction increments a data address by a natural
to produce a new data address. The effects of most instructions are defined only
when the operands are of the expected type. For example, the formal definition of
Piton does not specify what the ADD-NAT instruction does if given a non-natural.
However, our implementation of Piton has no run-time type checking facilities.
The programmer must know what he is doing.

Such cavalier run-time treatment of types — i.e., no syntactic type checking
and no run-time type checking — would normally be an invitation to disaster. In
most programming languages the definition of the language is embedded in only
two mechanical devices: the compiler (where syntactic checks are made) and the
run-time system (where semantic checks are made). If some feature of the language
(e.g., correct use of the type system) is not checked by either of these two devices,
then the programmer had better read the language manual and his program very
carefully because he bears the entire responsibility.

But the Piton programmer is relieved of this burden by an unconventional third
mechanical device. In addition to a compiler and a run-time system, Piton has a
mechanized formal semantics. This device — actually the Boyer-Moore theorem
prover initialized with the formal definition of Piton — completely embodies the
formal semantics of Piton. If a programmer wishes to establish that he has not
violated Piton’s type restrictions, he can undertake to prove it mechanically.

As programmers, we find this a marvelous state of affairs. We are relieved of
the burden of syntactic restrictions in the language — objects can be slung around
any way we please. We are relieved of the inefficiency of checking types at run-time.
But we don’t have to worry about having made mistakes. The price, of course, is
that we must be willing to prove our programs correct.

2.1.4 Data Types

As noted, Piton supports seven primitive data types. The syntax of Piton requires
that all data objects be tagged by their type. Thus, (INT 5) is the way we write the
integer 5, while (NAT 5) is the way we write the natural number 5. The question
“are they the same?” cannot arise in Piton because no operation compares them.

Below we characterize all of the legal instances of each type. However, this must
be done with respect to a given p-state, since the p-state determines the resource
limitations, legal addresses, etc. We use w as the word size of the p-state implicit
in our discussion. In the examples of this section we assume the word size is 8.1
The formalization of the concept of “legal Piton data object” is embodied in the
function P-OBJECTP.

1In our FM8502 implementation of Piton we fix the word size at 32.
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Integers

Piton provides the integers, 4, in the range —2%~! < i < 2¥~!. We say such integers
are representable in the given p-state. Observe that there is one more representable
negative integer than representable positive integer. Integers are written down in
the form (INT i), where i is an optionally signed integer in decimal notation. For
example, (INT -4) and (INT 3) are Piton integers. Piton provides instructions
for adding, subtracting, and comparing integers. It is also possible to convert
non-negative integers into naturals.

Natural Numbers

Piton provides the natural numbers, n, in the range 0 < n < 2%. We say such
naturals are representable in the given p-state. Naturals are written down in the
form (NAT n), where n is an unsigned integer in decimal notation. For example,
(NAT 0) and (NAT 7) are Piton naturals. Piton provides instructions for adding,
subtracting, doubling, halving, and comparing naturals. Naturals also play a role in
those instructions that do address manipulation, random access into the temporary
stack, and some control functions.

Booleans

There are two Boolean objects, called T and F. They are written as (BOOL T)
and (BOOL F).? Piton provides the logical operations of conjunction, disjunction,
negation and equivalence. Several Piton instructions generate Boolean objects
(e.g., the “less than” operators for integers and naturals).

Bit Vectors

A Piton bit vector is an array of 1’s and 0’s as long as the word size. Bit vectors are
written in the form (BITV v) where v is a list of length w, enclosed in parentheses,
containing only 1’s and 0’s. For example (BITV (1 1 1 1 0 0 0 0)) is a bit
vector when w is 8. Operations on bit vectors include componentwise conjunction,
disjunction, negation, exclusive-or, left and right shift, and equivalence.

Data Addresses

A Piton data address is a pair consisting of a name and a natural number. To be
legal in a given p-state, the name must be the name of some data area in the data
segment of the state, and the number must be less than the length of the array asso-
ciated with the named data area. Data addresses are written (ADDR (name . mn)).
Such an address refers to the n®? element of the array associated with name, where

2Note to those readers familiar with our logic: The T and F used in the representation of the
Piton Booleans are not the (TRUE) and (FALSE) of the logic but the literal atoms ’T and ’F of
the logic.
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enumeration is 0 based, starting at the left hand end of the array. For example,
if the data segment of the state contains a data area named DELTA1 that has an
associated array of length 128, then (ADDR (DELTA1 . 122)) is a data address.
The operations on data addresses include incrementing, decrementing, and com-
paring addresses, fetching the object at an address, and depositing an object at an
address.

Program Addresses

A Piton program address is a pair consisting of a name and a natural number. To
be legal in a given p-state, the name must be the name of some program in the
program segment of the state and the number must be less than the length of the
body of the named program. Program addresses are written (PC (name . n)).
Such an address refers to the n®! instruction in the body of the program named
name, where enumeration is 0 based, starting with the first instruction in the body.
For example, if the program segment of the state contains a program named SETUP
that has 200 instructions in its body, then (PC (SETUP . 27)) is a legal program
address. Program addresses can be compared, and control can be transferred
to (the instruction at) a program address. Some instructions generate program
addresses. But it is impossible to deposit anything at a program address (just as
it is impossible to transfer control to a data address).

The program counter component of a p-state is an object of this type. For
example, to start a computation at the first instruction of the program named
MAIN, the program counter in the state should be set to (PC (MAIN . 0)).

Subroutines

A Piton subroutine name is just a name. To be legal, it must be the name of some
program in the program segment. Subroutine names are written (SUBR name).
For example, if SETUP is the name of a program in the program segment, then
(SUBR SETUP) is a subroutine object in Piton. The only operation on subroutine
objects is to call them.

2.1.5 The Data Segment

The Piton data segment contains all of the global data in a p-state. The data
segment is a list of data areas. Each data area consists of a literal atom, data area
name, followed by one or more Piton objects, called the array, associated with
the name. The objects in the array are implicitly indexed from 0, starting with
the leftmost. Using data addresses, which specify a name and an index, Piton
programs can access and change the elements in an array.

We sometimes call a data area name a global variable. Some Piton instructions
expect global variables as their arguments and operate on the 0! position of the
named data area. We define the value of a global variable to be the contents of the
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0" location in its associated array. This is a pleasant convention if the data area
only has one element but tends to be confusing otherwise.
Here, for example, is a data segment:

((LEN (NAT 5))
(a4 (NAT O)
(WAT 1)
(NAT 2)
(NAT 3)
(WAT 4))
(X (INT -23)
(NAT 256)
(BOOL T)
(BITV (1 010110 0))
(ADDR (A . 3))
(PC (SETUP . 25))
(SUBR MAIN))).

This segment contains three data areas, LEN, A, and X. The LEN area has only
one element and so is naturally thought of as a global variable. Its value is the
natural number 5. The A array is of length 5 and contains the consecutive naturals
starting from 0. While A is of homogeneous type as shown, Piton programs may
write arbitrary objects into A. The third data area, X, has an associated array of
length 7. It happens that this array contains one object of every Piton type.

Let addr be the Piton data address object (ADDR (X . 1)). If we fetch from
addr we get (WAT 256). If we deposit (NAT 7) at addr the data segment becomes

((LEN (NAT 5))
(a4 (NAT O)
(WAT 1)
(WAT 2)
(NAT 3)
(WAT 4))
(X (INT -23)
(NAT 7)
(BOOL T)
(BITV (1 010110 0))
(ADDR (A . 3))
(PC (SETUP . 25))
(SUBR MAIN))).

If we increment addr by one and then fetch from addr we get (BOOL T).

The individual data areas are totally isolated from each other. Despite the fact
that addresses can be incremented and decremented, there is no way for a Piton
program to manipulate addr, which addresses the area named X, in order to obtain
an address into the area named A.

2.1.6 The Program Segment

The program segment of a p-state is a list of “program definitions”. A program def-
inition (or, interchangeably, a subroutine definition) is an object of the following
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form
(name (vg v1 ... Vp—1)
(v in) (Vn+1 in+1) (vn+k—l in+k—l))
insg
ins;
insm),
where name is the name of the program and is some literal atom; vg, ..., vp_1

are the n > 0 formal parameters of the program and are literal atoms; vy, ...,
Vn.k-1 are the k > 0 temporary variables of the program and are literal atoms;
in, ..., ip,x_1 are the initial values of the corresponding temporary variables
and are data objects in the state in which the program occurs; and insgq, ...insp
are m+1 optionally labeled Piton instructions, called the body of the program. The
body must be non-empty.

The local variables of a program are the formal parameters together with the
temporary variables. The values of the local variables of a subroutine may be ac-
cessed and changed by position as well as by name. For this purpose we enumerate
the local variables starting from 0 in the same order they are displayed above.

As noted previously, upon subroutine call the local variables of the called sub-
routine are bound to the “appropriate values” in the stack frame created for that
invocation. The n formal parameters are initialized from the temporary stack. The
topmost n elements of the temporary stacks are called the actuals for the call. They
are removed from the temporary stack and become the values of formals. The as-
sociation is in reverse order of the formals; i.e., the last formal, v _4, is bound
to the object on the top of the temporary stack at the time of the call, and vq is
bound to the object n down from the top at the time of the call. The k temporary
variables are bound to their respective initial values at the time of call.

The instructions in the body of a Piton program may be optionally labeled. A
label is a literal atom. To attach label 1ab to an instruction, ins, write

(DL lab comment ins)

where comment is any object in the logic and is totally ignored by the Piton se-
mantics and implementation. We say lab is defined in a program if the body of
the program contains (DL lab ...) as one of its members. Such a form is called
a def-label form because it defines a label. Label definitions are local to the pro-
gram in which they occur. Use of the atom LOOP, for example, as a label in some
instruction in a program refers to the (first) point in that program at which LOOP
is defined in a def-label form.

Because of the local nature of label definitions, it is not possible for one pro-
gram to jump to a label in another. A similar effect can be obtained efficiently
using the data objects of type PC. The POPJ instruction transfers control to the
program address on the top of the temporary stack — provided that address is
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in the current program.® Thus, if subroutine MASTER wants to jump to the 2279
instruction of subroutine SLAVE, it could CALL SLAVE and pass it the argument
(PC (SLAVE . 22)), and SLAVE could do a POPJ as its first instruction to branch
to the desired location.

The last instruction, inspy, must be a return or some form of unconditional
jump. It is not permitted to “fall off” the end of a Piton program.

The formalization of the concept of a syntactically well-formed Piton program
is embodied in the function PROPER-P-PROGRAMP. Part of the constraints on proper
p-states is that they contain proper Piton programs.

2.1.7 Instructions

The instructions are organized informally into groups. The language as currently
defined provides 65 instructions. We do not regard the current instruction set as
fixed in granite; we imagine Piton will continue to evolve to suit the needs of its
users.

We describe each instruction informally by explaining the syntactic form of
the instruction, the preconditions on its execution, and the effects of executing an
acceptable instance of the instruction. The instructions are listed in alphabeti-
cal order. Unless otherwise indicated, every instruction increments the program
counter by one so that the next instruction to be executed is the instruction fol-
lowing the current one in the current subroutine. All references to “the stack”
refer to the temporary stack unless otherwise specified. When we say “push” or
“pop” without mentioning a particular stack, we mean to push or pop the tem-
porary stack. The formal defintions of the corresponding functions and predicates
are given in the Piton manual[23], the interested reader is refered there.

(ADD-ADDR) Well Formedness: No additional constraints. Precondition: There is
a natural, n, on top of the stack and a data address, a, immediately below it.
The result of incrementing a by n is a legal data address. Effect: Pop twice
and then push the data address obtained by incrementing a by n.

(ADD-INT) Well Formedness: No additional constraints. Precondition: There is
an integer, i, on top of the stack and an integer, j, immediately below it.
j + % is representable. Effect: Pop twice and then push the integer j + 3.

(ADD-INT-WITH-CARRY) Well Formedness: No additional constraints. Precondi-
tion: There is an integer, %, on top of the stack; an integer, j, immediately
below it; and a Boolean, ¢, below that. Effect: Pop three times. Let k be 1
if cis T and 0 otherwise. Let sum be i+ j+ k. If sum is representable in the

3There is no way, in Piton, to transfer control into another subroutine except via the call/return
mechanism.
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word size, w, of this p-state, push the Boolean F and then the integer sum; if
sum is not representable and is negative, push the Boolean T and the integer
sum + 2%; if sum is not representable and positive, push the Boolean T and
the integer sum — 2.

(ADD-NAT) Well Formedness: No additional constraints. Precondition: There is
a natural, ¢, on top of the stack and a natural, j, immediately below it. j +<
is representable. Effect: Pop twice and then push the natural j + <.

(ADD-NAT-WITH-CARRY) Well Formedness: No additional constraints. Precondi-
tion: There is a natural, %, on top of the stack; a natural, j, immediately
below it; and a Boolean, ¢, immediately below that. Effect: Pop three times.
Let k be 1 if ¢ is T and 0 otherwise. Let sum be the natural :+j + k. If sum
is representable in the word size, w, of this p-state, push the Boolean F and
then natural sum; if sum is not representable, push the Boolean T and the
natural sum — 2%.

(ADD1-INT) Well Formedness: No additional constraints. Precondition: There is
an integer, i, on top of the stack; and 7+ 1 is representable. Effect: Pop once
and then push the integer 7 + 1.

(ADD1-NAT) Well Formedness: No additional constraints. Precondition: There is
a natural, 7, on top of the stack and 7 + 1 is representable. Effect: Pop once
and then push the natural 7 + 1.

(AND-BITV) Well Formedness: No additional constraints. Precondition: There is
a bit vector, v1, on top of the stack and a bit vector, v2, immediately below it.
Effect: Pop twice and then push the bit vector result of the componentwise
conjunction of vl and v2.

(AND-BOOL) Well Formedness: No additional constraints. Precondition: There is
a Boolean, b1, on top of the stack and a Boolean, b2, immediately below it.
Effect: Pop twice and then push the Boolean conjunction of b1 and b2.

(CALL subr) Well Formedness: subr is the name of a program in the program
segment. Precondition: Suppose that subr has n formal variables and k
temporary variables. Then the temporary stack must contain at least n
items and the control stack must have at least 2 + n + k free slots. Effect:
Transfer control to the first instruction in the body of subr after removing
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the topmost n elements from the temporary stack and constructing a new
frame on the control stack. In the new frame the formals of subr are bound
to the n elements removed from the temporary stack, in reverse order, the
temporaries of subr are bound to their declared initial values, and the return
program counter points to the instruction after the CALL.

(DEPOSIT) Well Formedness: No additional constraints. Precondition: There is a
data address, a, on top of the stack and an arbitrary object, val, immediately
below it. Effect: Pop twice and then deposit val into the location addressed
by a.

(DEPOSIT-TEMP-STK) Well Formedness: No additional constraints. Precondition:
There is a natural number, n, on top of the stack and some object, val,
immediately below it. Furthermore, n is less than the length of the stack
after popping two elements. Effect: Pop twice and then deposit val at the
nt? position in the temporary stack, where positions are enumerated from 0
starting at the bottom.

(DIV2-NAT) Well Formedness: No additional constraints. Precondition: There
is a natural, ¢, on top of the stack and room to push at least one more
item. Effect: Pop once and then push the natural floor of the quotient of
7 divided by 2 and then push the natural 2 mod 2.

(EQ) Well Formedness: No additional constraints. Precondition: The temporary
stack contains at least two items and the top two are of the same type. Effect:
Pop twice and then push the Boolean T if they are the same and the Boolean
F if they are not.

(FETCH) Well Formedness: No additional constraints. Precondition: There is a
data address, a, on top of the stack. Effect: Pop once and then push the
contents of address a.

(FETCH-TEMP-STK) Well Formedness: No additional constraints. Precondition:
There is a natural number, n, on top of the stack and n is less than the
length of the stack. Effect: Let val be the n*® element of the stack, where
elements are enumerated from 0 starting at the bottom-most element. Pop
once and then push val.
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(INT-TO-NAT) Well Formedness: No additional constraints. Precondition: There
is a non-negative integer, ¢, on top of the stack. Effect: Pop and then push
the natural .

(JUMP lab) Well Formedness: lab is a label in the containing program. Precon-
dition: None. Effect: Jump to lab.

(JUMP-CASE 1ab0 labl ... labn) Well Formedness: Each of the 1abi is a label
in the containing program. Precondition: There is a natural, 7, on top of the
stack and ¢ < n. Effect: Pop once and then jump to labs.

(JUMP-IF-TEMP-STK-EMPTY lab) Well Formedness: lab is a label in the con-
taining program. Precondition: None. Effect: Jump to lab if the temporary
stack is empty.

(JUMP-IF-TEMP-STK-FULL lab) Well Formedness: lab is a label in the contain-
ing program. Precondition: None. Effect: Jump to lab if the temporary
stack is full.

(LOCN lvar) Well Formedness: lvar is a local variable of the containing program.
Precondition: The value, n, of 1var is a natural number less than the number
of locals of the current program. Effect: Push the value of the n®* local
variable of the current program.

(LSH-BITV) Well Formedness: No additional constraints. Precondition: There is
a bit vector, v, on top of the stack. Ejffect: Pop once and then push the bit
vector result of left shifting each bit of v, bringing in a 0 on the right.

(LT-ADDR) Well Formedness: No additional constraints. Precondition: There is
a data address, al, on top of the stack and a data address, a2, immediately
below it. al and a2 address the same data area. Effect: Pop twice and then
push the Boolean T if a2 < al (i.e., the position addressed by a2 is to the
left of that addressed by al) and push the Boolean F otherwise.

(LT-INT) Well Formedness: No additional constraints. Precondition: There is an
integer, 7, on top of the stack and an integer, j, immediately below it. Effect:
Pop twice and then push the Boolean T if j < ¢ and the Boolean F otherwise.
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(LT-NAT) Well Formedness: No additional constraints. Precondition: There is a
natural, ¢, on top of the stack and a natural, j, immediately below it. Effect:
Pop twice and then push the Boolean T if j < ¢ and the Boolean F otherwise.

(MULT2-NAT) Well Formedness: No additional constraints. Precondition: There
is a natural, 7, on top of the stack and 2 % is representable. Ejffect: Pop once
and then push the natural 2 * 3.

(MULT2-NAT-WITH-CARRY-0UT) Well Formedness: No additional constraints. Pre-
condition: There is a natural, 7, on top of the stack and room to push at least
one more item. Effect: Pop once. Then, if the natural 2 * 7 is representable,
push the Boolean F and then the natural 2 x 7. Otherwise, push the Boolean
T and the natural 2 * : — 2¥, where w is the word size of this p-state.

(NEG-INT) Well Formedness: No additional constraints. Precondition: There is
an integer, ¢, on top of the stack and —z is representable. Effect: Pop once
and then push the integer —z.

(NO-0P) Well Formedness: No additional constraints. Precondition: None. Ef-
fect: Do nothing; continue execution.

(NOT-BITV) Well Formedness: No additional constraints. Precondition: There is
a bit vector, v, on top of the stack. Ejffect: Pop once and then push the bit
vector result of the componentwise logical negation of v.

(NOT-BOOL) Well Formedness: No additional constraints. Precondition: There
is a Boolean, b, on top of the stack. Ejffect: Pop once and then push the
Boolean negation of b.

(OR-BITV) Well Formedness: No additional constraints. Precondition: There is a
bit vector, v1, on top of the stack and a bit vector, v2, immediately below it.
Effect: Pop twice and then push the bit vector result of the componentwise
disjunction of vl and v2.

(OR-BOOL) Well Formedness: No additional constraints. Precondition: There is
a Boolean, bl, on top of the stack and a Boolean, b2, immediately below it.
Effect: Pop twice and then push the Boolean disjunction of bl and b2.
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(POP) Well Formedness: No additional constraints. Precondition: There is at
least one item on the stack. Ejffect: Pop and discard the top of the stack.

(POP* n) Well Formedness: n is a natural number. Note: (POP* 3) is well
formed; (POP* (NAT 3)) is not. Precondition: there are at least n items on
the stack. Effect: Pop and discard the topmost n items.

(POP-CALL) Well Formedness: No additional constraints. Precondition: A sub-
routine name, subr, is on top of the stack and, after removing that name, it
is legal to CALL subr (i.e., sufficient arguments are on the temporary stack
and the control stack has room for the new frame). Effect: Pop once and
then execute (CALL subr).

(POP-GLOBAL gvar) Well Formedness: gvar is a global variable, i.e., the name
of a data area in the data segment of the containing p-state. Precondition:
There is an object, val, on top of the stack. Effect: Pop and assign val to
the (0% position of the array associated with the) global variable gvar.

(POP-LOCAL 1lvar) Well Formedness: lvar is a local variable of the containing
program. Precondition: There is an object, val, on top of the stack. Effect:
Pop and assign val to the local variable 1var.

(POP-LOCN 1lvar) Well Formedness: lvar is a local variable of the containing
program. Precondition: The value, n, of lvar is less than the number of
local variables of the current program and there is an object, val, on top of
the stack. Effect: Pop and assign val to the n** local variable.

(POPJ) Well Formedness: No additional constraints. Precondition: There is a
program counter object, pc, on top of the stack and pc addresses the current
program. Effect: Pop once and then transfer control to pc.

(POPN) Well Formedness: No additional constraints. Precondition: There is a
natural, n, on top of the stack, and there are at least n items on the stack
below it. Effect: Pop and discard n + 1 items. Thus, to pop n items off the
stack, push n onto the stack and execute (POPN).

(PUSH-CONSTANT const) Well Formedness: const is either a legal Piton object
in the containing p-state, the atom PC, or a label in the containing program.
Precondition: There is room to push at least one item. Effect: If const is a
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Piton object, push const; if const is the atom PC, push the program counter
of the next instruction; otherwise, push the program counter corresponding
to the label const.

(PUSH-CTRL-STK-FREE-SIZE) Well Formedness: No additional constraints. Pre-
condition: There is room to push at least one item. Effect: Push the natural
number indicating how many more cells can be created on the control stack
before the maximum control stack size is exceeded.

(PUSH-GLOBAL gvar) Well Formedness: gvar is a global variable, i.e., the name
of a data area in the data segment of the containing p-state. Precondition:
There is room to push at least one item. Effect: Push the value of the global
variable gvar, i.e., the contents of position 0 in the array associated with
gvar.

(PUSH-LOCAL 1lvar) Well Formedness: lvar is a local variable of the containing
program. Precondition: There is room to push at least one item. Effect:
Push the value of the local variable 1var.

(PUSH-TEMP-STK-FREE-SIZE) Well Formedness: No additional constraints. Pre-
condition: There is room to push at least one item. Effect: Push the natural
number indicating how many more cells can be created on the temporary
stack before the maximum temporary stack size is exceeded.

(PUSH-TEMP-STK-INDEX n) Well Formedness: n is a natural number. Note: n
here must not be tagged; (PUSH-TEMP-STK-INDEX 3) is well formed and
(PUSH-TEMP-STK-INDEX (WAT 3)) is not. Precondition: n is less than the
length of the temporary stack, and there is room to push at least one item.
Effect: Push the natural number (length — n) — 1, where length is the cur-
rent length of the temporary stack. Note: We permit the temporary stack
to be accessed randomly as an array. The elements in the stack are enu-
merated from 0 starting at the bottom-most so that pushes and pops do not
change the positions of undisturbed elements. This instruction converts from
a topmost-first enumeration to our enumeration. That is, it pushes onto the
temporary stack the index of the element n removed from the top. See also
FETCH-TEMP-STK and DEPOSIT-TEMP-STK.

(PUSHJ lab) Well Formedness: lab is a label in the containing program. Precon-
dittion: There is room to push at least one item. FEffect: Push the program
counter addressing the next instruction and then jump to lab.
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(RET) Well Formedness: No additional constraints. Precondition: None. Effect:
If the control stack contains only one frame (i.e., if the current invocation is
the top-level entry into Piton) HALT the machine. Otherwise, set the program
counter to the return program counter in the topmost frame of the control
stack and pop that frame off the control stack.

(RSH-BITV) Well Formedness: No additional constraints. Precondition: There is
a bit vector, v, on top of the stack. Ejffect: Pop once and then push the bit
vector result of right shifting each bit in v, bringing in a 0 on the left.

(SET-GLOBAL gvar) Well Formedness: gvar is a global variable, i.e., the name
of a data area in the data segment of the containing p-state. Precondition:
There is an object, val, on top of the stack. Effect: Assign val to the (0*
position of the array associated with the) global variable gvar. The stack is
not popped.

(SET-LOCAL 1lvar) Well Formedness: lvar is a local variable in the containing
program. Precondition: There is an object, val, on top of the stack. Effect:
Assign val to the local variable 1var. The stack is not popped.

(SUB-ADDR) Well Formedness: No additional constraints. Precondition: There is
a natural, n, on top of the stack and a data address, @, immediately below it.
The result of decrementing a by = is a legal data address. Effect: Pop twice
and then push the data address obtained by decrementing a by n.

(SUB-INT) Well Formedness: No additional constraints. Precondition: There is
an integer, i, on top of the stack and an integer, j, immediately below it.
j — t is representable. Effect: Pop twice and then push the integer j — 7.

(SUB-INT-WITH-CARRY) Well Formedness: No additional constraints. Precondi-
tion: There is an integer, i, on top of the stack; an integer, 7, immediately
below it; and a Boolean, ¢, below that. Effect: Pop three times. Let k be
1if ¢ is T and 0 otherwise. Let diff be the integer j — (i + k). If diff is
representable in the word size, w, of this p-state, push the Boolean F and the
integer diff; if diff is not representable and is negative, push the Boolean T
and the integer diff + 2%; if diff is not representable and is positive, push
the Boolean T and the integer diff — 2¥.
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(SUB-NAT) Well Formedness: No additional constraints. Precondition: There
is a natural, ¢, on top of the stack and natural, j, immediately below it.
Furthermore, j > i. Effect: Pop twice and then push the natural j — <.

(SUB-NAT-WITH-CARRY) Well Formedness: No additional constraints. Precondi-
tion: There is a natural, 7, on top of the stack; a natural, j, immediately
below it; and a Boolean, ¢, immediately below that. Effect: Pop three times.
Let k& be 1 if c is T and 0 otherwise. If 7 > i + k, then push the Boolean F
and the natural j — (¢ + k). Otherwise, push the Boolean T and the natural
2¥ — ((i+ k) — j), where w is the word size of this p-state.

(SUB1-INT) Well Formedness: No additional constraints. Precondition: There is
an integer, %, on top of the stack, and 7 — 1 is representable. Effect: Pop once
and then push the integer i — 1.

(SUB1-NAT) Well Formedness: No additional constraints. Precondition: There is
a non-zero natural, 7, on top of the stack. Effect: Pop and then push the
natural 7 — 1.

(TEST-BITV-AND-JUMP test lab) Well Formedness: test is either ALL-ZERO or
NOT-ALL-ZERO, and lab is a label in the containing program. Precondition:
There is a bit vector, v, on top of the stack. Effect: Pop once and then jump
to lab if test is satisfied, as indicated below.

test condition tested
ALL-ZERO every component of v is 0
NOT-ALL-ZERO some component of v is 1

(TEST-BOOL-AND-JUMP test lab) Well Formedness: test is either T or F and
lab is a label in the containing program. Precondition: There is a Boolean,
b, on top of the stack. Effect: Pop once and then jump to lab if test is
satisfied, as indicated below.

test condition tested
T b=T
F b=F



Technical Report #383 27
January 6, 1993

(TEST-INT-AND-JUMP test lab) Well Formedness: test is one of NEG, NOTNEG,
ZERO, NOT-ZERO, POS or NOT-POS, and lab is a label in the containing pro-
gram. Precondition: There is an integer, %, on top of the stack. Effect: Pop
once and then jump to lab if test is satisfied, as indicated below.

test condition tested
NEG 1<0
NOT-NEG i>0
ZERO 1=0
NOT-ZERO 1#£0
POS 1>0
NOT-POS i<0

(TEST-NAT-AND-JUMP test lab) Well Formedness: test is either ZERO or
NOT-ZERO, and lab is a label in the containing program.* Precondition: There
is a natural, n, on top of the stack. Effect: Pop once and then jump to lab
if test is satisfied, as indicated below.

test condition tested
ZERO n=20
NOT-ZERO n ;é 0

(XOR-BITV) Well Formedness: No additional constraints. Precondition: There is
a bit vector, v1, on top of the stack and a bit vector, v2, immediately below it.
Effect: Pop twice and then push the bit vector result of the componentwise
exclusive-or of vl and v2.

2.1.8 The Piton Interpreter

Associated with each instruction is a predicate on p-states called the ok predicate
or the precondition for the instruction. This predicate insures that it is legal to
execute the instruction in the current p-state. Generally speaking, the precondition
of an instruction checks that the operands exist, have the appropriate types, and
do not cause the machine to exceed its resource limits.

Also associated with each instruction is a function from p-states to p-states
called the step or effects function. The step function for an instruction defines the
state produced by executing the instruction, provided the precondition is satisfied.
Most of the step functions increment the program counter by one and manipulate
the stacks and/or global data segment.

“Technically, test may be anything whatsoever. If it is not ZERO, it is treated as though it
were NOT-ZERO.



28 A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation

The Piton interpreter is a typical von Neumann state transition machine. The
interpreter iteratively constructs the new current state by applying the step func-
tion for the current instruction to the current state, provided the precondition is
satisfied. This process stops, if at all, either when a precondition is unsatisfied or a
top-level return instruction is executed.® The property of being a proper p-state is
preserved by the Piton interpreter. That is, if the initial state is proper, so is the
final state. The formalization of the Piton interpreter is the function P. (P s n)
is the p-state obtained by executing n instructions starting in p-state s.

2.1.9 Erroneous States

What does the Piton machine do when the precondition for the current instruction
is not satisfied? This brings us to the role of the program status word, psw, in the
state and its use in error handling. This has important consequences in the design,
implementation, and proof of Piton.

The psw is normally set to the literal atom RUN, which indicates that the com-
putation is proceeding normally. The psw is set to HALT by the RET (return)
instruction when executed in the top level program; the HALT psw indicates suc-
cessful termination of the computation. The psw is set to one of many error
conditions whenever the precondition for the current instruction is not satisfied.
Any state with a psw other than RUN or HALT is called an erroneous state. The
Piton interpreter is defined as an identity function on erroneous states.

No Piton instruction (i.e., no precondition or step function) inspects the psw.
It is impossible for a Piton program to trap or mask an error. The psw and the
notion of erroneous states are metatheoretic concepts in Piton; they are used to
define the language but are not part of the language.

We consider an implementation of Piton correct if it has the property that it
can successfully carry out every computation that produces a non-erroneous state.
This is made formal when we present our correctness theorem. But the conse-
quences to the implementation should be clear now. For example, the ADD-NAT
instruction requires that two natural numbers be on top of the stack and that their
sum be representable. This need not be checked at run-time by the implementa-
tion of Piton. The run-time code for ADD-NAT can simply add together the top two
elements of the stack and increment the program counter. If the Piton machine
produces a non-erroneous state on the ADD-NAT instruction, then the implementa-
tion follows it faithfully. If the Piton machine produces an erroneous state, then
it does not matter what the implementation does. For example, our implemen-
tation of ADD-NAT does not check that the stack has two elements, that the top
two elements are naturals, or that their sum is representable. It is difficult even to
characterize the damage that might be caused if these conditions are not satisfied
when our code is executed. As noted in our discussion of type checking, mechanical
proof can be used to certify that no such errors occur.

5We formalize this machine constructively by defining the function that iterates the process a
given number of times.
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The language contains adequate facilities to program explicit checks for all
resource errors. For example, ADD-NAT-WITH-CARRY will not only add two naturals
together, it will push a Boolean which indicates whether the result is the true sum.
If you have to test whether the sum is representable, use ADD-NAT-WITH-CARRY.
On the other hand, if you know the result is representable, use ADD-NAT.

But, unless you are adding constants together, how can you possibly know the
result is representable? That is, under what conditions can you to use ADD-NAT
and still prove the absence of errors? This brings us to the crux of the problem.
When you write a Piton program and prove it non-erroneous you do not have to
prove the total absence of errors. You do have to state the conditions under which
the program may be called and prove the absence of errors under those conditions.
For example, a typical hypothesis about the initial state might be that the sum of
the top two elements of the stack is representable and the stack contains at least 5
free cells. These conditions are expressed in the logic, not in Piton.



30

A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation



Chapter 3

Informal Description of the
Implementation

The compiler is defined by the function LOGIC->P, which takes seven arguments:
EXPR, ALIST, PROGRAM-NAMES, HEAP-SIZE, MAX-CTRL, MAX-TEMP and WORD-SIZE.
It produces a Piton state as its output. EXPR and ALIST are the expression and
variable binding association list of the Nqthm interpreter V&C$. PROGRAM-NAMES is
a list of symbols that represent functions in the Logic to be compiled. MAX-CTRL,
MAX-TEMP and WORD-SIZE correspond to the Piton resource limitations. HEAP-SIZE
is the maximum number of “CONS” cells that can be allocated.

Each user-defined Nqthm function is compiled into a Piton function. Each
Nqgthm predefined SUBR has a corresponding Piton function (except for IF, which
is compiled in line). There are a few additional internal Piton functions called by

the SUBRS.

3.1 An Example

The ultimate goal of this research is to produce a formally specified and me-
chanically verified implementation of the Logic. The implementation consists of
a compiler for functions in the Logic and some run-time support functions. The
specification requires the implementation preserve the semantics of the Logic as
defined by the Nqthm function V&C$. V&C$ is described by Boyer and Moore in
[5]. V&C$ is similar to the Lisp interpreter EVAL, except that instead of produc-
ing just a value for an expression, it produces a value and the cost of evaluating
the expression. It takes as arguments an expression, EXPR and an association list,
ALIST that gives values for the free variables in EXPR. It produces as a result either
a value-cost pair or F. A value-cost pair is a CONS, the CAR of which is the value
of the expression EXPR, and the CDR is the cost of obtaining it. The cost is the
number of function applications involved in evaluating EXPR. V&C$ returns F if the

31
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Expression: (APP (CONS X (CHANGE-ELEMENTS Y)) 2 (*1*TRUE . *1*FALSE))
Variable Alist: (LIST (CONS °X F) (CONS °’Y (CONS T (CONS T F))))

DEFINITION
(APP X Y)

(IF (LISTP X)
(CONS (CAR X) (APP (CDR X) Y))

Y)
DEFINITION
(CHANGE-ELEMENTS LIST)
(IF (LISTP LIST) ; [0]
(IF (TRUEP (CAR LIST)) ;[1]
(CONS F (CHANGE-ELEMENTS (CDR LIST))) ;[2]1
(CONS T ; [31]
(CHANGE-ELEMENTS (CDR LIST)))) ; [4]
(IF (TRUEP LIST) F T)) ; [51

Figure 3.1: An example program

cost is infinite. A nonconstructive axiomatization of V&C$ is part of the standard
Nagthm Logic.

Figure 3.1 shows a simple expression and a variable binding association list. The
definitions of the functions APP and CHANGE-ELEMENTS are also shown in Figure 3.1.
This example is used in this chapter to illustrate various aspects of the compiler.?
The complete result of compiling the expression is shown in Appendix A.

3.2 Representing Data in Piton

The Logic has several different shells or “types”, such as natural numbers, ordered
pairs and literal atoms, as well as user-defined shells. Objects of all these different
types are represented in the Piton data segment.

The Logic has six built-in shells: the natural numbers (NUMBERPs), the or-
dered pairs (LISTPs), the literal atoms or words (LITATOMs), the negative integers
(NEGATIVEPs), TRUE or T and FALSE or F. In addition, the user can define more
shells.

The Logic provides functions for determining the “type” of an object (e.g.
LISTP and LITATOM). In order to implement these functions it must be possible to
determine at run-time the type of an object from its representation. A garbage
collector needs to determine the type of an object in order to find out if it is in

! The current version of the compiler only has the data-types TRUE, FALSE and CONS; the acces-
sors CAR and CDR; the recognizers TRUEP, FALSEP and LISTP; and the abbreviation NLISTP.
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node address + 0 Reference Count
node address + 1 Tag
node address + 2 Contents 1
node address + 3 Contents 2

Figure 3.2: The structure of a Node

use. A tag encoding the type of an object is stored in the representation of each
object.

All objects in the Logic are represented by Piton data addresses that point into
the Piton data area HEAP. In this document, Heap address n is to mean the Piton
data address (ADDR (HEAP .n)). Each data type is represented by one or more
nodes in the heap. A mnode consists of four consecutive words in the heap. The
address of a node is the address of the first word of the node and is always evenly
divisible by four. The structure of a node is illustrated in Figure 3.2.

The first word in a node is a Piton natural number that is the reference count.
The reference count is one less than the number of pointers to the node. A reference
count of 0 means that there is exactly one pointer to the node. The second word
contains a natural number that indicates the type of the node. Every different
shell that is compiled has a different tag here. All shells of the same type have the
same tag. The third and fourth words are used to represent the contents of the
node. The contents of a node are Piton data addresses pointing to other nodes,
or, when representing NUMBERPs, the first contents field contains a natural. Some
data types require more than two content words. In these cases the last word of
the node points to another node that contains up to three more words of content
and (if necessary) a pointer to another node of a similar form.

The compiler currently allocates four areas in the data-segment:

1. FREE-PTR, an area of length one (i.e. a variable). The FREE-PTR contains the
heap address of the beginning of the free list.

2. ANSWER, an area of length one (i.e. a variable). This is where the final answer
is stored. The answer will be a heap address.

3. HEAP, a large area, the size of which is determined by HEAP-SIZE, a parameter
to LOGIC->P. All objects are allocated in this area.



34 A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation

4. ALLOC-JUMP-TABLE, an array of program addresses. This is used to jump to
the proper place in the routine I-ALLOC-NODE, depending on the type of the
first node on the free list.

When user-defined types are added to the compiler another area will be needed.

5. SHELL-SIZES, an array of naturals that gives the number of accessors for
different shells. This array is the same length as ALLOC-JUMP-TABLE and is
indexed by the tag of a node. This is used by the Piton code for EQUAL
and COUNT, which must be recursively called on the objects stored in each
accessor.

The data segment that results from compiling the example of Figure 3.1 is:

? ((FREE-PTR (ADDR (HEAP . 24)))
(ANSWER (NAT 0))
(ALLOC-NODE-JUMP-TABLE ((PC (I-ALLOC-NODE . 8))
(PC (I-ALLOC-NODE . 9))
(PC (I-ALLOC-NODE . 8))
(PC (I-ALLOC-NODE . 9))
(PC (I-ALLOC-NODE . 14))
(PC (I-ALLOC-NODE . 41))
(PC (I-ALLOC-NODE . 59))
(PC (I-ALLOC-HODE . 60))))
(HEAP (NAT 0) ; Undefined node [Heap address 0]
(HAT 0) ; Tag of 0 = Undefined tag
(ADDR (HEAP . 0))
(ADDR (HEAP . 0))
(NAT 4) ; FALSE [Heap address 4]
(HAT 2) ; Tag of 2 = False
(ADDR (HEAP . 0))
(ADDR (HEAP . 0))
(NAT 4) ; TRUE [Heap address 8]
(HAT 3) ; Tag of 3 = TRUE
(ADDR (HEAP . 0))
(ADDR (HEAP . 0))

(NAT 0) ; ZERO [Heap address 12]

(NAT 4) ; Tag of 4 = NUMBERP

(NAT 0) ; Contents: 0

(ADDR (HEAP . 0))

(NAT 1) ; (CONS T F) [Heap address 16]

(NAT 5) ; Tag of 5 = CONS

(ADDR (HEAP . 8)) ; CAR = Heap Address 8, represents T
(ADDR (HEAP . 4)) ; CDR = Heap Address 4, represents F'
(HAT 0) ; (CONS T (CONS T F)) [Heap address 20]
(NAT 5) ; Tag of 5 = CONS

(ADDR (HEAP . 8)) ; CAR = Heap Address 8, represents T
(ADDR (HEAP . 16)) ; CDR = Heap Address 16

(ADDR (HEAP . 28)) ; Unused node [Heap address 24]

(NAT 1) ; Tag of 1 = node never used

(NAT 0)

(NAT 0)

(ADDR (HEAP . 32)) ; Unused node [Heap address 28]

(NAT 1)
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(HAT 0)

(NAT 0)

(ADDR (HEAP . 36)) ; Unused node [Heap address 32]
(WAT 1)

(NAT 0)

(HAT 0)

(ADDR (HEAP . 40)) ; Unused node [Heap address 36]
(WAT 1)

(HAT 0)

(HAT 0)

(ADDR (HEAP . 44)) ; Unused node [Heap address 40]
(NAT 1)

(NAT 0)

(NAT 0)

(ADDR (HEAP . 48)) ; Unused node [Heap address 44]
(WAT 1)

(NAT 0)

(HAT 0)

(NAT 1))) ; last node on free list [Heap address 48]

The comments above indicate what object in the Logic is represented at that
address. There are six nodes on the free list. The variable FREE-PTR contains
the address of the first node on the free list (heap address 24). The nodes on the
free list are heap addresses 24, 28, 32, 36, 40, and 44. The final address in the
heap is heap address 48. If an attempt is made to allocate this last node, the Piton
interpreter will return a state with the error flag set. In order to use the correctness
theorem about the compiler on a particular program, it is necessary to prove that
enough heap space is allocated so that this error does not occur.

The first few addresses in HEAP are used to store a few constants. Heap address
0 contains the undefined node. This is a node that is guaranteed not to be the
result of evaluating any form in the Logic. The object F is always represented by
the heap address 4. To test whether a value is F, it is only necessary to test if it is
equal to heap address 4.

The following lists the format of all data-types. Each of the types below is
associated with a different tag.

1. Undefined: There is only one node with this type. The contents for nodes of
this type are ignored, but have been arbitrarily set to heap address 0, i.e.,
the undefined node. The undefined node is used as an address that is known
to be a node, but is not the address of the representation of any object in the
Logic.

2. Unused: These are nodes on the free list that have never been used.

3. FALSEP: The content for nodes of type FALSEP are ignored, but have been
arbitrarily set to heap address 0, i.e., the undefined node. There is only one
representation of FALSE in HEAP.

4. TRUEP: The content for nodes of TRUEP type are ignored, but have been ar-
bitrarily set to heap address 0, i.e., the undefined node. There is only one
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representation of TRUE in the HEAP data area.

5. NUMBERP: The first content cell contains a natural number and the second
contains an address pointing to another node. FIXNUMs are nodes where the
second content cell points to the undefined node. BIGNUMs are represented
with the least significant part in the first content. The second content cell
points to another node in which the tag word, the reference count word, and
first content word are used to represent the number, and the second content
word contains a pointer to another node of this kind or the undefined node.
The compiler only creates FIXNUMs. The format of BIGNUM is defined
so that BIGNUM can be added and only the routines that manipulate them
need to be changed.?

6. LISTP: Both the first and second content words contain addresses pointing
to nodes. The first content word is the CAR and the second the CDR.

7. LITATOM:® The first content cell contains an address pointing to the UNPACK
of the LITATOM. The second content cell points to another node. This node is
used to store the SUBRP, BODY and FORMALS values for the literal atom. The
actual format is that the second node uses the tag field to store the value
that SUBRP should return. The reference count field and the first content field
are used to form a doubly linked list of LITATOMs (see the next paragraph).
The second content field points to yet another node. The third node stores
the BODY and FORMALS values for the LITATOM in the first and second content
field. A LITATOM requires three nodes. *

LITATOMs are stored uniquely. They are stored in a very simple hash table.
The LITATOM constructor PACK hashes on the first letter of the object it is
given. The hash table has 27 buckets, one for each letter in the alphabet,
plus another bucket for LITATOMs that do not go in the other 26 buckets.
PACK takes the object it is given and if it is not a list puts it in the other
bucket. If it is a list and the CAR is a natural number between 65 (the ASCII
value for 4) and 90 (the ASCII value for Z) then it is put in the bucket
corresponding to that value. Otherwise, it is put in the other bucket. Once
the bucket is determined, we search for a LITATOM that if UNPACKed is equal
to the current object. If one is found, then the address of that LITATOM
is returned; otherwise the new LITATOM is added at the end of the current
bucket. Note that if there are no more pointers to a LITATOM it must be
removed from the hash table before being reused.

2The current version of the compiler only compiles NUMBERPs inside constants and requires
that they be representable as FIXNUMs. There are no functions to manipulate NUMBERPs in the
compilable subset. However, O can be returned by CAR and CDR.

3Literal atoms are not implemented at all in the current version of the compiler.

“Note: Only LITATOMs corresponding to the names of programs compiled by the compiler will
have BODY and FORMALS and SUBRP defined. This is not a significant drawback, as any names
needed can be added to the list of program names passed as an argument to the compiler.
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8. NEGATIVEP: The first content cell contains a pointer to another node (which
should be a NUMBERP cell). The second content cell is not used but is initialized
anyway to the address of the undefined node.?

9. User-defined shells:® If a type has more than two accessors, then more than
one node is allocated for an object of that type. The first content field of the
first node contains the representation of the first accessor. The second con-
tent field points to another node. The subsequent nodes, called continuation
nodes, use the tag, reference count, and first content field to store accessors
and the second content field to point to a continuation node.

3.3 The Garbage Collector

The implementation of the Logic includes a reference count garbage collector. Ev-
ery node in the heap includes a reference count field. The reference count field
for all nodes that are in use contains a Piton natural that indicates the number
of pointers to the node. The number stored in the reference count field is actually
one less than the number of pointers to the node. Pointers to nodes can be in the
Piton program segment, data segment, temporary stack, and control stack. The
program segment has pointers to the representation of quoted constants. The data
segment contains pointers to various objects. For instance, a node in the data
segment that represents (CONS x y) contains pointers to x and y. The temporary
stack contains pointers to intermediate results. Finally, the control stack holds the
formal parameters of functions. The control stack can also be used to store saved
values of previously computed expressions. This can be used to eliminate common
sub-expressions; see Section 3.5.

Every time the value of a variable or constant is pushed on the temporary
stack, its reference count must be incremented. When values are removed from the
temporary or control stack, the reference counts must be decreased.

Unused nodes are stored in a linked list. The Piton variable FREE-PTR points
to the beginning of this free list. Each node is still tagged with its type, and
the reference count field is used as a link to the next node. A proper free list
is specified by the Nqthm function LR-PROPER-FREE-LISTP (see section 6.2.1).
LR-PROPER-FREE-LISTP examines the reference count field of nodes to determine
whether the node is on the free list (the reference count is NOT a Piton natural)
or if it is not on the free list (the reference count is a Piton natural). Piton
does not allow programs to determine the type of an object at run-time, so run-
time programs cannot tell if the reference count field is a Piton natural or not.
The compiler must ensure that all the nodes in the linked list do not have Piton
naturals in their reference count fields. LR~-PROPER-FREE-LISTP allows nodes that
are not on the free list to be in use or garbage. However, the garbage collection code

5Negative numbers are not implemented in the current version of the compiler.
8 User-defined shells are not implemented at all in the current version of the compiler.
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ensures that all garbage is collected. This last property of the garbage collection
code is not proven. The proof of the garbage collection code ensures that any nodes
collected are not in use, but it does not verify that all nodes that are garbage are
eventually collected.”

The garbage collector has two internal Piton functions.

1. I-ALLOC-NODE removes a node from the free list and returns the address of the
node on the top of the temporary stack. I-ALLOC-NODE calls
I-DECR-REF-COUNT, for instance, when removing an unused CONS cell from
the free list, to decrement the reference counts of the pointers in CAR and CDR

fields of the node.

2. I-DECR-REF-COUNT takes a pointer on top of the temporary stack and decre-
ments the reference count of the object to which the pointer points. The
pointer is returned on the top of the temporary stack. If the reference count
is zero it returns the object to the free list. When a node is returned to the
free list the reference count field of the node being returned is set to point to
the first node on the free list and FREE-PTR is set to point to the node added.

The following example illustrates how the functions I-ALLOC-NODE and
I-DECR-REF-COUNT work. Suppose Piton is executing a call to CONS with the
temporary stack and data segment as shown in Figure 3.3 (only the top few entries
on the temporary stack and the part of the data segment being manipulated are
shown). The Piton code for CONS is:

;3 CONS Takes two implicit args, the CDR is on top of
;; the stack and the CAR is just below it.
(coES () ((TEMP (ADDR (HEAP . 0))))
;3 First call I-ALLOC-HNODE to get a new node.
(CALL I-ALLOC-HODE)
(SET-LOCAL TEMP) ; Put CDR in node + CDR-OFFSET
(PUSH-CONSTANT (NAT 3))
(ADD-ADDR)
(DEPOSIT)
(PUSH-LOCAL TEMP) ; Put CAR in node + CAR-OFFSET
(PUSH-CONSTANT (NAT 2))
(ADD-ADDR)
(DEPOSIT)
(PUSH-CONSTANT (NAT 5)) ; Put tag in node
(PUSH-LOCAL TEMP)
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(DEPOSIT)
(PUSH-CONSTANT (NAT 0)) ; Set ref count to O
(PUSH-LOCAL TEMP)
(DEPOSIT)
(PUSH-LOCAL TEMP)
(RET))

"The mechanically checked proof of this property of the garbage collector has not been
completed.
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Figure 3.3: The effects of executing I-ALLOC-NODE
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First CONS calls I-ALLOC-NODE. After control returns from the call to
I-ALLOC-NODE, the data segment and temporary stack are as shown in Figure 3.3.
The top of the temporary stack contains the address (ADDR (HEAP . 24)), which
is a pointer to a new node that has been removed from the free list. The rest of the
CONS code fills in the new node. The temporary stack is popped and the address
that was on top of it is put in the CDR field of the node. The temporary stack is
popped again and the CAR field filled. The tag field is set to (NAT 5) to indicate
that this is a CONS node. Finally, (NAT 0) is put in the reference field to indicate
there is one pointer to this node. The resulting data segment and temporary stack
are shown (in part) in Figure 3.4.

Now suppose a call to CAR is executed on the Piton state resulting from the call
to CONS. The code for CAR is:

(CAR (X) ((TEMP (NAT 0)))
;3 First decrement ref count of argument, X
(PUSH-LOCAL X)
(CALL I-DECR-REF-COUNT)
;3 Test if X is a CONS, i.e. has a tag of (NAT 5)
(PUSH-CONSTANT (HAT 1))
(ADD-ADDR)
(FETCH)
(PUSH-CONSTANT (HAT 5))
(EQ)
(TEST-BOOL-AND-JUMP T ARG1)
13 Not a CONS, return address representing 0 first
; 3 incrementing ref count.
(PUSH-CONSTANT (ADDR (HEAP . 12)))
(FETCH)
(ADD1-NAT)
(PUSH-CONSTANT (ADDR (HEAP . 12)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 12)))
(RET)
33 Type is the same, return CAR field first
;3 incrementing REF COUNT
(DL ARG1 () (PUSH-LOCAL X))
(PUSH-CONSTANT (HAT 2))
(ADD-ADDR)
(FETCH)
(SET-LOCAL TEMP)
(FETCH)
(ADD1-NAT)
(PUSH-LOCAL TEMP)
(DEPOSIT)
(PUSH-LOCAL TEMP)
(RET))

First CAR pushes its argument X and calls I-DECR-REF-COUNT. Since the ad-
dress (ADDR (HEAP . 24)) has exactly one pointer to it, I-DECR-REF-COUNT
puts it back on the free list. When I-DECR-REF-COUNT returns, the address
(ADDR (HEAP . 24)) is left on the top of the temporary stack. CAR then tests if
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the address is a CONS node. Since it is, the address in the CAR field of the node is
fetched. The address points to a node, the reference count of which is incremented.
Finally the address is returned. The resulting data segment and temporary stack
are shown (in part) in Figure 3.4. An important point is that after returning from
the call to CAR the reference count of the address (ADDR (HEAP . 4)) is at least
two. There is one pointer on the top of the temporary stack and a second pointer
in the CAR field (heap address 26) of the node at heap address 24. This is true
even though the node at heap address 24 is on the free list. Not until that node is
allocated will the reference count of (ADDR (HEAP . 4)) be decremented.

3.4 Compiling from the Logic to Piton

Each user-defined function is independently compiled to Piton. Piton programs
have four components: name, formals, temporary variable declarations, and body.
The name of the Piton function has a U- prefixed to the name of the function in the
Logic. The formal variables of the Piton function are the same as the Logic function
FORMALS returns on the function name. The Piton temporary variable declarations
are used for holding intermediate results. Originally the compiler was to have a
routine to eliminate common sub-expressions. This has not been implemented but
could be added without changing the rest of the compiler. See Section 3.5 for
more details. The body is obtained by recursively compiling the form returned by
applying BODY to the function name and appending a postlude.

The following sections demonstrate how to compile various constructs in the
Logic into Piton. An example is the function CHANGE-ELEMENTS from figure 3.1,
the Piton translation of which is in Appendix A.

3.4.1 Compiling Variable References

A variable reference is a reference to one of the formal parameters of the function
(e.g., the variable LIST is referenced on lines marked [0], [1], [2], [4] and [5]
in CHANGE-ELEMENTS). When a function is called, its formals are bound to the
results of evaluating the actual parameters. Thus, each formal is bound to a heap
address. Variable references push the address that the variable is bound to on the
temporary stack. This adds an additional reference to that heap address, so the
reference count must be incremented.

The translation of the reference to LIST on line 0 of CHANGE-ELEMENTS is shown
here:

(DL L-0 () (PUSH-LOCAL LIST)) ; put reference count address on stack
(DL L-1 () (FETCH)) ; fetch reference count

(DL L-2 () (ADD1-HNAT))

(DL L-3 () (PUSH-LOCAL LIST)) ; put reference count address on stack

(DL L-4 () (DEPOSIT)) update reference count
(DL L-5 () (PUSH-LOCAL LIST)) ; put mode address on stack
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The translations of additional references to LIST are the Piton instructions
labeled L-11 to L-16, L-29 to L—34, L-45 to L-50 and L-55 to L-60 in the code
in figure A.

3.4.2 Compiling Constants

A constant is translated into a Piton data address at which the constant is stored.
The constant T is referenced on the lines labeled [2] and [5] of CHANGE-ELEMENTS.
The constant F is referenced on the lines labeled [3] and [5]. To reference a con-
stant, the address that represents the constant must be pushed on the temporary
stack. Since this increases the references to that address, the reference count must
be incremented as well. The translation of the constant F on line [2] is shown
below:

(DL L-23 Q) ;3 Put reference count address on stack
(PUSH-CONSTANT (ADDR (HEAP . 4))))

(DL L-24 () (FETCH)) ; fetch reference count

(DL L-25 () (ADD1-HAT)) ; add one to it

(DL L-26 () ;  Put reference count address on stack

(PUSH-CONSTANT (ADDR (HEAP . 4))))
(DL L-27 (O (DEPOSIT)) ; update reference count
(DL L-28 () ; Put T ’s address on stack

(PUSH-CONSTANT (ADDR (HEAP . 4))))

The translations of the references to the constant T on lines marked [3] and
[5] of CHANGE-ELEMENTS are given by the instructions labeled L-39 to L-44, L-66 to
L-71, respectively. The translation of F on the line marked [5] of CHANGE-ELEMENTS
is given by the instructions labeled L-73 to L-78. In the example Piton state of
Appendix A the constant > (#1*TRUE . *1*FALSE) is represented by the Piton ad-
dress (ADDR (HEAP . 16)). The code to reference this constant is given by the
instructions L-14 to L-19 of the program MAIN. The relevant parts of the Piton
state are:

(P-STATE ’(PC (MAIN . 0))
7((((X ADDR (HEAP . 4))
(Y ADDR (HEAP . 20)))
(PC (MAIN . 0))))
O
J((MAIN (X Y) O
[...]
;3 Push address of constant: > (*1*TRUE . *1*FALSE)
;; and increment ref count
(DL L-14 () (PUSH-CONSTANT (ADDR (HEAP . 16))))
(DL L-15 () (FETCH))
(DL L-16 () (ADD1-NAT))
(DL L-17 () (PUSH-CONSTANT (ADDR (HEAP . 16))))
(DL L-18 () (DEPOSIT))
(DL L-19 () (PUSH-CONSTANT (ADDR (HEAP . 16))))
[...DD
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? ((FREE-PTR (ADDR (HEAP . 24)))
(ANSWER (NAT 0))
(ALLOC-NODE-JUMP-TABLE [...])

(HEAP [...]
;3 (CONS T F) [Heap address 16]
(NAT 1)
(NAT 5)
(ADDR (HEAP . 8))
(ADDR (HEAP . 4))

[...17»N
20 20 32 ’RUN)

The compiler represents all the quoted constants in the functions being com-
piled in the initial Piton data segment. The bindings of variables in the initial
variable association list are also represented in the initial Piton data segment.
These constants share as much structure as possible. This is the only significant
optimization performed by the compiler.

3.4.3 Compiling Function Calls

Consider the compilation of a function call, for example, (f argg ...argn). First
the arguments argg through argp are compiled, concatenating the code together.
Then if f is a user-defined function, the Piton instruction (CALL U-f) is ap-
pended. If f is a predefined Ngthm functions, (CALL f) is appended. The com-
pilation of (CONS F (CHANGE-ELEMENTS (CDR LIST))) on the line marked [2] of
Figure A is given by the Piton instructions labeled L-23 to L-37. First trans-
late the constant F, which is given by lines labeled L-23 to L-28. Next compile
(CHANGE-ELEMENTS (CDR LIST)) by first compiling (CDR LIST) (instructions la-
beled L-29 and L-35) and then add the call to U-CHANGE-ELEMENTS (instruction
L-36). Finally, we add the call to CONS at instruction L-37. The names of all user-
defined functions are prefixed with U-. This is so we can have internal functions
(that are prefixed with I-) and not conflict with the names of user functions. In
addition, this ensures that the name for the program MAIN is different from the
names of user functions.

A Piton CALL instruction pops objects off of the Piton temporary stack and
binds the formal parameters of the called functions to the objects. The reference
counts of the objects on the temporary stack do not need to be changed, since after
the CALL instruction is finished the objects are on the control stack.

Each predefined Logic SUBRP (with the exception of IF) is translated to a cor-
responding Piton function.

3.4.4 Compiling IF

IF is the most complex construct to compile. In the execution of an IF,
(IF test then else) first the code for test is executed. If test returns F, then
the code for else is executed; otherwise the code for then is executed. After test
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is executed there is a heap address on top of the stack; this is popped off while
testing whether it is F or not. This decreases the number of references to the ad-
dress, so the reference count must also be decremented before executing then or
else.

An example should clarify the compilation of IF. Consider the IF that starts
on the line marked [0] of figure A. The translation is shown below:

(IF (LISTP LIST) [...] [...D)

(DL L-0 () (PUSH-LOCAL LIST)) ; Put LIST on stack

(DL L-1 () (FETCH)) ; Increment ref count of LIST

(DL L-2 () (ADD1-NAT))

(DL L-3 () (PUSH-LOCAL LIST))

(DL L-4 () (DEPOSIT))

(DL L-5 () (PUSH-LOCAL LIST))

(DL L-6 () (CALL LISTP)) ; Call LISTP

(DL L-7 () (CALL I-DECR-REF-COUNT)) ; Decrement ref. count of result

(DL L-8 ) ; Put F address on stack
(PUSH-CONSTANT (ADDR (HEAP . 4))))

(DL L-9 O (EQ)) ; test if result is F

(DL L-10 () ; jump to L-55 for else part
(TEST-BOOL-AND-JUMP T L-55))

[...] ; code for then part

(DL L-54 () (JUMP L-79)) ; jump around else code

(DL L-55 O [...1) ; code for else part

[...]

(DL L-79 O [...D1) ; end of IF

The code for the test (LISTP LIST) is shown in the instructions labeled L-0
through L-6. The instructions L-7 through L-10 test if the result of (LISTP LIST)
is F and then jump to the beginning of the else code, L-55 if so. The instructions
labeled L-11 through L-54 are the compilation of the then part of the IF. The
instruction (DL L-54 () (JUMP L-79)) jumps around the code for the else part
of the IF. The instructions for the else part of the IF are labeled L-55 through
L-78.

3.4.5 The Postlude

When a function returns, the control stack is popped, which removes the top call
frame. A Piton call frame contains the values of the formal and temporary variables
of the function. Popping the control stack removes pointers to the representation
of objects, thus decreasing the reference counts of some nodes. The postlude of
a function keeps the reference counts correct. The postlude of CHANGE-ELEMENTS
from figure A is shown below.

(DL L-79 () (PUSH-LOCAL LIST)) ; Put node address on stack

(DL L-80 () (CALL I-DECR-REF-COUNT)) Call routine to decrement ref. count
(DL L-81 () (POP)) Pop result off stack

(DL L-82 () (RET)) return to caller
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3.5 Optimizations

The compiler does not do much in the way of optimizations. There are two opti-
mizations done by the compiler: constants share structure, and the constant F is
uniquely represented, which makes the compilation IF a little better.

All the quoted constants in the compiled programs, as well as the expression
and bindings in the variable alist, share as much structure as possible. The function
LR-COMPILE-QUOTE (given in Appendix B on page 121) takes four arguments: a
flag, an object, a data segment, and a table. It returns a pair: the new data segment
with the object allocated in it and a new table in which the object is associated
with the address to which it has been assigned. LR—-COMPILE-QUOTE is called on
every quoted object in the expression, in the bindings of the variable alist and in
the programs being compiled. In order to make objects share as much structure
as possible, LR-COMPILE-QUOTE first looks to see if the object is associated with an
address in the table.

There is only one data address that is used to represent F. This allows the code
generated for (IF test then else) to test if the result returned by test is F,
by checking if the address returned by the code for test is the address for F. The
alternative would be to fetch the tag of the result and see if it is the tag for F.
Using the first approach saves a few Piton instructions when compiling IF.

There are provisions in the specification and in the compiler code for remov-
ing common sub-expressions. An algorithm for removing common sub-expressions
could be added to the compiler without affecting most of the proof. The transla-
tion of the data structures of the Logic to Piton’s finite memory and stacks would
remain the same.

The translation of the programs to Piton is done in three stages. The first
stage does nothing, but this is where common sub-expressions could be removed.
The second stage assigns Piton addresses to quoted constants. The third stage
translates the program to Piton. Only the proof of the first stage would need to
be redone if a common sub-expression removal function were added.



Chapter 4

The Correctness Theorem

4.1 Interpreter Equivalence Proofs

This dissertation is about the proof of correctness of a compiler. The first part of
understanding a proof is to understand what is being proved. This section discusses
how the source and target languages of the compiler are specified and how to prove
that the translation is correct.

Both the source language (the Logic) and the target language (Piton) have been
formally specified operationally via interpreters. The interpreter for the Logic is
the function V&C$. The interpreter for Piton is the function P. Informally, the
compiler, LOGIC->P, is correct if the result of running P on the result of compiling
from the Logic to Piton is the same as running V&C$. An illustration of what it
means for LOGIC->P to be correct is shown in the diagram of Figure 4.1.

The commuting diagram of Figure 4.1 is a simplification of the situation for
three reasons. First, the Piton interpreter P takes two arguments: a Piton state
and a “clock”. The clock is a number that tells P how many steps to run. The
clock is missing from the diagram. Intuitively, the diagram is meant to suggest
“there exists a clock sufficient to make P compute” an appropriate state. Since the
Logic does not allow existential quantifiers, the usual solution is adopted: provide
a witness expression for the clock.

Second, the compiler LOGIC->P also takes resource limits as arguments. This
is ignored in Figure 4.1.

Third, the compiler so behaves only when the expression being compiled is syn-
tactically well-formed, only uses the primitive functions in the compilable subset,
and can be evaluated with the given resource limits.

Sometimes commuting diagrams are drawn with the arrow on the right pointing
down instead of up. That is, instead of abstracting an answer from the final lower
level state, the final lower level state is obtained by mapping the final upper level
state down by the compiler. In general, it is not possible to use LOGIC->P and the
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<expression, alistd>————— > V&C$ — > value
A

LOGIC->P abstract

\

p-state > P > p-state’

Figure 4.1: Interpreter Equivalence Diagram

final answer to obtain the same Piton state as obtained via first applying LOGIC->P
and then running the Piton interpreter P. Running P causes the generation of
intermediate results and garbage which are not generated when mapping down
the final result. A major aspect of the formal specification is defining how this
abstraction process works, i.e. how logical objects are recovered from a P-STATE.

4.2 The Statement of the Correctness Theorem

The following theorem has been proved about LOGIC->P:!

THEOREM 1 (LOGIC->P-0K-REALLY)

(IMPLIES (AND (L-PROPER-EXPRP T EXPR PNAMES (STRIP-CARS ALIST)) s [1]
(L-PROPER-PROGRAMSP PNAMES) s [2]
(ALL-LITATOMS (STRIP-CARS ALIST)) ; [3]
(L-DATA-SEG-BODY-RESTRICTEDP T EXPR) ; [4]
(L-RESTRICTEDP PNAMES ALIST) ; [5]
(V&C$ T EXPR ALIST) ; [6]1
(L-RESTRICT-SUBRPS T EXPR) s [7]
(L-RESTRICT-SUBRPS-PROGS PNAMES) ; [8]
(NOT (LESSP HEAP-SIZE ; [9]

(TOTAL-HEAP-REQS EXPR ALIST PNAMES HEAP-SIZE)))
(NOT (LESSP MAX-CTRL (MAX-CTRL-REQS EXPR ALIST PNAMES))) ;[10]

(LESSP MAX-CTRL (EXP 2 WORD-SIZE)) ;[11]
(NUMBERP MAX-CTRL) ;[12]
(NOT (LESSP MAX-TEMP (MAX-TEMP-REQS EXPR ALIST PHNAMES))) ;[13]
(LESSP MAX-TEMP (EXP 2 WORD-SIZE)) ; [14]
(NUMBERP MAX-TEMP) ; [15]
(NOT (LESSP WORD-SIZE ; [16]

1 This theorem has been mechanically proven about a prototype of the implementation that
did not have a garbage collector. Work continues on producing a mechanically checked proof for
the compiler with a garbage collector added.
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(MAX-WORD-SIZE-REQS EXPR ALIST PNAMES HEAP-SIZE)))
(NUMBERP WORD-SIZE)) s [17]
(VALP (CAR (V&C$ T EXPR ALIST))
(FETCH (LR-ANSWER-ADDR)
(P-DATA-SEGMENT (P (LOGIC->P EXPR ALIST PNAMES
HEAP-SIZE
MAX-CTRL
MAX-TEMP
WORD-SIZE)
(LOGIC->P-CLOCK EXPR ALIST PNAMES
HEAP-SIZE
MAX-CTRL
MAX-TEMP
WORD-SIZE))))
(P-DATA-SEGMENT (P (LOGIC->P EXPR ALIST PNAMES
HEAP-SIZE
MAX-CTRL
MAX-TEMP
WORD-SIZE)
(LOGIC->P-CLOCK EXPR ALIST PNAMES
HEAP-SIZE
MAX-CTRL
MAX-TEMP
WORD-SIZE)))))

This daunting formula can be read as follows. Note that it is of the form
(IMPLIES hyps (VALP ...)). Thus it says that under some hypothesis hyps the
VALP expression is true. First focus on the VALP expression because it embodies
the commutative diagram.

The upper left-hand corner of the commutative diagram, <expression, alist>
is formally represented by the two variables EXPR and ALIST: the expression being
evaluated and compiled, and the assignment of values to variables. The upper right-
hand corner of the diagram, value, is (CAR (V&C$ T EXPR ALIST)), the object
that is the value of EXPR under ALIST as “officially” defined by Boyer and Moore.
The function V&C$ takes three arguments: the first is called FLAG, the other two
are EXPR and ALIST, as above. If FLAG has the value >LIST, then EXPR is treated
as a list of terms. The result of V&C$ with a FLAG equal *LIST is a list of value-cost
pairs (some of which may be F). Note that (CAR (V&C$ T EXPR ALIST)) is the
first argument to the VALP expression being analyzed.

The lower left corner of the diagram, p-state, obtained by compiling EXPR is:

(LOGIC->P EXPR ALIST PNAMES
HEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE)

The lower right hand corner, p-state’, obtained by running the Piton machine,
is:

(P (LOGIC->P EXPR ALIST PNAMES
HEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE)
(LOGIC->P-CLOCK EXPR ALIST PNAMES
HEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE))
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LOGIC->P-CLOCK is the “witness function” which determines how long the Piton
machine must run to evaluate the code for EXPR on ALIST.
Letting value denote:

(CAR (V&C$ T EXPR ALIST))
— the upper right-hand corner — and p-state’ denote

(P (LOGIC->P EXPR ALIST PNAMES
HEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE)
(LOGIC->P-CLOCK EXPR ALIST PNAMES
HEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE))

— the lower right hand corner, then the VALP expression is:

(VALP value
(FETCH (LR-ANSWER-ADDR) (P-DATA-SEGMENT p—state’))
(P-DATA-SEGMENT p—state’))

This term expresses the abstraction drawn as the upward headed arrow. VALP is
the formalization of that abstraction. The VALP expression can be read as follows.
Consider the final Piton data segment (the third argument to the VALP expression).
Fetch from that data segment the contents of the “answer address” (the second
argument). The VALP expression says that the contents is a heap address into the
final data segment and the logical object represented by that address in the final
data segment is in fact the “officially” defined value of EXPR under ALIST.

The hypotheses of the theorem seem daunting at first, but they merely repre-
sent the hidden assumptions that are used when compiling and running programs.
There are two kinds of hypotheses in the correctness theorem. First are syntactic
restrictions on the programs that will be trivially satisfied when the compiler is
used on actual examples. Second are hypotheses that deal with the resource limits
of Piton.

The hypotheses labeled [1] and [2] state that the expression and functions
are all proper (see section 4.3). Hypothesis [3] is another syntactic requirement,
namely that all the variable names in the variable alist are literal atoms. Hypothesis
[4] states that all the quoted constants in the expression only use shells that are
defined (in the current version of the compiler all the shells are either TRUE, FALSE,
a NUMBERP or a CONS). Hypothesis [5] states that the programs, as well as the
bindings in the variable alist ALIST, only use defined shells. Hypothesis [6] states
that V&C$ produces a non-FALSE result when applied to the expression EXPR., i.e.,
the expression has a defined value. Hypotheses [7] and [8] are only necessary
in the prototype. They ensure that the expression and programs only use the
SUBRPs that have been defined, namely CAR, CDR, CONS, FALSE, FALSEP, IF, LISTP,
NLISTP, TRUE and TRUEP. Hypotheses [9-17] deal with the resource limitations of
Piton. These hypotheses ensure that there are enough resources to run the program
without errors. They also ensure that the resources are properly formed for use
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in Piton (i.e., MAX-CTRL, MAX-TEMP and WORD-SIZE are numbers, and MAX-CTRL
and MAX-TEMP will fit in one word of storage). The functions TOTAL-HEAP-REQS,
MAX-CTRL-REQS and MAX-TEMP-REQS are witness functions which can be thought
of as existential quantifications on the amount of heap space, control stack space,
and temporary stack space, respectively.

4.3 Proper Expressions and Programs

The predicate L-PROPER-EXPRP takes four arguments: FLAG, EXPR, PROGRAM-NAMES,
and FORMALS. It checks that expressions are proper, that is, all the subexpressions of
EXPR are proper lists, and each function application has the correct number of argu-
ments. In addition, any functions calls in EXPR must be either to predefined SUBRs
or to functions named in PROGRAM-NAMES. Finally, it ensures that all references to
variables are named in the list FORMALS. The predicate L-PROPER-PROGRAMSP takes
one argument, PROGRAM-NAMES: a list of program names. It checks that for each
member X of PROGRAM-NAMES, L-PROPER-EXPRP holds when applied to T, (BODY X),
PROGRAM-NAMES and (FORMALS X).

The most important check done by L-PROPER-EXPR and L-PROPER-PROGRAMSP
is that the only functions called are in PROGRAM-NAMES. An alternative to ensuring
that all function applications are proper lists of the correct length would be to have
the compiler extend argument lists as necessary and drop excess arguments. This
alternative is probably a better choice for future versions of the compiler.

4.4 Mapping the Final Piton State Up

One of the most interesting parts of the compiler specification is the function, VALP,
used to “map” the final Piton state to a value in the logic. Naively this function
must take an address into the heap and extract a value from the heap. Imagine such
a function called ABS1 which takes two arguments, an address and a data segment,
and returns the object represented at that address. ABS1 is recursively defined to
determine the type of the current node and then “chase” the pointers in that node
in order to recover the components of the logical object represented. Note that
this process does not terminate on all Piton data segments, e.g., consider a CONS
node that points to itself. Such data segments are not constructed by executing
the code output by the compiler (though they can be constructed with Piton). One
solution would be to define the notion of a cycle-free data segment and arrange
for ABS1 to be trivially defined on such arguments. This would require proving
the P-STATEs generated by the compiler are cycle-free. But the Logic requires
all function definitions to have an associated measure that decreases on any calls.
Thus the imagined ABS1 is not admissible by Ngthm. A second solution to this
would be to add a clock argument to ABS1, which would be decremented on every
recursive call. A definition of ABS1 with a clock is:
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DEFINITION
(ABS1 ADDR DATA-SEG CLOCK)
(IF (ZEROP CLOCK)
NIL
(LET ((TAG (UNTAG (FETCH (ADD-ADDR ADDR (LR-TAG-OFFSET)) DATA-SEG))))
(cOND ((EQUAL TAG (LR-CONS-TAG))
(CONS (ABS1 (FETCH (ADD-ADDR ADDR (LR-CAR-OFFSET)) DATA-SEG)
DATA-SEG
(SUB1 CLOCK))
(ABS1 (FETCH (ADD-ADDR ADDR (LR-CDR-OFFSET)) DATA-SEG)
DATA-SEG
(SUB1 CLOCK))))
((EQUAL TAG (LR-TRUE-TAG)) (TRUE))
((EQUAL TAG (LR-FALSE-TAG)) (FALSE))
((EQUAL TAG (LR-ADD1-TAG))
;3 We should handle bignums here
(UNTAG (FETCH (ADD-ADDR ADDR (LR-UNBOX-NAT-OFFSET)) DATA-SEG)))
(T )

If the clock runs out, ABS1 just returns NIL. However, the clocks would likely
be difficult to use in the proof.

A third solution would be a function (ABS2) that accumulates all the addresses
that have been seen so far and returns NIL if it finds an address already seen. A
possible definition of ABS2 is:

(ABS2 ADDR DATA-SEG ADDRESS-LIST)
(IF (MEMBER-ADDR ADDR ADDRESS-LIST)
NIL
(IF (HOT (EQUAL (AREA-NAME ADDR) (LR-HEAP-NAME)))
NIL
(LET ((TAG (UNTAG (FETCH (ADD-ADDR ADDR (LR-TAG-OFFSET))
DATA-SEG))))
(COND ((EQUAL TAG (LR-CONS-TAG))
(CONS (ABS2 (FETCH (ADD-ADDR ADDR (LR-CAR-OFFSET))
DATA-SEG)
DATA-SEG
(CONS (OFFSET ADDR) OFFSET-LIST))
(ABS2 (FETCH (ADD-ADDR ADDR (LR-CDR-OFFSET))
DATA-SEG)
DATA-SEG
(CONS (OFFSET ADDR) OFFSET-LIST))))
((EQUAL TAG (LR-TRUE-TAG)) (TRUE))
((EQUAL TAG (LR-FALSE-TAG)) (FALSE))
((EQUAL TAG (LR-ADD1-TAG))
(UNTAG (FETCH (ADD-ADDR ADDR (LR-UNBOX-NAT-OFFSET))
DATA-SEG)))
(T F)))))

ABS2 is a hard function to admit to the Nqthm theorem prover; however, it
could possibly be useful.

The solution used in the compiler proof is to define the predicate VALP that
takes three arguments: an object, an address, and a data segment. VALP returns T



Technical Report #383 53
January 6, 1993

if the address in the data segment represents the object and returns F otherwise.
The predicate VALP is somewhat unusual. VALP does not use a clock, but uses the
object as both the expected result and the measure that decreases on recursive
calls.

4.5 Using the Compiler

The compiler cannot correctly evaluate every expression in the Logic, or even every
expression that may be evaluated in the execution environment of the theorem
prover. All the finite resources of Piton are reflected in the correctness theorem.
A programmer who wants to use the correctness theorem to state that his or
her program runs correctly must be sure that there are enough resources for the
program to run. This is an unavoidable fact of everyday life in programming. The
common practice is not to worry about the resources until they are exceeded and
(usually) an error message is printed. The difference here is that no error message is
printed. Piton is implemented on FM8502 and it is impossible to tell from looking
at an FM8502 state whether or not a Piton program (or a program in the Logic
compiled into Piton) encountered an error. The way around this problem is to
prove that the Logic program being compiled runs without resource errors.

All arithmetic is fienum arithmetic. This is represented by hypothesis [16] of
the LOGIC->P-0K-REALLY which ensures that the word size of Piton is large enough
to represent the result of every arithmetic expression.

As with any programming language implementation, there is a limit on the
number of objects that can be constructed. With the garbage collector running,
this means there is a limit on the number of objects that can be “in use” at one
time. The limitation of the size of the heap is represented by hypothesis [9] of
LOGIC->P-0K-REALLY. The size of the stacks is also limited, as shown by hypotheses
[10] and [13].

The compiler does not provide any input or output operations. Piton and
FM8502 do not currently provide any facilities for doing input and output, and the
Logic does not have any input and output.
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Chapter 5

Formal Description of the
Compiler

The compiler is defined by the function LOGIC->P.

DEFINITION
(LOGIC->P EXPR ALIST PNAMES HEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE)

(LR->P (S->LR (LOGIC->S EXPR ALIST PNAMES)

HEAP-SIZE
MAX-CTRL
MAX-TEMP
WORD-SIZE))

LOGIC->P is the composition of three functions. The innermost function,
LOGIC->S, translates an expression, EXPR; a variable association list, ALIST; and
a list of program names, PNAMES; and produces an “S-STATE”. The next phase
of compilation is representing the abstract data structures of the Logic in Piton.
This is accomplished by the function S->LR, which takes an S-STATE and four re-
source limits — HEAP-SIZE, MAX-CTRL, MAX-TEMP and WORD-SIZE — and produces
an LR-STATE. The final phase is the compilation of the functions into Piton. This
is accomplished by LR->P, which maps LR-STATEs into P-STATEs.

This decomposition is important to the structure of the proof of the correctness
result. For each intermediate level, e.g. S-STATEs and LR-STATESs, an appropriate
operational semantics is defined. Each transformation is then proven to preserve
the semantics in an appropriate sense. In essence the S level is a language very
similar to the Logic but which provides a means of avoiding the repeated compu-
tation of given expressions. Programs at the LR level are very similar to the S
level, but data objects are represented in a linear memory (the heap). Thus at the
LR level programs and expression evaluation proceeds similarly to the higher level,
but the effect of a CONS, say, is to change the addresses in the heap rather than to
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produce an ordered pair. Ignoring the S level then, the transformation to the LR
level preserves programs and changes the data representation. The transformation
to the P level preserves data representation but changes the programming language
and thus the proof is there concerned with showing that the pointer manipulation
described abstractly and atomically at the LR level is mirrored by that done by
the appropriate sequence of Piton instructions.

5.1 The Common Sub-Expression Level

The Logic appears to contain the special form LET. For instance, one can write the
expression:

(LET ((X (FN Y))) (COES X X))

If this expression were in Common Lisp, then (FN Y) would only be evaluated once
and the result used as the value of X in the CONS expression. However, in the Logic
LET is an abbreviation that allows users of Nqthm to more easily type formulas in
the Logic (see [6]). The LET expression is just an abbreviation for:

(CoNs (FN Y) (FN Y))

Since there is no method for the user to specify to the compiler that certain ex-
pressions should only be evaluated once, the compiler should remove common sub-
expressions. Any efficient implementation of the Logic must remove common sub-
expressions.

In the first step of the compiler this problem is considered. Imagine translating
a Logic expression and association list into an “S-STATE”. An S-STATE is a state
of an abstract computing machine like V&C$ but which has provisions for storing
and retrieving the values of previously encountered expressions. S-STATEs are
represented by a new shell:

SHELL DEFINITION

add the shell S-STATE of 7 arguments, with

recognizer function symbol S-STATEP, and

accessors S-PNAME, S-P0S, S-ANS, S-PARAMNS,
S-TEMPS, S-PROGS and S-ERR-FLAG.

The S-STATE contains a “program counter” which consists of the S-PNAME and
S-P0S fields. The S-PNAME field contains the name of the current program, and
the S-POS field determines the current expression. The S—ANS field contains the
result of evaluating an S-STATE. The S-PARAMS field corresponds directly to the
alist of V&C$. S-TEMPS contains an alist of triples: an expression, a boolean, and
a value. It is used to store the result of a previously evaluated expression. If the
boolean is not F, then the value is the value of evaluating the expression; otherwise
the expression has not been evaluated yet. S-PROGS is a list of programs. Finally,
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S-ERR-FLAG is an error flag; if it is ’RUN then an error has not been encountered.
If it has any other value an error was found.

The translation from the Logic to the S level is done by LOGIC->S, which is
defined as follows:

DEFINITION
(LOGIC->S EXPR ALIST FUN-NAMES)

(S-STATE ’MAIN
NIL
NIL
ALIST
NIL
(CONS (LIST ’MAIN (STRIP-CARS ALIST) NIL EXPR)
(S-CONSTRUCT-PROGRAMS (REMOVE-DUPLICATES FUN-NAMES)))
’RUN)

Programs at the S level are lists of the form:

(name (vg vi ... Vp—1)
(to t1 ... tr—1)
expr),
where name is the name of the program and is some literal atom; vg, ..., v_1 are
the n > 0 formal parameters of the program and are literal atoms; tg, ..., tx_1

are the k > 0 sub-ezpressions of the program and are s-level expressions; and expr
is the body of the program.

The S level introduces three additional forms that allow expressions to be evalu-
ated and their results saved. These forms have the structure (operator ezpression),
where operator is one of the following: (TEMP-FETCH), (TEMP-EVAL), or
(TEMP-TEST). In a proper S-STATE, the ezpression must be defined in the S-TEMPS
alist.

The meaning of the forms depends on the operator. In the description below,
the flag and value are the CADR and CADDR, respectively, of the result of calling
ASSOC on ezpression and the S-TEMPS field of the S-STATE. The forms have the
following meaning:

(TEMP-FETCH) unconditionally fetches the value associated with ezpression from
S-TEMPS. S-ERR-FLAG is set to an error value if flag is F.

(TEMP-EVAL) evaluates the CADR of the form. Return the result and set the flag
field of S-TEMPS to T and the value field to the result.

(TEMP-TEST) if the flag field is not F, then the result is the value field associated
with ezpression; otherwise the result is obtained by evaluating ezpression.
The flag field of S-TEMPS is set to T and the value field is set to the result.

Consider the expression shown on lines [0] to [5] in Figure 5.1 and an equiv-
alent S-level expression with common sub-expressions removed shown on lines [6]
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(IF (CAR (CDR (APP X ’(#1*TRUE . *1*FALSE)))) ; [0]
(CONS (IF (CDR (CDR (APP X ’(*1*TRUE . *1*FALSE)))) ;3 [1]
(CONS T X) ;[2]1

(CONS F Y)) ; [31

(CONS T X)) ; [4]1

(CDR (APP X ’(*1%TRUE . *1%FALSE)))) ; [51
’(IF (CAR ((TEMP-EVAL) (CDR (APP X ’(*1*TRUE . *1%FALSE))))) ; [6]
(CONS (IF (CDR ((TEMP-FETCH) (CDR (APP X ’(*1*TRUE . *1%FALSE))))) ;[7]
((TEMP-EVAL) (CONS T X)) ; [8]1

(CONS F Y)) ;[9]1

((TEMP-TEST) (CONS T X))) ; [10]
((TEMP-FETCH) (CDR (APP X ’(*1*TRUE . *1%FALSE))))) 3 [11]

Figure 5.1: An Example of Removing Common Subexpressions

to [11]. There have been two sub-expressions removed in the S-level expression.
The first is (CDR (APP X ’(*1*TRUE . *1*FALSE))) which occurs on lines [0],
[1], and [5]. The second is (CONS T X) on lines [2] and [4]. When the expres-
sion is evaluated, the value for (CDR (APP X ’(*1#TRUE . *1*FALSE))) will be
computed and stored when the execution is at the first occurrence of the expression
on line [6]. Then when the execution reaches the occurrences on lines [7] or [11],
the stored value is used (note in any computation that only one of the occurrences
on lines [7] or [11] will be executed).

If the test expression of the IF at line [7] is not F then we will evaluate
(CONS T X) on line [8] and store the result. If the test is F then (CONS T X)
will not be evaluated when execution reaches line [10]. Therefore, on line [10] we
must test to see if (CONS T X) have been evaluated yet, so there is a (TEMP-TEST)
form there.

5.2 The Resource Representation Level

The next step of compilation translates S-STATEs to an abstract machine that
represents the objects in the Logic in terms of Piton’s resources (i.e. addresses into
a heap of Piton objects in Piton’s data segment). In addition, this machine saves
control information and intermediate results on the Piton stacks. This machine
is called the LR machine. LR-STATEs are represented by the shell P-STATE, the
same as Piton states. The translation from the S level to the LR level is done
by the function S->LR. Roughly speaking, this translation scans the programs and
parameter values of the S-STATE, finds each constant, represents it in the heap and
replaces the constant by the heap address allocated.

DEFINITION
(S->LR S FHEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE)



Technical Report #383 59
January 6, 1993

;3 Returns an P-STATE.
;3 FREE-HEAP-SIZE is number of free nodes in resulting P-STATE
(LET ((TEMP-ALIST (LR-MAKE-TEMP-NAME-ALIST (STRIP-CARS (S-TEMPS S))
(STRIP-CARS (S-PARAMS S))))
(DATASEG-TABLE (LR-DATA-SEG-TABLE (S-PROGS S)
(S-PARAMS S)
FHEAP-SIZE)))
(LET ((RETURN-PC
(TAG °PC
(CONS (S-PHNAME S)
(LR-P-PC-1 (LR-COMPILE-BODY T
(S-BODY (S-PROG S))
TEMP-ALIST
(CDR DATASEG-TABLE))
(S-POS $))))))
(S->LR1 S
(P-STATE NIL
(LR-INITIAL-CSTK (S-PARAMS S)

TEMP-ALIST
(CDR DATASEG-TABLE)
RETURN-PC)

NIL

NIL

(CAR DATASEG-TABLE)

MAX-CTRL

MAX-TEMP

WORD-SIZE

NIL)

(CDR DATASEG-TABLE))))

S—>LR calls the function S->LR1 which compiles the S level programs to produce
LR level programs and creates an LR level program counter. This compilation step
just replaces constants by heap addresses that represent them. The definition of
S->LR1 is shown here:

DEFINITION

(S->LR1 S L TABLE)

(P-STATE (TAG ’PC (CONS (S-PNAME S) (S-POS S)))
(P-CTRL-STK L)
(P-TEMP-STK L)
(LR-COMPILE-PROGRAMS (S-PROGS S) TABLE)
(P-DATA-SEGMENT L)
(P-MAX-CTRL-STK-SIZE L)
(P-MAX-TEMP-STK-SIZE L)
(P-WORD-SIZE L)
(S-ERR-FLAG S))

The function LR-DATA-SEG-TABLE (shown on page 123) gathers all the constants
in the S-STATE and produces a data-segment and a table that gives the address
of each constant. On each constant LR-DATA-SEG-TABLE calls LR-COMPILE-QUOTE.
Constants can be in the programs of the S-STATE as well as the parameters of the
S-STATE. The function LR-INITIAL-CSTK constructs the initial control stack for



60 A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation

the LR state. The initial temporary stack is empty. The only parts of the LR state
that are different from the Piton P-STATE are the pc and the programs.

LR-COMPILE-QUOTE is shown here:

DEFINITION
(LR-COMPILE-QUOTE FLAG DBJECT HEAP TABLE)
;3 LR-COMPILE-QUOTE returns a pair, the new HEAP and the new TABLE.
(COND ((EQUAL FLAG ’LIST)
(IF (LISTP OBJECT)
(LET ((CAR-PAIR (LR-COMPILE-QUOTE T (CAR OBJECT) HEAP TABLE)))
(LR-COMPILE-QUOTE ’LIST
(CDR OBJECT)
(CAR CAR-PAIR)
(CDR CAR-PAIR)))
(CONS HEAP TABLE)))
((DEFINEDP OBJECT TABLE)
(CONS (DEPOSIT (TAG ’HAT
(ADD1 (UNTAG (FETCH (CDR (ASSOC OBJECT TABLE))
HEAP))))
(CDR (ASSOC OBJECT TABLE))
HEAP)
TABLE))
((LISTP OBJECT)
(LET ((PAIR (LR-COMPILE-QUOTE ’LIST
(LIST (CAR OBJECT) (CDR OBJECT))
HEAP
TABLE)))
(CONS (LR-ADD-TO-DATA-SEG (CAR PAIR)
(LR-NEW-CONS (CDR (ASSOC
(CAR OBJECT)
(CDR PAIR)))
(CDR (ASSOC
(CDR OBJECT)
(CDR PAIR)))))
(CONS (CONS OBJECT (FETCH (LR-FP-ADDR) (CAR PAIR)))
(CDR PAIR)))))
((NUMBERP OBJECT)
(CONS (LR-ADD-TO-DATA-SEG HEAP
(LR-NEW-NODE (TAG ’NAT 0)
(TAG ’NAT (LR-ADD1-TAG))
(TAG ’NAT OBJECT)
(LR-UNDEF-ADDR)))
(CONS (CONS OBJECT (FETCH (LR-FP-ADDR) HEAP)) TABLE)))
((TRUEP OBJECT)
(CONS (LR-ADD-TO-DATA-SEG HEAP (LR-NEW-NODE (TAG ’NAT 0)
(TAG ’NAT (LR-TRUE-TAG))
(LR-UNDEF-ADDR)
(LR-UNDEF-ADDR)))
(CONS (CONS OBJECT (FETCH (LR-FP-ADDR) HEAP)) TABLE)))
(T ; Assume it is undefined
(CONS HEAP
(CONS (CONS OBJECT (LR-UNDEF-ADDR)) TABLE))))
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5.3 The Piton level

The final step in the compilation is to replace the LR programs and the LR program
counter by Piton programs and a Piton program counter. The translation to the
Piton level is done by the function LR->P shown here:

DEFINITION

(LR->P L)

(P-STATE (LR-P-PC L)
(P-CTRL-STK L)
(P-TEMP-STK L)
(COMP-PROGRAMS (P-PROG-SEGMENT L))
(P-DATA-SEGMENT L)
(P-MAX-CTRL-STK-SIZE L)
(P-MAX-TEMP-STK-SIZE L)
(P-WORD-SIZE L)
(P-PSW L))

The translation involves translating the pc of the LR state, which is done by
the function LR-P-PC, and translating the programs of the LR state, which is done
by the function COMP-PROGRAMS.

DEFINITION
(COMP-PROGRAMS PROGRAMS)

(APPEND (COMP-PROGRAMS-1 T PROGRAMS)
(P-RUNTIME-SUPPORT-PROGRAMS))

COMP-PROGRAMS compiles the LR level programs by calling the function
COMP-PROGRAMS-1 on the programs and then appends the code for the predefined
SUBRs

DEFINITION
(COMP-PROGRAMS-1 FIRSTP PROGRAMS)
(IF (LISTP PROGRAMS)
(CONS (LR-MAKE-PROGRAM (NAME (CAR PROGRAMS))
(FORMAL-VARS (CAR PROGRAMS))
(TEMP-VAR-DCLS (CAR PROGRAMS))
(COMP-BODY FIRSTP
(PROGRAM-BODY (CAR PROGRAMS))
(FORMAL-VARS (CAR PROGRAMS))
(TEMP-VAR-DCLS (CAR PROGRAMS))))
(COMP-PROGRAMS-1 F (CDR PROGRAMS)))
NIL)
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Chapter 6

Proof of Correctness

The correctness proof is broken down into the proof of four commuting diagrams
as shown in Figure 6.1. This separation makes for some elegance and modularity
in the proof, but it is actually more important. Invariants on the heap which are
crucial to the LR level, e.g. the unique representation of some data, and which are
easily established in view of the very stylized pointer smashing allowed by the LR
language, would be impossible to establish if the programming language allowed
the no-holds barred manipulations permitted (but in fact never engaged in) at the
Piton level. This phenomenon was described by Moore in [23] and the layering
here was modeled on his. The first commuting sub-diagram shows the equivalence
of V&C$ and the interpreter L-EVAL, the definition of which is:

DEFINITION
(L-EVAL FLAG EXPR ALIST CLK)
(COND ((EQUAL FLAG ’LIST)
(IF (LISTP EXPR)
(CONS (L-EVAL T (CAR EXPR) ALIST CLK)
(L-EVAL ’LIST (CDR EXPR) ALIST CLK))
NIL))
((ZEROP CLK) F)
((LITATOM EXPR) (LIST (CDR (ASSOC EXPR ALIST))))
((HLISTP EXPR) (LIST EXPR))
((EQUAL (CAR EXPR) ’QUOTE) (LIST (CADR EXPR)))
((EQUAL (CAR EXPR) ’IF)
(LET ((TEST (L-EVAL T (CADR EXPR) ALIST CLK)))
(IF TEST
(IF (CAR TEST)
(L-EVAL T (CADDR EXPR) ALIST CLK)
(L-EVAL T (CADDDR EXPR) ALIST CLK))
)
((MEMBER F (L-EVAL ’LIST (CDR EXPR) ALIST CLK)) F)
((SUBRP (CAR EXPR))
(LIST (APPLY-SUBR (CAR EXPR)
(STRIP-CARS (L-EVAL ’LIST (CDR EXPR) ALIST CLK)))))
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<expression, alist> — V&C$ — value
A

Y
<expression, alist> — L-EVAL — value
A

S-STATE > S-EVAL — S-STATE
A
Y
LR-STATE »LR-EVAL — LR-STATE
A
Y
P-STATE > P > P-STATE

Figure 6.1: Interpreter Equivalence Diagram

(T (L-EVAL T
(BODY (CAR EXPR))
(PAIRLIST (FORMALS (CAR EXPR))
(STRIP-CARS (L-EVAL °LIST (CDR EXPR) ALIST CLK)))
(SUB1 CLK))))

The interpreter L-EVAL is very similar to the Logic interpreter V&C$. The
interpreter V&C$ takes three arguments: FLAG, EXPR and ALIST. When it is given
a FLAG that is not ’LIST it returns either a value-cost pair or F. The CAR of the
value-cost pair is the value of the expression and the CDR is cost of evaluating the
expression. V&C$ returns F if there is no cost large enough to evaluate EXPR.

L-EVAL takes four arguments. Three are the same as V&C$: FLAG, EXPR, and
ALIST. The fourth argument, CLK, serves as a bound on the number of function
applications that can be done. L-EVAL does not compute the costs that V&C$ does.
However, it does produce the same value for the expression. This fact is embodied
in the following theorem:

THEOREM 2 (V&C$-L-EVAL-EQUIVALENCE)

(IMPLIES (OR (AND (EQUAL FLAG ’LIST)
(NOT (MEMBER F
(L-EVAL FLAG EXPR ALIST CLOCK))))
(AND (NOT (EQUAL FLAG °LIST))
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(HOT (EQUAL (L-EVAL FLAG EXPR ALIST CLOCK)
F))))
(AND (EQUAL (L-EVAL FLAG EXPR ALIST CLOCK)
(IF (EQUAL FLAG ’LIST)
(REMOVE-COSTS (V&C$ FLAG EXPR ALIST))
(LIST (CAR (V&C$ FLAG EXPR ALIST)))))
(OR (AND (EQUAL FLAG ’LIST)
(NOT (MEMBER F (V&C$ FLAG EXPR ALIST))))
(AND (NOT (EQUAL FLAG ’LIST))
(HOT (EQUAL (V&C$ FLAG EXPR ALIST)
F)))N)N

where the function REMOVE-COSTS is defined as follows:

DEFINITION

(REMOVE-COSTS LIST)

(IF (LISTP LIST)
(CONS (LIST (CAAR LIST)) (REMOVE-COSTS (CDR LIST)))
NIL)

Theorem 2 states that if L-EVAL returns a non-F value then it computes the
same result as V&C$ does. However, this theorem would be trivially satisfied if
L-EVAL always returned F. The following theorem states that if the CLK argument
to L-EVAL is at least one more that the cost computed by V&C$ (assuming V&C$
can compute the cost), then L-EVAL returns the same value as V&C$.

THEOREM 3 (L-EVAL-NOT-F-V&C$-EQUIVALENCE)

(IMPLIES (OR (AND (EQUAL FLAG ’LIST)
(NOT (MEMBER F (V&C$ FLAG EXPR ALIST)))
(LESSP (SUM-CDRS (V&C$ FLAG EXPR ALIST)) CLOCK))
(AND (NOT (EQUAL FLAG ’LIST))
(NOT (EQUAL (V&C$ FLAG EXPR ALIST) F))
(LESSP (CDR (V&C$ FLAG EXPR ALIST)) CLOCK)))
(AND (EQUAL (L-EVAL FLAG EXPR ALIST CLOCK)
(IF (EQUAL FLAG ’LIST)
(REMOVE-COSTS (V&C$ FLAG EXPR ALIST))
(LIST (CAR (V&C$ FLAG EXPR ALIST)))))
(OR (AND (EQUAL FLAG ’LIST)
(NOT (MEMBER F (V&C$ FLAG EXPR ALIST))))
(AND (HOT (EQUAL FLAG ’LIST))
(HOT (EQUAL (V&C$ FLAG EXPR ALIST) F))))))

The commuting sub-diagrams of Figure 6.1 that map S-STATEs and LR-STATEs
correspond to a different layer, each of which is formalized independently. This
requires the formalization of two intermediate abstract machines. The first of these
machines is called the “S” machine, which is defined by an interpreter S-EVAL which
interprets S-STATEs. The second machine is called the “LR” machine and is defined
by an interpreter LR-EVAL, which interprets LR-STATEs.
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The most difficult part of developing the proof of each layer was the formaliza-
tion of a “proper state” predicate and the proof that this predicate was maintained
by the interpreter at that level. The proof of correctness requires states that are
proper.

The proofs of the correspondence between the Logic and the S machine and
the S machine and the LR machine both proceed in three parts. The definitions
of LOGIC->S and S->LR are not general enough to allow an inductive proof of the
correspondence between the upper and lower machines. Therefore, the theorem
is generalized to look at “analogous” states (the state at the Logic level can be
considered to be the expression, variable alist, and the programs) and show that
the upper and lower machines produce the same result. The first theorem shows
that the final states produce the same result given that the initial state is a proper
one, and that the final state of the lower machine is not an error state. The second
theorem adds some hypothesis under which the final state of the lower machine is
guaranteed not to be an error state. Finally, the translators (LOGIC->S and S->LR)
are shown to produce proper states when given proper states and to satisfy the
added hypothesis to guarantee the final state is not an error state.

6.1 The S layer

The semantics of the S layer are defined operationally by the interpreter S-EVAL.
S-EVAL takes three arguments: FLAG which is the same mutual recursion flag as
V&C$ and L-EVAL; S an S-STATE; and C which is same as the clock argument, CLK of
L-EVAL. S-EVAL returns an S-STATE; the S—-ANS field of the S-STATE contains the re-
sult of evaluating S. The “proper state” predicate for the S level is S-GOOD-STATEP,
which also ensures that the programs of the S level state are analogous to the cor-
responding programs in the Logic.

DEFINITION
(S-GOOD-STATEP S C)

(AND (DEFINEDP (S-PHAME S) (S-PROGS S))
(EQUAL (CAR (CAR (S-PROGS S))) ’MAIN)
(S-PROGRAMS-PROPERP (S-PR0OGS S) (STRIP-LOGIC-FNAMES (CDR (S-PROGS S))))
(S-PROGRAMS-0KP (CDR (S-PROGS S)))
(EQUAL (STRIP-CARS (S-TEMPS S)) (PLIST (S-TEMP-LIST (S-PROG S))))
(EQUAL (S-ERR-FLAG S) ’RUN)
(TEMPS-0KP (S-TEMPS S) (S-PARAMS S) C))

The function S-PROGRAMS—-O0KP is the part of S-GOOD-STATEP that ensures that
each of the programs in the S-STATE is analogous to the BODY of the function from
which it is compiled. Recall that S level programs may contain three special forms
for dealing with the storage and retrieval of values for expressions. S-PROGRAMS—0KP
replaces these forms by the expressions they denote and then checks that the result
expression is equal to the BODY of the corresponding Logic function.

The first theorem about L-EVAL and S-EVAL is:
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THEOREM 4 (S-EVAL-L-EVAL-FLAG-T)

(IMPLIES (AND (S-GOOD-STATEP S C) ; (1]
(GDOD-POSP1 (S-POS S) (S-BODY (S-PROG S))) ; [2]
(EQUAL (S-ERR-FLAG (S-EVAL T S C)) ’RUN)) ; [3]

(AND (L-EVAL T
(S-EXPAND-TEMPS T (S-EXPR S))
(S-PARAMS S)
c)
(EQUAL (S-ANS (S-EVAL T S C))
(CAR (L-EVAL T
(S-EXPAND-TEMPS T (S-EXPR S))
(S-PARAMS S)
cINN

Hypothesis [1] ensures that the state S is proper and that the programs of S
are analogous to the corresponding programs in the Logic. Hypothesis [2] states
that the current expression specified in S is good, that it is not part of a quoted
constant. Hypothesis [3] stipulates that the final state produced by S-EVAL is not
an error state. Under these hypotheses, L-EVAL returns non-F and produces the
same result as S-EVAL. The function S-EXPAND-TEMPS maps expressions at the S
level into the Logic. (S-EXPR S) is the current expression of S being considered.
(S-PARAMS S) is the current variable bindings alist.

The second theorem guarantees that the final S-STATE produced by S-EVAL is
not an error state.

THEOREM 5 (S-EVAL-L-EVAL-FLAG-RUN-FLAG-T)

(IMPLIES (AND (S-GOOD-STATEP S C) ;3 [1]
(GOOD-POSP FLAG (S-POS S) (S-BODY (S-PROG S))) ; [2]
(S-ALL-TEMPS-SETP FLAG ; [31]

(S-EXPR S)

(TEMP-ALIST-TO-SET (S-TEMPS S)))
(S-ALL-PROGS-TEMPS-SETP (S-PROGS S)) ; [4]
(L-EVAL FLAG ; [5]

(S-EXPAND-TEMPS FLAG (S-EXPR S))
(S-PARAMS S)

c)
(S-CHECK-TEMPS-SETP (S-TEMPS S)) ; [61
(NOT (EQUAL FLAG °LIST))) 3 [71
(AND (EQUAL (S-ERR-FLAG (S-EVAL FLAG S C)) ’RUN)

D))

Finally, LOGIC->S is shown (under certain conditions) to produce a state S on
which the hypotheses of Theorem 5 labeled [1], [3], [4] and [6] hold. Accord-
ingly, the following theorem can be proved.

THEOREM 6 (LOGIC->S-0K)
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(IMPLIES (AND (L-PROPER-EXPRP T EXPR PROGRAM-NAMES (STRIP-CARS ALIST)) ;[1]

(L-PROPER-PROGRAMSP PROGRAM-NAMES) ;s [2]
(ALL-LITATOMS (STRIP-CARS ALIST)) ; [31
(L-EVAL T EXPR ALIST CLOCK)) ; [4]1

(EQUAL (S-ANS (S-EVAL T
(LOGIC->S EXPR ALIST PROGRAM-NAMES)
CLOCK))
(CAR (L-EVAL T EXPR ALIST CLOCK))))

Theorem 6 states that if EXPR and PROGRAM-NAMES are proper and if L-EVAL re-
turns a non-F result, then the result returned by S-EVAL on the result of compiling
to the “S” level with LOGIC->S is the same as the result returned by LR-EVAL. Hy-
pothesis [1] of Theorem 6 states that EXPR is proper; that is all sub-terms end in
NIL, any user-defined functions called are named in PROGRAM-NAMES, and all refer-
ences to variables are named in (STRIP-CARS ALIST). Hypothesis [2] states that
BODY of the function named by PROGRAM-NAMES are proper expressions. Hypothesis
[3] states that all the variables in ALIST are literal atoms.

6.2 The LR layer

The semantics of the LR layer are defined operationally by the interpreter LR-EVAL.
LR-EVAL takes three arguments: FLAG which is the same mutual recursion flag
as V&C$,L-EVAL and S-EVAL; L an LR-STATE, and C which is same as the clock
arguments, CLK of L-EVAL and C of S—-EVAL. LR-EVAL returns an LR-STATE; the
P-DATA-SEGMENT field of the LR-STATE contains the representation of the result.

LR-EVAL was designed so that it reflects exactly the resource limitations of the
Piton interpreter P. P takes two arguments: P a Piton state; and N a clock that
indicates how many Piton instructions to execute. A P-STATE or an LR-STATE
are considered erroneous if the P-PSW is something other than *RUN or ’*HALT. If
in a given Piton state, P, there is not enough resources to execute the current
instruction, then P will return an erroneous state. Assuming that LR-EVAL and P
are given large enough clocks, LR-EVAL running on L (an LR-STATE) will return an
erroneous state exactly when P running on (LR->P L) returns an erroneous state.

In the first formulation of LR-EVAL without the garbage collector, functions
in the Logic were constructed that checked that there were enough resources to
execute a given construct. These functions applied to an LR-STATE L, return
LR-STATES with a P-PSW of ’RUN if there are enough resources; the stacks and
data segment of the resulting LR-STATE are exactly the same as running P on
(LR->P L).

Part of the definition of LR-EVAL is shown here:

DEFINITION
(LR-EVAL FLAG L C)

(CoND ((NOT (EQUAL (P-PSW L) °RUN)) L)
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((EQUAL FLAG ’LIST)

[...]

)

((ZEROP C) (LR-SET-ERROR L ’0UT-O0F-TIME))

((LITATOM (LR-EXPR L))

(LR-PUSH-TSTK L (LOCAL-VAR-VALUE (LR-EXPR L) (P-CTRL-STK L))))
[...]

The function LR-EXPR takes an LR-STATE and returns the current expression.
The structure of LR-EVAL is quite similar to the structure of V&C$ and L-EVAL:
a big conditional on the structure of the current expression. If LR-EVAL returns
an LR-STATE with a P-PSW of ’RUN, then the TOP of P-TEMP-STK of the resulting
LR-STATE is a heap address that represents the result. When the current expression
is a LITATOM then LR-EVAL pushes the value of the current expression onto the
temporary stack. This is accomplished by the function LR-PUSH-TSTK. The value
of a LITATOM is found by calling the function LOCAL-VAR-VALUE on the LITATOM
and the current control stack.

The function LR-PUSH-TSTK must check that there is enough stack space to
push another object. The definition of LR-PUSH-TSTK (along with the function
LR-SET-TSTK which it calls) are shown here:

DEFINITION

(LR-SET-TSTK S TEMP-STK)

(P-STATE (P-PC S)
(P-CTRL-STK S)
TEMP-STK
(P-PROG-SEGMENT S)
(P-DATA-SEGMENT S)
(P-MAX-CTRL-STK-SIZE S)
(P-MAX-TEMP-STK-SIZE S)
(P-WORD-SIZE S)
(P-PSW S))

DEFINITION
(LR-PUSH-TSTK S VALUE)

(IF (EQUAL (P-PSW S) ’RUN)

(IF (LESSP (LENGTH (P-TEMP-STK S)) (P-MAX-TEMP-STK-SIZE S))
(LR-SET-TSTK S (PUSH VALUE (P-TEMP-STK S)))
(LR-SET-ERROR S ’LR-PUSH-TSTK-FULL-STACK))

s)

In the current version of the compiler whenever something is put on the tem-
porary stack, its reference count must be increased. This greatly complicates de-
termining exactly when a resource error would occur in the corresponding Piton
state. In this version of the proof, functions corresponding to each construct were
defined. However instead of using the Logic to check if there are enough resources,
an appropriate P-STATE is constructed and P is called with an appropriate clock.



70 A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation

Then an LR-STATE is constructed from the P-STATE by replacing the Piton pro-
grams with the LR programs and replacing the Piton program counter with an LR
program counter.

Part of the new definition of LR-EVAL is:

DEFINITION
(LR-EVAL FLAG L C)
(COND ((NOT (EQUAL (P-PSW L) ’RUN)) L)
((EQUAL FLAG °LIST)
[...]
)
((ZEROP C) (P-HALT L ’0UT-0F-TIME))
((LITATOM (LR-EXPR L)) (LR-DO-LITATOM L))
[...]

The function LR-DO-LITATOM calls LR-DO-LITATOM-O0KP to check that there
enough resources. If so it executes P the appropriate number of steps
(given by the function LR-DO-LITATOM-CLOCK) and then constructs, with
P-SET-PC-AND-PROG-SEG, an LR-STATE to return.

The definitions of LR-DO-LITATOM, LR-DO-LITATOM-OKP and
P-SET-PC-AND-PROG-SEG are:

DEFINITION
(P-SET-PC-AND-PROG-SEG P PC PROG-SEG)
(P-STATE PC
(P-CTRL-STK P)
(P-TEMP-STK P)
PROG-SEG
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
(P-PSW P))

DEFINITION
(LR-DO-LITATOM-0KP EXPR P)
(AND (LESSP (ADD1 (LENGTH (P-TEMP-STK P))) (P-MAX-TEMP-STK-SIZE P))
(LESSP (ADD1 (UNTAG (FETCH (CDR (ASSOC EXPR
(BINDINGS
(TOP (P-CTRL-STK P)))))
(P-DATA-SEGMENT P))))
(EXP 2 (P-WORD-SIZE P))))

DEFINITION
(LR-DO-LITATOM L)
(IF (LR-DO-LITATOM-O0KP (LR-EXPR L) (LR->P L))
(P-SET-PC-AND-PROG-SEG (P (LR->P L)
(P-LITATOM-CLOCK (P-DATA-SEGMENT L)))
(P-PC L)
(P-PROG-SEGMENT L))
(LR-RESOURCE-ERROR L ’LR-DO-LITATOM))
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6.2.1 Proper LR states

The “proper state” predicate for the LR level is called LR-PROPER-P-STATESP. The
definition of LR-PROPER-P-STATESP is:

DEFINITION

(LR-PROPER-P-STATEP L)

(AND (PROPER-P-STATEP (LR->P L)) s [1]
(DEFINEDP (AREA-NAME (P-PC L)) (P-PROG-SEGMENT L)) ;[2]
(EQUAL (CAAR (P-PROG-SEGMENT L)) ’MAIN) ; [3]
(ALL-USER-FHAMESP (CDR (STRIP-CARS (P-PROG-SEGMENT L)))) ; [4]
(LR-PROGRAMS-PROPERP (P-PROG-SEGMENT L) ; [5]

(STRIP-LOGIC-FNAMES (CDR (P-PROG-SEGMENT L)))
(P-DATA-SEGMENT L))
(LR-PROPER-P-CTRL-STKP (P-CTRL-STK L) ; [6]
(AREA-NAME (P-PC L))
(P-PROG-SEGMENT L)
(P-DATA-SEGMENT L))

(LR-GOOD-PTRPS (P-TEMP-STK L) (P-DATA-SEGMENT L)) 3 [7]
(ALL-NOT-UNDEF-ADDRS (P-TEMP-STK L)) ; [8]
(LR-PROPER-HEAPP (P-DATA-SEGMENT L)) ; [9]
(LR-PROPER-REF-COUNTSP (LR-MAX-NODE (P-DATA-SEGMENT L)) ; [10]

(P-TEMP-STK L)
(P-CTRL-STK L)
(P-PROG-SEGMENT L)
(P-DATA-SEGMENT L))
(EQUAL (VALUE (AREA-NAME (LR-ALLOC-NODE-JUMP-TABLE-ADDR)) s [11]
(P-DATA-SEGMENT L))
(LR-MAKE-ALLOC-NODE-JUMP-TABLE)))

The eleven conjuncts of this definition can be paraphrased as follows. [1]
compiling L to Piton (via LR->P) produces a proper P-STATE; [2] The program
named by the PC of L is defined in the L program segment; [3] the name of
the first program is *MAIN; [4] the remaining names of programs in the program
segment are proper names for user-defined functions; [5] the program segment
is well formed; [6] the control stack contains pointers to nodes that are not on
the free list; [7] the temporary stack contains pointers to nodes that are not on
the free list; [8] all the addresses on the temporary stack are not the undefined
node; [9] the data segment forms a proper heap; [10] all the reference counts
are proper; and [11] the value of the array in the global data area named by
(AREA-NAME (LR-ALLOC-NODE-JUMP-TABLE-ADDR)) contains the proper table.!

Some of the interesting aspects of LR-PROPER-P-STATEP will be explained fur-
ther here. The function LR-PROPER-HEAPP is defined as follows:

DEFINITION
(LR-PROPER-HEAPP DATA-SEG)

(AND (LR-MINIMUM-HEAPP DATA-SEG)

! Currently the jump table used by the internal function I-ALLOC-NODE is a constant; however,
when user-defined shells are added, it will need entries for each user-defined shell.
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(LR-NODEP (LR-MAX-NODE DATA-SEG) DATA-SEG)
(LR-PROPER-FREE-LISTP DATA-SEG)
(LR-PROPER-HEAPP1 (LR-MAX-NODE DATA-SEG) DATA-SEG))

The function LR-PROPER-FREE-LISTP is defined as:

DEFINITION
(LR-PROPER-FREE-LISTP DATA-SEG)

(AND (ADPP (UNTAG (LR-FP-ADDR)) DATA-SEG)
(EQUAL (FETCH (LR-MAX-NODE DATA-SEG) DATA-SEG) (LR-UNDEF-ADDR))
(LR-CHECK-FREE-NODES (LR-FETCH-FP DATA-SEG)
(LR-FREE-LIST-NODES (LR-MAX-NODE DATA-SEG)
DATA-SEG)
DATA-SEG
(LR-MAX-NODE DATA-SEG)))

LR-PROPER-FREE-LISTP needs to ensure that the free list is proper. The main
property the free list needs is that changes to it should not affect objects that are
still active. The free list must be scanned to ensure that none of the nodes on
the free list are in use. However, since it is necessary to prove that the algorithm
terminates, it is impossible to simply follow the free pointer. This is similar to the
problems with defining the function VALP discussed in Section 4.4.

The solution used here consists of two steps. First, the entire heap is scanned
and all nodes that could possibly be on the free list because the node’s refer-
ence count field is not a Piton natural, are collected. The nodes are collected by
the function LR-FREE-LIST-NODES. The second step is to start with the address
stored in the Piton variable FREE-PTR and traverse the free list. The function
LR-CHECK-FREE-NODES checks that each node on the free list is a member of the
list of nodes, deleting each node checked from the list. This algorithm terminates
since the list of nodes gets shorter on each recursion. If all nodes that are on the
free list are members of the list of nodes, then since the list of nodes contains no
nodes that are in use, changes to the free list cannot possibly affect nodes in use.

The function LR-PROPER-REF-COUNTSP is defined as:

DEFINITION
(LR-PROPER-REF-COUNTSP MAX-ADDR TEMP-STK CTRL-STK PROG-SEG DATA-SEG)
(IF (LESSP (OFFSET MAX-ADDR) (LR-NODE-SIZE))
T
(LET ((SUB-ADDR (SUB-ADDR MAX-ADDR (LR-NODE-SIZE))))
(AND (OR (EQUAL SUB-ADDR (LR-UNDEF-ADDR))
(IF (EQUAL (TYPE (FETCH SUB-ADDR DATA-SEG)) ’NAT)
(HOT (LESSP (ADD1 (UNTAG (FETCH SUB-ADDR DATA-SEG)))
(TOTAL-0CCURRENCES SUB-ADDR
TEMP-STK
CTRL-STK
PROG-SEG
DATA-SEG)))
(EQUAL (TOTAL-OCCURRENCES SUB-ADDR
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TEMP-STK
CTRL-STK
PROG-SEG
DATA-SEG)
0)))
(LR-PROPER-REF-COUNTSP SUB-ADDR
TEMP-STK CTRL-STK PROG-SEG DATA-SEG))))

LR-PROPER-REF-COUNTSP ensures that the reference counts are correct. The
function TOTAL-OCCURRENCES counts the number of times a node occurs in the
temporary stack, control stack, the program segment, or the data segment. If the
reference count field of a node is not a Piton natural then the TOTAL-OCCURRENCES
of that node should be 0. If the reference count field is a Piton natural, then the
TOTAL-OCCURRENCES of that node should be at least one more than the reference
count that is stored. One should note that if the TOTAL-OCCURRENCES is greater
than one more than the reference count, that node will not be garbage collected.

6.2.2 Proof of Correspondence

The first theorem proved about the correspondence between the S level and the
LR level is:?

THEOREM 7 (LR-EVAL-S-EVAL-EQUIVALENCE)

(IMPLIES (AND (LR-PROPER-P-STATEP (S->LR1 S L TABLE)) ; [1]
(GOOD-POSP FLAG (S-POS S) (S-BODY (S-PROG S))) ;[2]1
(LR-S-SIMILAR-STATESP (S-PARAMS S) ; [31

(S-TEMPS S)
(s->LR1 S L TABLE)
TABLE)
(S-GOOD-STATEP S C) ; [4]1

(EQUAL (P-PSW (LR-EVAL FLAG (S->LR1 S L TABLE) C)) ’RUN)) ;[5]
(AND (LR-S-SIMILAR-STATESP (S-PARAMS S)
(S-TEMPS (S-EVAL FLAG S C))
(LR-EVAL FLAG (S->LR1 S L TABLE) C)
TABLE)
(LR-CHECK-RESULT (IF (EQUAL FLAG ’LIST) °LIST T)
(S-ANS (S-EVAL FLAG S C))
(P-TEMP-STK (LR-EVAL FLAG
(S->LR1 S L TABLE)
c))
(P-DATA-SEGMENT (LR-EVAL FLAG
(S->LR1 S L TABLE)
c)))
(EQUAL (S-ERR-FLAG (S-EVAL FLAG S C)) ’RUN)))

2This theorem is similar to a theorem with the same name that has been proven mechanically
about a prototype of the implementation that did not have a garbage collector. This theorem is
shown in Appendix F on page 133. Work continues on producing a mechanically checked proof
for the compiler with a garbage collector added.
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The function LR-S-SIMILAR-STATESP ensures that S (an S-STATE) corresponds
to L (an LR-STATE). The function S->LR1 returns an LR-STATE that is the same as
L except with the program segment equal to the compilation of the programs of S
and the program counter corresponding to the program counter of S. The function
LR-CHECK-RESULT ensures that the value returned by S-EVAL is the same as the
result represented by the top of the temporary stack of the LR-STATE returned
by LR-EVAL. When the first argument to LR-CHECK-RESULT, S-EVAL, and LR-EVAL
is ?LIST, a list of arguments is being evaluated. LR-CHECK-RESULT, in this case,
ensures the top entries on the temporary stack represent the same values the result
returned by S-EVAL (which is given by the S-ANS field of the result).

The definition of LR-CHECK-RESULT is:

DEFINITION.
(LR-CHECK-RESULT FLAG VALUE TEMP-STK DATA-SEG)

(IF (EQUAL FLAG ’LIST)
(LR-CHECK-RESULT1 (REVERSE VALUE) TEMP-STK DATA-SEG)
(LR-VALP VALUE (TOP TEMP-STK) DATA-SEG))

The proof of Theorem 7 is by a complicated induction. The induction is similar
to that suggested by the definition of S-EVAL, however L must be modified similarly
to the way LR-EVAL modifies it.

The following theorem is used to relieve the hypothesis labeled [5] of Theo-
rem 7.3

THEOREM 8 (LR-EVAL-S-EVAL-FLAG-RUN)

(IMPLIES (AND (LR-PROPER-P-STATEP (LR->P (S->LR1 S L TABLE)))
(GOOD-POSP FLAG (S-POS S) (S-BODY (S-PROG S)))
(LR-S-SIMILAR-STATESP (S-PARAMS S)

(S-TEMPS S)
(S->LR1 S L TABLE)
TABLE)

(S-GOOD-STATEP S C)
(S-ALL-TEMPS-SETP FLAG
(IF (EQUAL FLAG ’LIST)
(S-EXPR-LIST §)
(S-EXPR S))
(TEMP-ALIST-TO-SET (S-TEMPS S)))
(S-ALL-PROGS-TEMPS-SETP (S-PROGS S))
(S-CHECK-TEMPS-SETP (S-TEMPS S))
(EQUAL (S-ERR-FLAG (S-EVAL FLAG S C)) ’RUN)
(LR-CHECK-RESOURCESP FLAG S L C)
(HOT (LESSP (P-WORD-SIZE L) (S-MAX-SUBR-REQS))))
(EQUAL (P-PSW (LR-EVAL FLAG (S->LR1 S L TABLE) C)) ’RUN))

3This theorem is similar to a theorem with the same name, that has been proven mechanically
about a prototype of the implementation that did not have a garbage collector. This theorem is
shown in Appendix F on page 134. Work continues on producing a mechanically checked proof
for the compiler with a garbage collector added.
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6.3 The Piton layer

The proof of the correspondence between the LR level and Piton can be made with-
out resorting to having similar states. The function, LR->P, which maps LR-STATEs
to P-STATES, is used in the main proof at this level. The main theorem of this level
so.d

is:

THEOREM 9 (LR-EVAL-P-PC-EQUIVALENCE)

(IMPLIES (AND (LR-PROPER-P-STATEP L)
(GDOD-POSP FLAG
(OFFSET (P-PC L))
(PROGRAM-BODY (P-CURRENT-PROGRAM 1.)))
(OR (NOT (EQUAL FLAG ’LIST))

(NOT (EQUAL (CAR (LR-EXPR-LIST L)) ’IF)))
(LR-PROPER-FORMALSP (CDR (P-PROG-SEGMENT L)))
(EQUAL (P-PSW (LR-EVAL FLAG L C)) ’RUN))

(EQUAL (P (LR->P L) (P-CLOCK1 FLAG L C))
(P-SET-PC (LR->P (LR-EVAL FLAG L C))
(P-FINAL-PC FLAG L 0))))

The conclusion of this theorem equates two Piton states. The left hand side
of the equality is the result of running Piton on the (LR->P L), which is the
compilation of L. The right hand side evaluates L (an LR-STATE) using LR-EVAL
and then compiles with LR->P the result. The function LR->P produces a P-STATE
that is the same as the state it is given except for the P-PC and P-PROG-SEGMENT
fields. LR-EVAL does not change the P-PROG-SEGMENT field of the argument L.
A state returned by LR-EVAL has a valid LR program counter in the P-PC field.
However the P-PC of the result of mapping this state with LR->P is not necessarily
the same as the P-PC of the left hand side. Therefore we use the function P-SET-PC
that takes a P-STATE and a Piton program counter and returns a new P-STATE,
which is the same as the argument but with the P-PC field set to the program
counter argument.

The proof of this theorem involves showing that for each big step done by
LR-EVAL, the Piton interpreter P run the proper number of steps produces the
same result. In the completed proof of the compiler without the garbage collec-
tor, LR-EVAL is defined with functions that use the Logic to construct a correct
LR-STATE. The proof involves showing that these manipulations are the same as
done by the compiled Piton code.

In the current version of the compiler with the garbage collector, the manip-
ulations at the LR level are done by constructing an appropriate P-STATE and
applying P with an appropriate clock. Then an LR-STATE is constructed from the
resulting P-STATE by putting the LR programs back and a proper LR program

4This theorem is similar to a theorem with the same name, that has been proven mechanically
about a prototype of the implementation that did not have a garbage collector. This theorem is
shown in Appendix F' on page 134. Work continues on producing a mechnically checked proof for
the compiler with a garbage collector added.
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counter. Thus the mechanical proof of correspondence should be straightforward.
That the two levels are so close seems to suggest that the LR level is not neces-
sary and instead the compiler should just go straight to Piton. This is not so.
At the LR level the function LR-PROPER-P-STATEP is the “good state” predicate
on LR-STATEs. LR-PROPER-P-STATEP an invariant on LR-STATEs under LR-EVAL.
Imagine a corresponding predicate P-PROPER-P-STATEP defined on P-STATE such
that the following is true:
(IFF (LR-PROPER-P-STATEP L) (P-PROPER-P-STATEP (LR->P L)))

This proposed predicate would not be preserved by running P arbitrarily, because
it does not hold of intermediate states.

From the theorems 2, 3, 4, 5, 6, 7, 8 and 9 the final correctness theorem,
Theorem 1, named LOGIC->P-0K-REALLY (shown on page 48), can be proven.



Chapter 7

Future work

7.1 Finish compiler

The compiler and the mechanical proof are not complete at this time. The current
version of the compiler (which includes the garbage collector) does not include
user-defined shells and includes only the built-in SUBRS CAR, CDR, CONS, FALSE,
FALSEP, LISTP, NLISTP, TRUE and TRUEP (as well as IF). The proof of the cor-
rectness of this version is not quite complete. The proof that the proper state
function LR-PROPER-P-STATEP is preserved by the interpreter LR-EVAL has been
completed. The proof of the theorems LR-EVAL-S-EVAL-EQUIVALENCE (on page 73)
and LR-EVAL-S-EVAL-FLAG-RUN (on page 74) should be straightforward. The lem-
mas needed for the proof should be very similar to the lemmas need for the first
prototype compiler (without a garbage collector). It is estimated that completing
the proof of the prototype compiler should take another two man-months. Com-
pletion of the rest of the compiler is estimated to take two to three additional
man-months. The completion of this part will involve mostly the proofs of each of
the pre-defined SUBRS.

There are two possible ways to add the additional SUBRS to the compiler.
They could each be coded by hand and correctness proofs could be done for each.
Most of the functions could be compiled by the compiler and then hand optimized.
Alternatively, most of the additional SUBRS can be compiled by the compiler,
making SUBRS virtually the same as user-defined functions. L-EVAL could be
modified to interpret the SUBRS compiled in this fashion. From that level on
down, the SUBRS could be treated the same as user-defined functions. The func-
tions that would have to be coded by hand are ones whose implementations are
not the same as their definitions. These include ADD1, SUB1, PLUS, DIFFERENCE,
QUOTIENT, REMAINDER and LESSP. In addition, PACK would have to be done by hand
to implement the hash table for storing literal atoms (see section 6). Also, the fol-
lowing functions related to the interpreter for the Logic would have to be compiled

7
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by hand: SUBRP, FORMALS, BODY, and APPLY-SUBR. Finally, the “definitions” of the
functions COUNT and EQUAL are extended each time a new shell is added to the
Logic. These two functions need to be coded by hand. All the other SUBRS can
be compiled with the compiler.

The Logic is somewhat incomplete in that it does not provide functions similar
to BODY and FORMALS that apply to SUBRs. It is possible to list the SUBRs that
are pre-defined in the Logic; however, the user can create new SUBRs by using
ADD-SHELL. There is no way in the Logic to determine how many arguments a shell
constructor takes, to tell what constructor is associated with each accessor or to
find the type restrictions or default functions for a shell accessor. For this reason, it
is necessary to give the entire ADD-SHELL form to the compiler LOGIC->P. LOGIC->P
will have to take an additional argument SHELLS that is a list of ADD-SHELL forms
for the compiler. The specification of the compiler will require that the ADD-SHELL
be the same as an ADD-SHELL in the current history; otherwise, the interpreter
V&C$ might produce a different result than Piton running on the result produced
by the compiler. This specification will require adding axioms to define a function
that can extract various parts of a shell definition from its name.

Constructing a proper call to the compiler is somewhat complex. A user needs
to provide all the names of the functions that need to be compiled and all the
ADD-SHELL forms required. However, it would be a straightforward task to write
a Common Lisp function to construct the proper call to the compiler given an
expression and a variable bindings alist.

7.2 Compiling Common Lisp

Common Lisp [15] is used by a much larger community than the Logic. The Logic
is similar to an applicative subset of Common Lisp. Modifying the compiler to
compile this subset of Common Lisp should be straightforward. Modifying the
correctness proof should not be hard either. The major difference between the
Logic and Common Lisp are the different types. Integers and lists in Common
Lisp are similar to naturals and lists in the Logic. Functions that operate on
naturals in the Logic (e.g., PLUS) would have to be modified to Common Lisp
functions that operate on integers (e.g. +). Functions that operate on lists would
be quite similar. Extending the compiler to handle rational numbers would involve
extensive additional work. Floating point numbers are not supported by Piton or
FM8502. Theoretically, floating point numbers could be implemented in software,
but this would entail much work. A proof of correctness of a compiler with floating
point numbers would be quite a challenge.

Common Lisp has other types that are not in the Logic, specifically arrays of
many different types. Adding arrays to a Common Lisp compiler would require
a more sophisticated allocation scheme. The best solution would require different
areas in the Piton data segment for allocating objects of different types. Objects of
different sizes would have to be allocated in the same data area. This would require
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the garbage collector to compact such data areas or risk running out of space due
to fragmentation. The correctness proof of a compacting garbage collector seems
challenging. Using the correctness proof on Common Lisp programs would put a
large burden on the Common Lisp programmer to prove that the various areas for
objects of different sizes are all large enough.

A common type of array in Common Lisp is the string. Each array element in a
string (and some other types of array as well) requires fewer bits (typically 8) than
a Piton word (which is 32 bits on FM8502). The usual implementation of strings
packs several bytes into one word. There is no support in either Piton or FM8502
for doing byte operations. FM8502 (and subsequently Piton) could be extended
to have byte operations. If Piton does not support byte operations, there are two
alternatives for handling strings. The compiler could allocate a full word for each
character in a string. This is quite wasteful of memory use but is efficient in terms
of execution speed. The second alternative is to pack bytes together and extract
the byte by using logical and operations with appropriate bitmasks and shifting
the result. This is economical in memory use, but would execute slowly.

The verification of a “real” Common Lisp compiler would require solving several
hard problems in addition to the ones mentioned above. First, Common Lisp would
have to be formalized — that is the Common Lisp manual [15] would have to be
described in a formal language. Second, the output language of the compiler would
have to be described formally — as had been noted, Piton, as it stands now, would
not be an adequate target for Common Lisp. Third, some method for verifying
that the input and output of Common Lisp are correctly implemented would have
to be developed. Finally to have a Common Lisp implementation that has been
verified down to a gate level description, as the Ngthm compiler is, requires that
the implementation of the target language be verified as well. This challenges mean
that many years of research are required to produce a verified “real” compiler for
a “real” language like Common Lisp.

7.3 Optimizations

The code generated by the compiler is very simple. There are many optimizations
that could be added. In general, useful optimizations would be ones that eliminate
updating reference counts and additional allocation.

7.3.1 Common Sub-Expressions

The first phase of the compiler was intended to eliminate common sub-expressions.
The major proofs of the top level are general enough that adding a function to
eliminate common sub-expressions should require only a proof that the function
maintains an invariant. Of course, this does not guarantee that the function elimi-
nates all (or even any) sub-expressions. The rest of the proof (which is the largest
part) would remain the same. In a compiler for Common Lisp that includes LET,
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a function that eliminates common sub-expressions would be less important, since
the programmer has a way of saving the values of previously computed expressions
anyway.

7.3.2 Other optimizations

There are many other optimizations that could be made to the code. Since the
Logic has an associated theorem prover Nqthm, it might be possible to prove the
validity of certain optimizations. This seems like a promising research direction.

An example of a useful optimization that might lend itself to proof is the fol-
lowing. Consider the function APP of Figure 3.1, which is shown here again, along
with of its Piton translation.

DEFINITION

(APP X Y)

(IF (LISTP X)
(coms (CAR X) (APP (CDR X) Y))
Y)

(U-aPP (X V) O

(DL
(DL

O E)
0 () (TEST-BOOL-AND-JUMP T L-34))

(DL L-0 () (PUSH-LOCAL X))

(DL L-1 () (FETCH))

(DL L-2 () (ADD1-NAT))

(DL L-3 () (PUSH-LOCAL X))

(DL L-4 () (DEPOSIT))

(DL L-5 () (PUSH-LOCAL X))

(DL L-6 () (CALL LISTP))

(DL L-7 () (CALL I-DECR-REF-COUNT))

(DL L-8 () (PUSH-CONSTANT (ADDR (HEAP . 4))))
L-9
L-1

kbi L-34 () (PUSH-LOCAL Y))
.

The Piton code for the (LISTP X), along with the code for the IF, is shown.
The following steps occur when this code is executed:

1. X is pushed on the temporary stack and its reference count is incremented.
2. the function LISTP is called.
3. LISTP decrements the reference count of X.

4. LISTP pushes the address representing F or T on the stack depending on
whether X points to a node with a tag of CONS.

5. The function LISTP returns.
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6. The reference count of the result returned by LISTP is decremented.

7. If F was returned by the call to LISTP, jump to the instruction labeled L-24,
otherwise fall through to the instruction labeled L-11.

The reference counts for X and the address returned by LISTP have both been
incremented and then decremented. However, neither of these reference counts
could possibly become zero. The reference count of X cannot become zero because
it is always on the control stack. The reference count of the address returned
by LISTP cannot become zero as it is an address representing T or F and these
addresses always have a reference count that is positive. So much time is spent
incrementing and decrementing reference counts with no net effect, when the only
desired effect is to branch depending on whether X points to a node representing a
CONS or not. The Piton code fragment for APP should be:

(U-APP (X Y) O
(DL L-0 () (PUSH-LOCAL X)) ; Push address of node
(DL L-1 () (ADD1-ADDR)) Add to get address of tag
(DL L-2 () (FETCH)) Fetch tag address
(DL L-3 () (PUSH-CONSTANT (NAT 5))) Compare to tag for CONS
(DL L-4 O (EQ))
(DL L-5 () (TEST-BOOL-AND-JUMP F L-34)) ; Jump if tag not CONS

(DL L-34 () (PUSH-LOCAL Y))
.)

The resulting code is more efficient in terms of both program memory and
execution time. There are several optimizations going on at once in this example.
First the function LISTP is coded inline, this is not always better in terms of space.
Second, the incrementing and decrementing of the reference count for X can now
be taken out. Third, the incrementing and decrementing of the result of (LISTP
X) can be removed and the branching can be done on the result of the comparisons
of the tags.

It should be possible to generalize this somewhat. The argument X to the func-
tion LISTP need not be a parameter to the function, it need only be an expression
that is guaranteed to have a reference count of at least one before it is pushed for
the call. For instance, the expression (CAR X) would also have a reference count
of at least one.

7.4 Other Garbage Collection Schemes

The reference count garbage collection scheme used in the Logic implementation
is quite simple. Since the Logic does not contain circular structures, a reference
count scheme is adequate. Common Lisp programs can create circular structures;
the Common Lisp destructive routines RPLACA and RPLACD can modify the CAR
and CDR fields of a CONS cell. If RPLACA and RPLACD are included in the subset



82 A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation

of Common Lisp that is compiled, a reference count garbage collection scheme
would become very complicated. It is unlikely that RPLACA and RPLACD would
become part of a source language of the compiler. This is not because it would
be hard to prove the implementations of them correct, but rather that reasoning
about programs that use destructive operations is generally difficult. Using the
correctness theorem requires reasoning about any programs compiled.

Other garbage collection schemes can handle circular data structures.Mark and
sweep garbage collection schemes can handle circular data structures[10]. They
do not lend themselves well to any real time systems. Most mark and sweep
garbage collection algorithms are not run until the heap is exhausted. Then the
computation stops while free nodes are found. There have been adaptions to mark
and sweep schemes that do a little bit of work each time an allocation is done[2].
These algorithms are more suitable to real time systems. Many garbage collection
algorithms split memory in half. Allocation is done in one half until it has been
filled up. Then all nodes that are in use are copied to the other half, and the first
half becomes the new heap.[28] These algorithms have the advantage that memory
is compacted after each garbage collection. However, they pose some problems for
a formal proof. The proof would have to deal with addresses of objects changing,
while the value of functions applied to those addresses should remain exactly the
same. The current dynamic allocation and compiler algorithms used in the compiler
only used nodes of a fixed size. The benefit of this is that the garbage collector
is much simpler; the drawback is that both time and space are wasted. Future
versions of the compiler should be able to handle nodes of different sizes. Finally,
a garbage collector that runs on a processor separate from the processor doing
the computation would be desirable. As with all proofs of programs involving
parallelism, the proof of such a garbage collector would be very difficult.

7.5 Examples

The compiler has not been tested with hard examples. It is still not known how
difficult it would be to apply the correctness theorem to real programs. Using the
correctness theorem requires proving that the program, under some conditions on
its input, does not exceed the resource limitations imposed by the Piton imple-
mentation. How difficult a task this proof would be for interesting programs is not
known.

The code generated by the compiler is quite simple and straightforward. One of
the goals of this project was to have the implementation of the Logic be reasonably
efficient and usable. It would be useful to try the compiler on moderately large
programs and compare the performance to other implementations (e.g., the Nqthm
theorem prover’s implementation in Common Lisp).



Appendix A

Piton translation of example
program

This chapter shows the Piton state resulting from the following call to the compiler:

(LOGIC->P ’(APP (CONS X (CHANGE-ELEMENTS Y)) ’(*1*TRUE . *1*FALSE))
(LIST (CONS °X F) (CONS ’Y (CONS T (CONS T F))))
> (APP CHANGE-ELEMENTS) 12 20 20 32)

The resulting Piton state is:

(P-STATE ’(PC (MAIN . 0))
7((((X ADDR (HEAP . 4))
(Y ADDR (HEAP . 20)))
(PC (MAIN . 0))))
O
P((MAIN (X Y) O
33 Push X and increment ref count
(DL L-0 () (PUSH-LOCAL X))
(DL L-1 () (FETCH))
(DL L-2 () (ADD1-NAT))
(DL L-3 () (PUSH-LOCAL X))
(DL L-4 () (DEPOSIT))
(DL L-5 () (PUSH-LOCAL X))
33 Push Y and increment ref count
(DL L-6 () (PUSH-LOCAL Y))
(DL L-7 () (FETCH))
(DL L-8 () (ADD1-NAT))
(DL L-9 () (PUSH-LOCAL Y))
(DL L-10 () (DEPOSIT))
(DL L-11 () (PUSH-LOCAL Y))
(DL L-12 () (CALL U-CHANGE-ELEMENTS))
(DL L-13 () (CALL COES))
+ 3 Push address of constant: > (¥1*TRUE . *1*FALSE)
;33 and increment ref count
(DL L-14 () (PUSH-CONSTANT (ADDR (HEAP . 16))))
(DL L-15 () (FETCH))

83
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(DL L-16 (O
(DL L-17 O
(DL L-18 O
(DL L-19 O
(DL L-20 () (CALL U-APP))

;3 Store answer in data-segment
(DL L-21 () (SET-GLOBAL ANSWER))
(DL L-22 () (RET)))

(U-APP (X Y) O
33 Push X and increment ref count

(ADD1-NAT))

(DEPOSIT))

(DL L-0 () (PUSH-LOCAL X))
(DL L-1 () (FETCH))

(DL L-2 () (ADD1-NAT))

(DL L-3 () (PUSH-LOCAL X))
(DL L-4 () (DEPOSIT))

(DL L-5 () (PUSH-LOCAL X))
(DL L-6 () (CALL LISTP))

(PUSH-CONSTANT (ADDR (HEAP .

(PUSH-CONSTANT (ADDR (HEAP .

16))))

16))))

;3 (LISTP X) is on top of stack, decrement its ref
;33 count and branch if it was the address of F

(DL L-7 () (CALL I-DECR-REF-COUNT))

(DL L-8 () (PUSH-CONSTANT (ADDR (HEAP .

(DL L-9 () (EQ))

(DL L-10 () (TEST-BOOL-AND-JUMP T L-34))

33 Push X and increment ref count
(DL L-11 () (PUSH-LOCAL X))

(DL L-12 () (FETCH))

(DL L-13 () (ADD1-NAT))

(DL L-14 () (PUSH-LOCAL X))

(DL L-15 () (DEPOSIT))

(DL L-16 () (PUSH-LOCAL X))

(DL L-17 () (CALL CAR))

33 Push X and increments its reference count

(DL L-18 O
(DL L-19 O
(DL L-20 ()
(DL L-21 O
(DL L-22 O
(DL L-23 () (PUSH-LOCAL X))

(DL L-24 () (CALL CDR))

33 Push Y and increment ref count
(DL L-25 () (PUSH-LOCAL Y))

(DL L-26 () (FETCH))

(DL L-27 () (ADD1-NAT))

(DL L-28 () (PUSH-LOCAL Y))

(DL L-29 () (DEPOSIT))

(DL L-30 () (PUSH-LOCAL Y))

(DL L-31 () (CALL U-APP))

(DL L-32 () (CALL COES))

(DL L-33 () (JUMP L-40))

33 Push Y and increment ref count
(DL L-34 () (PUSH-LOCAL Y))

(DL L-35 () (FETCH))

(DL L-36 () (ADD1-NAT))

(DL L-37 () (PUSH-LOCAL Y))

(DL L-38 () (DEPOSIT))

(PUSH-LOCAL X))
(FETCH))
(ADD1-NAT))
(PUSH-LOCAL X))
(DEPOSIT))

4))))
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(DL L-39 ()
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(PUSH-LOCAL Y))

33 Decrement reference counts of arguments
;3 before returning

L-40
L-41
L-42
L-43
L-44

(DL L-45

(DL L-46 ()
(U-CHANGE-ELEMENTS

(DL
(DL
(DL
(DL
(DL

(PUSH-LOCAL X))

(CALL I-DECR-REF-COUNT))

(pOP))

(PUSH-LOCAL Y))

(CALL I-DECR-REF-COUNT))

(pOP))

(RET)))

(LIST) ()

33 Push LIST and increment ref count

(DL L-0 () (PUSH-LOCAL LIST))
(DL L-1 () (FETCH))

(DL L-2 () (ADD1-NAT))

(DL L-3 () (PUSH-LOCAL LIST))
(DL L-4 () (DEPOSIT))

(DL L-5 () (PUSH-LOCAL LIST))
(DL L-6 () (CALL LISTP))

;3 (LISTP LIST) i3 on top of stack,

;3 decrement its ref count and branch if

;3 it was the address of F

(DL L-7 () (CALL I-DECR-REF-COUNT))

(DL L-8 () (PUSH-CONSTANT (ADDR (HEAP .
(DL L-9 O (EQ))

(DL L-10 () (TEST-BOOL-AND-JUMP T L-55))
33 Push LIST and increment ref count

(DL L-11 (PUSH-LOCAL LIST))

(DL L-12 (FETCH))

(DL L-13 (ADD1-NAT))

(DL L-14 (PUSH-LOCAL LIST))

(DL L-15 (DEPOSIT))

(DL L-16 (PUSH-LOCAL LIST))

(DL L-17 (CALL CAR))

(DL L-18 (CALL TRUEP))

;3 (CAR (TRUEP LIST)) is on top of stack,
;3 decrement its ref count and branch if

33 it was the address of F

(DL L-19 () (CALL I-DECR-REF-COUNT))

(DL L-20 () (PUSH-CONSTANT (ADDR (HEAP .
(DL L-21 () (EQ))

(DL L-22 () (TEST-BOOL-AND-JUMP T L-39))
33 Push address of constant F and

;3 increment ref count

(DL L-23 () (PUSH-CONSTANT (ADDR (HEAP .
(DL L-24 () (FETCH))

(DL L-25 () (ADD1-NAT))

(DL L-26 () (PUSH-CONSTANT (ADDR (HEAP .
(DL L-27 () (DEPOSIT))

(DL L-28 () (PUSH-CONSTANT (ADDR (HEAP .
33 Push LIST and increment ref count

(DL L-29 () (PUSH-LOCAL LIST))

(DL L-30 () (FETCH))

(DL L-31 () (ADD1-NAT))

(DL L-32 () (PUSH-LOCAL LIST))

4)))

4)))

4)))

4)))

4))))
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(DL L-33 () (DEPOSIT))

(DL L-34 () (PUSH-LOCAL LIST))

(DL L-35 () (CALL CDR))

(DL L-36 () (CALL U-CHANGE-ELEMENTS))

(DL L-37 () (CALL COES))

33 Jump around else code

(DL L-38 () (JUMP L-54))

33 Push address of constant T and

;3 increment ref count

(DL L-39 () (PUSH-CONSTANT (ADDR (HEAP . 8))))
(DL L-40 () (FETCH))

(DL L-41 () (ADD1-NAT))

(DL L-42 () (PUSH-CONSTANT (ADDR (HEAP . 8))))
(DL L-43 () (DEPOSIT))

(DL L-44 () (PUSH-CONSTANT (ADDR (HEAP . 8))))
33 Push LIST and tncrement ref count

(DL L-45 () (PUSH-LOCAL LIST))

(DL L-46 () (FETCH))

(DL L-47 () (ADD1-NAT))

(DL L-48 () (PUSH-LOCAL LIST))

(DL L-49 () (DEPOSIT))

(DL L-50 () (PUSH-LOCAL LIST))

(DL L-51 () (CALL CDR))

(DL L-52 () (CALL U-CHANGE-ELEMENTS))

(DL L-53 () (CALL COES))

33 Jump around else code

(DL L-54 () (JUMP L-79))

(DL L-55 () (PUSH-LOCAL LIST))

(DL L-56 () (FETCH))

(DL L-57 () (ADD1-NAT))

(DL L-58 () (PUSH-LOCAL LIST))

(DL L-59 () (DEPOSIT))

(DL L-60 () (PUSH-LOCAL LIST))

(DL L-61 () (CALL TRUEP))

33 (TRUEP LIST) 1s on top of stack,

;3 decrement its ref count and branch if

33 it was the address of F

(DL L-62 () (CALL I-DECR-REF-COUNT))

(DL L-63 () (PUSH-CONSTANT (ADDR (HEAP . 4))))
(DL L-64 O (EQ))

(DL L-65 () (TEST-BOOL-AND-JUMP T L-73))

33 Push address of constant F and

;3 increment ref count

(DL L-66 () (PUSH-CONSTANT (ADDR (HEAP . 4))))
(DL L-67 () (FETCH))

(DL L-68 () (ADD1-NAT))

(DL L-69 () (PUSH-CONSTANT (ADDR (HEAP . 4))))
(DL L-70 () (DEPOSIT))

(DL L-71 () (PUSH-CONSTANT (ADDR (HEAP . 4))))
33 Jump around else code

(DL L-72 () (JUMP L-79))

33 Push address of constant T and

;3 increment ref count

(DL L-73 () (PUSH-CONSTANT (ADDR (HEAP . 8))))
(DL L-74 () (FETCH))
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(CAR

(CDR

(DL L-75 () (ADD1-NAT))

(DL L-76 () (PUSH-CONSTANT (ADDR (HEAP .

(DL L-77 () (DEPOSIT))

(DL L-78 () (PUSH-CONSTANT (ADDR (HEAP .

33 Decrement reference counts of
;3 arguments before returning
(DL L-79 () (PUSH-LOCAL LIST))
(DL L-80 () (CALL I-DECR-REF-COUNT))
(DL L-81 () (POP))
(DL L-82 () (RET)))

(X) ((TEMP (NAT 0)))

;3 First decrement ref count of argument, X

(PUSH-LOCAL X)

(CALL I-DECR-REF-COUNT)

33 Test 1if X 18 a CONS, i.e. has a tag of (HAT 5)

(PUSH-CONSTANT (NAT 1))

(ADD-ADDR)

(FETCH)

(PUSH-CONSTANT (NAT 5))

(EQ)

(TEST-BOOL-AND-JUMP T ARG1)

33 Not a CONS, return address representing 0 first

;3 incrementing ref count.

(PUSH-CONSTANT (ADDR (HEAP . 12)))

(FETCH)

(ADD1-HAT)

(PUSH-CONSTANT (ADDR (HEAP . 12)))

(DEPOSIT)

(PUSH-CONSTANT (ADDR (HEAP . 12)))

(RET)

33 Type is the same, return CAR field first

;3 incrementing REF COUNT

(DL ARG1 () (PUSH-LOCAL X))

(PUSH-CONSTANT (NAT 2))

(ADD-ADDR)

(FETCH)

(SET-LOCAL TEMP)

(FETCH)

(ADD1-NAT)

(PUSH-LOCAL TEMP)

(DEPOSIT)

(PUSH-LOCAL TEMP)

(RET))

(X) ((TEMP (NAT 0)))

;33 First decrement ref count of argument, X

(PUSH-LOCAL X)

(CALL I-DECR-REF-COUNT)

;3 Test if X s a CONS, i.e. has a tag of (HAT 5)

(PUSH-CONSTANT (NAT 1))

(ADD-ADDR)

(FETCH)

(PUSH-CONSTANT (NAT 5))

(EQ)

(TEST-BOOL-AND-JUMP T ARG1)

33 Not a CONS, return address representing 0 first

8))))

8))))
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;3 incrementing ref count.
(PUSH-CONSTANT (ADDR (HEAP . 12)))
(FETCH)
(ADD1-NAT)
(PUSH-CONSTANT (ADDR (HEAP . 12)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 12)))
(RET)
33 Type is the same, return CDR field first
;3 incrementing REF COUNT
(DL ARG1 () (PUSH-LOCAL X))
(PUSH-CONSTANT (NAT 3))
(ADD-ADDR)
(FETCH)
(SET-LOCAL TEMP)
(FETCH)
(ADD1-NAT)
(PUSH-LOCAL TEMP)
(DEPOSIT)
(PUSH-LOCAL TEMP)
(RET))
;3 CONS Takes two implicit args, the CDR is on top of
;3 the stack and the CAR is just below 1it.
(coms () ((TEMP (ADDR (HEAP . 0))))
33 First call I-ALLOC-NODE to get a new mode.
(CALL I-ALLOC-NODE)
(SET-LOCAL TEMP) ;3 Put CDR in node + CDR-OFFSET
(PUSH-CONSTANT (NAT 3))
(ADD-ADDR)
(DEPOSIT)
(PUSH-LOCAL TEMP) ; Put CAR in nmode + CAR-OFFSET
(PUSH-CONSTANT (NAT 2))
(ADD-ADDR)
(DEPOSIT)
(PUSH-CONSTANT (NAT 5)) ; Put tag tn node
(PUSH-LOCAL TEMP)
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(DEPOSIT)
(PUSH-CONSTANT (NAT 0)) ; Set ref count to 0
(PUSH-LOCAL TEMP)
(DEPOSIT)
(PUSH-LOCAL TEMP)
(RET))
(FALSE O O
33 Push address of F incrementing REF COUNT
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(FETCH)
(ADD1-HAT)
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(RET))
;3 FALSEP takes one implicit arg on stack.
(FALSEP () O
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;3 We are going to pop implicit arg off stack so call
33 I-DECR-REF-COUNT which leaves arg on temp-stk
(CALL I-DECR-REF-COUNT)

33 Test if address is address of F

(PUSH-CONSTANT (ADDR (HEAP . 4)))

(EQ)

(TEST-BOOL-AND-JUMP T TRUE)

33 Arg was not F push F and increment ref count
(FETCH)

(ADD1-NAT)

(PUSH-CONSTANT (ADDR (HEAP . 4)))

(DEPOSIT)

(PUSH-CONSTANT (ADDR (HEAP . 4)))

(RET)

33 Arg was F push T and increment ref count

(DL TRUE () (PUSH-CONSTANT (ADDR (HEAP . 8))))
(FETCH)

(ADD1-NAT)

(PUSH-CONSTANT (ADDR (HEAP . 8)))

(DEPOSIT)

(PUSH-CONSTANT (ADDR (HEAP . 8)))

(RET))

(LISTP () O

;3 We are going to pop implicit arg off stack so call
33 I-DECR-REF-COUNT which leaves arg on temp-stk
(CALL I-DECR-REF-COUNT)

33 Now get tag of node and test if it is a CONS.
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(FETCH)
(PUSH-CONSTANT (NAT 5))
(EQ)
(TEST-BOOL-AND-JUMP F FALSE)

;3 Node is a CONS, push T incrementing ref count
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(FETCH)
(ADD1-HAT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(RET)

33 Node is NOT a CONS, push F incrementing ref count
(DL FALSE () (PUSH-CONSTANT (ADDR (HEAP . 4))))
(FETCH)

(ADD1-HAT)

(PUSH-CONSTANT (ADDR (HEAP . 4)))

(DEPOSIT)

(PUSH-CONSTANT (ADDR (HEAP . 4)))

(RET))

33 Code for NLISTP is quite similar to code for LISTP.
(FLISTP () O

(CALL I-DECR-REF-COUNT)

(PUSH-CONSTANT (NAT 1))

(ADD-ADDR)

(FETCH)
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(PUSH-CONSTANT (NAT 5))
(EQ)
(TEST-BOOL-AND-JUMP F TRUE)
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(FETCH)
(ADD1-NAT)
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(RET)
(DL TRUE () (PUSH-CONSTANT (ADDR (HEAP . 8))))
(FETCH)
(ADD1-NAT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(RET))
(TRUE OO O
33 Push address of T incrementing ref count
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(FETCH)
(ADD1-HAT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(RET))
;3 Code for TRUEP is similar to code for LISTP, ezcept
;3 it tests if object on top of stack represents T,
;3 that is has a tag of (HAT 3)
(TRUEP () ()
(CALL I-DECR-REF-COUNT)
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(FETCH)
(PUSH-CONSTANT (NAT 3))
(EQ)
(TEST-BOOL-AND-JUMP F FALSE)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(FETCH)
(ADD1-NAT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 8)))
(RET)
(DL FALSE () (PUSH-CONSTANT (ADDR (HEAP . 4))))
(FETCH)
(ADD1-HAT)
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(DEPOSIT)
(PUSH-CONSTANT (ADDR (HEAP . 4)))
(RET))
(I-DECR-REF-COUNT (X) O
;3 See if ref count is 0, then we need to
33 put it on FREE-LIST
(PUSH-LOCAL X)
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(FETCH)
(TEST-NAT-AND-JUMP ZERO RETURN-IT)
(PUSH-LOCAL X)
(FETCH)
(SUB1-HAT)
(PUSH-LOCAL X)
(DEPOSIT)
(PUSH-LOCAL X)
(RET)
;3 First make X point to first node
33 on FREE-LIST
(DL RETURE-IT () (PUSH-GLOBAL FREE-PTR))
(PUSH-LOCAL X)
(DEPOSIT)
33 Now make FREE-PTR point to X
(PUSH-LOCAL X)
(SET-GLOBAL FREE-PTR)
(RET))
(I-ALLOC-NODE () ((X (NAT 0)))

(PUSH-CONSTANT (ADDR (ALLOC-NODE-JUMP-TABLE . 0)))

(PUSH-GLOBAL FREE-PTR)

(PUSH-CONSTANT (NAT 1))

(ADD-ADDR)

(FETCH)

(ADD-ADDR)

;3 Tag has to be one in [0..5] if the data-segment is
LR-PROPER-HEAPP, i.e. tag s one of
(LR-UNDEFINED-TAG) (LR-INIT-TAG) (LR-FALSE-TAG)
(LR-TRUE-TAG) (LR-ADD1-TAG) or (LR-CONS-TAG).
However there 18 code for PACK and MINUS and
;3 user-defined shells. Also UNDEFINED, FALSE
33 and TRUE can’t really happen. For the
;3 ones that can’t happen we loop forever.

(FETCH)
(POPJ)

;3 For UNDEFINED and F
(DL CANT-HAPPEN () (JUMP CANT-HAPPEN))

33 We can just use nodes with tag INIT, we only
;3 need take them off the free list. We are

;3 here if tag was TRUE as well.

(DL INIT () (PUSH-GLOBAL FREE-PTR))
(PUSH-GLOBAL FREE-PTR)

(FETCH)

(POP-GLOBAL FREE-PTR)

(RET)

;3 We need to follow the LR-BIGNUM-OFFSET
;; until we get to LR-UNDEFINED-TAG (which
;3 is found immediately for fiznums).

(DL ADD1 () (PUSH-GLOBAL FREE-PTR))
(PUSH-GLOBAL FREE-PTR)

(FETCH)

(POP-GLOBAL FREE-PTR)
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(SET-LOCAL X)

(DL ADD1-LOOP () (PUSH-CONSTANT (HAT 3)))
(ADD-ADDR)

(FETCH)

(PUSH-CONSTANT (ADDR (HEAP . 0)))

(EQ)

(TEST-BOOL-AND-JUMP T ADD1-DONE)

33 We have a bignum, put INIT-TAG as tag
33 and put at front of free-list
(PUSH-CONSTANT (NAT 1))

(PUSH-LOCAL X)

(PUSH-CONSTANT (NAT 1))

(ADD-ADDR)

(DEPOSIT)

13 Set ref count to point to first element of FREE-LIST
(PUSH-GLOBAL FREE-PTR)

(PUSH-LOCAL X)

(DEPOSIT)

(PUSH-LOCAL X)

(SET-GLOBAL FREE-PTR)

(PUSH-CONSTANT (NAT 3))

(ADD-ADDR)

(SET-LOCAL X)

(JUMP ADD1-L0OP)

(DL ADD1-DORE () (PUSH-LOCAL X))

(RET)

;33 First remove first node from free list, saving
33 tn local X.

(DL comS () (PUSH-GLOBAL FREE-PTR))
(SET-LOCAL X)

(FETCH)

(POP-GLOBAL FREE-PTR)

(PUSH-LOCAL X)

(PUSH-CONSTANT (NAT 2))

(ADD-ADDR)

(FETCH)

(CALL I-DECR-REF-COUNT)

(POP)

(PUSH-LOCAL X)

(PUSH-CONSTANT (NAT 3))

(ADD-ADDR)

(FETCH)

(CALL I-DECR-REF-COUNT)

(POP)

(PUSH-LOCAL X)

(RET)

33 Can’t happen, yet.
(DL PACK () (JUMP PACK))

33 Can’t happen, yet.

(DL MINUS () (JUMP MINUS))

33 Can’t happen, yet.

(DL USER-DEFINED () (JUMP USER-DEFINED))))
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’ ((FREE-PTR (ADDR (HEAP . 24)))
(ANSWER (NAT 0))

(ALLOC

(HEAP

20 20 32

-NODE-JUMP-TABLE ((PC (I-ALLOC-NODE . 8))

(PC (I-ALLOC-NODE . 9))
(PC (I-ALLOC-NODE . 8))
(PC (I-ALLOC-NODE . 9))
(PC (I-ALLOC-NODE . 14))
(PC (I-ALLOC-NODE . 41))
(PC (I-ALLOC-NODE . 59))
(PC (I-ALLOC-NODE . 60))))
;3 Undefined node [Heap address 0]

(NAT 0) (NAT O) (ADDR (HEAP . 0)) (ADDR (HEAP .

;3 FALSE [Heap address 4]

(NAT 4) (NAT 2) (ADDR (HEAP . 0)) (ADDR (HEAP .

;3 TRUE [Heap address 8]

(NAT 4) (NAT 3) (ADDR (HEAP . 0)) (ADDR (HEAP .

;3 ZERO [Heap address 12]
(NAT 0) (NAT 4) (NAT 0) (ADDR (HEAP . 0))
;; (CONS T F) [Heap address 16]

(NAT 1) (NAT 5) (ADDR (HEAP . 8)) (ADDR (HEAP .

3; (CONS T (CONS T F)) [Heap address 20]

(NAT 0) (NAT 5) (ADDR (HEAP . 8)) (ADDR (HEAP .

;3 Unused node [Heap address 24]
(ADDR (HEAP . 28)) (NAT 1) (NAT 0) (NAT 0)
;3 Unused node [Heap address 28]
(ADDR (HEAP . 32)) (NAT 1) (NAT 0) (NAT 0)
;3 Unused node [Heap address 32]
(ADDR (HEAP . 36)) (NAT 1) (NAT 0) (NAT 0)
;3 Unused node [Heap address 36]

(ADDR (HEAP . 40)) (NAT 1) (NAT O0) (NAT 0)
;3 Unused node [Heap address 40]

(ADDR (HEAP . 44)) (NAT 1) (NAT 0) (NAT 0)
;3 Unused node [Heap address 44]

(ADDR (HEAP . 48)) (NAT 1) (NAT 0) (NAT 0)
;3 last node on free list [Heap address 48]
(HAT 1)))

’RUN)

0))

0))

0))

4))

16))
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Appendix B

Function Definitions for the
Implementation

This section lists in all the functions used in the compiler. The following
functions are used from the definition of Piton (in Appendix D) and are not
listed ADD-ADDR, ADD1-ADDR, AREA-NAME, DEFINEDP, DEFINITION, DEPOSIT, DL,
FORMAL-VARS, GET, NAME, OFFSET, PC, P-CURRENT-PROGRAM, P-FRAME, P-STATE,
PROGRAM-BODY, STRIP-CDRS, TAG, TEMP-VAR-DCLS. TOP and VALUE. The functions
FIRST, LENGTH, PLIST and RESTN are defined in the Lists library (in Appendix
Section C.4).

DEFINITION

(S-TEMP-EVAL) = ’(TEMP-EVAL)
DEFINITION

(S-TEMP-FETCH) = ’ (TEMP-FETCH)
DEFINITION

(S-TEMP-TEST) = ’(TEMP-TEST)

33 LOGIC->S returns an S-STATE. The interpreter S-EVAL
; ; interprets S-STATEs

SHELL DEFINITION

add the shell S-STATE of 7 arguments, with

recognizer function symbol S-STATEP, and

accessors S-PNAME, S-P0S, S-ANS, S-PARANS,
S-TEMPS, S-PROGS and S-ERR-FLAG.

95
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DEFINITION
(USER-FNAME-PREFIX)

(LI;} (CAR (UNPACK ’U-)) (CADR (UNPACK ’U-)))

;3 U- is prefixed to user-definedp functions to distinguish them
;3 from MAIN and internal functions

DEFINITION
(USER-FNAME NAME)

(PACK (APPEND (USER-FNAME-PREFIX) (UNPACK NAME)))

DEFINITION
(S-CONSTRUCT-PROGRAMS FUN-LIST)

13 S—CONSTRUCT-PROGRAMS constructs programs at the S level. The
;3 body of the programs is the same as the logic. This function
;3 would need to be modified if commons sub-expressions are

;3 eliminated.
(IF (LISTP FUN-LIST)
(CONS (LIST (USER-FNAME (CAR FUN-LIST)) ; name
(FORMALS (CAR FUN-LIST)) ; formals
NIL ; temps

(BODY (CAR FUN-LIST)))
(S-CONSTRUCT-PROGRAMS (CDR FUN-LIST)))
NIL)

DEFINITION
(DELETE-ALL X L)
(IF (LISTP L)
(IF (EQUAL X (CAR L))
(DELETE-ALL X (CDR L))
(CONS (CAR L) (DELETE-ALL X (CDR L))))
L)

DEFINITION

(REMOVE-DUPLICATES L)

(IF (LISTP L)
(CONS (CAR L) (REMOVE-DUPLICATES (DELETE-ALL (CAR L) (CDR L))))
L)

DEFINITION
(LOGIC->S EXPR ALIST FUN-NAMES)

(S-STATE °MAIN
NIL
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NIL

ALIST

NIL

(CONS (LIST °MAIN (STRIP-CARS ALIST) NIL EXPR)
(S-CONSTRUCT-PROGRAMS (REMOVE-DUPLICATES FUN-NAMES)))

’RUN)

;3 S—-FORMALS, S-TEMP-LIST and S-BODY are accessors for
; ; programs constructed by S-CONSTRUCT-PROGRAMS.

DEFINITION
(S-FORMALS S-PROGRAM)

(CADR S-PROGRAM)

DEFINITION
(S-TEMP-LIST S-PROGRAM)

(CADDR S-PROGRAM)

DEFINITION
(S-BODY S-PROGRAM)

(CADDDR S-PROGRAM)

DEFINITION
(S-PROG S)

(DEFINITION (S-PNAME S) (S-PROGS S))
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33 We used to have an LR-STATE shell. Now we just use a

;3 P-STATE shell. However we refer to LR-STATES which are
;3 P-STATEs with LR level programs. The function

;3 LR->P compiles an LR-STATE to a Piton state, by

; ; compiling the programs and converting the P-PC to a Piton
;3 PC. We use P-STATE shells instead of LR-STATE shells

; ; because we used to have define functions analogous to

;; P-OBJECTP (and functions that called P-O0BJECTP) that

;3 took LR-STATES or parts thereof. We use the Piton notion
;3 of a PROPER state. It should be the case that all the

;3 LR-STATEs we are interested in are

; 3 PROPER-P-STATEPs after we apply LR->P to them.

;3 An LR PC object is a combination of a Piton PC object and an S level
33 S—-PNAME and S-P0S. The translation of (S-PNAME S)

;3 and (S-P0OS S) from the S level is:

;; (TAG *PC (CONS (S-PNAME S) (S-POS S)))

;3 Each element of P-PROG-SEGMENT is a program. A program is a list
;3 of the form:

;; (name (formall formal2 ... formaln)
HH ((templ init1)

HH (tempk initk))
3 body)

33 The name and each formal and temp is a symbol. The initial values
;3 of the temps are tagged values. Body is a form similar to that for

;3 the S level, but temporary expressions have been replaced the name of
;; a temporary variable added to them

;5 e.g. ((S-TEMP-EVAL) <expr>) -> ((S-TEMP-EVAL) <expr> <var>).

;3 In the case of (S-TEMP-FETCH) <expr> is never used but we put it

;3 in for consistency and so it is easier to convert back to S-STATES.

;3 Also (QUOTE <expr>) has been replaced by (QUOTE <addr>)

;3 where <addr> is a heap address that represents <expr>.

;3 Defined values to use as tags for nodes in the heap.

DEFINITION

(LR-UNDEFINED-TAG) = O ; Tag of UNDEFINED node.

DEFINITION

(LR-INIT-TAG) = 1 ; Used in nodes on FREE-LIST
; that have not been used

DEFINITION

(LR-FALSE-TAG) = 2

DEFINITION
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(LR-TRUE-TAG) = 3

DEFINITION
(LR-ADD1-TAG) = 4

DEFINITION
(LR-CONS-TAG) = 5

DEFINITION
(LR-PACK-TAG) = 6

DEFINITION
(LR-MINUS-TAG) = 7

DEFINITION

;3 LR-HEAP-NAME is the name of the data area used to store the heap.

(LR-HEAP-NAME) = ’HEAP
;3 Defined functions to represent constant data addresses.
DEFINITION

33 LR-NODE-SIZE is the size of a node.
(LR-NODE-SIZE) = 4

DEFINITION
(LR-UNDEF-ADDR) = (TAG ’ADDR ’(HEAP . 0))

DEFINITION
(LR-F-ADDR) = (ADD-ADDR (LR-UNDEF-ADDR) (LR-NODE-SIZE))

DEFINITION
(LR-T-ADDR) = (ADD-ADDR (LR-F-ADDR) (LR-NODE-SIZE))

DEFINITION
(LR-0-ADDR) = (ADD-ADDR (LR-T-ADDR) (LR-NODE-SIZE))

DEFINITION
(LR-FP-ADDR) = (TAG ’ADDR ’(FREE-PTR . 0))

DEFINITION
(LR-ANSWER-ADDR) = (TAG ’ADDR ’(ANSWER . 0))

DEFINITION
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(LR-ALLOC-NODE-JUMP-TABLE-ADDR)

(TAG ’ADDR ’ (ALLOC-NODE-JUMP-TABLE . 0))

DEFINITION
(LR-FETCH-FP DATA-SEG)

(FETCH (LR-FP-ADDR) DATA-SEG)

DEFINITION
(LR-MINIMUM-HEAP-SIZE)

(OFFSET (ADD-ADDR (LR-0-ADDR) (LR-NODE-SIZE)))

;; The heap is a (presumably large) Piton data area. It contains Nodes which
; ; are four words. One word is for the reference count, one for the tag,

;3 and two for the contents. Some data-types only require one word for the

; ; contents (e.g. FIXNUMS) in that case one word is wasted. Some

;; (user-defined) data-types require more than two words. In this case the

; ; second word is a pointer to another node. This contains up to three

;; words of data, the fourth word (if the data type needs more that four

;; words) is used to link another node with the same format.

DEFINITION
;3 LR-NEW-NODE returns another node to be stuck in memory
(LR-NEW-NODE REF-COUNT TAG VALUE1 VALUE2)

(LIST REF-COUNT TAG VALUE1 VALUE2)

;3 Defined offsets for various fields of a node.

DEFINITION
(LR-TAG-OFFSET) = 1

DEFINITION
(LR-CAR-OFFSET) = 2
DEFINITION
(LR-CDR-OFFSET) = 3

DEFINITION
(LR-UNBOX-NAT-OFFSET) = 2

DEFINITION
;3 LR-BIGNUM-OFFSET is where continuation nodes are stored for bignums
(LR-BIGNUM-OFFSET) = 3
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DEFINITION
(LR-UNPACK-OFFSET) = 2

DEFINITION
(LR-NEGATIVE-GUTS-OFFSET) = 2

DEFINITION

;3 LR-MAKE-PROGRAHM is accessed by the Piton accessors: NAME,
;; FORMAL-VARS, TEMP-VAR-DCLS and PROGRAM-BODY. Also
;5 LOCAL-VARS.

(LR-MAKE-PROGRAM NAME FORMALS TEMPS BODY)

(CONS NAME (CONS FORMALS (CONS TEMPS BODY)))

DEFINITION
(ASCII-0) = 48

DEFINITION
(ASCII-1) = 49

DEFINITION
(ASCII-9) = 57

DEFINITION
(ASCII-DASH) = 45

DEFINITION
(LIST-ASCII-0) = (LIST (ASCII-0))

DEFINITION
(LIST-ASCII-1) = (LIST (ASCII-1))

;3 The following functions are used in the definitions of GENSYM
;5 which returns a literal atom guaranteed to be different.

DEFINITION
(INCREMENT-NUMLIST NUMLIST)

13 NUMLIST is a list of Ascii codes of digits, units digit first
(IF (LISTP NUMLIST)
(IF (EQUAL (CAR NUMLIST) (ASCII-9))
(CONS (ASCII-O) (INCREMENT-NUMLIST (CDR NUMLIST)))
(CONS (ADD1 (CAR NUMLIST)) (CDR NUMLIST)))
(LIST-ASCII-1))

DEFINITION
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(MAKE-SYMBOL INITIAL DIGIT-LIST)

(PACK (APPEND (APPEND INITIAL DIGIT-LIST) 0))

DEFINITION
(COUNT-CODELIST1 NUMLIST)
;3 NUMLIST is a list of Ascii codes, units digit first if we
;3 think of them as being codes of digits of a number
(IF (LISTP NUMLIST)
(PLUS (CAR NUMLIST)
(TIMES 10 (COUNT-CODELIST1 (CDR NUMLIST))))
0)

DEFINITION

(SUBSEQP LIST1 LIST2)

(AND (WNOT (LESSP (LENGTH LIST2) (LENGTH LIST1)))
(EQUAL (FIRSTN (LENGTH LIST1) LIST2) LIST1))

DEFINITION
(COUNT-CODELIST INITIAL ASCII-list)

(IF (SUBSEQP INITIAL ASCII-LIST)
(COUNT-CODELIST1 (RESTN (LENGTH INITIAL) ASCII-LIST))
0)

DEFINITION
(MAX-COUNT-CODELIST INITIAL LIST)

(IF (LISTP LIST)
(MAX (COUNT-CODELIST INITIAL (UNPACK (CAR LIST)))
(MAX-COUNT-CODELIST INITIAL (CDR LIST)))
0)

DEFINITION
;3 GENSYM returns a pair, the new symbol and the next number to use
(GENSYM INITIAL NUM-LIST ATOM-LIST)
(IF (MEMBER (MAKE-SYMBOL INITIAL NUM-LIST) ATOM-LIST)
(GENSYM INITIAL (INCREMENT-NUMLIST NUM-LIST) ATOM-LIST)
(CONS (MAKE-SYMBOL INITIAL NUM-LIST)
(INCREMENT-NUMLIST NUM-LIST)))

;3 The following lemma can be proven about GENSYM:
;3 (prove-lemma GENSYM-IS-NEW (rewrite)
;5 (not (member (car (gensym initial num-list atom-list)) atom-list)))
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DEFINITION

33 MAKE-TEMP-NAME-ALIST takes a temps-alist triple a la S-TEMPS and

;3 returns an alist with entries of the form:

;3 (Ktemp expression> . <variable>) where <variable> is guaranteed to
; 3 occur only once in the resulting alist and is guaranteed not to occur

;3 in FORMALS.

(LR-MAKE-TEMP-NAME-ALIST-1 INITIAL NUM-LIST TEMP-LIST FORMALS)

(IF (LISTP TEMP-LIST)
(LET ((GENSYM (GENSYM INITIAL NUM-LIST FORMALS)))
(CONS (CONS (CAR TEMP-LIST) (CAR GENSYM))
(LR-MAKE-TEMP-NAME-ALIST-1 INITIAL
(CDR GENSYM)
(CDR TEMP-LIST)
FORMALS)))
NIL)

DEFINITION
(LR-MAKE-TEMP-NAME-ALIST TEMP-LIST FORMALS)

(LR-MAKE-TEMP-NAME-ALIST-1 (UNPACK ’T*) (LIST-ASCII-O0) TEMP-LIST FORMALS)

DEFINITION
(LR-NEW-CONS CAR CDR)

(LR-NEW-NODE (TAG ’NAT (LR-CONS-TAG)) (TAG ’NAT 1) CAR CDR)

DEFINITION

; ; DEPOSIT-A-LIST deposits LIST of objects at ADDR, ADDR+1,
; ;ADDR+2, ... in DATA-SEG.

(DEPOSIT-A-LIST LIST ADDR DATA-SEG)

(IF (LISTP LIST)
(DEPOSIT (CAR LIST)
ADDR
(DEPOSIT-A-LIST (CDR LIST)
(ADD1-ADDR ADDR)
DATA-SEG))
DATA-SEG)

DEFINITION
(PAIR-FORMALS-WITH-ADDRESSES FORMALS TABLE)

(IF (LISTP FORMALS)
(CONS (CONS (CAAR FORMALS) (CDR (ASSOC (CDAR FORMALS) TABLE)))
(PAIR-FORMALS-WITH-ADDRESSES (CDR FORMALS) TABLE))
NIL)

DEFINITION
(LR-MAKE-INITIAL-TEMPS TEMP-VARS)
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(IF (LISTP TEMP-VARS)
(CONS (CONS (CAR TEMP-VARS) (LR-UNDEF-ADDR))
(LR-MAKE-INITIAL-TEMPS (CDR TEMP-VARS)))
NIL)

DEFINITION
33 LR-INITIAL-CSTK constructs the initial control stack.
(LR-INITIAL-CSTK PARAMS TEMP-ALIST TABLE PC)
(LIST (P-FRAME (APPEND (PAIR-FORMALS-WITH-ADDRESSES PARAMS TABLE)
(LR-MAKE-INITIAL-TEMPS (STRIP-CDRS TEMP-ALIST)))
PC))

DEFINITION

;3 Compiles BODY. TEMP-ALIST is an alist mapping temporary
;3 expressions to variables. CONST-TABLE is an alist mapping
;3 constants to addresses.

(LR-COMPILE-BODY FLAG BODY TEMP-ALIST CONST-TABLE)

(IF (EQUAL FLAG °LIST)
(IF (LISTP BODY)
(CONS (LR-COMPILE-BODY T (CAR BODY) TEMP-ALIST CONST-TABLE)
(LR-COMPILE-BODY ’LIST (CDR BODY) TEMP-ALIST CONST-TABLE))
NIL)
(IF (LISTP BODY)
(COND ((OR (EQUAL (CAR BODY) (S-TEMP-FETCH))
(EQUAL (CAR BODY) (S-TEMP-EVAL))
(EQUAL (CAR BODY) (S-TEMP-TEST)))
(LIST (CAR BODY)
(LR-COMPILE-BODY T (CADR BODY) TEMP-ALIST CONST-TABLE)
(VALUE (CADR BODY) TEMP-ALIST)))
((EQUAL (CAR BODY) ’QUOTE)
(LIST ’QUOTE (VALUE (CADR BODY) CONST-TABLE)))
(T (CONS (CAR BODY)
(LR-COMPILE-BODY ’LIST

(CDR BODY)
TEMP-ALIST
CONST-TABLE))))
BODY))
DEFINITION

33 LR-MAKE-TEMP-VAR-DCLS takes TEMP-ALIST as above and
;3 constructs a new alist suitable for using as a Piton
;3 TEMP-VAR-DECLS alist. Each temporary is bound to the address
;3 of the UNDEFINED node.
(LR-MAKE-TEMP-VAR-DCLS TEMP-ALIST)
(IF (LISTP TEMP-ALIST)
(CONS (LIST (CDAR TEMP-ALIST) (LR-UNDEF-ADDR))
(LR-MAKE-TEMP-VAR-DCLS (CDR TEMP-ALIST)))
NIL)
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DEFINITION
;3 LR-COMPILE-PROGRAMS constructs LR programs from S programs.
(LR-COMPILE-PROGRAMS PROGRAMS CONST-TABLE)

(IF (LISTP PROGRAMS)
(LET ((PROG (CAR PROGRAMS)))
(LET ((TEMP-ALIST (LR-MAKE-TEMP-NAME-ALIST (S-TEMP-LIST PROG)
(S-FORMALS PR0G))))
(CONS (LR-MAKE-PROGRAM (CAR PROG)
(S-FORMALS PROG)
(LR-MAKE-TEMP-VAR-DCLS TEMP-ALIST)
(LR-COMPILE-BODY T
(S-BODY PROG)
TEMP-ALIST
CONST-TABLE))
(LR-COMPILE-PROGRAMS (CDR PROGRAMS) CONST-TABLE))))
NIL)

;3 The following functions are used to generate the Piton code for
; ; the run-time support functions.

DEFINITION
(P-I-DECR-REF-COUNT-CODE)
(LIST ’I-DECR-REF-COUNT ’(X) ()
;3 See if ref count is 0, then we need to put it on FREE-LIST
’ (PUSH-LOCAL X)
’ (FETCH)
? (TEST-NAT-AND-JUMP ZERO RETURN-IT)
’ (PUSH-LOCAL X)
’ (FETCH)
7 (SUB1-NAT)
’ (PUSH-LOCAL X)
7 (DEPOSIT)
’ (PUSH-LOCAL X)
7 (RET)
;3 First make X point to first node on FREE-LIST
(LIST °DL ’RETURN-IT () (LIST ’PUSH-GLOBAL (AREA-NAME (LR-FP-ADDR))))
’ (PUSH-LOCAL X)
’ (DEPOSIT)
;3 Now make FREE-PTR point to X
» (PUSH-LOCAL X)
(LIST ’SET-GLOBAL (AREA-NAME (LR-FP-ADDR)))
7 (RET))

DEFINITION
(P-I-ALLOC-NODE-CODE)

(LIST *I-ALLOC-NODE () ’((X (NAT 0)))
(LIST °PUSH-CONSTANT (LR-ALLOC-NODE-JUMP-TABLE-ADDR))
’ (PUSH-GLOBAL FREE-PTR)
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(LIST °PUSH-CONSTANT (TAG ’NAT (LR-TAG-OFFSET)))

? (ADD-ADDR)

’ (FETCH)

? (ADD-ADDR)

; 3 Tag has to be one in [0..5] if the data-segment is

;5 LR-PROPER-HEAPP, i.e. tag is one of

;3 (LR-UNDEFINED-TAG) (LR-INIT-TAG) (LR-FALSE-TAG)

33 (LR-TRUE-TAG) (LR-ADD1-TAG) or (LR-CONS-TAG). However
;3 there is code for PACK and MINUS and user-defined shells.
;3 Also UNDEFINED, FALSE and TRUE can’t really

;; happen. For the ones that can’t happen we loop forever.
’ (FETCH)

7 (POPJ)

»(DL CANT-HAPPEN () (JUMP CANT-HAPPEN)) ; For UNDEFINED and F

;3 We can just use nodes with tag INIT, we only need take them off
;3 the free list.

;3 We are here if tag was TRUE as well.

;3 LR-PROPER-HEAPP allows multiple instances of TRUE, however

; ; there really are not more than one.

(DL INIT () (PUSH-GLOBAL FREE-PTR)) ; This is the node to return
? (PUSH-GLOBAL FREE-PTR)

» (FETCH)

’ (POP-GLOBAL FREE-PTR)

7 (RET)

;3 We need to follow the LR-BIGNUM-O0FFSET until we get to
;; LR-UNDEFINED-TAG (which is found immediately for fixnums).

(DL ADD1 (O

(PUSH-GLOBAL FREE-PTR)) ; X will be set to this
? (PUSH-GLOBAL FREE-PTR) ; take first node off free list
» (FETCH)

’ (POP-GLOBAL FREE-PTR)
? (SET-LOCAL X)
(LIST °DL ’ADD1-LOOP ()
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-BIGNUM-OFFSET))))
? (ADD-ADDR)
’ (FETCH)
(LIST ’PUSH-CONSTANT (LR-UNDEF-ADDR))
> (EQ)
? (TEST-BOOL-AND-JUMP T ADD1-DONE)
;3 We have a bignum, put INIT-TAG as tag and put at front of
;3 free-list
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-INIT-TAG)))
» (PUSH-LOCAL X)
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-TAG-OFFSET)))

? (ADD-ADDR)

’ (DEPOSIT)

? (PUSH-GLOBAL FREE-PTR) ; Set ref count to point

’ (PUSH-LOCAL X) ; to first element of FREE-LIST

’ (DEPOSIT)

> (PUSH-LOCAL X) ; Make FREE-PTR point to this node

’ (SET-GLOBAL FREE-PTR)
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-BIGNUM-OFFSET)))
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> (ADD-ADDR)

> (SET-LOCAL X)

>(JUMP ADD1-LOOP)

>(DL ADD1-DONE () (PUSH-LOCAL X))
> (RET)

;3 First remove first node from free list, saving in local X.

(DL COES () (PUSH-GLOBAL FREE-PTR))

’ (SET-LOCAL X)

’ (FETCH) ;s FREE-PTR <- FREE-PTR.HNEXT
’ (POP-GLOBAL FREE-PTR)

;3 Now decrement CAR and CDR ref counts
» (PUSH-LOCAL X)
(LIST °PUSH-CONSTANT (TAG °*HNAT (LR-CAR-OFFSET)))

7 (ADD-ADDR)

’ (FETCH)

7 (CALL I-DECR-REF-COUNT) ; I-DECR-REF-COUNT leaves
> (POP) ; address on top of stack.

> (PUSH-LOCAL X)
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-CDR-OFFSET)))

» (ADD-ADDR)

’ (FETCH)

7 (CALL I-DECR-REF-COUNT) ; I-DECR-REF-COUNT leaves
> (POP) ; address on top of stack.

» (PUSH-LOCAL X)

7 (RET)

>(DL PACK () (JUMP PACK)) ; Can’t happen, yet.

> (DL MINUS () (JUMP MINUS)) ; Can’t happen, yet.

’ (DL USER-DEFINED () (JUMP USER-DEFINED)) ; Can't happen, yet.
)

DEFINITION
(P-RECOGHNIZER-CODE NAME TAG)
;3 P-RECOGNIZER-CODE generates code for shell recognizer, e.g.
33 LISTP. The argument is passed on temporary stack implicitly.
(LIST WAME > () °()
;3 We are going to pop implicit arg off stack so call
;3 I-DECR-REF-COUNT which leaves arg on temp-stk
7 (CALL I-DECR-REF-COUNT)
;; Now get tag of node and test against desired node.
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-TAG-OFFSET)))
? (ADD-ADDR)
’ (FETCH)
(LIST °PUSH-CONSTANT (TAG ’NAT TAG))
*(EQ)
’ (TEST-BOOL-AND-JUMP F FALSE)
;3 Node is of desired type, push T incrementing ref count
(LIST ’PUSH-CONSTANT (LR-T-ADDR))
’ (FETCH)
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> (ADD1-HNAT)

(LIST ’PUSH-CONSTANT (LR-T-ADDR))
> (DEPOSIT)

(LIST ’PUSH-CONSTANT (LR-T-ADDR))
> (RET)

;3 Node is NOT of desired type, push F incrementing ref count
(LIST °DL °’FALSE () (LIST ’PUSH-CONSTANT (LR-F-ADDR)))

> (FETCH)

> (ADD1-HNAT)

(LIST ’PUSH-CONSTANT (LR-F-ADDR))
> (DEPOSIT)

(LIST ’PUSH-CONSTANT (LR-F-ADDR))
’(RET))

DEFINITION
;3 P—ACCESSOR-CODE generates code for shell recognizer, e.g.
33 CAR. Currently only works for shells that fit in one node,
;3 1.e. have one or two fields. TAG is the tag of shells of the
;; appropriate type, e.g. (LR-CONS-TAG), DEFAULT is the
;3 address to use if the node is not of the type specified by TAG,
;5 e.g. (LR-0-ADDR) the address of a node representing 0,
;3 OFFSET is the offset in the node, e.g. (LR-CAR-OFFSET).
(P-ACCESSOR-CODE NAME TAG DEFAULT OFFSET)
(LIST NAME °(X)

> ((TEMP (NAT 0)))

;3 First decrement ref count of argument, X

? (PUSH-LOCAL X)

7 (CALL I-DECR-REF-COUNT)

;3 Test if X has type specified by TAG.

(LIST °PUSH-CONSTANT (TAG ’NAT (LR-TAG-OFFSET)))

7 (ADD-ADDR)

’ (FETCH)

(LIST °PUSH-CONSTANT (TAG ’NAT TAG))

’(EQ)

’ (TEST-BOOL-AND-JUMP T ARG1)

+3 Type is different, use DEFAULT first incrementing

;3 ref count.

(LIST ’PUSH-CONSTANT DEFAULT)

’ (FETCH)

7 (ADD1-HNAT)

(LIST ’PUSH-CONSTANT DEFAULT)

’ (DEPOSIT)

(LIST ’PUSH-CONSTANT DEFAULT)

7 (RET)

33 Type is the same, return appropriate field as specified

;3 by OFFSET first incrementing ref count

>(DL ARG1 () (PUSH-LOCAL X))

(LIST °PUSH-CONSTANT (TAG ’NAT OFFSET))

» (ADD-ADDR)

’ (FETCH)

? (SET-LOCAL TEMP)

’ (FETCH)

? (ADD1-HNAT)
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> (PUSH-LOCAL TEMP)
> (DEPOSIT)

> (PUSH-LOCAL TEMP)
’(RET))

DEFINITION
(P-CAR-CODE)

(P-ACCESSOR-CODE ’CAR (LR-CONS-TAG) (LR-0-ADDR) (LR-CAR-OFFSET))

DEFINITION
(P-CDR-CODE)

(P-ACCESSOR-CODE ’CDR (LR-CONS-TAG) (LR-0-ADDR) (LR-CDR-OFFSET))

DEFINITION
(P-CONS-CODE)
;3 Takes two implicit args
;3 Note that we assume that the CDR is on top of the stack
;; and the CAR is just below it. This is what would normally be
; ; the case if you evaluate left to right.
(LIST >coms °()
(LIST (LIST ’TEMP (LR-UNDEF-ADDR)))
;3 First call I-ALLOC-NODE to get a new node.
7 (CALL I-ALLOC-NODE)

> (SET-LOCAL TEMP) ; Put CDR in node + CDR-OFFSET
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-CDR-OFFSET)))

> (ADD-ADDR)

’ (DEPOSIT)

> (PUSH-LOCAL TEMP) ; Put CAR in node + CAR-OFFSET
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-CAR-OFFSET)))

> (ADD-ADDR)

> (DEPOSIT)

(LIST °PUSH-CONSTANT (TAG ’NAT (LR-CONS-TAG))) ; Put tag in node
’ (PUSH-LOCAL TEMP)

(LIST °PUSH-CONSTANT (TAG °*HNAT (LR-TAG-OFFSET)))

7 (ADD-ADDR)

» (DEPOSIT)

> (PUSH-CONSTANT (NAT 0)) ; Set ref count to 0

’ (PUSH-LOCAL TEMP)

» (DEPOSIT)

’ (PUSH-LOCAL TEMP)

’(RET)))

DEFINITION

(P-FALSE-CODE)

(LIST °FALSE () Q)
; ; Push address of F incrementing ref count
(LIST °PUSH-CONSTANT (LR-F-ADDR))
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» (FETCH)

> (ADD1-NAT)

(LIST ’PUSH-CONSTANT (LR-F-ADDR))
> (DEPOSIT)

(LIST ’PUSH-CONSTANT (LR-F-ADDR))
»(RET))

;3 FALSEP takes one implicit arg on stack.

DEFINITION
(P-FALSEP-CODE)

(LIST °FALSEP () Q)
;3 We are going to pop implicit arg off stack so call
;35 I-DECR-REF-COUNT which leaves arg on temp-stk
? (CALL I-DECR-REF-COUNT)
;3 Test if address is address of F
(LIST ’PUSH-CONSTANT (LR-F-ADDR))
*(EQ)
? (TEST-BOOL-AND-JUMP T TRUE)
;3 Arg was not F push F and increment ref count
(LIST °PUSH-CONSTANT (LR-F-ADDR))
’ (FETCH)
? (ADD1-NAT)
(LIST ’PUSH-CONSTANT (LR-F-ADDR))
’ (DEPOSIT)
(LIST ’PUSH-CONSTANT (LR-F-ADDR))
7 (RET)
13 Arg was F push T and increment ref count
(LIST °DL ’TRUE ’() (LIST ’PUSH-CONSTANT (LR-T-ADDR)))
’ (FETCH)
7 (ADD1-NAT)
(LIST ’PUSH-CONSTANT (LR-T-ADDR))
’ (DEPOSIT)
(LIST ’PUSH-CONSTANT (LR-T-ADDR))
7 (RET))

DEFINITION
(P-LISTP-CODE)

(P-RECOGHNIZER-CODE ’LISTP (LR-CONS-TAG))

DEFINITION
(P-BLISTP-CODE)
;3 Code for HLISTP is almost the same as for LISTP.
(LIST °HLISTP () Q)
? (CALL I-DECR-REF-COUNT)
;3 Now get Tag.
(LIST °PUSH-CONSTANT (TAG °HNAT (LR-TAG-OFFSET)))
7 (ADD-ADDR)
’ (FETCH)
(LIST ’PUSH-CONSTANT (TAG ’NAT (LR-CONS-TAG)))
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7 (EQ)

> (TEST-BOOL-AND-JUMP F TRUE)
(LIST ’PUSH-CONSTANT (LR-F-ADDR))
> (FETCH)

> (ADD1-NAT)

(LIST ’PUSH-CONSTANT (LR-F-ADDR))
> (DEPOSIT)

(LIST ’PUSH-CONSTANT (LR-F-ADDR))
> (RET)

(LIST °DL ’TRUE ’() (LIST ’PUSH-CONSTANT (LR-T-ADDR)))
> (FETCH)

> (ADD1-NAT)

(LIST ’PUSH-CONSTANT (LR-T-ADDR))
> (DEPOSIT)

(LIST ’PUSH-CONSTANT (LR-T-ADDR))
> (RET))

DEFINITION
(P-TRUE-CODE)

(LIST °TRUE *() Q)
; ; Push address of T incrementing ref count
(LIST ’PUSH-CONSTANT (LR-T-ADDR))
’ (FETCH)
7 (ADD1-NAT)
(LIST ’PUSH-CONSTANT (LR-T-ADDR))
» (DEPOSIT)
(LIST °PUSH-CONSTANT (LR-T-ADDR))
7 (RET))

DEFINITION
(P-TRUEP-CODE)

(P-RECOGNIZER-CODE ’TRUEP (LR-TRUE-TAG))

DEFINITION

(P-RUNTIME-SUPPORT-PROGRAMS)

(LIST (P-CAR-CODE)
(P-CDR-CODE)
(P-CONS-CODE)
(P-FALSE-CODE)
(P-FALSEP-CODE)
(P-LISTP-CODE)
(P-NLISTP-CODE)
(P-TRUE-CODE)
(P-TRUEP-CODE)
(P-I-DECR-REF-COUNT-CODE)
(P-I-ALLOC-NODE-CODE))

;3 The function LR-MAKE-LABEL takes a number, e.g. 5 and
; ; makes a label, e.g. L-5.
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DEFINITION
(LR-CONVERT-DIGIT-TO-ASCII DIGIT)

(PLUS (ASCII-O) DIGIT)

DEFINITION
(LR-CONVERT-NUM-T0-ASCII NUMBER LIST)
(IF (LESSP NUMBER 10)
(CONS (LR-CONVERT-DIGIT-TO-ASCII NUMBER) LIST)
(LR-CONVERT-NUM-TO-ASCII (QUOTIENT NUMBER 10)
(CONS (LR-CONVERT-DIGIT-TO-ASCII
(REMAINDER NUMBER 10))
LIST)))

DEFINITION
(LR-MAKE-LABEL I)

(PACK (CONS (CAR (UNPACK °L))
(CONS (ASCII-DASH)
(APPEND (LR-CONVERT-NUM-TO-ASCII N NIL) 0))))

DEFINITION
;3 LABEL-INSTRS takes a list of instructions and labels them
;3 with (LR-MAKE-LABEL ), (LR-MAKE-LABEL H+1),
(LABEL-INSTRS INSTRS H)
(IF (LISTP INSTRS)

(coms (DL (LR-MAKE-LABEL H) () (CAR INSTRS))

(LABEL-INSTRS (CDR INSTRS) (ADD1 H)))
NIL)

DEFINITION
;3 COMP-IF compiles an IF. TEST-INSTRS are the instructions
; ; generated for the test, THEN-INSTRS are the instructions
;3 for the then and ELSE-INSTRS are the instructions for the
;3 else. W is the number used to construct the label of the
; ; first instruction (i.e. the first instruction in TEST-INSTRS.
(COMP-IF TEST-INSTRS THEN-INSTRS ELSE-INSTRS N)
(APPEND TEST-INSTRS
(APPEND (LIST °’(CALL I-DECR-REF-COUNT)
(LIST ’PUSH-CONSTANT (LR-F-ADDR))
' (EQ)
(LIST ’TEST-BOOL-AND-JUMP °T
(LR-MAKE-LABEL (PLUS N 5
(LENGTH TEST-INSTRS)
(LENGTH THEN-INSTRS)))))
(APPEND THEN-INSTRS
(COmS (LIST ’JUMP
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(LR-MAKE-LABEL
(PLUS N 5
(LENGTH TEST-INSTRS)
(LENGTH THEN-INSTRS)
(LENGTH ELSE-INSTRS))))
ELSE-INSTRS))))

DEFINITION
;; LR-P-C-SIZE-IF returns the size (number of Piton instructions) in
;3 the compilation of an IF. TEST-SIZE, THEN-SIZE and
33 ELSE-SIZE are the sizes of the test, then and else instructions.
(LR-P-C-SIZE-IF TEST-SIZE THEN-SIZE ELSE-SIZE)
(PLUS TEST-SIZE

4

THEN-SIZE

1

ELSE-SIZE)

DEFINITION

;3 COMP-TEMP-FETCH generates code for a (S-TEMP-FETCH) form,
;3 which unconditionally uses the already computed value.

;3 EXPR is the expression being compiled, so (CADDR EXPR) is

;3 the variable used to store this form.

(COMP-TEMP-FETCH EXPR H)

(LIST (LIST ’PUSH-LOCAL (CADDR EXPR))
> (FETCH)
> (ADD1-NAT)
(LIST ’PUSH-LOCAL (CADDR EXPR))
’ (DEPOSIT)
(LIST ’PUSH-LOCAL (CADDR EXPR)))

DEFINITION
33 LR-P-C-SIZE-TEMP-FETCH returns size of a (S-TEMP-FETCH) form.
(LR-P-C-SIZE-TEMP-FETCH) = 6

DEFINITION
; ;3 COMP-TEMP-EVAL generates code for a (S-TEMP-EVAL) form,
;3 which unconditionally always computes the value and stores it.
;3 EXPR is the expression being compiled, so (CADDR EXPR) is
;3 the variable used to store this form. INSTRS are the
;3 instructions to evaluate EXPR.
(COMP-TEMP-EVAL EXPR INSTRS N)
(APPEND INSTRS
(LIST (LIST ’SET-LOCAL (CADDR EXPR))

’ (FETCH)

7 (ADD1-HNAT)

(LIST ’PUSH-LOCAL (CADDR EXPR))

’ (DEPOSIT)
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(LIST ’PUSH-LOCAL (CADDR EXPR))))

DEFINITION
;3 LR-P-C-SIZE-TEMP-EVAL returns size of a (S-TEMP-EVAL) form.
(LR-P-C-SIZE-TEMP-EVAL SIZE)

(PLUS SIZE 6)

DEFINITION

;5 COMP-TEMP-TEST generates code for a (S-TEMP-TEST) form,

; ;3 which tests if the expression has been computed already, if so
it uses the already computed value, otherwise the value is

’
; 3 computed and stored. EXPR is the expression being
;3 compiled, so (CADDR EXPR) is the variable used to store
;3 this form.INSTRS are the instructions to evaluate EXPR.
; ;11 will the label on the first instruction of generated.
(COMP-TEMP-TEST EXPR INSTRS H)
(APPERD (LIST (LIST ’PUSH-LOCAL (CADDR EXPR))

(LIST ’PUSH-CONSTANT (LR-UNDEF-ADDR))

’(EQ)

33 If the value is already computed jump to

;3 PUSH-LOCAL below.

(LIST °TEST-BOOL-AND-JUMP °F

(LR-MAKE-LABEL (PLUS N 5
(LENGTH INSTRS)))))
(APPEND INSTRS
;3 Pop the value into appropriate temp.
(LIST (LIST °POP-LOCAL (CADDR EXPR))
;3 The reference count must be incremented.

If the stored value is used, then an
additional pointer is added since the
;3 value is put on the temp stack. If the
;3 value is computed, we store it for use
;; later on the control stack.
(LIST ’PUSH-LOCAL (CADDR EXPR))
» (FETCH)
? (ADD1-HNAT)
(LIST ’PUSH-LOCAL (CADDR EXPR))
’ (DEPOSIT)
(LIST ’PUSH-LOCAL (CADDR EXPR)))))

DEFINITION
;3 LR-P-C-SIZE-TEMP-TEST returns size of a (S-TEMP-TEST) form.
(LR-P-C-SIZE-TEMP-TEST SIZE)

(PLUS 4 SIZE 7)
DEFINITION

;; COMP-QUOTE generates code for a QUOTE form, just put
;; the address on the stack and increment the ref count.
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(COMP-QUOTE EXPR W)

(LIST (LIST ’PUSH-CONSTANT (CADR EXPR))
> (FETCH)
> (ADD1-NAT)
(LIST ’PUSH-CONSTANT (CADR EXPR))
» (DEPOSIT)
(LIST ’PUSH-CONSTANT (CADR EXPR)))

DEFINITION
33 LR-P-C-SIZE-QUOTE returns the size of a quote form
(LR-P-C-SIZE-QUOTE) = 6

DEFINITION
;3 COMP-LITATOM generates code for referencing a variable, just push
;3 the variable on the stack and increment the ref count.
(COMP-LITATOM EXPR H)
(LIST (LIST °PUSH-LOCAL EXPR)

’ (FETCH)

7 (ADD1-NAT)

(LIST ’PUSH-LOCAL EXPR)

’ (DEPOSIT)

(LIST °PUSH-LOCAL EXPR))

DEFINITION
33 LR-P-C-SIZE-LITATOM returns the size of a variable reference
(LR-P-C-SIZE-LITATOM) = 6

DEFINITION

;; COMP-FUNCALL generates the code for a function call, just do
; ; the appropriate call.

(COMP-FUNCALL EXPR INSTRS)

(APPEND INSTRS
(IF (DEFINEDP (CAR EXPR) (P-RUNTIME-SUPPORT-PROGRAMS))
(LIST (LIST ’CALL (CAR EXPR)))
(LIST (LIST ’CALL (USER-FNAME (CAR EXPR))))))

DEFINITION
33 LR-P-C-SIZE-FUNCALL returns the size of a function call
(LR-P-C-SIZE-FUNCALL SIZE)

(PLUS SIZE 1)

DEFINITION

;3 COMP-BODY-1 returns a list of Piton instructions to compile EXPR.

;3 N is the number of Piton instructions previously generated, it is used
;3 to generate unique labels.
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(COMP-BODY-1 FLAG EXPR H)
(COND ((EQUAL FLAG ’LIST)
(IF (LISTP EXPR)
(APPEED (COMP-BODY-1 T (CAR EXPR) )
(COMP-BODY-1 °LIST

(CDR EXPR)

(PLUS N (LENGTH (COMP-BODY-1 T
(CAR EXPR)
m))))

NIL))
((LISTP EXPR)
(CoND ((EQUAL (CAR EXPR) ’IF)
(LET ((TEST (COMP-BODY-1 T (CADR EXPR) H)))
(LET ((THEN (COMP-BODY-1 T
(CADDR EXPR)
(PLUS § (LENGTH TEST) 4))))
(COMP-IF TEST
THEN
(COMP-BODY-1 T
(CADDDR EXPR)
(PLUS § (LENGTH TEST)
4 (LENGTH THEN) 1))
m)))
((EQUAL (CAR EXPR) (S-TEMP-FETCH)) (COMP-TEMP-FETCH EXPR N))
((EQUAL (CAR EXPR) (S-TEMP-EVAL))
(COMP-TEMP-EVAL EXPR (COMP-BODY-1 T (CADR EXPR) H) K))
((EQUAL (CAR EXPR) (S-TEMP-TEST))
(COMP-TEMP-TEST EXPR
(COMP-BODY-1 T (CADR EXPR) (PLUS N 4))
)
((EQUAL (CAR EXPR) ’QUOTE) (COMP-QUOTE EXPR N))
(T (COMP-FUNCALL EXPR (COMP-BODY-1 °LIST (CDR EXPR) N)))))
(T (COMP-LITATOM EXPR H)))

DEFINITION

;3 COMP-POP-FORMALS generates code to decrement the reference

;3 count of all actual parameters before returning from a function call.
(COMP-POP-FORMALS FORMALS)

(IF (LISTP FORMALS)
(APPEND (LIST (LIST ’PUSH-LOCAL (CAR FORMALS))
> (CALL I-DECR-REF-COUNT)
> (POP))
(COMP-POP-FORMALS (CDR FORMALS)))
NIL)

DEFINITION
(LR-P-C-SIZE-FORMALS FORMALS)

(TIMES 3 (LENGTH FORMALS))
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DEFINITION

;; COMP-POP-TEMPS generates code to decrement the reference count
;3 of all temporary variables before returning from a function call.
(COMP-POP-TEMPS TEMP-VAR-DCLS H)

(IF (LISTP TEMP-VAR-DCLS)

(APPEND (LIST (LIST ’PUSH-LOCAL (CAAR TEMP-VAR-DCLS))
(LIST ’PUSH-CONSTANT (LR-UNDEF-ADDR))
' (EQ)
(LIST ’TEST-BOOL-AND-JUMP T (LR-MAKE-LABEL (PLUS N 5)))
> (CALL I-DECR-REF-COUNT)
> (POP))

(COMP-POP-TEMPS (CDR TEMP-VAR-DCLS) (PLUS N 5)))
NIL)

DEFINITION
(LR-P-C-SIZE-TEMPS TEMPS)

(TIMES 6 (LENGTH TEMPS))

DEFINITION
;3 LR-P-C-SIZE returns the size of (the number of Piton instructions
;; in the compilation of ) EXPR.
(LR-P-C-SIZE FLAG EXPR)
(COND ((EQUAL FLAG ’LIST)
(IF (LISTP EXPR)
(PLUS (LR-P-C-SIZE T (CAR EXPR))
(LR-P-C-SIZE °LIST (CDR EXPR)))
0))
((LISTP EXPR)
(COND ((EQUAL (CAR EXPR) ’IF)
(LR-P-C-SIZE-IF (LR-P-C-SIZE T (CADR EXPR))
(LR-P-C-SIZE T (CADDR EXPR))
(LR-P-C-SIZE T (CADDDR EXPR))))
((EQUAL (CAR EXPR) (S-TEMP-FETCH))
(LR-P-C-SIZE-TEMP-FETCH))
((EQUAL (CAR EXPR) (S-TEMP-EVAL))
(LR-P-C-SIZE-TEMP-EVAL (LR-P-C-SIZE T (CADR EXPR))))
((EQUAL (CAR EXPR) (S-TEMP-TEST))
(LR-P-C-SIZE-TEMP-TEST (LR-P-C-SIZE T (CADR EXPR))))
((EQUAL (CAR EXPR) ’QUOTE) (LR-P-C-SIZE-QUOTE))
(T (LR-P-C-SIZE-FUNCALL (LR-P-C-SIZE ’LIST (CDR EXPR))))))
(T 6))

DEFINITION
33 LR-P-C-SIZE-LIST generates the size of the first I expressions
;3 in EXPR-LIST.
(LR-P-C-SIZE-LIST N EXPR-LIST)
(IF (ZEROP W)
(o]
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(IF (LESSP N (LENGTH EXPR-LIST))
(PLUS (LR-P-C-SIZE T (GET N EXPR-LIST))
(LR-P-C-SIZE-LIST (SUB1 N) EXPR-LIST))
(LR-P-C-SIZE-LIST (SUB1 (LENGTH EXPR-LIST)) EXPR-LIST)))

;3 LR-P-PC-1 returns the number of Piton instructions before the start of
; ; the expression denoted by POS in the compilation of EXPR.

DEFINITION
(LR-P-PC-1 EXPR POS)
(COND ((NOT (LISTP POS)) 0)
((NOT (LISTP EXPR)) 0)
((ZERDP (CAR POS)) 0)
((EQUAL (CAR EXPR) ’IF)
(coND ((ZEROP (CAR POS)) 0)
((EQUAL (CAR POS) 1)
(LR-P-PC-1 (CADR EXPR) (CDR P0S)))
((EQUAL (CAR POS) 2)
(PLUS (LR-P-C-SIZE T (CADR EXPR))
4
(LR-P-PC-1 (CADDR EXPR) (CDR P0S))))
(T (PLUS (LR-P-C-SIZE T (CADR EXPR))
4
(LR-P-C-SIZE T (CADDR EXPR))
1
(LR-P-PC-1 (CADDDR EXPR) (CDR P0S))))))
((EQUAL (CAR EXPR) (S-TEMP-FEICH)) 0)
((EQUAL (CAR EXPR) (S-TEMP-EVAL))
(LR-P-PC-1 (CADR EXPR) (CDR P0S)))
((EQUAL (CAR EXPR) (S-TEMP-TEST))
(PLUS 4 (LR-P-PC-1 (CADR EXPR) (CDR P0S))))
((EQUAL (CAR EXPR) ’QUOTE) 0)
(T (PLUS (LR-P-C-SIZE-LIST (SUB1 (CAR P0S)) EXPR)
(LR-P-PC-1 (GET (CAR POS) EXPR) (CDR P0S)))))

DEFINITION
;3 COMP-BODY compiles the LR function body BODY, with formal
; ; parameters FORMALS and temporary variable definitions
;3 TEMP-VAR-DCLS. FIRSTP indicates whether the program is
;; the main one or not. The main program does not need to
; ; decrement the reference counts of the actuals and temporary
; ; variables, since Piton halts.
;3 Need the REMOVE-DUPLICATES of FORMAL-VARS. Otherwise if there is a
; ; duplicate in the formals, we will decrement the reference count
;3 more than once when returning from a user defined function call.
(COMP-BODY FIRSTP BODY FORMALS TEMP-VAR-DCLS)
(LABEL-INSTRS
(APPERED (COMP-BODY-1 T BODY 0)
(IF FIRSTP
(LIST (LIST ’SET-GLOBAL (AREA-NAME (LR-ANSWER-ADDR)))
(RET))
(APPEND (COMP-POP-FORMALS (REMOVE-DUPLICATES FORMALS))
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(APPEND (COMP-POP-TEMPS
TEMP-VAR-DCLS
(PLUS (LR-P-C-SIZE T BODY)
(TIMES 2
(LENGTH FORMALS))))
7((RET))))))
0)

DEFINITION
;13 COMP-PROGRAMS-1 compiles programs.
(COMP-PROGRAMS-1 FIRSTP PROGRAMS)

(IF (LISTP PROGRAMS)
(CONS (LR-MAKE-PROGRAM (NAME (CAR PROGRAMS))
(FORMAL-VARS (CAR PROGRAMS))
(TEMP-VAR-DCLS (CAR PROGRAMS))
(COMP-BODY FIRSTP
(PROGRAM-BODY (CAR PROGRAMS))
(FORMAL-VARS (CAR PROGRAMS))
(TEMP-VAR-DCLS (CAR PROGRAMS))))
(COMP-PROGRAMS-1 F (CDR PROGRAMS)))
NIL)

DEFINITION

;; COMP-PROGRAMS produces the program segment by compiling

;; PROGRAMS and appending the run-time support function.

(COMP-PROGRAMS PROGRAMS)

(APPEND (COMP-PROGRAMS-1 T PROGRAMS)
(P-RUNTIME-SUPPORT-PROGRAMS))

DEFINITION
;3 LR-P-PC produces the Piton PC from the LR PC
(LR-P-PC L)
(TAG °PC (CONS (AREA-NAME (P-PC L))
(LR-P-PC-1 (PROGRAM-BODY (P-CURRENT-PROGRAM L))
(OFFSET (P-PC L)))))

DEFINITION

33 LR->P compiles an LR state.

(LR->P P)

(P-STATE (LR-P-PC P)
(P-CTRL-STK P)
(P-TEMP-STK P)
(COMP-PROGRAMS (P-PROG-SEGMENT P))
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
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(P-PSW P))

DEFINITION
;3 This table provides program addresses in the subroutine I-ALLOCATE-NODE
;3 to jump to based on type of the node. When user-defined subrs are
;5 added it will need an argument to tell the tags for the user-defined
;3 subrs.
(LR-MAKE-ALLOC-NODE-JUMP-TABLE)
(LIST (PC ’CANT-HAPPEN (P-I-ALLOC-NODE-CODE)) ; UNDEFINED node
(PC ’INIT (P-I-ALLOC-NODE-CODE))
(PC ’CANT-HAPPEN (P-I-ALLOC-NODE-CODE)) ; F
(PC ’INIT (P-I-ALLOC-NODE-CODE)) 3 T
(PC °ADD1 (P-I-ALLOC-NODE-CODE))
(PC ’CONS (P-I-ALLOC-NODE-CODE))
(PC ’PACK (P-I-ALLOC-NODE-CODE))
(PC °MINUS (P-I-ALLOC-NODE-CODE)))

DEFINITION
33 LR-INIT-HEAP-CONTENTS constructs the contents of the heap data
;; area. SIZE is the number nodes in the heap. The contents
;3 are initially linked together through the reference count field.
(LR-INIT-HEAP-CONTENTS ADDR SIZE)
(IF (ZEROP SIZE)
(LIST (TAG °NAT (LR-INIT-TAG)))
(APPERND (LR-NEW-HNODE (ADD-ADDR ADDR (LR-NODE-SIZE))
(TAG ’NAT (LR-INIT-TAG))
(TAG ’NAT 0)
(TAG ’NAT 0))
(LR-INIT-HEAP-CONTENTS (ADD-ADDR ADDR (LR-NODE-SIZE))
(SUB1 SIZE))))

DEFINITION
(LR-ADD-TO-DATA-SEG DATA-SEG NEW-NODE)
(IF (NOT (LESSP (SUB1 (LENGTH (VALUE (LR-HEAP-NAME) DATA-SEG)))
(PLUS (OFFSET (LR-FETCH-FP DATA-SEG))
(LENGTH NEW-NODE))))
(DEPOSIT (FETCH (LR-FETCH-FP DATA-SEG) DATA-SEG)
(LR-FP-ADDR)
(DEPOSIT-A-LIST NEW-NODE
(LR-FETCH-FP DATA-SEG)
DATA-SEG))
DATA-SEG)

;; We put a 0 for the reference count of F (this means that there is
; ; exactly one pointer to it, i.e. we add an implicit pointer).
;3 This is because we need to make sure it is never GC’d.

DEFINITION
+3 LR-INIT-DATA-SEG constructs the initial data-segment.
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;3 HEAP-SIZE is the number of nodes in the data-segment.
(LR-INIT-DATA-SEG HEAP-SIZE)
(DEPOSIT-A-LIST (LIST (TAG °NAT 0)
(TAG °NAT (LR-FALSE-TAG))
(LR-UNDEF-ADDR)
(LR-UNDEF-ADDR))
(LR-F-ADDR)
(DEPOSIT-A-LIST
(LIST (TAG ’NAT 0)
(TAG ’NAT (LR-UNDEFINED-TAG))
(LR-UNDEF-ADDR)
(LR-UNDEF-ADDR))
(LR-UNDEF-ADDR)
(LIST (LIST (AREA-NAME (LR-FP-ADDR))
(ADD-ADDR (LR-F-ADDR) (LR-NODE-SIZE)))
(LIST (AREA-NAME (LR-ANSWER-ADDR))
(TAG °NAT 0))
(LIST (AREA-NAME (LR-ALLOC-NODE-JUMP-TABLE-ADDR))
(LR-MAKE-ALLOC-NODE-JUMP-TABLE) )
(CONS (LR-HEAP-NAME)
(LR-INIT-HEAP-CONTENTS
(TAG >ADDR (CONS (LR-HEAP-NAME) 0))
HEAP-SIZE)))))

DEFINITION
;; COUNT-LIST is used to admit LR~COMPILE-QUOTE.
(COUNT-LIST FLAG OBJECT)
(COND ((EQUAL FLAG ’LIST)
(IF (LISTP 0BJECT)
(PLUS (COUNT-LIST T (CAR OBJECT))
(COUNT-LIST ’LIST (CDR OBJECT)))
1))
((LISTP OBJECT)
(ADD1 (ADD1 (PLUS (COUNT-LIST T (CAR OBJECT))
(COUNT-LIST T (CDR OBJECT))))))
( (NUMBERP OBJECT)
(ADD1 (COUNT OBJECT)))
(T 1))

DEFINITION
;33 LR-COMPILE-QUOTE is the main function that compiles a quoted
constant. HEAP is a data-segment. TABLE is an
;3 association list that associates objects with addresses into
;; HEAP. LR-COMPILE-QUOTE returns a pair, the new HEAP
;; and the new TABLE.
(LR-COMPILE-QUOTE FLAG OBJECT HEAP TABLE)
(COND ((EQUAL FLAG ’LIST)

(IF (LISTP OBJECT)

(LET ((CAR-PAIR (LR-COMPILE-QUOTE T (CAR OBJECT) HEAP TABLE)))
(LR-COMPILE-QUOTE °LIST
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(CDR OBJECT)
(CAR CAR-PAIR)
(CDR CAR-PAIR)))
(CONS HEAP TABLE)))
((DEFINEDP OBJECT TABLE)
(CONS (DEPOSIT (TAG ’NAT
(ADD1 (UNTAG (FETCH (CDR (ASSOC OBJECT TABLE))
HEAP))))
(CDR (ASSOC OBJECT TABLE))
HEAP)
TABLE))
((LISTP OBJECT)
(LET ((PAIR (LR-COMPILE-QUOTE ’LIST
(LIST (CAR OBJECT) (CDR OBJECT))
HEAP
TABLE)))
(CONS (LR-ADD-TO-DATA-SEG (CAR PAIR)
(LR-NEW-CONS (CDR (ASSOC
(CAR OBJECT)
(CDR PAIR)))
(CDR (ASSOC
(CDR OBJECT)
(CDR PAIR)))))
(CONS (CONS OBJECT (FETCH (LR-FP-ADDR) (CAR PAIR)))
(CDR PAIR)))))
((NUMBERP OBJECT)
(CONS (LR-ADD-TO-DATA-SEG HEAP
(LR-NEW-NODE (TAG ’HNAT 0)
(TAG ’NAT (LR-ADD1-TAG))
(TAG NAT OBJECT)
(LR-UNDEF-ADDR)))
(CONS (CONS OBJECT (FETCH (LR-FP-ADDR) HEAP)) TABLE)))
((TRUEP OBJECT)
(CONS (LR-ADD-TO-DATA-SEG HEAP (LR-NEW-NODE (TAG ’NAT 0)
(TAG *NAT (LR-TRUE-TAG))
(LR-UNDEF-ADDR)
(LR-UNDEF-ADDR)))
(CONS (CONS OBJECT (FETCH (LR-FP-ADDR) HEAP)) TABLE)))
(T ; Assume it is undefined
(CONS HEAP
(CONS (CONS OBJECT (LR-UNDEF-ADDR)) TABLE))))

DEFINITION

33 LR-DATA-SEG-TABLE-BODY returns a pair, the CAR is the extension of

;3 DATA-SEG with any constants laid down in it, the CDR is an alist

; ; mapping objects in the logic to addresses in the new DATA-SEG

;3 where they are represented. The initial TABLE is such an alist

(LR-DATA-SEG-TABLE-BODY FLAG EXPR DATA-SEG TABLE)

(COND ((EQUAL FLAG ’LIST)

(IF (LISTP EXPR)
(LET ((DST1 (LR-DATA-SEG-TABLE-BODY T

(CAR EXPR)
DATA-SEG
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TABLE)))
(LR-DATA-SEG-TABLE-BODY ’LIST
(CDR EXPR)
(CAR DST1)
(CDR DST1)))
(CONS DATA-SEG TABLE)))
((LISTP EXPR)
(COND ((OR (EQUAL (CAR EXPR) (S-TEMP-FETCH))
(EQUAL (CAR EXPR) (S-TEMP-EVAL))
(EQUAL (CAR EXPR) (S-TEMP-TEST)))

(LR-DATA-SEG-TABLE-BODY T (CADR EXPR) DATA-SEG TABLE))

((EQUAL (CAR EXPR) ’QUOTE)

(LR-COMPILE-QUOTE T (CADR EXPR) DATA-SEG TABLE))

(T (LR-DATA-SEG-TABLE-BODY ’LIST
(CDR EXPR)
DATA-SEG
TABLE))))
(T ; should be a LITATOM
(CONS DATA-SEG TABLE)))

DEFINITION
(LR-DATA-SEG-TABLE-LIST PROGS DATA-SEG TABLE)
(IF (LISTP PROGS)
(LR-DATA-SEG-TABLE-LIST (CDR PROGS)
(CAR (LR-DATA-SEG-TABLE-BODY
T
(S-BODY (CAR PROGS))
DATA-SEG
TABLE))
(CDR (LR-DATA-SEG-TABLE-BODY
T
(S-BODY (CAR PROGS))
DATA-SEG
TABLE)))
(CONS DATA-SEG TABLE))

DEFINITION
(LR-INIT-DATA-SEG-TABLE PARAMS DATA-SEG TABLE)

(IF (LISTP PARAMS)

(LET ((DS-TAB (LR-COMPILE-QUOTE T (CDAR PARAMS) DATA-SEG TABLE)))
(LR-INIT-DATA-SEG-TABLE (CDR PARAMS) (CAR DS-TAB) (CDR DS-TAB)))

(CONS DATA-SEG TABLE))

DEFINITION

;3 LR-DATA-SEG-TABLE constructs the initial data-segment used by
33 LR->P. It firsts puts down T and O in the correct

;3 place. Then it calls LR-INIT-DATA-SEG-TABLE to compile

;; the constants in the variable alist PARAMS and calls

;3 LR-DATA-SEG-TABLE-LIST to compile the constants in the programs

s ; PROGS.
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(LR-DATA-SEG-TABLE PROGS PARAMS HEAP-SIZE)
(LET ((INIT-DS-TABLE1 (LR-COMPILE-QUOTE ’LIST
(LIST T 0)
(LR-INIT-DATA-SEG HEAP-SIZE)
(LIST (CONS F (LR-F-ADDR))))))
(LET ((INIT-DS-TABLE2 (LR-INIT-DATA-SEG-TABLE PARAMS
(CAR INIT-DS-TABLE1)
(CDR INIT-DS-TABLE1))))
(LR-DATA-SEG-TABLE-LIST PROGS
(CAR INIT-DS-TABLE2)
(CDR INIT-DS-TABLE2))))

DEFINITION
33 S—>LR1 compiles the programs and the PC in S, leaving the
;; other fields the sames as L.
(S->LR1 S L TABLE)
(P-STATE (TAG °PC (CONS (S-PNAME S) (S-POS S)))
(P-CTRL-STK L)
(P-TEMP-STK L)
(LR-COMPILE-PROGRAMS (S-PROGS S) TABLE)
(P-DATA-SEGMENT L)
(P-MAX-CTRL-STK-SIZE L)
(P-MAX-TEMP-STK-SIZE L)
(P-WORD-SIZE L)
(S-ERR-FLAG S))

DEFINITION
;3 Returns an LR-STATE, FHEAP-SIZE is number of free
; ; nodes in the resulting LR-STATE. MAX-CTRL, MAX-TEMP and
;3 WORD-SIZE give the resource limitations.
(S->LR S FHEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE)
(LET ((TEMP-ALIST (LR-MAKE-TEMP-NAME-ALIST (STRIP-CARS (S-TEMPS S))
(STRIP-CARS (S-PARAMS S))))
(DATASEG-TABLE (LR-DATA-SEG-TABLE (S-PROGS S)
(S-PARAMS S)
FHEAP-SIZE)))
(LET ((RETURHE-PC
(TAG °PC
(CONS (S-PHNAME S)
(LR-P-PC-1 (LR-COMPILE-BODY T
(S-BODY (S-PROG S))
TEMP-ALIST
(CDR DATASEG-TABLE))
(S-P0S S$))))))
(S->LR1 S
(P-STATE NIL
(LR-INITIAL-CSTK (S-PARAMS S)
TEMP-ALIST
(CDR DATASEG-TABLE)
RETURH-PC)
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NIL

NIL

(CAR DATASEG-TABLE)
MAX-CTRL

MAX-TEMP

WORD-SIZE

NIL)

(CDR DATASEG-TABLE))))

DEFINITION
+3 LOGIC->P puts it all together.
(LOGIC->P EXPR ALIST PNAMES HEAP-SIZE MAX-CTRL MAX-TEMP WORD-SIZE)

(LR->P (S->LR (LOGIC->S EXPR ALIST PNAMES)
HEAP-SIZE
MAX-CTRL
MAX-TEMP
WORD-SIZE))
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Appendix C

Nqthm Libraries

This chapter lists the events in lists, integers, naturals, and bags libraries of Bevier,
Kaufmann and Wilding (see [16] and [3]).

C.1 Bags Library

The list of events in the Bags Library has been omitted in the current version of
this report.

C.2 Naturals Library

The list of events in the Natural Library has been omitted in the current version
of this report.

C.3 Integers Library

The list of events in the Integers Library has been omitted in the current version
of this report.

C.4 Lists Library

The list of events in the Lists Library has been omitted in the current version of
this report.
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Appendix D

Piton Events

This chapter lists the events from Moore’s Piton proof ([23]) that are necessary for
the compiler proof. There are four axioms added at the end of this section. These
are named P-STEP-PRESERVES-PROPER-P-STATEP, ONCE-ERRORP-ALWAYS-ERRORP-STEP,
ONCE-ERRORP-ALWAYS-ERRORP and P-PRESERVES-PROPER-P-STATEP. These are the
same as PROVE-LEMMA events with the same name that were proven by Moore.

The events listed in this chapter depend on the events in Appendix C.

The list of events used in the compiler proof, that were taken from the Piton
proof has been omitted in the current version of this report.
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Appendix E

Listing of Events in the
Proofs of Compiler With

and Without Garbage
Collector

This chapter lists the events in the compiler proofs. The events in this chapter are
used in the proofs of the compiler with and without the garbage collector. The
events here will also be used unchanged in the proof of the full compiler. Every
PROVE-LEMMA event in this section has been mechanically checked.
The events listed in this chapter depend on the events in Appendices C and D.
The list of events used in both versions of the compiler proof has been omitted
in the current version of this report.
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Appendix F

Listing of Events in the
Proof of the Compiler
Without a Garbage
Collector

This chapter lists all the events in the proof of the compiler without a garbage
collector. Note that this version of the compiler contains only the following SUBRs:
CAR, CDR, CONS, FALSE, FALSEP, IF, LISTP, NLISTP, TRUE and TRUEP. Also user-
defined shells are not implemented. All of the lemmas in this chapter have me-
chanically checked proofs.

The events listed in this chapter depend on the events in Appendices C, D, and
E.

The list of events that make up the compiler proof has been omitted in the
current version of this report, with the exception of those referenced in Chapter 6

(PROVE-LEMMA LR-EVAL-S-EVAL-EQUIVALENCE ()
(IMPLIES (AND (PROPER-P-STATEP (LR->P (S->LR1 S L TABLE)))
(LR-PROPER-HEAPP (P-DATA-SEGMENT L))
(GOOD-POSP FLAG (S-P0S S) (S-BODY (S-PR0OG S)))
(LR-PROGRAMS-PROPERP (S->LR1 S L TABLE) TABLE)
(LR-S-SIMILAR-STATESP (S-PARAMS S)

(S-TEMPS S)
(S->LR1 S L TABLE)
TABLE)

(S-GOOD-STATEP S C)
(EQUAL (P-PSW (LR-EVAL FLAG (S->LR1 S L TABLE) C)) ’RUI))
(AND (LR-S-SIMILAR-STATESP (S-PARAMS S)
(S-TEMPS (S-EVAL FLAG S C))
(LR-EVAL FLAG (S->LR1 S L TABLE) C)
TABLE)
(LR-CHECK-RESULT (IF (EQUAL FLAG ’LIST) ’LIST T)
(S-ANS (S-EVAL FLAG S C))
(P-TEMP-STK (LR-EVAL FLAG
(S->LR1 S L TABLE)
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C))
(P-DATA-SEGMENT (LR-EVAL FLAG
(S->LR1 S L TABLE)
c))

(P-TEMP-STK L))
(EQUAL (S-ERR-FLAG (S-EVAL FLAG S C)) ’RUN)))
((INDUCT (IHINT-2 FLAG S L TABLE C))
(ENABLE LR-EVAL-IF-P-PSW-1)
(EXPAND (S-EVAL FLAG S C) (S-EVAL ’LIST S C) (S-EVAL FLAG S 0))
(DISABLE EEE%XEDP LR-COMPILE-PROGRAMS LR-EVAL LR-MAKE-TEMP-NAME-ALIST

GOOD-POSP-LIST-NX-T-SIMPLE
GOOD-POSP1-CONS-LESSP-4-IF-LR-PROPER-EXPRP
FORMAL-VARS-LR-COMPILE-PROGRAMS
PROPER-P-STATEP-LR->P-STRIP-CARS-BINDINGS-CTRL-STK
S-EVAL-L-EVAL-FLAG-RUN-FLAG-T
S-EVAL-L-EVAL-FLAG-RUN-HELPER-5
S-EVAL-L-EVAL-FLAG-T
TEMP-VAR-DCLS-LR-COMPILE-PROGRAMS)))

(PROVE-LEMMA LR-EVAL-S-EVAL-FLAG-RUN (REWRITE)
(IMPLIES (AND (PROPER-P-STATEP (LR->P (S->LR1 S L TABLE)))
(LR-PROPER-HEAPP (P-DATA-SEGMENT L))
(GOOD-POSP FLAG (S-POS S) (S-BODY (S-PROG S)))
(LR-PROGRAMS-PROPERP (S->LR1 S L TABLE) TABLE)
(LR-S-SIMILAR-STATESP (S-PARAMS S)

(S-TEMPS S)
(S->LR1 S L TABLE)
TABLE)

(S-GDOD-STATEP S C)
(S-ALL-TEMPS-SETP FLAG
(IF (EQUAL FLAG °LIST)
(S-EXPR-LIST S)
(S-EXPR S))
(TEMP-ALIST-TO-SET (S-TEMPS S)))
(S-ALL-PROGS-TEMPS-SETP (S-PROGS S))
(S-CHECK-TEMPS-SETP (S-TEMPS S))
(EQUAL (S-ERR-FLAG (S-EVAL FLAG S C)) ’RUN)
(LR-CHECK-RESOURCESP FLAG S L C)
(HOT (LESSP (P-WORD-SIZE L) (S-MAX-SUBR-REQS))))
(EQUAL (P-PSW (LR-EVAL FLAG (S->LR1 S L TABLE) C)) ’RUN))
((INDUCT (IHINT-2 FLAG S L TABLE C))
(DISABLE-THEORY ADDITION)
(ENABLE P-PSW-RUN-LR-IF-0OK-P-PSW-RUN)
(EXPAND (S-EVAL FLAG S C) (S-EVAL ’LIST S C) (S-EVAL FLAG S 0)
(S-ALL-TEMPS-SETP FLAG
(S-EXPR S)
(TEMP-ALIST-TO-SET (S-TEMPS S)))
(S-ALL-TEMPS-SETP ’LIST
(S-EXPR-LIST S)
(TEMP-ALIST-TO-SET (S-TEMPS S))))
(DISABLE LR-COMPILE-BODY LR-EVAL LR-COMPILE-PROGRAMS
ékégﬁgE—TEmp—mAHE—ALIST MAX S-COLLECT-ALL-TEMPS S-ALL-TEMPS-SETP

GO0D-POSP-LIST-NX-T-SIMPLE
L-PROPER-EXPR-S-ALL-TEMPS-SETP
LR-PROGRAMS-PROPERP-LR->P-S->LR1-DEF INEDP-S-PNAME
PROPER-P-STATEP-LR->P-STRIP-CARS-BINDINGS-CTRL-STK
S-EVAL-L-EVAL-FLAG-T
S-EVAL-L-EVAL-FLAG-RUN-FLAG-T)))

(PROVE-LEMMA LR-EVAL-P-PC-EQUIVALENCE ()
(IMPLIES (AND (PROPER-P-STATEP (LR->P L))
(GOOD-POSP FLAG
(OFFSET (P-PC L))
(PROGRAM-BODY (P-CURRENT-PROGRAM L)))
(OR (HOT (EQUAL FLAG ’LIST))
(HOT (EQUAL (CAR (CUR-EXPR (BUTLAST (OFFSET (P-PC L)))
(PROGRAM-BODY
(P-CURRENT-PROGRAM L))))
'IF)))
(LR-PROGRAMS-PROPERP L TABLE)
(LR-P-PROPER-STATEP (P-TEMP-STK L)
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(P-CTRL-STK L)
(P-DATA-SEGMENT L)
TABLE)
(LR-PROPER-FORMALSP (CDR (P-PROG-SEGMENT L)))
(EQUAL (P-PSW (LR-EVAL FLAG L C)) ’RUN))
(EQUAL (P (LR->P L) (P-CLOCK1 FLAG L C))
(P-SET-PC (LR->P (LR-EVAL FLAG L C))
(P-FINAL-PC FLAG L 0))))
((INDUCT (LR-EVAL FLAG L C))

(ENABLE ADD-ADDR ERRORP LR-P-PC_LR-PUSH-TSTK
ASSOCIATIVITY-OF-PLUS PLUS-ZERO-ARG2
LR-EVAL-IF-P-PSW-1
P-SET-PC-LR->P-LR-SET-EXPR)

(EXPAND (LR-EVAL FLAG L C) (LR-EVAL °LIST L C)
(P-CLOCK1 FLAG L C)

(P-CLOCK1 ’LIST L C)
(P-FINAL-PC ’LIST L 0) (P-FINAL-PC T L 0)
(LR-P-C-SIZE ’LIST (LR-EXPR-LIST L)))

(DISABLE-THEORY ADDITION)

(DISABLE LR-EVAL LR-P-PC-1 LR-P-C-SIZE P-CLOCK1
G00D-POSP1-CONS-LESSP-4-IF-S-PROPER-EXPRP
G00D-POSP1-CONS-LESSP-4-IF-LR-PROPER-EXPRP
G00D-POSP1-DV-1-TEMP-EVAL-TEST
G00D-POSP1-LIST-GOOD-POSP-LIST-T
G00D-POSP-LIST-NX-T-SIMPLE
GOOD-POSP1-LR-PROPER~EXPRP-GET-CADDDR
PROGRAM-BODY-ASSOC-COMP-PROGRAMS)))
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Appendix G

Listing of Events in the
Proof of the Compiler With
a Garbage Collector

This chapter lists the events in the proof of the compiler with a garbage collector.
Note that this version of the compiler contains only the following SUBRs: CAR, CDR,
CONS, FALSE, FALSEP, IF, LISTP, NLISTP, TRUE and TRUEP. Also user-defined shells
are not implemented.

The events listed in this chapter depend on the events in Appendices C, D, and
E.

G.1 Events with Mechanically Checked Proofs

This section is a listing of all the events in the chronology of the proof of the
compiler with a garbage collector. Every PROVE-LEMMA event in this section has
been mechanically checked.

The list of events that make up the compiler proof has been omitted in the
current version of this report.

.2 Events without Mechanically Checked Proofs

This section lists major lemmas used in the proof of the compiler with a garbage
collector. The PROVE-LEMMA events in this section have not been mechanically
checked.

The list of events that make up the compiler proof has been omitted in the
current version of this report.
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LR-PROPER-HEAPP, 72
LR-PROPER-P-STATESP, 72
LR-PROPER-REF-COUNTSP, 73
LR-S-SIMILAR-STATESP, 75
LR-STATE, 65

LR-T-ADDR, 99
LR-TAG-OFFSET, 100
LR-TRUE-TAG, 98
LR-UNBOX-NAT-OFFSET, 100
LR-UNDEF-ADDR, 99
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LSH-BITV instruction, summary, 25
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LT-INT instruction, summary, 25
LT-HAT instruction, summary, 25

MAKE-SYMBOL, 101
MAX-COUNT-CODELIST, 102
maximum control stack size, 15

maximum temporary stack size, 15
MULT2-NAT instruction, summary, 26
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MULT2-NAT-WITH-CARRY-0UT instruction, summary, 26

name (of a program), 20

NEG-INT instruction, summary, 26

NEGATIVEP, 40
N0-0P instruction, summary, 26

NOT-BITV instruction, summary, 26
NOT-BOOL instruction, summary, 26

NUMBERP, 39

ok predicate, 31

OR-BITV instruction, summary, 26
OR-BOOL instruction, summary, 26
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P, 31, 32, 50, 51, 65
P-ACCESSOR-CODE, 108

P-CAR-CODE, 109

P-CDR-CODE, 109

P-CONS-CODE, 109

P-FALSE-CODE, 109

P-FALSEP-CODE, 110
P-I-ALLOC-NODE-CODE, 105
P-I-DECR-REF-COUNT-CODE, 105
P-LISTP-CODE, 110

P-NLISTP-CODE, 110

P-0BJECTP, 17

P-RECOGNIZER-CODE, 107
P-RUNTIME-SUPPORT-PROGRAMS, 111
P-STATE, 15, 16, 65

P-TRUE-CODE, 111

P-TRUEP-CODE, 111
PAIR-FORMALS-WITH-ADDRESSES, 103

POP instruction, summary, 26

POP* instruction, summary, 27

POP-CALL instruction, summary, 27
POP-GLOBAL instruction, summary, 27
POP-LOCAL instruction, summary, 27
POP-LOCH instruction, summary, 27

POPJ instruction, summary, 27

POPY instruction, summary, 27
precondition, 31

program counter, 15

program definition, 20

program segment, 15

program status word, 16

proper p-state, 16

proper state, 67

proper states, 72

PROPER-P-PROGRAMP, 22
PROPER-P-STATEP, 16

psw, 16

PUSH-CONSTANT instruction, summary, 27
PUSH-CTRL-STK-FREE-SIZE instruction, summary, 28
PUSH-GLOBAL instruction, summary, 28
PUSH-LOCAL instruction, summary, 28
PUSH-TEMP-STK-FREE-SIZE instruction, summary, 28
PUSH-TEMP-STK-INDEX instruction, summary, 28
PUSHJ instruction, summary, 28

REMOVE-COSTS, 66
REMOVE-DUPLICATES, 96
representable, 18

RET instruction, summary, 29
return program counter, 16
RSH-BITV instruction, summary, 29

S->LR, 57, 60, 67, 124
S->LR1, 60, 61, 124
S-ANS, 95



148 A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation

S-BODY, 97
S-CONSTRUCT-PROGRAMS, 96
S-ERR-FLAG, 95

S-EVAL, 65, 66
S-EVAL-L-EVAL-FLAG-RUN-FLAG-T, 68
S-EVAL-L-EVAL-FLAG-T, 68
S-FORMALS, 97

S-GOOD-STATEP, 67

S-PARAMS, 95

S-PNAME, 95

S-POS, 95

S-PROG, 97

S-PROGRAMS-0KP, 67

S-PROGS, 95

S-STATE, 58, 65, 95

S-STATEP, 95

S-TEMP-EVAL, 95

S-TEMP-FETCH, 95

S-TEMP-LIST, 97

S-TEMP-TEST, 95

S-TEMPS, 95

SET-GLOBAL instruction, summary, 29
SET-LOCAL instruction, summary, 29
SHELL-SIZES, 37

step function, 31

SUB-ADDR instruction, summary, 29
SUB-INT instruction, summary, 29
SUB-INT-WITH-CARRY instruction, summary, 29
SUB-HNAT instruction, summary, 29
SUB-NAT-WITH-CARRY instruction, summary, 30
SUB1-INT instruction, summary, 30
SUB1-HAT instruction, summary, 30
subroutine definition, 20

SUBRP, 39

SUBSEQP, 102

temporary stack, 15

temporary variables, 20

TEST-BITV-AND-JUMP instruction, summary, 30
TEST-BOOL-AND-JUMP instruction, summary, 30
TEST-INT-AND-JUMP instruction, summary, 30
TEST-NAT-AND-JUMP instruction, summary, 31
TOTAL-OCCURRENCES, 74

TRUE, 39

TRUEP, 39

Undefined, 38

Unused, 38
USER-FNAME, 96
USER-FNAME-PREFIX, 95

vecs, 34, 35, 50, 52, 53, 65
V&C$-L-EVAL-EQUIVALENCE, 65
VALP, 56

value, 20
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word size, 15

XOR-BITV instruction, summary, 31



