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Abstract

This thesis presents a type system which supports the strong static type checking of programs developed
in an applicative subset of the Common Lisp language. The Lisp subset is augmented with a guard
construct for function definitions, which allows type restrictions to be placed on the arguments. Guards
support the analysis and safe use of partial functions, like CAR, which are well-defined only for
arguments of a certain type.

A language of type descriptors characterizes the type domain. Descriptors are composed into function
signatures which characterize the guard and which map various combinations of actual parameter types to
possible result types. From a base of signatures for a small collection of primitive functions, the system
infers signatures for newly submitted functions.

The system includes a type inference algorithm which handles constructs beyond the constraints of
ML-style systems. Most notable are the free use of CONS to construct objects of undeclared type and the
use of IF forms whose two result components have unrelated types, resulting in ad hoc polymorphism.
Accordingly, the type descriptor language accommodates disjunction, unrestricted CONS, recursive type
forms, and ad hoc polymorphic function signatures. As with traditional type inference systems,
unification is a central algorithm, but the richness of our type language complicates many component
algorithms, including unification. Special treatment is given to recognizer functions, which are predicates
determining whether an object is of a particular type. Type inference in this setting is undecidable, so the
algorithm is heuristic and is not complete.

The semantics of the system are in terms of a function which determines whether values satisfy
descriptors with respect to a binding of type variables. The soundness of each signature emitted by the
system is validated by a signature checker, whose properties are formally specified with respect to the
formal semantics and proven to hold. The checker agorithm is substantially ssimpler than the inference
algorithm, as it need not perform operations such as discovering closed recursive forms. Thus, its proof is
both more straightforward to construct and easier to validate than a direct proof of the inference algorithm
would be.
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Chapter 1
INTRODUCTION

Types in a programming language are a means of organizing the representation of program objects at a
level of abstraction appropriate to the language. As such, they provide a means for subjecting data
representation issues to distinct analysis. Inconsistent views of the representation can be isolated as type
errors. A common belief isthat a very large portion of programming errors are manifested as type errors.
Early exposure of type errors reduces the cost of software development.

For the purposes of this discussion, | will adopt the following terminology:

* A type error occurs when an operation is applied to an operand of an incompatible type, or
when the type of a construct does not match that expected in its context.

* Satic type checking is type checking performed by a compiler or pre-processor.
» Dynamic type checking is type checking performed while the program is running.

* A type systemis a collection of rules for assigning type expressions to the various parts of a
program.

« A type checker implements atype system.

« A language is strongly typed if its compiler or another pre-processor can guarantee that the
programs it accepts will execute without type errors.t

« Polymorphic languages are those in which some values and variables may have more than
one type, and polymor phic functions are functions whose operands can have more than one

type.

« Polymorphic types are types whose operations are applicable to operands of more than one
type. [Cardelli 85]

* Type inference is the problem of determining the type of alanguage construct from the way
itisused.

We assume the reader has at |east a rudimentary familiarity with Lisp.

1These definitions, adopted by Aho, Sethi, and Ullman [Aho 86], differ from some others. For example, Horowitz [Horowitz 84]
says that a language is strongly typed if the type of all expressions is known at compile time. Cardelli and Wegner [Cardelli 85]
apply Horowitz' s definition of strongly typed to the term statically typed, and accept Aho’ s definition of strong typing.
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1.1 Static Type Checking and Common Lisp

Common Lisp [Steele 90] is often referred to as an untyped programming language.? To the contrary,
Lisp has a number of well-documented data types, including characters, various kinds of numbers, arrays,
and CONS-es. But rather than suggesting the absence of types in Lisp, the claim that Lisp is untyped
generaly refersto one of two notions:

* Thereislittle static type checking at function definition time or at compile time.

« In the vast universe of structures which can be composed with CONS, the most explicit
typing normally ascribed is simply that the structure is a CONS, i.e, it is an ordered pair
with a CAR (head) and a CDR (tail).

Although some Lisp compilers will do perfunctory type checking when constant values are embedded in a
program, there are generally no type restrictions on variables, and thus no type checking on variables is
possible until run-time, when the variables are bound to specific values. The inability to type-check
CONS structures is especially problematic, partly because of the ease with which arbitrary structures can
be created. A major deterrent to static type checking in Lisp is the presence of destructive operations on
CONS structures. If allowed inits full generality, this upsets the locality of type analysis and makes static
type checking infeasible. It would be possible to allow destructive updates which preserve the type of the
updated object, but even a determination that the type was being preserved would require a search of the
program context, since a function higher in the call tree might have a more restrictive view of the type
than is necessary in the local context.

The lack of a strong static type discipline hampers Common Lisp in several respects. Software engineers
highly value the early detection of errors, recognizing the high cost of correction later in the software
cycle. Thelack of type checking and the lack of thorough typing of structured objects in Common Lisp is
a serious deterrent to the employment of Lisp. In its lack of type checking and type annotation, the
problem of maintaining type consistency in Lisp is much like the same problem in Backus' original FP
language [Backus 78], and it has been noted that misunderstandings of data structures are the most
common errors in FP programming [Pozefsky 78]. If anything, the open-ended flexibility of Lisp makes
the problem even more serious than in FP.

Furthermore, the dynamic type checking complicates compilation and degrades run-time performance of
compiled programs. If a compiler is to generate code that supports diagnosis and debugging of type
errors, it must generate code that checks for type errors prior to any operation which may expose them.
The normal execution of this code incurs substantial performance overhead, which contributes to the
reputation of Lisp as being inefficient. To mitigate this inefficiency, Common Lisp [Steele 90] gives
compilers the option of offering as many as four safety levels. The KCL compiler [Yuasa 85], for
example, may be instructed to generate code without type checks that "runs' fast but behaves without
accountability when errors occur. Clearly, a better solution, which might be provided by strong static type
checking, is generation of fast code combined with the assurance by static analysis that type errors will
not occur. The program would then have the same behavior with respect to input and output, whether or
not type checking code were generated.

A third motivation lies in support of automated formal reasoning about Lisp programs. Typically,
reasoning about total functions is much more straightforward than dealing with partial functions. The
Boyer & Moore theorem prover Ngthm [Boyer & Moore 88], for example, implements a logic bearing a
clear resemblance to a functional subset of Lisp, but with the important distinction that al functions, in
particular functions like CAR, are total and default to standard valuesin cases where Lisp functions would

2Cardelli [Cardelli 89] refersto Lisp as atype-free language, meaning that there is run-time typing, but no static typing.
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break. If the simplicity of having a domain of total functions were to carry over to the analysis of
Common Lisp functions, some mechanism would be necessary to guarantee that function calls like (CAR
3) could never occur in functions admitted to the logic. Static type analysis is one obvious way to
approach this problem.

Fortunately, a functional subset of Common Lisp may lend itself to this kind of analysis. Consider a
subset which is purely applicative (with no destructive list operators) and is thereby referentially
transparent.3With such a subset, Hindley-Milner style type inference may be possible, as it is in
ML [Hindley 69, Milner 78]. Lisp, however, is much more flexible than ML-style languages in ways that
will complicate the straightforward classical inference algorithms. The crux of this thesis is to deal with
these complications in developing a strong static polymorphic type checking system for an applicative
subset of Common Lisp.

A desirable side effect of the effort deals with the clarity of Lisp programs. Pre- and
post-conditions [Hoare 69], in addition to being useful tools for formal reasoning about imperative
programs, are valuable program documentation. They provide a specification of the domain and range of
afunction which a user may use both as an aid to writing the function and as a guide in determining when
an existing function may be properly utilized. Type signatures are weak pre- and post-conditions. Since
our strong static typing discipline results in type signatures for functions, this expressive benefit can be
added to Lisp functions where it has previously been missing.

1.2 A Comparison of ML-style Languages and Functional Common Lisp

This effort targets a subset of Common Lisp which is applicative, and hence has relatively uncomplicated
semantics, yet which presents some type checking problems which are not faced by the family of ML-
style languages. What about this subset, then, lies outside the well traveled territory of ML and its
descendents?

ML supports parametric polymorphism of functions (aterm originated by Strachey [Strachey 67]) which
means that functions may work normally on an infinite number of types, all of which have a given
common structure. Lisp functions, however, may exhibit both parametric polymorphism and ad hoc
polymorphism (also due to Strachey), whereby functions may work on objects of unrelated types, perhaps
by executing different code. Furthermore, the various objects returned by a given Lisp function may be of
completely unrelated types. One may view all Lisp conditional forms as variations of IF. The IF
expression was invented by McCarthy [McCarthy 62] apparently to support the explicit definition of
recursive functions, but it may be used in a more general manner to achieve ad hoc polymorphism. The
two result arms of Lisp IF forms may have completely different types, and both must be considered
options for the result type. By contrast, the result arms of IF forms in ML-style languages must have the
same type, or at least unifiable types. This feature of Lisp would throw a significant monkey wrench in
ML type inference by limiting the use of classica unification, which is ubiquitous in the inference
algorithm.

Another equally critical distinction is that Lisp offers relative flexibility in the composition of structures.
The ML family offers only restricted versions of structured types: lists, all of whose elements must be of
the same type; tuples, which are distinct from lists and whose elements are of specified type; and

SReferential transparency is the property that any expression can be replaced by any other expression which has the same value
without affecting the value of any larger expression of which it is a part. Conventionally stated, "Equals can be substituted for
equals.”
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explicitly prescribed structures like the algebraic types of Miranda[Turner 85]. Declarations of algebraic
types are required and specify unique constructor and selector functions. There is no commonality among
these structured types. They are constructed differently, represented differently, and are not comparable.
All are dtrictly typed. A representation of the type structure of Miranda, for example, in terms of a
grammar for type descriptors, might be (where italicized identifiers are type variables in the type
descriptor grammar and *, **, ... are generic type variables in the Miranda language):

<type> ::= NUM| CHAR | BOOL | (*LIST <type>) |

(*TUPLE t,,.,t), n >= 2 |
t,->t,  {function types} |

*  ** ... | UNDEF | <algebraic> | <type variable>
<al gebraic> ::= (*ALGEBRAI C <struct |ist>)
<struct list> ::= <struct> | <struct> <struct list>
<struct> ::= <constructor name> t.t

Algebraic types, described with the <algebraic> descriptor, are like tuples in that they can be used to
construct mixed structures, but only if the algebraic type is previously declared. Algebraic objects are
tagged in the concrete representation.

Lisp CONS structures, on the other hand, are arbitrarily irregular. Lists, all manner of trees, and arbitrary
tuples are al constructed with the binary CONS function. S-expressions may be viewed as having
multiple types, in the sense that a singleton list may also be considered to be a singleton tuple or a brutally
pruned tree. Even the predefined value NIL is overloaded, sinceit isroutinely viewed as both a (negative)
Boolean value and as an empty list. Dealing with this flexibility raises significant complications in many
respects of the type inference problem, including canonicalization of type information, unification of type
descriptors, and dealing with amultiplicity of potential recognizer functions.

A grammar for type descriptors for afunctional Common Lisp might be:

<descriptor> ::= <sinple descriptor> | <variable> | *EMPTY |
*UNI VERSAL | (*CONS <descriptor> <descriptor>) |
(*OR <descriptor>* ) | <rec descriptor>

<si npl e descriptor> ::=
$CHARACTER | $INTEGER | $NIL | $NON- | NTEGER- RATI ONAL |
$NON-T- NI L- SYMBOL | $STRING | $T

<rec descriptor> ::= (*REC <rec name> <recur descriptor>)
<rec name> ::= a synbol whose first character is not "&"
<variable> ::= a synbol whose first character is "&"

<recur descriptor> ::=
<sinple descriptor> | «<variable> | *EMPTY |
*UNI VERSAL | (*CONS <recur descriptor> <recur descriptor>) |
(*OR <recur descriptor>* ) | <rec descriptor> |
(*RECUR <rec nane>)

This is, in fact, the grammar employed in the function signature checker described in this thesis. The
*CONS descriptor constructs a binary object from arbitrary pieces. The *OR descriptor can be used to
characterize ad hoc polymorphism of function types. These characterize two of the factors which will
most distinguish Lisp type inference from the classical algorithms. *REC descriptors, which allow for
arbitrary recursive structures using the *CONS and *OR constructs, extend the impact of these
distinctions.
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Yet another characteristic which will distinguish a Lisp type system from an ML-style system is the
structure of function signatures. A function signature typically maps a list of parameter types to a result
type. For instance, the type of abinary integer addition function can be expressed:

(I NTEGER | NTEGER) -> | NTEGER

ML-style function types need only include a single expression of this form, even when they are
polymorphic, since their polymorphism is parametric. For example, an ML function extracting the first
element of alist would have the signature:

(* list) -> *

where the "*" is a type parameter which can be instantiated with any ML type. But the ad hoc
polymorphism of Common Lisp functions means that often no single expression of this form can capture a
function signature. Differently typed parameters can produce results of unrelated type. A schema for
Lisp signatures can accommodate ad hoc polymorphism by including multiple components, or segments.
For example, a modified CAR function which defaults to O if the parameter is something other than a
CONS might have the signature:

(*CONS &1 *UNI VERSAL) -> &1

(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
NON- T- NI L- SYMBOL $STRI NG $T) -> $I NTEGER

Multiple-segment signatures complicate the type inference problem for Common Lisp and further
distinguish it from ML-style type inference.

1.3 Synopsis

This thesis presents a type system which supports the strong static type checking of programs developed
in a simple subset of the Common Lisp language. A language of type descriptors characterizes the type
domain. Descriptors are composed into function signatures which characterize the type requirements
placed on actual parameters to the functions, and which map various combinations of actual parameter
types to possible result types. From a base of signatures for a small collection of primitive functions, the
system infers signatures for newly submitted functions. The signature inferred for each new function is
shown to be sound with respect to a formal semantics for the type system by application of a signature
checker whose properties are formally specified and proven to hold.

The language subset is limited to functions of fixed arity, where the only forms allowed in the body are
references to the formal parameters, IF forms of arity three, calls of previously defined functions, literals
(of type character, integer, rational, T, NIL, or string), and quoted forms where the quoted object is either
a literal, a symbol, or a CONS of any such objects (recursively). All data objects are assumed to be of
finite size. Although there is no formal requirement that functions always terminate, the inference
algorithm was designed with terminating functions in mind, and submission of non-terminating functions
may result in weak results.

We augment the Common Lisp subset with a guard construct, which may be included as part of afunction
definition. A guard is a predicate on the function arguments which essentially restricts the domain of the
function. The function is well-defined on some arguments only if the guard evaluates to a non-NIL vaue.
Typically, aguard can characterize type restrictions on the parameters which will guarantee the absence of
type errorsin the function body.
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The type system includes a type inference algorithm in the tradition of ML. But it handles constructs
which violate the constraints of ML and its successors, most notably the free use of CONS to construct
objects of undeclared type and the use of IF forms whose two result arms have objects of totally unrelated
type, resulting in ad hoc polymorphism. Accordingly, in addition to the primitive types of Lisp, the type
descriptor language includes type variables and forms for digunction, unrestricted use of CONS, and a
similarly unrestricted recursive type constructor. As with ML type systems, unification is the central
algorithm. But because of the richness of the type language, and since unification is performed as part of
aprocess of discovering closed form descriptors for recursively constructed data structures, the unification
algorithm is vastly more complicated.

The type descriptor language is used to express type signatures for functions. Among other things, a
signature includes a guard descriptor,which is alist of descriptors whose length is equal to the arity of the
function, and whose elements each characterize the type requirements on the corresponding function
argument. The signature also includes a collection of segments, where a segment is a list of argument
type descriptors paired with a result descriptor. For any values satisfying the guard of a function, there
exists a segment for the function such that the values satisfy the argument descriptors in the segment, and
the result of evaluating the function on those values satisfies the result descriptor. The system maintains a
database of signatures for all existing functions. Given a new function, the inference system attempts to
generate a signature. When it succeeds, it adds it to the database. When the function’s guard can be
completely captured within the type system, and when the same is true for al the functionsin its call tree,
we will show that the signature is correct, that whenever the function’s guard is satisfied by some actual
parameters (i.e., the guard evaluates to a non-NIL value), evaluating the function call will not result in a
guard violation, and furthermore that to establish that the function’s guard is satisfied, it is sufficient to
show that its guard descriptors are satisfied by the actual parameters.

Typically, guards, as well as predicates used as IF tests, include applications of type recognizer functions
to formal parameters. A recognizer is a Boolean-valued, single-argument function of a certain form which
determines whether its argument has a particular type within the type system. Some recognizer functions,
such as INTEGERP, CHARACTERP, and CONSP, are in the primitive subset. But others may be
submitted as new functions to recognize objects of arbitraily complex type. Recognizer functions are
spotted by the inference tool and given specia treatment, as they can play an important role in inferring
precise function signatures. In particular, a guard can be totally captured in the type system if it is
expressed as a conjunction of recognizer calls on distinct formal parameters. In this case, we say the
guard descriptor is complete.

The semantics of the system are in terms of a function which interprets descriptors and val ues with respect
to a binding of type variables. This function determines whether a value satisfies a descriptor under the
binding. The soundness of the system is guaranteed by a result checker, which has been proved correct.
The checker validates each signature emitted by the inference system. The checker algorithm is
substantially simpler than the inference algorithm, as it need not perform operations such as finding closed
recursive forms and negating descriptors. Thus, its proof is both smpler to construct and easier to
validate than a direct proof of the inference algorithm would be.

Theinference system is not shown to be complete, as the general problem of type inferencein this domain
is undecidable. Neither is the agorithm proven to terminate, though a collection of safeguards have
enabled it to withstand rigorous testing without an instance of non-termination.

The rest of this document is structured as follows. The next chapter is a survey of previous work related
to the topic. Chapter 3 is an overview of the complete system, including an introductory explanation of
function signatures and their derivation. Chapter 4 is a detailed guide to the type inference agorithm.
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Chapter 5 presents the formal semantics of the type system. Chapter 6 is a detailed presentation of the
algorithm used to check the validity of function signatures generated by the inference algorithm. Chapter
7 is a proof of soundness for the checker described in Chapter 6. Since the proof is voluminous, many
significant components are incorporated by reference from a proof appendix. Chapter 8 describes the
performance of the system on an extensive test suite. Chapter 9 discusses future work on the topic and
makes concluding remarks. Other appendices include a description of the initial state of the system,
discussion of some alternate semantic models which were explored, and the Lisp code implementing some
selected functions in the system.

Severa other supplementary materials are available via anonymous ftp at the time of writing. These
include the source code implementing the entire system, the postscript for this document, and alog of tests
conducted on the system. Appendix H describes everything that is available and gives instructions on
how to retrieve it.
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Chapter 2
BACKGROUND AND RELATED WORK

In this section, we will examine the various fundamental characterizations of type relevant to the body of
work on automatic type inference. Then we will survey the various related threads of research into
recursive types, functional programming languages, polymorphism, and type inference, with particular
emphasis on the lineage of ML. Next we will look at previous efforts to bring static type checking to Lisp
systems in particular, and finish with references to the relationship between formal type checking systems
and optimizing compilers.

2.1 What Isa Type?

The term type has roots in mathematics which significantly predate computers. Bertrand Russell [Russell
08] developed atheory of types to deal with paradoxes involving self-referencing sets. His notion of type
was "the range of significance of a propositional function, i.e, the collection of arguments for which the
said function has values." Church’s"A Formulation of the Simple Theory of Types' [Church 40] partially
incorporated the calculus of lambda conversion into a theory of types adapted from Russell’s original
theory. Hoare and Allison [Hoare 72] give a very readable presentation of the resolution of Russell’s
paradox with atyped system.

Though types have been manifest in programming languages since the inception of "high level" languages
like FORTRAN in the late 1950's, for years their status was more intuitive than formal. The primary
motivation was to distinguish different classes of data, partly because of their different storage
requirements and partly because of their different semantic properties. The underlying intuition is that a
type characterizes a set of values, presumably with some semantic or structural commonality, which can
be assumed by a variable or expression. Hoare [Hoare 73] characterized a type with a grammar for the
language of constant expressions in the set, involving only basic constructor functions for the type. His
work was in the spirit of types as sets of values, but his formal, abstract approach filtered concrete
representation issues away and placed typesin amore algebraic setting.

The Simula 67 language [Dahl 66] was the first appearance of the notion of classes, which bundle a set of
values with the primitive operations over the value set. The goal of the Simula mechanism was not the
enrichment of type systems, however; the first reference in the literature with this mindset may be due to
John Laski [Laski 68]. J. H. Morris also recognized the significance of classes in providing type
abstraction, and expanded on it in hiswork. Morris[Morris 73] maintained that the specification of atype
should include not only a set of values, but also a collection of basic operations for manipulating the
objects. This packaging of operations with types has become a central feature in the conventional style of
data abstraction supported in many programming languages. Examples of this approach include
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SML [MacQueen 84a], Ada[DoD 83], Miranda [Turner 85], and Quest [Cardelli 89].% Object-oriented
programming languages also take Morris' approach, though in asignificantly different style.

Straying even further from the simple notion of types as sets of values, in the Russell language [Demers
78, Demers 804a] "a data type is a set of named operations that provide an interpretation of the values of a
single universal value space common to al types." Demers and Donahue were following the work of
Dana Scott, who defined types as retracts of a universal domain [Scott 76]. This treatment allows data
types to be treated as first class values. Russell accomplishes static type checking and has a genera
parameterization mechanism supporting parameterized types, types as parameters, and a disciplined form
of self-application. Any construction in the language can be parameterized with respect to any of its free
identifiers using call-by-value semantics. The type system includes a calculus of signatures, which are
type descriptors associated with every identifier and expression. Demers and Donahue use this uniformity
to argue for "type completeness' as a language design principle [Demers 80b]. One impact of the
universal value space on the type system is that the notion of "error" becomes one of "misinterpretation”
of data caused by applying an operation inappropriate for that type of object. An excellent general
discussion of the Russell approach to types and type checking is presented in [ Donahue 85].

MacQueen and Sethi [MacQueen 82] developed a model of types as ideals, or sets with an object domain
which satisfies certain closure conditions. Essentially, these conditions are that the structure characterized
by typesis preserved when going "downward" to approximations and "upward" to least upper bounds of
consistent sets of values. Their formulation follows Shamir and Wadge [Shamir 77]° and Milner [Milner
78]. Within their theory, polymorphic functions are expressed as conjunctions of types. They introduce
higher order types, or kinds, to help formulate operations for constructing new types from existing ones.
MacQueen, Sethi, and Plotkin [MacQueen 84b] further developed this work by developing a metric
structure on their sets to establish the existence and uniqueness of solutions of most recursive type
equations. The set of admissible type expressions are those which are contractive in their algebra.

In contrast, Leivant contends that a type is a structural condition on data objects[Leivant 83a]. Such a
condition can be conveyed fully by syntactic expressions in a type discipline which simply encode the
waysin which data objects are allowed to interact.

Type theorists are aso exploring other approaches to the notion of type as it applies to programming.
Focusing on abstract data types, Goguen et al. [Goguen 78] define a type as an isomorphism class of an
initial (many-sorted) algebra® in some category. Thereby they have a schema for discussing the algebraic
properties of a type at a high level of abstraction, while maintaining the ability to map this level of
abstraction to an isomorphic implementation. Kamin [Kamin 80] identifies a type with the isomorphism
class of afinal agebra, whereby every element of atype is the sole member of its equivalence class with
respect to all the operations on the type, and thus the type is maximally compact. In Martin-Lof’s
constructive type theory, types correspond to propositions in a formal logic [Martin-Lof 79]. This
approach reduces logic to type theory, and it defines a constructive logic as opposed to the conventional
classical logic. The rules of logic are derived from the definitions and rules for types, and the result is a
natural deduction system which is strong enough to formalize constructive mathematics and which alows
types to be specified with extremely fine granularity. Thisview is also described by Constable [Constable

“None of these languages apply this packaging uniformly over their type systems, however. Rather, they provide it as a special
feature for defining abstract data types; their primitive types are in the straightforward AL GOL /Pascal tradition.

Sshamir and Wadge were among the first to formulate a semantics of data types wherein types were themselves first class objects
in the domain of data objects.

6An algebra hereis afamily of setswith a collection of operations among them.
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80] and used in his PL/CV project and in the Nuprl environment[Constable 86].
Steensgaard-Madsen [ Steensgaard-Madsen 89] proposes that a type is a set of functions defined in the
lambda calculus. All these efforts are motivated by factors not particularly related to the concerns of type
checking Lisp programs. They are nevertheless interesting in that they carry the potential benefit of type
systems much further into the semantic realm than the more syntactic purposes of guaranteeing
representation compatibility and supporting modularity.

2.2 Recursive Data Types

Definition of recursive data types has been long supported in programming languages. Pointer types,
popularized in ALGOL68 [VanWijngaarden 69], PL/I [Beech 70], and Pascal [Wirth 71] support user-
defined recursive structures using pointers. A pointer mechanism is also implicit in the CONSes of
LISP [McCarthy 62].

Several formalizations of algebrae for expressing recursive types are in the literature.
McCarthy [McCarthy 63] and Hoare [Hoare 71, Hoare 73] each gave general algebraic specifications of
generalized recursive type definition schema and used their schema to help define sets of Lisp primitive
functions. Lewisand Rosen [Lewis 73] also formulated a view of recursive data types, one which allowed
them to resolve, for example, whether two types expressed in different terms within a type system in fact
represent the same type.

2.3 Functional Languages, Polymorphism, and Type Inference

The most significant advances in type inference and polymorphism have come from a lineage of work
which culminated with ML, but which continues to this day. With foundations in the lambda cal culus, the
type system and type inference mechanism supporting the ML language are milestones in the history of
programming language development. Because of its success, the ML type system has been employed
with minor variations in a number of more recent languages. The next section surveys the ML lineage,
including its roots in the study of lambda calculus and the continuing development of its ideas in
succeeding efforts. It is followed by sections covering other significant work on polymorphic type
systems and type inference algorithms. For more general background, Hudak [Hudak 90] provides an
excellent review of the functional programming paradigm, its history, and its underpinnings in the lambda
calculus.

2.3.1 ML, ItsPredecessors, and | ts Successor s

J. H. Morris laid important theoretical groundwork for dealing with parametric polymorphism in his
thesis[Morris 68] on the lambda calculus. Although he did not specify a polymorphic type system, he
recognized the type inference problem and showed how a valid type assignment could be found for a
lambda calculus term by solving a set of simultaneous linear equations. His axiomatic description of
formal rules allowed type inference to be studied separately from the underlying intuition that types are
sets of values. His algorithm was the basis for the work of Milner and established a relationship between
type inference systems and functional programming which has been developed in most succeeding
functional language systems. In later work [Morris 73], Morris proposed a type system including
modules, which were an improvement over Simula' s classes [Dahl 66]. Though he was working primarily
to develop and strengthen notions of type abstraction, he observed that his type system provided a limited
form of polymorphism.

Reynolds [Reynolds 74] formalized a notion of type structure similar to Morris', introducing an extension
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of the typed lambda calculus which supported user defined types and polymorphic functions. The key
idea was to introduce types as values and to allow them to be passed as arguments to functions and be
bound to type variables. This provided an explicit form of polymorphism in terms of type parameters, and
became known as the polymorphic or second order typed lambda calculus.” The use of type parameters
was incorporated into the programming languages Alphard [Wulf 78], Russell [Demers 79], and
CLU [Liskov 76, Liskov 78, Liskov 81], but without the full generality of Reynolds system, since types
in those languages are identified with sets of operations, and thus the polymorphism is limited to the
operations used.

Hindley [Hindley 69] developed a method for deriving the principal type scheme of an object in
combinatory logic. A type scheme discovered by an agorithm is principal if it is the most general type
scheme which can be inferred for the expression from the rules and axioms of the type system. Principal
type schemes support the notion of polymorphic type, though Hindley did not use that terminology.
Hindley also noticed that the unification algorithm developed by Robinson [Robinson 65] is applicable to
the type inference problem.

ML [Gordon 79, Milner 84] is the landmark programming language for utilizing type inference in the
presence of parametric polymorphism. ML types can contain type variables that are instantiated to
different types in different contexts. Hence, it is possible to write functions which can operate uniformly
over objects of different type, so long as there is sufficient commonality among the objects to support the
operation. Milner [Milner 78] described the theory of polymorphism and type inference around which
ML was built. He demonstrated a type inference algorithm which accepts any well-typed ML program
and determines its most genera type signature. Furthermore, he used the formal semantics of the ML
language to show that any program which is accepted by the type checking algorithm is guaranteed to be
free of type errors. Consequently, the implementation need not tag program objects for the purpose of
dynamic type checking.8 Since all types can be deduced by the system, the user does not need to provide
type declarations or type signatures on program objects.

The Hindley-Milner type system is based on an extension of the pure typed lambda calculus. It may seem
strange to say that a language which requires no type signatures has the typed lambda calculus as its
abstract model. But in fact, the only ML expressions which pass the type checker are those for which
types can be supplied to obtain valid typed lambda calculus expressions. Thus, the type inference
mechanism alows type structure to be automatically recovered from a program in which it may be
missing. Good, pragmatic discussions on Hindley-Milner style type inference are provided by Damas and
Milner [Damas 82], Cardelli [Cardelli 84a], and Peter Hancock [Hancock 87], the latter in terms of
Miranda. A clear discussion of the Hindley-Milner system contrasted with Reynolds polymorphic
lambda-calculus is given by Giannini [Giannini 85].

Hindley’'s and Milner’s use of an extension to the pure calculus is motivated by the premise that the pure
typed lambda calculus is not sufficiently expressive. Fortune et a. [Fortune 83] showed that every term in
the calculus can be shown to be strongly normalizable, meaning that there exists a normal form and an
algorithm for reducing expressions to their normal form. Consequently, the family of functions which can
be computed (the primitive recursive functions) istoo restricted, especialy compared to those definablein

"This calculus was invented independently by Jean-Y ves Girard [Girard 72].

8Moreover, Appel [Appel 89] asserts that run-time tags are not necessary for statically-typed polymorphic languages at all. Aside
from type checking, he asserts that tags are needed only for garbage collection, and he proposes a garbage collection algorithm
which makes use of type information which the compiler can provide. Though no such garbage collector has been implemented, he
used some reasonable assumptions to estimate that the performance of such a garbage collector would be comparable to that of a
conventional system and better in some scenarios.
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the second order typed lambda calculus. The pure calculus lacks the power of lambda-definability, thus
self-applicative forms, such as Church’'s Y-combinator, which was used to prove his fixpoint theorem,
cannot be type checked. The fact that the pure typed lambda calculus has no general fixpoint operator can
be treated by adding a domain of constants to the typed lambda calculus, by including in the domain a
constant fixpoint operator for every type, and by adding a conversion rule for each of the fixpoint
operators. Polymorphism can then be achieved in the calculus by adding a domain of type variables and
extending the domain of types accordingly. But if the calculus includes type variables, there can be
problems with type checking. Type checking in this calculus is a variant of the problem of partial
polymorphic type inference, which Boehm showed to be undecidable[Boehm 85]. By placing some
judicious restrictions on expressions, Milner and Hindley were able to support polymorphism while
achieving decidable type inference. By not including explicit type variables in the programming language
(only in the algebra of types), they sidestepped the problems later examined by Boehm. One restriction
they impose is that the use of polymorphism is limited to the scope in which it is defined. Another is that
self-application is not alowed. Though these seem to be fundamental limitations, the class of
polymorphic functions which are allowed is quite substantial and sufficient to make the language quite
useful.

Kanellakis and Mitchell [Kanellakis 89] have recently made the disquieting observations that:

» The length of the principal type expression for an ML expression of length n is doubly
exponential in n.

* The unification of two type expressions for the ML core language is PSPACE hard.

« It is PSPACE hard to determine whether a given core ML expression is typable.
These observations contrast with the common belief, based on practical experience with ML type systems,
that ML typing is efficient and does not slow down the process of compilation. We can only speculate
that typical experience with ML type systems is with types of relatively small size or types not containing
problematic constructs, so the combinatorial explosion is of limited scale.

A number of languages have been developed in the tradition of ML, among them HOPE [Burstall 80],
Miranda[Turner 85], and Haskell [Hudak 90]. While ML contained some non-applicative constructs, all
of these descendants are functional languages. A goa of HOPE was to consolidate a number of well-
understood features of functional languages. In style and theory, it owes considerable debt to Landin and
his ISWIM language [Landin 66]. HOPE requires type signature declarations on all function definitions,
but alows polymorphism and does complete compile-time type checking. Its most significant new
contribution was the capability for a user to declare his own concrete and abstract data types and to
destructure them by pattern matching. This feature, not included in the origina ML, was later
incorporated into SML, or Standard ML [Milner 84]. Miranda is the most recent of a series of languages
developed by David Turner. Preceded by SASL [Turner 76] and KRC [Turner 81] and inheriting many of
their concepts, Miranda provides nice syntactic sugar for functional programming structures and
emphasizes the use of higher order functions and lazy evaluation. It is the first commercially available
functional programming system. Haskell is a genera purpose functional programming language which
attempts to consolidate the functional programming research of the 1980’s. Additionally, it providestools
such as a module facility, a well defined 1/0 system, and a rich set of primitives to support larger scale
programming projects. Haskell's approach to data abstraction treats algebraic specification and
information hiding as orthogonal concepts.

ML-style type inference has also been adapted to existing programming languages. Mycroft and O’ Keefe,
for instance, developed a polymorphic type system for Prolog [Mycroft 84], and Dietrich and Hagl
modified and extended that type system to handle explicit subtype relationships [Dietrich 88].

Meertens [Meertens 83] gives an interesting account of a type inference system employed to support a
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non-applicative language, B. The inference algorithm is essentialy Milner's, but the organization of the
algorithm is such that it supports type checking by increments corresponding to minor changes in the
program. Meertens paper provides an excellent detailed description of how Robinson’s unification
agorithm is employed®, how mutually recursive definitions are treated, and how non-termination is
detected. Meertens claims a stronger sense of completeness than that demonstrated by Damas and Milner,
in that the B algorithm assigns types when the ML algorithm cannot, but this, he admits, can be attributed
to the absence of infinite types and procedure parametersin B.

Although ML is not itself an applicative language, neither is it the first non-applicative language to be
supported by automatic type inference. Henderson [Henderson 77], presented a method for type checking
several imperative programming language constructs which bore a resemblence to the ML style of type
checking. He specified a language which was free of type signatures and which supported procedure
parameters as well as a small but interesting set of conventional program structuring operations. Then he
gave type equations for the supported operations which restrict their operands and which could then be
composed to determine the type consistency of a program in the language.

2.3.2 Variantson Classical Unification

The classical unification algorithm, which is sufficient to support ML type inference, does not support
several data forms which are critical to the work on Common Lisp. Specifically, these are disjunction,
negation, and recursive structures. These limitations have also been encountered by the computational
linguistics community in pursuit of stronger grammar processors. Kay employed unification in his
Unification Grammar [Kay 79] for processing feature structures, a common linguistic representation.
Karttunen [Karttunen 84] observed that most grammar formalisms for features at that time had the same
inability to deal with negation, disunction, and cyclic structures in unification and generalization. In
particular, he was concerned about negation and disjunction as being quite important to the task, and he
proposed a method for supporting them using negative and positive constraints (without mentioning a
solution for recursive forms). In doing so, he pointed out that performance problems persisted.

The complexity of unification with disunction is indeed formidable. Kasper and Rounds[Kasper
86] [Rounds 86] presented a model for describing feature structures and used it to prove that the
unification of digunctive feature structures was an NP-complete problem. Kasper [Kasper 87] went on to
provide an algorithm which performed reasonably well in the average case. He did this by canonicalizing
the structures prior to unification, then tailoring the algorithm to consider the most inherently expensive
cases only after other methods had been exhausted. Unfortunately, his canonicalization would not be
possible on recursive forms containing disjunction.

Aiken and Wimmers [Aiken 92] place the problem of merging forms containing variables, conjunction,
digunction, and negation in a different setting, that of solving system of set constraints, and exhibit an
algorithm for doing so.

9The unification algorithm cited is credited to Boyer and Moore [Boyer 72], who showed how unification could be performed
more efficiently by using a stack of binding environments rather than by using explicit term substitution as formulated by Robinson.
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2.3.3 TypelInference Treating Coercion and I nheritance, Object-Oriented Systems

When type coercions are added to the ML type system, the ML style type schemes are no longer adequate
to characterize all the possible typings of a given term. Mitchell [Mitchell 84] addresses this special
problem in atheoretical paper by adding to the system of type schemas a model of coercion based on set
containment. His model is strong enough to support type inference in an ML-style language with
automatic type coercion, but the algorithms for doing so are not given in the paper.

The approach to types in the object-oriented programming paradigm has evolved from notions of
inheritance and abstract data types. Type inference has not received a great deal of attention in the
object-oriented programming world, but in a recent paper, Wand [Wand 87] modeled hierarchical objects
as extensible records!? in an adaptation of an approach by Cardelli [Cardelli 84b, Cardelli 89]. Then, in
the tradition of Milner [Milner 78] and Cardelli [Cardelli 84a], he reduced the type inference problem for
his language to the unification problem.

Mishra and Reddy [Mishra 85] have a system whose capabilities are as similar to those of the work
described in this report as any we have found. Their type language is quite similar to ours, using a "fix"
form analogous to our *REC descriptor to represent recursive structures, and including type variables,
conjunction, and disjunction. Their system also discovers undeclared types, unlike ML-derivative systems
and existing Lisp type inference systems. Their type variables allow them to capture parametric
polymorphism in the signatures for functions. But they do not capture the notion of ad hoc
polymorphism, inherent in the nature of Lisp.

Fuh and Mishra[Fuh 88] present another type inference system which supports the notion of subtypes.
They prove a principal type schema property within their type system and demonstrate a complete
inference algorithm. One of the things that distinguishes their algorithm is that their MATCH algorithm,
which is the counterpart to the unification algorithm in ML-style systems, derives a unifying substitution
from a set of (subtyping) coercion relationships rather than from a set of equations expressing type
constraints.

2.3.4 Ad Hoc Polymor phism and Overloading

Although overloading is not directly relevant to the Common Lisp work, ad hoc polymorphism and
overloading are related concepts and are sometimes considered to be equivalent. Methods for dealing
with overloading are an active area of research. There seems to be no single conventional way for treating
overloading in type checking systems. Some efforts for bringing a more uniform discipline to overloading
have focused on the commonality in the objects handled by the overloaded operator. Kaes[Kaes 88]
proposed that al overloaded symbols be declared in advance, and that all symbols of the same name have
a common polymorphic type. Wadler and Blott take a similar approach in the Haskell language [Wadler
89]. They propose the notion of type classes, which capture and characterize collections of overloaded
operatorsin a consistent way, and require that any given symbol may belong to only one class.

Others have dealt with overloading and/or type parameterization by placing various restrictions on the
language being supported. Cormack and Wright [Cormack 90] incorporate type inference, implicit
parameter binding, and overload resolution to do type-dependent parameter inference. Although they
handle higher-order polymorphic functions, they require all function abstractions to be explicitly typed,
and type application is restricted to simple types. Boehm [Boehm 85] showed Reynolds' formalism of
polymorphic functions to be problematic when the supplying of type parameters was optional, proving

10For a discussion of record type extensions, see Wirth [Wirth 88].
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that the type inference problem is undecidable for a simple extension of the Girard-Reynolds
polymorphically typed lambda calculus. In Boehm's extension, type bindings not specified are to be
inferred by the type system. His characterization disallows the inference of type abstractions and requires
that the positions of omitted type parameters be explicitly marked, and his proof of undecidability relies
on these restrictions. In later work [Boehm 89], Boehm provided a set of rules which require that type
parameters are inferred only when functions are applied (and not when functions are passed unapplied to
higher order functions) and that functions are uncurried so that type parameters are applied in conjunction
with other parameters which depend on them. O’Toole[O'Toole 89] outlines a language supporting
explicit conversions between the explicit type abstractions of second-order polymorphic lambda calculus
and ML-style polytypes. Where an explicit conversion is performed, type inference is done; elsewhere,
type applications are required to be explicit. Ada[DoD 83] supports implicit operation parameters to
generic functions and packages, but only after type parameters have been explicitly instantiated.

2.3.5 Other Efforts

After McCarthy’s introduction of Lisp, which will be discussed later, the next major development in the
functional programming paradigm was Peter Landin’s work in the mid-1960's. He discussed how to
mechanically evaluate lambda calculus expressions through an abstract machine caled the SEDC
machine [Landin 64] and formally defined a subset of ALGOL 60 in terms of the lambda calculus [Landin
65]. His ISWIM language [Landin 66] embodied a number of syntactic ideas (infix notation, LET and
WHERE constructs, simultaneous and mutually recursive definitions, and the offside rule) and semantic
principles, including referential transparency, which are significant in functional languagesto this day.

One of the first block-structured programming languages with a significantly extended notion of type was
EL1 [Wegbreit 74]. Types (or modes in EL1 terminology) were first class objects in the data space. The
language supported mode-generating routines and generic routines. One of the kinds of mode was a union
of modes. Functions whose parameters were of union mode were compiled so that each invocation
"froze" the mode of its parameters for the duration of its activation. Another unusua facility was the
ability for users to specify conversions among all modes. The type system of EL1 was quite adventurous
for its day, so much so that it was viewed to be overly general and to provide the user with a bewildering
excess of capability. Moreover, the flexibility of the type system has been alleged to defeat the goals of
strong static type checking [Giannini 85].

John Backus' landmark 1978 Turing Award Lecture [Backus 78] provided much of the impetus for the
development of functional programming. Backus' language, FP, was built upon a fixed set of combining
forms called functional forms rather than upon the lambda calculus, which Backus claimed provided too
much freedom for programmers good. [ (bottom) is avalid FP object, so al FP functions can be said to
be total, and FP did not originally support any type checking. But programmers usually wish to avoid [,
and as a result commonly had to code explicit checks to validate the form of arguments. To aleviate the
need for this tedium, Guttag, Horning, and Williams added a type system to FP [Guttag 81]. For each FP
function, the type system ascribes a domain predicate and a target, or result, type. Target types are treated
as "type transformers" in order to accommodate combination of the types of polymorphic functions. A
function is said to be fully typed with respect to the type system if the domain predicate and the target type
depend only on the type of the argument rather than on particular values within the type. Thus, while the
plus function is fully typed, division is not, since the domain predicate depends not only on the type of the
argument, but also on whether the second component of the argument is zero. A program is type safe if
the domain predicate is T and type erroneous if the domain predicate is F. Division is neither type safe nor
type erroneous; its type is data dependent and is safe for a set of data objects. The type system also
supports user definition of abstract types. The definition includes a name for the type, a representation of
a class of objects, an invariant over objects in the representation which captures the notion of a valid
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value, and a list of functions which implement the operations available on objects of the type. The
representation is visible only to the implementation functions. Recognizer functions are defined
implicitly, as well as functions for mapping abstract values to values in the representation and vice versa.
Geoffrey Frank proposed an automatic type checking system for FP [Frank 81] which was to be built
around a kernel algebra specified in his paper. The type checker would essentially do type inference by
composing the domain and range specifications of functions called in the definition of a functional form.

Takuya Katayama [Katayama 84] proposed an approach to type inference for FP programs based on the
notion that there exists a type domain which is a projection of the data domain in which we normally think
of programs computing. Any computation in the data domain has an image, or reduced computation in
the type domain. Katayama produces relations in the type domain as the images of functions and
procedures in the data domain and then performs type inference with an algebra of relations. His
approach was exploratory when published, particularly with respect to recursive functions. It appears to
amount simply to a rephrasing of the same computations which occur in Milner-style type inference,
though in very different terms.

Fairbairn’s Ponder system [Fairbairn 82, Fairbairn 86] provides full type checking for aricher type system
than that offered by Hindley-Milner. In particular, it supports polymorphic functional arguments'! and a
notion of domain strong enough to recognize within the type system, for example, that reciprocal works
only on a non-zero argument. Although no primitive types are defined, type generators may be defined
for the purpose of declaring types. Generators may be parameterized, providing a powerful tool for
developing polymorphic types. A special generator rectype is employed for generating recursive types.
Restrictions built into rectype ensure that all types declared with it are finite cycles rather than infinite
trees.

Leivant applied the notions of type structure he formulated in [Leivant 834] to the type inference problem,
developing a general algebraic formulation of Milner’s inference algorithm [Leivant 83b]. In this paper,
he also formulated a different type inference algorithm which accommodated coercion and overloading
and yet another which handled abstraction and general type quantification. The author knows of no
instance where Leivant’ swork has been incorporated into any programming language or environment.

Abadi, Cardelli, Pierce and Plotkin [Abadi 89] developed a system which supports a type called dynamic,
whose purpose is to deal with persistent objects existing outside the program being type checked. Their
goa was to support maximal static type checking of programs, but to have a means within the same
discipline for doing dynamic type checking of objects which are out of reach of the static type checker.
Any such object is stored with a tag which is some representation of the type of the object. Objects thus
tagged have the type "dynamic". After being read, they may be examined by a running program with a
"typecase" form which case splits on the indicated type and controls flow accordingly. Their paper also
presents some preliminary thoughts on dealing with polymorphism within the dynamic construct.

Another style of polymorphism is Coppo’s conjunctive discipline [Coppo 80a, Coppo 80b]. It is powerful
enough to allow the characterization of various classes of lambda-calculus terms, but is impractical for
programming languages because type checking is unsolvable.

1for example, a Ponder function could have aformal parameter whose typeis (O T. T -> T), so that the actual parameter supplied
could be afunction whose typeis T, ->T,.
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2.4 Type Reasoning for Lisp

Lisp has remained by far the most popular language with a largely applicative basis, particularly in the
western hemisphere.  Emerging from its roots as an exploratory language for non-numeric
computation [McCarthy 62] used primarily in artificial intelligence and theorem proving, it has found
significant application in such disparate areas as systems programming [Symbolics 88], numerical
applications [Mathlab 82, Mathlab 83], text editing [Stallman 77], and image processing, and has recently
been enlarged to support object-oriented programming [Cointe 88, Steele 90]. Plagued for years by alack
of standardization which discouraged software portability, the Lisp community has consolidated itself in
support of Common Lisp [Steele 84, Steele 90]. The success of this effort and the continued development
and support of Lisp-based products and research seems to guarantee the language’ s continued popularity,
despite claims that newer languages rest on more sophisticated and attractive foundations and impose
greater discipline.

Cartwright's thesis [Cartwright 76] was an early attempt to implement a strong static type checker for
Lisp. Not surprisingly, Cartwright restricted his attention to a small subset of Lisp with functional
semantics. Moreover, some primitives within his subset had more restrictive definitions than their Lisp
counterparts. His base subset contained no primitive constructors (not even CONS), but his type system
provided a disciplined facility for declaring constructions, thereby alowing users to build up various
abstractions. His type system was essentially the one proposed by McCarthy [McCarthy 63]. Cartwright
required all identifiers and functions to have user-furnished type signatures, much like any ALGOL-like
language. Inits original formulation, his type system would have been statically strong, but he found this
too restrictive and relaxed his static checks, thus requiring run-time checks when static checks are not
satisfied. He attempted no type inference and incorporated no notion of polymorphism.

Boyer and Moore have developed automated support tools for formal reasoning about Lisp-like logics.
Their Computational Logic [Boyer 75, Boyer & Moore 79, Boyer & Moore 88] bears a strong
resemblance to an applicative Common Lisp. In its original form, it allowed definition of only total
functions, but with the addition of V&CS$, the logic alows the definition of non-terminating functions.
Within the logic, there is a mechanism, the shell principle, for declaring new classes of recursively
structured objects. Primitive types such as natural numbers, lists, and litatoms (words) are defined as
shellsin the base logic. The theorem prover which manipulates the logic, Ngthm, does some limited type
inference, but only in terms of known shell "types'. The logic allows for arbitrary CONS structures, but
does not provide specific type support for them.

Boyer and Moore are carrying many of their methods into a new logic and theorem prover, Acl2 [Boyer
90], which is under development. In many ways Acl2 resembles Ngthm, but the logic (and the
implementation language) is an applicative subset of Common Lisp. Guards on function parameters,
reminiscent of those on Verdi functions in the EVES environment [Pase 89] address the partia nature of
many Lisp functions. If a program passes the Acl2 admissibility tests and if all its guard predicates are
verified on all function calls, the program may be safely compiled by a standard Lisp compiler with alow
safety setting, thus producing fast code without fear of breakage due to type errors. But type reasoning in
Acl2 isonly dightly more powerful than in Ngthm, and the need to verify that all function calls satisfy the
guards of the called functions puts much greater pressure on the type system.

McPhee [McPhee 89] did a preliminary investigation of type inference for Lisp, which led to the
implementation of a simple tool in Miranda. But the small set of Lisp functions which were supported,
including CONS and IF, were assumed to obey the same restrictions as their Miranda counterparts, and
thus his work did not break any new ground.
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Kaplan and Ullman [Kaplan 80] used a lattice-theoretic model of types and devel oped a flowgraph model
of programs to support type inference for dynamically type-checked languages. A flowgraph is a directed
graph whose nodes are associated with one or more assignment statements. The types of all expressions
in a program are analyzed by repeated application of "forward" and "backward" analysis with respect to
pre-defined lattices of types until afixed point is reached for all type assignments. Forward analysis uses
the types of subexpressions to help determine the type of an expression. Backward analysis uses context
information to help determine the type of an expression, i.e., knowledge of the type of an expression is
used to refine the types of its subexpressions.

This approach is largely the basis of the TICL type inference system for Common Lisp[Ma 90]. The
system uses repeated application of forward analysis with respect to a collection of partial type lattices for
Common Lisp types to derive type annotations for use by the compiler. Since the type lattices must be
fixed, user types such as those declared with DEFSTRUCT may not be included. The system, however,
does include an ad hoc type LIST-OF to provide some support for a particular kind of CONS structure.
Type inconsistency is resolved by assignment of a most general type, enabling the inference process to
continue. Since the goal of the system is to improve run-time performance, the type inference system is
tailored to process only types for which declarations offer significant speed-up for most compilers. Thus,
list-processing operations and general CONS structures are largely ignored in favor of accurate
assignments of various types, like the numerics, likely to be specifically supported at the machine level.

Kaplan and Ullman’s work is also the basis of the Nimble type inference system for Common Lisp [Baker
90]. Aswith TICL, the type lattices it employs are primarily focused on numeric types, and the system
does not appear to deal with structured types in any direct sense. Both the Nimble and the TICL systems
achieve their pragmatic goal s of improving run-time performance of compiled Lisp code.

Baker has also developed a decision procedure for the Common Lisp SUBTY PEP predicate [Baker 92],
utilizing a specific lattice structure suitable for performing type inference. A complete implementation of
SUBTY PEP can assist a compiler in making optimal storage allocation decisions and in removing some
type-checking code.

A problem limits the effectiveness of the lattice-theoretic models when confronting ad hoc polymorphic
functions. When a form can return disparate types, the type inferred for the form is the least upper bound
of al the possibilities. Commonly, this forces the assignment to the universal type, which is of no use
except to enable the inference process to continue. Disjunctive types would provide greater specificity,
but these are not compatible with the lattice approach in systems styled after Kaplan and Ullman.

Johnson [Johnson ] uses a technique he calls "type flow analysis' to represent the type-level structure of
Lisp programs. Though his report does not present much technical detail, he does claim to deal with the
problems of ad hoc polymorphism and heterogeneous structures.

2.5 Static Type Checking and Optimizing Compilers

The fundamental relationship between static type checking and the generation of fast executable code for
programs is simple: checks that can be performed statically need not be performed at runtime. A program
running without dynamic type checking code will do its job "faster" than an otherwise identical program
executing those checks. This relationship is a significant motivation for most of the static checks which
compilers perform.

Efforts employing mechanically assisted deduction systems and verification to enable compilers to
eliminate dynamic type checking code date back to the Euclid project [Lampson 76]. As designed,
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Euclid’s approach is that a legal program is not allowed to have run-time exceptions. The compiler has
the responsibility of proving that exceptions cannot occur. If it fails, it is obliged to create a legality
assertion, which can be submitted to proof by other static means or be checked at run-time. If an
unvalidated assertion isfalse at run-time, the program is by definition not alegal program.12

Implied, but not directly expressed in Cartwright’s thesis on Typed Lisp [Cartwright 76] is the notion that
where his static type system is able to determine type correctness, the compiler does not need to generate
type checking code. Cartwright alluded to this notion, though, by noting that when he relaxed the rules in
his static type checker, he created the requirement that "in an actual TYPED LISP implementation,
run-time type checking should be done in all those cases where standard parse-time rules are violated. 1If
the user formally proves that a certain run-time error can never occur, then that particular check can be
safely eliminated.”

In his Phd thesis, McHugh [McHugh 83] explored the application of formal reasoning to compiled code
optimization in Gypsy, particularly with respect to the runtime detection of type errors. [Good 86a]. He
modified the verification condition generation process in the Gypsy Verification Environment [Good
86b, Young 90] to generate theorems which, if proved, guaranteed the absense of certain run-time type
errors. The fact that these theorems were proved was then communicated to the compiler [SmithL 80]
which then suppressed the generation of run-time error checking code. Unfortunately, the Gypsy
Verification Environment no longer supports a compiler, athough the generation of verification
conditions for proving the absence of type errors has been re-implemented and preserved [Akers 86].

Boyer and Moore's work with Acl2, previously mentioned, falls squarely into this realm as well. They
use the mechanical assistance of their theorem prover to validate conformance to domain restrictions
expressed as guards. Accepted functions may then be compiled at a low safety setting, i.e., without
runtime type checks. Unfortunately, the assistance provided in their early developmental system was not
sufficient to provide this validation automatically in many routine situations.

A different approach to efficient run-time type checking is used in the Symbolics Lisp machines. [Moon
85] The system employs a hardware co-processor to perform run-time type checking at the sametimeit is
doing data operations, so the main processor incurs minimal extra run-time overhead.

12This notion of illegal programs is somewnhat distasteful, as the compiler abdicates on assigning a meaning to a program which it
compiles without complaint. A similar notion pervades the definitions of Ada[DoD 83] and Common Lisp [Steele 90].
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Chapter 3
OVERVIEW

The purpose of this chapter is to provide an overview of the entire type inference system. We will first
provide some orientation to function signatures and the type inference process. Then, in a bit more detail,
we will examine each of the principal constituents of the system and see how they fit together. This
should provide the reader enough background and perspective to approach the chapters that follow, which
cover the formal theory and each of the system’s componentsin great detail.

3.1 TheLisp Dialect

The subset of Lisp which is supported by the inference system is quite simple. It islimited to functions of
fixed arity, where the only forms allowed in the body are:
« references to formal parameters,

« literals of type character, integer, rational, T, NIL, or string,

« quoted forms, where the quoted object is either a literal, a symbol, or a CONS of any such
objects (recursively),

* IF forms of arity three, and

« recursive function calls or calls to previously accepted functions.
All functions are assumed to terminate for all inputs, and all data objects are of finite size, i.e., there can
be no circularly linked lists. Mutually recursive functions are not allowed. Function names are not
allowed to begin with the characters"$", "*", "%", or "!".

In the initial system state, only a small set of native functions are defined. These functions are CONS,
CAR, CDR, BINARY-+, UNARY--, BINARY-*, UNARY-/, <, EQUAL, CONSP, INTEGERP,
RATIONALP, STRINGP, CHARACTERP, SYMBOLP, NULL, DENOMINATOR, NUMERATOR,
SYMBOL-NAME, and SYMBOL-PACKAGE-NAME. Most of these are native Lisp functions.
BINARY -+, UNARY--, BINARY-*, and UNARY-/ are just the binary and unary versions of the n-ary
Lisp functions+, -, *, and /. We call our native functions subrs.

All functions are purely applicative. There is no global data. Since there are no "destructive" functions,
i.e., functions like RPLACA which destructively alter data, no data structure can be created where a
pointer points to a CONS cell higher in the structure. Thus, no CONS structure contains an infinite chain
of pointers.

Type restrictions are present in the domain of many Lisp functions. CAR, for instance, requires its
argument to be a CONS or NIL, and application of CAR to any non-NIL atom will cause a runtime error.
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Type restrictions, if analyzed statically, tend to percolate through an application. To characterize them
and to allow for restricting the domain of a function, we augment the Common Lisp subset by alowing a
guard to be included as part of a function definition.

Definition: A guard is a conponent of a function definition
which is a Lisp predicate on the function argunents. The guard
nust be satisfied, i.e., it nust evaluate to a non-NL val ue,

in order for the function to be well-defined on those argunents.
Syntactically, it follows the formal argument list, and is of
the formof a Lisp conpiler directive:

( DECLARE ( XARGS : GUARD <forms )) 13

A guard may not call the function within which it is defined.

If no guard is declared with a function, the default guard T is

used.

Guards can characterize type restrictions on the parameters which will guarantee the absence of type
errors in the function body. Properly employed, they can be of great utility in conjunction with the
inference system. When the type inference algorithm analyzes the body of a function, it assumes the
guard is satisfied and makes judgements about the types of the arguments accordingly.

3.2 Type Checking and Function Signatures

The primary task of the inference system is to infer a type signature for a function from the function text
and from a database of signatures for previously defined functions. Previously defined function signatures
allow the type checking process to scale up as new functions are introduced. The signatures are in terms
of type descriptors, and manipulation of type descriptors is the primary occupation of the inference
system. The grammar defining the language of type descriptors used in our signaturesis as follows:

<descriptor> ::= <sinple descriptor> | <variable> | *EMPTY |
*UNI VERSAL | (*CONS <descri ptor> <descriptor>) |
(*OR <descriptor>* ) | <rec descriptor>

<si npl e descriptor> ::=
$CHARACTER | $INTEGER | $NIL | $NON- | NTEGER- RATI ONAL |
$NON- T- NI L- SYMBOL | $STRING | $T

<rec descriptor> ::= (*REC <rec name> <recur descriptor>)
<rec nane> ::= a synbol whose first character is not "&"
<variable> ::= a synbol whose first character is "&"

<recur descriptor> ::=
<sinpl e descriptor> | <variable> | *EMTY |
*UNI VERSAL | (*CONS <recur descriptor> <recur descriptor>) |
(*OR <recur descriptor>* ) | <rec descriptor> |
(*RECUR <rec nane>)

<dlist descriptor> ::= (*DLI ST <descri pt or>*)

Note: *DLIST is sinply a notation for packaging a list of sinple
descriptors into a single form

13

This syntax isidentical to that used in Boyer and Moore’s Acl2 system [Boyer 90].
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As stated in the introduction, a signature has two primary components,*a guard descriptor, which is a
vector of variable-free descriptors characterizing the guard, and a collection of segments mapping
parameter types to result types. The guard descriptor has the same length as the arity of the function, and
each of its descriptors characterize the type requirements placed on the corresponding argument. Each
segment in the signatureis of the form

(tdg .. tdy ->td

where n is the arity of the function. We interpret a segment to mean that if the descriptors (td4 .. td,)
characterize the function’s arguments, then the result may be (but is not necessarily) characterized by the
descriptor td. The meaning of the signature as a whole is that if the function’s guard, evaluated on some
arguments, yields a non-NIL value, then there is some segment in the signature which characterizes both
the function’ s arguments and the value produced by evaluating the function on those arguments.

An important notion pertaining to a signature is that of completeness of its guard descriptors. A guard
descriptor exists that is complete with respect to a guard if the guard is expressed as a conjunction of
recognizer calls on distinct formal parameters. When a guard descriptor is complete, we will show it is
satisfied by the actual parameters if and only if the guard expression evaluates to a non-NIL value on the
parameters. When afunction’s guard is complete, and the guards of al the functions in its hereditary call
tree are also complete, then we will show that if the actual parameters satisfy the guard descriptors, they
will also satisfy the real guard (i.e., cause it to evaluate to a non-NIL value), and the evaluation of the
function call will not cause aguard violation.

Here is the signature for the CAR function.

Function: CAR
Guard conputed by the tool:
((*OR $NIL (*CONS *UN VERSAL *UNI VERSAL)))
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:
((*OR $NI'L (*CONS *UN VERSAL *UN VERSAL)))
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(((*CONS (*FREE-TYPE-VAR 1.) *UN VERSAL)) -> (*FREE-TYPE-VAR 1.))
(($SNIL) -> $NI'L)
TC segnments contained in Segnents: T
Recogni zer descriptor: N L
TC val i dates recogni zer: NL
Sighature is certified sound: T

CAR takes a single argument, so its guard is a singleton vector. The guard descriptor requires the
argument to be either the value NIL or a CONS of any two objects. (*UNIVERSAL is a descriptor
satisfied by any value whatsoever.) There are two segments. The first says that, given an argument which
isa CONS, the function may return the same value which was the first element of the CONS. The second
says that, given NIL, the function may return NIL. When we say the guard is complete, we mean the
guard descriptors completely capture the actual guard predicate, which in this case is (where X is the
formal parameter name):

(CAR ABLE X)

where (DEFUN CAR-ABLE (Y) (IF (NULL Y) T (CONSP Y)))

141t has other components which we will discuss later.
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An example of aguard which is not complete is (EQUAL X 3), since the corresponding descriptor vector
would be ($INTEGER), but some values satisfying this vector (4, for instance) would not satisfy the
guard. When we say "All called functions complete”, we mean that the guards of every function in the
call tree of the definition are complete.l®> When we say the recognizer descriptor is NIL, we mean this
function is not a recognizer. If it were, this entry would contain the descriptor which characterizes the
objects for which the function returns the value T. The other elements of this signature we can disregard
for now. We will explore all these notions much more fully in later chapters.

Theinitial state of the system includes the signatures for all the native functions. The signatures for these
functions are given in Appendix A.

In the process of inferring a signature for a new function, the inference tool attempts to validate that the
guards of all called functions are satisfied, at least within the scope of the type system. This is both a
means and an end for the system. It is a means because the tool makes a conservative judgement, when it
cannot demonstrate that the guard descriptors are satisfied, that the real guard expression will not be
satisfied either. If the real guard is not satisfied, there is no guarantee that the use of the signature is
sound. Thus, when the tool fails to show the guard descriptors are satisfied, it declares failure and aborts
the analysis. But guard verification is aso a goal for the system, because in the cases where the guard
descriptors are known to be complete for a function, then the tool can guarantee that if it does not detect a
guard violation on a function call, the real guard will be satisfied by any possible parameters.
Furthermore, if the guard descriptors are also complete for al the functions in the call tree of the called
function, then the tool’ s failure to detect a guard violation signifies that the guards for all functions called
in the course of evaluating the original function call will also be satisfied.

3.3 Recognizer Functions

A recognizer function is a Boolean function of one argument and of a certain form which determines
whether its argument conforms to a variable-free type descriptor. Conversely, for any variable-free type
descriptor, one could define a corresponding recognizer function. A recognizer must have no guard (or a
vacuous guard, T), so it is defined for all actual parameter values.

One reason recognizers are important to the type system is that if acall to arecognizer is used asatest in
an |F expression, optima modifications to the type context of the IF may be made to support the analysis
of the THEN and the ELSE arms. Another reason is that, if afunction guard is expressed as a conjunction
of recognizer calls on distinct parameters, we know that the guard descriptors are complete. The entire
inference system is monotonically conservative, so the descriptors computed to characterize the value of
an expression may be too inclusive, but they can never be too small. In the case of a complete guard (or
any complete type predicate), the fit is perfect. The significance of a complete guard is that alist of actual
parameter values satisfies a complete guard expression if and only if they satisfy the guard descriptors
computed by the inference system. If the system determines that the (possibly too inclusive) descriptors
characterizing the actual parameters represent a subset of the values represented by the guard descriptors,
then the real function guard will evaluate to anon-NIL value.

Given a new function, if the inference algorithm determines the function is a recognizer, it will employ
specia techniquesto infer its signature, techniques which will lead to the perfect signature we seek.

15There are two pairs of completeness tags, the latter preceded with the notation "TC". We shall see |ater that the first set of tags
signifies a mere conjecture, but the TC tags, more stringently defined, carry a guarantee with respect to the evaluation of guard
expressions.
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3.4 Thelnference Algorithm

The inference system operates in two phases when a new function is submitted. First, the inference
algorithm makes a good heuristic guess at the signature. Then, the checker algorithm, which is formally
specified and proven sound, validates the signature.

The system makes certain assumptions about functions being submitted to it, mainly that they lie within
the language subset supported by the system, that the only non-recursive function calls within the function
definition are to functions already in the system database, and that, given any arguments satisfying the
function guard, the evaluation of the function body will terminate.

There are severa significant algorithms within the main inference algorithm. TYPE-PREDICATE-P
takes a form, determines if it is a type predicate, and if so, returns (among other things) a vector of
descriptors characterizing what can be deduced about the types of the variables in the environment when
the predicate evaluates to a non-NIL value, and whether any information is available when the predicate
evaluates to NIL. DESCRIPTOR-FROM-FNDEF takes a function, determines if it is a recognizer
function, and if so, returns the descriptor which characterizes the objects for which the function returns
T. The composition of DERIVE-EQUATIONS and SOLVE-EQUATIONS, given aform, returns a guard
and the segments which become the main elements of its signature.

When a new function is submitted to the inference algorithm, the following events transpire. If thereisno
guard, or if the guard is T, DESCRIPTOR-FROM-FNDEF examines the function to determine if it is a
recognizer. If so, it generates what we hope is a perfect signature for the function, meaning that there are
two segments, one whose result descriptor is $T and the other $NIL, where the respective argument
descriptors characterize no values in common, but together characterize the entire universe of values.

If there is a guard, it is first checked to ensure that it does not call the function recursively. Then, the
inference algorithm invokes DERIVE-EQUATIONS and SOLVE-EQUATIONS on the guard form to
ensure there are no detectable guard violations. If there are, the entire analysis fails, and the function is
rejected. If none are found, then TYPE-PREDICATE-P is invoked to construct the guard vector for the
function.

Then, using this guard vector as an assumption on the types of the function arguments (or using a guard
vector composed of *UNIVERSAL descriptors if there was no guard form), we invoke DERIVE-
EQUATIONS and SOLVE-EQUATIONS on the function body to generate the function signature and,
while in the course of doing so, attempt to validate all the guards of functions called within the body. If a
guard violation is detected, the function is rejected.

If the function is not rejected, SOLVE-EQUATIONS returns a signature for it. But the algorithms which
generated the signature are not trusted algorithms. They have not been formally modelled at all, much
less shown to be consistent with the semantics of the type system. So we can think of them as heuristic
algorithms which have suggested a signature for the function which must now be validated in order to be
trusted. This validation is performed by the signature checker, which has been rigorously formalized and
proven to be sound with respect to the formal semantics of the type system.

Theinference algorithm just outlined is discussed in much greater detail in Chapter 4.
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3.5 TheFormal Semantics

We have spoken frequently of values "satisfying" descriptors. This is the fundamental notion in the
formal semantics. Roughly speaking, a value satisfies a descriptor if it is a member of the set of values
represented by the descriptor. But with type variables in the descriptor language, a descriptor in isolation
cannot necessarily prescribe a set.

The notion of type variables employed in the formal semantics is that a variable represents a single
arbitrary Lisp value. While this is not the conventional notion of type variable appearing in most type
systems, it is perfectly suited to deriving maximal information from the signatures of certain very
important functions, like CAR, CDR, and CONS, whose argument values (or specific components
thereof) appear intact in the result. Thus, the following segment, from the signature of CAR,

(((*CONS &1 *UNI VERSAL)) -> &1)

signifies that the very value which is the first element of a CONS actual parameter appears as the result
value.

When we speak of a value satisfying a descriptor containing type variables, we mean the value is a
member of the set prescribed by the descriptor under a binding of each of its type variables to particular
Lisp values. The set prescribed by the descriptor (*CONS &1 $INTEGER) under the binding ((& 1. 10))
isthe set of all CONS values whose CAR isthe value 10 and whose CDR is any integer.

Variables are only interesting when the same variable appears more than once in a descriptor or descriptor
list, asin the descriptor list formed by the above-mentioned segment for CAR. In order for alist of values
to satisfy such alist of descriptors, the very same value must appear in every position occupied by a given
type variable. Sothevaluelist (("foo" . 0) "foo") satisfies the descriptor list

((*CONS &1 *UNI VERSAL) &1)
whereas the value list (("foo" . 0) "bar") does not.

A consequence of this interpretation of variables is that they are of very limited use inside *REC
descriptors. The situation suggested by a descriptor like

(*REC FOO (*OR $NIL (*CONS &1 (*RECUR FOO))))

isthat we have aligt, al of whose values areidentical. We believe such structures occur infrequently, and
the formal semantics does not support placing type variables in positions where the variable would appear
replicated within a structure if the descriptor were opened up severa times. A different kind of variable
would be appropriate here, one which could be instantiated with an arbitrary descriptor, but work on the
system has not yet progressed to the point of implementing such a thing. This could, in fact, be a very
useful extension. On the other hand, under our semantic model, there is no reason not to alow type
variables to occur in a non-replicating position of a* REC descriptor, for example

(*REC BAR (*OR &2 (*CONS $I NTEGER (*RECUR BAR))))

The formal semantics are captured by arecursive function INTERP-SIMPLE, which takes as parameters a
list of descriptors, alist of values of the same length as the descriptor list, and a binding that maps all the
type variables in the descriptor to Lisp values. It returns T or NIL, depending on whether the values
satisfy the descriptors under the binding. This function is presented and discussed in detail in Chapter 5,
along with a discussion motivating this approach.
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The semantics of a function signature is captured in the following definitions, which formulate the key
soundness criterion for every signature in the system database. This is what the signature checker
attempts to verify for every signature emitted by the inference algorithm. Here, "I" is an abbreviation for
INTERP-SIMPLE. "E" isaLisp evaluator which is defined in Section 5.4.

Definition: A worldis a collection of Lisp function definitions
including all the functions called within any of the definitions

f 00world,clock

Definition
This is a notational convention. \here argq .. argp
are Lisp values and aq .. apare the forma
paraneters of foo, by
fooworld,clock( argy .. argp)
we denote

(E (foo aq .. an)

((ag . argy) .. (ap . argy)
wor | d
cl ock)

Definition: GOOD- S| GNATUREP ( FNDEF GUARD SEGVENTS WORLD CLOCK)

For any function foo of arity n in our Lisp subset, whose
definition is denoted

(defun foo (al .. an)

(decl are (xargs :guard guard-form)
body)

and whose SEGMVENTS are denot ed

((tle_.. tdln) ->tdq) .. ((tdnll" tdnmﬁ -> tdy,
for any non-negative integer clock and world containing the
above definition of foo

(good-si gnaturep foo guard segnents world cl ock)

(and
(wel | -formed-signature-1 guard segments n)
for any Lisp values argq .. argp
(and

HL (not (break-out-of-tinep (fooVWMWd‘jOCk(argl .. argn))))

H2 (not (null (E guard-forn1((a1 . argl) .. (an . argn)) worl d clock))))
=>
(and

ClL (not (break-guard-violationp (foo

c2 for sone k in[1..n
for sone binding b of type variables to Lisp val ues
covering tdkl .. tdkn and tdk

(1 (tdgq - tdip tdy
(argl .. argp (fooworld,dOCk(
b) ) )

worldclockarg, . argpy)))

argq .. argp)))

WELL-FORMED-SIGNATURE-1 just checks that arities are consistent, checks the well-formedness of
all the descriptors, and checks that the guard descriptors are variable-free. It is defined in Appendix G.2.
BREAK-OUT-OF-TIMEP and BREAK-GUARD-VIOLATIONP are defined along with E in Section 5.4.

Definition: VALIDFS (FS WORLD CLOCK)



28 Type Checking for Common Lisp
Overview

(valid-fs fs world clock)

For every signature (guard segnments) in fs corresponding to a
function foo of arity nin world, whose definition is denoted
(defun foo (al .. an)

(decl are (xargs :guard guard-form)
body),

(and (tc-all-called-functions-conplete guard-formfs)
(tc-all-called-functions-conplete body fs))

=>

(good-si gnaturep foo guard segnents world cl ock)

TC-ALL-CALLED-FUNCTIONS-COMPLETE checks the guard completeness property for al the
functionsin the form and in the hereditary call tree of each such function.

Paraphrased, VALID-FS says that a signature in fs is valid when, if the guards are complete for al the
functions in the call tree of foo, if the guard evaluates to a non-NIL value when applied to some actual
parameter values, and if clock is large enough to allow complete evaluation of the function call, then
evaluating the function on those parameters will not result in a guard violation, and under some binding of
type variables, the parameter values and the function result satisfy some segment in the signature. The
predicate VALID-FS, which is a precondition of many of the most significant lemmas we will consider, is
the iteration of this validity determination over all the functions in the database.

This seems a good place for a remark about the convention we use for the character case of identifiersin
this document. In general, one may view the entire document as being case insensitive (with the obvious
exception of characters within Lisp strings). For reasons having solely to do with the aesthestics of the
type faces used here, we often use lower-case in text set apart as examples, asin the definitions just above.
Upper case, however, is sometimes used in examples when depicting output from the system. Within
norma prose paragraphs, we will use upper case for functions defined in the system and for forms
generated by it, to set them apart from normal text.

Another convention used throughout the document is the omission of the Lisp quote character "' from
forms which are obviously quoted forms. In the few instances where this could lead to any
misunderstanding, we take care to explain exactly what forms are being handl ed.

3.6 The Signature Checker

The job of the signature checker is to validate each signature emitted by the inference algorithm. For a
recursive function, one may think of each iteration of the inference algorithm as producing a signature
which is a better approximation of the function graph than that produced by the previous iteration. In this
sense, the main inference algorithm produces a signature by iterating n times its process of passing over
the function body and producing segments, and the checker produces the next approximation by making
the n+lst traversa over the body. If the validation succeeds, the checker's signature is a better
approximation of the function graph, but we prefer to store and use the inference algorithm signature
because it is aimost always in a much more compact and efficient form, and any improvement in accuracy
embodied in the checker signatureis usually marginal.

Since the checker is to be validated with a proof of soundness, it isimportant that it be simple enough for
the proof to be tractable, and in fact it is much simpler in concept than the inference algorithm. This
simplicity is possible largely because the checker assumes that the signature it is given is correct, in that it
is sound with respect to the semantics of the type system. Descriptor negation, represented explicitly with
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a *NOT form in the descriptor language supported in the inference algorithm, has been completely
factored out in the final signature, so the checker need not deal with *NOT forms at al. Closed *REC
forms have already been derived and constructed from analysis of the recursion in the function text,
relieving a substantial burden on the checker. Moreover, the checker makes only minima efforts to
produce concise results. This allows a combinatoric explosion in the number of segments produced and
impairs the runtime performance of the checker. But the tricky simplifications necessary to maintain a
minimal representation would have required tricky formal justifications and would have made the checker
signature less amenable to formal validation. The benefit of a clean formal algorithm clearly outweighs
the desire for performance. Though the checker is by no means a simple algorithm, the semantics of its
operations are clean enough to be tractable in proof. Furthermore, the performance penalty occurs only
once for any given function, because the checker is not iterative and because the segments it generates are
discarded after the validation process is compl ete.

It may seem paradoxical that the checker can derive atrusted signature, when one of its chief assumptions
is the validity of the signature produced by the inference system, which we do not trust in any formal
sense. But aformal validation of this approach is presented in Section 7.2. The key to this approach is a
notion of descriptor containment. Descriptor containment is basically a subset notion, augmented to
accommodate the presence of type variables. If the checker accepts a heuristic guess at a signature and
then uses a trusted algorithm to produce a new signature, and if it can use a trusted agorithm to
demonstrate that each segment of the new signature is contained in some segment of the original, then we
can show that the original, heuristically derived signature is valid.

In the course of its analysis, the checker attempts to perform guard verification on function calls.

Definition: Guardverification on a function call is the
determ nation that the function's guard will be satisfied for
any possi bl e actual paraneter val ues.

The checker’s strategy is to determine whether the actual parameter descriptors are contained in the guard
descriptors for the called function. If it cannot do so, it signals an error and aborts the computation, since
to continue would be to proceed on an unvalidated assumption. Containment by itself does not guarantee
guard satisfaction in the general case, since the guard descriptor may be more inclusive than the guard
itself. But a finding of containment is sufficient to proceed with the analysis. But if a given guard
descriptor is complete, i.e., if the guard is a composition of recognizer function cals on distinct
parameters, the checker’s guard validation does guarantee that the real guard will be satisfied, and then we
say the guard is verified. Furthermore, if al the guard descriptors in the hereditary call tree of the called
function are also complete, then the checker’s verification of the called function’s guard is sufficient to
demonstrate that the guards will be satisfied for all the functions called in the course of evaluation of the
call being checked.

Though the inference system will attempt to generate a signature even when this completeness property
does not hold, no claims are made that the resulting signature is valid. This is because the use of the
signatures of subsidiary functions is sound only when the satisfaction of their guards is known, and in the
absence of complete guards, the inference system by itself cannot make this determination.

A detailed discussion of the signature checker appears in Chapter 6.
The inference system, including both the type inference algorithm and the checker, is implemented in

Common Lisp and runs on the Symbolics [Symbolics 88] and on Sun workstations under akcl [Y uasa 85].
Aside from a very top-level function, which stores accumulated results in the database and accepts new
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definitions, the implementation isin the form of a composition of purely applicative functions.16

3.6.1 TheProof of Soundness

There are two top level goals which must be proven to demonstrate the soundness of the inference system.
TC-SIGNATURE s the top level function of the checker, and the first and most significant is Lemma
TC-SIGNATURE-OK, the conjecture that a signature validated by the checker is indeed correct with
respect to the formal semantics of the type system.

Lemma TC- S| GNATURE- K

For any n-ary function foo, whose definition is of the form
(defun foo (aq .. ap)
(decl are (xargs :guard guard-form)
body)
where guard-formis a conjunction of recognizer calls on distinct
fornal paraneters,
for any world of Lisp functions world, including at |east the above
definition of foo and the definitions of all the functions in the
call tree of foo
for any list of function signatures fs, including signatures for
at least all the functions in the call tree of foo, except foo
itself,
for any non-negative integer clock
when (tc-signature foo fs) successfully validates a signature
for foo

HL (and (valid-fs fs world clock)
H2 (and (not (equal (guard (tc-signature foo fs))
*guar d-vi ol ati on))
(not (equal (segnents (tc-signature foo fs))
*guard-violation)))
H3 (tc-all-called-functions-conplete guard-formfs)
H4 (tc-all-called-functions-conplete+ body fs foo t) )
=>
(valid-fs (cons (tc-signature foo fs) fs) world clock)

Paraphrased, it states that if the database of function signaturesis sound, if the computation of a signature
did not abort with a*GUARD-VIOLATION result, and if the guards for all the functions in the call tree
of foo are complete, then the checker adds a valid signature for foo to the database, in the sense of validity
previously explained. This lemma is the top level goal of the large proof which is described in most of
Chapter 7 and Appendix B.

The other principal lemma justifies our claim regarding guard verification. If a guard descriptor is
complete, i.e., if the guard is a conjunction of recognizer calls on distinct formal parameters, and if the
actual parameters of a function call satisfy descriptors which are contained in the guard descriptors, then
we know the guard expression evaluated on those parameters will yield avalue of T.

Lemma GUARD- COVPLETE

Gven a function of arity n with argunent |ist (al .. an),
and guard expression of the form
(and (R4 aq) .. ( ap))
aq 21 Ra, @n

denoting a conjunction of calls to recognizer functions on distinct
formal paraneters, and where the recogni zer function Rak

Bactually, this is a not perfectly accurate. There are three special variables which are used as counters for generating unique
gensyms. The counters are updated as side effects of calling the gensym routines. There is no technical reason why any of these
counters need to be implemented non-applicatively. They were implemented as specials only for expediency.
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has the segnent (rtdjy) -> $t,
for any val ues argq .. argp, descriptors argtdl .. argtdn,
type variabl e binding b, non-negative integer clock, and a world of

Lisp functions including all those in the call tree of the guard
expr essi on,

(and
HL (valid-fs fs world clock)
H2 (I (argtdl .. argtdn) (argl.. argn) b)
H3 (contained-in-interface (*dlist argtdl .. argtdn)
(*dlist rtdq .. rtdp)
H4  (not (break-out-of-tinep
(E (and (Ral aq) .. (Ran ap)

((ag . argy) .. (ap . argy)
wor | d
clock))) )

=>
I (E n R ..
(equal (E (and (Ry ap) .. (Rg ap)
((ag . argy) .. (ap . argy)
wor | d
cl ock)

t)

Note: For the sake of uniformity in notation, let us say that
there is one recognizer call for each paraneter, where for
paraneters which are unrestricted in the guard expressi on we
use a recogni zer (DEFUN UNI VERSALP (X) T) whose segnents

are ((*universal) -> $t) and ((*enpty) -> $nil). In

any real guard, any such recognizer call nmay be omtted from
the guard wi thout the |oss of generality of this | emmn.

CONTAINED-IN-INTERFACE isthe top level function of the containment algorithm, which is presented
in Section 6.8. We present the proof of Lemma GUARD-COMPLETE in Section 7.3.1.

3.7 Two Simple Examples

Consider the Lisp function:

( DEFUN SYMBOL- LI STP (X)
(IF (CONSP X)
(I F (SYMBOLP (CAR X))
( SYMBOL- LI STP (CDR X))
NIL)
(NULL X)))

Recall that SYMBOLP is a recognizer function which returns T when given a symbol, NIL otherwise.
The descriptor characterizing a symbol is (*OR $NIL SNON-T-NIL-SYMBOL $T).

Since there is one parameter and no guard form, the guard descriptor is (*UNIVERSAL), which is, of
course, complete. No guard violations are detected, since CONSP, SYMBOLP, SYMBOL-ALISTP, and
NULL all have (*UNIVERSAL) guards, and the callsto CAR and CDR are protected by the IF test which
ensures their argument is a CONS. DESCRIPTOR-FROM-FNDEF determines that the body of the
function satisfies the requirements of a recognizer function, and so it returns the descriptor that
characterizes the values for which the function returnsaT result:

(*REC SYMBOL- LI STP
(*OR $NIL
(*CONS (*OR $NI L $NON- T- NI L- SYMBOL $T)
(*RECUR SYMBOL- LI STP))))
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The algorithm constructs a segment which maps this argument to $T. Then, it negates and canonicalizes
this descriptor into a *REC descriptor characterizing its complement (the 'REC1 descriptor below), and
this descriptor becomes the argument in a segment which maps it to a $NIL result. The segments for the
function, then, are:

(((*REC SYMBOL- LI STP
(*OR $NIL
(*CONS (*OR $NI L $NON- T- NI L- SYMBOL $T)
(*RECUR SYMBOL- LI STP)))))
-> $T)
(((*REC | RECL
(*OR $CHARACTER
$I NTEGER
$NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL
$STRI NG
$T
(*CONS *UNI VERSAL (*RECUR ! REC1))
(*CONS (*OR $CHARACTER
$1 NTEGER
$NON- | NTEGER- RATI ONAL
$STRI NG
(*CONS *UNI VERSAL * UNI VERSAL) )
*UNI VERSAL) ) ))
-> $NIL))

An aside on !REC notation: When the inference system generates a new *REC descriptor, it supplies a
unique label for the descriptor. In the exposition in this thesis, we use the notation 'RECnh, where n is
some positive integer. The name generator maintains a counter, which is appended to the characters
"IREC" in forming a new symbol, thus ensuring the uniqueness of each label. In fact, though, the counter
isreset as each new function is submitted. In order to guarantee uniqueness, then, the label generator also
appends the name of the function being analyzed to the *REC name. Since this additional verbage would
clutter the exposition, we do not display the function name component of * REC names.

Next, this signature is tentatively added to the database of function signatures, and the function is
submitted to the checker for validation. The checker produces the following segments. We will clearly
see the combinatoric explosion to which we referred above.

(((*CONS $NI L
(*REC SYMBOL- LI STP
(*OR $NIL (*CONS (*OR $NIL $NON-T- NI L- SYMBOL $T)
(*RECUR SYMBOL- LI STP))))))

-> $T)
(((*CONS $NI L
(*REC ! RECL
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL (*RECUR ! REC1))
(*CONS (*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$STRI NG (* CONS *UNI VERSAL * UNI VERSAL))
*UNI VERSAL)))))
-> $NIL)

(((*CONS $NON- T- NI L- SYMBOL
(*REC SYMBOL- LI STP
(*OR $NIL (*CONS (*OR $NIL $NON-T- NI L- SYMBOL $T)
(*RECUR SYMBOL-LISTP))))))
-> $T)
(((*CONS $NON- T- NI L- SYMBOL
(*REC ! REC1
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL (*RECUR ! REC1))
(*CONS (*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
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$STRI NG (* CONS *UNI VERSAL *UNI VERSAL) )
*UNI VERSAL)))))
-> $NIL)
(((*CONS $T
(*REC SYMBOL- LI STP
(*OR $NIL (*CONS (*OR $NIL $NON-T- NI L- SYMBOL $T)
(*RECUR SYMBOL- LI STP))))))
-> $T)
(((*CONS $T
(*REC ! REC1
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL

$NON- T- NI L- SYMBOL $STRI NG $T

(*CONS *UNI VERSAL (*RECUR ! REC1))

(*CONS (*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL

$STRI NG (*CONS *UNI VERSAL *UNI VERSAL) )
*UNI VERSAL) ))))

> $NIL)
(* CONS $CHARACTER *UNI VERSAL)) -> $NI L)
(*CONS $I NTEGER *UNI VERSAL)) -> $NI L)
(* CONS $NON- | NTEGER- RATI ONAL *UNI VERSAL) ) -> $NI L)
(*CONS $STRI NG *UNI VERSAL)) -> $NI L)
(*CONS (*CONS *UNI VERSAL *UNI VERSAL) *UNI VERSAL)) -> $NIL)
$CHARACTER) -> $NI L)
$I NTEGER) -> $NIL)
$SNIL) -> $T)
$NON- | NTEGER- RATI ONAL) -> $NI L)
$NON- T- NI L- SYMBOL) -> $NI L)
$STRING -> $NIL)
$T) -> $NIL))

Loosely speaking, each of these segments represents one of the diguncts produced from a single
unfolding of the *REC forms in the original segments. The containment test ensures that each of them is
contained within one of the original descriptors. In this case, it is easy to see which one contains each,
since the signature contains only one segment with a $T result and one with a$NIL result.

The checker also validates that the guard is (*UNIVERSAL), that this guard descriptor is complete, that
the original guard is contained in the guard computed by the checker, that the guards of all functions
called in the body are complete, and that the function is a recognizer.

For an example of a function whose signature involves type variables, consider:

( DEFUN CADR ( X)
( DECLARE
( XARGS : GUARD
(IF (NULL X)
(NULL X)
(IF (CONSP X)
(I'F (NULL (CDR X)) (NULL (CDR X)) (CONSP (CDR X)))

NIL))))
(CAR (CDR X))))

The guard is a cumbersome expression which ensures that the argument is such that CDR is defined on it
and CAR is defined on its CDR. (It is not a simple conjunction of CONSP tests because CAR and CDR
each return NIL when given NIL asan argument.) The guard isitself free of guard violations, and the tool
produces the guard descriptor:

((*OR $NI L
(*CONS *UNI VERSAL (*OR $NI L (*CONS *UNI VERSAL *UNI VERSAL)))))

This guard descriptor is complete. Since the function has a guard, it fails one of the first tests for being a
recognizer, so the tools employs DERIVE-EQUATIONS and SOLVE-EQUATIONS to compute its
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segments. No guard violations are found in the body, thanks to the assumption provided by the guard.
The segments produced are:

(((*OR $NIL (*CONS *UNI VERSAL $NIL))) -> $NIL)
(((*CONS *UNI VERSAL (*CONS &L *UNI VERSAL))) -> &1))

Thus, if the argument is a CONS whose CDR is a CONS, the result is the same value as the CAR of the
CDR. Otherwise, theresult isNIL.

The checker generates an identical guard descriptor, but the checker has a more stringent test for guard
completeness than the inference tool. The checker requires that guard be a conjunction of recognizer cals
on distinct parameters. Had the guard expression been made the body of another unguarded function, that
function would have qualified as a recognizer. Then, the guard for CADR could have been simply a call
to this new function on the parameter X, and the checker would have judged the guard complete.

The segments generated by the checker are:

SNIL) $NIL)))
(*CONS *UNI VERSAL $NIL)) -> $NIL)

(
(
(((*CONS *UNI VERSAL (*CONS &125 *UNI VERSAL))) -> &125)

—_~—

The first two segments are contained in the first original segment, and the third segment is contained in
the second original. Thus, the signature is validated.
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Chapter 4
THE IMPLEMENTATION OF THE INFERENCE ALGORITHM

This chapter is an informal synopsis of the type inference algorithm, intended to provide insight into all
the operations undertaken by the implementation.

This discussion will bootstrap itself, in a sense. First, we will mention some key functions and describe
them just well enough to then follow with a high-level overview of the algorithm. Then we devote the
bulk of the chapter to a very detailed discussion of the most critical component algorithms.

Keep in mind that this algorithm is purely heuristic, in that its purpose is to suggest a function signature.
We make no formal claims to its validity or to the soundness of the operations performed within the
algorithm. Formal assurance of the correctness of the signature is left to the checker algorithm.

Recall, the tasks of the algorithm are to:

1. Determine that the guard expression, if there is one, is well-formed. The guard must not
contain any recursive cals, it can call only functions which are in the system state, and its
evaluation must not cause any guard violations detectable within the granularity of the type
system.

2. If the guard is well-formed, extract a type descriptor representation of the guard.
3. Determine whether the guard type descriptor is a complete characterization of the guard.

4. Determine whether there are any guard violations in the function body which are detectable
within the granularity of the type system.

5. If there are no guard violations, formulate the signature segments for the function.

Fortunately, we define our subset of Common Lisp so that we can make some handy assumptions about
the function we are given.

1. A new function may call only itself and functions which exist in the database.
2. The only variables are those in the parameter list.

3. Quoted constants must be objects whose types are known to the type system. For instance,
complex numbers are not handled.
Furthermore, it was not our intention to support type inference for non-terminating functions. Though
there is no specific prohibition of such functions, the algorithm may be prone to generating weak results
or to diverge, thus yielding no result at all.

The agorithm as it stands is the result of an evolving prototype effort. Its development was arbitrarily
halted at a point where it was judged to be generating sufficiently interesting results. As such, there are
many improvements which could be made to the algorithm, and some are suggested within this chapter.
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4.1 A Few Important Functions

Here is a brief description of several important functions which will be mentioned in the overview of the
algorithm below. Details and some parameters are omitted to keep the big picture clearer. Severa of
these functions will be explained in greater detail later.

UNI FY- DESCRI PTORS ( DESCRI PTOR1 DESCRI PTOR2 .. .)

If one thinks of descriptors as terms which, under some arbitrary substitution of ground type
descriptors for type variables, represent sets of data objects, then one may think of UNIFY-
DESCRIPTORS as returning a descriptor characterizing the intersection of those two sets under any
common substitution. UNIFY-DESCRIPTORS returns a descriptor which represents the common ground
between DESCRIPTORL and DESCRIPTOR?2, annotated with substitutions mapping type variables to
descriptors.

GUARD- VI OLATI ON- ON- FNCALL ( FORMALS ACTUALS)

FORMALS and ACTUALS are lists of descriptors. FORMALS is the descriptor list corresponding
to the guard of the function being called. ACTUALS are the descriptors of the actual parameters.
GUARD-VIOLATION-ON-FNCALL returns T if the ACTUALS descriptors fail to satisfy the
FORMALS descriptors. This judgement is made essentialy by unifying the FORMALS and ACTUALS
and seeing that the result is isomorphic to ACTUALS, thus ensuring FORMALS placed no additional
constraint on ACTUALS.

CANONI CALI ZE- DESCRI PTOR ( DESCRI PTOR)

This function employs a number of heuristics to massage a descriptor into a canonical form. Thereis
not aways a single unique canonicalization computed by this function for different descriptors
characterizing the same set of values.

TYPE- PREDI CATE- P ( FORM ARGLI ST RECOGNI ZERS TYPE- ALI ST)

Given aLisp expression FORM, alist of names of formal parameters the function ARGLIST, alist of
known RECOGNIZERS from the system database, and a TYPE-ALIST characterizing the types of the
variables in the environment, TYPE-PREDICATE-P determines what information can be determined
about the parameters by evaluating the form.

PREPASS ( FORM FNNAME FUNCTI ON- SI GNATURES RECOGNI ZERS)

PREPASS takes a Lisp expression FORM and the system database and returns an IF-normalized
form, which will always evaluate to the same value as FORM in any environment. |F-normalization
consists mainly of transforming the test form in the IF so that it aways evaluates to either T or NIL. It
also reduces an IF form to its THEN or ELSE armsiif it can deduce trivially that the test always evaluates
to T or NIL, respectively.

4.2 Overview of the Algorithm

At the highest level, the algorithm does the following. When afunction is submitted, if it has no guard (or
the guard is T), we check its PREPASS-ed body to see if it is a recognizer function (See Section 4.4.5
below). If it is, we compute the variable-free type descriptor which characterizes what it recognizes.
Then we construct the signature which maps that descriptor to $T and its negation to $NIL. We store this
signature in the database, noting that the function’s guard descriptor is (*UNIVERSAL), that the guard is
complete, and that it recognizes forms conforming to its descriptor.

If the function is not a recognizer, we check the PREPASS-ed guard to ensure it has no guard violations
itself, then use TYPE-PREDICATE-P to construct a type alist which captures what is implied about the
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actual parameters when the guard expression evaluates to a non-NIL value. If the real guard is stronger
than the type alist (for example, if the guard were (EQUAL X 3), the type alist would just say that X is an
INTEGER), we note that the guard is not complete. Then, using the type dist as a starting point, we
construct a representation of the function body which is in the form of a table with one entry for each
subexpression in the body, ordered by Lisp evaluation order. This table, described later, will be the basis
for the computation of the function signature.

Next we traverse this table, computing the types of each subexpression. For each subexpression, we
produce a list of segments, each mapping a list of descriptors characterizing the types of the variablesin
the environment to a descriptor characterizing the result. There can be more than one segment for a given
subexpression because different variable types may produce different result types. Ultimately, the set of
segments for the outermost subexpression, i.e., the function body, will become the segments of the
signature for the function.

How are these segments produced, then? Suppose we are analyzing a function call. We have already
computed the segments for each of its arguments. First we take the cross product of all the segments for
all the arguments. This gives us a pattern of argument descriptors for every possible combination we have
uncovered. Now, we fetch the signature for the called function from the system database. The signature
is composed of a guard vector of the same arity as the parameter list, and a collection of segments. For
each actual parameter argument pattern, we first "unify”, using UNIFY-DESCRIPTORS, that pattern
against the pattern representing the guard of the called function. If the result of this unification indicates
that the guard descriptor further restricts the argument types, we report a failure to verify guards,
terminate the computation, and make no addition to the system database. Otherwise, we unify each
argument pattern against the argument pattern in each segment of the signature for the called function.
For each segment for which this unification is successful, i.e., for which a non-empty result is produced,
we are rewarded with a unifying substitution, and this substitution is applied to the result descriptor for the
matching segment. This, when canonicalized, gives us a result type which characterizes a possible result
corresponding to our argument pattern. We map our argument pattern to this result descriptor to produce
a segment. Since there may be multiple formal argument patterns for which the unification is successful,
we may get multiple segments for any given actual argument pattern. For each actual parameter
descriptor pattern from the cross product, we perform this unification with each segment for the called
function, collecting al the results to form the set of segments for this function call.

A problem, of course, is what to do about recursive function calls? The type inference process just
described depends on the existence of a signature for every called function, and we are only in the process
of computing the signature for the function at hand. Initially, we have nothing whatsoever with which to
work. We address this problem by doing an iterative approximation of the signature for the function. An
iteration amounts to one pass through the entire table representing the function. During the first pass, we
have no segments to match against recursive function calls, so we know nothing about the results of those
calls. However, this does not prevent us from producing a first approximation of our segments on this
pass. On the second pass, we can use this approximation to produce a refined approximation. Eventually,
we hope that the approximation we produce will be equivalent to the one we produced on the previous
pass. When this happens, the algorithm has stabilized. We canonicalize our segments into a suitable
form, and we are finished. We store the segments in the system database, along with the representation of
the function guard, a tag which says whether the guard is complete, and a tag which says the function is
not arecognizer (since we would not have resorted to this algorithm if it were).

Ensuring that we have reached stability is non-trivial, however. The function is recursively composing
structures which contribute to the result. If we proceed naively, these structures will just grow with each
iteration, our segments will reflect that growth, and nothing will ever stabilize. Therefore, we employ a
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technique for determining when these structures are taking on a form which can be described with a
closed recursive descriptor. With such a closed recursive descriptor, the expansion and folding which
occurs during an iteration of the algorithm will produce the same result we had in the previous pass, thus
leading to stabilization.

In some situations, our heuristics may not be strong enough to close our recursive forms in such a way
that stability can be reached. To prevent the algorithm from running away, we simply place a limit on the
number of iterations it will attempt before giving up.

A characteristic collection of results generated by the algorithm is presented in Chapter 8, and an
extensive collection of resultsis available viaanonymous ftp. (See Appendix H.)

4.3 The Type Descriptor Language

The following is the grammar for type descriptors which are handled by the inference algorithm.

<descriptor> ::= <sinple descriptor> | <variable> | *EMTY |
(*CONS <descriptor> <descriptor>) |
(*OR <descriptor>* ) | (*NOT <descriptor>) |
<rec descriptor> | <and descriptor> |

<fix descriptor> | *MERGE-FI X-PO NT |
** RECUR- MARKER* *

*MERGE-FIX-POINT is a transitory descriptor used to represent a fixed point in the UNIFY-
DESCRIPTORS agorithm.

** RECUR-MARKER** is a transitory descriptor used to represent a fixed point in the RECOGNIZERP
algorithm.

<sinple descriptor> ::= $T | $NIL | $INTEGER | $NON- | NTEGER- RATI ONAL |
$CHARACTER | $STRING | $NON- T- NI L- SYMBOL

<rec descriptor> ::= (*REC <rec name> <recur descriptor>)
<rec nanme> ::= a synbol whose first character is not "&"
<variable> ::= a synbol whose first character is "&"

<recur descriptor> ::=
<sinpl e descriptor> | <variable> | *EMPTY |
(*CONS <recur descriptor> <recur descriptor>) |
(*OR <recur descriptor> ) | (*NOT <recur descriptor>) |
<rec descriptor> | <and descriptor> | <fix descriptor> |
(*RECUR <rec name>) | *I SO RECUR

<dl i st descriptor> ::= (*DLI ST <descri ptor>*)
A <recur descriptor> is further constrained so that when it takes the form (*RECUR <rec name>), the
<rec name> must be identical to that associated with the immediately containing *REC form. Note that

the grammar for <recur descriptor> is just the grammar for <descriptor> extended with the *RECUR form
and modified to be internally recursive.

*|SO-RECUR is a transitory form which can replace (*RECUR <rec name>) in a small algorithm which
determines if two *REC descriptors are isomorphic.

*DLIST issimply a notation for packaging alist of simple descriptorsinto asingle form for submission to
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functions like UNIFY -DESCRIPTORS.

In an *AND form, the <descriptor> is a constraint on the descriptor of the <rec aam>. The <rec arm> is
some kind of recursive form, either a <recursive arm> or a <descriptor> which contains a* REC form.

<and descriptor> ::= (*AND <descriptor> <recursive arm )

Annotated descriptors are useful intermediate forms for descriptor unification.

<annot ated descriptor> ::=
<descriptor> | <subst descriptor> |
(*CONS <annot at ed descri ptor> <annotated descriptor>) |
(*OR <annot ated descriptor>* ) |
(*NOT <annot ated descriptor> ) |
<annotated rec descriptor> | <annotated and descriptor> |

A <subst descriptor> is a marked descriptor characterized by the embedded <annotated descriptor> but
indicating that its placeis held in common by the indicated variable.

<subst descriptor> ::= (*SUBST <vari abl e> <annot at ed descri pt or>)

<annotated rec descriptor> ::=
(*REC <recnane> (*OR <annotated rec arm descriptor>* ) )

<annotated rec armdescriptor> ::= <annotated descriptor> |
<annot ated recursive arnp

<annotated recursive arnmp ::=
A <recursive arn> with any enbedded descriptor being potentially
annot at ed

<annotated and descriptor> ::=
(*AND <annot at ed descri ptor> <annotated recursive arns )

A <fix descriptor> is constructed by SOLVE-EQUATIONS as a representation for the value returned by a
recursive call of the function being analyzed. The <fix body form> grammar is the grammar for
descriptors modified to be internally recursive and to include a* FIX-RECUR form.

<fix descriptor> ::=
(*FI X (*DLI ST <descriptor>*) <fix body form )

<fix body fornmr ::=
<sinple descriptor> | <variable> | *EMPTY |
(*CONS <fix body fornmp <fix body formr ) |
(*OR <fix body fornp* ) | (*NOT <fix body form ) |
<rec descriptor> | <and descriptor> | <fix descriptor> |
(*FI X- RECUR (*DLI ST <descri ptor>*) )

4.4 Details of Significant Sub-algorithms

Before we delve into the higher-level algorithms which produce signatures for recognizers and for general
functions, it is useful to understand severa very important utility functions which help implement the
algebra of type descriptors. These are UNIFY -DESCRIPTORS, which finds the common ground between
two descriptors, CANONICALIZE-DESCRIPTOR, which performs canonicalization, PREPASS, which
performs IF-normalization, and TYPE-PREDICATE-P, which extracts type information from a certain
important class of descriptors. Then we can move on to RECOGNIZERP and DESCRIPTOR-FROM-
FNDEF, which determine if afunction is arecognizer and derive its associated descriptor. Finally we will
look at DERIVE-EQUATIONS, SOLVE-EQUATIONS, and INFER-SIGNATURE, which compute type
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signatures for general functions.

4.4.1 UNIFY-DESCRIPTORS

Think for the moment of descriptors as terms which, under some arbitrary substitution mapping type
variables to ground type descriptors, represent sets of data objects. With this view, one can think of
UNIFY-DESCRIPTORS as returning the intersection of those two sets under any common substitution.
Given two descriptors, DESCRIPTOR1 and DESCRIPTOR2, UNIFY-DESCRIPTORS returns a
descriptor which represents the common ground between DESCRIPTOR1 and DESCRIPTOR2, plus a
substitution list mapping type variables to descriptors which embodies one part of the unification of the
descriptors. We say "one part of" because in the presence of digunction in the descriptor language,
descriptor unification also performs an intersection operation not typically associated with classical
unification. For example:

( UNI FY- DESCRI PTORS ’ (* OR $CHARACTER $I NTEGER) ’ (*OR $I NTEGER $NI L))

($INTEGER . NIL)

Here, though no variables appear, the unifier still must find the common ground between the two
digunctions, and this is essentially an intersection problem. An example which combines the tasks of
finding an appropriate substitution and taking an intersection is:

(UNI FY- DESCRI PTORS * (*CONS &1 $NIL) ’ (*OR $I NTEGER (* CONS $| NTEGER &2)))

((_*CO\IS $INTEGER $NIL) . ((& . $INTEGER) (&2 . $NIL)))

Here the result must be a *CONS, since that is the only possibility allowed by DESCRIPTORL.
DESCRIPTOR? requires that, if the object it represents is a CONS, the CAR be an $INTEGER, and
DESCRIPTOR1 requires that the CDR be $NIL. Hence, the pair in the result indicates that the resulting
descriptor must be (*CONS $INTEGER $NIL), and we obtained this result in part by instantiating the
variables according to the substitution ((&1 . $INTEGER) (&2 . $NIL)).

UNIFY-DESCRIPTORS also returns a second mapping list called a restriction list, which is of no
particular interest to the external caller (unlessit is exploited -- see Section 4.4.7), but which is important
internally in dealing with variables mapped to digunctive forms. If a form within one of the input
descriptors is marked with an annotation which associates it with a type variable, and if that subform is
later restricted in the course of unification, then an entry is made in the restrictions list which maps the
variableto itsrestricted form.

Henceforth in this section, we will use the angle-bracketed notation:

<< descriptor substs restrictions >>

to indicate the form of aresult returned by UNIFY-DESCRIPTORS, and the extraction functions TERM,
SUBSTS, and RESTRICTIONS to access the pieces.

UNIFY-DESCRIPTORS takes some parameters which we have not yet mentioned. Each of them
safeguard against particular kinds of infinite recursion.

1. OPEN-NOT-REC is a flag used only to regulate whether CANONICALIZE-NOT-
DESCRIPTOR opens up * REC descriptors which occur within a*NOT form.

2. STACK-RECS isastack of pairs of *REC descriptors. Every time UNIFY-DESCRIPTORS
is caled where both DESCRIPTORL1 and DESCRIPTOR?Z are *REC descriptors, the pair is
pushed on the stack. If on a deeper recursive call, the same pair is encountered, we have
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found a fixed point in the recursive descent, and we can construct a closed *REC form to
represent the result.

3. TERM-RECS is a stack of pairs of descriptors. In each pair, one is a*REC and the other is
not. Whenever one descriptor argument to UNIFY-DESCRIPTORS is a *REC and the
other not, the pair is put on this stack, and if it is encountered again on recursion, the
algorithm fails, returning the *EMPTY descriptor. Thisis explained below.

To illustrate the action of UNIFY -DESCRIPTORS, we state rules providing generic examples of results it
returns. A ruleisof theform

(UNI FY- DESCRI PTORS D1 D2) => <<TD SUBSTS RESTRI CT| ONS>>

where D1 and D2 are various forms representing the kinds of descriptors to which the rule applies, and the
triple represents, in terms of D1 and D2, the result produced by the unification. In some cases, we supply
additional remarks to help clarify the adequacy of the result. UNIFY-DESCRIPTORS is commutative, so
we will not bother to present aresult with the arguments reversed. To imagine a soundness argument for
the result, one might imagine a containment relation for descriptors and then question whether the result
descriptor is contained in both the arguments.

By convention in our rules, let the names D, D1, D2, ... represent type descriptors. The SUBSTS and
RESTRICTIONS lists have elements of the form (&i . <descriptor>).

Rul e:
(UNI FY- DESCRI PTORS D D) => <<D NIL NI L>>

Rul e:
(UNI FY- DESCRI PTORS *EMPTY D) => <<*EMPTY NIL N L>>

Rul e:
(UNI FY- DESCRI PTORS D *UNI VERSAL) => <<D NIL NI L>>

In the following rule, the *SUBST form is the annotation mentioned above which associates a variable
with a component of the result descriptor. The form of a*SUBST is (*SUBST &i <descriptor>), where
&i isthevariable. The set of values represented by the * SUBST is the set represented by its <descriptor>.
Thus, unification consists of unifying against the <descriptor>, and then, if this unification results in a
narrowing of <descriptor>, noting in the restrictions list that the variable is restricted accordingly.
REBUILD-SUBST-FORM is the function which does this, modifying the result of the unification by
adding to the restriction list arestriction on the * SUBST variable whenever the * SUBST form is restricted
by the unification.

Rul e:
(UNI FY- DESCRI PTORS (*SUBST & D1) D2) =>
where unified-form= (UN FY- DESCRI PTORS D1 D2)
if TERM (unified-forn) = *EMPTY
then <<*EMPTY NIL NI L>>
el se (REBU LD- SUBST- FORM (*SUBST & D1) unified-form

Rul e:
(UNIFY-DESCRIPTORS & (*OR .. & ..)) => <<& N L N L>>

Rul e:

Under the condition that D contains an occurrence of the variable &
nested within both an *OR and a *CONS,

(UNI FY- DESCRI PTORS & D) =>
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<<(*SUBST & (*REC <rec-name> D/ ((& . (*RECUR <rec-nane>))))
((& . (*SUBST & (*REC <rec-nanme> D/ ((& . (*RECUR <rec-nane>))))))
NI L>>

"/" signifies application of a substitution. So
"DI((& . (*RECUR <rec-nane>)))" signifies the descriptor Dwth
each occurrence of & replaced by (*RECUR <rec-nane>).

The preceding rule illustrates a different treatment of variables than we will see in the formal semantics
and in the checker algorithm. In the inference algorithm, variables serve a dua purpose, indicating both
the sharing of data values and the need for common type instantiation. Instances of the latter are cleaned
up a the end of the inference process. In hindsight, we believe these purposes should have been
separated, treated differently, and preserved in the formal semantics.

Rul e:

Under the condition that D contains an occurrence of the variable &,
but where Dis neither an *ORwith & as one of its disjuncts nor a

formwhere the variable & is nested within both an *OR and a *CONS,

(UNI FY- DESCRI PTORS & D) => <<*EMPTY NIL NI L>>

This covers only the case where D contains &i within a*CONS but not within an *OR. If we created a
*REC in the spirit of the previous casg, it would be a non-terminating structure.

Rul e:

Unifying a descriptor Dwith an *OR descriptor which has D as one

of its disjuncts yields Dintact with no substitutions necessary.

O herwi se, the result is the disjunction of the unification of Dwth
each of the disjuncts, with each unification yielding its own
substitution.

(UNI FY-DESCRIPTORS D (*OR D1 .. DN)) =>
(if (MEMBER D (D1 .. DN))
then <<D NIL NI L>>
el se (*OR (UNI FY-DESCRI PTORS D D1) .. (UN FY-DESCRI PTORS D DN)))

Rul e:
Where & does not occur in D
(UNI FY- DESCRI PTOR & D) =>
<<(*SUBST & D) ((& . (*SUBST & D))) N L>>

Rul e:
(UNI FY- DESCRI PTORS (*REC <rec-nanme> (.. (*RECUR <rec-nanme>) ..)) D)
=>
(UNI FY- DESCRI PTORS
(.. (*REC <rec-nanme> (.. (*RECUR <rec-nanme>) ..)) ..) D)

This is to say that when we unify a *REC formwith another form we
just open the *REC and unify.

When unifying two non-identical * REC descriptors, there is a danger of getting lost in a non-terminating
recursion. UNIFY-DESCRIPTORS does a nice trick to prevent this and to reach closure. When it is
asked to unify two *REC descriptors, it places the pair on a stack before proceeding. This stack is the
STACK-RECS parameter mentioned above. Then, as usual, it opens one up and unifies against the other,
which results in the other being opened up, so that their internals get unified. This constructs a new,
unified descriptor as it descends, and sooner or later, we will reach a point where the two *REC forms,
which reappear nested with every unfolding, once again are to be unified with each other. If we just
continued unfolding, the algorithm would never terminate, but before unifying two *RECS, UNIFY -
DESCRIPTORS checks the stack to see if they have already been encountered. If so, we have reached a
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fixed point in the recursion. We simply create a new *REC label <recname>, declare the result of the
nested unification to be (*RECUR <recname>), and when we finally unwind our way to the top, wrap a
(*REC <recname> .. ) around the accumulated result. For example, unifying the descriptors

(*REC RL (*OR $NIL (*CONS (*OR $| NTEGER $CHARACTER) (*RECUR R1))))
(*REC R2 (*OR $NIL $T (*CONS *UNI VERSAL (*CONS $I NTEGER (*RECUR R2)))))

returns the descriptor:

(*REC 'RECL (*OR $NIL (*CONS (*OR $CHARACTER $| NTEGER)
(* CONS $I NTEGER (*RECUR ! RECL)))))

Another pitfall is the possibility of infinite recursion when each descriptor argument contains a *REC
form, but the forms unwind out of sync with one another. For example, consider the descriptors:

(*REC FOO (*OR $NI L (*CONS *UNI VERSAL
(*CONS *UNI VERSAL (*RECUR FOO))))
(* CONS * UNI VERSAL
(*REC BAR (*OR $NI L (*CONS *UNI VERSAL
(*CONS *UNI VERSAL (*RECUR BAR))))

The *REC forms are opened up aternately, leapfrogging one another in an endless unwinding. This
unwinding does not get spotted under the STACK-RECS regimen because at no point do we attempt to
unify two *REC forms head to head. So we employ the TERM-RECS mechanism, mentioned above, to
prevent this case from running away. TERM-RECS is a stack of pairs of descriptors, where in each pair
oneisa*REC and the other is not. If on recursion we encounter arguments which match pairs already on
the TERM-RECS stack, we return *EMPTY as the result, since any object satisfying both descriptors
would be impossible to construct. In the example above, it would have to be a list whose length is both
even and odd.

Rul e:
(UNI FY- DESCRI PTORS D (*NOT D)) => <<*EMPTY NIL NI L>>

Canonicalization complements a simple descriptor and forces the *NOT inside a structure, as we shall see.
This reduces unification of *NOT descriptors to unification on other forms. The rare exception is where
the canonicalization of the *NOT form produces no change. This occurs only when D1 is a *RECUR
form, and this peculiarity occurs only during recognizer analysis, which is explained below, along with
the treatment of * AND and *RECUR forms.

Rul e:
Where D1 is not a *RECUR descri ptor,
(UNI FY- DESCRI PTORS (*NOT D1) D2) =>
(UNI FY- DESCRI PTORS ( CANONI CAL| ZE- DESCRI PTOR (*NOT D1)) D2)

Rul e:

Where D is not an *OR descriptor:

(UNI FY- DESCRI PTORS (*NOT (*RECUR <rec-nane>)) D) =>
<<(*AND (*NOT (*RECUR <rec-nanme>)) D) N L N L>>

ot herwi se
(UNI FY- DESCRI PTORS (*NOT (*RECUR <rec-nane>)) (*OR D1 .. DN)) =>
(*OR <<(*AND (*NOT (*RECUR <rec-nane>)) D1) NIL N L>>

<<(*AND (*NOT (*RECUR <rec-name>)) DN) NIL NiL>>)

As an optimization in certain simple cases, we employ a classical unification algorithm, UNIFY. We do
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this when both descriptors are composed solely of type variables, instances of the simple types
$CHARACTER, $INTEGER, 9$NIL, $NON-INTEGER-RATIONAL, $NON-T-NIL-SYMBOL,
$STRING, or $T, or *CONS or *DLIST descriptors whose components are also suitable descriptors.
UNIFY takes two such descriptors and returns either *failure if unification fails or a unifying substitution
list. Thus, we havetherule:

Rul e:
Where D1 and D2 are suitable for classical unification:
(UNI FY- DESCRI PTORS D1 D2) =>
let unify-result = (UNIFY D1 D2)
if unify-result = *failure
(*EMPTY NIL NIL)
<<( APPLY- SUBSTS uni fy-result Dl) unify-result N L>>

Now consider the general unification of two * CONS descriptors. Since this is a complex operation, we
decomposeit into several principa functions, expressed as follows:

Rul e:
Wiere D1 is of the form (*CONS D1- CAR D1- CDR)
and D2 is of the form (*CONS D2- CAR D2- CDR)
(UNI FY- DESCRI PTORS D1 D2) =>
let unify-cars = (UN FY- DESCRI PTORS D1- CAR D2- CAR)
if (EQUAL (TERM unify-cars) *EMPTY)
then <<*EMPTY NIL NI L>>
else if unify-cars is of the form(*OR u-forml .. u-form)
then (*OR (UN FY- CDR- UNI FI ED- FORMS u-fornl D1 D2)

(UNI FY- CDR- UNI FI ED- FORMS u-form D1 D2))
el se (UNI FY- CDR- UNI FI ED- FORMS uni fy-cars D1 D2)

wher e
UNI FY- CDR- UNI FI ED- FORMS (uni fy-cars D1 D2) =
let unify-cdrs =
( UNI FY- DESCRI PTORS
(APPLY- RESTRI CTI ONS ( RESTRI CTI ONS uni fy-cars)
(APPLY- SUBSTS (SUBSTS uni fy-cars)) D1-CDR)
( APPLY- RESTRI CTI ONS ( RESTRI CTI ONS uni fy- cars)
(APPLY- SUBSTS (SUBSTS unify-cars)) D2-CDR))
if (EQUAL (TERM unify-cdrs) *EMPTY)
then <<*EMPTY NIL NI L>>
else if unify-cars is of the form(*OR u-forml .. u-form)
then (*OR ( MAKE- CONS- UNI FI ED- FORM u-fornl uni fy-cdrs)

( MAKE- CONS- UNI FI ED- FORM u-form uni fy-cdrs))
el se (MAKE- CONS- UNI FI ED- FORM uni fy-cars uni fy-cdrs)

wher e
MAKE- CONS- UNI FI ED- FORM (uni fy-cars uni fy-cdrs) =
<<(*CONS (APPLY- RESTRI CTI ONS
(RESTRI CTI ONS uni fy-cdrs)
(APPLY- SUBSTS ( SUBSTS uni fy-cdrs) (TERM unify-cars)))
(TERM uni fy-cdrs))
( COWPCSE- SUBSTS
(APPLY- RESTRI CTI ONS ( RESTRI CTI ONS uni fy-cdrs) (SUBSTS unify-cars))
( SUBSTS uni fy-cdrs))
( COVPCSE- RESTRI CTI ONS
( APPLY- RESTRI CTI ONS ( RESTRI CTI ONS uni fy-cdrs)
( APPLY- SUBSTS ( SUBSTS uni fy-cdrs)
(RESTRI CTI ONS uni fy-cars)))
(RESTRI CTI ONS uni fy-cdrs))>>

The use of the SUBSTS lists when unifying CONSes is essentialy the same as with classical unification.
The substitutions from the CAR are applied to the CDRs before unifying, and the substitutions from the



Type Checking for Common Lisp 45
The Implementation of the Inference Algorithm

CARs and CDRs are merged to become the substitutions for the CONS.

The RESTRICTIONS list is used to deal with the presence of digunction in the descriptor language. |f
one of the CARsisavariable, wereturn a* SUBST form,

(*SUBST <vari abl e> <descri pt or>)

for unify-cars, as aready discussed. The vaue set represented by a *SUBST is just that of the
<descriptor>, but the form is annotated with the variable for future reference. We carry the <descriptor>
form into the unification of the CDRs (through substitution for the variable in the CDRs). If, in unifying
the CDRs, this form is further constrained, we must reflect this constraint everywhere the variable once
occurred. A restriction is formed every time such a constraint occurs. As we construct the * CONS result
from its unified CARs and CDRs, we apply these restrictions wherever there was a* SUBST form for the
variable in question. This can be viewed simply as an elaborate way to ensure that the substitutions
discovered in the unification are uniformly applied throughout the result.

Rul e:
Unification of lists of descriptors, denoted (*DLIST DL D2 .. DN) works
exactly like the unification of *CONS descriptors. We treat the list

(*DLIST D1 D2 .. DN), for unification purposes, as if it were of the
form (*CONS DL (*CONS D2 .. DN)). Actually, the *DLI ST construction is
the general case, and *CONS is the special case, but for the purposes of
expl anation, *CONS was enough to bear. *DLIST unification is only

meani ngf ul when both argunments are *DLI STs and have the sane arity.

Rul e:
Where D3 is one of the sinple descriptors $CHARACTER, $I NTEGER, $NI L,
SNON- | NTEGER- RATI ONAL, $NON- T- NI L- SYMBOL, $STRING, or $T,

(UNI FY- DESCRI PTORS (*CONS D1 D2) D3) => <<*EMPTY NIL NI L>>

The following peculiar operation occurs only during the analysis of recognizer functions, as this is the
only time * AND forms are built, and they are subsequently filtered away.

Rul e:
(UNI FY- DESCRI PTORS (*AND D1 (*RECUR <rec-nane>)) D2) =>
let uform= (UN FY- DESCRI PTORS D1 D2)
if (TERMuform = *EMPTY
<<*EMPTY NIL NI L>>
if uformis of the form (*OR uformy .. ufornh)

then (*OR <<(*AND ( TERM uf or rrn_) (*RECUR <rec-nane>))
(SUBSTS uf or "1)
( RESTRI CTI ONS uf or ”1) >>

<<(*AND ( TERM uf ornh) (*RECUR <rec-nane>))
(SUBSTS uf or "h)
( RESTRI CTI ONS uf or nh) >>)

el se <<(*AND (TERM ufornm (*RECUR <rec-nanme>))
(SUBSTS uform
( RESTRI CTI ONS uf or m) >>

Here is one place where the * AND forms are built during the analysis of recognizers. Again, this only
happens during that analysis, because any other time a (*RECUR <rec-name>) only occurs within a
*REC, since we always open up * REC forms by replacing the nested *RECUR form with the *REC form.

Rul e:
( UNI FY- DESCRI PTORS (* RECUR <r ec-nane>) D) =>
if Dis of the form(*OR DL .. DN)
then (*OR (*AND D1 (*RECUR <rec-nane>))
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(*AND DN (*RECUR <rec-nane>)))
else (*AND D (*RECUR <rec-nanme>))

Thetop level function of the unifier is named UNIFY-DESCRIPTORS-INTERFACE.

4.42 CANONICALIZE-DESCRIPTOR

CANONICALIZE-DESCRIPTOR attempts to put type descriptors into canonical form. There is not
always a single unique canonicalization computed by this function for different descriptors characterizing
the same particular set of values. We simply employ a collection of reductions which tend toward
canonicalization. Since these reductions amount to heuristic choices, we may not discover an optimal
form. For example, two equivalent descriptors which do not canonicalize to the same form are:

(*REC FOOL (*CONS $I NTEGER (*OR $NIL (*RECUR FOOL))))
and
(*CONS $I NTEGER (*REC FOO2 (*OR $NI L (*CONS $I NTEGER (*RECUR FOO2)))))

Of course, since recursive descriptors always recur from a point which is nested within both an *OR and a
*CONS, there is no reason we could not force the top level form within the * REC to be definitely one or
the other. Consider the first descriptor. If we required an *OR at the top level, we would force the outer
(*CONS $INTEGER .. ) outside the *REC and also inside the *OR around the *RECUR, and we would
get aform equal to the second. But the simple fact is that in the current implementation, we do not do
this. A nice upgrade to the implementation would be to install this canonicalization. Many other such
omissions could be found and possibly implemented.

We will state the actions which CANONICALIZE-DESCRIPTOR performs in terms of a sequence of
rules. Each ruleisof theform

<descri ptor1> => <descri ptor 2>

where the left hand side is a descriptor whose form generically indicates the form of a descriptor which is
transformed by the rule, and the right hand side gives the form of the result, usually in terms of descriptors
appearing within the form on the left. Let D, D1, D2, and D3 represent arbitrary type descriptors. Let R1,
R2, and R3 represent arbitary, but distinct names associated with *REC descriptors. Let D-REC, D-
REC1, and D-REC2 be descriptors which contain * RECUR forms, useful, of course, only inside *REC
descriptors. Finaly, note that *OR is an n-ary descriptor. But for purposes of expressing these rules,
without loss of generality we can consider it to be ternary, binary, unary, or 0-ary as convenient.

Canoni cal i zation Rule 1:
(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL) )
=> *UNI VERSAL

Canoni cal i zation Rule 2:
(*OR D *EMPTY) => (*OR D)

The rul e above al so connotes (*OR DL *EMPTY D2) => (*OR D1 D2), etc.

Canoni cal i zation Rule 3:
(*OR D) =>D

Canoni cal i zati on Rule 4:
(*OR D1 D2) => (*OR D2 D1)

There is a function DESCRIPTOR-ORDER (D1 D2) which defines a complete partial order on
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descriptors.  We perform an ordering canonicalization in accordance with the rule above if
(DESCRIPTOR-ORDER D1 D2) isNIL.

Canoni cal i zati on Rule 5:
(*OR D1 (*OR D2 D3)) => (*OR D1 D2 D3)

Canoni cal i zati on Rule 6:
(*OR D1 D1 D2) => (*OR D1 D2)

Canonicalization Rule 7:

(*OR D1 (*REC RL (*OR D1 D2 D REQ)))
=>

(*OR (*REC RL (*OR D1 D2 D-REQ)))

Canoni cal i zati on Rule 8:

(*OR (*CONS D1 D2) (*CONS D3 D2))
=>

(*OR (*CONS (*OR DL D3) D2))

Canoni cal i zation Rule 9:

(*OR (*CONS D1 D2) (*CONS D1 D3))
=>

(*OR (*CONS D1 (*OR D2 D3)))

Canoni cal i zati on Rule 10:
(*OR D *UNI VERSAL) => *UN VERSAL

Canoni cal i zation Rule 11:
(*OR) => *EMPTY

Canoni cal i zation Rule 12:
(*OR (*CONS D1 D2) (*CONS D3 D2)) => (*OR (*CONS (*OR D1 D3) D2))

Canoni cal i zation Rule 13:
(*OR (*CONS D1 D2) (*CONS D1 D3)) => (*OR (*CONS D1 (*OR D2 D3)))

Canoni cal i zati on Rule 14:
(*CONS D *EMPTY) => *EMPTY

Canoni cal i zati on Rule 15:
(*CONS *EMPTY D) => *EMPTY

Canoni cal i zati on Rul e 16:
(*OR (*DLIST D1 D2) (*DLIST D3 D2)) => (*OR (*DLIST (*OR D1 D3) D2))

Canoni cal i zati on Rule 17:
(*OR (*DLI ST DL D2) (*DLIST DL D3)) => (*OR (*DLIST DL (*OR D2 D3)))

Canoni cal i zati on Rule 18:
(*DLI ST .. *EMPTY ..) => *EMPTY

Canoni cal i zati on Rule 19:
(*NOT $T)
=>
(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG (*CONS * UNI VERSAL * UNI VERSAL) )

Canoni cal i zati on Rul e 20:
(*NOT $NIL)
=>
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL) )

Canoni cal i zati on Rule 21:

(*NOT $I NTEGER)

=>

(*OR $CHARACTER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL) )
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Canoni cal i zati on Rul e 22:
(*NOT $NON- | NTEGER- RATI ONAL)
=>
(*OR $CHARACTER $I NTEGER $NI L $NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL *UNI VERSAL))

Canoni cal i zati on Rul e 23:
(*NOT $CHARACTER)
=
(*OR $I NTEGER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL))

Canoni cal i zati on Rul e 24:
(*NOT $STRI NG
=>
(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
SNON- T- NI L- SYMBOL $T (*CONS *UNI VERSAL *UNI VERSAL) )

Canoni cal i zati on Rul e 25:
(*NOT $NON- T- NI L- SYMBQL)
=>
(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL $STRI NG
$T (*CONS *UNI VERSAL *UNI VERSAL) )

Canoni cal i zati on Rul e 26:
(*NOT *EMPTY) => *UN VERSAL

Canoni cal i zati on Rul e 27:
(*NOT *UNI VERSAL) => *EMPTY

Canoni cal i zati on Rul e 28:
(*NOT (*NOT D)) => D

Rul e Canoni cal i zation 29:

(*NOT (*CONS D1 D2))

=

(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS (*NOT D1) *UN VERSAL)
(*CONS *UNI VERSAL (*NOT D2)))

Canoni cal i zati on Rul e 30:

(*NOT (*OR D1 D2))

=

(UNI FY- DESCRI PTORS (*NOT D1) (*NOT D2))
Canoni cal i zati on Rul e 31:

D-REC/ ((*RECUR R) . (*REC R D-REC))
=

(*REC R D REC)

Canonicalization Rule 31 shows how the expansion of a *REC descriptor can canonicalize to the *REC
descriptor itself. For example,
(*OR $NIL (*CONS $I NTEGER

(*REC | NT- LI STP
(*OR $NIL (*CONS $I NTEGER (*RECUR | NT-LISTP))))))

folds to:

(*REC INT-LI STP (*OR $NIL (*CONS $I NTEGER (*RECUR | NT-LISTP))))

When we reverse this folding, we refer to the operation as OPEN-REC-DESCRIPTOR.

Canoni cal i zati on Rule 32:
(*NOT (*REC R1 D-REQ))
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=>
(*REC R2 (*NOT ( OPEN- REC- DESCRI PTOR (*REC Rl D-REC))))
/' (((*NOT (*REC Rl D-REC)) . (*RECUR R2)))

Thereisalot of information in the rule above. Read the form on the right hand side as a*REC form with
some new label R2 different from R1, whose body is the *not of the body of R1 opened up once, and with
the (*RECUR R2) marker replacing the original descriptor. For example, consider the following as our
left hand side.

(*NOT (*REC INT-LISTP (*OR $NIL (*CONS $I NTEGER (*RECUR | NT-LI STP)))))

First we open up INT-LISTP:

(*NOT (*OR $NIL
(*CONS $I NTEGER
(*REC | NT- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR I NT-LISTP)))))

Then we partially canonicalize the *NOT, but without opening up the *rec again:

(*OR $CHARACTER $| NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL $STRI NG
$T
(*CONS * UNI VERSAL
(*NOT (*REC | NT-LI STP
(*OR $NIL (*CONS $I NTEGER (*RECUR I NT-LI STP))))))
(*CONS (*OR $CHARACTER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL) )
*UNI VERSAL) )

But since this form represents the same set of objects as the original form, and since that original form is
embedded within it, we have discovered a new recursive form. We give it aname (NOT-INT-LISTP for
the sake of exposition), replace the embedded occurrence with the *RECUR point, and encapsulate in a
*REC:

(*REC NOT- | NT- LI STP
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T
(*CONS *UNI VERSAL (*RECUR NOT- | NT- LI STP)
(*CONS (*OR $CHARACTER $NI L $NON- | NTEGER- RATI ONAL
$NON-T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL *UNI VERSAL))
*UNI VERSAL) ) )

Canoni cal i zati on Rul e 33:
(*NOT (*AND D1 D2))

=>

(*OR (*NOT D1) (*NOT D2))

Canoni cal i zati on Rul e 34:
(*FIX (*DLIST D1 .. DV

(... (*FIX (*DLISTDL .. DM DN ...))
=>

(*FIX (*DLIST DL ..
(... (*FIX-RECUR (*DLIST DL .. DM) ...))

*FIX is a descriptor form used in SOLVE-EQUATIONS (See Section 4.4.7) to find closed forms
constructed through function recursion. Though the canonicalization of *FIX forms is not quite of the
same flavor as other canonicalizations, it is implemented in CANONICALIZE-DESCRIPTOR anyway.
*FIX forms are the mechanism used by the algorithm to discover closed recursive descriptors for forms
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which are constructed on recursive function calls. One may view *FIX as having the same meaning as
*REC, with the *DLIST form representing the label. But the *FIX form signals that a certain variety of
heuristics should be employed. This canonicalization rule is very similar to Rule 31, and amost the
inverse of OPEN-REC-DESCRIPTOR, the difference being that DN is only an approximation of

(... (*FIX (*DLISTDL .. DM DN) ...)

When the inference tool reaches stability and we employ this rule, it is a perfect approximation. That is
the essence of the iterative stabilization algorithm.

Canonicalization Rules 35 - 37 below for *REC descriptors are actualy implemented in
CANONICALIZE-REC-DESCRIPTOR, which is not in the cal tree of CANONICALIZE-
DESCRIPTOR. They are separated because they are useful only under certain known circumstances, and
there is no need to burden the general canonicalizer with the useless overhead.

Canoni cal i zati on Rule 35:
(*RECR (*OR .. (*RECURR) ..)) => (*REC R (*OR .. *EMPTY ..))

By Rule 35, we mean that if the *RECUR form is a top-level disunct of the body, we eliminate it, since it
SErves no purpose.

Canoni cal i zati on Rul e 36:
Where D does not contain (*RECUR R),
(*RECR D =>D

Canoni cal i zati on Rule 37:
(*REC R (*CONS D (*RECUR R))) => *EMPTY

Rule 37 represents any case where the body of a*REC isjust a nest of * CONS descriptors with no *OR
providing aterminating digunct.

4.4.3 PREPASS

PREPASS takes a Lisp expression FORM and the system database and returns an IF-normalized form,
which will always evaluate to the same value as FORM in any environment. |F-normalization consists
mainly of transforming the test form in the IF so that it always evaluates to either T or NIL. Since IF
splitson NIL vs. non-NIL valuesin the test, a non-NIL value serves the same purpose asaT in an IF test.
If atest form can evaluate to a value other than T or NIL, PREPASS simply wraps (NULL (NULL ..))
around the test. Otherwise, it leaves the test aone, and prepasses the THEN and EL SE arms recursively.
As an optimization, PREPASS also checks whether an IF test will always return NIL. If so, it smplifies
the IF to its prepassed ELSE arm. Likewise for the THEN arm if it trivially sees atest returning non-NIL.
The inference algorithm performs IF-normalization prior to processing function guards and bodies.
Though IF-normalization does not affect the value produced by evaluation of the IF, it can make the
difference in deciding whether aform can be treated as a type predicate.

The inference algorithm gives special consideration to forms which it considers to be type predicates, and
in particular to forms which conform to the requirements of a recognizer function body. The algorithm
exploits the properties of type predicates to make simplifying assumptions which alow different
techniques to be used in formulating signatures. These techniques can produce very specific signatures,
so it is worthwhile to apply them whenever possible. One of the requirements in recognizer bodies is that
| F tests always yield Boolean results.

A recognizer function in essence is a unary function which determines whether its argument conformsto a
descriptor in the type language. For any variable-free type descriptor, one could define a perfect
recognizer function. One of the criteriafor arecognizer function is that it always returns either T or NIL.
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One reason recognizers are important to the type system is that if acall to arecognizer is used asatest in
an |F expression, optima modifications to the type context of the IF may be made to support the analysis
of the THEN and the ELSE arms. Moreover, this significance scales up, since one criterion for the body
of arecognizer isthat its |F tests are recognizer calls or equivalent predicates. |F-normalization, then, can
help transform a function body into aform suitable for treatment as a recognizer.

An example of atransformation performed by PREPASS isthe form

(IF (CDR X) (FOO X) (BAR X))

The tool does not treat (CDR X) as a type predicate, since it can return a non-Boolean value. Therefore,
the algorithm will not optimally refine the type assumptions about X when considering (FOO X) and
(BAR X). However, for heuristic reasons, it will treat

(IF (NULL (NULL (CDR X))) (FOO X) (BAR X))

more generously. So PREPASS makes this transformation.

4.44 TYPE-PREDICATE-P

The function TYPE-PREDICATE-P is the principa function which determines whether a function
qualifies as arecognizer and which computes the descriptor for the objects it recognizes. It isalso used to
derive a guard descriptor from a function guard and to examine |F tests for type information which can be
merged into the type contexts for the THEN and EL SE arms.

Given a Lisp expression FORM, a list of names of formal parameters the function ARGLIST, a list of
known RECOGNIZERS from the system database, and a TY PE-ALIST which associates variable names
to descriptors characterizing their types in the environment of FORM, this complex function returns either
NIL or afive-tuple:

(ALl ST NEGATABLE UNSATI SFI ED- GUARDS BOOLEANP COVPLETE)

where

* ALIST is of the same form as the argument TYPE-ALIST and conveys the type information
provided when FORM evaluatesto anon-NIL value. For example, given the form

(I F (INTEGERP X) (CHARACTERP Y) NIL)
TYPE-PREDICATE-Pyieldsthe ALIST
((X . $INTEGER) (Y . $CHARACTER))

NEGATABLE is either T or NIL and indicates whether the type information in ALIST can
be negated if the FORM evaluates to NIL. In the case where FORM is an IF test we might
wish to negate its information in the else arm. This is not always possible, with one trivia
example being (EQUAL X "abc"). The ALIST produced for this formis ((X . $STRING)).
But it is not true that the negation of FORM indicates that X is not a string. 1t could be a
non-string or any string except "abc". Therefore, we say that the ALIST for this form is not
negatable. For another example, (IF (INTEGERP X) (NULL Y) NIL) produces the ALIST
((X . $INTEGER) (Y . $NIL)). Thisis not negatable, since the type language does not have
anotion of negating an ALIST.1/

1In practice, what we do not support is negation of an ALIST of length other than one. This amounts to a shortcoming in the
implementation, since it means, for example, that we cannot provide additional type information in the ELSE arm of an IF where a
form like (IF (INTEGERP X) (NULL Y) NIL) was the test. A nice upgrade would be to express the result as a disjunctive normal
form, so we could accommodate negation.
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* UNSATISFIED-GUARDS is either T or NIL and indicates whether some guard violation in
FORM was detected. This is not a complete test; it is only afast one. A complete test is
performed elsawhere. However, if NEGATABLE is T and UNSATISFIED-GUARDS is
NIL, we know there are no guard violations in the form since terms which satisfy the
negatable constraints are syntactically restricted to ensure that the guards of all
subexpressions can be checked definitively. Specifically, this involves testing the guards on
calls to CAR and CDR, where the parameter is some component of one of the variablesin
TYPE-ALIST.

BOOLEANPisT if FORM can evaluate only to T or NIL, NIL otherwise.

COMPLETE is T if when FORM evaluates to a non-NIL value, the ALIST completely
captures what could be deduced from the variables in ALIST. For example, the form
(INTEGERP X) is complete because the ALIST will be ((X . $INTEGER)). But
(EQUAL X 3) isnot complete. Though it produces the same ALIST as (INTEGERP X), the
knowledge captured by the ALIST is not enough to guarantee the FORM would evaluate to

T (i.e, X could have the value 4). On the other hand, (IF (INTEGERP X) (NULL Y) NIL)

is complete, even though it is not negatable, since there is no way any values which conform

to theresulting ALIST can cause the form to evaluate to NIL.

TYPE-PREDICATE-P returns NIL if there is no type information about the identifiers which can be
garnered from the evaluation of the form. Examples of forms which are not type predicates are

(BINARY -+ X Y) and (IF (INTEGERP X) (BINARY -+ X X) X)

Let us now examine how TYPE-PREDICATE-P makes its judgements, using examples to illustrate.
These examples will give the flavor of the heuristics used. Thisisjust a sampling, which places emphasis
on where the algorithm yields information. Often, it isjust asinteresting why it fails to yield information,
but we will not dwell on that. The notation

<forne <arglist>
-> NIL or <ALIST NEGATABLE UNSATI SFI ED- GUARDS BOOLEANP COWVPLETE>

will indicate that

( TYPE- PREDI CATE- P <forne <arglist> RECOGNI ZERS TYPE- ALI ST)

produces NIL or a 5-tuple, and follow with an explanation if warranted. The TY PE-ALIST argument is
significant only in determining the presence of guard violations. <arglist>s will be given by example or
omission, to avoid copious notation. Assume any identifiers X, Y, ... appearing in the form are in the
arglist. In expressing these schema, we will assume no guard violations are detected. These rules are
presented as canonical examples, so functions like INTEGERP, CONSP, and TRUE-LISTP are used to
exemplify treatment of recognizer functions, and FOO represents a non-recogni zer.

T (X ->(((X. *UNI'VERSAL)) T NIL T T))

NIL (X) -> (((X. *EMPTY)) TNILTT)

T(XY) -> (((X. *UNVERSAL) (Y . *UNIVERSAL)) NIL NIL T T)
NIL (X Y) -> (((X. *EMPTY) (Y . *EMPTY)) NIL NIL T T)

T recognizes all objects, NIL rejects al objects. If the arglist is of length greater than one, the result is not
negatable.

<aton> (..) -> NL

Atoms other than T or NIL are not type predicates.
(EQUAL (CDR X) T) (..) -> (((X . (*CONS *UNI VERSAL $T))) T NIL T T)

(EQUAL ' (#\A) (CAR X)) (..) ->
(((X . (*CONS (*CONS $CHARACTER $NIL) *UNIVERSAL))) NIL NIL T NI'L)
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When the form is an EQUAL, one argument is some nest of destructors (CAR or CDR) applied to a
parameter from ARGLIST, and the other argument is a literal (a quoted form or an constant of one of the
primitive types), we build the * CONS structure appropriate to the destructors and embed the descriptor for
the literal. Under the assumption that there is no guard violation, i.e., when the type-alist guarantees the
*CONS structure is adequate, the resulting descriptor is negatable if the literal is T or NIL, otherwise not.

Note the following curiosity. Whereas the (EQUAL (CDR X) T) example above yielded
(X . (*CONS*UNIVERSAL $T)), the same predicate, using NIL instead of T, yields

(EQUAL (CDR X) NIL)) (..) ->
(((X *OR $NI'L (*CONS *UNIVERSAL $NIL))) T NIL T T)

Thisis, of course, because (CDR X) isNIL when X isNIL or X isa CONSwhose CDR isNIL.

(INTEGERP X) (..) -> (((X . SINTEGER)) TNIL TT)
(INTEGERP (CDR X)) -> (((X . (*CONS *UNI VERSAL $INTEGER))) T NIL T T)

If the form is a call to a recognizer function on some component of a formal, we build the *CONS
structure appropriate to the destructors and embed the descriptor associated with the recognizer function.
The descriptor is negatable when there is no guard violation found because recognizer cals produce
negatable results. Recognizers always return Boolean values and are complete.

(NOT (I NTEGERP X)) ->
(((X . (*OR $CHARACTER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL * UNI VERSAL)))
TNLTT)

(NULL (NULL (CDR X))) ->
(((X . (*OR $CHARACTER $| NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T
(* CONS * UNI VERSAL
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(* CONS *UNI VERSAL * UNI VERSAL))))))
TNLTT

We give special treatment to the NULL function and its equivalents (NOT, for instance). In these cases,
like the one above, we do not require the argument to be a series of destructors applied to aformal. It is
sufficient for the argument to be a negatable type predicate. If it is, we can just negate the descriptor for
the nested form. If it is not (in a case like (NULL (CDR X)), we can till try the general test for
recognizers, given below. This, in fact, isthe base case for applications of a series of NULL surrogates to
a destructed formal. This special treatment may seem like an arcane specia case, but remember that
PREPASS doubly negates expressions appearing in |F tests if they are not recognizer calls.

It may seem strange that the descriptors SCHARACTER $INTEGER, $NON-INTEGER-RATIONAL
$NON-T-NIL-SYMBOL, $STRING, and $T are included as disjuncts in the result above, since (CDR X)
is not well-defined for objects of these types. However, the information in the result ALIST isintended to
be merged via unification with that in the TYPE-ALIST argument, and thus if the TYPE-ALIST is such
that X is NIL or a CONS, the merge will rule out the unruly cases. If not, the unsatisfied-guards flag in
theresult will be T.

When we encounter an |F form, we recur on its test and on its THEN and ELSE arms. If the test was a
type predicate, we merge its results into the type-alist via unification for the recursive call on the THEN
arm. If the test was also negatable, we negate it and merge for the ELSE arm. Then we try a number of
special cases, asfollows:
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(IF (IF (CONSP X) (CONSP Y) NIL) T (INTEGERP X)) ->
(((X . (*OR $I NTEGER (*CONS *UNI VERSAL *UNIVERSAL)))) NIL NIL T NIL)

If evaluating this IF form returns T by way of the THEN arm, we know both X and Y are CONSes, but if
wereturn T by way of the ELSE arm, we know only that X isan integer. So if thisform returns non-NIL,
we know something about X, but not necessarily anything about Y. Moreover, since this form may return
NIL when X isa CONS but Y is not, we cannot negate what little we know. And since we capture only
information about X, but a non-NIL result may require something of Y, we cannot say the result is
complete, either.

(IF (CONSP X) (TRUE-LISTP X) T) ->
(((X . (*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(* CONS * UNI VERSAL
(*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL
(*RECUR TRUE- LI STP)))))))
TNLTT

Evaluation of this form will succeed whenever X is a non-CONS or it is both a CONS and a TRUE-
LISTP, and fail otherwise, which makes it negatable and complete. The result descriptor for X isthe* OR
of the ones yielded by the two recognizer calls.

(IF (I'F (CONSP X) (CONSP Y) NIL) (TRUE-LISTP X) T) -> NL

This could succeed solely because Y is anon-CONS, but it could also succeed for reasons not relating to
Y. We deduce nothing.

(IF (CONSP X) (INTEGERP Y) NIL) ->
(((X . (*CONS *UNI VERSAL *UNI VERSAL)) (Y . $INTEGER)) NIL NIL T T)

Thiswill succeed only when X isaCONSand Y isan integer. However, it can fail if either is not true, so
we cannot negate the result. The result is complete, however, because the alist is sufficient to guarantee a
positive result.

(IF (CONSP X) (FOO X) NIL) ->
(((X . (*CONS *UNI VERSAL *UNI VERSAL))) NIL NIL NIL NIL)

Here, suppose that what FOO returns yields no particular type information about X. This can only succeed
if X isaCONS, but it can fail for any reason. So, the result is neither negatable nor compl ete.

(IF (CONSP X) NIL (IF (INTEGERP X) (INTEGERP Y) NIL)) ->
(((X. $INTEGER) (Y . $INTEGER)) NIL NIL T T)

This form returns a non-NIL value only if X and Y are integers. Moreover, this is complete. But we
know nothing if we fail because we could fail either when X isanon-integer or Y is anon-integer, and we
do not have a means for negating an alist.

(I'F (NOT (CONSP X)) NIL (IF (INTEGERP (CAR X)) (INTEGERP Y) NIL)) ->
(((X . (*CONS $I NTEGER *UNI VERSAL)) (Y . $INTEGER)) NIL NIL T T)

(IF (CONSP X) NIL (FOO X)) ->
(((X . (*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL

$NON- T- NI L- SYMBOL $STRI NG $T)))
NIL NIL NIL NIL)

If this form returns non-NIL, we know the negatable | F test failed, but we know nothing more.

(I F (CONSP X)
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(I'F (INTEGERP (CAR X)) (INTEGERP Y) NI L)
(I F (CHARACTERP X) (CHARACTERP Z) NIL)) ->
(((X . (*OR $CHARACTER (*CONS $I NTEGER *UNI VERSAL)))) NIL NIL T NIL)

If this form returns non-NIL, we know that X is either a character or a CONS whose CAR is an integer,
but we know nothing about Y or Z. We could succeed when Y is an integer or when Z is a character, but
we cannot relate these facts in atype alist.

(IF (EQUAL (CAR X) 3) (CONSP (CDR X)) (INTEGERP (CAR (CDR X)))) ->
(((X . (*CONS $| NTEGER (*CONS *UN VERSAL *UNI VERSAL)))) NIL NIL T NIL)

If our IF test form is not negatable, then we do not try to merge any information from the ELSE arm. We
cannot negate our descriptor.

(IF (FOO X) (CONSP X) NIL) ->
(((X . (*CONS *UNI VERSAL *UNIVERSAL))) NIL NIL T NIL)

FOO gives us no type information, but since the ELSE is NIL, the only way we can succeed isif X isa
CONS. Wedo not try to negate, since FOO alone could cause the result to be NIL.

4.45 RECOGNIZERP and DESCRIPTOR-FROM-FNDEF

RECOGNIZERP is the predicate which says whether a function may be classified as a recognizer. It is
essentially a combination of a call to TYPE-PREDICATE-P on the body of a function and a set of
additional checks. A recognizer must have an argument list of length one, and it must either have no
guard or aguard of T. Its body must be a type predicate, i.e., TYPE-PREDICATE-P must return an alist.
Furthermore, the alist must be of length one and be negatable. There may be no guard violations. Finaly,
the result must be Boolean (T or NIL). If afunction passes these constraints, we know that the check for
guard violations in TY PE-PREDICATE-P is strong enough to guarantee the guards of all called functions
are verified. If al thisis true, RECOGNIZERP returns the descriptor for its parameter from the ALIST
from TY PE-PREDICATE-P.

RECOGNIZERP sets up its call to TYPE-PREDICATE-P in away which can produce aresult which isa
little irregular in the type language. TYPE-PREDICATE-P looks up function names in the
RECOGNIZERS table to determine when a called function isarecognizer. If itis, TY PE-PREDICATE-P
extracts from the table the descriptor associated with the function. RECOGNIZERP alows TY PE-
PREDICATE-P to assume the function whose body it is analyzing is a recognizer, since, if every other
attribute of the function body is consistent with the notion of a recognizer, the recursive call will be, too.
But, since we are only in the process of computing the descriptor for the function, what we can store as
the descriptor characterizing the recognizer is limited. In fact, we store the partial descriptor
(*RECUR <fnname>), which is the recursion point in a* REC descriptor labelled <fnname>. Thus, when
we encounter a recursive function call in the body, we embed this *RECUR form at the appropriate point
in the descriptor being composed by TY PE-PREDICATE-P. Upon exit from TY PE-PREDICATE-P, we
might have a descriptor with a*RECUR point, but no encapsulating * REC. For example, when analyzing
the function TRUE-LISTP:

( DEFUN TRUE- LI STP (X)
(IF (NULL X) (NULL X) (IF (CONSP X) (TRUE-LISTP (CDR X)) NIL)))

we return from TY PE-PREDICATE-P with the descriptor

(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP))).

We close this form by simply wrapping * REC around it with the TRUE-LISTP label:
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(*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))).

But there may be another quirk. Consider the function:

( DEFUN FOO ( X)
(IF (NULL X)
(NULL X)
(I F (CONSP X)
(I F (CONSP (CDR X)) (FOO (CDR X)) NIL)
NIL)))

The (CONSP (CDR X)) test governing the recursive call yields type information about the recursive
parameter which amounts to a constraint on what the recursive call will recognize. Normally, TY PE-
PREDICATE-P would use descriptor unification to merge the information from the I F test

((X . (*CONS *UNI VERSAL (*CONS *UNI VERSAL *UNI VERSAL))))

with the descriptor from the THEN arm:

((X . (*CONS *UNI VERSAL (*RECUR FQO))))

But (*RECUR FOO) is not meaningful in the absense of an enclosing *REC form, and at the point where
we would do this unification, we are not yet ready to encapsulate with a* REC.

The answer to this quandary is to defer the merge until we do have a *REC form. We allow TYPE-
PREDICATE-P to construct a special form which indicates a deferred unification.1® We call this form
*AND. TYPE-PREDICATE-P will produce the following alist entry for the body of foo.

(X . (*OR $NIL
(* CONS * UNI VERSAL
(*AND (*CONS *UNI VERSAL *UNI VERSAL) (*RECUR FOO)))))

RECOGNIZERP will return this* OR descriptor.

It is up to the top level function for discovering recognizers, DESCRIPTOR-FROM-FNDEF, to complete
the closure of thisform. First, if it receives aform with a* RECUR point for the function being analyzed,
it does the *REC encapsulation as previously mentioned. Then it proceeds with what we call * AND
validation, i.e., determining if the constraint (in this case (*CONS *UNIVERSAL *UNIVERSAL)) is
consistent with the opened up recursive descriptor, and formulating a refined descriptor to reflect the
restrictions which the constraint and the * REC place on each other.

The essence of *AND validation is to unify the constraint with the unwinding of the *RECUR form, and
to let this result take the place of the *AND form in the *REC descriptor. But this is a deceptive
simplification of the task, for a humber of reasons. For one thing, the constraint may close off the
recursion, so we have to be prepared to canonicalize our "*REC" form to a non-recursive one. (In fact,
thisiswhat will happen with our FOO example above.) But more problematically, the unified result may
itself have an * AND form in it from expanding the * RECUR to the containing * REC, which of course has
an *AND nested in it. Furthermore, the unified form or its constraint may be different than before, the
result of the constraint actually restricting the possible values from the unfolded *RECUR. Thus, we have
a stabilization problem.

BBactually, the form is constructed in UNIFY -DESCRIPTORS when we attempt to unify a *RECUR form with something else, a
scenario which would never occur if the * RECUR were nested in a*REC.
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The process is essentially as follows. |f the unification produces a descriptor which is just the recursive
expansion of the one we started with, we contract the expansion, stripping the *AND constraint, and we
are done. If the unification produces something different, then if the result contains an *AND, we
* AND-validate it again, in hopes of finding a new * REC descriptor to embed within the expansion of the
old one. If thereisno *AND in the unified form, we are done, and we just embed the result in the form
where the* AND was originaly.

Here are some examples of callsto VALIDATE-AND. The first is from our FOO example above. Here
the constraint can only be fulfilled if the recursion does not terminate. Therefore, the *AND form
collapses to *EMPTY, and so does its containing * CONS. Since $NIL includes no (*RECUR FOO), we
drop the *REC, leaving only $NIL.

( VALI DATE- AND
" (*REC FOO (*OR $NI L
(* CONS * UNI VERSAL
(*AND (*CONS *UNI VERSAL *UNI VERSAL)
(*RECUR FOO)))))
' FOO)

$NI L

(VALIDATE-AND’s second argument is just a coding artifact of no interest in this discussion.) In the
following, the constraint does not allow NIL, so we force the $NIL outside the recursive form.

( VALI DATE- AND ' (*REC FOO
(*OR $I NTEGER $NI L
(*CONS $I NTEGER
(*AND (*OR $I NTEGER (*CONS *UNI VERSAL * UNI VERSAL))
(*RECUR FOO))))
' FOO)

(:O? $NIL (*REC ! RECL (*OR $| NTEGER (*CONS $I NTEGER (*RECUR ! RECL)))))

In the next example, the *CONS constraint is disallowed, but the $INTEGER is valid, albeit non-
recursive.

( VALI DATE- AND ' (*REC FOO
(*OR $I NTEGER $NI L
(*CONS $I NTEGER
(*OR (*AND $I NTEGER (*RECUR FOO))
(*AND (*CONS *UNI VERSAL (*CONS *UNI VERSAL * UNI VERSAL))
(*RECUR FOO))))))
' FOO)

(*OR $I NTEGER $NI L (*CONS $I NTEGER $| NTEGER))

The processing of * AND forms makes possible the accurate signification of many ordinary functions. For
instance, the RECOGNIZERP function applied to:

( DEFUN PROPER- CONSP ( X)
(I F (CONSP X)
(I F (CONSP (CDR X)) (PROPER-CONSP (CDR X)) (EQUAL (CDR X) NIL))
NIL))

yields the descriptor

(* CONS * UNI VERSAL
(*OR $NIL (*AND (*CONS *UNI VERSAL *UNI VERSAL)
(*RECUR PROPER- CONSP) )) )
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* AND validation of this descriptor produces:

(*REC I RECL (*CONS *UNI VERSAL (*OR $NIL (*RECUR ! RECL))))

which fully characterizes the objects recognized by PROPER-CONSP.

4.46 DERIVE-EQUATIONS

Perhaps a better name for this function would have been SCHEMATIZE-BODY. DERIVE-
EQUATIONS transforms the body of the function into a table, with one entry in the table for each
subexpression in the body. Each entry is of the form

(<fornmp <marker> <type alist> <nmethod>)

where <form> is the Lisp form being analyzed, the <marker> is a gensym used for table lookup, the
<type aist> characterizes what we know about the types of the variables in the context of the
subexpression, and the method is a schema which provides direction in computing the type of the
subexpression.

We perform some type inference computations while constructing this table. Whenever an IF is
encountered, we extract what type information we can from the predicate, using TY PE-PREDICATE-P,
and merge it into distinct type aists for the THEN and EL SE arms, utilizing UNIFY-DESCRIPTORS. Of
course, we can merge into the ELSE arm only if TYPE-PREDICATE-Ptellsusitstype aist is negatable.

The methods are schematic aids to the computation of the result type for each expression. They vary for
different kinds of expressions. For identifiers, the method is ssmply the type descriptor for the variable in
the type-alist. For quoted forms, the method is the descriptor directly derived from the form, using the
function DESCRIPTOR-FROM-QUOTED-FORM. For IF forms, the method is alist of length two which
contains the index markers pointing to the table entries for the forms in the THEN arm and the ELSE arm
of the IF. For function calls, the method is a list of length two whose first element is a list of index
markers pointing to the entries for its actual argument forms, and whose second element is a new type
variable which will represent the result type for the function call when we "solve the equation”
represented by thistable entry.

Consider the following function:

( NEW TOP- LEVEL- FORM * ( DEFUN LAST (X)
(IF (ATOM X) X (LAST (CDR X)))))

DERIVE-EQUATIONS produces the following table representing the body of this function.
f oo

((X *MARKER-2 ((X . &5)) &5)
((ATOM X) *MARKER-3 ((X . &5)) ((*MARKER-2) &6))
(X * MARKER- 4
((X *OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T))
(* OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T))
(X *MARKER- 5
((X *CONS *UNI VERSAL *UNI VERSAL))
(* CONS *UNI VERSAL * UNI VERSAL) )
((CDR X) *MARKER- 6
((X *CONS *UNI VERSAL *UNI VERSAL))
((*MARKER-5) &7))
((LAST (CDR X)) *MARKER- 7
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((X *CONS *UNI VERSAL *UNI VERSAL))
((* MARKER- 6) &8))
((1F (ATOM X) X (LAST (CDR X))) *MARKER-8
((X . &5))
(*MARKER- 4 * MARKER- 7)))

Each subexpression has a unique marker. Notice that the type-alist for the second occurrence of X (the
one marked with * MARKER-4) maps X to the descriptor

(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T)

rather than the variable in the outermost type-alist. This is because this occurrence of X is governed by
the (ATOM X) test with a positive result. Thus, X is an atom, and we can rule out any possibility of it
being a*CONS. The opposite is true in the third occurrence (*MARKER-5). Since we are in the ELSE
am, we know the atom test failed, so the type-aist entry for X has been refined to be
(*CONS*UNIVERSAL *UNIVERSAL).

Notice also that the method for the first X, &4, is just the type-alist entry for X. In the method for
(ATOM X), i.e, (*MARKER-2) &5), *MARKER-2 points to the argument, which is the X from the first
table entry. &5 is a new variable which will represent the type of (ATOM X). In the method for the IF
form, (*MARKER-4 *MARKER-7), *MARKER-4 points to the table entry for the THEN arm, X, and
*MARKER-7 to the entry for the ELSE arm, (LAST (CDR X)).

When we discuss SOLVE-EQUATIONS below, we shall see how thistable is employed as a basis for the
type computation.

4.4.7 SOLVE-EQUATIONS

First, let us introduce the parameters supplied to SOLVE-EQUATIONS.

EQUATI ONS -- The tabl e generated by DERI VE- EQUATI ONS

FNNAME -- The nanme of the function being anal yzed

GUARD- DESCRI PTORS -- The guard descriptors for the function being
anal yzed, conputed by | NFER- SI GNATURE from the guard expression
usi ng TYPE- PREDI CATE- P

WORKI NG SEGMENTS -- A list of segnents representing the current
approxi mation of the signature segnents for this function,
initially NIL

FUNCTI ON- SI GNATURES -- The nmi n conponent of the system database

UNARY- DESTRUCTOR- FN- MAP - - A tabl e whi ch deconposes various unary
destructor functions (e.g., CADDR) into CARs and CDRs

ARCLI ST -- The fornal argunent list for the current function

CONSTANT- DESCRI PTORS -- A conponent of the database which hol ds
the descriptors of defined constants (But in the current
i npl ementation of the system constants are not accept ed.
Rat her, they should be subnitted as functions with no argunents.)

RECURSI ON- COUNT -- The maxi mum nunber of iterations allowed before
the algorithmgives up in its quest for stabilization

NO RECURSI VE- CALLS -- A flag which takes the value NIL when the
function is recursive, T if non-recursive
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The highest level view of SOLVE-EQUATIONS is as follows. We traverse the table of EQUATIONS,
computing the type(s) of each subexpression. For each subexpression, we produce a list of "segments’,
where a segment maps the types of the variables in the environment to a result type. The form of a
segment is:

(<descl> .. <descn>) -> <desc>

where <desc1> .. <descn> represent the types of the variables at this point (as opposed to the types of
actual parameters in the subexpression function call), and <desc> represents a possible type of the
subexpression, assuming the variable types. There can be more than one segment for a given
subexpression because different combinations of variable types may produce different result types.
Ultimately, the set of segments for the outermost subexpression, i.e., the function body, will become the
segments of the signature for the function.

As SOLVE-EQUATIONS passes through the equations, it builds a table of results, one entry for each
equation. An entry in this table is the marker for the equation CONS-ed onto the segments computed for
the equation. The markers serve as keys for looking up previously computed segments. Let us call this
table PARTIAL-SOLUTION.

Recall the form of an equation, given in the previous section. How we solve an equation depends on the
method stored as a component of the equation. Some cases are easy. |If the expression is a variable, the
method is simply the descriptor for the variable in the type-alist saved in the equation. The segment
produced simply maps the variable types from the type alist to the descriptor for this variable, which was
conveniently stored as the method. There is one exception to thisrule. |f the descriptor for the variable is
an *OR descriptor, we produce one segment for each disjunct of the *OR. This gives us much greater
specificity in our results. Thus, if we encounter areferenceto Y in a context where our type-alist is

((X . (*OR $INTEGER $NIL)) (Y . &l))

we create the segment:

((*OR $INTEGER $NIL) &l) -> &l

But if the referenceisto X, we get the two segments:

($I NTEGER &1) -> $I NTEGER
(SNIL &1) -> $NIL

If the expression is a literal (a quoted form or a base value from a primitive type), the method is the
descriptor describing the literal. SOLVE-EQUATIONS produces a segment mapping the argment
descriptors to the literal descriptor.

If the expression is an |F expression, the method is a list of two markers. The first marker points to the
segments for the THEN arm in PARTIAL-SOLUTION, and the second marker points to the segments for
the ELSE arm. These, of course, have already been computed because the table is in Lisp evaluation
order (asif IF were strict). The segments for the IF are smply the appended segments for the THEN and
ELSE.

The most interesting case is the function call. We have already computed the segments for each of its
arguments. We look these segments up by using the markers in the method for this function call. Recall,
afunction call method is alist of length two whose CAR isalist of the same arity as the parameter list for
the function being called, where the elements of the list are markers pointing to the segments for each
actual argument in the PARTIAL-SOLUTION. We need to formulate all the possible distinct type-alists
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provided by these segments. Thisis essentially a cross-product operation, which is necessary because the
contexts in the various segments do not necessarily match. For example, where there are two variables, X
and Y, in the environment, the segments for the first argument might be:

(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> $| NTEGER)
(($NIL
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> $NIL)

(Read this to say that if X isanon-empty integer list and Y is an integer list, the first argument may be an
integer. If X isNIL and Y isaninteger list, the first argument may be NIL.) For the second argument, we
might have:

(((*REC I NTEGER- LI STP (*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
-> $| NTEGER)
(((*REC I NTEGER- LI STP (*OR $NIL (*CONS $I NTEGER (* RECUR | NTEGER- LI STP))))
$NI L)
-> $NIL)

We need to factor these segments into one another to get the distinct type environments which will
produce the various argument patterns to our function call. As usual, UNIFY-DESCRIPTORS is the
combinator which is used to merge and factor the environments. Each of the contexts from the segments
for the first actual argument are unified pairwise with each of the contexts from the segments for the
second argument. The result of each such unification is paired with the list formed by the respective result
descriptors of the original segments, to form what we will call an arg-solution. Each arg-solution maps a
context of type descriptors for the variables in the environment to the types computed for the actual
parameters of the function call. In our example, the environments, and the arg-solutions they produce,
are:

(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
-> ($I NTEGER $| NTEGER))

(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
$NI L)
-> ($I NTEGER $NI L))

(($NIL
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
-> ($NIL $I NTEGER))

((SNIL $NIL) -> (SNIL $NIL))

Collectively, these arg-solutions represent al the type scenarios to be treated on the function call.
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Now that we know which argument patterns we will submit to our function, we are ready to see what
result each may yield. We take each arg-solution in sequence, performing the process described below.

The first task is to see if we can detect the possibility of a guard violation on the called function for our
argument pattern. Another way to phrase the question is to see whether the guard would further constrain
what we know about our parameters. If it would, then we will judge we have a guard violation.
Following this line of reasoning, we note that descriptor unification is a constraining operation. We apply
UNIFY-DESCRIPTORS to the function guard, fetched from the database, and our argument pattern. If
the resulting descriptor is identical to our original argument pattern, then we have satisfied the guard.
Since we dwell in aworld including type variables, we do not require the result be identical, only that it be
isomorphic, i.e., identical modulo a 1-1 and onto substitution of variables for variables. If UNIFY-
DESCRIPTORS returns an *OR of possible unified forms, each must be isomorphic. If we do not have
this isomorphism, we declare aguard violation and halt the computation.1®

Recall once again that the fact we declare a guard violation does not necessarily mean the violation can
occur. It merely means that the inference system cannot guarantee that it will not. Some other kind of
proof may be in order to verify the guard. Conversely, the fact that we do not signal a guard violation
does not mean that one will not occur. Our claim that there is no guard violation is only solid when the
guard descriptor we have stored for the called function is complete. Even this claim is qualified. Since
this algorithm is not formalized in any sense, we cannot make any formal argument to back up the claim.

With guard verification out of the way for our arg-solution, we can proceed to derive its possible result
types. The second element in the method for our equation was a type variable which represents the result
type of the function call. We construct a list of descriptors consisting of the argument descriptors from
our arg-solution with our result variable added to the end. Then we fetch the segments for the function
being called and massage each segment into a similar list, replacing all variablesin the segment with fresh
ones. We pair each of our arg-solution vectors with each of the segment vectors, applying UNIFY -
DESCRIPTORS. UNIFY-DESCRIPTORS returns *EMPTY if an argument pattern will not unify with
the descriptors representing the formal arguments for any segment. This means simply that the segment is
irrelevant to our pattern, indicating that it corresponds to a control path through the called function which
will not be followed on arguments of the type we are supplying. If we get a non-*EMPTY result,
however, our result variable will have been bound to a type descriptor which constitutes a projection of
our arguments through the segment to its result. For example, consider calling the function CAR with an
argument of type

(*CONS (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) * UNI VERSAL)

Let us suppose our result variableis &2. The signature segments for CAR are:

($NI'L) -> $SNIL
(*CONS &1 *UN VERSAL) -> &1

When we unify our parameter-result pattern:

((*CONS (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) *UNI VERSAL) &2)

with (SNIL $NIL), we get *EMPTY/, because $NIL will not unify with our *CONS. But in the second
segment, unifying against

19This isomorphism test is somewhat awkward. A more natural formulation would result from extending the containment
agorithm used in the signature checker to support the full language of type descriptors used in the inference algorithm.
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((*CONS &1 *UNI VERSAL) &1)

we get the result

((*CONS (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) * UNI VERSAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )

with (*OR $INTEGER $NON-INTEGER-RATIONAL) having been substituted for our result variable
&2. Thus, we know that our cal to CAR can have a result of type
(*OR $INTEGER $NON-INTEGER-RATIONAL). We construct a segment which maps the types of the
variables in our current environment, i.e., the types from the first part of our arg-solution, to our computed
result type. We get one such segment for each segment we match from the called function’s signature (in
this case, there was just one match). We perform this operation for each of the arg-solutions from our
origina list. Finally, we tag our collection of segments with the marker for this subexpression,
performing some canonicalization to reduce the number of segments, and add the result to PARTIAL-
SOLUTION, for later reference.

Of course, things are not as simple as in the case just described. There is the question of dealing with
recursive function calls, which we will address later. But there is another significant detail to add to the
account of the non-recursive call. It can beilluminated by a variation on our previous example. Suppose
in our environment, the variable X was alist of integers, i.e.,

(*REC | NTEGER- LI STP (*OR $NI L (*CONS $I NTEGER (* RECUR | NTEGER- LI STP))))

For simplicity, let us say X is the only variable in the environment, and we are examining the call
(CAR X). Our arg solution, from the X subexpression entry in PARTIAL-SOLUTION, isjust:

(((*REC | NTEGER- LI STP

(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*REC | NTEGER- LI STP

(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))

i.e, in an environment where X is an integer list, the expression X produces an integer list. The guard for
CAR,

(*OR $NI'L (*CONS *UN VERSAL *UNI VERSAL))

is satisfied. Now, we unify against the segments for CAR. Both match. If we simply followed the
procedure just explained, we would wind up with the segments:

((*REC | NTEGER- LI STP (*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> $NIL

and

((*REC | NTEGER- LI STP (*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> $| NTEGER

Clearly, thisis not optimal, as the real result will be NIL only if X isNIL, and will be an integer only if X
isanon-empty integer list. We would rather have the segments:

(SNIL) -> $NIL
((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
-> $I NTEGER
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We can think of this as being a kind of feedback from the argument expressions to the type binding
environment for our variables. This feedback does not always occur. The arguments to a function call
may or may not be variables (or variable components). They may just be some expression which is
computed from some other expression, etc., with the variables appearing deeply buried, if a al. The
problem is determining whether and how a match of different segments for the called function reflects a
type distinction in a local variable. We can examine the subexpression arguments and determine some
circumstances when such a split on segments clearly does reflect this distinction. Specifically, we give
specia treatment to arguments which are variables or components of variables, accessed by a nest of
applications of CAR and CDR to the variable.

A previously mentioned feature of UNIFY-DESCRIPTORS is the key. Recall, arestrictions list is one of
the forms returned by UNIFY-DESCRIPTORS. If a form within one of the input descriptors is marked
with an annotation which associates it with a type variable, and if that subform is restricted in the course
of unification, then an entry is made in the restrictions list which maps the variable to its restricted form.
For example, if we evaluate:

( UNI FY- DESCRI PTORS * (*CONS *UNI VERSAL (*SUBST &1 (*OR $I NTEGER $NIL)))
" (*CONS $I NTEGER $NI L)
L))

we get the result;

((*CONS $I NTEGER (*SUBST &1 $NIL)) NIL ((& . $NIL)))

where ((&1 . $NIL)) is our restriction list. This signifies that (*OR $INTEGER $NIL), which was
annotated as being associated with & 1, was restricted to $NIL.

We exploit this feature when matching segments by annotating, with a * SUBST employing a fresh type
variable, any descriptor denoting the type of a Lisp variable or a variable component. Furthermore, we
maintain a data structure which enables us to locate, within the descriptor for the variable, which
component of the variable was passed in the parameter list. Then, if the unification returns with a
restriction on that variable, when we form the segment mapping our variable types to our result type, we
replace the appropriate component of the variable type descriptor with the restriction imposed from the
unification. This enables us, in the example which yielded imprecise results with the naive
implementation, to formulate exactly the segments we desire.

As currently implemented, this technique only works with nests of applications of CAR and CDR.20 We
can think of these functions as being "destructors'. A nice upgrade to the implementation would be to
develop a generalized notion of destructor functions, so that new ones can be added to the class as they are
defined and, in turn, receive the benefit of this hook in the implementation.

To illustrate this discussion, let us consider a simple example:
( DEFUN FEEDBACK (X Y)

( DECLARE (XARGS : GUARD (I F (I NTEGER LI STP X) (INTEGER-LISTP Y) NIL)))
(BAR (CAR X) (CARY)))

Assume the signature for BAR has the segments:

2pctually it works with a collection of functions defined in an extended base of Common Lisp, such as CADR, CDDR, etc., and
FIRST, SECOND, etc. which are defined to be CAR and CDR nests. This collection is passed to SOLVE-EQUATIONS as the
formal parameter UNARY -DESTRUCTOR-FN-MAP.
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((*OR $I NTEGER * NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER * NON- | NTEGER- RATI ONAL) )
-> (*OR $I NTEGER *NON- | NTEGER- RATI ONAL)

($NIL (*OR $I NTEGER * NON- | NTEGER- RATI ONAL)) -> $NI L
((*OR $I NTEGER * NON- | NTEGER- RATI ONAL) $NIL) -> $NIL

(SNIL $NIL) -> $INTEGER

and the guard for BAR, which we will assume is complete, is:

((*OR $I NTEGER $NI L * NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NI L * NON- | NTEGER- RATI ONAL) )

We know the signature for CAR has segments:

($NIL) -> $NIL
(*CONS &1 *UNI VERSAL) -> &1

We enter the body of FEEDBACK with the type-alist

((X . (*REC | NTEGER- LI STP

(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(Y . (*REC | NTEGER- LI STP

(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))

The segment produced for the occurrence of X is

((*REC | NTEGER- LI STP (*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))

(*REC | NTEGER- LI STP (*OR $NI L (*CONS $I NTEGER (* RECUR | NTEGER- LI STP))))
->

(*REC I NTEGER- LI STP (*OR $NI L (*CONS $I NTEGER (*RRECUR | NTEGER- LI STP))))

l.e.,, when X and Y are both integer lists, X isan integer list.

Now we encounter (CAR X). Since X is the only argument, and its entry in PARTIAL-SOLUTION
contains only one segment, we produce only one arg-solution,

(((*REC I NTEGER-LI STP (*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER-LI STP))))
(*REC | NTEGER- LI STP (*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))
((*REC | NTEGER- LI STP
(*OR SNIL (*CONS $I NTEGER (*RECUR | NTEGER-LISTP))))))

We grab the result from this arg-solution and use it to construct the form to match against the segments for
CAR. We use the *SUBST form to annotate the type representing the occurrence of X. We use the
*DLIST descriptor form to signify that a list of descriptors is being given to DUNIFY-DESCRIPTORS.
The arguments to DUNIFY -DESCRIPTORS are:

(*DLI ST (*SUBST &3 (*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER
(*RECUR | NTEGER- LI STP)))))
&2)
(*DLIST $NIL $NIL)
where the latter is from the first segment in the signature of CAR. &2 in the first argument is the variable
representing the result type. UNIFY-DESCRIPTORS returns:

((*DLIST (*SUBST &3 $NIL) $NIL) ((& . $NIL)) ((& . $NIL)))
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Thus, our result variable &2 has been replaced with a result descriptor, $NIL, and the restriction on &3
tells us that we need to restrict X to $NIL when we construct our segment for this computation.

Unifying against the other segment for CAR goes much the same way, and the segments we finally
produce for (CAR X) are:

((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NIL (*CONS $I NTEGCER (*RECUR | NTEGER- LI STP)))))
(*REC | NTEGER- LI STP (*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> $| NTEGER
($NI L
(*REC | NTEGER- LI STP (*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> $NIL)

These also happen to be the segments for (CAR Y). So what are the potential argument patterns we
present to BAR? We take the segments for the two arguments to BAR, (CAR X) and (CAR Y), and
perform our cross-product computation to determine the set of arg-solutions:

((((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
($! NTEGER $| NTEGER) )

(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
$NI L)
($1 NTEGER $NI L))

(($NIL
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
($NI L $I NTEGER) )

((SNIL $NIL) (SNIL $NIL)))
Thus, we will present four patterns to match against each of BAR's segments. 1) two integers, 2) an
integer and NIL, 3) NIL and an integer, and 4) two NILs. In each case, both arguments will be annotated
as being components of their respective variables, X and Y, and we will maintain a data structure which
will enable us to reflect these patterns back into the type-alist entries for X and Y. Each argument pattern
satisfies the guard for BAR, i.e., the guard, when unified with the argument pattern, does not restrict it.
The segments for BAR, aswe said, are:
((*OR $I NTEGER * NON- | NTEGER- RATI ONAL)

(*OR $I NTEGER * NON- | NTEGER- RATI ONAL) )

-> (*OR $I NTEGER * NON- | NTEGER- RATI ONAL)

(SNIL (*OR $I NTEGER * NON- | NTEGER- RATI ONAL)) -> $NIL
((*OR $I NTEGER * NON- | NTEGER- RATI ONAL) $NIL) -> $NIL
(SNIL $NIL) -> $I NTEGER

(BINTEGER $INTEGER) matches only against the first segment, producing the result type
(*OR $INTEGER *NON-INTEGER-RATIONAL). We map the context from this arg-solution to this



Type Checking for Common Lisp 67
The Implementation of the Inference Algorithm

result type, producing the segment

(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
-> (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )

Moving along to our next arg-solution, (SINTEGER $NIL) matches only the third segment, producing the
result type $NIL, etc. Our final collection of segmentsfor (BAR (CAR X) (CARY)) is:

(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
-> (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )

(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
$NIL)
-> $NIL)

(($NIL
(*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))
-> $NIL)

((SNIL $NIL) -> $I NTEGER))

Since this is the outermost form of the body, and since this is a non-recursive function, we are done. We
are confident that FEEDBACK has no guard violations, since its guard is complete and the guards for
INTEGER-LISTP, CAR, CDR, and BAR are complete, and we detected no guard violations in either the
guard®! or the body. Its signature is as above.

So how do we deal with recursive functions? Our computation of result types of subexpressions depends
on the existence of a signature for the called function, and for a recursive function call we are only in the
process of computing that signature. Indeed, we have no hint of the signature initially. To deal with this
lack of information, we employ an algorithm which computes an iterative approximation of the signature,
where one iteration consists of making one pass through our table of equations.

To set the context for amore detailed discussion, recall the overview presented earlier:

During the first pass, we have ho segments to match against recursive function calls, so we know nothing
about the results of those calls. However, this does not prevent us from producing a first approximation of
our segments on this pass. On the second pass, we can use this approximation to produce a refined
approximation. Eventually, we hope that the approximation we produce will be equivalent to the one we
produced on the previous pass. When this happens, the algorithm has stabilized. We canonicalize our
segments into a suitable form, and we are finished.

Ensuring that we have reached stability is non-trivial, however. The function is recursively composing

2lWe did not illustrate how we established the absence of guard violations in the guard for FEEDBACK, but the process is
identical to that for checking it in the function body. If the guard is a negatable type predicate, the checksin TY PE-PREDICATE-P
are sufficient. Otherwise, the regimen for checking general function bodiesis applied.
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structures which contribute to the result. If we proceed naively, these structures will just grow with each
iteration, our segments will reflect that growth, and nothing will ever stabilize. Therefore, we employ a
technique for determining when these structures are taking on a form which can be described with a closed
recursive descriptor.  With such a closed recursive descriptor, the expansion and folding which occurs
during an iteration of the algorithm will produce the same result we had in the previous pass, thus leading to
stabilization.

We use a new descriptor form, the *FIX descriptor, as the basis for this technique. The form of a *FIX
descriptor is:

(*FI' X (*DLI ST <descl> .. <descn>) <fix body forms )

where <fix body form> is an arbitrary descriptor, possibly containing another *FIX descriptor, or more
importantly, yet another new form:

(*FI X- RECUR (*DLI ST <descl> .. <descn>))

embedded within it. The interpretation of a *FIX descriptor is the same as the interpretation of a *REC
descriptor, with (*DLIST <descl> .. <descn>) playing the role of the <recname> and *FIX-RECUR
playing the role of *RECUR.

We construct a *FIX form as a result descriptor for any recursive function call. The descriptors used to
fill in the (*DLIST <descl> .. <descn>) are the descriptors for the argument types, one for each actual
parameter. The body is the disjunction (see below) of the result types computed from unifying with all the
segments from our current approximation of the signature. We call the segments of our most recent
approximation the working segments. On our first pass, when we have no working segments, the
<fix body form> will be the descriptor *EMPTY. On later passes, the disunction may include references
to other *FIX descriptors. Thiswould indicate that the result from a previous recursive call appearsin the
result for the current one.

We employ the *DLIST in a*FIX form as we do the label in a*REC descriptor. It represents the point of
recursion in the form, and if we are in a form with multiple *FIXes, we will know which *FIX to reflect
back to. Having *FIX be distinct from * REC allows us to employ some special-purpose heuristics, and
the information in the (*DLIST <descl> .. <descn>) will be critical to figuring out when to close off the
developing recursive form, as we shall see.

When we construct a new *FIX form, we attempt to make an important canonicalization with respect to
embedded *FIX forms. (See Canonicalization Rule 34 in Section 4.4.2.) If we have an embedded *FIX
form with the same descriptors in its *DLIST component as in the outer *FIX, we judge that we have
discovered arecursion point in our descriptor. An example of such aformis:

(*FI X (*DLI ST (*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*OR $NIL
(* CONS $NON- T- NI L- SYMBOL
(*FI X (*DLI ST
(*REC | NTEGER- LI STP
(*OR $NIL
(*CONS $I NTEGER
(*RECUR | NTEGER- LI STP)))))
*EMPTY))))

Notice that the <fix body form>s do not match in any way. But, the outer <fix body form> is always at
least as good an approximation of the result of a recursive function call as the inner <fix body form>,
when the arguments are typed according to the *DLIST. Thus, the inner <fix body form> is not
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particularly helpful. Moreover, this is an effective point at which to form a closure from our developing
descriptor, so that it does not just grow indefinitely. We replace the embedded * FIX form with:

(*FI X- RECUR (*DLI ST (*REC | NTEGER- LI STP
(*OR $NIL (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))))

This gives us the new descriptor:

(*FI X (*DLI ST (*REC | NTEGER- LI STP
(*OR $NI L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))

(*OR $NIL
(* CONS $NON- T- NI L- SYMBOL
(*FI X- RECUR
(*DLI ST
(*REC | NTEGER- LI STP
(*OR $NIL

(*CONS $I NTEGER
(*RECUR | NTEGER- LI STP)))))))))

Merely finding an embedded *FIX form with a matching *DLIST does not mean we are done. The next
approximation may be better than this one. On the other hand, the next approximation may be the same as
this one, which would indicate we are stabilizing. We continue iterating until the entire collection of
segments for our function body is identical to the previous iteration’s working segments. When it is, we
declare victory, transform our *FIX descriptors to * REC descriptors, perform some canonicalizations, and
emerge with asignature for the recursive function.

Let usillustrate the technique with an example.

( DEFUN APPEND (X Y)
( DECLARE (XARGS : GUARD ( TRUE-LI STP X)))
(IF (NULL X) Y (CONS (CAR X) (APPEND (CDR X) VY))))

A TRUE-LISTPisa CONS structure whose last CDR is NIL, and is characterized by the descriptor:

(*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))

We proceed as with a non-recursive function until we reach the recursive call. At this point, our type alist
is

((X . (*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
(Y. &8))

The segment previously computed for (CDR X) is:

(((*CONS *UNI VERSAL
(*REC TRUE-LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
&8)
-> (*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))

and for Y:

(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
&8)
-> &8)
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Since the contexts in these two segments match, we have only one arg-solution, mapping the context to
the argument list

((*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LI STP))))
&8)

There are no segments for APPEND with which to match, so our best-guess result typeis*EMPTY. Our
segment, then, mapping the types of X and Y to our *FIX form, is:

(((*CONS *UNI VERSAL
(*REC TRUE-LI STP

(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))

&8) ->

(*FI X (*DLI ST (*REC TRUE- LI STP

(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP))))
*UNI VERSAL)
*EMPTY))

Notice that we replaced the variable & 8 with * UNIVERSAL inthe *DLIST. Thisis because an artifact of
the implementation can cause a variable in one iteration to appear with a different name in a succeeding
iteration. Thus, leaving the variablein the * FIX *DLIST could cause the folding operation we perform at
the end of each iteration through the equations to fail. Converting the variable to *UNIVERSAL
circumvents this problem.

Having constructed this partial solution for our recursive cal, we complete the first iteration through the
equations and produce the first pass working segments:

(((SNIL &8) -> &8)
(((*CONS &10 (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
*UNI VERSAL) - >
(*CONS &10
(*FI X
(*DLI ST (*REC TRUE- LI STP
(*OR $NIL
(*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
* UNI VERSAL)
*EMPTY))))

The first segment came from the (NULL X) branch of the function, where we return Y. The second
segment is from the other branch, where we CONS the CAR of X, represented by the type variable & 10,
onto the result of the recursive call, our *FIX descriptor.

On our next iteration, when we hit the recursive call, and find that our argument pattern matches both
these segments. The body of our *FIX descriptor is therefore an * OR whose first disunct is the variable
representing Y and whose second is the * CONS with the nested *FIX from the second segment. Thus, we
construct the following * FI X descriptor for the value returned on the recursive call.

(*FI X (*DLI ST (*REC TRUE-LI STP

(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))

* UNI VERSAL)
(*OR &8
(*CONS &10
(*FI X
(*DLI ST (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL
(*RECUR TRUE- LI STP))))
* UNI VERSAL)
*EMPTY))))
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Now we notice that within this * FIX we have another *FIX with the same parameter *DLIST (but a less
precise body). Thisisour signal to replace the nested *FIX by a*FIX-RECUR, giving us:

(*FI X (*DLI ST (*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
* UNI VERSAL)
(*OR &8
(* CONS &10
(*FI X- RECUR
(*DLI ST (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL

(*RECUR TRUE- LI STP))))
*UNI VERSAL) ))))

Finishing thisiteration, we have the segments:

((SNIL &8) -> &8)
(((*CONS &10 (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
&8)

->
(*CONS &10

(*FI X

(*DLI ST (*REC TRUE- LI STP

(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LI STP))))
* UNI VERSAL)

(*OR &8
(* CONS &10
(*FI X- RECUR
(*DLI ST (*REC TRUE- LI STP

(*OR $NIL
(* CONS * UNI VERSAL
(*RECUR TRUE- LI STP))))
*UNI VERSAL) )))))))

On our next pass, our recursive cal initially yields the segment:

(*FI X
(*DLI ST (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
* UNI VERSAL)
(*OR &8
(* CONS
&10
(*FI X
(*DLI ST (*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL

(*RECUR TRUE- LI STP))))
* UNI VERSAL)

(*OR &8
(* CONS &10
(*FI X- RECUR
(*DLI ST (*REC TRUE- LI STP

(*OR $NIL
(* CONS * UNI VERSAL

(*RECUR TRUE- LI STP))))
*UNIVERSAL))))))))

Again, we find a nested *FIX with the same *DLIST as the outer one, so we replace it with the
*FIX-RECUR form to get:

(*FI X (*DLI ST (*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
* UNI VERSAL)
(*OR &8
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(* CONS &10
(*FI X- RECUR
(*DLI ST (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL
(*RECUR TRUE- LI STP))))
*UNI VERSAL) ))))

This is the same segment we got on the previous iteration. It should come as no surprise, then, that the
new working segments we get when we complete this iteration are the same as the ones for the previous
iteration. Thissignalsthat we have achieved stability.

Now all that remainsis to convert our *FIX descriptor into a *REC descriptor. This is a straightforward
process of generating a new rec-name, replacing our *FIX-RECUR with a *RECUR with that rec-name
label, replacing the *FIX label with *REC, and replacing the *DLIST with the rec-name, and (sadly)
replacing any variables which appear in replicating components of the new *REC descriptor with
*UNIVERSAL. This replacement is necessary because a variable replicated in the repeated opening of a
*REC descriptor, if interpreted in the formal semantics, INTERP-SIMPLE, would signify a replicated
value, and thisiis clearly not what is signified here. But we say the replacement with *UNIVERSAL is
sad because we could preserve some additional information if we replaced the variable instead with a
different kind of variable, one which could be instantiated with another type descriptor. For APPEND (as
we shall see), such a variable would alow the signature for APPEND to be such that if we called
APPEND with objects which were both integer lists, we could deduce that the result was an integer list.
Asit is, we will know only that the result terminates in an integer list, but the specific knowledge about
the types of the elements of the first argument will be lost in the result. An excellent enhancement to the
tool would be addition of this new kind of variable to the formal semantic model.

But, regrets aside, SOLVE-EQUATIONS yields the segments of our final signature:
((SNIL &8) -> &8)

(((*CONS &10 (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
&8)
-> (*CONS &10 (*REC ! REC4 (*OR &8
(*CONS *UNI VERSAL (*RECUR ! REC4))))))

Just as with a *REC descriptor, a *FIX descriptor with no *FIX-RECUR is equivalent to its body. This
allows *FIX forms with no recursion to be reduced to simple forms. Thus, with a recursive function like:

( DEFUN LEN (X)
( DECLARE (XARGS : GUARD ( TRUE-LI STP X)))
(IF (CONSP X) (BINARY-+ 1. (LEN (CDR X))) 0.))

the final segment can fold all the way to:

(((*REC TRUE- LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LI STP)))))
->  $I NTEGER)

This same property also lets us contain the treatment of recursive calls where the arguments are grounded,
non-recursive forms. For example,

( DEFUN FOO ( X)
(IF (EQUAL X 3)
3
(IF (NULL X)
NI L
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(I F (ATOM X)
(FOO NI'L)
(IF (EQUAL (CDR X) # a)
(CONS (FOO (CAR X)) (FOO (CDR X)))
(CONS (FOO (CAR X)) (FOO 3)))))))

produces the signature segments:
(($I NTEGER) -> $| NTEGER)

(((*OR $CHARACTER $| NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T))
-> $NIL)

(((*CONS *UNI VERSAL $CHARACTER))
-> (*CONS (*REC ! REC9
(*OR $| NTEGER
$NI L
(*CONS (* RECUR ! REC9)
(*OR $I NTEGER $NI'L))))
$NIL))

(((*CONS *UN VERSAL *UNI VERSAL))
-> (*CONS (*REC ! REC10
(*OR $I NTEGER
$NI L
(*CONS (* RECUR ! REC10)
(*OR $I NTEGER $NIL))))
(*OR $I NTEGER $NIL))))

In this function, the only recursive calls on recursively-typed arguments are the instances of
(FOO (CAR X)), and these are the only ones which engender * REC formsin the result.

One intuitive question which might arise in evaluating an algorithm like this is consideration of where it
loses information. One notable place is the point when, after matching our argument pattern against the
working segments on a recursive function call, we generate a single segment whose result type is the
disiunction of the result types from the matching segments. In the non-recursive case, were we to match
more than one segment, we would produce more than one segment, possibly splitting on the types of the
context variables. For recursive calls, we prefer to leave the context intact and produce a single, merged
result. Although we are losing some specificity, this merging has a very sensible connection to recursive
types. Functions composing a recursive result typically split their actions into some base case, in which
they return a ground term, and a recursive case, in which they compose upon the result of a recursive call.
This structure is typically mirrored in recursive type descriptors, which contain a disjunction where some
diguncts are non-recursive and others contain embedded *RECUR points. By forming our digunctive
descriptors when we match multiple segments on a recursive call, we are letting the function structure
guide our construction of recursive descriptors.

An unfortunate aspect of the choice to take the disjunction in this manner is that, for some functions, it isa
very poor strategy. It is most effective for functions which are building recursive structures as they
traverse their input, like APPEND, and for functions which return a result whose type is not highly
dependent on the input type structure, like LEN. For functions, like recognizer functions, which return
simple objects whose type is highly dependent on the input type structure, this method results in analysis
which probes only one level into input parameter types. For instance, consider the TRUE-LISTP
function, modified to return 'OK and O instead of T and NIL.

( DEFUN SAD- BUT- TRUE- LI STP (X)
(IF (NULL X) * OK (I F (CONSP X) (SAD-BUT- TRUE-LISTP (CDR X)) 0)))
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We get the segments:

(($NIL) -> $NON-T- NI L- SYMBOL)
(((*CONS *UNI VERSAL *UNI VERSAL)) -> (*OR $I NTEGER $NON-T- NI L- SYMBOL))
(((*OR $CHARACTER $| NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T))
-> $I NTEGER)

Clearly, thisis less satisfactory than the perfect segments we get for TRUE-LISTP itself, the result of its
treatment as a recognizer:

(((*REC TRUE-LISTP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
-> $T)
(((*REC ! REC1
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRING $T (*CONS *UNI VERSAL (*RECUR ! REC1)))))
-> $NIL)

Thisis simply another case where it would be possible to refine the algorithm to get more accurate results.
A nice enhancement would be to make some heuristic choice about whether we would try to focus on
building *FIX forms in the context portion of the segments rather than in the result type. If this were
possible, then we could perhaps produce as strong a signature in the general case as we do for recognizers.
As it stands, given the limits on time spent developing and implementing the algorithm, it seemed a
practical choice to let the general algorithm focus on building * FIX forms in the result type, since alarge
portion of the functions for which we might wish to focus on the arguments are, in fact, recognizers, and
we have very effective methods for dealing with them.

4.4.8 INFER-SIGNATURE

INFER-SIGNATURE is the top-level function in the type inference algorithm. Given a function and the
database of signatures, it returns a new signature, consisting of the guard descriptors, a flag saying
whether the guard is complete, a flag saying whether all functions in the call tree of the function have
complete guards, the list of segments for the function, and an item which, if the function is arecognizer, is
the descriptor characterizing the type which the function recognizes, NIL otherwise.

INFER-SIGNATURE's job is relatively simple. It cals DESCRIPTOR-FROM-FNDEF, which
determines if the function qualifies as a recognizer. If so, DESCRIPTOR-FROM-FNDEF returns the
descriptor corresponding to the type it recognizes, and INFER-SIGNATURE constructs the segments for
the function by mapping this descriptor to $T and by mapping its (canonicalized) negation to $NIL. The
guard is*UNIVERSAL, the guard-complete flag is T, and the all-functions-called-complete flag is T.

If the function is not a recognizer, INFER-SIGNATURE makes sure the guard does not call the function
recursively, since this would be ill-formed, and then invokes PREPASS on both the guard and the body.
Next it invokes DERIVE-EQUATIONS and SOLVE-EQUATIONS on the guard form to ensure there are
no guard violations in the guard. Either aguard violation or arecursive cal in the guard resultsin failure.
If neither is detected, INFER-SIGNATURE invokes TY PE-PREDICATE-P on the prepassed guard form
to construct the vector of descriptors characterizing the guard. The interpretation of this vector is that if
the guard evaluates to a non-NIL value, the descriptors will characterize the parameters, and if the guard
descriptors are complete, satisfaction of the guard descriptors by the actual parameter descriptors
guarantees satisfaction of the actual guard. Again, there is no forma argument behind this claim, though
the checker will attempt to establish its own version when its time comes.

These descriptors are then used as the initia type-alist for invoking DERIVE-EQUATIONS and SOLVE-
EQUATIONS on the prepassed function body. Unless that algorithm detects a guard violation, it will
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produce the segments which will then be stored in the signature, along with the guard descriptors, the flag
(computed by TYPE-PREDICATE-P) saying whether the guard was complete, the flag easily computed
by checking the guard-complete flags for all functions called in the body, and the NIL value for the
recognizerp flag.
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Chapter 5
THE FORMAL SEMANTIC MODEL

This chapter gives a bottom-up construction of the formal basis for the specification and proof. We start
by defining the type descriptor language which will be formalized, and by giving well-formedness
predicates for type descriptors. Then we present the well-formedness predicates for signatures. Next, we
provide a simple Lisp evaluator, E, which is used in the specification and proof to provide the value of a
Lisp form in a given binding environment. Then, we give a formal semantics for type descriptors and
finally a full statement of the formal semantics of function signatures. The presentation is designed to
reveal concepts distinctly and to motivate an understanding of the choices contributing to the chosen
model. At the end of the chapter, there are pointersto discussions of severa of the very different semantic
models which were considered before settling on this one.

5.1 A Discussion of the Style of Formalism

Before embarking on the formal treatment, we will attempt to characterize the style of what is to follow
and to provide some motivation for the choices which led to this style.

An applicative subset of Common Lisp is the language in which the formal semanticsis cast. Itisalso the
language used in the implementation of the algorithm, and it is therefore a comfortable language in which
to cast functions of the algorithm for formal analysis.

A carefully chosen applicative subset of Common Lisp could be used as a completely formal logic [Boyer
90]. Theevaluator E, which we will introduce later in this chapter and which provides a semantics for the
Lisp subset supported by the type system, is one possible semantic basis for using Common Lisp in this
manner.

But the proof we will present is not a formal proof. Our use of Common Lisp as the vernacular for the
formal analysis is not completely formal. For example, non-total functions are used in the discussion.
Most of the functions introduced in this chapter which are a part of the formal semantics are stated with
guards, in the same style used in the supported Lisp subset, so that the statement of their proper domain is
formal. But later on when we introduce functions representing components of the checker algorithm, we
do not provide guards. Rather, we accompany the definitions with textual accounts of what is assumed
about the function arguments. Moreover, two functions introduced in the formal semantics as SUBRs are
defined in English rather than formally. These are WELL-FORMED-WORLD, which is a guard on one
of the argumentsto E, and E-SUBRP, which is the subsidiary of E which evaluates functions which arein
the initial library of primitive functions. Another informal aspect of the analysis is that some of the
functions representing components of the algorithm do not terminate on all arguments. Thisis pointed out
where appropriate, but the ramifications of having non-terminating functions in a formal setting are not



78 Type Checking for Common Lisp
The Formal Semantic Model

elaborated, beyond claiming that we have only partial correctness proofs. Finally, we have not been
explicit about the machinations of Lisp as a logic supporting the type system, as we have with the
machinations of E as an interpreter for the language supported by the type system. In all these senses, the
reader is expected to fill in the gaps, which is certainly not characteristic of formal proof.

Yet we go on to conduct the proofs with great rigor, exploring cases exhaustively and writing our
accounts in extensive detail, in a manner which is more consistent with styles of formal proof. Though we
have tried to emphasize important points textually, the reader till risks having his view of the proof
obscured by detail. So by not treating Common Lisp as a formal logic, but by presenting our proof in
rigorous detail, we seem to be sacrificing both the expressive ease of informal proof and the absolute
certainty of formal proof. What motivated this choice of style?

Common Lisp linguisticaly unifies the discourse of the entire problem. As a powerfully expressive
programming language, it was well-suited to developing the prototype implementation, which was an
invaluable exploratory tool in developing the algorithms. And as previously stated, Common Lisp can be
used as aformal logic, and it is uniquely suited to seamless discourse about Common Lisp functions. The
researcher’ s personal comfort with Lisp played no small factor; the type inference problem itself was quite
enough with which to grapple.

When we embarked on the proof, we were genuinely uncertain of the correctness of the algorithm. Since
the checker is a computational algorithm with a great deal of case analysis and sometimes tricky detail,
there was reason to suspect errors, though we had no particular areas of suspicion. Only by extensive, if
not exhaustive, exploration of the details could we raise our level of assurance of the soundness of the
algorithm. Thislevel of concern was borne out in several instances. In one case, a significant error in the
checker’s unification algorithm was overlooked in an apparently plausible proof sketch laid out at the
level of atypica informal proof. Only by later fleshing out the proof with rigorous detail did we uncover
the error. In another case involving the containment algorithm, an early draft of the proof addressed a
particular detail insufficiently to satisfy one reader. Had the proof not already been expressed in rigorous
detail, arguably the point in question might not have become apparent to the reader. Though in the end no
error was found in the algorithm, further exploration of the problem revealed questions which merited
careful consideration. In short, regardless of the level of formality, exhaustive rigor was necessary to give
us the leve of confidence in the algorithm which we sought. And since this thesis was to represent a
complete account of the work rather than a summary, we felt an obligation to present the work performed
in essentially the style with which it was conducted.

While adopting this level of rigor, why did we not take the next step to formality? The humble graduate
student feels himself to be extremely fallible. Given the nature of the system being proved, we arguably
believe that the only sure path to a formal proof would be with mechanized assistance. Without it, the
proof would suffer from the tedium of formality compounding the tedium of rigor. With the human
tendency in the face of mountains of detail to overlook cases, and more importantly, to lose track of the
central ideas being questioned, we feared that attempting what would amount to a human-generated
mechanical proof would border on folly. Y et to have embarked on a mechanically assisted proof, perhaps
with Ngthm [Boyer & Moore 88], seemed no less afolly. One of the precepts of mechanica proof asit is
practiced with current technology is that the human needs to have the conceptual proof firmly in mind
before seeking mechanized assurance. As previously stated, this was clearly not the case. And we could
see that the level of effort necessary to reach this point and then execute a mechanical proof would well
exceed the time available.

In essence, the level of assurance we received by using this style of proof was greater than we could have
achieved with a high level, informal proof, and the commitment of effort was significantly more modest
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than would have been required for aformal proof.

Moreover, it is far from clear that this was the appropriate point in this research effort to conduct a
mechanical proof. The system as it stands occupies one stage in its evolutionary development. We knew
at the time we embarked on the proof that there were many ways we might wish to later enhance the
system. Our goal was to establish a solid proof of concept which both established the validity of the type
system as currently developed and which laid the groundwork for later formal proof. From this basis we
could decide upon the next commitment, choosing from options like making further enhancements to the
system in support of its current scope, enlarging its scope to include other language constructs, and
re-implementing the system in the context of a more general proof environment. In any case, we thought
it prudent to hold off the major commitment of performing a mechanized formal proof.

Nevertheless, one of the ultimate goals of this effort, which has not yet been achieved, is a formal,
mechanically checked proof of the soundness of this system, possibly with Common Lisp as the formal
logic. Aswe sought, we have built a significant bridge to this end. Beyond a high-level, informal proof
of the system, we have produced an extensive, very detailed, albeit informal sketch of a formal proof.
With it, we can better evaluate the feasibility of performing a formal, mechanized proof, and the task of
ultimately constructing such a proof on this basis will be much less daunting than upon the basis of a
high-level, informal proof.

5.2 Type Descriptorsand Their Well-Formedness

The following is the grammar for type descriptors with which we will be concerned in our semantic model
and in the checker.22

<descriptor> ::= <sinple descriptor> | <variable> | *EMPTY |
*UNI VERSAL | (*CONS <descri ptor> <descriptor>) |
(*OR <descriptor>* ) | <rec descriptor>

<si npl e descriptor> ::=
$CHARACTER | $INTEGER | $NIL | $NON- | NTEGER- RATI ONAL |
$NON- T- NI L- SYMBOL | $STRING | $T

<rec descriptor> ::= (*REC <rec name> <recur descriptor>)
<rec nane> ::= a synbol whose first character is not "&"
<variable> ::= a synbol whose first character is "&"

<recur descriptor> ::=
<sinpl e descriptor> | <variable> | *EMPTY |
*UNI VERSAL | (*CONS <recur descriptor> <recur descriptor>) |
(*OR <recur descriptor>* ) | <rec descriptor> |
(*RECUR <rec nane>)

Furthermore, <recur descriptor> is constrained so that when it takes the form (*RECUR <rec name>), the
<rec name> must be identical to that associated with the immediately containing *REC form. The
grammar for <recur descriptor> is just the grammar for <descriptor> extended with the *RECUR form.
We sometimes call the <recur descriptor> inside a <rec descriptor> the body of the <rec descriptor>.

Type variables may only appear within those portions of a *REC descriptor which are not replicated

?Here we do not need to deal with the transient forms generated by the inference tool and relieved internally, i.e., <and
descriptor>, <not descriptor>, <subst descriptor>, *MERGE-FIX-POINT, <fix descriptor>, <fix-recur descriptor>, *|SO-RECUR,
*FREE-TYPE-VAR, and **RECUR-MARKER**. Theinference tool descriptor grammar isin Section 4.3.
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within any digunct when the descriptor is opened. (See the definition of OPEN-REC-DESCRIPTOR-
ABSOLUTE in Section 5.5.) The following definition will help explain the well-formedness requirement
below.

Definition: Consider a normal formfor a *REC descriptor in which
the body is an *OR descriptor, and no *OR occurs w thin any of
its disjuncts unless it is part of a nested *REC form 1|.e.,
all disjunction in the body of the *REC is raised to the top.?3
A replicating component, or replicating digunct of a *REC
descriptor is any disjunct of this top-level *OR which
contains a *RECUR for the *REC. A terminating component
or terminatingdisunct i s any di sjunct which does not
contain a *RECUR for the *REC.

To illustrate this definition, consider the descriptor

(*REC FOO (*OR $NI L (*CONS & (*RECUR FCO))))

This descriptor is adready in *OR-lifted form. $NIL is a terminating disunct, since it contains no
(*RECUR FOO) form. (*CONS &2 (*RECUR FOOQ)) isareplicating disunct. Now consider

(*REC BAR (*OR &1 (*CONS (*OR $I NTEGER $T) (*RECUR BAR))))

Raising the disjunction in this form produces

(*REC BAR (*OR &1
(*CONS $| NTEGER (* RECUR BAR))
(*CONS $T (*RECUR BAR))))

&1 isaterminating digunct, and the two * CONS forms are replicating disuncts.

A well-formedness requirement for descriptors must hold for any descriptors considered formally or
manipulated by the checker. The top-level function defining the well-formedness predicate is WELL-
FORMED-DESCRIPTOR.

Aside from conformance with the grammar above, the following properties must hold:
1. All *REC descriptors with the same name must be identical.

2. Any *RECUR form must have the same label as the nearest enclosing * REC.

3. Any *RECUR form must be nested within both an *OR and a *CONS within the *REC
body. (A *RECUR within an *OR but not within a *CONS is redundant. A *RECUR
within a * CONS but not within an *OR would represent an infinite structure. A *RECUR
within neither an *OR or a* CONS would be vacuous.)

4. A type variable may not appear within areplicating component of a* REC.

As we shall see when we define the semantics for descriptors, little of practical value is lost by imposing
thisfinal requirement.

23
Thelifting of *OR in the body is accomplished by repeated application of the reverse of two canonicalization rules:

Rule 8: (*OR (*CONS d1 d2) (*CONS d3 d2)) => (*CONS (*CR d1 d3) d2)
Rule 9: (*OR (*CONS d1 d2) (*CONS d1 d3)) => (*CONS d1 (*OR d2 d3))

Theflattening of the * OR structureis by
Rule 4 (*OR.. (*ORdl .. d2) ..) => (*CR.. dl .. d2 ..)

Rules 8 and 9 can be applied in reverse because their proofs show their two sides to be equivalent. These rules are given in Section
6.7, and their proofs are presented in Appendix B.6.
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The function WELL-FORMED-DESCRIPTOR and its subsidiaries capture these notions of well-
definedness. They are given in Appendix G.1.

A naive notion of the semantics of descriptors is that a descriptor defines a set of Lisp values, and a
particular value satisfies the descriptor if it is a member of the set. But a descriptor containing type
variables cannot define a set in the absence of some interpretation for variables. The notion of variables
embedded in our formal semantics is that a type variable represents an arbitrary type containing a single
value. Then the set of values we seek is defined by both the descriptor in question plus a binding list
which maps each variable in the descriptor to some Lisp value. We will explore this more fully as we
develop the semantic model.

5.3 Well Formedness of Function Signatures

A signature is well-formed iff:
1. The length of the guard descriptor is the same as the arity of the function.

2. The guard descriptor isalist of well-formed descriptors.

3. The left hand side of each segment is a list of well-formed descriptors whose length is the
same as the arity of the function.

4. Theright hand side of each segment is awell-formed descriptor.
5. All *REC descriptors throughout the signature with the same name must be identical.

Functions which check the well-formedness of a type signature returned by the inference tool are given in
Appendix G.2. Thetop level function is WELL-FORMED-SIGNATURE.

The state consists of the signatures of a set of function symbols, each associated with a definition. We
will frequently refer to the state by the name FS in the exposition and proof of soundness. In the
implementation code it goes by the name FUNCTION-SIGNATURES. The state is well formed if each
of its signatures is well formed. The function WELL-FORMED-STATE-ASSUMING-ARITY, givenin
Appendix G.3, checks the state, mapping over it with WELL-FORMED-SIGNATURE.

54 A SimpleLisp Evaluator

Occasionaly in the specification and proof, we will call upon an evaluator to provide the value of a Lisp
form in some environment. Here we define that evaluator, which provides a simple semantics for the
evaluation of Lisp expressions. Let the environment be:

ENV: A list of pairs, where the CAR of each pair is a variable
name and the CDR is a value in our Lisp universe. This list
represents the bindings of variables to values in the environnent.

WORLD: A list of tuples (<fnname> <args> <guard> <body>), where <fnname>
is a function nane (and not |F or QUOTE), <args> is its fornmal
argunent list, <guard> is a Lisp formunder <args> and WORLD,
and, when (subrp <fnnane>) is nil, <body> is a Lisp form under
<args> and WORLD, and when (subrp <fnnanme>), <body> is irrelevant,
but may be thought of as a list of ordered pairs napping each
list of argunents satisfying the guard to sone result val ue.

X is a Lisp formunder <args> and WORLD iff X is a variable in
<args>, a literal in the data space of our Lisp subset, a list

of length two whose CAR is the atom QUOTE and whose CADR is a

val ue in the data space of our subset, a list of |length four whose
CAR is the atom | F and whose renmining el enents are wel |l -fornmed
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Li sp fornms under <args> and WORLD, or a list, representing a
function call, whose CARis the some <fnname> in WORLD and whose CDR
is alist of the same length as the <args> list for that function
and whose el enments are all well-formed Lisp forms under <args>

and WORLD.

Our interpreter is afunction E, defined below. E takes a FORM which is awell-formed Lisp form whose
variables are bound in ENV, an environment ENV (as above), a WORLD (as above), and a non-negative
integer value CLOCK. It can return either a value in the data space of our Lisp subset or one of two
values not in that data space: one signifies a break due to the clock being exhausted, while the other
signifies a break due to a guard not being satisfied. We present a statement of the proper domain of E
with a guard form in the same style as that of the Lisp dialect defined by E. The functions referenced in
the guard are presented in Appendix G.4. For comment on this style, see the discussion in Section 5.1.

(DEFUN E (FORM ENV WORLD CLOCK)
(DECLARE ( XARGS : GUARD (AND (VEELL- FORVED- ENV ENV)
(VELL- FORVED- WORLD WORLD)
(VELL- FORMED- CLOCK CLOCK)
(VELL- FORVED- FORM FORM ENV WORLD))))
(IF (< CLOCK 1)
( BREAK- QUT- OF- Tl ME)
(I'F (AND (CONSP FORM) (ASSCC (CAR FORM) WORLD))
;7 Function call
(LET ((ACTUALS (MAP-E (CDR FORM) ENV WORLD CLOCK)))
(1 F (BREAKP ACTUALS)
ACTUALS
(LET (( FNCALL- ENV
(PAIRLI'S (CADR (ASSOC (CAR FORM WORLD))
ACTUALS)))
;; Evaluate the guard
(LET ((GUARD- VAL (E (CADDR (ASSCC (CAR FORM WORLD))
FNCALL- ENV
WORLD
CLOCK)))
(1 F (BREAKP GUARD- VAL)
GUARD- VAL
(I'F (EQUAL GUARD- VAL NIL)
( BREAK- GUARD- VI OLATI ON)
(I'F (SUBRP (CAR FORM)
(E-SUBRP (CAR FORM) ACTUALS WORLD)
(E (CADDDR (ASSCC (CAR FORM) WORLD))
FNCALL- ENV
WORLD
(- CLOCK 1)))))))))
(I'F (AND (CONSP FORM (EQL (CAR FORM I F))
(LET ((TEST-VAL (E (CADR FORM) ENV WORLD CLOCK)))
(1 F (BREAKP TEST- VAL)
TEST- VAL
(I'F (EQUAL TEST-VAL NIL)
(E (CADDDR FORM ENV WORLD CLOCK)
(E (CADDR FORM) ENV WORLD CLOCK))))
(1 F (LI TERALP FORM
FORM
(I'F (AND (CONSP FORM (EQUAL (CAR FORM ' QUOTE))
(CADR FORM
i, FORMis a variable
(CDR (ASSOC FORM ENV))))))))

( DEFUN MAP- E (FORMS ENV WORLD CLOCK)
(IF (NULL FORMB)
NI L
(LET ((NEXT-VAL (E (CAR FORMB) ENV WORLD CLOCK)))
(I F (BREAKP NEXT- VAL)
NEXT- VAL
(LET ((REST-VALS (MAP-E (CDR FORMS) ENV WORLD CLOCK)))
(I F (BREAKP REST-VALS)
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REST- VALS
(CONS NEXT- VAL REST-VALS)))))))

(DEFUN SUBRP ( FNNANE)
( MEMBER FNNAMVE
;; The functions in our initial world
" (CONS CAR CDR Bl NARY- + UNARY-- Bl NARY-* UNARY-/ < EQUAL
CONSP | NTEGERP RATI ONALP STRI NGP CHARACTERP SYMBOLP NULL
DENOM NATOR NUMERATOR SYMBOL- NAME SYMBOL- PACKAGE- NAME) ))

(DEFUN E- SUBRP ( FNNAME ACTUALS WORLD)
;; Wien the function is a subr, one nay envision the <body> to be
;; aninfinite list of pairs mapping values in its domain to the
;; result returned by the subr for those values. The list is
;; of infinite I ength because the donmin of every primtive function
;; happens to be infinite. 1In this schene of things, the body of
;5 E-SUBRP woul d be
;5 (CDR (ASSCC ACTUALS ( CADDDR (ASSCC FNNAME WORLD))))
;; To avoid having to consider such infinite lists in our semantic
;; nodel, however, we sinply define E-SUBRP to be a "sub-primtive"
;7 function which returns the value returned by the function named
;; by the FNNAME paraneter on the val ues given by ACTUALS.
<<subr val ue>>)

( DEFUN BREAK- OUT- OF- TI ME ()
;; The floating point number .1 represents an out-of-time break.
1)

( DEFUN BREAK- OUT- OF- TI MEP (VAL)
(EQUAL VAL ( BREAK- OUT- OF- TI ME)))

( DEFUN BREAK- GUARD- VI CLATI ON ()
;; The floating point nunber .2 represents a guard violation.
. 2)

( DEFUN BREAK- GUARD- VI OLATI ONP (VAL)
(EQUAL VAL ( BREAK- GUARD- VI OLATI ON)))

( DEFUN BREAKP ( VAL)
(OR ( BREAK- OUT- OF- TI MEP VAL) ( BREAK- GUARD- VI OLATI ONP VAL)))

E is a tota function. This claim rests on the fact that a termination measure on E goes down on all
recursive calls. This termination measure is defined by a three-tuple composed of CLOCK, the size of the
world necessary to evaluate a term, and the size of the term (the length of its flattened structure). These
are given in order of decreasing significance. The count goes down whenever the clock goes down (i.e.,
on entry to the body of a function). The second count element, the world size, is of use only when we
evaluate the guard in conjunction with a function call. In this case, CLOCK does not go down, and the
size of the guard term may be larger than the size of the function call term. But since the guard form
never calls the function in which it appears, we may remove this function from the world for purposes of
evaluating the guard. Hence this count goes down on the recursive call to evaluate a guard. For al other
recursive calls, the size of the term goes down.

A trivial observation is that, given two calls to E which are identical except for the value of clock, if
neither call returns (bresk-out-of-time), both calls will return the same value.
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5.5 The Formal Semantics of Type Descriptorsand Signatures

Here, we will expose the notions in the semantic model in two phases, first providing a model for
variable-free descriptors, and then extending the model to encompass type variables.

As mentioned earlier, a naive notion of the semantics of descriptors is that a descriptor defines a set of
Lisp values, and that a value satisfies a descriptor if it is a member of the associated set. This notion can
be easily cast as a predicate SATISFIES-1, which determines whether a value is in the set defined by a
variable-free descriptor. (SATISFIES-1 TD V) returns T if the value V is a member of the set defined by
the descriptor TD, and NIL otherwise. We will later define a more general interpreter function which
handles variables, but for now, we factor the problem to illustrate the significance of variables.

( DEFUN SATI SFI ES-1 ( DESCRI PTOR VALUE)
(CASE DESCRI PTOR
(*EMPTY NI L)
(*UNI VERSAL T)
($NI'L (NULL VALUE))
($T (EQUAL VALUE T))
($NON- T- NI L- SYMBCOL
(AND (SYMBOLP VALUE) (NOT (NULL VALUE)) (NOT (EQUAL VALUE T))))
($1 NTEGER (| NTEGERP VALLUE) )
($NON- | NTEGER- RATI ONAL
(AND ( RATI ONALP VALUE) (NOT (I NTEGERP VALUE))))
($STRI NG ( STRI NGP VALUE))
($CHARACTER ( CHARACTERP VALUE))
( OTHERW SE
(CASE (CAR DESCRI PTOR)
(*CONS (AND ( CONSP VALUE)
(SATI SFI ES-1 ( CADR DESCRI PTOR) ( CAR VALUE))
( SATI SFI ES-1 ( CADDR DESCRI PTOR) (CDR VALUE))))
(*OR ( SATI SFI ES- OR ( CDR DESCRI PTOR) VALUE))
;; OPEN- REC- DESCRI PTOR- ABSOLUTE opens a *REC descri ptor.
., For exanpl e,
;3 (OPEN- REC- DESCRI PTOR- ABSOLUTE
"(*REC TL (*OR $NIL (*CONS *UN VERSAL (*RECUR TL))))
= (*OR $NIL (*CONS *UN VERSAL
(*REC TL (*OR $NIL (*CONS *UN VERSAL
;s (*RECUR TL))))))
(*REC
( SATI SFI ES-1 ( OPEN- REC- DESCRI PTOR- ABSOLUTE DESCRI PTOR) VALUE))
(OTHERW SE NI'L))))))

( DEFUN SATI SFI ES- OR ( DESCRI PTORS VALUE)
(I'F (NULL DESCRI PTORS)
NI L
(OR (SATI SFIES-1 ( CAR DESCRI PTORS) VALUE)
( SATI SFI ES- OR ( CDR DESCRI PTORS) VALUE))))

(DEFUN SATI SFI ES ( DESCRI PTOR- LI ST VALUE- LI ST)
;; We require DESCRI PTOR-LI ST and VALUE-LI ST to have the sane | ength.
(1 F (NULL DESCRI PTOR- LI ST)
T
(1 F (SATISFIES-1 (CAR DESCRI PTOR-LI ST) (CAR VALUE- LI ST))
( SATI SFI ES (CDR DESCRI PTOR- LI ST) (CDR VALUE-LI ST))
NIL)))

SATISFIES handles lists of descriptors and values, which will come into play in our semantics for
function segments. SATISFIES-1 handles a single descriptor and value. Thus,

( SATI SFI ES- 1

(*REC TRUE- LI STP (*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LI STP))))
(2 4 "FOO"))

T
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( SATI SFI ES- 1
(*REC TRUE-LI STP (*OR $NI L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
(A. B)

= NL

But variables play an important role in the semantics of descriptors and function signatures. The notion of
variables seems well-suited to describing, for instance, that the type of the result of the CAR function,
applied to a CONS object, is the same as the type of the first value in the ordered pair defined by the
CONS. Theinterpretation of multiple occurrences of a variable as type identity, rather than value identity,
threatened to seriously complicate the formal semantics of signatures. (See Appendix E for the discussion
of a semantic model considered but abandoned.) We were unable to provide a model of type variables
which, in the presence of disunction, would provide the kind of specificity we required for handling
direct data transfer through a signature (as with CAR and CONS) and yet provide an instantiation
capability which would support the appearance of a variable in areplicating component of a*REC. Inthe
latter case, we certainly did not want to abide by the constraint that every value associated with the type
variable had to be EQUAL. We chose for the time being to abandon the use of type variables in
replicating components and to adopt a model that multiple occurrences of a type variable represent
multiple occurrences of a single data value. A type variable, then, may have only a single-point
instantiation.

At first glance, it would seem that a variable appearing in a * REC descriptor could be replicated on each
recursion, thus requiring under these semantics that each occurrence represent the same value. This does
not seem useful in most circumstances. We might like a variable in a *REC descriptor to represent
multiple occurrences of some particular type, to be instantiated later. But in our implementation, we have
restricted * REC descriptors so that variables may appear only in non-replicating disjuncts, so replication
on unfolding does not occur. The notion of avariable which can be instantiated with atype is not present,
though we discuss el sewhere (See Section 8.3) that one potentially valuable extension to the tool would be
anew class of variables specifically for this purpose in * REC descriptors.

We can use our SATISFIES-1 function as part of a semantics for descriptors and function segments
including variables. Doing so may further illuminate the intuition behind our type variables. Consider the
type descriptor (*CONS &1 &1). We can factor the satisfaction problem for descriptors with variables
into two parts. For avalue X to satisfy (*CONS & 1 & 1), we would require

(SATI SFI ES-1 (*CONS *UN VERSAL *UNI VERSAL) X)

But we would also require the CAR and CDR of X to be equal. So the expanded predicate for satisfying
(*CONS &1 &1)is:

(AND (CONSP X)
( SATI SFI ES-1 *UNI VERSAL ( CAR X))
( SATI SFI ES-1 *UNI VERSAL ( CDR X))
(EQUAL (CAR X) (CDR X))

Thus, to treat descriptors containing variables, we transform them all to *UNIVERSAL for submission to
the SATISFIES-1 predicate, but then we add the requirement that all data objects whose types are
represented by the same type variable within a descriptor or segment must be equal .

But proceeding in thisway can become unwieldy. Consider the APPEND function.

( DEFUN APPEND (X )
( DECLARE (XARGS : GUARD ( TRUE-LI STP X)))
(I'F (NULL X)
Y



86 Type Checking for Common Lisp
The Formal Semantic Model

(CONS (CAR X) (APPEND (CDR X) Y))))

The signature for this function might be:

Guar d:
((*REC TRUE- LI STP (*OR $NI L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
* UNI VERSAL)

Segnent s:
(SNIL &) -> &

((*CONS &3 (*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
&2)
-> (*CONS &3 (*REC ! REC4 (*OR & (*CONS *UNI VERSAL (*RECUR ! REC4)))))

Using SATISFIES, the interpretation of these segmentsiis as follows. First, if the values x and y satisfy
the real guard of the function, then they also satisfy the guard descriptors.

for all Lisp values X and Y,

(TRUE- LI STP X)

->

( (SATI SFI ES (*REC TRUE-LI STP

(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP))))
X)
and
(SATI SFI ES *UNI VERSAL Y) )

Second, if the values x and y satisfy the real guard of the function, then one of the segmentsis appropriate.
The (SATISFIES *UNIVERSAL .) forms are unnecessary, but reflect the earlier discussion that a
variable is transformed to *UNIVERSAL with the additional equality tests added. (Here we use
"(APPEND X Y)" to denote the value returned by APPEND for the values X and Y.)

for all Lisp values X and Y,
( TRUE- LI STP X)
->
( ((SATISFIES $NIL X) and (SATI SFIES *UNI VERSAL Y) and
( SATI SFI ES *UNI VERSAL (APPEND X Y)) and (EQUAL Y (APPEND X Y)))
or
( ( SATI SFI ES
(*CONS *UN VERSAL
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
X)
and
( SATI SFI ES *UNI VERSAL YY)
and
( SATI SFI ES
(*CONS *UN VERSAL
(*REC ! REC4
(*OR *UNI VERSAL (*CONS *UNI VERSAL (*RECUR ! REC4)))))
(APPEND X Y))
and
(EQUAL (CAR X) (CAR (APPEND X Y)))
and
(EQUAL Y <<sone CDR of (APPEND X Y)>>)) )

The notion of <<some CDR of (APPEND X Y)>> obviously needs better treatment. To deal with it, we
employ a recursively defined interpreter which can handle both the type predicate issues and the equality
issues in tandem. This interpreter, defined by the functions INTERP-SIMPLE and INTERP-SIMPLE-1,
is the one upon which we base the formal semantics for our system. Given a well-formed descriptor, a
value, and a binding mapping type variables to Lisp vaues, INTERP-SIMPLE-1 returns T if the value
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satisfies the descriptor under the bindings, and NIL otherwise. INTERP-SIMPLE takes a list of
descriptors, a list (of the same length) of values, and a binding. It applies INTERP-SIMPLE-1 to
corresponding descriptor-value pairs, all under the same binding. All must return T in order for INTERP-
SIMPLEtoreturnT.

Essentially, the rules embodied in the interpreter are as follows. Any value satisfies *UNIVERSAL, and
no value satisfies *EMPTY. Any value of the appropriate primitive type satisfies a primitive descriptor.
A value satisfies a type variable if the variable is bound to the identical value in the bindings. A value
satisfies a* CONS descriptor if it isa CONS whose CAR satisfies the first argument to the * CONS under
the bindings and whose CDR satisfies the second argument. A value satisfies an *OR if it satisfies one of
the diguncts under the bindings. A vaue satisfies a *REC if it satisfies the body of the *REC with the
*REC substituted for the *RECUR form. This alows the interpreter to descend as deeply into the value's
structure as necessary, opening up the *REC descriptor as it goes. All the preceding requirements are
checked by INTERP-SIMPLE-1. INTERP-SIMPLE is employed to check that lists of values satisfy lists
of descriptors under some bindings, assuming the lists are of the same length. It could have been
integrated with INTERP-SIMPLE-1, but since lists of descriptors never appear within a descriptor,
removing it from INTERP-SIMPLE-1 simplifies case analysis in some proofs.

The functions mentioned in the guard are defined just below. As previously discussed in Section 5.1, we
give the guards on our semantic interpreter functions in the same style we implement with our E function,
so0 as to specify their proper domain. The definitions of the functions called in the guard appear in
Appendix G.5.

(DEFUN | NTERP- SI MPLE ( DESCRI PTORS VALUES BI NDI NGS)
7 Where X, Y, and (APPEND X Y) denote val ues (W use (APPEND X Y)
;; to suggest a typical application.)

;5 (INTERP-SI MPLE ' (SNIL &2 &2)
; (XY (APPEND X Y))
o ((& . Y)))
;; performs the follow ng test:
;5 (AND (NULL X)
T
(EQUAL YY)
T

s (EQUAL (APPEND X Y) Y)
( DECLARE

( XARGS : GUARD (AND (ALL- VELL- FORVED- DESCRI PTORS DESCRI PTORS)
( ALL- VELL- FORVED- VALUES VALUES)
( VELL- FORMVED- BI NDI NGS BI NDI NGS DESCRI PTORS))))
(I'F (NULL DESCRI PTORS)
T
(AND (I NTERP- S| MPLE-1 ( CAR DESCRI PTORS) (CAR VALUES) BI NDI NGS)
(I NTERP- S| MPLE ( CDR DESCRI PTORS) (CDR VALUES) BI NDI NGS))))

( DEFUN | NTERP- S| MPLE- 1 ( DESCRI PTOR VALUE BI NDI NGS)
( DECLARE
( XARGS : GUARD (AND (VELL- FORVED- DESCRI PTOR DESCRI PTOR)
( VELL- FORVED- VALUE VALUE)
( VELL- FORVED- BI NDI NGS Bl NDI NGS DESCRI PTCR) ) ) )
( CASE DESCRI PTOR
(*EMPTY NI L)
(*UNI VERSAL T)
(SNIL (NULL VALUE))
($T (EQUAL VALLE T))
( $SNON- T- NI L- SYMBOL
(AND (SYMBOLP VALUE) (NOT (NULL VALUE)) (NOT (EQUAL VALUE T))))
($1 NTEGER (| NTEGERP VALUE))
( SNON- | NTEGER- RATI ONAL
(AND (RATI ONALP VALUE) (NOT (I NTEGERP VALUE))))
($STRI NG (STRI NGP VALUE))
( $CHARACTER ( CHARACTERP VALUE))
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( OTHERW SE
(1'F (VAR ABLE- NAMEP DESCRI PTOR)
(AND ( ASSCC DESCRI PTOR Bl NDI NGS)
(EQUAL VALUE (CDR (ASSCC DESCRI PTOR BI NDINGS))))
(CASE (CAR DESCRI PTOR)
(*CONs
(I'F (CONSP VALUE)
(AND (| NTERP- SI MPLE-1 ( CADR DESCRI PTOR)
(CAR VALUE)
Bl NDI NGS)
(I NTERP- S| MPLE- 1 ( CADDR DESCRI PTOR)
(CDR VALUE)
Bl NDI NGS) )
NI L))
(*OR (I NTERP- SI MPLE- OR ( CDR DESCRI PTOR) VALUE Bl NDI NGS) )
;; OPEN- REC- DESCRI PTOR- ABSOLUTE opens a *REC descri ptor
For exanpl e,
( OPEN- REC- DESCRI PTOR- ABSOLUTE
"(*REC TL (*OR $NIL (*CONS *UN VERSAL (*RECUR TL))))
= (*OR $NIL
(*CONS *UNI VERSAL
(*REC TL (*OR $NI'L (*CONS *UN VERSAL
i (*RECUR TL))))))
(*REC (| NTERP- SI MPLE- 1
( OPEN- REC- DESCRI PTOR- ABSOLUTE DESCRI PTOR)
VALUE
Bl NDI NGS) )
(OTHERW SE NI'L))))))

( DEFUN | NTERP- S| MPLE- OR ( DESCRI PTORS VALUE Bl NDI NGS)
( DECLARE
( XARGS : GUARD (AND (ALL- WELL- FORVED- DESCRI PTORS DESCRI PTORS)
( VELL- FORVED- VALUE VALUE)
( VELL- FORVED- BI NDI NGS Bl NDI NGS DESCRI PTCRS))))
(I'F (NULL DESCRI PTORS)
NI L
(OR (I NTERP- S| MPLE-1 ( CAR DESCRI PTORS) VALUE BI NDI NGS)
(I NTERP- S| MPLE- OR ( CDR DESCRI PTORS) VALUE Bl NDI NGS))))

The (VARIABLE-NAMEP DESCRIPTOR) case, which was not present in our SATISFIES-1 function,
establishes the relationship between the variable, the value, and the binding. Note that when no variables
appear in (TD1i..TDni),

(SATI SFIES (TDLi..TDni) (V1..Vn))

is equivalent to
(I NTERP- S| MPLE (TDLi..TDni) (V1..Vn) NL)

This is the case with guard descriptors and with the segments of recognizer functions, which are always
variable-free.

Before giving the formal semantics for a signature, let us introduce a notational convention which will
help keep the exposition clean.

¢ c)Oworld,clock

Definition
This is a notational convention. Were argq .. argp
are Lisp values and aq .. apare the form
paraneters of foo, by
f ooWorld,clock

(argl.. argd
we denot e
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(E (foo aq .. an)

((ag . argp) .. (ap . argp))
wor | d
cl ock)

The formal semantics for a signature is as follows. Here, asin al our other lemmas and proofs, "I" isa
shorthand notation representing INTERP-SIMPLE when its second and third arguments are lists,
INTERP-SIMPL E-1 when these arguments are a single descriptor and value.

Definition: GOOD- S| GNATUREP ( FNDEF GUARD SEGVENTS WORLD CLOCK)

For any function foo of arity n in our Lisp subset, whose
definition is denoted

(defun foo (al .. an)

(decl are (xargs :guard guard-form)
body)

and whose SEGMENTS are denoted

((tdLl . tleﬂ -> tdq) .. ((tdnll" tdnlﬁ -> tdpyy.
for any non-negative integer clock and world containing the
above definition of foo

(good-si gnaturep foo guard segnents world cl ock)

(and
(wel | -formed-signature-1 guard segnents n)
for any Lisp val ues argq .. argp
(and

HL (not (break-out-of-tinep (foovwmﬂdeOCk(argl .. argn))))

H2 (not (null (E guard—forn1((a1 . argl) .. (an . argn)) worl d clock))))

=>

(and
C1 (not (break-guard-violationp (foo
C2 for some k in [1..n

for sone binding b of type variables to Lisp val ues
covering tdkl .. tdkn and tdk
(1 (tdKl .. tdkﬁ tdp)

world,cl ock(

WOI’ld,CIOCk( argq - . argn))))

(argl.. argn(foo
b) ) )

argq .. argp))

That is, if the guard of foo is satisfied by the values of the actual parameters arg, .. arg,, and there is
adequate clock to completely evaluate the function call, then the result of the evaluation will not be a
guard-violation break, and there is some segment for which, under some binding of all itstype variables to
Lisp values, the actual parameter values satisfy the formal parameter descriptors under the binding and the
result of evaluating the function foo on those actual values satisfies the result descriptor under the same
binding.

In the definition of GOOD-SIGNATUREP, WELL-FORMED-SIGNATURE-1 just checks that arities are
consistent, checks the well-formedness of all the descriptors, and checks that the guard descriptors are
variable-free.

Definition: VALID-FS (FS WORLD CLOCK)

(valid-fs fs world clock)

For every signature (guard segments) in fs corresponding to a

function foo of arity n in world, whose definition is denoted
(defun foo (al .. an)



20 Type Checking for Common Lisp
The Formal Semantic Model

(decl are (xargs :guard guard-form)
body),

(and (tc-all-called-functions-conplete guard-formfs)
(tc-all-called-functions-conplete body fs))

=>

(good-si gnaturep foo guard segnents world cl ock)

Thus, the signature of a function FOO in FS can be soundly utilized only if the guard descriptors of all the
functions called in FOO, including FOO itself, are complete. The guard descriptors will be complete if
the guard is a conjunction of recognizer calls on digjoint formal parameters.

When a new function is presented to the type inference system, the system’s essentia task is to formulate
asignature for which the VALID-FS predicate holds.

In Section 5.7.1, we discuss an alternate semantic model we considered which utilized signatures of the
same form but provided a different interpretation, in which all, rather than some, segments whose left
hand side was satisfied by the actual parameters yielded a correct type for the resuilt.
For an example of our semantics, consider the CDDR function, defined as follows.
( DEFUN CDDR ( X)
( DECLARE ( XARGS : GUARD ( CDDR- ABLE X)))
(CDR (CDR X)))
wher e
( DEFUN CDDR- ABLE (X)
(1F (NULL X)
(NULL X)
(1 F (CONSP X)

(1'F (NULL (CDR X)) (NULL (CDR X)) (CONSP (CDR X)))
NIL))) 2

Itssignatureis:

Quard: (*OR $NIL (*CONS *UNI VERSAL
(*OR $NI'L (*CONS *UNI VERSAL *UNI VERSAL))))

Si gnature segnents:
((*OR $NI'L (*CONS *UNI VERSAL $NIL))) -> $NIL
((*CONS *UNI VERSAL (*CONS *UNI VERSAL &1))) -> &1

Given avalue X satisfying the guard, and enough clock to complete the evaluation, either X satisfies

(*OR $NI'L (*CONS *UNI VERSAL $NI L))

and (CDDR X) satisfies $NIL (i.e., (CDDR X) = NIL), or X satisfies

(*CONS *UNI VERSAL (*CONS *UNI VERSAL *UNI VERSAL) )

and there is some value which is both the CDR of the CDR of X and the value of (CDDR X).

24
The body of this function is the I F representation of
(OR (NULL X) (AND (CONSP X) (OR (NULL (CDR X)) (CONSP (CDR X)))))]
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5.6 Other Components of the Signature

A simple example will help motivate a presentation of the formal significance of the other information
computed and stored by the inference tool. Consider a function:

( DEFUN FOO ( X)
( DECLARE ( XARGS : GUARD (CONSP X)))
(I F (CONSP (CAR X))
(CONS "CAR is a CONS' NIL)
(CONS 0 (CDR X))))

Given this function, the inference tool stores the following information.

Function: FOO
Guard conputed by the tool:

((*CONS *UNI VERSAL *UNI VERSAL) )
Guard conplete: T
Al called functions conplete: T
TC Cuard:

((*CONS *UNI VERSAL *UNI VERSAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:

(((*CONS (*CONS *UNI VERSAL *UNI VERSAL) *UNI VERSAL))

-> (*CONS $STRING $NIL))
(((*CONS (*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T)
(*FREE-TYPE- VAR 1.)))
-> (*CONS $I NTEGER (*FREE- TYPE-VAR 1.)))
TC segnents contained in Segnents: T
Recogni zer descriptor:
NI L

TC val i dates recogni zer: NL
Signature is certified sound: T

We have aready discussed the guard descriptors and segments. Let us discuss the formal aspects of the
others in sequence.

We have said informally that a guard descriptor is complete if any value satisfying the guard descriptor
will satisfy the real guard. This is the sense of the "Guard complete” flag, but this particular flag
represents a statement made by the untrusted inference tool, so it carries no formal weight and must be
viewed as no more than an interesting conjecture. Similarly, the "All called functions complete” flag
represents the inference algorithm’s statement that all the functions called in a function body have
complete guard descriptors, and this carries no formal value.

By contrast, the "TC Guard complete” flag means that the guard complies with the following definition:

Definition: The guard descriptors for a function are complete
if the guard in the function definition is a conjunction of calls
to recogni zer functions (see below) on distinct formal paraneters.
Note: When a guard is of this form then its descriptor will be
such that for any actual paraneter values, the guard wll
evaluate to a non-NL Lisp value (given sufficient clock)
if and only if the values satisfy the guard descriptor
under interpretation by |INTERP-SIMPLE. (Any binding wll
do for this interpretation, since the guard descriptor is
variable-free.) This property will be established by the
proofs of | emmas GUARD- COWPLETE and TC- | NFER- S| GNATURE- GUARD- OK
in Chapter 7.
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"TC All called functions complete" means that al functions called in either the guard or function body,
and all the functions called in those functions, and so forth throughout their hereditary call trees have this
same property. These simple claims have been validated by the trusted algorithm, and by the reasoning
embodied in Lemma GUARD-COMPLETE, presented originally in Section 3.6.1, define the conditions
under which we know that the checker’ s failure to detect a guard violation guarantees that the actual guard
will evaluateto anon-NIL value, specifically T.

The "TC Guard Replaced by Tool Guard" flag indicates that the checker opted to replace the guard it
computed itself with the guard originally computed by the inference tool. Thisis only done when three
tests are met. First, the guards must be different. (Else, why bother?) Second, the containment algorithm
must determine that the checker guard is contained in the inference tool guard. Third, the inference tool
guard must be contained in the checker guard. This mutual containment guarantees that the two guard
forms are equivalent. The reason for preferring the inference tool guard is a presumption that it isin a
nicer canonical form. This replacement rarely occurs in practice, but on rare occasions it allows for a
more compact representation of the guard.

The "TC segments contained in Segments* flag indicates the finding by TC-SIGNATURE that under
some hinding, each of the checker segments is contained in some inference tool segment. Thisisacritical
hypothesisin Lemma TC-SIGNATURE-OK, proved in Section 7.3.3.

Definition: W say a function is a recognizer if its definition
possesses all the follow ng properties:

1. It has exactly one formal paraneter.

2. Its guard is T, either explicitly or by omssion, and therefore its guard
descriptor is (*UN VERSAL).

3. It returns only T or NL, and there exists for it a correct signature
containing exactly two variable-free segnents, one with a result type of $T
and the other with a result type of $NIL, such that the argunent descriptors
of the segnents characterize disjoint sets.?®

4. The guards of all functions hereditarily inits call tree are conplete.

The "Recognizer descriptor” item, when non-NIL, indicates that the inference algorithm considers this
function to be a recognizer, and the value stored here is a descriptor characterizing the values for which
the function returns T. As it is another judgement by the inference algorithm, it has no formal
significance. However, the "TC validates recognizer" flag, stored by the checker, indicates that the
checker agrees the function is arecognizer.

Finally, the "Signature is certified sound" flag indicates that the signature can be trusted, i.e., the guard is
complete, the segments have passed the containment test, if the function has a recognizer descriptor, the
checker validated its status as a recognizer, and every function in the hereditary call tree of this one also
meets these same tests. Thisflag is never used except in computing the value of the flag for subsequently
submitted functions, and it plays no role in the formal analysis. It issimply provided as a convenience for
reading output, as its value summarizes all checks a reader would need to make in order to see that a
signature has been certified by the tool.

25

When the system admits a function as a recognizer, it establishes this digointness by computation, unifyir(ljg the argument
descriptors and checking that the result is*EMPTY. The formal justification that this test is adequate is simple and is illustrated in

the proof of Lemma RECOGNIZER-SEGMENTS-COMPLETE in Appendix B.2.
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5.7 Alternate Semantic Models

A number of semantic models were explored before arriving at the one finally adopted. Perhaps more
than any other single phenomenon, the difficulty of finding a model which suited the nature of the
problem gives evidence to the general difficulty of the problem itself, its statement, its solution, and its
proof of soundness. In this section we present several of the aternatives which received significant
thought. Perhaps by doing so we can shed further light on the problem itself. Comparison and contrast
may lead to a better understanding of the solution presented in the rest of the thesis.

5.7.1 OR Semanticsversus AND Semantics

For the sake of discussion here, | call the semantic model we finally adopted "OR semantics’, the intuition
being that for at least one, but not necessarily al, of the segments for which the actual parameters satisfy
the left hand side (or parameter descriptors), the function result will satisfy the right hand side. This
differs from "AND semantics’, which would claim that for any segment whose left hand side is satisfied
by the actuals, the right hand side would be satisfied by the result. AND semantics is the interpretation
normally used in conjunction with the"->" in type notation.

The reason OR semantics was chosen over AND semantics has to do with the nature of Lisp evaluation
and with how it affects the implementation of the type inference algorithm. Consider the function:

( DEFUN AND- OR- SEMANTI CS- EXAMPLE ( X)
(IF (EQUAL X 3)
10
(IF (EQUAL X 5)
' FOO

n))

We might wish for signature segments which would adhere to AND semantics:
($I NTEGER) -> (*OR $I NTEGER $NON- T- NI L- SYMBOL $T)

(*OR $CHARACTER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL *UNI VERSAL))
> $T

But producing a signature like this goes against the grain of an inference algorithm which will analyze the
function in Lisp’s recursive descent evaluation order. Ultimately, the results returned by the function will
be computed at the tips of its IF structure. At each tip we have a context of the types of the formal
variables, as determined by the guard and by the various I F tests through which control has passed, both in
the function being analyzed and in functions called in the body, as captured in their signatures. This
suggests that the orientation of the algorithm would be around generating a segment or a collection of
segments at these tips.  Since there can be atest like (EQUAL X 3), which is satisfied by some integers
and not others, an $INTEGER parameter could factor into more than one of these tips.

A signature for AND-OR-SEMANTICS-EXAMPLE more in harmony with recursive descent analysis
would be;
($I NTEGER) -> $I NTEGER

($I NTEGER) -> $NON-T- NI L- SYMBOL
(*UNI VERSAL) -> $T

One segment is produced for each tip of the IF tree, using the type contexts provided by the accumulated
IF tests governing the tip. This signature is not a good one under AND semantics, since it would suggest
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that if the argument were an integer, the result would be simultaneously an integer, a non-t-nil-symbol,
and T. Given a preference for generating segments, at least initially, by recursive descent as described, we
would need to significantly transform this signature for AND semantics in order to preserve much useful
information. Ideally, we would transform it to the previously stated signature. This would require an
elaborate factorization of the signature amounting to an inversion. We might, for instance, find a common
descriptor among some of the left hand sides (like $INTEGER, in this case), and form new segments, first
removing that common descriptor from all left hand sides where it occurs and then adding a segment
mapping it to the digunction of al the result types of the modified segments. In general, such
manipulations could lead to loss of information. It seems much more straightforward to define a
semantics which more neatly matches the results of arecursive descent derivation, i.e., OR semantics.

5.7.2 A More Constructive Semantics

The INTERP-SIMPLE model of semantics is of an abstract flavor because of the existential quantifier
over vectors of values. Within the quantifier, though, is INTERP-SIMPLE, which is a constructive
function. But we considered an even more constructive semantics which would have broadened the
semantic function INTERP-SIMPLE to a new function INTERP which would encompass the quantifier.
Given alist of type descriptors and alist (of the same arity) of values, INTERP would return either FAIL
or alist of bindings lists, each of which would map type variables to Lisp expressions and would exhibit
possible choices for the existential quantifier over valuesin the quantifier semantics.

Where we denote that if (INTERP (TDLli..TDni TDi) (OL..On (F OL..0On)))
does not fail, it returns bindings i1 bi m

(GUARD V1 .. Vn)
->
(I NTERP- S| MPLE (GDL..GDn) (VL1 .. VN) NIL)

and

for sone i, 1 <i <Kk,
(INTERP (TD1i..TDni TDi) (OL..On (F OL..On))) is not FAIL and
for sone j, 1 <j <£m

(I NTERP- S| MPLE (TDLi .. TDni TDi)
(V1..Vn (F V1..Vn))

bi,j)

That is, if the guard is satisfied by the actual parameters, for some segment, the guard descriptors are
satisfied by the parameters, INTERP returns a non-empty list of substitution lists mapping the variablesin
the segment to a representation of Lisp values, under which the actual parameters satisfy the parameter
descriptors in the segment and the result value satisfies the result descriptor.

To illustrate, consider again the CADR function. This interpretation means that if X satisfies the guard
descriptor

(*OR $NI'L (*CONS *UNI VERSAL (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL)))),

then INTERP will retun a singleton list containing a singleton substitution, i.e,
(((&20 . (CAR (CDR X))))). Thus, the "values" suggested by INTERP would be symbolic values, stated
in terms of the variables in the formal parameter list.

This model was rejected in favor of the INTERP-SIMPLE semantics because this model placed the
complexity of finding satisfactory vectors of values in the semantic definition functions, rather than in the
inference system. The latter seems much preferable, since the discovery process is very complex and
could involve heuristics which can be ignored formally, so long as the results they yield are checked
formally. Thus, the semantic function INTERP-SIMPLE needs only to perform this check.
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5.7.3 Other Models

We explored severa other semantic models before settling on the INTERP-SIMPLE model. In none of
the three alternate models mentioned below do we utilize the notion of value equality as the significance
of multiple occurrences of type variables. Rather, the variable represents some unspecified set of data
objects (or an unspecified recognizer function), uniformly over al occurrences, which isto say a variable
may be instantiated by another type descriptor.

The first aternate model is described in terms of sets, and appears in Appendix C, titled "A Set-Based
Semantics'. At the end of this appendix is a somewhat extended version of the discussion of OR
semantics versus AND semantics. Also included are proofs of severa properties which would have
contributed significantly to the proof of a system based on the model. This model was discarded because
of adesire for amore computational style of semantics.

Another semantic model was posed in the vernacular of functions and meta-functions. Each descriptor
corresponds to a recognizer function with a parameter for the value to be checked for satisfaction of the
descriptor. A descriptor containing type variables corresponds to a function with one extra parameter for
each type variable. These parameters are to be instantiated with functions corresponding to the type
descriptors instantiating the variables. This direction was abandoned because its meta-theoretic approach
posed more potential problems than we would encounter with a more straightforwardly computational
model. In particular, the semantic definition itself generates function definitions, a notion which could
become problematic. This direction was abandoned because its meta-theoretic approach was not, in the
end, sufficiently computational for our taste, despite its functional trappings. It is described in the
Appendix D, titled "A Function-Based Semantics".

The third model represented a final attempt to develop a computational style semantics in which type
variables could be instantiated with other type descriptors of the general form. It is described in Appendix
E, titled "A Semantics with Composed Substitutions®. The difficulties encountered with this specification
provided the impetus for moving to the semantics of variables which alowed for their instantiation only
by Lisp values, or, more precisely, by types representing single values. This appendix shows, perhaps
more clearly than the others, how we stumbled along in the process of developing the formal semantics.

All three of these models, when abandoned, were works in progress. As such, they are without doubt
imperfect. They are provided both to show the various specification approaches attempted and to
illustrate the difficulty of arriving at an approach which was appropriate to the problem and viable for
proof of the algorithm.
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Chapter 6
THE SIGNATURE CHECKER

This chapter describes the type checker algorithm, which validates signatures produced by the inference
algorithm. The inference algorithm performs a number of operations which would be very difficult to
specify and is not formally verified in any sense. In contrast, the checker employs relatively fewer and
simpler concepts and is designed with verifiability in mind. Yet it is by no means a simple algorithm. A
thorough understanding of the proof of its correctness will require an understanding of the description
provided here.

In this chapter we first present an overview of the checker and its task. The remaining sections are
devoted to describing each of the significant algorithms within the checker. With each, we present the
lemmas providing a top level specification of the algorithm, along with a detailed description of the
algorithm. In order, we will discuss the top level of the checker algorithm TC-SIGNATURE, the central
recursive algorithm in the checker TC-INFER, the unification algorithm, the descriptor canonicalization
algorithm, and the containment algorithm.

Throughout this chapter keep in mind that the "inference algorithm" is the unverified heuristic algorithm,
described in Chapter 4, which generates a function signature, and the "checker algorithm", described here,
is the one whose soundness we will formally prove.

6.1 The Top Level Specification

Let usfirst repeat the two lemmas which together make up the top level specification for the checker. The
first and most important specifies that its validation of the inference tool signatureis sound. Here, asin al
our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE when its second
and third arguments are lists, INTERP-SIMPL E-1 when these arguments are a single descriptor and value.

Lemma TC- SI GNATURE- K

For any n-ary function foo, whose definition is of the form
(defun foo (aq .. ap)
(decl are (xargs :guard guard-form)
body)
where guard-formis a conjunction of recognizer calls on distinct
formal paraneters,
for any world of Lisp functions world, including at |east the above
definition of foo and the definitions of all the functions in the
call tree of foo
for any list of function signatures fs, including signatures for
at least all the functions in the call tree of foo, except foo
itself,
for any non-negative integer clock



98 Type Checking for Common Lisp
The Signature Checker

when (tc-signature foo fs) successfully validates a signature
for foo,

HL (and (valid-fs fs world clock)
H2 (and (not (equal (guard (tc-signature foo fs))
*guar d-vi ol ati on))
(not (equal (segnments (tc-signature foo fs))
*guard-viol ation)))
H3 (tc-all-called-functions-conplete guard-formfs)
H4 (tc-all-called-functions-conpl ete+ body fs foo t) )
=>
(valid-fs (cons (tc-signature foo fs) fs) world clock)

VALID-FSisdefined in Section 5.5.

The next lemma justifies our claim about guard verification, which is that if a function’s guard is an IF
form representation of a conjunction of recognizer calls on distinct formal parameters, and if the checker
does not detect a guard violation on a call to the function, then the real guard for the function, applied to
the actual parameters of the call, will evaluateto T.

Lenma GUARD- COWPLETE

Gven a function of arity n with argunent Iist (al .. an),

and guard expression of the form

(and (Ral a]_) i (Ran an))

denoting a conjunction of calls to recognizer functions on distinct
formal paranmeters, and where the recogni zer function Rak

has the segment (rtdy) -> $t,

for any val ues argq .. argp, descriptors argtdl .. argtdn,

type variabl e binding b, non-negative integer clock, and a world of
Lisp functions including all those in the call tree of the guard
expressi on,

(and
HL (valid-fs fs world clock)
H2 (I (argtdq .. argtdy (argq .. argp b)
H3 (contained-in-interface (*dlist argtdl .. argtdn)
(*dlist rtdl .. rtdn))
H4  (not (break-out-of-tinep
(E (and (Ral al) .. (Ran an))

((aq . argq) .. (ap . argy)
wor | d
clock))) )

=>

(equal (E (and (Ral al) .. (Ran an))

((al. argl) .. (an. argn))
wor | d
cl ock)

t)

Note: For the sake of uniformity in notation, let us say that
there is one recognizer call for each paraneter, where for
paraneters which are unrestricted in the guard expressi on we
use a recogni zer (DEFUN UNI VERSALP (X) T) whose segnents

are ((*universal) -> $t) and ((*enpty) -> $nil). In

any real guard, any such recognizer call nay be omtted from
the guard without the |oss of generality of this | emma.
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6.2 Overview

The job of the signature checker is to validate the result produced by the inference algorithm. In essence,
the checker performs the n+1st iteration of the iterative approximation algorithm whose first n iterations
were performed by the main inference algorithm. But fortunately, itstask is vastly simpler than that of the
inference algorithm, for several reasons. Principal among these,

e The checker operates on a type descriptor language which is smaller than the one
manipulated in the inference algorithm.

* The checker does not need to discover any closed recursive forms.

« The checker neither needs nor attempts any special tricks to handle recognizer functions.

For comparison of the descriptor languages the two algorithms handle, see their respective BNF grammars
in Section 5.2 and Section 4.3. The checker needs to handle only the core language composed of
primitive descriptors, *EMPTY, *UNIVERSAL, variables, and constructions from *OR, *CONS, and
*REC. A number of other forms are employed in the inference algorithm in the search for closed form
recursive descriptors. Most notable among these, because of the difficulties they would introduce, are;

« *NOT, the descriptor which prescribes the complement of the type prescribed by its
argument,

* *FIX and *FIX-RECUR, the descriptors corresponding to a recursive form under
consideration for closure, and

* * AND, adescriptor which, in alimited context, prescribes the set of values corresponding to
the intersection of the value sets corresponding to its arguments.

Moreover, the checker adheres strictly to the singleton semantics for variables, which the inference
algorithm bends somewhat in the search for closed recursive forms. By the time the inference agorithm
has completed its work, all these interim forms have been discarded. Thisisfortunate, because even their
formal specification, much less proofs about their manipulation, could be very difficult. By the time the
checker receives a signature, it is expressed entirely in the core descriptor language, which is cleanly
defined with the semantic definition functions.

After the inference tool computes a signature for a function and stores it in the database, the checker
makes a single pass over the function, performing its own version of the type inference algorithm to get a
new signature. In does so under the assumption that the signature segments which were formulated for
the function by the inference agorithm are correct, under a rationale discussed briefly below. Since the
guard contains no recursive calls to the function in question, the checker can formulate its own guard
descriptors, using only verified signatures. It need not and does not make any assumptions about the
correctness of the guard descriptors derived by the inference algorithm. It uses its own guard descriptors
to formulate the initial type assumptions for analyzing the function body and to do guard checking on
recursive calls.

After obtaining its own signature, the checker then performs a crucial test, using the predicate
CONTAINED-IN-INTERFACE. It checks that for each segment in the checker signature, some binding
of type variables to values exists such that under the binding, the segment is contained in some segment
from the inference tool signature. If thisis the case, and if the guards are complete for this function and
every function in its call tree, then we consider the inference tool signature validated. Since the checker
algorithm and the CONTAINED-IN algorithm are proven correct, if the signature passes these tests, we
have full assurance of the correctness of the signature.

It is counterintuitive to consider using, for a recursive function, a signature we do not trust as the basis for
deducing a signature which we do trust, since it seems that if the initial signature is incorrect, we are
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predicating our entire analysis on a false assumption. But imagine the graph of a recursive function as
being the union of the graphs of an infinite number of non-recursive functions, with the first being the
empty function, the second being the ordered pairs formed by cases where the function terminates without
recursion, the next being cases where it terminates with one recursion, and so forth. For a given function
f, call these non-recursive functions 0, f1, 2, .. f1. Each function definition f' is non-recursive in the
sense that it is formed by replacing the recursive calls of f with calls to =1 An inductive argument,
explained in detail in Section 7.2, can be used to demonstrate that if a containment relation holds between
the signatures for f™21 and 1, then the signature for " is a sound approximation for the graph of f. The
inference algorithm computes the signature for 7, and the checker computes the signature for i+l

If the containment relation holds, it means that the checker signature is a better approximation of the real
function graph than the inference tool signature. Why, then, do we use the inference tool signature as our
permanent result? The reason is that the inference tool signature is in a relatively compact form. By
contrast, the checker signature usually reflects an expansion of cases with respect to the base signature.
For each segment in the base signature, there may be many segments in the checker signature. Moreover,
the type descriptors in the checker signature may be larger, reflecting, for example, the opening of a* REC
descriptor. Furthermore, there may be a combinatorial explosion in the factoring of possible cases among
the formal parameter descriptors. We sacrifice compactness in the checker signature for simplicity in the
checker algorithm, where the soundness and the clarity of the code and its proof of correctness are
primary requirements. So while the checker signature may be marginally more accurate than the original,
we would pay a severe price in case explosion if we used it rather than the inference tool signature as our
permanent reference. Since our proof validates the soundness of both, we choose the latter for the sake of
efficiency asthe basis for further inference computations.

The signature checker, like all the rest of the inference system implemention (save the highest level
interactive function, which modifies the system state as functions are added) is written as a composition of
purely applicative Common Lisp functions.

We will factor the detailed discussion of the checker algorithm into components, corresponding to its
principal functional composition. Each component will be discussed in a separate section. The top level
of the checker, invoked by caling TC-SIGNATURE, is discussed first. The top level function for
deriving the checker’s signature from the function text and the inference algorithm’s signature is TC-
INFER-SIGNATURE. The principa recursive function of the checker algorithm, the one which actually
traverses the function guard and body, is TC-INFER. This central algorithm will be discussed and
specified next. As with the inference agorithm, one of the main internal algorithms of the checker isits
unification algorithm for type descriptors. We will outline how unification occurs and give the formal
specification for the unifier, whose top level function is DUNIFY-DESCRIPTORS-INTERFACE. Next,
we will discuss the checker’s type descriptor canonicalization routines, which are employed throughout
the checker. Finaly, we will discuss the containment algorithm, whose top level function is
CONTAINED-IN-INTERFACE. This algorithm provides the test which validates the correctness of our
signature.

6.3 TheTop Level of the Checker

TC-SIGNATURE, the top level function of the checker, essentially solicits and packages the results of the
checker’sanalysis. Thetop level functionsin the checker do the following.
1. Initiadly, they transform both the guard and the function body, using the function
TC-PREPASS. TC-PREPASS normalizes IF forms by transforming them so the IF test (the
first argument of the IF) always returns either T or NIL, and by performing the obvious
simplification if the resulting predicate form is either of the constants T or NIL. Typicaly,
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normalization consists of wrapping two calls to NULL around the test, if necessary. For
technical reasons, the inference tool can be more precise when IF tests aways return T or
NIL. A simple example giving intuition about why thisistrue iswhen aformal parameter X
appears as a test. Suppose in the context of the IF, X has a type which includes $NIL and
some other possibilities. For example,

(*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))

If X were left bare, barring the special treatment of IF which would complicate the
semantics of the checker, the segment for the IF test would be the single segment whose
result is the type of X. Aswe shall see later in the discussion of the checker algorithm, the
type context would not be refined for X in the THEN and ELSE arms. But transforming the
IF test to (NULL (NULL X)) tricks the checker into refining the context as a result of
applying the segments for NULL. The forma soundness property of TC-PREPASS, which
is stated in Lemma TC-PREPASS-OK and proved in Appendix B.1, is that in any
environment and for any form, evaluating the prepassed form in the environment produces
the same value as evaluating the origina form in the environment. The definition of
TC-PREPASS appearsin Appendix G.6.

2. We determine whether the guard descriptors are complete. Thisis an entirely syntactic test
on the guard expression, requiring only the knowledge of what functions in the world are
known to be recognizer functions. A recognizer call is either a call to a recognizer function
(See Section 5.6) or an equality test of the form (EQUAL <param> <vaue>) or
(EQUAL <vaue> <param>), where <param> is one of the formal parameters and <value> is
either T or NIL (the only singleton primitive types). The guard descriptors will be complete
if the guard is an IF form representation of the conjunction of recognizer calls on the formal
arguments, with no argument subject to more than one such call. For example, the IF form
representation of

(AND (I NTEGERP X) (CONSP Y) (CHARACTERP 2))

is:

(IF (INTEGERP X) (IF (CONSP Y) (CHARACTERP Z) NIL) NIL)

Though this restriction in form may on the surface seem more onerous than that employed in
the inference algorithm, it is usually the case that a user could transform a guard conforming
to the inference algorithm regimen to one which suits the checker’ s rules.

3. We determine whether all the functions called in the body have complete guards. Stored
with each function in the database is a flag which indicates whether its guard is complete
according to the checker regimen above?® So this check is just a lookup on all called
functions.

4. Regardless of whether the guard is complete, we derive the vector of guard descriptors. We
do this by first obtaining segments for the guard by calling TC-INFER on the prepassed
guard form with an abstract association list (or alist) simply associating a new type variable
with each formal parameter, and with a concrete alist associating * UNIVERSAL with each
formal. (Section 6.5 will describe the significance of these alists and clarify some of the
following.) If aguard violation is found in the guard itself, we note this and do not attempt
to validate the function segments. But in the normal case, we next gather all the maximal
segments for which the result descriptor is anything other than $NIL, replace all occurrences
of singleton variables (i.e., a variable which appears only once within a segment) with
*UNIVERSAL, abort the computation if there are any remaining variables, and then form a
vector of guard descriptors, one for each argument, by *OR-ing the contexts of the
qualifying segments together and canonicalizing.

%6The flag for the current function is passed in as a parameter, since it has not yet been stored in the system database.
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5. If no guard violation is found in the guard, we derive the checker segments for the function
body by calling TC-INFER with the body, the same abstract alist as with the guard, and a
concrete alist pairwise associating each parameter with its guard descriptor, or if the guard
descriptor is *UNIVERSAL, with the variable from the abstract alist. If aguard violation is
detected in this analysis, we simply note such as the result. Otherwise, we return the list of
maximal segments computed by TC-INFER. (For a discussion of maximal segments, see
Section 6.5.

6. The inference algorithm also computed and stored a guard descriptor. In rare cases, the two
guard descriptors are equivalent but different. In these cases, more often than not, the
inference algorithm descriptor is in a nicer form, meaning that it may not contain some
redundancy that the checker guard descriptor has. So there is an advantage in using the
inference algorithm guard as the "officia" one, in the sense that it is the one which will be
used for al subsequent purposes. If the two guard descriptors are different, the checker
determines whether they are equivalent by administering the containment test (described
below in Section 6.8) in both directions. If each is contained in the other, they may be used
interchangeably, so the tool chooses to use the inference algorithm guard. If either test fails,
the checker’s guard will be the one used for all subsequent purposes.

7. We administer the containment test for the checker segments, as described above. |If
containment is not determined, we declare the signature to be unsound, and do not bother to
proceed.

8. If the segments are properly contained, then we check to see if the inference agorithm noted
that the function being analyzed is a recognizer. If so, the checker validates this fact by
doing the following tests on the now-validated segments in the inference tool signature.

a. There must be no type variables in the segments.
b. There are two segments, one with a $T result and the other with a$NIL resuilt.

¢. We unify the argument descriptors of the two segments, and the result must be
*EMPTY, signifying that there is no overlap of the domains for the two segments.

9. Finally, we return a structure which encapsulates al we have learned, with flags denoting
the results of the various tests just performed. It is a 7-tuple, containing the checker guard,
the guard containment flag, the guard complete flag, the ALL-CALLED-FUNCTIONS-
COMPLETE flag, the checker segments, the segments contained flag, and the flag denoting
whether the function was validated as a recognizer. (These flags were defined in Section
5.6.)

The interpretation of these results is that if all the above flags (excepting possibly the RECOGNIZERP
flag) are T, then the signature is perfect, in the sense that it fully satisfies the formal specification
GOOD-SIGNATUREP for function signatures. As such, it may be employed as part of avalid fsto make
sound inferences in deriving the signatures of succeeding functions.

The formal specification of the top level of the checker is given by Lemmas TC-SIGNATURE-OK and
GUARD-COMPLETE, which were presented in Section 6.1.

6.4 Guard Verification

In E, our model of evaluation for our Lisp subset, on every function cal, we first bind the formal
parameters to the actual parameter values, then evaluate the guard form of the called function in that
binding environment. If the guard evaluates to NIL, a guard violation error occurs. If the guard evaluates
to anon-NIL value, the body of the function is evaluated, and the value returned from the function call is
the result returned from that evaluation. The native functions in our dialect are defined as subrs, meaning
that if the guard evaluates to a non-NIL value, the value returned is computed by a table lookup, and no
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error can occur.2’

Imagine imposing a requirement on new function definitions that this property is preserved, i.e, that if the
guard for a function is non-NIL when evaluated on some actual parameters, then we are assured the
function body will evaluate without error and return avalue. Thus, roughly speaking, the function guard
safely captures the domain restriction of a partial function. The purpose of guards in our Lisp subset,
then, is to provide a predicate for specifying conditions on the arguments to a function which will
guarantee that, if the function is called with arguments satisfying the predicate, evaluation of the function
will proceed without error and produce a value.

The notion of verifying a guard is one of discharging the proof obligations necessary to demonstrate for a
given function call in a function definition, that for any possible values of the definition’s parameters, the
guard form for that function will evaluate to a non-NIL value. There is one such obligation for each
function call appearing in the definition of the function. The obligation says that the actual parameters
satisfy the called function’s guard under the assumptions derived from the | F tests governing the function
call. For function callsin afunction body (as opposed to function calls appearing in the guard form), we
can also assume that the function’s guard evaluated to anon-NIL value.

Assurance of the guard property would require a regimen where part of the process of defining a new
function is discharging the guard proof obligation for each function call it contains. Together with a proof
of termination, this would be sufficient to have the assurance we seek. This is because for functions
called non-recursively, all guard proof obligations have already been discharged, so by satisfying the
guard of each such function, we have satisfied the assumptions made in those proof obligations. For the
recursive calls, the same argument applies, but the justification involves a computational induction on the
arguments. Thisisessentialy the strategy employed in the devel opmental Acl2 system [Boyer 90].

Using the evaluation model defined by our evaluator function E (in Section 5.4), we can prove that guard
validation regimen just described is sufficient to guarantee the no-error property we hypothesized.
Lemma GUARD-COMPLETE provides the basis for the inference system’s role in performing guard
verification, which is ultimately stated in Lemma TC-SIGNATURE-OK. Whenever the guard of a
function is stated as a conjunction of recognizer calls on distinct parameters, and likewise throughout the
call tree of the function, then our type inference system, by generating a signature without detecting a
guard violation, satisfies all the guard proof obligations for our new function.

We could imagine our system accomplishing the verification of guard proof obligations by acting in one
of at least two different roles. One way would be to view the inference system as generating and relieving
each proof obligation implicitly as it analyzes a new function definition, as it does now. The other would
be for some external proof obligation generator to formulate the proof obligation as an implication (cast as
an |IF form), and then to use the inference tool to derive a typing for that form whose result would be
digoint from $NIL. (Since recognizers are Boolean, the result would be $T.)

The stylistic constraint imposed on guards as a requirement for completeness is consistent with the
capabilities of the type system. It does not allow for relations between the types of various arguments,
such as

(OR (I NTEGERP X) ( SYMBOL-ALISTP V))

2T lternatively, they could have been defined in terms of “sub-primitive" functions which are guaranteed to evaluate without error
and return a value whenever the guard is satisfied. This strategy might be used for an implementation of our Lisp subset.
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or

(MEMBER X )

as such restrictions make a link between the types of two variables which cannot be represented by the
guard vector. It does not allow for guard expressions which depend on non-type-theoretic information,
such as (PRIMEP X).28 It also rules out some guard expressions where our guard descriptor is
sufficiently precise, but in these cases, the requisite predicate could be re-phrased as a conjunction of
recognizer calls. There are unlimited examples of this phenomenon, but to illustrate, the guard

(AND (CONSP X) (TRUE-LISTP X))

which would be rejected as not being complete because it is a conjunction of recognizer calls on
non-distinct parameters, could be recast as afunction call

( PROPER- CONSP X)

where, PROPER-CONSP, defined as follows, would qualify as a recognizer function:

( DEFUN PROPER- CONSP ( X)
(IF (CONSP X) (TRUE-LISTP X) NIL))

Another example is the guard (NOT (CONSP X)), which could also be encapsulated as a function which
would qualify as a recognizer. So, many guards which do not satisfy the type system’s requirements for
guard completeness can be transformed into satisfactory guards via proper encapsulation.

6.5 The Central Algorithm TC-INFER

The central function in the type checker is TC-INFER. TC-INFER takes four arguments, a Lisp FORM
being analyzed, an abstract type alist ABS-ALIST, a concrete type aist CONC-ALIST, and the database
of function signatures, FS (FUNCTION-SIGNATURES in the code). It returns a list of 3-tuples, where
each tuple is composed of a minimal segment, a concrete type dist, and a maxima segment.?® Both
minimal and maximal segments are of the same form, i.e, if the function we are checking has n
arguments, each is an (n+1)-tuple of type descriptors, but can carry slightly different information. The
concrete type alist has n entries and characterizes the types of the Lisp formals when the segment is a
possible choice. It is sometimes more restrictive than the CONC-ALIST parameter, as we shall see later.

An ABS-ALIST associates each formal parameter with a descriptor, where this descriptor is typicaly a
type variable or a structured descriptor with type variables embedded. A CONC-ALIST associates each
formal with a descriptor which is typically biased toward descriptors other than variables (though
variables are not excluded). Similarly, minimal segments are biased toward variables, and maximal
segments biased toward other descriptors.

The need for variables is to capture the transfer of a particular piece of data from the parameters to the
result, as with the application of a function like CAR. But often the advantage of variables is lost, for
instance when their manipulation would force them into the recursive depths of *REC descriptors, where

%t is not sufficient for the argument to be an integer, and the type descriptor language could not capture the characteristic that a
given integer is a prime number.

2The terms "minimal” and "maximal” are somewhat arbitrarily chosen. The sense of it is that the maximal segments carry the
maximum information about type structure, while the minimal segments have a bias toward the use of type variables, emphasizing
value sharing rather than type structure.
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they are not allowed. Thus, it is frequently more desirable to carry the best information we can without
variables, as with the concrete alist and the maximal segment. Were it not for a weakness in the type
descriptor language, we might be able to satisfy both needs simultaneously. |f the descriptor language had
a construct for denoting that an object in a particular position is both identified with a type variable and
characterized by another kind of descriptor [for example (*BOTH &1 (*CONS $INTEGER $NIL))], then
there would be no need for the dichotomy of representation in the checker. But attempts to support this
kind of construct were aborted because of the complexity it introduced into an aready very complicated
system. Given that there is no blended construct, the checker compensates by carrying multiple
representations of both the formal parameters of the function and the segments produced by the checker.

6.5.1 The Formal Specification

The formal specification for TC-INFER is in terms of the function INTERP-SIMPLE, which establishes
the consistency of Lisp values with type descriptors under a binding environment for the type variables in
the descriptor. Essentialy, the specification is that for any values supplied for the variables in the
environment (i.e., those in the alists), if we have avalid database of signatures, avalid ABS-ALIST, and a
valid CONC-ALIST, if the checker does not detect a guard violation, the guards of all the functionsin the
call tree of the form are complete, and clock is sufficient to allow a full evaluation of the form in the
binding environment, then evaluation of the form will not result in a guard violation, and TC-INFER
produces a valid list of 3-tuples. An ABS-ALIST or CONC-ALIST is valid if for each variable in the
environment, the descriptor associated with the variable correctly characterizes the value of the variable,
as witnessed by INTERP-SIMPLE. A list of 3-tuplesisvalid if there is at least one tuple in the list such
that the CONC-ALIST and both the minimal and maximal segments are valid with respect to the values of
the variables in the environment and the value produced by evaluating the form in that environment.
Segment validity is also defined in terms of INTERP-SIMPLE. The segments in the conclusion may
contain variables not in the original hypotheses, since variables can be imported with the segments for a
called function. Thus, the type variable binding used by INTERP-SIMPLE in the conclusion may be
different from the one in the hypotheses, but it is an extension of the original, meaning that all the
individual variable-value pairs in the original are also in the extended binding. Here, asin al our other
lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE when its second and third
arguments are lists, INTERP-SIMPLE-1 when these arguments are a single descriptor and value.

Lemma TC- | NFER- OK
For any Lisp formform function signature list fs, Lisp world world

including all functions hereditarily in the call tree of form
for any non-negative integer clock, type variable bindings b,

Li sp val ues argq .. argm

Li sp vari abl es aq .- amy

bi ndi ng environment env of the form((al. argl) .. (am. argm))
wher e aq .. amincl ude all the free variables in form

ABS- ALI ST of the form((al. tdal) .. (am. tdam)),
CONC- ALI ST of the form((al. tdcl) .. (am. tdcm)),
and denoting
(tc-infer formabs-alist conc-alist fs)
b
{((m ntdlll .. m'ntdl,m m'ntdl)
((al. tdconclyl) .. (am. tdconclym))
(maxtdlyl .. rthdl,m rraxtdl))

((mi ntdnp .. mntdy g mntdg
((al. tdconcn,l) .. (am. tdconcn’m))
(rraxtdn':L .. maxtdn'm rraxtdn)))

Hl (and (valid-fs fs world clock)
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H2 (1 (tdal .. tdam) (argl .. argn.p b)
H3 (1 (tdcl .. tdcm) (argl .. argm) b)
H4 (not (equal (tc-infer formabs-alist conc-alist fs)
*guar d-vi ol ation))
H5 (tc-all-called-functions-conplete formfs)
H6 (not (break-out-of-timep (E formenv world clock))) )
=>
(and
C1 (not (break-guard-violationp (E formenv world clock)))
c2 for sone i,
for sone binding b’ covering the descriptors bel ow,
(and (I (m ntdi 1 m'ntdi m mntdi)
(argq .. argy (E formenv world clock))
b*)
(I (maxtdjq .. maxtdj p mextd;)
(argl S.oargm (E formenv world clock))
b")
(1 (tdconcil .. tdconcin.p (argl .. argm) b")
(extends-binding b’ b)) )
Not e:

Hl establishes that the signatures in the systemstate fs are valid.
establishes that the abs-arglist is valid.

establishes that the conc-arglist is valid.

establishes that no guard violations are detected in the

course of analyzing form

establishes that the guards of all functions in the call tree

of formare conplete.

establishes that the evaluation of formterninates without
exhausting the clock.

& & EoS

6.5.2 Detailed Description of TC-INFER

The Lisp diaect which the inference system supports is smple. There are only four different kinds of
forms: variables, quoted forms (including self-quoting forms like integers, strings, T, and NIL), IF forms
of arity three, and function calls. This section will describe how TC-INFER handles each of these.

Recall that TC-INFER takes as arguments one of these Lisp forms, an ABS-ALIST and a CONC-ALIST,
both association lists mapping the variables in the environment to type descriptors, the name of the
function in which the form occurs, the guard descriptor for that function, and the system state, FS. (FSis
the name used to refer to the state in the exposition and proof. FUNCTION-SIGNATURES is the name
used in the implementation code.) The function name and guard descriptor are used only to perform
guard verification on recursive calls; the name allows recognition that a function call is recursive, and the
guard must be provided as a parameter because the guard computed by the checker for the current
function is not in FS. TC-INFER returns a list of 3-tuples, where each tuple is composed of a minimal
segment, a concrete aist, and a maximal segment:

(((tdajq..tdaj p -> tdaj) << the mniml segment >>
((Vl' tdvl) . (vn. tdvn)) << the concrete alist >>
((tdci 1 .tdci n) -> tdci) << the maxi mal segnent >>

where n = the arity of the function being checked

(The "->" isincluded as a reading aid. It is not actualy part of the data structure.) The concrete alist
represents the type context in which the segments were computed.

Variable occurrences are easy. We simply look up the type in the type alists. We return alist of asingle
3-tuple, as follows. The minimal segment’s context component is the list of the types of the parameters,
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drawn from ABS-ALIST, and its result component is the type associated with the variable in question,
also taken from ABS-ALIST. The concrete alist in the tuple is the same as the input CONC-ALIST. The
maximal segment’s context component is the list of parameter types, taken from the CONC-ALIST, and
the result is the type associated with the variable in CONC-ALIST. For example,

(TG INFER 'Y ; FORM
(X . &) (Y. &2)) : ABS-ALI ST
"((X . $INTEGER) (Y . (*OR $NIL $T))) ; CONG- ALI ST
" FOO ;. FNNAMVE
" (*UNI VERSAL *UNI VERSAL) ; GUARD
FS)
((((&1 &2) -> &2) << the mniml segnment >>
((X . $SINTEGER) (Y . (*OR SNIL $T))) << the concrete alist >>
(($INTEGER (*OR $NIL $T)) -> (*OR $NIL $T)))) << the maximal segnment >>

Thus, both segments map objects of the types indicated by the respective type alists to the binding of Y in
those dlists.

Quoted forms are also straightforward. As recognized by a simple predicate, a quoted form is either an
integer (as determined by the Lisp function INTEGERP), T, NIL, arational literal as determined by the
Lisp function RATIONALP, a character (CHARACTERP), a string (STRINGP), a keyword
(KEYWORDP), or a CONS whose CAR is the atom QUOTE. The descriptor is constructed by the
function DESCRIPTOR-FROM-QUOTE, whose definition appearsin Appendix G.7. The result returned
by TC-INFER is constructed exactly as with the identifier case, except that the descriptor constructed by
DESCRIPTOR-FROM-QUOTE appears in the result component of both segments instead of the type
descriptor extracted from the type alists. Lemma DESCRIPTOR-FROM-QUOTE-OK provides the
soundness specification for DESCRIPTOR-FROM-QUOTE.

Not surprisingly, function calls are the most involved case. First TC-INFER calls itself recursively on all
the function arguments, using the sametype aists. If *GUARD-VIOLATION isreturned for any of them,
it returns* GUARD-VIOLATION.

Next, it checks for a guard violation on the function being called. From the recursive calls of TC-INFER
noted above, each actual parameter has associated with it a list of triples, each of which may have a
different result type. For each parameter, all these result types are combined using *OR, and the result
canonicalized. A vector, of the arity of the argument list and representing the possible types of the
arguments, is constructed from these results. All variables in the vector are transformed to
*UNIVERSAL. Note that both this universalization and the * OR combination are operations which, if
anything, enlarge the collection of values represented in the descriptors. Having thus prepared this vector
representing a conservatively large set of possible values for the actual parameters, we employ the
containment relation, calling CONTAINED-IN-INTERFACE, to ascertain if our actual parameter vector
is contained in the vector of guard descriptors computed for the function. If not, we are unable to
demonstrate that a guard violation will not occur, so we return the atom *GUARD-VIOLATION,
effectively terminating the inference process.

Now comes the task of generating appropriate segments. The genera idea is to consider each possible
type configuration for the actual parameters in conjunction with each segment for the called function to
determine a set of possible results for each compatible combination. The operation which performs this
joint consideration is descriptor unification. We unify two vectors, one containing information about the
actual parameters and calling context, and the other containing information from the function signature.
The values represented in the vectors are the values of the variables in the context, the values of the actual
parameters, and the value of the result.
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Finding each possible type configuration for the actuals is a complex operation when there is more than
one actual parameter, since each parameter may be associated with multiple segments, and each segment
may have a different context description, i.e., each segment may be the result of a different type
configuration for the variables in the environment. The contexts derived for one parameter are not likely
to neatly match the contexts for another parameter. So to determine the collection of possible contexts,
we perform across product operation.

The top level function of the cross product operation is TC-MAKE-ARG-CROSS-PRODUCT. It hasa
single parameter, ARG-RESULTS, which is a list whose length is the arity of the function being called,
and whose elements are the lists of 3-tuples returned by TC-INFER on the respective arguments. The
operation takes place in two phases, where first we re-organize the datain ARG-RESULTS to prepare it
for the second phase, the combining operation.

Everything is best illustrated with an abbreviated example, in which we use the following notation. c1..c6
represent minimal segment contexts, each being a vector of descriptors of length equal to the number of
formal parameters in the function being analyzed (not the function being called). rl..r6 represent the
corresponding segment result types. The alistij are the concrete alists from the 3-tuples. The maxsegij are
the maximal segments, which are ignored for the formation of not only the cross product but even for the
value of TC-INFER on a function call. The aistij-rhs are vectors of descriptors composed of the right
hand sides of the dists alistij. In our example, the function being called has three arguments, the first
argument produced three 3-tuples, the second argument just one, and the third argument two. Thus, we
have

ARG RESULTS = ((((cl ->r1) alistll maxsegll)
((c2 ->r2) alistl2 nmaxsegl?2)
((c3 ->r3) alistl3 maxsegl3l))
(((c4 ->r4) alist2l maxseg2l))
(((c5 ->r5) alist31l maxseg31l)
((c6 -> r6) alist32 maxseg32)))

The re-organization of ARG-RESULTS produces the following structure, a list of length equa to the
number of (order-preserving) combinations of segmentsin ARG-RESULTS, whose elements have arity of
the function being called (in this case 3).

(((cl (r1) alistll-rhs) (c4 (r4) alist21l-rhs) (c5 (r5) alist31l-rhs))
((cl (r1) alistll-rhs) (c4 (r4) alist2l-rhs) (c6 (r6) alist32-rhs))
((c2 (r2) alistl2-rhs) (c4 (r4) alist2l-rhs) (c5 (r5) alist31l-rhs))
((c2 (r2) alistl2-rhs) (c4 (r4) alist2l-rhs) (c6 (r6) alist32-rhs))
((c3 (r3) alistl3-rhs) (c4 (r4) alist2l-rhs) (c5 (r5) alist31-rhs))
((c3 (r3) alistl3-rhs) (c4 (r4) alist2l-rhs) (c6 (r6) alist32-rhs)))

The second phase of the cross product operation is to take each triple and smash it into one form, using
DUNIFY-DESCRIPTORS-INTERFACE (described in Section 6.6), rejecting empties and duplicates, so
wereturn alist whose elements are al distinct and of the form

((c -> (ri rj rk)) alist)

where c is the unification of the contexts from the triple, (ri rj rk) isthe list of result values from the triple,
and alist is the unification of the conc-alists.

For example, thefirst triple in the intermediate structure yields alist of results of the form

((c ->(rlr4 r5)) alist-rhs)

where c is a unification of cl1, ¢4, and c5, and alist-rhs is a unification of alistl1-rhs, alist21-rhs, and
aist31-rhs. Thereisalist of such forms because if the unification of c1, c4, and c5, and the alists returns
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an *OR, we construct a result for each disunct, which in general means we returns alist of results. If the
unification is not an *OR, the list is of length one. Since unification is a binary operation, the unification
of the triple occurs pairwise. First we unify

(cl (r1 *universal) alistll-rhs)

and

(c4 (*universal r4) alist2l-rhs)

(Actually, we flatten these structure and prefix them each with *DLIST, so the unification can be handled
as a simple unification of descriptor lists. Notice the padding of the second element of each piece, since
each ri represents a distinct actual parameter in our function call. Then each result is further padded and
unified with

(c5 (*universal *universal r5) alist31l-rhs))

Thus, the grand result of the cross product operation is a profile of possible types for our actual
parameters, including the types of the Lisp variables in the context under each scenario. Theresultisalist
of forms which represent all the combinations of type descriptors characterizing the types of variablesin
the environment and the types of the actual parameters to our function call, along with the concrete alist
appropriate to each combination. In the sense that unification is a narrowing operation which excludes
from its result pieces of the world which are not common to both parameters, the parts which are excluded
here represent combinations of variable and parameter types which cannot possibly occur.

Having taken the cross product, the next phase of handling a function call is to unify each result with each
of the signature segments for the function being called. Thiswill allow us to project a type for the result
of the function call. The unifier, given two vectors of length i, will produce a (possibly empty) list of i-ary
vectors. Our vectors correspond to the following configuration:

(vtdl..vtdn ptdl..ptdn]rtd)

where n = the nunber of variables in the context
m = the nunber of paranmeters in the function cal
vtdj = the descriptor characterizing the i-th variable
in the context
ptd; = the descriptor characterizing the j-th paranmeter of the
function cal
rtd = the descriptor characterizing the result of the function
cal

Now consider the two vectors that we unify to produce such configurations. The first vector, which
characterizes information from the calling context, is specifically of the form:

(ctdl..ctdn atdl..atdn]*univerSM)

where ctd; is the descriptor for the jth variable in

the environment, fromthe cross product el enment
atdk is the descriptor for the kth actual paraneter

al so fromthe cross product el ement
*uni versal represents the type of the function call result
wi thout constraining it

The vector derived from the signature segment is as follows:
(*universall .. *universaln ftdl..ftdn]rtd)

where each *universali represents the types of the variables
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in the environment w thout constraining them
ftdk = the descriptor fromthe segnent characterizing

the type of the kth formal paraneter
rtd = the descriptor fromthe segnent characterizing the result

The key function which constructs these vectors, unifies them, and composes the resulting 3-tuples is
TC-MATCH-ACTUAL-HALF-SEG-TO-FORMAL-SEG.

After doing this unification, we are close to having our results for the function call. Given our unification
result, we need to compose a list of 3-tuples for our final result. (Remember that we perform the above
unification once for each pairing of cross product results and signature segments, so there may be many of
these cases to consider. All the resulting 3-tuples will be gathered into a single list to be returned by
TC-INFER.) Each of the single unified vectors from the segment-matching unification will ultimately
produce a list of result 3-tuples. This is because one final unification needs to be performed in order to
construct the maximal segment. For each of these vectors, however, we aready have the contents of the
minimal segment and the concrete alist. The minimal segment is composed directly from the segment-
matching vector. Its context is the first n descriptors in the vector, i.e., the ones corresponding to the
variables in the environment. The result descriptor is taken from the fina descriptor in the vector. The
concrete alist returned with each tuple is the one from the cross product element which contributed to this
result.

Computing the maximal segment is what requires the last unification. We need to inject the type
information from the concrete alist of the 3-tuple into its minima segment. So we unify the (flattened)
minimal segment with a vector formed by the right hand sides of that concrete aist and a*UNIVERSAL
descriptor, the latter corresponding to the result type. If the unification produces no results, this means
that the bindings of the identifiers in the CONC-ALIST are incompatible with this particular result from
the segment-matching unification, and so no 3-tuple is returned for this combination. |f multiple results
are produced, we make a 3-tuple for each one. The maximal segment is constructed directly from the
vector returned by thisfinal unification.

Obviously, given the right descriptors in the setting of a function call, quite a case explosion can occur.
Even though the checker’s operations on function calls are fairly complex, they would be much more
complicated if steps were taken to minimize the propogation of cases. This is the price of keeping the
algorithm "simple". The payoff isin relative clarity of the code and the soundness proof.

An concrete example showing the steps described above for a function call appears just below in Section
6.5.3.

Having dispensed with function calls, we need only cover |IF expressions to finish the discussion of
TC-INFER. TC-INFER's handling of IF expressions is relatively straightforward. Firdt, it calls itself
recursively on the first argument of the IF, the test form, with the same alists provided for the IF. Here, as
with any other point in the computation, if the guards fail to be validated for any function call, * GUARD-
VIOLATION isreturned and percolates back to the top level call.

The analysis of the IF test returns the usual list of 3-tuples. Each element of thislist provides a context for
considering the THEN and EL SE forms. For each result, if the result type (as characterized by the result
component of the maximal segment) can possibly be something other than NIL, then we call TC-INFER
recursively on the THEN form, with the sasme ABS-ALIST and with a CONC-ALIST formed from the
context descriptors of the maximal segment. Likewise, if the result type can possilby be NIL, then we call
TC-INFER recursively on the ELSE form. All the resulting segments, from these recursive calls for each
context provided by the TEST form, are appended to form the result for the IF form.
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6.5.3 Example -- TC-INFER Handling a Function Call

This section contains a pedagogical example detailing the steps which TC-INFER takes in handling a
function call. A full, general discussion of the algorithm appears in Section 6.5.2 above. The best way to
read this section would likely be to follow the description in that section along with each illustrated step in
the example below.

Consider that our database aready includes the following collection of functions, whose signatures, as
computed by the inference system, are provided. Recognizer descriptors are shown where appropriate.
Note that we use the "->" in this section to separate the left and right hand sides of a segment. Thisis for
descriptive purposes only. The"->" does not appear in any concrete representations of segments.

( DEFUN BAR- Y- GUARDP (Y)
(IF (INTEGERP Y) T (CHARACTERP VY)))

Functi on: BAR- Y- GUARDP
TC CGuard:

(* UNI VERSAL)
Segnent s:

(((*OR $CHARACTER $I NTEGER)) -> $T)

(((*OR $NI'L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL $STRI NG $T

(*CONS *UNI VERSAL *UNI VERSAL) ))
-> $NIL)
Recogni zer descriptor:
(*OR $CHARACTER $I NTEGER)

( DEFUN BAR (X Y)
( DECLARE (XARGS : GUARD (I F (TRUE-LISTP X) (BAR-Y-GUARDP Y) NIL)))
(IF (NULL X)
NI L
(CONS Y (BAR (CDR X) ))))

Function: BAR
TC Guard:
((*REC TRUE-LI STP (*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LI STP))))
(*OR $CHARACTER $I NTEGER))
Segment s:
(($NI'L (*OR $CHARACTER $I NTEGER)) -> $NIL)
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
$CHARACTER)
-> (*CONS $CHARACTER
(*REC 'REC8 (*OR $NIL (*CONS $CHARACTER (*RECUR ! REC8))))))
(((*CONS *UN VERSAL
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE- LI STP)))))
$I NTEGER)
-> (*CONS $I NTEGER
(*REC 'RECO (*OR $NIL (*CONS $I NTEGER (*RECUR ! REC9))))))

(DEFUN BI M (X Y)
( DECLARE (XARGS : GUARD ( TRUE-LI STP X)))
(IF (NULL X) NIL Y))

Function: BIM
TC Quard:
((*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
* UNI VERSAL)
Segnent s:
((SNI'L *UNI VERSAL) -> $NIL)
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP)))))
(* FREE- TYPE- VAR 1.))
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-> (*FREE- TYPE- VAR 1.))

( DEFUN FOO- Y- GUARDP ()
(IF (INTEGERP Y) T (I F (CHARACTERP Y) T (NULL Y))))

Function: FOO Y- GUARDP
TC GQuard:

(* UNI VERSAL)
Segment s:

(((*OR $CHARACTER $I NTEGER $NIL)) -> $T)

(((*OR $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL $STRI NG $T

(*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
Recogni zer descriptor:
(* OR $CHARACTER $I NTEGER $NI L)

( DEFUN FOO (X V)
( DECLARE (XARGS : GUARD (I F (TRUE-LISTP X) (FOO Y-GUARDP Y) NIL)))
(IF (NULL X)
NI L
(I F (I NTEGERP (CAR X))
(CONS (CAR X) Y)
(I F (CHARACTERP (CAR X))
(CONS (CAR X) NIL)
NIL))))

Function: FOO
TC Guard:
((*REC TRUE-LI STP (*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LI STP))))
(*OR $CHARACTER $I NTEGER $NI L))
Segnent s:
(((*OR $NI L
(*CONS (*OR $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL $STRI NG
$T (*CONS *UNI VERSAL *UNI VERSAL) )
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LISTP))))))
(*OR $CHARACTER $I NTEGER $NI L))
-> $NIL)
(((*CONS $I NTEGER
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
$CHARACTER)
-> (*CONS $I NTEGER $CHARACTER))
(((*CONS $I NTEGER
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
$| NTEGER)
-> (*CONS $I NTEGER $I NTEGER))
(((*CONS $I NTEGER
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
$NI L)
-> (*CONS $I NTEGER $NI L))
(((*CONS $CHARACTER
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
(*OR $CHARACTER $I NTEGER $NI L))
-> (*CONS $CHARACTER $NI L))

Now consider the function below.
(DEFUN TC- | NFER- EXAMPLE (X Y)

( DECLARE (XARGS : GUARD (I F (TRUE-LISTP X) (BAR Y-GUARDP Y) NIL)))
(FOO (BAR X Y) (BIMX Y)))

We will focus on the call to FOO in the body.
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The guard establishes the following concrete type alist at the point of the call to FOO.

((X . (*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
(Y . (*OR $CHARACTER $I NTEGER)))

The 3-tuples produced for (BAR X Y) contain the following segments. (For each tuple, the minimal and
maximal segments are the same, and the CONC-ALIST isthe same as the type alist above.

(($NI L $CHARACTER) -> $NIL)
(($NIL $I NTEGER) -> $NI L)
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$CHARACTER)
-> (*OONS $CHARACTER
(*REC I REC8 (*OR $NIL (*CONS $CHARACTER (*RECUR ! REC8))))))
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$I NTEGER)
-> (*CONS $I NTEGER
(*REC I REC9 (*OR $NIL (*CONS $I NTEGER (*RECUR ! REC9))))))

For (BIM X Y), the tool generates three 3-tuples, whose minimal segments are:

((SNIL &) -> $NIL)
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE- LI STP)))))
&2)
-> &2)
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
&2)
-> &2)

The latter segment is repeated because it occurs in conjunction with two different CONC-ALISTS and
two different maximal segments. The corresponding maximal segments are:

(($NI'L (*OR $CHARACTER $I NTEGER)) -> $NI L))
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$CHARACTER)
-> $CHARACTER)
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$I NTEGER)
-> $I NTEGER)

First we perform the guard verification step. We combine, using *OR, all the result types from the
maximal segments for (BAR X Y) to give a conservative type for the first argment, and likewise for
(BIM X Y) and the second argument. Thus, the type constructed for the first argument is:

(*OR $NIL
(* CONS $CHARACTER
(*REC 1 REC8 (*OR $NIL (*CONS $CHARACTER (*RECUR ! REC8)))))
(*CONS $I NTEGER
(*REC | RECO (*OR $NIL (*CONS $I NTEGER (*RECUR ! REC9))))))
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and for the second argument:

(*OR $CHARACTER $I NTEGER $NI L)

From the signature for FOO, we have the guard descriptors:

((*REC TRUE- LI STP (*OR $NI L (*CONS *UN VERSAL (*RECUR TRUE- LI STP))))
(* OR $CHARACTER $I NTEGER $NI L))

The containment algorithm determines that the descriptors for the two arguments are contained in the
guard descriptor for FOO, so we have passed the guard verification test.

Next we use TC-MAKE-ARG-CROSS-PRODUCT to find al possible combinations of types for the first
and second arguments, so they can be used to match against the segments for FOO. TC-MAKE-ARG-
CROSS-PRODUCT takes the minimal segments and CONC-ALISTSs for the arguments and forms the
cross product of all their possible combinations, and then uses unification to merge each combination into
asingle schema. The form of each such schemais alist of three lists. The first list gives descriptors for
the variables in the environment; the second list gives descriptors for each of the arguments to the function
cal; and the third list is the right hand sides for the combined CONC-ALIST. (In our example, the
CONC-ALIST component will not be very interesting. Since all the incoming CONC-ALISTs are
identical, the resulting CONC-ALISTs will aso be identical with the originals. But thisis not aways the
case; IF forms in the arguments could result in different CONC-ALISTS on the input segments.) The
result of the cross product operation in our exampleis;

((($NI'L $CHARACTER) ; types of X and Y
($NIL $NIL) ; types of (BAR X Y) and (BIMX'Y)
((*REC TRUE-LISTP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
(*OR $CHARACTER $INTEGER))) ; CONG-ALIST for X and Y
(($SNIL $I NTEGER) ; types of X and Y
(SNIL $NIL) ; types of (BAR X Y) and (BIM X Y)
((*REC TRUE-LISTP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
(*OR $CHARACTER $! NTEGER)))
(((* CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))

$CHARACTER) ; types of X and Y

((*CONS $CHARACTER ; types of (BAR X Y) and (BIMX'Y)
(*REC | REC8 (*OR $NIL (*CONS $CHARACTER (*RECUR ! REC8)))))

$CHARACTER)

((*REC TRUE- LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP))))
(*OR $CHARACTER $I NTEGER) ) )
(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NI L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$1 NTEGER) ; types of X and Y
((*CONS $I NTEGER
(*REC | REC9 (*OR $NIL (*CONS $I NTEGER (*RECUR ! REC9)))))
$| NTECGER) ; types of (BAR X Y) and (BIMX'Y)
((*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LI STP))))
(*OR $CHARACTER $I NTEGER))))

Now recall the segments for FOO:

(((*OR $NI L
(*CONS (*OR $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL $STRI NG
$T (*CONS *UNI VERSAL *UNI VERSAL) )
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP))))))
(*OR $CHARACTER $| NTEGER $NI L))
-> $NIL)
(((*CONS $I NTEGER
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(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$CHARACTER)
-> (*CONS $I NTEGER $CHARACTER))
(((*CONS $I NTEGER
(*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$I NTEGER)
-> (*CONS $I NTEGER $| NTEGER))
(((*CONS $I NTEGER
(*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$NIL)
-> (*CONS $I NTEGER $NI L))
(((*CONS $CHARACTER
(*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
(*OR $CHARACTER $I NTEGER $NI L))
-> (*OONS $CHARACTER $NIL))

TC-INFER unifies each cross product result with each segment for FOO in a grand unification which
involves the type of each variable in the environment, the type of each parameter, and the type of the
result of the call to FOO. Since there is no descriptor corresponding to TC-INFER-EXAMPLE' s variable
types in the segments for FOO, and since there is no descriptor for the result of FOO in the cross product,
both schema are padded accordingly with *UNIVERSAL. Let us consider the unification performed for
the first cross product element and the first segment of FOO. The cross product element is:

(($NI L $CHARACTER) ; types of X and Y

(SNIL $NIL) ; types of (BAR X Y) and (BIMXY)
((*REC TRUE-LI STP (*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LI STP))))
(*OR $CHARACTER $I NTECER) ))

and the segment is:

(((*OR $NI L
(*CONS (*OR $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL $STRING $T
(*CONS *UNI VERSAL * UNI VERSAL) )
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP))))))
(*OR $CHARACTER $I NTEGER $NI L))
-> $NIL)

The first two cross product element components are combined into a single list and extended with
*UNIVERSAL, the latter representing the result of the call to FOO, giving the descriptor list:

(*DLI ST $NI L $CHARACTER $NIL $NI L *UN VERSAL)

FOO's segment is padded with *UNIVERSAL for each variable in TC-INFER-EXAMPLE's
environment, giving the descriptor list:

(*DLI ST *UNI VERSAL
* UNI VERSAL
(*OR $NIL
(*CONS (*OR $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(* CONS *UNI VERSAL * UNI VERSAL) )
(*REC TRUE-LI STP
(*OR $NI'L (*CONS *UNI VERSAL
(*RECUR TRUE- LI STP))))))
(*OR $CHARACTER $I NTEGER $NI L)
$NI L)



116 Type Checking for Common Lisp
The Signature Checker

These two descriptor lists are then unified, using DUNIFY-DESCRIPTORS-INTERFACE, giving the
result:

(*DLI ST $NI L $CHARACTER $NIL $NIL $NIL)

Since the immediate goal is to form a segment mapping the types of X and Y to the type of the result of
the function call, we are no longer interested in the types of the function parameters in this result, so we
ignore them. The minimal segment formed from the remnant is:

(($SNIL $CHARACTER) -> $NIL)

Note that had the result of the unification been *EMPTY, this unification would have resulted in zero
segments. Had the result been an *OR of *DLISTS, the result would have been one minimal segment for
each digunct.

The final step is to form the maximal segment by unifying the minimal segment with a descriptor list
composed of the descriptors from the CONC-ALIST provided with this cross product element, padded
with an extra element for the result type. |.e., we unify the descriptor from the minimal segment:

(*DLI ST $NI L $CHARACTER $NI L)

with the extended CONC-ALIST:

(*DLI ST (*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LI STP))))
(*OR $CHARACTER $| NTEGER)
* UNI VERSAL)

Theresult is:

(*DLI ST $NI L $CHARACTER $NI L)

So the maximal segment is identical with the minimal segment. The CONC-ALIST completing the
3-tuple is the one from the cross product element.

This process is repeated for each combination of cross product elements and segments from FOO, and all
the results collected into a list of 3-tuples. The collection of 3-tuples for (FOO (BAR X Y) (BIM X Y))
is.

((((SNI'L $CHARACTER) -> $NIL) ; m ni mal segment

((X . (*REC TRUE-LISTP CONC- ALI ST
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))

(Y . (*OR $CHARACTER $I NTEGER)))
(($NI L $CHARACTER) -> $NIL)) ; maxi mal segnent
((($NIL $INTEGER) -> $NIL) ; m ni mal segnment
((X . (*REC TRUE-LI STP CONG- ALI ST
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP)))))
(Y . (*OR $CHARACTER $I NTEGER)))
(($NI L $I NTEGER) $NIL)) ; maxi mal segnent
((((*CONS *UN VERSAL ; moninmal segnent
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP)))))
$I NTEGER)
-> (*CONS $I NTEGER $I NTEGER) )
((X . (*REC TRUE- LI STP ; CONC-ALI ST

(*OR $NI'L (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
(Y . (*OR $CHARACTER $I NTEGER)))
(((*CONS *UN VERSAL ; maxi mal segnent
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
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-> $| NTEGER)
(*CONS $I NTEGER $I NTEGER) ) )
((((*CONS *UN VERSAL ; moninmal segnent
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
$CHARACTER)
-> (*CONS $CHARACTER $NI L))
((X . (*REC TRUE-LI STP ; CONC- ALI ST
(*OR $NI'L (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
(Y . (*OR $CHARACTER $I NTEGER)))
(((*CONS *UN VERSAL ; mexi mal segnent
(*REC TRUE- LI STP
(*OR $NI'L (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))
$CHARACTER)
-> (*CONS $CHARACTER $NI'L))))

Since this is the outermost form of the body, the maximal segments from this collection of tuples will
become the segments for function TC-INFER-EXAMPLE.

6.6 The Unification Algorithm

In this system, as in many type inference systems, unification is a central algorithm. [Knight 89] The
unification of descriptors is perhaps the central algorithm of both the inference algorithm and the signature
checker. As we can see from the preceding discussion of the checker, it is at the heart of the process of
deriving segments for function call results. Moreover, the entire function signature scheme, though
reminiscent of the traditional notation of function signature in programming (modified for OR semantics,
see the discussion in Section 5.7.1) is oriented toward applying the unifier to both the guard vector and the
segments. Thus in large measure, to understand the inference algorithm and the type checker, one needs
to understand at least the role which the unifier plays.

6.6.1 The Nature of Descriptor Unification

Informally, the specification of descriptor unification is as follows. Given two descriptors (or two lists of
descriptors of the same arity), the unifier produces a descriptor (or list of descriptors of the same arity as
the parameters) such that, under any given binding of type variables, any value (or list of values) which
satisfies both the input descriptors under our INTERP-SIMPLE or INTERP-SIMPLE-1 function will also
satisfy the result descriptors. In one sense, this specification encourages the notion that unification can
produce descriptors which are larger than necessary, in order to satisfy this soundness constraint. After
all, the unifier could always return *UNIVERSAL and satisfy this specification. But this is just our
soundness requirement, and our usability requirement is that the unifier should produce the most specific
descriptor possible which satisfies this constraint. In this sense, unification is essentially a narrowing
operation, and one may think of unification in the spirit of an intersection operation, where we want the
result to signify only values common to both input descriptors. Though this usability requirement is not
formalized, if we relaxed our treatment of it in the implementation, we would surely generate uselessly
genera signatures.

6.6.2 The Formal Specification of the Unifier

DUNIFY-DESCRIPTORS-INTERFACE is the top level function of the unifier. It takes two formal
parameters, the descriptors to be unified, and returns a descriptor representing the unified result. In the
case where the arguments are single type descriptors, DUNIFY -DESCRIPTORS-INTERFACE returns a
single type descriptor. Alternatively, it can take as arguments two *DLIST forms, each of the form
(*DLIST td; .. tdy;), where each td; is a single type descriptor, and return either a*DLIST of length n or
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an *OR of *DLIST forms, each of lengthn. A *DLIST issimply a notation for packaging alist of simple
descriptors into a single argument, serving like a mutual recursion flag so the function can take either
single descriptors or lists of descriptors. When an *OR of *DLIST forms is returned, it signifies that any
of the *DLISTS isa correct unification of the arguments. That it is packaged as an * OR is perhaps a case
of poor naming, since this * OR has no formal relation to the normal * OR descriptor, but indicates to the
caller that the result should be unpacked and considered a list of possible answers. In fact, *OR was used
because within DUNIFY-DESCRIPTORS-INTERFACE is a call to DUNIFY-DESCRIPTORS, which
can return alist of unified forms. These are combined with *OR, which is perfectly natural in the single
descriptor case. When *DLIST forms are used as arguments, the values used in the specification Lemma
DUNIFY-DESCRIPTORS-INTERFACE-OK must be considered lists of values of the same length as the
*DLISTs, and the calls of "I" are calls of INTERP-SIMPLE rather than INTERP-SIMPLE-1.

The formal specification of DUNIFY-DESCRIPTORS-INTERFACE is a straightforward restatement of
theinformal specification given above.

Lemma DUNI FY- DESCRI PTORS- | NTERFACE- OK
For any descriptors tda and tdb, Lisp value v and fully
instantiating binding of type variables to Lisp values b,

(and (I tda v b)
(1 tdb v b))
=>
(I (dunify-descriptors-interface tda tdb) v b)

B is abinding of type variables to singleton values. By "fully instantiating”, we mean simply that all the
variables appearing in the descriptor in question are bound in B.

DUNIFY-DESCRIPTORS-INTERFACE is just a wrapper for the central recursive function of the
algorithm, DUNIFY-DESCRIPTORS, which we will discuss briefly and then tie back into DUNIFY -
DESCRIPTORS-INTERFACE. DUNIFY-DESCRIPTORS takes as parameters the two descriptors (or
*DLISTs), a list of assumptions about the type variables in the form of a mapping SUBSTS from type
variables to type descriptors, and a structure TERM-RECS which serves to restrain the unifier from
descending into infinite recursion when dealing with *REC descriptors. It returns a list of pairs, where
each pair consists of a descriptor and a substitution list. The correctness of the descriptor portion of this
pair is given in terms of INTERP-SIMPLE-1 and INTERP-SIMPLE, as usual. The correctness
assumption for the substitution list is expressed in terms of afunction INTERP-SUBSTS, which interprets
asubstitution list in conjunction with a binding of type variables to values.

( DEFUN | NTERP- SUBSTS ( SUBSTS BI NDI NGS)
;7 SUBSTS shoul d be an alist whose keys are type variabl es and
whose associ ated values are well-forned descriptors.
;; BI'NDINGS shoul d be an alist associating type variables to
wel | -formed descriptors.
(I'F (NULL SUBSTS)
T

(AND (1 NTERP- SI MPLE-1 (CDR ( CAR SUBSTS))
(CDR (ASSOC (CAR ( CAR SUBSTS)) BI NDI NGS))
Bl NDI NGS)
(I NTERP- SUBSTS (CDR SUBSTS) BI NDI NGS))))

This function checks that under a given binding B, each substitution maps a variable to a descriptor which
accurately characterizes the value to which the same variable is bound in B. l.e, for each substitution
(&I . tdj), under a binding including (&i . v), (INTERP-SIMPLE-1 td; v b) = T. The substitution list is
used to accumulate information about variables already encountered on recursive descent into the
problem.
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A lemma which will be most critical to the proof of soundness for the unifier is the specification of
DUNIFY-DESCRIPTORS, below. It omits mention of TERM-RECS, which has no bearing on
soundness. That is, one can insert TERM-RECS in the call to DUNIFY-DESCRIPTORS, viewing it as
universally quantified.

Lemma DUNI FY- DESCRI PTORS- OK
Denoting (dunify-descriptors tda tdb substs)
by ((tdl . substsl) .. (tdn . substsn)y

for all v and fully instantiating b

(and
HL (interp-substs substs b)
H2 (I tda v b)
H3 (I tdb v b))
=>
for sone i,
(and (i nterp-substs substsi b)

(I tdj v b))

Paraphrased, this says that under any binding, if a value satisfies both input descriptors under the binding,
and if the substitution is valid under the binding, then there exists some descriptor-subst pair in the result
such that the subst is valid, and the val ue satisfies the descriptor.

6.6.3 Detailed Description of the Unifier

The bridge between DUNIFY-DESCRIPTORS-INTERFACE and DUNIFY-DESCRIPTORS is short.
DUNIFY-DESCRIPTORS-INTERFACE calls DUNIFY-DESCRIPTORS with the input descriptors, a
NIL substitution list, and aNIL TERM-RECS structure. It obtains the result, which isalist of descriptor-
substs pairs, and for each pair applies the substs to the descriptors as a straightforward substitution. 1t
continues applying this substitution until the result stabilizes. Then it combines al the resulting
descriptors using * OR and canonicalizes.

In some part, DUNIFY-DESCRIPTORS can be easily understood as an intersection algorithm, laying
consideration of variables aside and thinking about various combinations of descriptors as separate cases.
But its greatest intricacy occurs where variables are concerned, and after giving a flavor for some of the
other combinations, this is where we will focus the discussion.

The unification rules are as follows. They should be considered in order, as two descriptors may match
more than one action. Thus, the triggering condition for any rule may be read to include the negation of
previous triggering conditions.

1. If DESCRIPTORL equals DESCRIPTOR?2, then the result is the singleton list containing
(DESCRIPTOR1 . SUBSTS). (This corresponds to Case 1 in the proof of Lemma
DUNIFY-DESCRIPTORS-OK.)

2. If either descriptor is*EMPTY, theresult isNIL. (Cases2 and 2')

3. If either descriptor is *UNIVERSAL, the result is the singleton pairing the other descriptor
with SUBSTS. (Cases3and 3')

4. 1f DESCRIPTORL is of the form (*OR td; .. td,)), then if DESCRIPTORZ is equal to some
td;, the result is the list containing only (DESCRIPTOR2 . SUBSTS), otherwise we append
the lists from the results of unifying DESCRIPTOR2 with each td; under the same SUBSTS
and TERM-RECS. (Case 4)

5.1f DESCRIPTORZ is of the form (*OR tdq .. tdy,), then proceed symmetrically as above.
(Case &)
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6. We will describe the case where either of the descriptorsisavariable below. (Case 5)

7. 1f both DESCRIPTOR1 and DESCRIPTOR? are *REC forms, we resort to a bag of tricks,
also described below. (Case 6.1)

8. If DESCRIPTOR1 is a*REC form, then if the pair (DESCRIPTOR1 . DESCRIPTOR?2) isa
member of TERM-RECS, we return a list containing only (DESCRIPTOR2 . SUBSTYS).
Otherwise, we recur, with DESCRIPTOR1 opened up, and the pair
(DESCRIPTOR1 . DESCRIPTOR?2) pushed onto TERM-RECS. It would be possible, with
*REC forms in both descriptors, for this algorithm to go into an infinite recursion, first
unfolding one *REC and then the other, or by some similar but more elaborate scenario.
But DUNIFY-DESCRIPTORS maintains a stack of pairs of operands, the TERM-RECS
parameter, so that when it is recursively called with a pair which it has already seen, it can
recognize that it isin an endless recursive chain. Any infinite unfolding in this manner must
come back around to considering the original case, buried beneath a number of recursive
cals. Almost always, this indicates that no value can satisfy both descriptors, and hence,
almost always it would be sound to return *EMPTY rather than DESCRIPTOR2. An
example of thiswould be;

( DUNI FY- DESCRI PTORS
' (*REC DOUBLE
(*OR $NI'L (*CONS *UNI VERSAL
(* CONS * UNI VERSAL
(*RECUR DOUBLE)))))
" (*CONS * UNI VERSAL
(*REC DOUBLE
(*OR $NIL (*CONS *UNI VERSAL
(*CONS * UNI VERSAL
(*RECUR DOUBLE))))))
SUBSTS TERM RECS)

Here, proceeding without a stopper would result in first opening DESCRIPTORL and diving
into the *CONS, then opening DESCRIPTOR2 and diving into the * CONS, ad infinitum.
And there is no value which satisfies both these descriptors, since to do so would require a
list whose length is both even and odd. Unfortunately, it is also possible that some value
could satisfy both descriptors, and our algorithm simply is not strong enough to formulate
the unifying descriptor. For this reason, we have to be conservative, so we return
DESCRIPTOR2. We could return either DESCRIPTOR1 or DESCRIPTOR? if we could
figure out which were better in some sense, but in the current implementation we do not
attempt to do so. (Case 6.2)

9. If DESCRIPTOR2 isa*REC form, proceed symmetrically as above. (Case6.2')

10. If both DESCRIPTORL1 and DESCRIPTOR?2 are * CONS descriptors, we do exactly as with
*DLISTS below (since thisis essentially a special case of length two), except that at the end
we glue the * CONS operator back onto the descriptorsinstead of *DLIST. (Case7)

11. If both DESCRIPTOR1 and DESCRIPTOR2 are *DLIST descriptors, first we make sure the
lists are of the same length (otherwise indicates an error in the implementation, as does
unifying a *DLIST with a single descriptor). Then we engage in a recursive algorithm for
unifying lists of descriptors. First we unify the first descriptor in DESCRIPTORL1 with the
first descriptor in DESCRIPTOR2. If thisis the end of the list, we return this result (with
the result descriptors wrapped in alist). Otherwise, we append the results of recurring, for
each descriptor-subst pair returned for the CARs, on the CDRS. On each recursive call, we
use the substs from the pair, which is a composition of the original SUBSTS and additional
substitutions accumulated from the CAR. Each recursive call will return alist of pairs, and
from this list we make another list, where we form the pairs by CONS-ing our CAR
descriptor onto the descriptor list in each result pair, and using the substitutions from the
result pair without modification. When we emerge from this recursive traversal, we stick
the *DLIST operator back onto each complete list, so that the "descriptor” in each of our
result pairsisa*DLIST of the same arity asthe original. (Case 8)
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12. Otherwise return NIL, since we have eliminated all possibilities except that one descriptor is
a *CONS and the other is not, or that both descriptors are atomic simple descriptors like
$INTEGER but are not equal. Thus, there can be no commonality in the values they
represent. (Case 9)

So what do we do with variables? A basic notion is that when we unify a variable with something, the
result isalist of descriptor-substitution pairs where the variable is the descriptor and the substitution is the
input SUBSTS augmented with a new element which maps the variable to the thing with which the
variable is being unified. But adding this new element can be a complex operation. For instance, if the
variable is aready mapped in SUBSTS, then the two mappings need to be reconciled. This is done by
unifying the two right hand sides, since unification is the operation which forms a descriptor for the
common ground between two descriptors. So with the complexity thus unfolding, let us look in detail at
how a new element is added to the SUBST list.

The top level function in this operation is DMERGE-NEW-SUBST. It takes a VARIABLE, a
DESCRIPTOR to which the variable will be mapped, and a substitution SUBSTS. DMERGE-NEW-
SUBST returns a list of substitutions. (Keep in mind that a substitution is itself a list of substitution
elements, each of which maps a variable to a descriptor. SUBSTS refers to a substitution, rather than a
list of substitution.) It returns a list of substitutions rather than a single one because, if a unification is
necessary to perform the merge, the result of the unification will be a list of pairs, each representing a
different possible unifier, and each resulting in a different substitution.

The merge is performed as follows. If there is no current element mapping VARIABLE in SUBSTS, we
simply insert (VARIABLE . DESCRIPTOR) as a new element. The SUBSTS are maintained as an
ordered list, according to the lexical ordering of the bound variables. As discussed below, this ordering is
one of several tricks that are used to help avoid potential problems with infinite loops. So inserting a new
element means inserting it at the proper position in the list. We then return the singleton list containing
this augmented SUBST.

If there is already an element mapping VARIABLE in SUBSTS, we get the right hand side and unify it
with our DESCRIPTOR, using the original SUBSTS as the parameter on the recursive call to DUNIFY -
DESCRIPTORS. We take each result from the unifier and create new substitution lists as follows,
collecting all the resulting substitution lists into a great list of substitutions. First, we compare the
substitution returned from the unifier with the substitution we started with, to see if the right hand sides
for any variables other than the one we are concerned with are different (or not present) in the two
substitutions. If not, then we just include in our result the original substitution with the right hand side for
our variable replaced with the descriptor from the unifier result which we are considering.

If there are any other different right hand sides, however, we engage in a second level merging operation.
This second level operation takes alist of substitution elements and alist of substitutions and returns a list
of subgtitutions. The ideais that we return all substitutions obtainable by "merging" the elementsinto any
of the given substitutions. The initial list of substitution elements contains all the elements in the
substitution (returned by the unifier) being considered which are new or different relative to the original
SUBSTS. Theinitia list of substitutions contains the single original substitution SUBSTS. We proceed
as follows, in the order determined by the lexical ordering of the variables. We take the first substitution
element in our first argument and use a recursive call of DMERGE-NEW-SUBST to merge the element
into each substitution in the second argument. The result from each such merge is, of course, a list of
substitutions, and al these lists are appended to form the results of merging the first new element. Then,
we merge the next new element into all these substitution lists, and so forth, until each variable with a new
right hand side has been merged.
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After this second level merging finally returns a list of substitutions, we return to the variable whose
unification began this whole process, and we replace its old right hand side in each of the substitution lists
from the second level merge with the right hand side proposed from the origina unification. This final
step is the same as the final step for the case, described two paragraphs above, where no second level
merge was required.

A well-formedness property must hold for substitutions.

Definition: A substitution is a well-formed substitution
if all its variable-to-variable nappings are downward directed
according to a lexical ordering on variable names, and if the
substitution contains no circularities, where by circularity we
mean a circular path, formed by the transitive closure of a
rel ati on whereby the variable on the left hand side
of a substitution elenent is linked to each of the variables on
the right hand side.

When, at the very top of the unification agorithm in DUNIFY-DESCRIPTORS-INTERFACE, we use
DAPPLY-SUBST-LIST to apply each substitution list to the descriptor with which it is paired, this
application is repeated until the resulting descriptor stabilizes. This, in effect, unwinds the chain of
references implicit in the SUBSTS. If there are circularities in the SUBSTS, this application will never
stabilize, and the algorithm cannot terminate. A circularity exists if, for some variable in the substitution
list, we can take the descriptor to which it is mapped and follow some chain of elements for the variables
in the descriptor recursively back to the origina variable.

The algorithm uses some safeguards against construction of ill-formed substitutions. For instance, the
case analysis in DUNIFY-DESCRIPTORS ensures that circularities that consist only of substitution
elements which map variables to variables are never constructed. Essentialy, this is accomplished by
mapping variables directly to other variables only in alexically downward manner, and by never alowing
an *OR as the top level form on the right hand side in a substitution element. (A variable could appear as
one of the diguncts, thus creating a potential loop if it islexically greater than the variable on the left hand
side.) Also, DUNIFY-DESCRIPTORS ensures that no substitution element can be created where the
right hand side is a * REC descriptor which, if opened up, could be an *OR with a variable as a top-level
disunct.

But in the merging operation, it may still be possible to create a substitution in which a circularity exists
where some variable in the loop is embedded within a*CONS. As originally constructed, the algorithm
removed any such substitution from consideration, under the presumption that it represented an
unrealizable situation where some Lisp CONS value would be required to be equal to some component of
itself. For example,

((& . (*CONS & $NIL)) (& . &1))
The soundness assumption for any substitution which is integra to the proof of DUNIFY-

DESCRIPTORS-OK isthat there may exist some binding of its type variables to Lisp values such that no
inconsistency arises. In this case, let us generically say that thisbinding is

((& . vall) (& . val?2))

Thus, we would require

(AND (CONSP VAL1) ; by the first substitution el enent
(EQUAL (CAR VAL1) VAL2)
(EQUAL (CDR VAL1) NL)
(EQUAL VAL1 VAL2) ; by the second el enent
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Clearly, there is a contradiction here, since VAL1 cannot be equal to its own CAR. But consider the
substitution

((&1 . (*CONS (*OR $T &2) $NIL)) (& . &l))

This substitution contains aloop, but is perfectly consistent with the binding

((& . (CONS T NIL)) (& . (CONS T NIL)))

Therefore, we cannot remove a substitution from consideration simply because it contains a loop, since
doing so may amount to removing the sole solution satisfying the conclusion of DUNIFY-
DESCRIPTORS-OK.

One possible way out of this quandary would be to analyze the substitution to determine how it could be
soundly pruned to remove the loop. The previous example could be soundly transformed to

((&1 . (*CONS $T $NIL)) (&2 . &1))

since the &2 digjunct in the substitution element for & 1 did not contribute to the soundness argument with
respect to the good binding. But in general, it may be difficult to determine just where to perform this
kind of surgical pruning.

But it so happens that despite the measures taken, the proof we give for DUNIFY-DESCRIPTORS-OK is
a partial correctness proof, in that termination is not guaranteed. So, rather than complicate both the
algorithm and its proof of correctness with a difficult pruning operation, we chose to simply allow
DUNIFY-DESCRIPTORS to return a looping substitution. Then, when DUNIFY-DESCRIPTORS-
INTERFACE prepares to apply the substitution to construct its final result, it first checks that it is
well-formed. If there are any circularities, the algorithm announces that an ill-formed substitution was
constructed and punts by returning the descriptor argument whose form contains the fewer CONSes.
Either argument descriptor could be returned, and any heuristic for returning one or the other would be
trivially sound. We chose this heuristic because of its simplicity. The function which tests for
well-formedness is WEL L-FORMED-SUBSTS, and its definition is in Appendix G.8. It checks both the
downward-directedness of al variable-to-variable substitution elements and the absence of circularity.

The saving grace is that, while we can construct, by hand, cals to the unifier which will result in the
construction of looping substitutions, we have failed, despite some thought and effort, to construct an
inference problem which led to such a call. So there is no apparent loss of functionality in this non-
implemention of atermination safeguard.

Now let us pop back to the two outstanding original cases. unifying a variable with another variable, and
unifying a variable with a non-variable descriptor. When we unify a variable with another variable, we
first determine which is lexically greater. We merge the binding of the larger variable to the smaller one
into SUBSTS, and for each resulting substitution, we form a descriptor-substitution pair where the
descriptor isthe smaller variable. So:

(dunify-descriptors & '& nil nil)

((&1 . ((82 . &1))))

where the result is a single pair whose descriptor component is & 1 and whose substitution list is ((&2 .
&1)). Also,

(duni fy-descriptors '& '& '((& . (*cons &1 $nil))) nil)



124 Type Checking for Common Lisp
The Signature Checker

((& . ((& . (*CONs &1 $NIL)) (&3 . &2))))

and

(dunify-descriptors "& '& '((& . &1)) nil)

((82 . ((82 . &1) (&3 . &2))))

If we unify a variable with a descriptor other than a variable, we first check several special cases. For the
sake of exposition, let us denote DESCRIPTORL by "&i". We have aready considered the possibility
that DESCRIPTOR? is an * OR descriptor, and in the case where DESCRIPTORL is one of its diguncts,
we simply returned DESCRIPTORL paired with our original SUBSTS. But we have not yet considered
the possibility that DESCRIPTOR?2 is a *REC form. If it is, and the body of the *REC descriptor is an
*OR form, and if &i is one of the possible diguncts of that *OR, then we treat it as we would have with
the simple * OR, returning the single pair ((&i . SUBSTYS)).

If DESCRIPTOR?2 is some other descriptor in which &i appears, we do a trick which may seem arcane,
but which is easily justified and may result in more accurate results. We know from previous tests that
DESCRIPTOR2 in no way represents an *OR form where &i is one of its disuncts. We also know that
DESCRIPTOR? is not equal to &i. Therefore, if &i appears in DESCRIPTORZ, it must be because it
appears within some * CONS structure. Since variables represent specific Lisp values, thereis no way &i
can unify with, or represent the same value as, a descriptor with &i buried inside a* CONS. Thisis not to
say our unification will fail. A valid result of unifying &i with

(*CONS (*OR & $I NTEGER) $NIL)
is
((& . ((& . (*CONS $I NTEGER $NIL)))))

So what we do is "screen" DESCRIPTOR2 for occurrences of &i, eliminating them where they appear as
possible diguncts in any *OR configuration. We can then return &i as our descriptor, paired with each
substitution formed by merging the mapping of &i to the screened descriptor with the original SUBSTS.
Of course, if the screened descriptor is effectively *EMPTY, we return an empty list. The code
implementing this caseis presented in Appendix G.10.

If &i does not appear in DESCRIPTOR2, we first consider the case where DESCRIPTOR?2 is a *REC
which has some variable as one of its diguncts, for example where DESCRIPTOR?2 is of the form

(*REC FOO (*OR $NIL & (*CONS *UNI VERSAL (*RECUR FOO))))

If thisis the case, we simply open the *REC using OPEN-REC-DESCRIPTOR-ABSOLUTE recursively
unify it with &i. We open the * REC because we do not want to allow a substitution of the form:

(& . (*REC FOO (*OR $NIL & (*CONS *UNI VERSAL (*RECUR F0O)))))

Thisis because, in our notion of substitutions, we have meticulously avoided any substitution mapping a
variable to an *OR, as this could profoundly complicate the issue of termination by allowing for the
creation of ill-formed, but realizable substitutions. (See discussion above.) A substitution element like
that above is a mapping to an *OR in thin disguise, and is likewise to be avoided. We accomplish this by
exposing the *OR as the top level form (i.e., by opening the * REC), so that on our recursive call we unify
with the *OR. Asdescribed in the original case analysis, this results in the * OR being split, and we wind
up creating distinct substitutions within which we map the variable to each disjunct of the *OR.
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This strategy itself could cause a non-termination problem resulting from the infinite unfolding of *REC
descriptors.  (Perhaps our &i originated from a similar position to that of &j in some other *REC
descriptor.) This situation could only arise either from the unification of two *REC descriptors or from
the unification of a *REC descriptor with another descriptor containing a *REC. In the first case, our
special case *REC unification rules (described below) are such that no direct unification of *RECs can
lead to this scenario. And the TERM-RECS mechanism guards against infinite recursion arising from the
unification of a* REC with anon-*REC. In the absence of atermination proof, of course, we have to take
these claims on faith.

We identified the previous special case to protect against it falling into our last course of action, which is
simply to merge the substitution element (&i . DESCRIPTOR?2) into SUBSTS, and to pair the descriptor
&i with each resulting substitution. This, in fact, isthe normal case.

That completes the discussion of unification where one of the descriptorsis avariable.

The only case which has not yet been explained is that of unifying two *REC descriptors. As stated
previously, there is no general algorithm for this case in the checker; it is handled by resorting to a bag of
tricks. The tricks are a collection of rules which are triggered essentially by pattern matching against the
arguments. A default rule handles al cases for which no other rule is eligible. Although a general
procedure like the one employed in the inference algorithm would have been attractive and powerful, we
were unable to imagine its proof against the semantic model. By using a rule-based approach, we reduce
the proof of this case to a manageable proof of soundness for each of our collection of special-case
rules.30

As an aid to pattern matching, we transform the descriptors to a sightly different canonical form. Inthe
case where the body of the*REC is an *OR (the normal case), we gather all the non-recurring cases into a
single disjunct. So for example,

(*REC FOOD (*OR $INTEGER $NIL &1 (*CONS *UNI VERSAL (*RECUR FQO))
(*CONS (*RECUR FOO) *UNI VERSAL)))

is transformed to:

(*REC FOO (*OR (*OR $I NTEGER $NI L &1)
(*CONS *UNI VERSAL (*RECUR FOO))
(*CONS (*RECUR FOO) *UNI VERSAL)))

If the top level form isa*CONS, we similarly re-canonicalize both its CAR and CDR components. After
application of the rules, any resulting descriptors are re-canonicalized to the more conventional original
form.

Each rule has two parts, an enabling condition and an action. The enabling condition is basically a pattern
match against the arguments. The action typically reduces the unification problem for the * RECs to some
embedding of recursive calls to the unifier on selected components of the *RECs. In some cases the
action is simply to note failure by returning NIL. In the default rule, employed when no other enabling
condition is satisfied, the action is to return the list containing a single pair consisting of the argument
with the lesser number of atoms in its form and the input substs. This is a conservative result, but after
exhausting all the possibilities embodied in the rules, the most precise characterization of the unifying
descriptor we could manage would be either DESCRIPTOR1 or DESCRIPTOR2, and we choose the

30/ the implementation, the top level function for *REC unification is DUNIFY-RECS.
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lexically smaller one arbitrarily.

The rules employed are as follows. The notation is in a generic pidgin descriptor dialect, meant for
brevity rather than precision. Each rule is stated as an equality, meaning that the unification represented
on the left hand side results in the answer on the right hand side. Names like "foo", "bar", and "bim" are
generic *REC descriptor labels. Names like "d1", "d2", etc. represent arbitrary descriptors, except as
qualified in the text. "s" represents the input SUBSTS. The TERM-RECS argument is not mentioned.
The pattern embodied in the enabling condition is stated implicitly in the form of the arguments. In all the
*REC rules, we assume that the only occurrences of *RECUR with the same label as the top level *REC
are those explicitly shown. Rules whose names end with a ™" character are just slight modifications of
the rules with the same, but unprimed, names. The rules are considered in the order presented (as opposed
to the order of their numbers), hence with any rule we can assume that the enabling condition for all
previously stated rules has failed.

On the right hand sides of the rules, a name like "d12" represents the result of a cal to
(DUNIFY-DESCRIPTORS-INTERFACE d1 d2), where d1 and d2 are variable-free descriptors. If we
were to use a call to DUNIFY-DESCRIPTORS instead, the result would be a list of descriptor-
substitution pairs where in each pair the substitution is our original substitution. All results with the same
substitution list may be combined with *OR, therefore in this case we can return a singleton result, with
the pair being the *OR of all the descriptor results. We are lazy. DUNIFY-DESCRIPTORS-
INTERFACE performs this digunction for us, and since the recursive arguments are variable-free, we
need not be concerned about the impact of this recursive call on any substitution. So we simply use
DUNIFY-DESCRIPTORS-INTERFACE and pair its result with the substitution argument.

Rul e DUNI FY-* REC12
Wiere the two *recs differ only in name, and where bar < foo in
the | exical ordering DESCRI PTOR- ORDER

(duni fy-descriptors (*rec foo ( .. (*recur foo) .. ))
(*rec bar ( .. (*recur bar) .. ))
s)

= (((*rec bar ( .. (*recur bar) .. )) . s))

Comment: There is no formal significance to this ordering decision
The choice could be arbitrary. W do it this way because sone
*REC descriptors are nanmed for recogni zer functions, and al
others have nanmes of the form!RECn, where n is sone natura
nunber. In the ordering, the ! RECh nanes cone hi gher than
names begi nning with an al phabetic character. So our choice gives
preference to nanmed *RECs as opposed to gensyned *RECs, and | ower
nunber ed gensyns to hi gher ones

Rul e DUNI FY-* REC1
(duni fy-descriptors
(*rec foo (*or $nil (*cons dl (*recur foo0))))
(*rec bar (*or $nil (*cons d2 (*recur bar))))
s)

(Z(*rec bim (*or $nil (*cons d12 (*recur bim))) . s))

Rul e DUNI FY-* RECL
(duni fy-descriptors
(*rec foo (*or $nil (*cons (*recur foo) dl)))
(*rec bar (*or $nil (*cons (*recur bar) d2)))
s)

(((*rec bim(*or $nil (*cons (*recur bim d12))) . s))

Comment :
Rul e DUNI FY-*REC1’ is identical to DUN FY-*RECL, except that the
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order of the cons argunents is reversed.

Rul e DUNI FY-* REC2
Where d1 and d3 have no *CONS and no vari abl es,

(duni fy-descriptors
(*rec foo (*or dl (*cons d2 (*recur fo0))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
s)

((_(*rec bi m (*or d13 (*cons d24 (*recur bim))) . s))

Conment :
dl and d3 are variable-free by prescription, d2 and d4 by definition,
since variabl es cannot appear in the replicating disjuncts of a *REC.

Rul e DUNI FY- * REC2’
Where d1 and d3 have no *CONS and no vari abl es,

(duni fy-descriptors
(*rec foo (*or dl (*cons (*recur foo) d2)))
(*rec bar (*or d3 (*cons (*recur bar) d4)))

s)
((_(*rec bim (*or d13 (*cons (*recur bim d24))) . s))

Comment :
Rul e DUNI FY-*REC2' is the same as Rul e DUNI FY-*REC2, except that the
order of the arguments in the cons is reversed.

Rul e DUNI FY-* REC3

Where d2, d3, and d4 contain no variables and d3 is either a

primtive descriptor or a disjunction of primtive descriptors,

and denoting

(duni fy-descriptors & (*rec bar (*or d3 (*cons d4 (*recur bar)))) s)
= ((& . sp .. (& . sp),

(duni fy-descriptors (*rec foo (*or & (*cons d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
s)

((_(*rec bim(*or & (*cons d24 (*recur bim))) . sl)

(.(;*rec bim (*or & (*cons d24 (*recur bim))) . sn) )

Rul e DUNI FY- * REC3’

Where d2, d3, and d4 contain no variables and d3 contains no *cons
forms, and adopting the notation that

(duni fy-descriptors & (*rec bar (*or d3 (*cons (*recur bar) d4))) s)

= (((& . s7) - (& . sp).

(duni fy-descriptors (*rec foo (*or & (*cons (*recur foo) d2)))
(*rec bar (*or d3 (*cons (*recur bar) d4)))
s)

(((*rec bim(*or & (*cons (*recur bin) d24))) . Sl)
(.(;‘rec bim(*or & (*cons (*recur bim d24))) . sn) )
Conment :

Rul e DUNI FY-*REC3’ is the same as Rul e DUNI FY-*REC3, except that the
order of the argunents in the cons is reversed.

Rul e DUNI FY-* REC4
Where neither descriptor contains any variables and dl1 and d5 contain
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no *cons forns, and adopting the notation that

(duni fy-descriptors-interface
d3 (*rec bar (*or d5 (*cons d6 d7) (*cons d8 (*recur bar)))))
i s denoted by d3bar

(duni fy-descriptors
(*rec foo (*or dl1 (*cons d2 d3) (*cons d4 (*recur fo00))))
(*rec bar (*or d5 (*cons d6 (*recur bar))))
s)

(Z(*rec bim (*or dl15 (*cons d26 d3bar) (*cons d46 (*recur binm))) . s))

Rul e DUNI FY-* REC4’
Were neither descriptor contains any variables and d1 and d5 contain
no *cons forns,

(duni fy-descriptors-interface
d3 (*rec bar (*or d5 (*cons d6 d7) (*cons (*recur bar) d8))))
= d3bar

(duni fy-descriptors
(*rec foo (*or dl (*cons d3 d2) (*cons (*recur foo) d4)))
(*rec bar (*or d5 (*cons (*recur bar) d6)))

s)
(Z(*rec bim (*or dl15 (*cons d3bar d26) (*cons (*recur bim d46))) . s))

Coment :
This is Rule DUNI FY-*REC4 with the argunents to the conses reversed

Rul e DUNI FY-* REC5
Wth no variables appearing in either descriptor, and denoting
(duni fy-descriptors-interface
dl (*cons d4 (*rec bar (*or d3 (*cons d4 (*recur bar))))))
= dl4bar, and
(duni fy-descriptors-interface
d3 (*cons d2 (*rec foo (*or dl (*cons d2 (*recur fo00))))))
= d32f oo

(duni fy-descriptors
(*rec foo (*or dl (*cons d2 (*recur fo0))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
s)

(((*rec bim(*or d13 dl4bar d32foo (*cons d24 (*recur bim))) . s))

Conmment :

This rule is very general, in that it does not require dl1 or d3 to be
cons-free. Since all the non-replicating disjuncts in the *rec body
are gathered into an *or, dl and d3 represent all such terms, with
the only other restriction being that they are variable-free. Since
there may be other rules which apply to nore specific cases and result
in less conplex analysis than the conputation of d13, dl4bar, d32foo
and d24, eligibility for applying this rule should be checked |ater
than the ones above

Rul e DUNI FY- * REC5’
Wth no variables in either descriptor
(duni fy-descriptors
(*rec foo (*or dl (*cons (*recur foo) d2)))
(*rec bar (*or d3 (*cons (*recur bar) d4)))

s)
(((*rec bim (*or d13 dlbar4 d3foo2 (*cons (*recur bim d24))) . s))

Comment :
Rul e DUNI FY-*REC5’ is the sane as Rul e DUN FY-*REC5, except that the
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order of the argunents in the cons is reversed.

Rul e DUNI FY-* REC6
Wth no variabl es anywhere and no conses in dl or d4,
(duni fy-descriptors
(*rec foo (*or dl (*cons d2 (*cons d3 (*recur fo00)))))
(*rec bar (*or d4 (*cons d5 (*recur bar))))
s)

((_(*rec bim (*or d14 (*cons d25 (*cons d35 (*recur bim)))) . s))

Rul e DUNI FY-*REC6’ just reverses the order of the argunents.

Rul e DUNI FY-* REC7

No vari abl es anywhere and no conses in dl or d2,

(duni fy-descriptors
(*rec foo (*or dl (*cons (*recur foo) (*recur foo
(*rec bar (*or d2 (*cons (*recur bar) (*recur bar
s)

))))
))))

((_(*rec bim (*or d12 (*cons (*recur bim (*recur bim))) . s))

Rul e DUNI FY-* REC8

No vari abl es anywhere and no conses in dl or d5,

(duni fy-descriptors
(*rec foo (*or dl (*cons d2 (*cons d3 (*cons d4 (*recur fo00))))))
(*rec bar (*or d5 (*cons d6 (*recur bar))))
s)

((_(*rec bi m (*or d15 (*cons d26 (*cons d36 (*cons d46 (*recur bim)))))
. 8))

Rul e DUNI FY-*REC8’ just reverses the order of the argunents.

Rul e DUNI FY-* REC9
No vari abl es anywhere and no conses in dl or d5
(duni fy-descriptors
(*rec foo (*or dl1 (*cons d2 (*cons d3 (*cons d4 (*recur fo00))))))
(*rec bar (*or d5 (*cons d6 (*cons d7 (*recur bar)))))
s)
(((*rec bim
(*or dis
(*cons d26
(*cons d37
(*cons d46
(*cons d27
(*cons d36
(*cons d47
(*recur bim))))))))
s))

Rul e DUNI FY-*REC9’ just reverses the order of the argunents.

Rul e DUNI FY-* REC13

No vari abl es anywhere and no conses in d2 or d4

(duni fy-descriptors (*rec foo (*cons dl (*or d2 (*recur fo0))))
(*rec bar (*cons d3 (*or d4 (*recur bar))))
s)

(_((*rec bim (*cons d13 (*or d24 (*recur bim))) . s))

Rul e DUNI FY-*REC10
No vari abl es anywhere and no conses in d2 or d3,
(duni fy-descriptors

129
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(*rec foo (*cons dl (*or d2 (*recur foo
(*rec bar (*or d3 (*cons d4 (*recur bar
s)

))))
))))

((_(*cons d14 (*rec bim (*or d23 (*cons d14 (*recur bim)))) . s))

Rul e DUNI FY-* REC11
Where d2, d3, and d4 contain no variables, and adopting the notation
(duni fy-descriptors & (*rec bar (*or d3 (*cons d4 (*recur bar)))) s)
= ((& . sp .. (& . sp)
(duni fy-descriptors
d3 (*cons d2 (*rec foo (*or & (*cons d2 (*recur f00))))) s)
= ((d32f001. sd31) .. (d32foom. stm)),

(duni fy-descriptors (*rec foo (*or & (*cons d2 (*recur fo0))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
s)

((_(*rec bim (*or & (*cons d24 (*recur bim))) . sl)

(.(;‘rec bim (*or & (*cons d24 (*recur bim))) . sn)
((*rec banml (*or d32f001 (*cons d24 (*recur baml)))) . sd31)

((*rec bamm (*or d32foom (*cons d24 (*recur bamm))) . sd3m)
)

Rul e DUNI FY-*REC11’
Where d2, d3, and d4 contain no variables, and adopting the notation
(duni fy-descriptors & (*rec bar (*or d3 (*cons (*recur bar) d4))) s)
= (((& . s .. (& . sp) and
(duni fy-descriptors
d3 (*cons d2 (*rec foo (*or & (*cons (*recur foo) d2)))) s)
= (((d32f001. sd31) .. (d32foom. sd3m)

(duni fy-descriptors (*rec foo (*or & (*cons (*recur foo) d2)))
(*rec bar (*or d3 (*cons (*recur bar) d4)))
s)

(((*rec bim(*or & (*cons (*recur bim d24))) . sl)

(.(;‘rec bim(*or & (*cons (*recur bim d24))) . sn)
((*rec banl (*or d32fool (*cons (*recur banil) d24))) . sd31)

(.(;rec bamm (*or d32foom (*cons (*recur bamm) d24))) . sd3m)
)

Rul e DUNI FY-*REC11' is the sanme as Rul e DUNI FY-*RECl1, except that
the order of the argunents in each cons is reversed.

Rul e DUNI FY-* REC14

No vari abl es anywhere and no conses in dl, d3, d5, or d7,

(duni fy-descriptors
(*rec foo (*or d1 (*cons d2 (*or d3 (*cons d4 (*recur f00))))))
(*rec bar (*or d5 (*cons d6 (*or d7 (*cons d8 (*recur bar))))))
s)

(_((*rec bim (*or d15 (*cons d26 (*or d37 (*cons d48 (*recur bim)))))
s))

Comment: Each descriptor characterizes |ists which can be of either
odd or even length. In foo, the odd el enents are d2s, the even

el enents are d4s, and if the length is even, the tail is a dl, and
if the length is odd, the tail is a d3. Sinilarly for bar. Thus,
in bim the odds are both d2 and d6, the evens are both d4 and d8,
if the length is even, the tail is both dl1 and d5, and if the
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length is even, the tail is both d3 and d7.

Rul e DUNI FY- * RECO’
Where either foo or bar contains sone variable
(duni fy-descriptors foo bar s)

(duni fy-descriptors (replace-all-vars-w th-universal foo)
(repl ace-all-vars-wth-universal bar)
s)

Rul e DUNI FY- * RECO
(duni fy-descriptors (*rec foo .. ) (*rec bar .. ) s)

(if (< (fringe-length (*rec bar .. )) (fringe-length (*rec foo .. )))
(((*rec bar .. ) . s))
(((*rec foo .. ) . s)))

Comment: This is the default rule. FRINGE- LENGIH just counts the
nunber of atonms in the form Thus, we return the lexically
smal ler of the two forns.

More rules could certainly be added. The rules that we use have been sufficient to support al but a very,
very few of the cases which have arisen in testing.

Despite al the steps taken to guarantee termination of the unifier algorithm, the termination argument is
very difficult. Among many other factors, the opening of *REC descriptors causes problems. We were
never able to find a correct measure with which to prove the unification algorithm terminates, though we
sketched one possible approach. For an extended discussion of the argument as we left it, see Appendix
F. The measure involved a vector of four distinct factors, each weighted differently and each rather
vaguely defined. This effort, if nothing else, convinced us that any correct measure would be of great
complexity, and further pursuing such a proof did not seem worthwhile. But even being aware of the
structure of this failed effort to find a measure, we were unable to construct an example which failed to
terminate, nor did we encounter any such example in any of the testing exercises. We believe the
algorithm will always terminate, but in the absence of proof, we must take this on faith. In any case, a
proof of termination is not necessary for the rest of thiswork.

6.7 Descriptor Canonicalization

Keeping the descriptors being manipulated by the checker in a canonica form helps minimize case
propagation and clarify the algorithms. So, in many instances after new descriptors have been formulated,
they are canonicalized. The canonicalization processis essentially the application of valid transformation
rules appropriate for the descriptor being considered.

All the transformation rules are value-preserving, in that the canonicalized descriptor always represents
the same set of values as the original, or rather, the same interpretation with respect to a binding under
INTERP-SIMPLE. For soundness purposes, it is sufficient for the formal specification for each
canonicalization to be of the form:

For any descriptor td, value v, and binding b covering td,
(I td v b) => (I (pcanonicalize-descriptor td) v b)

But in fact for all canonicalizations thisrelation is bi-directional.

PCANONICALIZE-DESCRIPTOR is the top-level function of the canonicalizer. To encapsulate the
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formal specifications of all the canonicalization rules, we have the following top-level lemma specifying
the correctness of PCANONICALIZE-DESCRIPTOR. As with DUNIFY-DESCRIPTORS
INTERFACE, if the argument isa*DLIST, a*DLIST of the same length is returned, and in this case in
the lemma below, the value v is considered to be a list of values the same length as the *DLIST, and the
cal to"1" denotes acall to INTERP-SIMPLE rather than INTERP-SIMPLE-1.

Lenma PCANONI CALI ZE- DESCRI PTOR- K

For any descriptor td, value v, and binding b,
(where td is a *dlist containing n descriptors iff vis a
value list of length n)

(I td v b)
=>
(1 (pcanonicalize-descriptor td) v b)

PCANONICALIZE-DESCRIPTOR directly cals PREAL-PCANONICALIZE-DESCRIPTOR, which
performs some minimal management of the canonicalization process. PREAL-PCANONICALIZE-
DESCRIPTOR invokes the principal recursive function PCANONICALIZE-DESCRIPTOR-1 and checks
to see if the result differs from the original descriptor. If so, it cals PCANONICALIZE-
DESCRIPTOR-1, after first attempting to fold up any expanded *REC descriptors and consolidate any
expanded representations of *UNIVERSAL if possible. (The two transformations just described are in
fact applications of canonicalization Rules 1 and 3 below.) When canonicalization stabilizes, it returns the
result.

Below this level, the canonicalization code simply applies the transformation rules as appropriate. Each
rule is bi-directional, in that the input and output descriptors are equivalent. The rules are stated below,
with the direction of canonicalization being from left hand side to right hand side. Along with each isthe
name of the principal Lisp function within which it isimplemented. Comments are supplied occasionally
for clarity.

Rul e 1:
(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T (*CONS *UNI VERSAL * UNI VERSAL) )
=> *UNI VERSAL
From functi on PCONSCLI DATE- UNI VERSAL- DESCRI PTORS

Rul e 2:

(*REC FOO (... (*RECUR FOO ...))

= (... (*RECFOO (... (*RECUIR FOO) ...)) ...)
From functi on OPEN- REC- DESCRI PTOR- ABSOLUTE

For exanpl e:
( OPEN- REC- DESCRI PTOR- ABSOLUTE
(*REC I LIST (*OR $NI L (*CONS $I NTEGER (*RECUR I LIST)))))

(*OR $NIL
(*CONS $I NTEGER
(*REC I LI ST (*OR $NIL (*CONS $I NTEGER
(*RECUR I'LIST))))))))

Rul e 3:
(... (*RECFOO (... (*RECIR FOO) ...)) ...)
=> (*REC FOO (... (*RECUR FOO) ...))

From functi on PFOLD- RECS- | F- PCSSI BLE

For exanpl e:
( PFOLD- RECS- | F- PCSSI BLE
(*OR NI L
(*CONS $I NTEGER
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(*REC I LIST (*OR $NIL (*CONS $I NTEGER
(*RECUR ILIST))))))))

(*REC ILIST (*OR $NIL (*CONS $I NTEGER (*RECUR I LI ST)))))

Comment: Rules 2 and 3 are the inverses of each other. They represent
the validity of opening up and fol ding *REC descriptors. Each is
appropriate, depending on context. It is nore common for
OPEN- REC- DESCRI PTOR- ABSCLUTE to be invoked as a stand-al one
canoni cal i zation from el sewhere in the system whereas
PFOLD- RECS- | F- POSSI BLE is invoked in the nornmal course of
canoni cal i zati on.

Rul e 4:
(*OR .. (*ORd1 .. d2) ..) => (*OR .. d1 .. d2 ..)
From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Comment: The nested *OR nmy appear in any argunment position of the
surroundi ng *OR

Rul e 5:
(*OR .. d1 .. d1..) =>(*OR .. d1 .. ..)
From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Comment: This rule characterizes the treatment of any nultiple
occurrence of a descriptor as argunents of an *OR

Rul e 6.
(*OR .. *EMPTY .. ) => (*OR .. ..
From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Comment: This rule characterizes the treatment of any occurrence of
*EMPTY as an argunent of an *OR

Rule 7.
Wiere D does not contain a (*RECUR FOO),
(*OR D (*REC FOO (*OR D .. (*RECUR FOO))))
=> (*REC FOO (*OR D .. (*RECUR FOO)))
From functi on PREMOVE- RECURSI VE- EXPANSI ON- DUPLI CATES

Rul e 8:
(*OR (*CONS d1 d2) (*CONS d3 d2)) => (*CONS (*OR d1 d3) d2)
Fr om PMERGE- OR- DESCRI PTOR- CONSES

Rul e 9:
(*OR (*CONS d1 d2) (*CONS d1 d3)) => (*CONS d1 (*OR d2 d3))
Fr om PMERGE- OR- DESCRI PTOR- CONSES

Rul e 10:
(*OR .. *UNIVERSAL ..) => *UN VERSAL
From PCANONI CALI ZE- OR- DESCRI PTOR

Rul e 11:
(*ORd) =>d
Fr om PCANONI CALI ZE- OR- DESCRI PTOR

Rule 12:
(*OR) => *EMPTY
Fr om PCANONI CALI ZE- OR- DESCRI PTOR

Rul e 13:
(*OR .. d1 .. d2 ..) == (*OR.. d2 .. d1 ..)
Fr om PCANONI CALI ZE- OR- DESCRI PTOR

Comment: This rule allows the placenent of *OR disjuncts into a
canoni cal order.

Rul e 14:
(*CONS *EMPTY d) => *EMPTY
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From PCANONI CALI ZE- CONS- DESCRI PTOR

Rul e 15:
(*CONS d *EMPTY) => *EMPTY
Fr om PCANONI CALI ZE- CONS- DESCRI PTOR

Rul e 16:
(*REC FOO (*OR .. (*RECUR FOO) ..)) => (*REC FOO (*OR .. ..))
From functi on PCANONI CALI ZE- REC- DESCRI PTOR

Comment: Wth this notation, we indicate that (*RECUR FOO) is a
top-level disjunct of the top-level *OR in the *REC body. This
reduction signifies that the recursion in the *REC descriptor is
ill-formed. The recursion enbodied in it does not term nate because
it does not descend into the CONS structure of an object, but rather
repeats the sanme predi cate about the same portion of the data object.
The recursive occurrences, then, are of no significance, since they
represent no data object not already represented by the descriptor
on the right hand side.

Rul e 17:
VWhere within (.. (*RECUR FOO) ..) there is no *OR enclosing the
(*RECUR FOO), but sonme *CONS enclosing it,

(*REC FOO (.. (*RECUR FOO) ..)) => *EMPTY
From functi on PCANONI CALI ZE- REC- DESCRI PTOR

Comment: Wth this notation, we indicate a *REC structure with no
term nating disjunct. Thus, it can represent only infinite objects,
and since these are not allowed in our subset, we reduce the form
to *EMPTY.

Rul e 18:
Where (*dlist dl1 .. dfoo .. dn) and (*dlist d1 .. dbar .. dn)
are identical except that they differ in one position, dfoo vs. dbar:
(*or ... (*dlist d1 .. dfoo .. dn) ... (*dlist d1 .. dbar .. dn) ...)
= (*or ... (*dlist d1 .. (*or dfoo dbar) .. dn) ...)
From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Comment: An *OR of *DLISTS is not a conventional descriptor. But it is
formed on exit from DUNI FY- DESCRI PTORS- | NTERFACE when we call it with
*DLI ST descriptors, whenever nultiple results are returned fromits
call to DUNI FY-DESCRI PTORS. Thus, rather than there being a semantic
notion of an *OR of *DLISTs, this packaging is just a protocol wth
any function which calls DUN FY- DESCRI PTORS- | NTERFACE with *DLI ST
argunents, all owi ng DUNI FY- DESCRI PTORS- | NTERFACE t o behave
pol ynorphically. The caller has the obligation to unpack the *OR
and to treat the list of results as a disjunction of possibilities.
Hence, this canonicalization allows a nerging of results.

6.8 The Containment Algorithm

One may think of type descriptors as defining sets of Lisp values. The elementary notion of containment
of a descriptor TD1 in a descriptor TD2 is that membership in TD1 implies membership in TD2.
Membership is defined in terms of our interpreter function INTERP-SIMPLE and therefore in terms of a
binding of type variablesto values.

The main feature of INTERP-SIMPLE with respect to variables is the binding list, which binds type
variables from the descriptor to Lisp values. When the interpreter encounters a variable &i, asin the call
(INTERP-SIMPLE-1 &i V B), it returns T if the binding of &i in B isequal to V, and NIL otherwise. So
one may think of the set of Lisp values defined by a descriptor TD as the set of all valuesV such that there
exists a binding B such that (INTERP-SIMPLE TD V B) is true. For example, the set of Lisp values
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defined by the descriptor (*CONS &1 $NIL) isthe set

{ (CONS X NIL) | X is any Lisp value }

I.e., we could imagine an infinite collection of bindings in which for any Lisp value X, there is some
binding in which &1 is mapped to X.

Our notion of containment is that TD1 is contained in TD2 if for any value V where some binding B
causes (INTERP-SIMPLE TD1 V B) to be true, there is some binding B’ such that (INTERP-SIMPLE
TD2V B’) isaso true. For example, (*CONS &1 $NIL) is contained in (*CONS &2 (*OR $NIL $T)),
because for any value V and binding B such

(I NTERP- S| MPLE-1 (*CONS &1 $NIL) V B)

istrue, there exists abinding B’ such that

(I NTERP- S| MPLE-1 (*CONS &2 (*OR $NIL $T)) V B')

will be true, namely any binding which binds &2 to the same value to which &1 was bound in B. Our
algorithm for checking containment, then, has the task of demonstrating that B’ can be generated. If no
such binding can be found, the algorithm must fail.

The containment algorithm plays three roles:

1. When handling a function call, TC-INFER invokes the containment algorithm to determine
if the descriptors corresponding to the actual parameters are contained in the descriptors
characterizing the guard for the function. This is the fundamental guard verification
operation.

2. After TC-INFER-SIGNATURE has produced its version of the guard descriptor and the
segments for the function, if the checker’s guard descriptor differs from that computed by
the inference algorithm, TC-INFER-SIGNATURE invokes the containment algorithm on
the two guard descriptors twice, once in each direction. As discussed in Section 6.3, if
containment exists in both directions, we may soundly replace the checker’s guard with the
inference algorithm’ s guard, the latter likely being in a more nicely canonicalized form.

3. TC-INFER-SIGNATURE also invokes the containment algorithm to determine that each
segment in the checker signature is contained in some segment from the original signature.

6.8.1 Overview

Not surprisingly, the problem is much simpler if both descriptors are variable-free, so much so that thisis
treated as a special case and solved with a distinct and much faster algorithm. Furthermore, even when
variables appear in the descriptors, some effort is made to reduce the problem to the variable-free case.
All these judgements are made in the function CONTAINED-IN-INTERFACE, which is the entry point
for the containment algorithm.

To rid the problem of variables, CONTAINED-IN-INTERFACE tries the following tricks. First, any
variable which occurs only once in a descriptor is replaced with *UNIVERSAL. Since the only
information a variable carriesis that it refers to some particular, unspecified value, the only practical use
for a variable is to represent a multiple occurrence of that value within a descriptor or descriptor list.
Thus, when we have singleton variables, we replace them with *UNIVERSAL and canonicalize. Second,
after this replacement, if there are no variables in the second descriptor, the variables in the first descriptor
areirrelevant, and they can be replaced with *UNIVERSAL. Thisis sound because it is never unsound to
"increase" the value set of TD1. By doing so, we could never create containment where it did not already
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exist. Moreover, it has no impact on the result, since if TD1 isavariable and if TD2 is variable-free and
isnot *UNIVERSAL, then we always say TD1 is not contained in TD2.

If trying these optimizations produces variable-free descriptors, then we cal the simple agorithm
CONTAINED-IN. If there are still variables to contend with, we first standardize the variablesin the two
descriptors apart and then call a complicated heuristic algorithm VCONTAINED-IN, which produces a
list of mappings, each of which can be interpreted as a schema for constructing bindings witnessing the
containment requirement. Then, we check the validity of the result from VCONTAINED-IN with yet
another, much simpler algorithm ICONTAINED-IN. The application of ICONTAINED-IN to the result
of VCONTAINED-IN is managed by the function MAPPINGS-DEMONSTRATE-CONTAINMENT.
All these subsidiary agorithms will be described below.

6.8.2 The Formal Specification

In our system proof, the optimizations in CONTAINED-IN-INTERFACE are proven sound as part of the
proof of CONTAINED-IN-INTERFACE-OK. The soundness of the CONTAINED-IN algorithm is stated
in Lemma CONTAINED-IN-OK. The VCONTAINED-IN agorithm is not proved, as it serves only as a
heuristic witness, suggesting a possible solution, but the MAPPINGS-DEMONSTRATE-
CONTAINMENT/ICONTAINED-IN algorithm which checks this solution is specified in the lemmas
ALL-DESCRIPTOR1-DISJUNCTS-OK-OK and ICONTAINED-IN-OK. All these lemmas will be stated
below and proved in Section 7.8.

The formal specifications of these algorithms are as follows. Here, asin all our other lemmas and proofs,
"I" is a shorthand notation representing INTERP-SIMPLE when its second and third arguments are lists,
INTERP-SIMPLE-1 when these arguments are a single descriptor and value. As with DUNIFY-
DESCRIPTORS-INTERFACE, the TD1 and TD2 arguments can be *DLIST forms of the same length,
and in this case in the lemmas below, the value V is considered to be alist of values the same length as the
*DLIST, and the callsto "I" denote calls to INTERP-SIMPLE rather than INTERP-SIMPLE-1. The top
level specification for CONTAINED-IN-INTERFACE is embodied in the lemma:

Lemma CONTAI NED- | N- | NTERFACE- OK
For any descriptors tdl and td2, value v, and binding b

(and (contained-in-interface tdl td2)
(I tdl v b))

=

For sone b’, (I td2 v b’)

The specification for the variable-free algorithm CONTAINED-IN is:
Lemma CONTAI NED- | N- OK
For any descriptors tdl and td2, Lisp value v, and binding bl

(and
HL (null (gather-variabl es-in-descriptor tdl))
H2 (null (gather-variabl es-in-descriptor td2))
H3 (contained-in tdl td2)
H4 (1 tdl v bl))

=>

For sone b2, (I td2 v b2)

Comment: The b2 used here is irrelevant, since the descriptors are
variabl e-free
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CONTAINED-IN and ICONTAINED-IN take an extra argument, TERM-RECS, which serves only as
part of a termination mechanism and hence has no bearing on this soundness lemma. Therefore we
eliminate reference to it to minimize notation. One may consider it to be universally quantified in the
lemmas.

The soundness specification for MAPPINGS-DEMONSTRATE-CONTAINMENT is given in Lemma
ALL-DESCRIPTOR1-DISIJUNCTS-OK-OK. Init weintroduce the notion of avalue reference.

Definition: A valuereference is a synbolic reference to sonme
hypot heti cal value V satisfying the descriptor TDl on the
top-level call of CONTAI NED-IN-|INTERFACE. A value reference nay
take the formof the atomV or sone nest of CAR CDR, DLIST-ELEM
or REC-TAIL function calls around V.

Lemma ALL- DESCRI PTORL- DI SJUNCTS- OK- OK
For any descriptor tdl of the form(*or tdlq .. tdlp)
and descriptor td2, value reference vref, value v, and binding
bl covering the variables of tdl
(and
H1 (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-in-descriptor td2))
H2 For all i, for some sinple mapping m
(and (wel | -formed- mappi ng mvref bl)
(icontained-in tdli (appl y-subst mtd2) vref))
H3 (I tdl v bl) )
=>
For sone b2, (I td2 v b2)

The mappings in H2 are provided by the heuristic function VCONTAINED-IN. By definition,
MAPPINGS-DEMONSTRATE-CONTAINMENT puts TD1 into the appropriate *OR form, and given
the mappings from VCONTAINED-IN, is the direct implementation of H2.

Finally, the specification of the ICONTAINED-IN algorithm is LemmalCONTAINED-IN-OK.
Lemra | CONTAI NED- | N- OK

For any descriptors tdl and td2, sinple napping m Lisp value v,
synbolic val ue reference vref, and binding bl covering the
variables in tdl

(and

H1L (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-i n-descriptor td2))

H2 (well-forned-mappi ng mvref bl)
H3 (icontained-in tdl (dapply-subst-list-1 mtd2) vref)
H4 (1 tdl v bl) )

=>

For sone b2, (I td2 v b2)

6.8.3 CONTAINED-IN

In the absence of variables, descriptors can be readily seen as representing sets of values, and the notion of
containment can be easily grasped as a subset operation. This mindset may help with understanding the
containment algorithm for variable-free descriptors.

The function CONTAINED-IN takes three parameters, the two descriptors TD1 and TD2, and a TERM-
RECS argument which functions just as it does in DUNIFY-DESCRIPTORS to prevent an infinitely
recursive unwinding of overlapping pairs of *REC descriptors. The recursive pattern of CONTAINED-
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IN is quite similar to that of DUNIFY-DESCRIPTORS, including its employment of a collection of rules
for handling the case where both TD1 and TD2 are * REC descriptors.

The following case analysis is used. The cases are considered in order, so each assumes the descriptors
being considered do not suit any of the previous cases.
1. For any descriptor td, td is contained in td.

2. *EMPTY is contained in any descriptor.

3. No descriptor is contained in *EMPTY .

4. *UNIVERSAL is contained in no descriptor.

5. Any descriptor is contained in * UNIVERSAL.

6. An *OR descriptor is contained in TD2 if all its diguncts are contained in TD2.

7.1f TD1isa*REC descriptor, then:

a If TD2 is an *OR descriptor, one of whose disjuncts is name isomorphic to TD1,
then TD1 is contained in TD2. By name isomorphism, we mean either that the two
*REC descriptors are equal or that one is exactly like the other except for bearing a
different label.

b. If TD2 is a*REC descriptor, we try each of the *REC rules described below. Each
rule has an enabling condition and an action. The first rule whose enabling condition
is satisfied provides the verdict.

c. If TD2 isnot a*REC, we first see if we have on previous recursion encountered the
TD1-TD2 pair. If so, we return NIL. This is the TERM-RECS tedt, since the
TERM-RECS parameter contains a list of all previously encountered pairs.
Otherwise, we open TD1 and recur, CONS-ing the TD1-TD2 pair onto the TERM-
RECS argument.

8.1f TD2isan *OR, then TD1 is contained in TD2 if it is contained in one of the diguncts of
TD2.

9. If TD2 isa*REC, we administer the TERM-RECS test as above. If we are not looping, we
open TD2 and recur, with the augmented TERM-RECS list.

10. If both descriptors are CONS-es, we have containment if the respective CARs and CDRs
both exhibit containment.

11. If both descriptors are *DLISTs, we have containment if we have pairwise containment on
all the arguments.

12. Otherwise, containment fails.

Before trying the *REC rules, we canonicalize both descriptors in the same way as we did for the
DUNIFY-DESCRIPTORS *REC rules, turning al the top level *ORs into binary forms, where the first
digunct is a disunction of non-replicating forms, and the second is a digunction of replicating forms
(forms containing the *RECUR).

The notation used in therulesislike that used in the DUNIFY-DESCRIPTORS rules. For instance, * REC
forms defined on the left hand side are referred to by their labels on the right hand side. A reference to
"foo" or "bar" on the right hand side of arule is a shorthand for the entire * REC form of that name on the
left hand side. For afull explanation of the notation, see Section 6.6.3. Recall that the enabling condition
is embodied in the form of the left hand side of the equality. Because the rules are considered in order,
each enabling condition effectively includes the negation of al previous enabling conditions. The
numbering of the rules is somewhat irregular, so that it will correspond to analogous ICONTAINED-IN
*REC rules, to follow later. A rule whose name containsa™'" isaminor variant of its predecessor.
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In reading each of these rules, remember the CONTAINED-IN agorithm is only invoked when both of its
arguments are variable-free. Thus, all component descriptors are variable-free, and thus CONTAINED-
IN may be called recursively.

Rul e Cont ai n-* RECL

Where the two *recs differ only in nane

(contained-in (*rec foo ( .. (*recur foo) ))
(*rec bar ( .. (*recur bar) .. )))

=t

Rul e Cont ai n- * REC2
(contained-in (*rec foo (*or $nil (*cons dl (*recur foo0))))
(*rec bar (*or $nil (*cons d2 (*recur bar)))))

(contained-in dl d2)

Rul e Cont ai n-* REC2’
(contained-in (*rec foo (*or $nil (*cons (*recur foo) dl)))
(*rec bar (*or $nil (*cons (*recur bar) d2))))

(contained-in dl1 d2)

Rul e Cont ai n-* REC3

Where d1 and d3 are either primtive non-cons descriptors or

*ORs of primtive non-cons descriptors

(contained-in (*rec foo (*or dl (*cons d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar)))))

(and (contained-in dl1 d3) (contained-in d2 d4))

Rul e Cont ai n-* REC3’

Wiere d1 and d3 are either primitive non-cons descriptors or

*ORs of primtive non-cons descriptors

(contained-in (*rec foo (*or dl (*cons (*recur foo) d2)))
(*rec bar (*or d3 (*cons (*recur bar) d4))))

(and (contained-in dl1 d3) (contained-in d2 d4))

Rul e Cont ai n-*REC5
(contained-in (*rec foo (*or dl (*cons d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))

)

(or (and (contained-in dl d3) (contained-in d2 d4))
(contained-in foo d3)
(and (contained-in dl bar) (contained-in d2 d4)))

Rul e Cont ai n-* REC6

No conses in dl or d4.

(contained-in (*rec foo (*or dl1 (*cons d2 (*cons d3 (*recur fo00)))))
(*rec bar (*or d4 (*cons d5 (*recur bar)))))

(and (contained-in dl d4) (contained-in d2 d5) (contained-in d3 d5))

Rul e Cont ai n-* REC6’
No conses in dl or d4.
(contained-in (*rec bar (*or d4 (*cons d5 (*recur bar))))
(*rec foo (*or dl (*cons d2 (*cons d3 (*recur fo00))))))

nil

Rul e Cont ai n-* REC7

No conses in dl or d4.

(contained-in (*rec foo (*or dl1 (*cons (*recur foo) (*recur fo00))))
(*rec bar (*or d2 (*cons (*recur bar) (*recur bar)))))

(contained-in dl d2)

Rul e Cont ai n-* REC8
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No conses in dl or d5
(contained-in
(*rec foo (*or dl (*cons d2 (*cons d3 (*cons d4 (*recur fo00))))))
(*rec bar (*or d5 (*cons d6 (*recur bar)))))
(and (contained-in dl d5)
(contained-in d2 d6)
(contai ned-in d3 db6)
(contained-in d4 d6))

Rul e Cont ai n-* REC8’
No conses in dl or d5.
(contained-in
(*rec bar (*or d5 (*cons d6 (*recur bar))))
(*rec foo (*or dl1 (*cons d2 (*cons d3 (*cons d4 (*recur f00)))))))

nil

Rul e Cont ai n-* REC9

No conses in dl or d5.

(contained-in
(*rec foo (*or dl (*cons d2 (*cons d3 (*cons d4 (*recur fo00))))))
(*rec bar (*or d5 (*cons d6 (*cons d7 (*recur bar))))))

nil

Rul e Cont ai n-* REC9’
No conses in dl or d5.
(contai ned-in
(*rec bar (*or d5 (*cons d6 (*cons d7 (*recur bar)))))
(*rec foo (*or dl1 (*cons d2 (*cons d3 (*cons d4 (*recur f00)))))))

nil

Rul e Cont ai n-* REC10

No conses in d2 or d4

(contained-in (*rec foo (*cons dl1 (*or d2 (*recur fo0))))
(*rec bar (*cons d3 (*or d4 (*recur bar)))))

(and (contained-in dl1 d3) (contained-in d2 d4))

Rul e Cont ai n-*RECL1

No conses in d2 or d3.

(contained-in (*rec foo (*cons dl1 (*or d2 (*recur fo0))
(*rec bar (*or d3 (*cons d4 (*recur bar))

~ —
~ —

(and (contained-in dl d4) (contained-in d2 d3))

Rul e Contai n-*REC11’
d3 is a primtive or a disjunction of prinmitives,
(contained-in (*rec bar (*or d3 d4))

(*rec foo (*cons dl d2)))

nil

Rul e Cont ai n-*REC13
No conses in dl, d3, d5, or d7
(contai ned-in
(*rec foo (*or dl (*cons d2 (*or d3 (*cons d4 (*recur fo00))))))
(*rec bar (*or d5 (*cons d6 (*or d7 (*cons d8 (*recur bar)))))))
(and (contained-in dl d5)
(contained-in d2 d6)
(contained-in d3 d7)
(contained-in d4 d8))

Rul e Cont ai n-*RECO
(contained-in foo bar) = nil
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Comment: Rule Contain-*RECO is a default, to be enployed to adm nister
failure when the preconditions for all the other rules have not
been satisfied

6.8.4 The VCONTAINED-IN Heuristic and Its Setting

Recall the top level specification for containment.

Lemma CONTAI NED- | N- | NTERFACE- OK
For any descriptors tdl and td2, value v, and binding b

(and (contained-in-interface tdl td2)
(I tdl v b))

=

For sone b’, (I td2 v b’)

In the case where one or both of the descriptors contains a variable which could not be removed by
CONTAINED-IN-INTERFACE, to demonstrate containment we must demonstrate the existence of a
binding B’ such that the containment relation defined in terms of INTERP-SIMPLE holds. Since the
binding B’ will depend on information from B, as well as TD1 and TD2, without knowing B, we cannot
generate specific bindings B’. So instead, we attempt to generate what we will call a mapping which
shows precisely how B’ can be constructed, given some arbitrary B for which (I TD1 V B) is true.
Finding this mapping is the job of the function VCONTAINED-IN.

This task is relatively difficult, and a proof of the algorithm embodied in VCONTAINED-IN would be
daunting. But our soundness proof will be in the same spirit which led us to use a checker which is
proven correct validate the function signatures generated by the inference system. Rather than proving the
soundness of VCONTAINED-IN directly, we prove the correctness of an algorithm ICONTAINED-IN
which checks that a mapping produced by the unverified algorithm VCONTAINED-IN does indeed
demonstrate that the containment relation holds.

Both VCONTAINED-IN and ICONTAINED-IN are similar in structure to CONTAINED-IN. But
VCONTAINED-IN produces a mapping structure, described below, which can be easily transformed into
alist of smple mappings. We can then apply each mapping from thislist in turn to TD2 and employ the
algorithm ICONTAINED-IN, which is afairly simple extension of CONTAINED-IN, to demonstrate that
a binding B’ can be constructed which will make (INTERP-SIMPLE TD2 V B’) true whenever
(INTERP-SIMPLE TD1V B) istrue.

Syntactically, simple mappings conform to the following quasi-BNF style grammar.

<mappi ng> ::= ( <elemp* )
<elenr ::= (<td2 variable name> . <target>)
<target> ::= <tdl variable nanme> | $nil | $t | <synbolic val ue>

<synbolic value> ::=
V| (CAR <synbolic value>) | (CDR <synbolic value>)
(DLI ST- ELEM <synbol i ¢ val ue |ist> <integer> )
(REC-TAI L <synbolic-val ue> )

<synbolic value list> ::= ( <synbolic val ue>* )

<tdl variable name> :: a type variable appearing in tdl

<td2 variable name> :: a type variable appearing in td2
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REC-TAIL is afunction which returns the atom which isthe final CDR of alist.

(DEFUN REC-TAIL (L) (IF (ATOML) L (REC-TAIL (CDR L))))

DLIST-ELEM isafunction which, given alist L and a positive integer i less than the length of L, returns
the ith element of L. This function is here only to index over the value list considered as V when TD1 and
TD2 are *DLISTs.

( DEFUN DLI ST-ELEM (L I)
(IF (EQUAL | 1) (CAR L) (DLIST-ELEM (CDR L) (- | 1))))

A mapping directs the construction of B’ in the following manner. If a<target> isa<td1 variable name>
the right hand side of the corresponding binding would be the binding of the <target> in B. If a<target> is
$NIL, the right hand side would be NIL. Similarly for $T and T. If the <target> is a symbolic value
reference, such as V, (CAR V), or (REC-TAIL V), the right hand side would be the value of the
corresponding component of the Lisp value under consideration by INTERP-SIMPLE. This value is the
one represented symbolicaly by V in the statement of CONTAINED-IN-INTERFACE-OK. Note that we
could have used a symbolic valuein al cases, but, as we shall see in the description of the algorithms, this
would not serve to handle multiple occurrences of variables within the descriptors.

ICONTAINED-IN determines whether the containment relationship exists between TD1 and TD2 under
the mapping. If it does, given B and V, the mapping can be easily transformed into a binding B’ which
will satisfy the containment requirement in terms of INTERP-SIMPLE. If any of the mappingsin the list
formulated by VCONTAINED-IN can be validated, we have demonstrated containment. But as we shall
later see, if there is digunction in TD1, it may be the case that no single mapping will demonstrate
containment. It is sufficient, however, to canonicalize TD1 so that every disjunction lying outside of any
embedded *REC descriptor is raised to the top, i.e., so that TD1 is a digunction of descriptors, each of
which is * OR-free down to embedded *REC descriptors. Then, if for al disuncts of TD1, there exists a
simple mapping which demonstrates containment, containment is thereby demonstrated for the
digunction. We shall prove the correctness of ICONTAINED-IN, which as a checker will contribute to
the proof of the correctness of CONTAINED-IN-INTERFACE.

VCONTAINED-IN is more complicated than ICONTAINED-IN, since it has to discover the appropriate
mappings, rather than just validating them. To support this discovery requires a more elaborate notion of
amapping. VCONTAINED-IN takes as parameters two descriptors TD1 and TD2, an initial (elaborate)
mapping M, a TERM-RECS argument (initially NIL), and a value reference VREF by which we will refer
to some arbitrary value V, and it returns alist of (elaborate) mappings M¢..M,.

(VCONTAINED-IN tdl td2 mnil vref) = (n& .. nh)

Failure is signified by returning an empty list of mappings. The implicit assumption is that there exists a
binding B such that (INTERP-SIMPLE TD1V B) istrue. (M4 .. M) may be thought of as extensions of
M. Again, the nature of the result isto show precisely how abinding B’ can be constructed from B and V
such that (INTERP-SIMPLE TD2 V B’) istrue. A list of mappings demonstrates containment if for any
value satisfying TD1 under B, one of the mappingsin thelist createsa B’ such that the value satisfies TD2
under B’.

To characterize elaborate mappings, we modify the preceding grammar for mappings by replacing

<mappi ng> ::= ( <elenmp* )

with
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<mapping> ::= ( <elenmp* ) | (*CHO CE <mapping-list>* )

<mapping list> ::= ( <mappi ng>* )

VCONTAINED-IN returns alist of mappings. Inasense of validity to be explained below, amapping list
is a collection of mappings, all of which must be present in order to demonstrate containment. A

*CHOICE encapsulates a collection of mapping lists, each of which individually demonstrates
containment.

A list of mappings is necessary to characterize what happens when TD1 is an *OR. Consider the
example:

(VCONTAINED-IN " (*OR $NIL $T) "& NL NIL vref)

(((& . NL)) ((& . T)))
Containment is guaranteed if when the value V isNIL, &1 isbound to NIL, and if when thevalueV is T,
&1 is bound to T. Obviously, V cannot be simultaneously T and NIL, and the bindings to handle each
situation are mutually exclusive. So we use a list of bindings to characterize what must be possible in

order for containment to exist. The list of mappings enumerates the list of choices for B’ which might be
needed.

A *CHOICE indicates that, for al of the mapping lists which follow, one of its mappings will generate a
binding which will be acceptable. * CHOICE ariseswhen TD2 isan *OR. For example,

(VCONTAI NED- I N * $I NTEGER * (*OR &1 &) NIL NIL 'V)

((*CHOCE (((&1 . V))) (((& . V)))))

Containment is guaranteed either when &1 is bound to the integer in question, or &2 is similarly bound.

In either case, it does not matter what the other variable is bound to. We can see thisin the setting of our
interpreter.

(1 NTERP- SI MPLE $I NTEGER V B)

expands directly to (INTEGERP V).

(I NTERP- S| MPLE (*OR &1 &2) V B')

expandsto

(OR (EQUAL V (CDR (ASSCC &1 B'))) (EQUAL (CDR (ASSCC & B'))))

A B’ constructed from this mapping can map either &1 or &2 to the integer V, and the predicate will be
true.

When generating mapping lists withessing containment for * CONS or *DLIST structures, we compute the
mappings validating containment for the CARs. If there are no such mappings, we fail. Then we use each
of the mappings as the base mapping for the recursive analysis of the CDRs. If a base mapping is a
*CHOICE, we can succeed if any one of the choices leads to a positive result. But in order for
containment to be demonstrated for the * CONS or * DLIST, every base mapping from the CAR must lead
to a positive result.

Consider the following example:
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( VOONTAI NED- | N ' (* CONS $I NTEGER $NI L)
"(*CONS (*OR &1 &2) &2)
NIL NIL ’v)

(((&1 . (CARV)) (& . $NIL)))
To see how his result was derived, first notice that the preceding example gives us the result for the CARs
(giving (CAR V) rather than V as the symbolic value reference):

((*CHACE (((& . (CARV)))) (((& . (CAR V))))))
This is a singleton list composed of a single *CHOICE mapping, thus we need only show that the
*CHOICE will work in the CDR. So we proceed to the CDRs with our choices. There are two recursive
calls of VCONTAINED-IN, one for each choice. Since each choiceis alist of mappings, each mapping

in one of the lists must be an effective base mapping for the CDR. But in this case, since each list is a
singleton, our solution can be produced by one of the mappings from either:

(VCONTAINED-IN " $NIL ' & ' ((&l . (CAR V))) NIL (CDR V))

or

(VCONTAINED-IN " $NIL * & ' ((& . (CAR V))) NIL (CDR V))

In either case, we must map &2 to $NIL to get a solution. This poses no conflict with our first choice,
which places no constraint on &2, and the first mapping is extended with the mapping element (&2 .
$NIL) to produce the result;

(((& . (CARV)) (& . $NIL)))

But the second choice gets ruled out, because &2 could not be mapped to both (CAR V) and $NIL. If
(CAR V) isanything but NIL, there would be inconsistency. Thus, our ultimate result is the singleton list
of mappings:

(((&1 . (CARV)) (& . $NIL)))

On the other hand, when a digunction isin TD1, we require that each of the digjuncts be contained under
some mapping. The same mapping need not apply to al disuncts. This generation of multiple mappings
is the reason VCONTAINED-IN returns a list of mappings rather than a single one. Consider the
example:

( VCONTAI NED- I N ' (*OR &1 $INTEGER) '& NIL NIL 'V)

(((82 . &1)) ((&2 . V)))

By the definition of INTERP-SIMPLE, for any value V for which

(I NTERP- S| MPLE (*OR &1 $I NTEGER) V B)

is true, either (INTERP-SIMPLE &1 V B) or (INTERP-SIMPLE $SINTEGER V B) istrue. If the&1in
(*OR &1 $INTEGER) is the operative descriptor, &2 mapsto &1. If SINTEGER is operative, &2 maps
to V. Any subsequent extension of the mappings must allow both of these cases, or else the proper
containment relation will not hold in al cases. For example,

( VCONTAI NED- I N ' (*CONS (*OR &1 $| NTEGER) &1)
" (*CONS &2 &2)
NIL NIL ’ V)
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(;LL—VCO\ITAI NED- 1N’ &1 & ' (((& . &l)) ((& . (CAR W)))))
NI L

because in the case where the CAR, and thus & 2, corresponds to $INTEGER and &2 maps to (CAR V),
the CDR, and thus also &2, cannot necessarily correspond to an arbirtrary &1. An example which
validates thisfailureisthevalue’(10 . NIL). The only binding bl for which

(I NTERP- S| MPLE (*CONS (*OR &1 $I NTEGER) &1) (10 . NIL) bil)

istrueis((&1 . NIL)). But no binding B2 will make

(I NTERP- S| MPLE (*CONS &2 &2) (10 . NIL) B2)

true. But consider:
( VCONTAI NED- I N (*CONS (*OR &1 $I NTEGER) &1) (*CONS & &3) NIL NIL V)

(((& . &) (&3 . &1)) ((& . (CARV)) (&3 . &1)))

Containment exists in this case, since the mapping arising from the CDR containment is in both cases
consistent with both of the cases from the CAR.

Moreover, the same phenomenon is the reason * CHOICE encompasses a list of mapping lists, rather than
just alist of mappings. For example,

(VCONTAI NED- | N- | NTERFACE (*CONS &1 &1)
(*OR (*CONS &2 &3) (*CONS &2 &2)))

(_(*CHO'CE(((&Z- &) (&3 . &1))) (((& . &1)))))

Generating mapping lists for witnessing containment of one *REC descriptor within another *REC
descriptor is handled as in DUNIFY-DESCRIPTORS and CONTAINED-IN. Rather than employing a
genera agorithm, we will employ a set of rules, each suited to descriptors of a particular form. An
example of such aruleis:

( VOONTAI NED- | N (*REC FOO (*OR $NI L (*CONS DI (*RECUR FOO))))
(*REC BAR (*OR $NIL (*CONS D2 (*RECUR BAR))))
M
VREF)

(VCONTAI NED-I N D1 D2 M * BOGUS- VREF*)

The FOO descriptor is contained in the BAR descriptor if D1 is contained in D2. Thus, the problem is
reduced to one which does not involve the top level *REC descriptors. The VREF parameter on the right
hand side is denoted bogus because there can be no variablesin D1 or D2, and hence the VREF will never
comeinto play. Each rule has a set of conditions which must be fulfilled in order for it to be invoked on a
given problem. Asadefault, we have afina rule which will fire unconditionally when no other rule will,
and which declares that containment does not exist. This action is not very satisfying, but is sound.
(There being no formal notion of soundness for VCONTAINED, the reader can take thisin the informal
sense.) The *REC descriptors are put in a specia canonical form prior to being matched against the rule
enablers, as with DUNIFY-DESCRIPTORS and CONTAINED-IN. The rules are sufficiently similar in
form to the CONTAINED-IN *REC rules that they do not merit stating here, but they may be found in the
source code, stored in the constant REC-VCONTAINMENT-RULES. Since VCONTAINED-IN isjust a
heuristic function about which we make no claims of correctness, the details of the rules are not so
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important.

6.8.5 TheICONTAINED-IN Checker

As previoudly stated, the function MAPPINGS-DEMONSTRATE-CONTAINMENT and its subsidiaries
manage the application of the ICONTAINED-IN agorithm. It raises al disunction outside of *REC
descriptors in TD1 to the top of the form. 1t massages the mapping list produced by VCONTAINED-IN
into alist of simple mappings (without *CHOICE). This is done by simply appending the lists within a
*CHOICE, forming a single list of simple mappings. Essentially, the "AND" represented by a * CHOICE
is weakened to an "OR".31Then it organizes calls to ICONTAINED-IN to validate that for every disunct
of TD1, given any value V and binding B such that (INTERP-SIMPLE TD1 V B), some mapping
provides a method for constructing a binding B’ such that (INTERP-SIMPLE TD2 V B’). This is
sufficient to establish containment of TD1 in TD2.

In preparing each call to ICONTAINED-IN, MAPPINGS-DEMONSTRATE-CONTAINMENT actualy
substitutes the mapping under consideration into TD2 to form the second argument. A mapping maps
TD2 variables to either a TD1 variable indicating that in B’ the variable from TD2 would be bound to the
same value as the variable from TD1 is bound to in B, or it maps a TD2 variable to some CAR-CDR nest
of the symbolic value VREF, indicating that in B’ the same variable would be bound to the same nest on
thevalue V.

Thus, ICONTAINED-IN, which otherwise is quite like CONTAINED-IN, differs in that it must be
prepared to handle very simple scenarios with variables and with our symbolic value references in TD2.
It makes judgements on value references by constructing its own symbolic value reference as it recurs
down through the * CONS structure of TD1 and TD2. Thisreference is aparameter of ICONTAINED-IN.
On the initial call the actual parameter is 'V, which is the same symbolic root which was given to
VCONTAINED-IN. Every time ICONTAINED-IN recurs into a *CONS, or a *DLIST, the proper
destructor (CAR, CDR, or DLIST-ELEM) iswrapped around the value reference. The following rules for
variables and symbolic value references augment the treatments of other forms, which are as in
CONTAINED-IN.

1.1f TD2 is a type variable, if TD1 is the identical type variable, TD1 is contained in TD2,
otherwise it is not.

2.1f TD2 is a symbolic value reference, if it is identica to the current value of the value
reference parameter to ICONTAINED-IN, then TD1 is contained in TD2, otherwise it is not.

As with UNIFY-DESCRIPTORS, CONTAINED-IN, and VCONTAINED-IN, the case where both TD1
and TD2 are * REC descriptors is handled with a collection of specia caserules. The method isidentical,
and the rules are similar to those used in CONTAINED-IN. The specific rules used in ICONTAINED-IN
may be found in the Appendix B-I, which also includes the proofs of several of the rules. The notation is
the same kind used for the CONTAINED-IN rules.

311 the implementation code, these simple mappings are referred to as semibindings.



Type Checking for Common Lisp 147
The Proof of Soundness

Chapter 7
THE PROOF OF SOUNDNESS

This chapter presents the proof of soundness for the signature checker, i.e., of its validation of the function
signatures produced by the inference system. We discuss the organization of the proof and each of its
main ideas, state some key lemmas, and present some detailed proofs. In the case of more lengthy or
subsidiary proofs, we point to their appearance in Appendix B. The order of presentation will be
top-down, though this means, of course, that at almost every level the validity of the proof will rest on the
proofs of lemmas presented later in the discussion. Most of these lemmas, however, have been previously
stated in Chapter 6.

This is a proof of the correctness of an algorithm. The algorithm is implemented as a collection of
applicative Common Lisp functions. Although the proof deals with fairly fine details of the code, it is not
strictly a code proof. Subjective judgements were made about the points at which the implementation was
involved with coding details which were not particularly relevant to the algorithm. For example, the
precise structure of data objects and their abstraction and manipulation is not addressed in the proof. The
objects are viewed at an abstract level which is fully satisfactory for complete comprehension of the
algorithm. On the other hand, if a major transformation of these objects from one organization to another
is relevant to the algorithm, the proof will deal with the transformation. An example is the cross product
operation where the information computed about the types of the actual arguments in a function call is
transformed prior to matching against the signature segments for the called function. (This was discussed
in Section 6.5.2).

In the next section, we give a rough overview of the proof in terms of its main components, how they
relate to one another, and which formal structures they manipulate. In the following section, we provide
an informal sketch of the top level proof of soundness, thus providing a sense of direction for the sections
which follow. Then we proceed with the proof itself, starting with a section containing the proofs of the
top level lemmas. After a brief overview, we prove Lemma GUARD-COMPLETE, which is one of our
top-level lemmas and the foundation for the treatment of guard verification. In the section "Validation of
the Guard Descriptor”’, we prove Lemma TC-INFER-SIGNATURE-GUARD-OK, an important
supporting lemma for the proof of Lemma TC-SIGNATURE-OK, our top level goal, which follows in
Section 7.3.3. In the remaining sections, we prove important lemmas about subsidiary algorithms: the
principal recursive function in the checker TC-INFER, the descriptor unifier DUNIFY -DESCRIPTORS-
INTERFACE, the descriptor canonicalizer PCANONICALIZE-DESCRIPTOR, and the containment
algorithm CONTAINED-IN-INTERFACE.

Fruitful reading of this chapter will require familiarity with the material presented in Chapter 5, which
presents the forma semantics of the system, and Chapter 6, which gives detailed descriptions of the
algorithms in the checker.
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7.1 Structure of the Proof

There are four basic components to the proof, each corresponding to a subsystem of the signature checker.
These are
e The descriptor canonicalizer, whose top level function is

PCANONICALIZE-DESCRIPTOR and whose top level soundness lemma is
PCANONICALIZE-DESCRIPTOR-OK,

* The descriptor unification algorithm, whose top level function is DUNIFY -DESCRIPTORS-
INTERFACE and whose top level lemmais DUNIFY-DESCRIPTORS-INTERFACE-OK,

* The containment algorithm, whose top level function is CONTAINED-IN-INTERFACE and
whose top level lemmais CONTAINED-IN-INTERFACE-OK, and

« The main checker algorithm, whose top level function is TC-SIGNATURE and whose top
level lemmas are TC-SIGNATURE-OK and GUARD-COMPLETE.

Two interpreters are central to the formal semantics of the type system. One, composed of the functions
INTERP-SIMPLE-1 and INTERP-SIMPLE, takes a type descriptor or alist of descriptors respectively, a
Lisp value or list of values respectively, and a binding of type variables to values and determines whether
the value is a member of the set of values represented by the descriptor under the binding. The Lisp
evaluator E takes a Lisp form, an environment binding Lisp variables to values, a world of defined
functions, and a non-negative integer clock and returns either a special value indicating the clock value
was not adequately large to alow full evaluation, a special value indicating a guard violation occurred on
some function call during the evaluation, or the Lisp value of the form in the environment if the evaluation
succeeded.

The realm of discourse in the canonicalization proof consists of descriptors and descriptor lists, Lisp
values, type variable bindings, and INTERP-SIMPLE. Bindings are present only because they are
required by INTERP-SIMPLE. They are not manipulated in any way. E does not appear at al. In the
global hierarchy of the proof, the canonicalization proof is self-contained. It relies on none of the other
components.

The unification proof also involves descriptors and descriptor lists, values, bindings, and INTERP-
SIMPLE. Also playing a role is another entity, a substitution, which maps type variables to other
descriptors. A significant companion function is INTERP-SUBSTS, a predicate which determines
whether a substitution is consistent with a binding. Substitutions appear only in the proof about the
unification algorithm. Again, E makes no appearance. The unifier proof relies directly on the proof of the
canonicalizer, but not on any other principal component.

As with the canonicalizer and the unifier, the containment proof involves descriptors and descriptor lists,
values, bindings, and INTERP-SIMPLE. A significant local notion in the containment proof is that of a
mapping, which embodies a method for constructing one type variable binding from another. Thus, the
properties and the manipulation of bindings are points of interest in this proof. In the proof hierarchy, the
containment proof uses the canonicalization lemmas, but does not rest on the unifier or the top level
lemmas.

The top level proof about the checker uses ailmost everything previously mentioned. It manipulates
function signatures, of which descriptors are components, values, type variable bindings, Lisp variable
environments, the database of function signatures, Lisp forms, the world, and the clock. Both INTERP-
SIMPLE and E are significantly explored. As both containment and unification are key concepts in the
checker, their respective soundness lemmas are used heavily in the proof, along with the ubiquitous
canonicalizer. Only in the top level proofs do Lisp forms, the evaluator E, the clock, and the world come
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into play.

7.2 The Top-Level Approach

Here we describe the very highest level of the formal setting of the inference algorithm and the checker,
providing some semi-formal intuition for understanding why the lemmas we have proved give a proof of
soundness for the system. In particular, we argue the soundness of using the untrusted signature generated
by the inference algorithm as a basis for the checker’s computation of a trusted signature, and how the
containment relation can reflect that trust back to the original signature. This discussion is intended
simply to motivate the ideas behind the top level proof. The rigorous proof is given later as the proof of
LemmaTC-SIGNATURE-OK (Section 7.3.3).

Let f-be the graph of a function f whose definition has been submitted to the inference system. The
inference algorithm applied to f generates some function signature S. We want to ensure that Sis avalid
signature for f, i.e., that U S, where by "[0" we mean that the signature embodies a set of ordered tuples
of which fX is a subset. Embodied in the specification is the notion that any tuple of values
[argq .. agy, (f &gy .. agyy)] (where f is m-ary) satisfies S, meaning that if the values [argq .. argy)
satisfy the guard of the function, then the tuple satisfies some segment of S. Satisfaction is always
determined by the function INTERP-SIMPLE. A segment (tdq .. td,) -> td of Sis satisfied if there is
some binding b of the type variablesin the segment such that,

(INTERP-SINPLE(tdl .. tdmtd) (argl .. argm(f argq - . argrrp) b)

We demonstrate that f2 0 S by employing the algorithm TC-INFER-SIGNATURE to find a signature S
such that f5 0 S, and then by using the verified agorithm CONTAINED-IN-INTERFACE to check that
S O S. Thus, by the transitivity of inclusion, fJ0 'S, Given the success of the algorithm, we want to
prove a lemma verifying that 90 S, and with the help of the containment algorithm that S [0 S. This
would be tantamount to a proof of Lemma TC-SIGNATURE-OK.

This line of reasoning is totally straightforward where f is a non-recursive function, i.e, a function for
which the body of its definition does not contain a call to itself. But if f is recursive, we must recognize
that TC-INFER-SIGNATURE assumes the correctness of Sin deriving S' (i.e., it assumes that U0 S).
Why is it valid to allow this assumption? A simple inductive argument on the graph of the function will
illustrate.

Imagine the graph of a recursive function as being the union of the graphs of an infinite number of
non-recursive functions, with the first being the empty function, the second being the ordered pairs formed
by cases where the function terminates without recursion, the next being cases where it terminates with at
most one recurson and so forth. For a given function f, call these non-recursively defined partial
functions [, fl f .. Each function definition f' is non- recursvelnthesensethat it isformed from the

definition of f by replacing the recursive calls with calls to i1 Since a each level f' the function
perhaps adds tuples to the graph of fi=1 without taki ng any away, the following relationship holds:
noflo.. oM. ol

where fUisthe complete graph of the function.

TC-INFER-SIGNATURE assumes the soundness of the database fs, which contains the signatures of all
previously defined functions. In the case when the function being analyzed, f, is recursive, this includes
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the signature S, which has been ascribed to f (or more precisely, ).

We have aready argued that for all non-recursive functions f,

M 0 (TG I NFER S| GNATURE f )

holds. Now we will show by induction on n that it holds for recursive functions, too. The base case is
trivial:

0 O (TG I NFER- SI GNATURE f fs)

For the inductive step, assume

N o (TG I NFER- SI GNATURE f fs)

We wish to prove

M1 o (TC I NFER- SI GNATURE £ T5)

Note that when we say

(TC- I NFER- SI GNATURE f fs)

we really mean

fn+1 (cons fn-sig fs))

(TG | NFER- S| GNATURE
since the idea behind the checker is to treat f as a non-recursive function where calls to f are treated as
calls to f", whose signature was computed by the inference algorithm and is represented by f™-sig. Since
1 is non-recursive, our assumption of the non-recursive case establishes the validity of f™-sig. Given the
casting of ™1 as a non-recursive function which calls f1 rather than itself, assuming we have a valid
signature for f™, and given that we have established our lemma for non-recursive functions, we establish
our goal.

Originally, we attacked this problem with an evaluator which assumed that all functions terminate
normally and simply failed when there was a guard violation. The clock which now appears in the
definition of E (Section 5.4) appeared in neither the original evaluator nor in any of the soundness
lemmas. Normal termination is a basic requirement placed on all new functions submitted to the system,
and under the assumption that all functions terminate for all values satisfying the guard, it is sufficient to
guarantee that the evaluator will return normally unlessit finds a guard violation. Hence, we can count on
the use of our evaluator in our lemmas.

But the problem with this approach is that, since [J, fl, f2, .. f are partial functions, the guard of f, which
we have ignored to this point in this discussion, does not guarantee they will return a value for all inputs
satisfying the guard. Specifically, if a call to f™ requires more than n "recursive” calls, the evaluation of
the chain of partia functions will collide with Cl. If we attempt to patch the guards of each f!, the fix will
require turning the guards into forms which cannot result in complete descriptors, thus violating a crucia
assumption for sound use of signatures.

To remedy the problem, we introduced a second kind of break in the E function, BREAK-OUT-OF-
TIME, and the clock parameter which ticks down on every entry to afunction body. We modified al the
top level lemmas to be quantified over all non-negative integer clock values and to have a new assumption
specifying that the clock is sufficiently large to allow full evaluation of the form under consideration
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without causing a BREAK-OUT-OF-TIME in E. Under this assumption, whenever f7 returns without a
guard violation, it returns a value about which we can reason as before. The guard for each non-recursive
function is the same as the guard for f, and hence the guard descriptors are complete. A nice side effect of
this approach is that we do not rely on a termination requirement on our function definitions.

The top-level proof, then, becomes an induction on the value of the clock. In its base case, the clock is 0,
and the hypothesis guaranteeing no BREAK-OUT-OF-TIME is violated, establishing the goal trivialy. In
the inductive step, where we reason about a call to f”+1, the clock allows enough time to acquire a value
from f, whose signature is the one we assume correct by our inductive assumption. Then we can apply
the containment argument as before to achieve our goal.

The formal presentation of this argument appears in the proof of Lemma TC-SIGNATURE-OK-1, which
issubsidiary to the proof of TC-SIGNATURE-OK in Section 7.3.3.

Credit for the suggestion of this treatment of recursive functions goes to Matt Kaufmann.

7.3 Validation of Signatures by the Checker

The lemmas which we will prove about the highest level of the checker establish the following with
regard to acall to the function being analyzed. When

1.the guard descriptors for the function are complete and the guards of al functions
hereditarily in the call tree of the function are complete, i.e., when each guard is formulated
as aconjunction of callsto recognizer functions on distinct formal parameters,

2. theinference system does not return a* GUARD-VIOLATION result, and

3. the clock is sufficiently large to allow evaluation of the function call in question to finish,
then we will show

1. the evaluation of the guard expression on the actual parameters will not cause a guard
violation;

2.any actual parameters satisfying the guard expression will satisfy the guard descriptor
generated by the checker; and

3.if each segment generated by the checker is contained in some segment generated by the
inference tool, then for any values satisfying the guard expression, no guard violation will
occur in the course of evaluating the function call, and some segment generated by the
checker will characterize both the argument values and the value of the function applied to
them.

From the last claim in particular, following the approach outlined in Section 7.2, we will surmise that the
segments generated by the inference tool are a correct typing for the function. The segments generated by
the inference tool are correct, if not optimal, in that they represent a superset of the tuples defining the
function.

Our top-level correctness lemma, TC-SIGNATURE-OK captures the notions just stated.
Lenma TC- SI GNATURE- OK

For any n-ary function foo, whose definition is of the form
(defun foo (al .. an)

(decl are (xargs :guard guard-form)

body)
where guard-formis a conjunction of recognizer calls on distinct
formal paraneters,
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for any world of Lisp functions world, including at |east the above
definition of foo and the definitions of all the functions in the
call tree of foo
for any list of function signatures fs, including signatures for
at least all the functions in the call tree of foo, except foo
itself,
for any non-negative integer clock
when (tc-signature foo fs) successfully validates a signature
for foo

HL (and (valid-fs fs world clock)

H2 (and (not (equal (guard (tc-signature foo fs))
*guar d- vi ol ati on))

(not (equal (segnents (tc-signature foo fs))

*guard-viol ation)))

H3 (tc-all-called-functions-conplete guard-formfs)

H4 (tc-all-called-functions-conplete+ body fs foo t) )

=>
(valid-fs (cons (tc-signature foo fs) fs) world clock)

Note: Since on recursive calls to foo, we need to knowif foo is
conpl ete, and since foo is not in fs, we introduce in H4 the function
tc-all-called-functions-conplete+, which is like
tc-all-called-functions-conpl ete except that when it encounters a cal
to foo, it looks to the fourth argument to see if foo's guard is
conplete. Qur stated assunption about guard-form establishes that

it is.

Our other top-level result, Lemma GUARD-COMPLETE states that if a function’s guard is formulated as
a conjunction of calls to recognizer functions on distinct parameters, if descriptors characterizing the
actual parameters in a call to the function are contained in the function’s guard descriptors, and if the
clock is sufficient to allow full evaluation of the guard on those parameters, then the parameters will
satisfy the real guard.

Lemma GUARD- COVPLETE

G ven a function of arity n with argunment |ist (al .. an),
and guard expression of the form
(and (R4 a1) .. (Ry ap))
ap “1 an “n
denoting a conjunction of calls to recognizer functions on distinct
formal paraneters, and where the recogni zer function Rak

has the segnent (rtdp) -> $t,
for any val ues argq .. argp, descriptors argtdl .. argtdn
type variabl e binding b, non-negative integer clock, and a world of

Lisp functions including all those in the call tree of the guard
expressi on

(and
HL (valid-fs fs world clock)
H2 (I (argtdl .. argtdn) (argl .. argn) b)
H3 (contained-in-interface (*dlist argtdl .. argtdn)
(*dlist rtdl.. rtdnn
H4  (not (break-out-of-tinep
(E (and (Ral al) .. (Ran an))
((ag . argy) .. (ap . argy)
wor | d
clock))) )
=>
(equal (E (and (Ral al) .. (Ran an))
((ag . argp .. (ap . argp)

wor | d
cl ock)
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t)

Note: For the sake of uniformity in notation, let us say that
there is one recognizer call for each paraneter, where for
paraneters which are unrestricted in the guard expressi on we
use a recogni zer (DEFUN UNI VERSALP (X) T) whose segnents

are ((*universal) -> $t) and ((*enpty) -> $nil). In

any real guard, any such recognizer call nmay be omtted from
the guard wi thout the |loss of generality of this | emu.

This lemma is critical to the proof of Lemma TC-SIGNATURE-OK, but because it makes possible the
guard verification method discussed in Section 6.4 and because it is the primary specification of the guard
descriptor component of a signature, we present it as atop-level result.

An dternate formulation of Lemma GUARD-COMPLETE might have omitted the notions of containment
and argument descriptors and dealt strictly with some argument values satisfying the guard descriptor.
Thus, it would have been stated:

(and
HL (valid-fs fs world clock)

H2 (I (rtdl.. rtdn) (argl.. argn) b)
H3 (not (break-out-of-tinep

(E (and (Ry, ap) - (Rg_ap)

((ag . argy) .. (ap . argy)
wor | d
clock))) )
=>
(equal (E (and (Ral aq) .. (Ran ap)
((ag . argy) .. (ap . argy)
wor | d
cl ock)

t)

This would have more succinctly presented the notion that to determine some values satisfy a guard, it is
sufficient to determine that they satisfy the guard descriptor. But by bundling the lemma as we did, we
made it more convenient for every use in our proof.

Next, we will give the proof for GUARD-COMPLETE, which reveals it to be a corollary of another
lemma, RECOGNIZER-SEGMENTS-COMPLETE. Then we will state and prove Lemma TC-INFER-
SIGNATURE-GUARD-OK, which will support the proof of TC-SIGNATURE-OK, to which we return at
the end of this section.

7.3.1 TheProof of Lemma GUARD-COMPLETE

The proof of thislemma will rest on the proof of an important property about the signatures of recognizer
functions. This is not surprising, since a guard descriptor is complete if the guard is a conjunction of
recognizer function calls on distinct formal parameters.

Recognizer functions are important in the type system because very precise signatures can be constructed
for them, and because calls to recognizer functions (see Section 5.6) typicaly appear where the
information they yield is important to the type inference problem. Recognizers are the linchpin of guard
verification in the type system. If the guard of a function is expressed as a conjunction of recognizer calls
on distinct formal parameters, we claim the containment test performed by the checker on function calsis
sufficient to guarantee satisfaction of the function guard.
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The formal property of recognizers which will support this proof is given below in Lemma
RECOGNIZER-SEGMENTS-COMPLETE. It is that, given a function which conforms to the various
syntactic requirements for recognizers, whose signature has two segments, both variable-free, one with a
result type of $T and the other with result type $NIL, where DUNIFY-DESCRIPTORS-INTERFACE
applied to the argument components of the two segments produces *EMPTY, if some descriptor
characterizing the argument to the function is contained in the argument descriptor for the $T segment,
and if the clock is sufficient to allow full evaluation of the function called with that argument, then the
result of that evaluationisT.

Lenma RECOGNI ZER- SEGVENTS- COWPLETE

G ven a recogni zer function R of the form
(defun R (x)

(declare (xargs :guard t))

body)
with the signature:
Quard: (*universal)
Segnents: (((targ) -> $t)

((nilarg) -> $nil))

For any list of function signatures fs including R Lisp world world
including R Lisp value v, non-negative integer clock, descriptor
arg-td, and type variabl e binding b,

(and
HL (valid-fs fs world cl ock)
H2 (I arg-td v b)
H3 (contained-in-interface arg-td targ)
H4

(not (break-out-of-timep (RNOMA.CIOCK yyyy )
=>

(equal ( Rworld,clock( V) 1)

The proof of thislemma appearsin Appendix B.2.

With thislemma as a basis, the proof of Lemma GUARD-COMPLETE is straightforward.
Proof of Lenma GUARD- COWPLETE

We will do this chiefly by repeated application of Lenma
RECOGNI ZER- SEGVENTS- COVPLETE, found just above.

By expanding the definition of I, H2 becones

H2" (and (I argtdl argq b)

(1 argtdn argp b))

By the definition of contained-in-interface, since each of
rtdq .. rtdp is variable-free (by the definition of recognizer

functions, Section 5.6), H3 expands to

(contained-in (universalize-all-vars3?

(*dlist argtdl .. argtdn))
(*dli st rtdl .. rtdn))

whi ch by the definitions of contained-in and universalize-all-vars,
expands further to

H3* (and (contained-in (universalize-all-vars argtdq) rtdq)

32

UNIVERSALIZE-ALL-VARSjust transforms all variablesin its argument to *UNIVERSAL.
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(contained-in (universalize-all-vars argtdn) rtdn)

Now we instantiate Lenma RECOGNI ZER- SEGVENTS- COWPLETE for each
i inl..n, using fs =fs, world = world, clock = clock, b = b,
R = Rai, arg-td = argtdi, targ = rtdi,

and v = argj. Hi equals H1. H2' guarantees its H2. H4

guarantees its H4, since if there is enough time to evaluate the
conjunction of all the recognizer calls, there is enough tinme to
eval uate each one individually. For each i, we still nust relieve
t he hypot hesi s

(contained-in-interface argtdi rtdi)

Because each rtdi is variable-free, by the
sane reasoni ng expl ai ned above, this expands to

(contained-in (universalize-all-vars arg—tdi) rtdi)),

which we know fromH3'. Having relieved all the hypotheses, we
can use the conclusion for each instantiation of the |l enma, collected
as:

(Ry world,cl ock(

H5 (and (equal argq)) t)

(equal ( Ranworld,clock( argy) 1))

Since H4 allows enough clock tine for the full evaluation of the
formin the conclusion, expanding the evaluator E in the conclusion
gi ves

(if (not (equal (Ra1W0r|d,C|0ck(

argq)) nil))

(if (not (equal (Razworld'dOCk(argz)) nil))

(Ry world,cl ock( argp))
nil)

whi ch, using the equalities in H5 reduces tot. QED.

7.3.2 Validation of the Guard Descriptor

We claim that any values which satisfy the guard expression also satisfy the guard descriptor. This is
significant in our proof that the segments generated by TC-INFER-SIGNATURE are correct, because the
first step in the generation of those segments is the formulation of the type alists which will characterize
the arguments. The concrete alist is extracted from the guard descriptor, which isitself extracted from the
segments computed from the guard expression by TC-INFER. The guard descriptor is also the one
returned by TC-INFER-SIGNATURE.

The lemma which captures this notion, TC-INFER-SIGNATURE-GUARD-OK, says that if TC-INFER-
SIGNATURE does not return *GUARD-VIOLATION as its result, then for any binding environment of
the formal variables, if there is sufficient clock for the guard to evaluate fully in that environment, and if
the guard form evaluates to a non-NIL value, then that value does not signify a guard violation, and there
exists some hinding of type variables b such that running INTERP-SIMPLE with the vector of guard
descriptors produced by TC-INFER-SIGNATURE and the actual parameters produces T.33 (Here, as in

331 fact, the binding is immaterial, since no variables appear in the guard descriptors, but keeping the notion around allows
seamless discourse in terms of INTERP-SIMPLE.
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all our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE when its
second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single descriptor
and value. )

Lemma TC- | NFER- SI GNATURE- GUARD- K

For any n-ary function foo, whose definition is denoted
(defun foo (aq .. ap)

(decl are (xargs :guard guard-form)

body),
for any Lisp world including foo and all functions hereditarily
in the call tree of guard-form
for any list of function signatures fs including all functions
hereditarily in the call tree of guard-form (but not necessarily
foo itself),
for any Lisp variable binding environnent env of the form
((ag . argy) .. (ap . argy),
for any non-negative integer clock,

where we denote that if tc-infer-signature finds no guard

violation, it returns a signature such that:

(guard (tc-infer-signature foo (cons (infer-signature foo fs) fs)))
= (gtdl .. gtdn),

Hl (and (valid-fs fs world clock)
H2 (not (equal (guard
(tc-infer-signature
foo (cons (infer-signature foo fs) fs)))
*guard-vi ol ation))
H3 (tc-all-called-functions-conplete guard-formfs)
H4 (not (break-out-of-timep (E guard-formenv world clock)))
H5 (not (null (E guard-formenv world clock))) )
=>
(and (not (break-guard-violationp (E guard-formenv world clock)))
For sone binding b, (I (gtdl .. gtdn) (argl.. argn) b) )

Not e:

Hl establishes that fs is valid for the given clock.

H2 establishes that no guard violations are detected in the
course of analyzing the guard.

H3 establishes that the guard descriptors for all the functions in the
call tree of the guard are conplete.

H4 establishes that the eval uation of the guard formunder env term nates
wi t hout exhausting the cl ock.

H5 establishes that the evaluation of the guard formunder env returns
a non-nil val ue.

I'n the conclusion, any binding will do, since (gtdl .. gtdn)
contains no vari abl es.

In fact, we will not need H5 to establish the first conjunct of this goal, but there is no harm in stating the
lemma this way. The proof of this lemma utilizes two other significant lemmas, TC-INFER-OK and
TC-PREPASS-OK, the latter of which is stated when its application arises in the proof. TC-INFER-OK is
the soundness specification for TC-INFER, the recursive function which is the heart of the checker
algorithm. TC-INFER is discussed at length in Section 6.5. Lemma TC-INFER-OK appears and is
discussed further in Section 7.5 below, and its detailed proof is given in Appendix B.4. TC-PREPASS is
the pre-processor for Lisp forms which normalizes IF expressions so that the test components always
return Boolean values. It is discussed at length in Section 6.3. The detailed proof of Lemma TC-
PREPASS-OK appearsin Appendix B.1.

Proof of Lemma TG | NFER- SI GNATURE- GUARD- K

By definition, tc-infer-signature invokes
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(tc-infer (tc-prepass guard-formfs)
((ag . &) .. (ap . &n))

((al. *universal) .. (an. *uni versal))
fs)
where &1 .. &n are distinct variables.

Instantiate Lenma TG I NFER-OK with

fs = fs,

form= (tc-prepass guard-formfs),

env = ((al. argl) .. (an. argn)), and hence

(argl .. argn) = (argl .. argn),

abs-alist = ((al. &1) .. (an . &n)) and hence

(tdal.. tdan) = (& .. &n),

conc-alist = ((al . *universal) .. (an . *universal)) and hence
(tdcl .. tdcn) = (*universal .. *universal),

b= ((& . argy) .. (& . argp).

and al so denote:
(tc-infer (tc-prepass guard-formfs)
((aq . &) .. (ap . &n))
((al. *uni versal ) .. (an. *uni versal))
fs)
by:
((m nsegq conc-ali stq (maxtdl,l .. rraxtdl,n -> naxtdl))

(m nsegm conc-ali st m (maxtdm,l .. rmxtdmn -> rmxtdm)))

We will henceforth ignore the mninmal segnments and the concrete
alists returned with each tuple returned by TC I NFER- CK,
as they are irrelevant here.

To use the conclusion of TG INFER-OK, we need to relieve its
hypotheses. Hl is equal to HI'. (By HLl' we nean the Hl from
TG INFER-OK.) H2' is trivially true under the binding

((& . argq) .. (& . argpy). H3 is trivially true.

H2 guarantees H4'. H3 and the fact that tc-prepass preserves
tc-all-called-functions-conplete (since the only function call

it can add is null, whose guard descriptor is conplete) guarantees
H5'. H4 in conjunction with tc-prepass-ok guarantees H6'. Thus,
we can use its conclusion. Discarding the first conclusion about
the mnsegs and the third conclusion about the conc-alist for the
result tuples, we have established:

H6 (and (not (break-guard-violationp
(E (tc-prepass guard-formfs) env world clock)))

for sone i in1..m
for sone binding bi covering the descriptors bel ow,
(and

(1 (maxtdi,l .. maxtdi,n tdj)
(argl ..oargp
(E (tc-prepass guard-formfs) env world clock))
bi)
|
(ext ends- bi ndi ng bi b)) )

Now consi der:

Lema TC- PREPASS- (K

For any list of function signatures fs, Lisp world world,
non-negative integer clock, Lisp formform and binding
envi ronment env,

(valid-fs fs world clock)
=>
(equal (E formenv world clock)
(E (tc-prepass-formformfs) env world clock))

157
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This lemm is proved in Appendi x B. 1.

TC- PREPASS- K al l ows us to substitute the val ue of
(E guard-formenv world clock) for
(E (tc-prepass guard-formfs) env world clock), giving us

H6' (and (not (break-guard-violationp
(E guard-formenv world clock)))

for some i inl..m
for sone binding bi covering the descriptors bel ow,
(and
(1 (maxtdi,l . maxtdi,n tdj)
(argl .. argnp (E guard-formenv world clock))
bl)

(ext ends- bi ndi ng bi b)) )

The first conjunct of H6 establishes the first conjunct of
our goal. Note that we did not use H5 to establish this goal.

TC- | NFER- SI GNATURE fornul ates its guard descriptor (gtdl .. gtdn) by
first screening from

((maxtdll . miXIdln tdl) . (I’l"BXtdLl . naXtdl,n tdl))

all the segments wher e td = $nil, i.e., thus preserving only

those segnents where eval uati ng the guard expression can yield a
non-nil value. This is justified by H5 which says that the val ue of
the guard expression is non-nil under our binding environnment env.
Thus, for any segnent where tdi is $nil, the interpreter would yield
nil.

From the remaining segnments it formul ates the (gtdl .. gtdn) by
conbi ning the max segnents "col umwi se", using *or, giving:

((*or rraxtd]_'l .. maxtdm’l) .. (*or maxtdl’n .. rraxtdm’n))
This is conservative, i.e.,
for some i inl..m

for sone binding bi covering the descriptors bel ow,
(1 (maxtdi 1 maxtdi n tdi)

(argl . argp (E g,uard—form env world clock))
bi)
=>
for sone binding b’ covering the descriptors bel ow,
(1 ((*or rraxtdlyl .. rthdm,l) .. (*or naxtdl,n .. maxtdm,n))
(argp .. argp)
b)

where the b’ is sone bi which sufficed for H6'. (To be
conpletely rigorous, consider that b’ is extended as necessary to
bind all the variables in
((*or maxtdll . maxtdml) .. (*or maxtdln .. maxtdmn))
but the right hand sides of the new bi ndi ngs can be arbltrary,
since the bindings fromthe chosen bj are sufficient to
establish our conclusion.) This i rrpl i cation hol ds, because for
whi chever i and bi
(1 (rraxtdi,l .. maxtdi,n tdi)

(argl ..oargp (E guard-formenv world clock))

bi)
is true, the corresponding disjuncts in the expansion of | on
the conbined formwill also yield true.
So our hypothesis is now

for sone binding b’ covering the descriptors bel ow,
(and
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(I ((*or maXtdl,l .. maxtdm,l) .. (*or maxtdl’n .. maxtdm,n))
(argq .. argp)
b)

(extends-binding b” b))

The (*or maxtdll .. rmxtdml) .. (*or rraxtdln .. rmxtdmn)
are al nost the (gtdl .. gtdn) produced by tc-infer-signature.

The only remaining transformati ons are that singleton variables
are transformed to *universal, which is conservative (since for
any variable & and value v, (I & v b) => (I *universal v b)),
and the resulting descriptors are canonicalized, which by Lenma
PCANONI CAL| ZE- DESCRI PTOR- K al so has no effect on the result
returned by |. QED

7.3.3 The Proof of Lemma TC-SIGNATURE-OK

Recall the discussion in Section 7.2, in which we noted that the graph of a recursive function can be
represented as the union of the graphs of an infinite number of non-recursive functions, with the first
being the empty function, the second being the ordered pairs formed by cases where the function
terminates without recursion, the next being cases where it terminates with at most one recursion, and so
forth. For a given function f, we called these non-recursive functions [, f1, 2 " Each function
definition fl is non-recursive in the sense that it is formed by replacing the recursive calls of f with callsto
fi=1 Since each of these functions is partial, yet retains the guard of f to satisfy the guard completeness
requirement, we adopted the clock semantics to support reasoning about them in the proof of Lemma
TC-SIGNATURE-OK and its main supporting lemma, TC-SIGNATURE-OK-1.

Given Lemma TC-SIGNATURE-OK-1, the proof of Lemma TC-SIGNATURE-OK is trivial. It simply
introduces as hypotheses some facts which TC-SIGNATURE establishes by direct computation, and then
invokes Lemma TC-SIGNATURE-OK-1 to establish the conclusion. The proof of TC-SIGNATURE-
OK-1 is the core of the argument. It establishes by induction on the clock that using a database of valid
function signatures augmented with a signature for the function f in question which is shown to be valid
for some clock value ¢, TC-INFER-SIGNATURE produces a signature which is valid for clock value c +
1. These signatures are what we are referring to as the signatures for 7 and 1 in the previous
discussion of the top level proof of soundness. Then, we show that if the latter signature has the proper
containment relation to the former, we are assured that the former is a valid signature for f. Specificaly,
this means that for any argument values which satisfy the guard of f, if the clock is sufficient to allow full
evaluation of f applied to those arguments, we guarantee that the evaluation will not result in a guard
violation, and there is some segment in the signature for f for which there exists a binding of type
variables such that the argument values satisfy the left hand side of the segment and the result of f applied
to those values satisfies the right hand side, or result type in the segment.

We will first give the simple proof for Lemma TC-SIGNATURE-OK, then present the statement and
proof of Lemma TC-SIGNATURE-OK-1.

Proof of Lemma TC- SI GNATURE- OK

By definition, TC SIGNATURE receives fromthe heuristic function
(infer-signature foo fs) the segnents

((tdl,l" tdl,ntdl) . (tdm,l" tdm,ntdrﬂ))

Then it calls TC | NFER- SI GNATURE with fs augmented with the
segnents above, and unless TC-| NFER- S| GNATURE returns a
*guard-viol ation on either the guard formor the body, it
obtai ns the guard descri ptor (gtdl .. gtdn)
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and the segnents
((tc-tdll.. tc-tdlntc-tdl) .. (tc-td|1.. tc-td|ntc-td|))
It then explicitly establishes by conputation:

H3 (tc-all-called-functions-conplete guard-formfs)
H4 (tc-all-called-functions-conplete+ body fs foo t)
H5 (well-forned-signature-1

(gtdg .. gtdp)

((tc-tdl,l .. tc'tdl,n tC-tdl)

(tC-tdLl .. tc-td|,ntc-td|))
n)
H6 for all i in 1..1,
for sone j inl..m
(contained-in-interface (*dlist tc-td; i1 tc-tdin tc-tdi)

(*dlist tdjl tdj,ntdj))
H5 is required by the good-signaturep predicate for foo.

(valid-fs fs world clock) establishes the goal for all the functions
represented in fs. As for foo, the definition of the valid-fs predicate

requires that, for any Lisp val ues argq .. argp,
(and
(not (break-out-of-timep (fooworld’CIOCk(argl .. argn))))
(not (null
(E guard-form((al. argl) .. (an. argn)) world clock))) )
=>
(and

(not (break-guard-violationp (fooworld’CIOCk

for sone k in[1..n
for sone binding b of type variables to Lisp val ues
covering tdkl .. tdkn and tdk
(1 (tdk,l" tdkntdk)
worldclock(

(argy .. argy)))

(argl ..oargp (foo
b) )

Let two antecedents to this inplication beconme H7 and H8.

argy . argp))

Now i nstantiate Lenma TC S| GNATURE- OK-1 (shown just bel ow), using
fndef = foo, clock = clock, world = world, fs = fs, and for

each i, argj = argj. HL and H3 - H8 are identical to Hl' and

H3' - H8. (By H', we denote H in TC SIGNATURE-OK-1.) H2
guarantees H2', since if H2' were not true, by definition of

TC- SI GNATURE, H2 woul d not be true. Thus, we obtain the

concl usion of the |l emm, which is equal to our goal.

QED.

Lemma TG S| GNATURE- OK- 1

For any n-ary function foo, whose definition is of the form
(defun foo (al .. an)
(decl are (xargs :guard guard-form)
body)
in which guard-formis a conjunction of recognizer calls on distinct
formal paraneters
where (segnents (infer-signature foo fs)) are denoted
((tdll . tdlntdl) . (tdml td tdrn))
wher e (guard (tc infer-signature foo (cons (infer-signature foo fs) fs))
i s denoted (gtdl . gtdn)
and (segnents
(tc-infer-signature foo (cons (infer-signature foo fs) fs)))
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are denoted
((tc—tdll.. tc—tdlntc—tdl) .. (tc—td|1.. tc—td|ntc—td|))

for any world of Lisp functions world, including at |east foo and

all the functions in the call tree of foo,

for any list of function signatures fs, including signatures for

at least all the functions in the call tree of foo, except foo
itself,

for any non-negative integer clock, for any Lisp val ues argq .. argp,

(and
HL (valid-fs fs world clock)
H2 (and (not (equal (guard
(tc-infer-signature
foo (cons (infer-signature foo fs) fs)))
*guar d-vi ol ation))
(not (equal (segnents
(tc-infer-signature
foo (cons (infer-signature foo fs) fs)))
*guard-viol ation)))

H3 (tc-all-called-functions-conplete guard-formfs)
H4 (tc-all-called-functions-conplete+ body fs foo t)
H5 for all i in[1..17,

for sone j in[1l..mM,
(contained-in-interface (*dlist tc-tdil .. tc-tdin tc-tdi)
(*diist tdjq tdjntdj)’)
H6 (well-forned-signature (gtdl .. gtdn)
((tc_tdl,l" tc_tdl,ntc_tdl)

(te-tdjq .. te-td), te-td))
n

H7 (not (break-out-of-tinep (fooworld’CIOCk(argl ..oargp)))

H8 (not (null (E guard-form((al. argl) .. (an. argn)) world clock))))

=>

(and
Cl (not (break-guard-violationp (foo
C2 for sone k in[1..n

for sone binding b of type variables to Lisp val ues
covering tdyq .. tdyp and tdy
(1 (tdk,l .. tdk,n tdp)

worId,cIock(

(argl ..oargp (foo
b) )

argy . argp))

The CONTAINED-IN-INTERFACE function is specified as follows:

Lemma CONTAI NED- | N- | NTERFACE- OK
For any descriptors tdl and td2, value v, and binding b,

(and (contained-in-interface tdl td2)
(1 tdl v b))

=>

For sone b’, (I td2 v b’)

The containment algorithm is discussed at length in Section 6.8, and the proof of Lemma CONTAINED-
IN-INTERFACE-OK is presented in Section 7.8. We will use this lemma, Lemma TC-INFER-
SIGNATURE-GUARD-OK, and Lemma TC-INFER-OK in the proof of TC-SIGNATURE-OK-1.

Proof of Lenma TC- SI GNATURE- OK- 1
We will prove this by induction on clock.

Base Case: clock =0
This falsifies H7, since any call of Ewith clock <1 returns a
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br eak-out-of -ti nme.

I nductive case:
Assuming the lemma for clock = c, we need to prove it holds for
clock = ¢ + 1.

Let us denote the Lisp variable binding environnent
((ag . argp .. (ay - argy))

by env.

By definition, tc-infer-signature first conputes a guard descriptor
for the function. Denote this descriptor (gtdq .. gtdp).
Instantiate Lenmma TC- | NFER- S| GNATURE- GUARD- OK, with foo = foo,

fs = fs, world = world, clock = ¢ + 1, and env = env.

We need to relieve its hypotheses to use its conclusion. HL is
identical with HI'. (By H' we nean the H from

TC- | NFER- SI GNATURE- GUARD- OK.) H2' is the first conjunct of H2.

H3 is identical with H3’. H7 establishes H4' by the follow ng

argunment. The first step of (fooworld’C+1(argl .. argn)) isto
evaluate (E guard-formenv world c+1). By definition of E, if

(E guard-formenv world c+1l) returns an out-of-tine break, then

(fooworld’C+1(argl .. argn)) does, too. But H7 establishes this

does not happen, thus establishing H4. H8 is equal to H5'.
So we can use the conclusion of TG | NFER- SI GNATURE- GUARD- (K t o
obt ai n:

H9 (and
(not (break-guard-violationp (E guard-formenv world c+1)))
For sone binding b, (I (gtdl .. gtdn) (argl.. argn) b) )

(The choice of binding b is immuaterial, since gtdl .. gtdn
are variable-free.)

Qur inductive hypothesis is the lemma itself, with clock = c.
W would like to use it to obtain the valid-fs predicate

as it applies to foo, i.e., we would |like to use the

i nductive hypothesis to establish (valid-fs fs’ world c),
where fs' is fs augnented with a signature with which we could
reason about recursive calls to foo. The guard for this
signature is (gtdl .. gtdn), and the segnents we

want to use are

((tdl,l . tdl,n tdl) . (tdm,l .. tdm,n tdrn)),

The predicate we need to establish in order for these segments
to be valid on recursive calls to foo in body appears in the
concl usi on of the inductive hypothesis.

We need to relieve sone of the antecedents of the inductive
hypot hesis. Qur assunptions for the clock = ¢ + 1 case will
let us do that. Denote each hypothesis H of the inductive
assunption as H'. First consider the follow ng | emra:

Lemma VALI D- FS- CLOCK

For any list of function signatures fs, world world, and
non-negati ve i nteger clock,

(valid-fs fs world clock)
=>
(valid-fs fs world clock-1)

This lemma is proved in Appendix B.3. By
VALI D- FS-CLOCK, Hl inplies HI'. H2 - H6 are identical to
H2" - H6'. This reduces the inductive assunption to:

H10 (and
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(not (break-out-of-tinmep (fooworld’c(argl .. argn))))

(not (null (E guard—form((al. argl) .. (an. argn)) world c))))
=>
(and
(not (break-guard-violationp (foo
for sone k in[1..nM
for sonme binding b of type variables to Lisp val ues
covering tdkl .. tdkn and tdk
(1 (tdk,l .. tdk,n tdk)
world,c

WOI’|d,C(a,—gl ..argy)))

(argl ..oargp (foo
b) )

Conbi ned with H6, we have established the good-signaturep predicate
for (infer-signature foo fs) with clock c.

(argq .. argp))

(good-si gnaturep foo
(gtdq .. gtdp
((tdl,l . tdl,n tdl)

'(idm’1 - tdpp tdm)
wor | d
c)

Thus, we have established
H11 (valid-fs (cons ((gtdl .. gtdn) (infer-signature foo fs)) fs) c).

By definition, tc-infer-signature generates the segnents
((tc-tdll.. tc-tdlntc-tdl) .. (tc-td|1.. tc-td|ntc-td|))
by i nvoki r’1g ' , ,

(tc-infer
(tc-prepass
body (cons ((gtdl .. gtdn) (infer-signature foo fs)) fs))
((ag . &) .. (ap . &n))
((aq . (if gtdq = *universal then &l else gtdq))

.(.an (i f gtdn = *universal then &n el se gtdn)))
(cons ((gtdq .. gtdp) (infer-signature foo fs)) fs))

where &1 .. &n are new variables (i.e., variables not already

used in the analysis of foo; we choose these nanes arbitrarily

for the sake of exposition). So instantiate Lemma TC- | NFER- OK,
with form= the first argunent to TC I NFER, abs-alist = the second,
conc-alist = the third, fs = the fourth argunment, world = world,
clock = ¢, env = ((aq . argq) .. (ay . argy),

and b = ((& . argq) .. (& . argpy)). Ve relieve

its hypotheses. Hl1l is equal to HI'. H2' is trivially true

under the binding b by sinple expansion of |I. H3 follows directly
by observing H2' and the second conjunct of H9, and expandi ng

I. H4A is aconjunct of H2. H5 is an i mediate consequence of
H4. To establish H6', expand the call to E in H7:

world,c+1

(not (break-out-of-tinmep (foo (argl .. argn))))

(not (break-out-of-timep
(if (break-out-of-timep (E guard-formenv world c+1))
(E guard-formenv world c+l)
(if (break-guard-violationp (E guard-formenv world c+1))
(E guard-formenv world c+l)
(if (not (null (E guard-formenv world c+1)))
(E body env world c)
(break-guard-violation))))))

163
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If (break-out-of-tinep (E guard-formenv world c+1)) were true, H7
would sinplify to false, so it nmust not be true. |If
(break-guard-violationp (E guard-formenv world c+1))
were true, it would contradict the first conjunct of H9. H8 establishes
(not (null (E guard-formenv world c+1))). Thus, we have established
H12 (equal (foowKW|d£+1(argl .. argn))
(E body env world c))

and reduced the above formto
(not (break-out-of-timep (E body env world c)))

which is precisely H6', thus relieving the final hypothesis. So we
establish the conclusion of the | emma, and we ignore the conjuncts
regarding the mntd s and tdconc’s. By definition of
tc-infer-signature, the naxtd's are the ones which are returned

as the segnents

((tc—td]_l .. tc—tdj_n tc—tdl) .. (tc—td|1 .. tc—td|n tc—tdp)
Thus, the conclusion of the instantiated Lemma TC-| NFER- OK gi ves us

(and
(not (break-guard-violationp
(E (tc-prepass
body (cons ((gtdl .. gtdn) (infer-signature foo fs)) fs))
env world c)))

for sone i in 1..1,
for sone binding b covering the descriptors bel ow,
(and

(1 (tc'tdi,l .. tC-tdi,ntC-tdi)
(argl.. argp
(E (tc-prepass
body (cons ((gtdl .. gtdn) (infer-signature foo fs)) fs))
env world c))
b)
(extends-binding b ((&1 . argl) .. (&n . argn)))) )

Now use Lenma TC- PREPASS-OK, instantiated with clock = ¢, env = env,
fs = (cons ((gtdl .. gtdn) (infer-signature foo fs)) fs)

world = world, and form= body. Hl1l relieves its hypothesis

and the conclusion gives us an equality which allows us to
transformthe form above to

(and
(not (break-guard-violationp (E body env world c)))
for some i in 1..1,

for sone binding b covering the descriptors bel ow,
(and (I (tc-tdil .. tc-tdin tc-tdp
(argl . argp (E Hody env world c))
b)
(extends-binding b ((&1 . argl) o (&n . argn)))) )

We do not need the (extends-binding b ((&L . argl) .. (&n . argn)))

result, so henceforth we disregard it. Finally, use the equality
substitution fromH12 to get

H13 (and
(not (break-guard-violationp

+
(1ooWOrldCtl5r g, argy)))
for sone i in 1..1,
for sone binding b
(1 (tC-tdi,]_ .. tC-tdi,n tC-tdi)

world,c+1

(argq .. argp (foo (argq .. argp))
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b) )
The first conjunct of H13 establishes our goal CI.

Now we use our containment hypothesis, H5. Consider any i and b
whi ch satisfy the second conjunct of H13. H5 ensures that for
this i,

for sonme j in[1..n
(contained-in-interface (*dlist tc—tdil .. tc—tdintc—tdi)
(*dlist tdj,l . tdj,ntdj))

Sel ect the j which satisfies this condition and instantiate
Lenma CONTAI NED- | N- | NTERFACE- OK wi t h

tdl = (*dlist tc—tdil.. tc—tdintc—tdi),

td2 = (*dlist tdj,l .. tngndtsi)]:

\Y =(argl.. argm(foo ! (argl.. argn))),

and b = b. H5 for this i and j satisfies the first hypothesis
of the lemma, and the second conjunct of H13 for our particul ar
i satisfies the second hypothesis. This yields the conclusion,

for sonme b,
(I (tdj,l .. tdj,n tdj)

(argl S.oargm (foo
b")

world,c+1 argq .. argpy))

Thi s establishes the second conjunct of our conclusion. QED.

Just to be complete, we make the following observation about the use of type variables. In the proof of
TC-INFER-OK below, and implicitly wherever we use this lemma (as we did in the previous proof), we
use the fact that whenever we utilize the VALID-FS predicate to obtain the segments for some function,
those segments are imported into the checker’ s problem state with all fresh type variables. We claim that
these variables have never been introduced before and will never be introduced again. As a matter of
programming efficacy, the inference tool in fact does "reset” the counter on its variable generator
whenever a new function is introduced for analysis. This does not cause a problem, because no variables
from any previous problem state appear in the new problem state unless they are renamed on importation
of signature segments. From a formal viewpoint, though, we can consider that a type variable name is
actually a pair whose first component is the kind of name (&2, for instance) by which we have been
referring to them all along, and the second component is the name of the function being analyzed. Thus,
no variable is ever introduced twice as a"fresh" variable for the life of the operation of the system.

A similar trick is used to ensure that *REC descriptor labels are not duplicated. The labels are generated
by a pseudo-gensym function which forms them from the characters "!'REC" followed by a counter. Since
*REC labels are not renamed when a signature is extracted from FS, thisis not enough. So another string
of characters, unique for each function being processed, is attached to the end of the * REC label, ensuring
the uniqueness of labelsfor the life of the system operation.

7.3.4 Replacing the Guard

As mentioned in Section 6.3, if the guard descriptor computed by the inference tool is different from the
one computed by the checker, the checker determines whether the inference tool descriptor may be used
instead of itsown. Thisis done after the checker has generated its segments, so in any case it usesits own
guard descriptor for that purpose. The checker’s guard descriptor may be replaced by the inference tool
guard if the two are equivalent. This is determined by administering the containment test in both
directions. If each is contained in the other, the two are equivalent under interpretation by INTERP-
SIMPLE. The following lemma provides the formal justification.
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Lemra GUARD- REPLACEMENT- OK

For any descriptors tdll.. tdln and td21.. td2
Li sp val ues Vi-- Vp and binding b,

n

and
Hl( (null (gather-vars-in-descriptor (*dlist tdll.. tdln)))
H2 (null (gather-vars-in-descriptor (*dlist td2q.. td2g)))
H3 (contained-in-interface (*dlist tdll.. tdln)
(*dlist td2q.. td2p)
H4 (contained-in-interface (*dlist td21.. td2n)
(*dlist tdlq.. tdlp))
=>
(equal (I (tdll.. tdln) (Vl" vn) b)
(I (td24q.. td2) (vq.. vy b))

Proof of Lemma GUARD- REPLACEMENT- OK

Instantiate Lenma CONTAI NED- | N- | NTERFACE-OK with v = (Vl" vn),
tdl = (*dlist tdlq.. tdlp), td2 = (*dlist td2q.. td2p),

and b = b. Since the descriptors are variable-free, any binding
will suffice, so we choose b in the conclusion, giving

H5 (1 (tdlq.. tdlp) (vq.. vy b)
=>
(I (td2q.. td2y) (vq.. v b)

Instantiating with the descriptors reversed gives us

H6 (I (td2q.. td2 (vq.. vp b)

=>

(I (tdlq.. tdlp) (vq.. v D)
Clearly, two hypotheses establish the conclusion, since if
either call to |l is true, the other is, and if either is false,

the other nust be, else its being true would enable a
contradition to be trivially derived.

QED

7.4 Thelnitial State

The following lemma, which we state without proof, establishes that fs, the initial state of function
signatures, is correct for all the subrsit represents. Theinitial fsappearsin Appendix A.

Lemma | NI Tl AL- FS- VALI D

Where world is a world containing the initial set of primtive subrs,
and where initial-function-signatures is the list of function
signatures for the primtives,

For any non-negative integer clock,
(valid-fs initial-function-signatures world clock)

The purpose of all the proofs in the preceding section was to illustrate that if the system database is a
VALID-FS initialy, we obtain a VALID-FS by repeated applications of the tool. Lemma INITIAL-FS
VALID establishes the base case for this line of reasoning, and Lemma TC-SIGNATURE-OK provides
the inductive step.
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7.5 TheCentral Checker Algorithm -- TC-INFER

The recursive function which is at the heart of the checker is TC-INFER. TC-INFER takes four
arguments, a Lisp FORM being analyzed, an abstract type alist ABS-ALIST, a concrete type alist CONC-
ALIST, and the database of FUNCTION-SIGNATURES. It returns alist of 3-tuples, where each tupleis
composed of aminimal segment, a concrete type alist, and a maximal segment. This function is discussed
at length in Section 6.5. Its formal specification is given by Lemma TC-INFER-OK, which states that if
FORM is evaluated in a context where the variables are bound to values which satisfy the descriptorsin
both ABS-ALIST and CONC-ALIST, if TC-INFER does not return *GUARD-VIOLATION, if dl the
guards in the call tree of form are complete, and if clock is sufficient to allow full evaluation of the form
in a given environment, then no guard violation will occur in the course of the evaluation, and some tuple
in the result is such that the variable values and the result of the evaluation satisfy both the minimal and
maximal segments in the tuple, and the variable values satisfy the descriptors in the concrete aist. The
type variable binding under which this is achieved is an extension (see Appendix B.3) of the one under
which the context values satisfied the two alist parameters.

Lemma TG | NFER- OK

For any Lisp formform function signature list fs, Lisp world world
including all functions hereditarily in the call tree of form

for any non-negative integer clock, type variable bindings b,

Li sp val ues argq -. argm

Li sp vari abl es aq .. am
bi ndi ng environment env of the form((al. argl) .. (am. argm))
where aq .. apyinclude all the free variables in form

ABS- ALI ST of the form((al. tdal) .. (am. tdam)),
CONC- ALI ST of theform((al. tdcl) .. (am. tdcm)),
and denoting
(tc-infer formabs-alist conc-alist fs)
b
)(/((m ntdlyl . m'ntdllm m ntdl)
((al. tdconc]_’l) .. (am. tdconc]_,m))
(maxtdLl .. maxtdlym rraxtdl))

((mi ntdnp .. mntdy g mntdg
((al. tdconcn,l) .. (am. tdconcn'm))
(rraxtdn’]_ .. maxtdn,m naxtdn)))

Hl (and (valid-fs fs world clock)

H2 (1 (tdal .. tdam) (argl .. argm) b)

H3 (I (tdcq .. tdeg) (argq .. argyy) b)

H4 (not (equal (tc-infer formabs-alist conc-alist fs)

*guar d- vi ol ati on))

H5 (tc-all-called-functions-conplete formfs)

H6 (not (break-out-of-timep (E formenv world clock))) )
=>
(and

c1 (not (break-guard-violationp (E formenv world clock)))

c2 for sone i,

for sone binding b’ covering the descriptors bel ow,
(and (I (m ntdi 1 m'ntdi m m'ntdi)

(argl S.oargm (E formenv world clock))
b)

(1 (thdi,l .. rT'BXtdi,m maxtdi)
(argl S.oargm (E formenv world clock))
b)

(1 (tdconci,l .. tdconci,m) (argl .. argm) b')
(extends-binding b" b)) )

Not e:
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establishes that the signatures in the systemstate fs are valid.
establishes that the abs-arglist is valid.

establishes that the conc-arglist is valid.

establishes that no guard violations are detected in the

course of analyzing form

establishes that the guards of all functions in the call tree

of formare conplete.

establishes that the evaluation of formterm nates w thout
exhausting the clock.

d & EsSE

The proof of thelemmaisin Appendix B.4.

7.6 The Unifier -- DUNIFY-DESCRIPTORS

The top level conjecture for descriptor unification in the checker is characterized by the following lemma.
Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Lemma DUNI FY- DESCRI PTORS- | NTERFACE- OK
For any descriptors tda and tdb, Lisp value v and fully
instantiating binding of type variables to Lisp values b,

(and (1 tda v b)
(1 tdb v b))
=>
(I (dunify-descriptors-interface tda tdb) v b)

The definition of DUNIFY-DESCRIPTORS-INTERFACE is:

( DEFUN DUNI FY- DESCRI PTORS- | NTERFACE ( DESCRI PTOR1L DESCRI PTOR2)
DESCRI PTOR1 and DESCRI PTOR2 shoul d both be well-forned descriptors.
( PCANONI CALI ZE- DESCRI PTOR
(CONS ' *OR
( MAP- DAPPLY- SUBST- LI ST
( DUNI FY- DESCRI PTORS DESCRI PTOR1L DESCRI PTOR2 NIL NIL))))))

( DEFUN MAP- DAPPLY- SUBST- LI ST ( DUNI FY- RESULT)
(I'F (NULL DUNI FY- RESULT)
NI L
( CONS ( DAPPLY- SUBST- LI ST
( DUNI FI ED- FORM SUBSTS ( CAR DUNI FY- RESULT))
( DUNI FI ED- FORM DESCRI PTOR ( CAR DUNI FY- RESULT)))
( MAP- DAPPLY- SUBST- LI ST (CDR DUNI FY- RESULT)))))

DUNIFY-DESCRIPTORS-INTERFACE is a wrapper for the key recursive unification agorithm,
DUNIFY-DESCRIPTORS, which it calls with its two arguments and an empty substitution list.
DUNIFY-DESCRIPTORS returns a list of (descriptor . substs) pairs. Simply stated, unification
represents an effort to find the common ground between the input descriptors, and each element of this
result list characterizes some of that common ground. The descriptor part of the pair characterizes the
result down to the point where type variables appear, and the substs further characterize the types of the
objects represented by the variables. From this list of pairs, DUNIFY-DESCRIPTORS-INTERFACE
constructs an *OR whose diguncts are the results of applying each substitution to its associated
descriptor. After canonicalizing, it returns this result.

So two lemmas, one characterizing the result of DUNIFY-DESCRIPTORS and the other for DAPPLY -
SUBST-LIST, will provide the foundation for the proof of DUNIFY-DESCRIPTORS-INTERFACE-OK.
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The lemmas are as follows.

Lemma DUNI FY- DESCRI PTORS- OK
Denoti ng (dunify-descriptors tda tdb substs)
by ((tdl. substsl) .. (tdn. substsn)),

for all v and fully instantiating b,

(and
HL (i nterp-substs substs b)
H2 (I tda v b)
H3 (I tdb v b))
=>
for sone i,
(and (interp-substs substs; b)

(I tdj v b))

Note: Recall that DUNIFY-DESCRIPTORS aso takes a fourth argument, TERM-RECS, which is
employed solely as a mechanism for terminating the computation in certain cases. As such, it has no
effect on the soundness argument, which does not rely on termination, and to avoid clutter in the lemmas
and proofs, we simply omit mention of it. One could also think of it as being a universally quantified
variable in the lemma

The INTERP-SUBSTS predicate characterizes the information which is carried by SUBSTS and by each
SUBSTS;. The substitution lists map variables to descriptors characterizing what we know about the type
of the value corresponding to the variable. INTERP-SUBSTS guarantees that this information is
consistent with the value bound to the variable in BINDINGS.

(DEFUN | NTERP- SUBSTS ( SUBSTS Bl NDI NGS)
;7 SUBSTS should be an alist whose keys are type variabl es and
whose associ ated val ues are wel |l -fornmed descriptors.
Bl NDI NGS shoul d be an alist associating type variables to
7 well-forned descriptors.
(I'F (NULL SUBSTS)
T

(AND (1 NTERP- SI MPLE-1 (CDR ( CAR SUBSTS))
(CDR (ASSOC (CAR ( CAR SUBSTS)) BI NDI NGS))
Bl NDI NGS)
(I NTERP- SUBSTS ( CDR SUBSTS) BI NDI NGS))))

The proof of DUNIFY-DESCRIPTORS-OK appearsin Appendix B.5.

Note that the reverse implication in DUNIFY-DESCRIPTORS-OK does not hold. Consider an example
where the unifier loses information:

( DUNI FY- DESCRI PTORS

"(*REC FOO (*OR &1 (*CONS
" (*REC BAR (*OR &1 (*CONS
NI L)

= (by *REC Rule 0")

(((*REC BIM (*OR *UNI VERSAL (*CONS $I NTEGER (*RECUR BIM))) . NL))

I NTEGER $T) (*RECUR FOQ))))

(*OR $
(*OR $I NTEGER $NIL) (*RECUR BAR))))

Neither of the conclusions, (INTERP-SUBSTS NIL B) nor

(I NTERP- S| MPLE- 1
(*REC BIM (*OR *UNI VERSAL (*CONS $I NTEGER (*RECUR BIM))) V B)

carry the information necessary to relate the last tail of v to the binding of &1 inb.

The second lemmais DAPPLY-SUBST-LIST-OK.
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Lemma DAPPLY- SUBST- LI ST- OK

For any wel|-formed substitution s, descriptor td, binding b,
and value v, (where td can be a *dlist containing n descriptors
iff vis avalue list of length n, in which case the call to |
is on the list of n descriptors)

(and (interp-substs s b) (I td v b))

=>

(I (dapply-subst-list s td) v b)

Lemma DAPPLY-SUBST-LIST-OK says that if the substitution list S is consistent with the binding list
B, asdetermined by INTERP-SUBSTS, and if the value V satisfies a descriptor TD with respect to B, then
with respect to B, V also satisfies the descriptor formed by applying the substitution list S to the descriptor
TD.

Lemma DAPPLY-SUBST-LIST-OK alows us to apply the substitution generated by DUNIFY-
DESCRIPTORS to the accompanying descriptor result. In terms of our code, it means we can soundly
cal DUNIFY-DESCRIPTORS-INTERFACE rather than DUNIFY-DESCRIPTORS. The proof of
DAPPLY-SUBST-LIST-OK appearsin Appendix B.4.

Now we can return to the proof of DUNIFY-DESCRIPTORS-INTERFACE-OK, which employs Lemmas
DAPPLY -SUBST-LIST-OK and DUNIFY-DESCRIPTORS-OK.

The proof of Lemma DUNIFY-DESCRIPTORS-INTERFACE-OK is actually the "simultaneous" proof of
a rather large collection of lemmas which are invoked in an inductive nest composing the whole. The
grand induction schemais a computational induction on the length of the computation required to return a
result from DUNIFY-DESCRIPTORS-INTERFACE. The induction, then, follows the structure of the
computation defined by the functions of concern, which form a large, mutually recursive nest. The

lemmas within this collection, whose proofs ae "mutuadly inductive", include
DUNIFY-DESCRIPTORS-INTERFACE-OK, DUNIFY-DESCRIPTORS-OK, DMERGE-OK,
DMERGE-DIFFERENT-SUBST-INTO-SUBSTS-LIST-OK, DMERGE-SECOND-ORDER-OK,

DMERGE-DUNIFIED-FORMS-INTO-SUBSTS-OK, and the various lemmas which are associated with
the specia case rules for unifying pairs of *REC descriptors. Each of these lemmas characterizes the
result of some function (or invocation of a*REC rule). For any call of any of these functions subsidiary
to the main call of DUNIFY-DESCRIPTORS-INTERFACE within the computation, we can invoke the
associated lemma as an inductive hypothesis.

Note that since we are not demonstrating a proof of termination, this is a partial correctness proof, since
we are not guaranteeing that the length of the computation isfinite. (See the discussion in Section 6.6.)

Proof of Lenma DUN FY- DESCRI PTORS- | NTERFACE- K

(duni fy-descriptors-interface tda tdb) first calls

(duni fy-descriptors tda tdb nil).3 Let us denote the result
returned fromthat call as

((tdq . substsq) .. (tdp . substsp))

So we would |ike to use Lenma DUN FY- DESCRI PTORS- OK.
(interp-substs nil b) is trivially true for any binding b,
satisfying HL of DUNI FY- DESCRI PTORS-OK, and its other hypotheses
are guaranteed by hypotheses in our main conjecture. So we use
the concl usi on of DUN FY- DESCRI PTORS-OK in order to obtain:

H3 for some i in 1..n,

34

The fourth argument, TERM-RECS, is omitted, as previously mentioned.



Type Checking for Common Lisp 171
The Proof of Soundness

(and (interp-substs substsi b)
(I tdj v b))

Next, by definition dunify-descriptors-interface calls
wel | - f or med- substs on each substsi. We split into cases,

based on whet her any substsi was found to be ill-forned.

Case 1. for sonme i, (not (well-forned-substs substsi))

By definition dunify-descriptors-interface returns either tda or tdb,
dependi ng on which has the snaller representation. Either one
trivially satisfies our conclusion, which is equated to the hypothesis
corresponding to one or the other.

Case 2. for all i, (well-forned-substs substsi)

Usi ng Lenma DAPPLY- SUBST- LI ST-OK on each (tdi . substsi) pair
wher e substsi is non-1ooping (discovery of a |ooping subst

causes the tool to break) fromthe result of
(duni fy-descriptors tda tdb nil), we can transformH3 to

for sonme i, (I (dapply-subst-list substsi tdi) v b)
or, stated equivalently
H3 (or (I (dapply-subst-list substsl tdl) v b)
(I (dappl y-subst-1i st substsn tdn) v b))
This is equal to the definition of | applied to v, b, and
(*or (dapply-subst-Iist substsl tdl)
.(;jappl y-subst-1list substsn tdn))
gi ving us
H3" (I (*or (dapply-subst-Ilist substsltdl)
.(dappl y-subst-1list substsn tdn))
v
b)
By definition, dunify-descriptors-interface returns the descriptor

(pcanoni cal i ze- descri ptor
(*or (dapply-subst-1list substsl tdl)

(dappl y-subst-list substsp tdp)))
Thus our goal is

(1 (pcanoni cal i ze-descri ptor
(*or (dapply-subst-Ilist substsl tdl)

(dappl y-subst-1i st substsn tdn)))
v b)
PCANONI CALI ZE- DESCRI PTOR- OK (See Section 7.7) is the

| emma whi ch says that canonicalization preserves interpretation
under |. Applying it to H3, we satisfy the goal.

QED.
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7.7 Descriptor Canonicalization

Eighteen canonicalization rules are implemented within PCANONICALIZE-DESCRIPTOR and its
subsidiary functions. The rules are stated in the form "td1 ==> td2", where td1 is a generic representation
of descriptors éligible for the canonicalization, and td2 is the representation of the form into which those
descriptors are canonicalized. By "==>" we mean only that

( PCANONI CALI ZE- DESCRI PTOR TD1) = TD2

Although the canonicalization is directed, each rule happens to be an equality, in the sense that td1 and td2
represent the same set of values under any interpretation by INTERP-SIMPLE. All that is required for
soundness of each rule "td1 ==> td2" is proof of an associated lemma of the form3°:

For every value v and binding b,
(I tdl v b)
=>

(1 td2 v b)

Since it would be tedious to restate each rule in this form, we simply provide the rule notation, but the
proof follows the INTERP-SIMPLE model. The rules are stated in Section 6.7, and the proofs are in
Appendix B.6. Each ruleis annotated with the name of the function in which it isimplemented.

It will be convenient to have atop-level lemmato which to appeal when encountering canonicalization.
Lemma PCANONI CAL| ZE- DESCRI PTOR- OK

For any descriptor td, value v, and binding b,
(where td is a *dlist containing n descriptors iff vis a
value list of length n)

(I td v b)
=
(1 (pcanonicalize-descriptor td) v b)

Proof of Lenma PCANONI CALI ZE- DESCRI PTOR- OK

By definition,

( PCANONI CALI ZE- DESCRI PTOR td) = (PREAL- CANONI CAL| ZE- DESCRI PTOR td) .
By definition, PREAL-CANON CALI ZE- DESCRI PTOR call's

( PCANONI CAL| ZE- DESCRI PTOR-1 td), checks to see if the

result =td, and, if so, returns it. |If not, it calls itself
recursively, by way of two individual canonicalizations,

( PREAL- CANONI CALI ZE- DESCRI PTOR
( PFOLD- RECS- | F- POSSI BLE
( PCONSOLI DATE- UNI VERSAL - DESCRI PTORS result)))

PCONSOLI DATE- UNI VERSAL- DESCRI PTORS and PFOLD- RECS- | F- POSS| BLE
ei ther do nothing or invoke canonicalization Rules 1 and 3,
respectively, and by the I emmas for these rules, each function
preserves (I td v b).

PCANONI CALI ZE- DESCRI PTOR-1 cal | s PREAL- CANONI CALI ZE- DESCRI PTOR
recursively on conponents of td, and otherw se invokes individual
canoni cal i zation rules as appropriate.

Thus, with these mutually recursive functions, we present this proof

35Here, asin all our other lemmas and proofs, 1" is a shorthand notation representing INTERP-SIMPL E when its second and third
arguments are lists, INTERP-SIMPLE-1 when these arguments are a single descriptor and value.
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as a conputational induction on the nunber of conputational steps
in the evaluation of the top level call of the function under
consideration. This is a partial correctness proof, in that we
are not proving termnation. Thus, we do not rule out the
possibility that nis infinitely large

The inductive assunption is that for all calls to
PREAL- CANONI CAL| ZE- DESCRI PTOR subsidiary to the top level call
for all values v and bindings b

(I td v b)
=>
(1 (PREAL- CANONI CALI ZE- DESCRI PTOR td) v b)

Case 1: (PCANONI CALI ZE- DESCRI PTOR-1 td) = td,

Thus, PREAL- CANONI CALI ZE- DESCRI PTOR and PCANONI CAL| ZE- DESCRI PTOR
each return td, and thus we establish the goal trivially.

Case 2: (PCANONI CAL| ZE- DESCRI PTOR-1 td) = td', where td # td’

Some nunber of conputational steps have occurred. For each
such step, either no transformati on was performed on td, in

whi ch case (I td v b) continues to hold, or the step perforned
a canonical i zation by invoking some canonicalization rule. For
each such rule, we have a | enma which says (I td v b) inplies

(1 canonicalized-td v b), where canonicalized-td is the result
of the canonicalization. By chaining these results, we see that

(I td v b)
=>
(I ( PCANONI CALI ZE- DESCRI PTOR-1 td) v b)

By definition, PREAL-CANON CALI ZE- DESCRI PTOR now cal | s
PCONSOLI DATE- UNI VERSAL- DESCRI PTORS and PFOLD- RECS- | F- POSSI BLE
inturn on the result. |f either function transforns td, its
associ ated | emma ensures that (I td v b) is preserved on the
result, and our counter is further reduced. Then

PREAL- CANONI CALI| ZE- DESCRI PTOR cal I s itsel f recursively, and
we invoke our inductive assunption to establish the goal

Not e t hat PCANONI CALI ZE- DESCRI PTOR-1 may have cal |l ed

PREAL- CANONI CAL| ZE- DESCRI PTOR recursively. Any such recursive
call reduces the conputational count and allows the use of the
i nductive assunption to characterize the result. QED.

7.8 The Containment Algorithm

Recall that our specification of containment is:

Lemma CONTAI NED- | N- | NTERFACE- OK
For any descriptors tdl and td2, value v, and binding b

(and (contained-in-interface tdl td2)
(1 tdl v b))

=>

For sone b, (I td2 v b")

The containment al gorithm has the task of demonstrating that b’ can be generated. If the algorithm cannot
determine how to do so, it returnsaNIL result.

In the special case where TD1 and TD2 are variable-free, the binding is irrelevant. This is the case
handled by the subsidiary algorithm CONTAINED-IN. The task is the relatively simple one of
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determining whether a value's membership in the set characterized by TD1 guarantees its membership in
the set corresponding to TD2.

As described in Section 6.8, if variables appear in the descriptors, the top level function
CONTAINED-IN-INTERFACE attempts to transform the arguments to variable-free forms and to employ
the CONTAINED-IN-INTERFACE agorithm. If it cannot do this, it employs the heuristic algorithm
VCONTAINED-IN to produce a mapping which represents a method for producing a B’ from any
satisfactory B. Then it validates that the mapping will work by calling a verified routine
MAPPINGS-DEMONSTRATE-CONTAINMENT, which manages the application of a checker algorithm
ICONTAINED-IN. Essentialy, MAPPINGS-DEMONSTRATE-CONTAINMENT raises disunctions in
TD1 to the top, as previously described, and then determines whether for each disunct, the mapping
provides a method for constructing a binding which will establish containment. 1f so, CONTAINED-IN-
INTERFACE returns T, otherwiseit returns NIL.

Let us leave for the moment further discussion of CONTAINED-IN-INTERFACE, except to note that it
makes a decision as to whether the problem can be handled by the variable-free containment function
CONTAINED-IN. We will state and prove lemmas about CONTAINED-IN and ICONTAINED-IN, then
return to the proof of CONTAINED-IN-INTERFACE. Here, asin al our other lemmas and proofs, "I" is
a shorthand notation representing INTERP-SIMPLE when its second and third arguments are lists,
INTERP-SIMPL E-1 when these arguments are a single descriptor and value.

Our specification for the simpler, variable-free containment algorithmiis:
Lemma CONTAI NED- | N- OK
For any descriptors tdl and td2, Lisp value v, and binding bl

(and
HL (null (gather-variabl es-in-descriptor tdl))
H2 (null (gather-variabl es-in-descriptor td2))
H3 (contained-in tdl td2)
H4 (1 tdl v bl))

=>

For sone b2, (I td2 v b2)

Comment: The b2 used here is irrelevant, since the descriptors are
vari abl e-free.

Note: Recall that CONTAINED-IN also takes a third argument, TERM-RECS, which is employed solely
as a mechanism for terminating the computation in certain cases. As such, it has no effect on the
soundness argument, which does not rely on termination, and to avoid clutter in the lemmas and proofs,
we simply omit mention of it. One could aso think of TERM-RECS as being a universally quantified
variableinthelemma. Thislemmais proved in Appendix B.8.

For the case where we dtill have variables in our descriptors, VCONTAINED-IN is simply a heuristic
function serving as a witness for ICONTAINED-IN. Supplied with TD1 and TD2, VCONTAINED-IN
returns a mapping structure which is subsequently flattened into a list of simple mappings. (See the
discussion of mapping structures in Section 6.8.4.) Using equivalence-preserving canonicalization rules,
which have been proven correct, we lift *ORs in TD1. Furthermore, imagine a symbolic value reference
VREF which represents, on entry, the value to which we refer as V in Lemma CONTAINED-IN-
INTERFACE-OK. If for each disiunct TD1;, there exists some simple mapping Mj from our list which
can be applied to TD2 so that

(1 CONTAI NED- | N tdli ( DAPPLY- SUBST- LI ST n] td2) vref)
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holds, then we have shown containment, as we shall now prove, and CONTAINED-IN-INTERFACE
returnstrue. To show the soundness of this approach, we need to prove the following lemma:

Lemma ALL- DESCRI PTORL- DI SJUNCTS- OK- OK
For any descriptor tdl of the form (*or tdll .. tdln)
and descriptor td2, value reference vref, value v, and binding
bl covering the variables of tdl,
(and
H1L (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-in-descriptor td2))
H2 For all i, for sone sinple napping m
(and (wel | -formed-mappi ng mvref bl)
(icontained-in tdli (appl y-subst mtd2) vref))
H3 (I tdl v bl) )
=>
For sone b2, (I td2 v b2)

This proof, of course, will require a statement of correctness of ICONTAINED-IN, which follows.
ICONTAINED-IN must be given a simple mapping which is well-formed in the context of the problem.
The predicate which determines well-formedness is WFF-MAPPING. The WFF-MAPPING predicate on
mappings is only strong enough to guarantee a mapping is syntactically consistent with the binding B and
the value reference being passed around.

( DEFUN VEELL- FORMED- MAPPI NG (M B VREF)
;; Mis assuned to be an alist whose keys are type vari abl es.
(IF (NULL M
T

(IF (OR (EQUAL (CDR (CAR M) '$NIL)
(EQUAL (CDR (CAR M) ’$T)
(ASSCC (CDR (CAR M) B)
(AND (VAR-REFP (CDR (CAR M))
( SAME- ROOT (CDR (CAR M) VREF)))
( VELL- FORMED- MAPPI NG (CDR M B VREF)
NIL)))

( DEFUN SAME- ROOT (VREF1 VREF2)
(EQUAL (ROOT- OF- VAR- REF VREF1) (ROOT- OF- VAR- REF VREF2)))

( DEFUN ROQOT- OF- VAR- REF ( VREF)
(I F (ATOM VREF)
VREF
(IF (MEMBER (CAR VREF) ' (CAR CDR REC-TAIL DLI ST-ELEM)
( ROCT- OF- VAR- REF ( CADR VREF))
(1 NTERNAL- ERROR
" ROOT- OF- VAR- REF -- Unexpected synbolic val ue" VREF))))

The soundness specification for ICONTAINED-IN is given in the lemma:
Lemma | CONTAI NED- | N- OK:

For any descriptors tdl and td2, sinple nmapping m Lisp value v,
synbolic val ue reference vref, and binding bl covering the
variables in tdi,

(and

HL (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-in-descriptor td2))

H2 (wel | -forned-mapping mvref bl)
H3 (icontained-in tdl (dapply-subst-list-1 mtd2) vref)
H4 (1 tdl v bl) )

=>

For sone b2, (I td2 v b2)

The proof of this lemma is given in Appendix B-G. With this lemma in hand, the proof of ALL-
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DESCRIPTOR1-DISIJUNCTS-OK-OK is straightforward.
Proof of Lemma ALL- DESCRI PTORL- DI SJTUNCTS- OK- OK

For each i, enploy Lemma | CONTAINED-I N-OK as a hypothesis, instantiated
with tdl = tdli, td2 = td2, and m= the msatisfying H2 for that

tdli. We can use the conclusion of each of these hypot heses

because Hl1 of the main theoremequals the HL for the instantiated
lemma, H2 of the nmain theoremestablishes its H2 and H3, and H3

equal s its H4.

(I (*or tdll .. tdln) v bl) expands by definition of | to

(or (I tdll v bl) .. (I tdln v bl)). Since we are assunming this
predicate is true, for any disjunct which is true, utilize the
correspondi ng hypot hesis, which yields the conclusion directly.

QED.

Now let usreturn to the top level lemma.

Lemma CONTAI NED- I N- | NTERFACE- OK
For any descriptors tdl and td2, value v, and binding b,

(and (contained-in-interface tdl td2)
(I tdl v b))

=>

For sone b, (I td2 v b")

Proof of Lenma CONTAI NED- | N- | NTERFACE- K
Suppose that CONTAI NED- I N-1 NTERFACE were defined as foll ows:

( DEFUN CONTAI NED- | N- | NTERFACE (TD1 TD2)
;; TDL and TD2 are assumed to be well-formed type descriptors.
(I'F (AND (NULL ( GATHER- VARS- | N- DESCRI PTOR TD1))
(NULL ( GATHER- VARS- | N- DESCRI PTOR TD2)))
(CONTAI NED- | N TD1 TD2)
(ALL- DESCRI PTORL- DI SJUNCTS- K
( MAKE- SI MPLE- MAPPI NG- LI ST (VCONTAI NED-IN TD1 TD2 NIL 'V))
(LET ((LIFTED-TD1 (LIFT-ORS TD1)))
(I'F (OR-DESCRI PTORP LI FTED- TD1)
(CDR LI FTED- TD1)
(LI'ST LIFTED-TD1)))
TD2

'V)))

where ALL- DESCRI PTORL- DI SJUNCTS- K returns T if for every disjunct
tdli of tdl, (i.e., every descriptor in its second argunent)

sone sinpl e mappi ng from VCONTAI NED- | N causes
(1 CONTAINED- I N tdl; td2 m) to return true. TD1 was

put into an *OR-lifted formvia repeated application of Canonicalization
Rules 4 - 13, with Rules 8 and 9 applied in reverse. (The proof that
these rules are applicable in reverse is obtained sinply by executing
the proofs of Rules 8 and 9 in reverse order. See Appendix B.6.)

LI FT-ORS, however, is a no-op when applied to a *DLI ST. The | emmas
CONTAI NED- | N- OK and ALL- DESCRI PTORL- DI SJUNCTS- OK-OK trivially prove
CONTAI NED- | N- | NTERFACE- OK.  This is all that woul d be necessary to

val i date the contai nnent al gorithm

But by definition, as previously described, CONTAI NED-| N- | NTERFACE
tries sone optinzations when there are variables in tdl or td2 in
an attenpt to reduce the problemto the variable-free case, for
which the algorithmis sinpler and the code nuch faster. First,

if td2 contains any single instances of variables, those variables
are changed to *UNIVERSAL. This is justified by the follow ng | emra.
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Lemma TC- UNI VERSALI ZE- SI NGLETON- VARS- 1- K

For all descriptors td, values v, type variable bindings b, and
lists vlist containing all the type variabl es which appear only
once within td,

(I (tc-universalize-singleton-vars-1 td vlist) v b)
=>

For sonme b’ (I td v b")

This lemma is proved in Appendix B.10. Essentially, b’ need
differ fromb only by ensuring that & is bound to the correct
conponent of the value v. By this lemm, then, if we denonstrate
containment in our transfornmed td2, we are al so denonstrating
contai nment in td2.

After making this nodification, if there are no variabl es remaining
in td2, we replace all variables in tdl with *UNIVERSAL. This is
justified, because clearly for any descriptor td, value v, and
binding b, if sonme variable in a descriptor is satisfied by sone
conponent of v, then *UNIVERSAL will be satisfied. In this, we
are only dropping the requirenent that equal val ues nust

occupy the positions of each occurrence of a given variable.

(I td v b) => (I (universalize-all-vars td) v b)

Thus, by performng this replacenment we are enlarging the set of
val ues represented by tdl. This is conservative replacenent, as
the problemis to deternmine if tdl represents a subset of the
val ues represented by td2, and if a superset of tdl’'s val ues

is a subset of td2's values, then clearly tdl's values forma
subset of td2’'s val ues.

If after attenpting these optinizations, we have rid the descriptors

of all variables, CONTAI NED-|I N | NTERFACE cal | s CONTAI NED-I N on

the transfornmed descriptors, and we invoke Lenma CONTAI NED- | N- OK

to establish our goal. On the other hand, if there are still variables
in tdl or td2, CONTAI NED-IN-| NTERFACE st andardi zes the vari abl es

apart, to satisfy the precondition for | CONTAINED-IN-OK. By this

we nean that for each variable & which appears in both tdl and

td2, we create a fresh variable & and replace all occurrences of

& in td2 with & . Thus, our containment test establishes that

(I tdl v b) => for some b’ (I transfornmed-td2 v b")
But it is easy to see that

for sonme b’ (I transfornmed-td2 v b’)
=>
for sone b’ (I td2 v b'")

Just construct b’ fromb' by replacing, for each substitution
performed when we standardi zed apart, all instances of & wth &,
thus reversing the original substitution. td2 and b’’ are thus
nanme i sonorphic to transfornmed-td2 and b’, and the interpreter |
will evaluate (I transforned-td2 v b’) and (I td2 v b’’) identically,
nmodul o handling these different names. The formal justification
for each replacenent of a variable is in the Lemma

RENAM NG- PRESERVES- 1, which is stated and proved just bel ow
These argunents suffice to justify the operations perforned in
CONTAI NED- | N- | NTERFACE, down to the calls of CONTAINED-IN and

| CONTAI NED- I N.  CONTAI NED- | N- | NTERFACE- OK therefore still holds.

QED.
Lemma RENAM NG PRESERVES- |

For any descriptor td containing a reference to a variable &,
Li sp value v, type variable binding b, and type variable &
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not appearing in td,

(I td v b)
=>
for sone b’ (I (subst & & td) v b")

Proof of Lemma RENAM NG PRESERVES- |

A fully rigorous proof of this | enmma would invol ve an induction
on the structure of descriptors, with all the cases other than
the one where we consider variables either disposed of as trivial
base cases or with totally straightforward enpl oyment of the

i nductive assunption of this |lemma. The variable case would
proceed as below. Since this approach would sinply bury the
only interesting case anpbng a host of uninteresting ones, we
choose to present the argunment in the follow ng operational
nmanner .

Construct b’ by replacing the occurrence of & in b with & .

Then note that (I td v b) will behave identically to
(I (subst & & td) v b’') down to the point where, whether
on sone recursive call or on the top level call, the

descriptor paraneter in the first case is & . Thus, we are
referring to a call of the form

(I & <conponent of v> b)

By the definition of I, this is equal to

(equal <conponent of v> (cdr (assoc & b)))

The anal ogous call, from (Il (subst & & td) v b'), is

(I & <conponent of v> (subst & & b))

for the same conmponent of v as before. This expands to
(equal <conponent of v> (cdr (assoc & (subst & & b))))
which is, by the definition of subst,

(equal <conponent of v> (cdr (assoc & b)))

QED.
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Chapter 8
TESTING THE SYSTEM

Not surprisingly, extensive testing of the system revealed its strengths and weaknesses very well. In this
chapter, we will present the test suite used to demonstrate the system, give an overview of the results
produced, and examine certain examples which illustrate the successes and shortcomings of the tool on
some representative functions. Along the way we will discuss how these results might suggest future
work.

8.1 TheTest Suite

The system was tested by placing it in its bare, initial state, described with the handful of signatures in
Appendix A, and then submitting a collection of almost 400 functions to the tool for analysis.

These functions are in three basic groups. The first is a group of functions which bootstrap the database
into a more useful collection of Lisp functions. These include some equality and membership functions,
some Boolean connectives, a family of recognizer functions which compose into increasingly complex
structures, and the family of CAR/CDR compositions (CADR, CDDR, CADDR, etc.). On this basis, we
introduce the second group, the non-mutually recursive functions from the axioms.lisp file of an early
developmental version of the Acl2 theorem prover of Boyer and Moore [Boyer 90]. The last group
consists mainly of functions which were conceived during the development process to test various aspects
of the system.

Many of the functions from axioms.lisp were modified so that the inference tool could produce better
signatures. This was done so that the signature base would be in better condition for evaluating later
results based on those signatures. In some cases, the origina definition was submitted to show how the
tool performed, and then a modified definition was submitted as the basis for future reference. In afew
cases, a signature was composed by hand and summarily stuffed into the database, either because the
function could not be modified so that the tool could produce a satisfactory result, or because the author
lost patience with the process.

A number of other modifications to the axioms.lisp functions were made, and for a variety of reasons.
Almost al, if not all, of the changes fell under one of the following categories:

e Macros, such as AND, OR, LIST were expanded by hand, since macros are not part of the
accepted subset. This usually led to unattractive, verbose, and gratuitously inefficient code.

» Guards and IF tests were inserted, enhanced, or weakened. In some cases, this is because
the original function definitions actually had inadequate guards. In other cases, guards
which specified more than could be captured in the type system were weakened into type
predicates. For example, a guard like (EQ (CAR X) 'FOO) may have been transformed to
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(SYMBOLP (CAR X)). We attempted to comment all these cases in the examples.

 The above techniques and others were used to transform some functions frequently used as
guards or |F predicates into recognizers. This was to benefit from the increased accuracy of
the signature produced.

* Cdlsto NTH and UPDATE-NTH where the first argument is a constant were modified into
the appropriate CAR/CDR nests, since NTH’s signature yields no information about its
result. Examples of such modifications occur in functions like GLOBAL-TABLE and
UPDATE-GLOBAL-TABLE, which manipulate an object of a large state type employed in
the axioms.lisp code. There is no reason why the tool could not give NTH and UPDATE-
NTH special treatment and make these modifications in a prepass phase.

« Symbols with package names were changed to strings, since packaged atoms are not
handled. Anexampleisin*INITIAL-GLOBAL-TABLE*.

* Global constants were changed to parameterless functions. Support for constants would be
trivial to implement, utilizing existing functionality in the tool.

« LET forms were transformed by dereferencing LET-bound variables, replacing each
occurrence with the terms to which they were bound. Thus, aform like

(LET ((X (FOOY))) (CONS X X))
would be transformed to
(CONS (FOO Y) (FOOY))

This led to great inefficiency, since types were computed repeatedly, particularly in cases,
like the ROUND function, where there are deeply nested LET constructs. This conversion,
though necessary to bring the function into the accepted subset, was extremely explosive.

 Signatures for COERCE and INTERN were introduced into the initial FUNCTION-
SIGNATURES. These signatures do not handle all the cases necessary to correspond to the
full Common Lisp definitions of the functions, but they were satisfactory for the arguments
with which those functions were invoked in the axioms code.

None of the functions from MUTUAL-RECURSION nests were included, since this definitional
capability is not supported in the inference system.

A simple driver program was used to submit this test suite to the inference tool. For each function, it
invokes a function NEW-FUNCTION, which simply calls the inference algorithm, then the signature
checker, and reports the result, including any accounts of failure. On the Symbolics, it also measures the
total time consumed on each invocation. Almost invariably, the larger portion of the time was spent in the
signature checker. Invoked at the end of the testbed run, the function CHECK-FUNCTION-
SIGNATURES reports on the condition of the signature database. For each function in the database, it
checks the well-formedness of the signature and reports the following results from the inference tool:

* Cases where the inference tool and/or the checker reported an incomplete guard descriptor

or when some function in the hereditary call tree of a function has an incomplete guard
descriptor,

» Cases where the checker's guard descriptor was replaced by the inference tool guard
descriptor (where the descriptors are different, but containment holds in both directions).

« Cases where the checker’s signature segments are not contained in the inference algorithm
segments.

* Cases where the inference algorithm decreed a function to be a recognizer and the checker
disagreed.

The full results produced by the test suite are available via anonymous ftp. See Appendix H for
instructions on how to retrieve them. In the suite, some examples are preceded by comments, including
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functions from axioms.lisp which were modified from the original. The results are not annotated with
descriptive labels as they are in this chapter, but the signature components are in the same order as those
presented in annotated form in the next section.

The "Signature is certified sound” flag is provided as a quick reference for the reader. It signifies that the
checker has determined the guard is complete, that the guards of al the functions in the call tree are
complete, that the segment containment relation holds, and if the inference algorithm claims a function is
arecognizer, the checker agrees.

8.2 Summary of Results

373 functions were submitted to the tool. For 231 of these functions, the inference tool generated
signatures which the checker subsequently validated to be sound.

The following things were noted for the 142 remaining functions:

26 functions were discarded by the inference al gorithm because of

percei ved guard viol ati ons.

Names: CASE- LI ST CASE- LI ST- CHECK REVERSE | NTEGER- ABS- FOOBA
GETPROPS1 HAS- PROPSP1 DI MENSI ONS MAXI MUM LENGTH DEFAULT
ARRAY2P AREF1 COVPRESS1 AREF2 COVPRESS2 ASET2 OPEN- CHANNEL1
STATE- P1 OPEN- | NPUT- CHANNEL- P1 OPEN- QUTPUT- CHANNEL- P1
MATCHFN FOO1L GOO1L GOO2 GOO4 GETPROPS
TRANSLATE- DECLARATI ON- TO- GUARDL

2 functions were discarded by the inference al gorithm because the
signature did not becone stable within the required nunber of
iterations (6).

Names: REVAPPEND COVPRESS21

31 functions had i nconpl ete guards, according to the inference tool.
Nanes: EQ EQL XXXJO N ASSOC- EQ NTH CHAR MEMBER PAI RLI S
NONNEGATI VE- | NTEGER- QUOTI ENT FLOOR CEl LI NG TRUNCATE ROUND
MOD REM EXPT LOGBI TP NTHCDR COVPRESS11 ASET1 COWMPRESS211
ASCI | - CODE DI @ T- TO- CHAR EXPLODE- NONNEGATI VE- | NTEGER
MAKE- LI ST- AC AREF- T- STACK AREF- 32- BI T- | NTEGER- STACK
ASET- 32- Bl T- | NTEGER- STACK DUMW1 GOC3 REMOVE

50 functions had inconpl ete guards, according to the checker (the

difference reflecting its nore stringent criteria).

Nanes: all those listed i nmediately above, plus
ORI G CADR ORI G- CDDR ORI G CADDR LENGTH LI ST*- MACRO
ASSOC- KEYWORD EXPLODE- ATOM PUSH- UNTOUCHABLE W
CURRENT- PACKAGE KNOWN- PACKAGE- ALI ST GET- UNTOQUCHABLES
LOAD- MODE SKI P- PROOFS- LOAD- MODEP MATCHFN- 2 DUMWY2
FOO5 FOO7 BAR

104 functions either had an inconplete guard or had a function

within the hereditary call tree which had an inconpl ete guard,

according to the checker.

Nanes: all those listed in the two categories above, plus
ORI G NULL ORI G ALI STP ORI G SYMBOL- ALI STP ORI G SYMBOL- LI STP
ACL2- COUNT COND- CLAUSESP MEMBER- EQUAL- EQ MEMBER- EQ
ORI G ASSOC- EQUAL STANDARD- CHAR- P SYMBOLP- LI STP
MEMBER- SYMBCOL- NAMVE LEGAL- CASE- CLAUSESP ZEROP LOGAND ASH
MUTUAL - RECURSI ON- GUARDP STANDARD- CHAR- MEMBER ASCI | -<-L
ASCl | - <=-L SUBSETP ASSOC SUBST WORLDP GETPROP ADD- PAI R
HAS- PROPSP FUNCTI ON- SYMBOLP * MAXI MUM POSI Tl VE- 32- Bl T- | NTEGER*
BOUNDED- | NTEGER- ALI STP ARRAY1P BOUNDED- | NTEGER- AL| STP2
ASSOC2 TYPED-| O LST OPEN- CHANNEL1 READABLE- FI LE WRI TTEN- FI LE
READ- FI LE- LST1 WRI TEABLE- FI LE- LST1 STATE- P1
OPEN- | NPUT- CHANNEL- P OPEN- QUTPUT- CHANNEL - P
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OPEN- QUTPUT- CHANNEL - ANY- P1 OPEN- | NPUT- CHANNEL - ANY- P1
DELETE- PAI R SOVE- SLASHABLE T- STACK- LENGTHL

32- Bl T- | NTEGER- STACK- LENGTH1 PUT- ASSOC- EQ FOO SYM | NP
APPLY- SUBST1 COND- MACRO

TRANSLATE- DECLARATI ON- TO- GUARDY | NTEGER

17 functions had signatures which failed the segnent contai nment
test of the checker.
Names: XXXJO N-2 SUBST ARRAY1P UPDATE- NTH OPEN- CHANNEL- LST- 2
OPEN- CHANNELS- P- 2 STATE- P1 STATE- P MAKE- LI ST- AC
ASET- 32- Bl T- | NTEGER- STACK DECREMENT- Bl G CLOCK READ- | DATE
READ- RUN- TI ME G006 FOO7 APPLY- SUBST1 FOOP

5 functions designated as recogni zers by the inference algorithm
were rejected by the checker.
Nanmes: PROPER- CONSP-2 NON- T- NI L- SYMBOL- PLI STP
OPEN- CHANNEL- LST-2 OPEN- CHANNELS- P- 2 STATE- P

97 functions reported only inconplete guards (as opposed to segnent
contai nment failure or recognizer rejection) as a cause for
soundness rej ection.

2 functions had their checker guard replaced by the inference tool
guard.
Narmes: MEMBER REMOVE

25 functions were submtted and processed, and then minor variants
were resubmitted, causing the previous results to be overwitten
in the database (but preserved in the |og)

Names: OPEN- | NPUT- CHANNELS UPDATE- OPEN- | NPUT- CHANNEL S
OPEN- QUTPUT- CHANNELS UPDATE- OPEN- QUTPUT- CHANNEL S
GLOBAL- TABLE UPDATE- GLOBAL- TABLE T- STACK UPDATE- T- STACK
32- Bl T- | NTEGER- STACK UPDATE- 32- Bl T- | NTEGER- STACK
Bl G CLOCK- ENTRY UPDATE- Bl G- CLOCK- ENTRY | DATES
UPDATE- | DATES RUN- TI MES UPDATE- RUN- TI MES FI LE- CLOCK
UPDATE- FI LE- CLOCK READABLE- FI LES WRI TTEN- FI LES
UPDATE- WRI TTEN- FI LES READ- FI LES UPDATE- READ- FI LES
VRl TEABLE- FI LES OPEN- CHANNEL 1

21 functions had their original result replaced in the
dat abase with a new result which would allow the process to
conti nue reasonably for subsequently subnmitted functions.
Nanes: W PRI NT- RATI ONAL- AS- DECI MAL GET- TI MER PUT- GLOBAL
GET- GLOBAL MAKUNBOUND- GLOBAL BOUNDP- GLOBAL1 PRI NC$
OPEN- QUTPUT- CHANNEL- P1 OPEN- | NPUT- CHANNEL - P1
EXPLODE- NONNEGATI VE- | NTEGER STATE- P1
WORLD- KNOWN- PACKAGE- ALI STP COWPRESS21 AREF2 COWMPRESS1
ARRAY2P REVAPPEND DI MENSI ONS MAXI MUM LENGTH DEFAULT

Among the examples in which the inference algorithm detected a guard violation, in some, like
INTEGER-ABS-FOOBA, GETPROPSL (presented in the next section), HASPROPS1, MATCHFN,
FOO1, GOQO1, GO02, and GOO4, there is areal guard violation in the function. In a number of other
cases, a problem arises because the tool cannot derive strong enough descriptors for forms used as guards
or |F tests to govern the violating call. For example, in CASE-LIST and CASE-LIST-CHECK, acall to
LEGAL-CASE-CLAUSESP is used as a guard. But because the definition of LEGAL-CASE-
CLAUSESP employs a test (EQ 'OTHERWISE (CAR (CAR TL))), it is not treated as a recognizer, and
its signature is therefore not sufficiently strong to define a safe type context for the operations within
CASE-LIST and CASE-LIST-CHECK. Another class of problem is exhibited by the guard violations in
DIMENSIONS, DEFAULT, ARRAY 2P, AREF1, COMPRESSL11, AREF2, ASET2, and COMPRESS2.
In these functions, arelation is used as a governor, either within the guard or in an IF test, and relations
yield no information as type predicates. A third class of guard violations is exhibited in STATE-PL,
OPEN-INPUT-CHANNEL-P1, and OPEN-OUTPUT-CHANNEL-P1, where the violation is caused by
the failure of the system to treat abstraction functions whose definitions are calls to destructor functions
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(like CADDR) in the same way as it treats the destructor function CADDR. As discussed in Section
4.4.4, the TYPE-PREDICATE-P agorithm within the inference agorithm gives special treatement to
certain destructor functions. If this treatment were extended to user-defined destructors like GLOBAL-
TABLE, the tool would be able to verify the guardsin STATE-PL, et al.

Among the functions whose guard descriptors were judged incomplete by the checker but complete by the
inference algorithm, only the LENGTH function appears to get much use in subsequently defined
functions. Among the functions for which the inference algorithm and the checker agree on
incompleteness are many, like EQ, EQL (presented below), NTH, MEMBER, FLOOR, CEILING,
TRUNCATE, ROUND, MOD, REM, EXPT, DIMENSIONS, and a number of others which receive
subsequent use. The functions just named all have guards which either contain relations between formal
parameters, which have some value dependency, like (NOT (EQUAL X 0)), or which have a digunction
on the types of distinct parameters, for example

(OR (EQLABLEP X) (EQLABLE-LISTP V))

In none of these casesisthere away to fully capture the guard with a vector of descriptors, so the problem
does not reflect on the checker’s stringent requirement that a guard must be a conjunction of recognizer
cals on distinct parameters. Thus, of the 102 functions whose signatures the checker refused to
acknowledge for soundness, it is almost certain that the failure was due to guards which could not
legitimately be captured by the type system, regardless of the strength of the heuristics used.

A number of different reasons accounted for the failure of the segment containment check in 17 cases.
Perhaps the most common cause of failure was dissonance in the use of type variables between the
inference algorithm and the checker. If multiple occurrences of variables in the origina signature do not
lead to checker segments with similar multiple occurrences, containment is aimost sure to fail. A simple,
but characteristic example is GOO6, which we will display below, but a similar problem is shared by
XXXJOIN-2, ASET-32-BIT-INTEGER-STACK, DECREMENT-BIG-CLOCK, READ-IDATE, and
READ-RUN-TIME. Another common problem, which afflicted SUBST, APPLY-SUBST1, FOOP, and
UPDATE-NTH was the absence of an applicable *REC rule in the heuristic VCONTAINED-IN
algorithm. In any such case, it is likely a sound rule could be supplied. Similarly, the lack of a good
DUNIFY-DESCRIPTORS *REC rule caused a problem with OPEN-CHANNEL-LST-2 and OPEN-
CHANNELS-P-2. Infinite loops involving *REC descriptors in the DUNIFY-DESCRIPTORS were
resolved by the TERM-RECS mechanism while processng OPEN-CHANNEL-LST-2, OPEN-
CHANNELS-P-2, STATE-P, FOO?7, likely leading to creation by default of overly inclusive descriptors
which contributed to containment failure. Some sort of bug in the inference algorithm, probably related to
the closure of *FIX forms, led to an incorrect signature being generated for MAKE-LIST-AC which the
checker correctly refused to validate. Finally, the ARRAY 1P, given below, example illustrates some sort
of problem with the factoring of *OR, where a checker segment had a result type of (*OR $NIL $T), but
the original segments all had result types of either $T or $NIL, causing containment to fail.

For three of the five functions whose recognizer status was rejected by the checker, this failure was due to
the failure of the segment containment test. For the other two, PROPER-CONSP-2 and NON-T-NIL-
SYMBOL-PLISTP, the lack of a suitable *REC rule for unification or containment seemed to play arole.
For these two, their signatures were otherwise valid, and thus could be used for subsequent sound
inferences.

Of the functions which were resubmitted, most were functions from axioms.lisp which invoked either the
functions NTH or UPDATE-NTH, where the numeric argument was a constant. Since it was known that
the signatures for NTH or UPDATE-NTH vyield no information about the result, the original functions
were submitted for illustration and then modified to have the calls to NTH or UPDATE-NTH replaced
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with appropriate CAR/CDR/CONS operations. The results make for interesting comparison and highlight
that NTH and UPDATE-NTH would be good candidates for special treatment in a prepass.

Of the functions for which hand-coded signatures were jammed into the database, nine were functions for
which the inference tool had signalled guard violations, two were functions whose signatures never
stabilized, and one for a function whose signature had an incomplete guard. For the remainder, we judged
by inspection of the function that similar problems would befal, and chose simply to not bother with the
original submission.

We believe these results are quite encouraging. In spite of the known inadequacies of the inference
algorithm, for almost two-thirds of the functions submitted, the tool generated sound signatures. Some of
these examples were designed to fail, via guard violation, for instance, or by use of guards known not to
be complete. A user who attempted to use the complete guard regimen wherever possible would likely
receive significant assistance from thetool in the task of guard verification. Moreover, for those functions
where guards would need to express more than could be captured in the type system, a highly symbiotic
relationship is easily imagined for the inference system and a general-purpose, automatic theorem prover
capable of handling those cases.

8.3 Selected Examples

When displayed, the timings are from execution on a Symbolics 3645 machine. The system runs much
faster on a Sun Sparc platform. For some functions, notably large and complex functions manipulating
the huge state types of axioms.lisp, the amount of time consumed by the tool was significant, occasionally
exceeding a half hour.

The tool performed quite well on recognizer functions. Some examples follow.

( DEFUN TRUE- LI STP (X)
(IF (NULL X) (NULL X) (IF (CONSP X) (TRUE-LISTP (CDR X)) NL)))

Function: TRUE-LI STP
Guard conputed by the tool

(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC GQuard:

(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: N L
Segnent s:

(((*REC TRUE-LI STP (*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LISTP)))))

-> $7T)
(((*REC ! REC1
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL (*RECUR ! REC1)))))
-> $NIL)

TC segnments contained in Segnents: T
Recogni zer descriptor

(*REC TRUE- LI STP (*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LI STP))))
TC val i dates recogni zer: T
Signature is certified sound: T

Ti me: 2. seconds

( DEFUN EQLABLEP (X)
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(I'F (RATI ONALP X)
( RATI ONALP X)
(IF (SYMBOLP X) (SYMBOLP X) (CHARACTERP X))))

Functi on: EQLABLEP
Guard conputed by the tool:

(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Guard:

(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: N L
Segnent s:

(((*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL

$NON- T- NI L- SYMBOL $T))
-> $T)
(((*OR $STRING (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor:
(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $T)

TC validates recognizer: T
Signhature is certified sound: T

Time: 3. seconds

( DEFUN EQLABLE- ALI STP (X)
(I F (ATOM X)
(EQUAL X NI L)
(I F (CONSP (CAR X))
(I F (EQLABLEP (CAR (CAR X))) (EQLABLE-ALISTP (CDR X)) NI L)
NIL)))

Function: EQ.ABLE-ALI STP
Guard conputed by the tool:

(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Cuard:

(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:

(((*REC EQLABLE- ALI STP

(*OR $SNIL
(*CONS (*CONS (*OR $CHARACTER $I NTEGER $NI L
$NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $T)
* UNI VERSAL)
(*RECUR EQLABLE-ALISTP)))))
-> $T)
(((*REC ! REC1
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T

(*CONS *UNI VERSAL (*RECUR ! REC1))

(*CONS (*OR $CHARACTER $I NTEGER $NI L
$NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T
(*CONS (*OR $STRI NG

(*CONS *UNI VERSAL *UNI VERSAL) )
*UNI VERSAL) )
*UNI VERSAL) ) ))
-> $NIL)
TC segnments contained in Segnents: T
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Recogni zer descriptor:
(*REC EQLABLE- ALI STP
(*OR $NIL
(*CONS (*CONS (*OR $CHARACTER $I NTEGER $NI L
$NON- | NTEGER- RATI ONAL  $NON- T- NI L- SYMBOL
$T)
* UNI VERSAL)
(*RECUR EQLABLE- ALI STP))))
TC val i dates recognizer: T
Signhature is certified sound: T

Ti me: 10. seconds

( DEFUN COND- CLAUSESP- 1 ( CLAUSES)
(I F (CONSP CLAUSES)
(I F (CONSP ( CAR CLAUSES))
(I F (TRUE-LI STP (CAR CLAUSES))
(I'F (NOT (CONSP (CDDR ( CAR CLAUSES))))
( COND- CLAUSESP- 1 ( CDR CLAUSES))
NI L)
NI L)
NI L)
(NULL CLAUSES)))

Functi on: COND- CLAUSESP- 1
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segnent s:
(((*REC COND- CLAUSESP- 1
(*OR SNI' L
(*CONS (*CONS *UN VERSAL
(*OR $NI'L (*CONS *UNI VERSAL $NIL)))
(*RECUR COND- CLAUSESP-1)))))
-> $T)
(((*REC ! REC2
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL (*RECUR ! REC2))
(*CONS (*OR $CHARACTER $I NTEGER $NI L
$NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T
(*CONS
* UNI VERSAL
(*OR $CHARACTER $I NTEGER
$NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS
* UNI VERSAL
(*OR $CHARACTER $| NTEGER
$NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UN VERSAL *UN VERSAL)
)))))
*UNI VERSAL) ) ))
-> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor:
(* REC COND- CLAUSESP- 1
(*OR $NIL
(*CONS (*CONS *UN VERSAL
(*OR $NIL (*CONS *UNI VERSAL $NIL)))
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(*RECUR COND- CLAUSESP-1))))
TC val i dates recognizer: T
Signature is certified sound: T

Ti me: 8. seconds

This kind of result continued to scale up to enormous structures, as witnessed by the examples WORLDP,
KNOWN-PACKAGE-ALISTP, TIMER-ALISTP, OPEN-CHANNEL1-2, OPEN-CHANNEL-LST-2,
READABLE-FILE-2, READABLE-FILES-LST-2, WRITTEN-FILE-2, WRITTEN-FILE-LST-2, READ-
FILE-2, READ-FILE-LST-2, WRITEABLE-FILE-2, WRITEABLE-FILE-LST-2. (Most of these
functions were modified, for instance by replacing callsto NTH to the proper CAR/CDR nests.)

( DEFUN PROPER- CONSP ( X)
(I F (CONSP X)
(I F (CONSP (CDR X)) (PROPER-CONSP (CDR X)) (EQUAL (CDR X) NIL))
NIL))

Functi on: PROPER- CONSP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC CGuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(((*REC ' REC1 (*CONS *UNI VERSAL (*OR $NIL (*RECUR ! REC1)))))
-> $T)
(((*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*REC ! REC3
(*CONS *UN VERSAL
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*RECUR ' REC3))))))
-> $NIL)
TC segnents contained in Segnents: T
Recogni zer descriptor:
(*REC ' REC1 (*CONS *UNI VERSAL (*OR $NIL (*RECUR ! REC1))))
TC val i dates recogni zer: T
Signature is certified sound: T

Ti me: 8. seconds

IMPROPER-CONSP illustrates the use of negation in formulating a recognizer.

( DEFUN | MPROPER- CONSP ( X)
(IF (CONSP X) (NOT (PROPER-CONSP X)) NIL))

Function: | MPROPER- CONSP
Quard conputed by the tool:

(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Cuard:

(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segnent s:

(((*REC ! REC2

(*CONS *UNI VERSAL
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T (*RECUR ! REC2)))))
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-> $T)
(((*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*REC ! REC4
(*CONS *UNI VERSAL (*OR $NIL (*RECUR ! REC4))))))
-> $NIL)
TC segnents contained in Segnents: T
Recogni zer descriptor:
(*REC ! REC2
(*CONS *UNI VERSAL
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T (*RECUR ! REC2))))
TC val i dates recogni zer: T
Signature is certified sound: T

Time: 6. seconds

The Boolean connectives produced the desired signatures, for example:

(DEFUN | MPLIES (P Q

" IMPLIES is the ACL2 inplication function. (inplies P Q neans that
either Pis false or Qis true."

(IFP(IFQTNL) T)

Function: | MPLIES
Guard conputed by the tool:
(*UNI VERSAL *UNI VERSAL)
Quard conplete: T
Al called functions conplete: T
TC Quard:
(*UNI VERSAL *UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: N L
Segnent s:
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL))
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $T)
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL))
$NI L)
-> $NIL)
((SNI'L *UNI VERSAL) -> 3$T)
TC segnments contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signhature is certified sound: T

Tinme: 7. seconds

Unfortunately, the guard for EQL is not an acceptable type predicate, since it is adisunction, rather than a
conjunction, of recognizer calls on distinct arguments. (The guard is the macro expansion of
(OR (EQLABLEP X) (EQLABLEP Y)).) So the guard descriptors default to *UNIVERSAL, and the
guard is not complete. This shortcoming will frequently percolate through applications as an inability to
guarantee the guard verification

Notice the form (*FREE-TYPE-VAR 1). Thisis just the form in which type variables are stored in the
system database. Each distinct variable will have a different integer within this representation.
(DEFUN EQL (X V)

( DECLARE (XARGS : GUARD (I F (EQLABLEP X) (EQLABLEP X) (EQLABLEP Y))))
(EQUAL X Y))



Type Checking for Common Lisp 189
Testing the System

Function: EQL
Quard conputed by the tool:
(*UNI VERSAL * UNI VERSAL)
Guard conplete: NL
Al called functions conplete: T
TC Cuard:
(*UNI VERSAL *UNI VERSAL)
TC Guard conplete: NL
TC All called functions conplete: N L
TC Guard Replaced by Tool Guard: NL
Segment s:
((SNIL $NIL) -> $T)
(($T $T) -> $7)
(((*FREE- TYPE- VAR 1) (*FREE-TYPE-VAR 1)) -> $T)
(((*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG (*CONS *UNI VERSAL * UNI VERSAL) )
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBCOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL) )
$NIL)
-> $NIL)
(($T (*OR $CHARACTER $| NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnents contained in Segnents: T
Recogni zer descriptor: N L
TC val i dates recogni zer: NL
Signature is certified sound: N L

Ti me: 8. seconds

TWICE-GUARDED is a lovely example. In the (CONSP X) case, the tool deduces that the inner
recursive call can return only NIL, and likewise for the outer one. Then, seeing that the result type for the
CONSP case is the same as for the (ATOM X) case (which because of the (TRUE-LISTP X) guard has
been narrowed to (NULL X)), and since there is only one argument, it merges the (NULL X) and
(CONSP X) segments by digoining their arguments with *OR. When it canonicalizes this result, it
notices that it can fold the * OR back into the * REC descriptor for TRUE-LISTP.

( DEFUN TW CE- GUARDED ( X)
( DECLARE (XARGS : GUARD ( TRUE-LI STP X)))
(I F (ATOM X) X (TW CE- GUARDED ( TW CE- GUARDED ( CDR X))))))

Function: TW CE- GUARDED
Quard conputed by the tool:
((*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LI STP)))))
Guard conplete: T
Al called functions conplete: T
TC Cuard:
((*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segnent s:
(((*REC TRUE-LISTP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
-> $NIL)
TC segnents contained in Segnents: T
Recogni zer descriptor: N L
TC val i dates recogni zer: NL
Signature is certified sound: T

The CADR function illustrates how one must coddle the tool to help it establish the formal soundness
claim. First we show the function as normally defined (but renamed to ORIG-CADR). The guard is the
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form
(OR (NULL X) (AND (CONSP X) (OR (NULL (CDR X)) (CONSP (CDR X)))))
with the AND and OR macros expanded.

( DEFUN ORI G CADR ( X)
( DECLARE (XARGS : GUARD
(IF (NULL X) (NULL X)
(I F (CONSP X)
(I'F (NULL (CDR X)) (NULL (CDR X))
(CONSP (CDR X)))

NIL))))

(CAR (CDR X)))

Function: ORI G CADR
Quard conputed by the tool:

((*OR $SNIL

(*CONS *UNI VERSAL (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL)))))

Guard conplete: T
Al called functions conplete: T
TC CGuard:

((*OR $NIL

(*CONS *UNI VERSAL (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL)))))

TC Guard conplete: NL
TC All called functions conplete: NL
TC Guard Repl aced by Tool Guard: NL
Segnent s:

(((*OR $NI'L (*CONS *UNI VERSAL $NIL)))

-> $NIL)
(((*CONS *UNI VERSAL (*CONS (*FREE- TYPE-VAR 1) *UNI VERSAL)))
-> (*FREE-TYPE- VAR 1))

TC segnments contained in Segnents: T

Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Sighature is certified sound: N L

The inference algorithm is clever enough to realize that the guard is complete. But the guard expression
does not conform to the requirement, imposed by the checker, that a guard must be a conjunction of
recognizer calls on distinct arguments in order to generate complete descriptors. Thus, the "TC Guard
complete” flag is NIL, and likewise for the "TC All called functions complete" flag, which can only be T
if the"TC Guard complete” flagisT.

However, if we take the guard expression and make it the body of a function, CADR-GUARD, the tool
will determine that the function is a recognizer and generate a signature which it certifies to be sound.

( DEFUN CADR- GUARD ( X)
(IF (NULL X) (NULL X)
(I F (CONSP X)
(I'F (NULL (CDR X)) (NULL (CDR X)) (CONSP (CDR X))) NL)))

Functi on: CADR- GUARD
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al'l called functions conplete: T
TC GQuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: N L
Segnent s:
(((*OR $NI L
(*CONS *UNI VERSAL (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL)))))
-> $7)
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBCL



Type Checking for Common Lisp 191
Testing the System

$STRI NG $T
(*CONS *UN VERSAL
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRING $T))))

-> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor:

(*OR $NIL

(*CONS *UNI VERSAL (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL))))

TC val i dates recogni zer: T
Signature is certified sound: T

Then, replacing the old guard with a call to this function enables the checker to validate that the signature,
which is identical to the one generated for ORIG-CADR, is sound. Certainly, relaxing the checker's
complete guard criteria would make the system a bit more usable. But modulo a little inconvenience, no
functionality islost with the current implementation.

( DEFUN CADR (X)
( DECLARE (XARGS : GUARD ( CADR- GUARD X)))
(CAR (CDR X)))

Function: CADR
Quard conputed by the tool:

((*OR $SNIL

(*CONS *UNI VERSAL (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL)))))

Guard conplete: T
Al'l called functions conplete: T
TC CGuard:

((*OR $NIL

(*CONS *UNI VERSAL (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL)))))

TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Quard: NL
Segnent s:

(((*OR $NI'L (*CONS *UNI VERSAL $NIL)))

-> $NIL)
(((*CONS *UNI VERSAL (*CONS (*FREE- TYPE-VAR 1) *UNI VERSAL)))
-> (*FREE-TYPE- VAR 1))

TC segnments contained in Segnents: T

Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Sighature is certified sound: T

There are a number of cases in the testbed where examples were modified and then resubmitted with
guards in aform amenable to completeness. Look for functions whose names end with "-GUARD".

As previoudly discussed, the lack of a type-instantiable variable within *REC descriptors leaves
something to be desired in the signature for the APPEND function.

( DEFUN APPEND (X Y)
( DECLARE (XARGS : GUARD ( TRUE-LI STP X)))
(IF (NULL X) Y (CONS (CAR X) (APPEND (CDR X) Y))))

Functi on: APPEND

Guard conputed by the tool:
((*REC TRUE-LI STP (*OR $NIL (*CONS *UN VERSAL (*RECUR TRUE-LI STP))))
*UNI VERSAL)

Guard conplete: T

Al called functions conplete: T

TC CGuard:
((*REC TRUE-LI STP (*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LI STP))))
* UNI VERSAL)

TC Guard conplete: T

TC All called functions conplete: T

TC Guard Replaced by Tool Guard: NL
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Segment s:
(($NIL (*FREE- TYPE- VAR 1)) -> (*FREE- TYPE- VAR 1))
(((*CONS (*FREE- TYPE- VAR 2)
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE- LI STP)))))
(* FREE- TYPE- VAR 1))
-> (*CONS (*FREE- TYPE- VAR 2)
(*REC ! REC4
(*OR (*FREE- TYPE- VAR 1)
(*CONS *UNI VERSAL (*RECUR ! REC4))))))
TC segnents contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: T

Notice that the *UNIVERSAL within 'REC4 represents the element types of the list X. If the second
segment could employ adifferent type of variable, for example:

(((*CONS (*NEW TYPE- VAR 2)
(*REC TRUE- LI STP
(*OR $NIL
(* CONS (*NEW TYPE- VAR 2) (*RECUR TRUE-LISTP)))))
(* FREE- TYPE- VAR 1))
-> (*CONS (*NEW TYPE- VAR 2)
(*REC | REC4
(*OR (*FREE- TYPE- VAR 1)
(*CONS (*NEW TYPE- VAR 2) (*RECUR ! REC4))))))

then the signature for APPEND-INTLISTS below could carry into the body of the *REC descriptor in its
result type the information that the elements from the first parameter were integers. This would be a
worthy upgrade to the system. Asitis, we must be content with:

( DEFUN APPEND- | NTLI STS (X Y)
( DECLARE ( XARGS : GUARD
(I F (INTEGER-LISTP X) (INTEGER-LISTP Y) NIL)))
(APPEND X Y))

Function: APPEND- | NTLI STS
Guard conputed by the tool:
((*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))
(*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
Guard conplete: T
Al called functions conplete: T
TC GQuard:
((*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP))))
(*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segnent s:
(($NI'L (*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> (*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(((*CONS $I NTEGER
(*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
(*REC | NTEGER- LI STP
(*OR $NI'L (*CONS $I NTEGER (*RECUR | NTEGER- LI STP)))))
-> (*CONS $| NTEGER
(*REC ! REC4- G1568
(*OR (*REC | NTEGER- LI STP
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(*OR $SNIL
(*CONS $I NTEGER
(*RECUR | NTEGER- LI STP))))
(*CONS *UNI VERSAL (*RECUR ! REC4- G1568))))))
TC segnments contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signhature is certified sound: T

As mentioned in the discussion of the SAD-BUT-TRUE-LISTP example in Section 4.4.7, the tool can do
a less than adequate job when a function which is not a recognizer decomposes its argument recursively.
A good example of this phenomenon is the function STANDARD-CHAR-LISTP, below. Ideally, the
signature would have included a segment mapping alist of charactersto $T or $NIL, and another segment
mapping everything else to $NIL. But since we do not construct *FIX forms on the left hand side of our
segments, we wind up with a signature which suggests $T as a possible result when the argument is, for
example, the CONS of a character onto an integer. There are several other examples in the test suite
illustrating this phenomenon, among them LAST, FLIP, and COND-CLAUSESP (which aso shows the
futility of using a LENGTH test as a structure constraint in restricting TRUE-LISTP types).

( DEFUN STANDARD- CHAR- LI STP (L)
(IF (CONSP L)
(I F (CHARACTERP (CAR L))
(I F ( STANDARD- CHAR- P (CAR L))
( STANDARD- CHAR- LI STP (CDR L)) NI L)
NI L)
(EQUAL L NIL)))

Functi on: STANDARD- CHAR- LI STP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Cuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(((*CONS $CHARACTER *UNI VERSAL)) -> (*OR $NIL $T))
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBCOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
(($NIL) -> $T)
TC segnments contained in Segnents: T
Recogni zer descriptor: N L
TC val i dates recogni zer: NL
Sighature is certified sound: N L

The signature for STANDARD-CHAR-LISTP is not certified sound because the signature for MEMBER,
which has an incomplete guard, is not certified.

Next is an example from axioms.lisp where the inference algorithm discovers a guard violation. Other
examplesin the test suite where guard violations are detected include the following.
( DEFUN GETPROPS1 (ALl ST)
(IF (NULL ALIST) NIL
(IF (NULL (CDR (CAR ALIST))) (GETPROPS1 (CDR ALIST))

(CONS (CONS (CAR ( CAR ALIST)) (CAR (CDR (CAR ALIST))))
( GETPROPSL (CDR ALIST))))))

**xxkxx Type-checking error detected *******

Form (CAR ALIST)
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There is a guard violation. Wen in the context of the function
call, the variables are of type:

ALl ST: $CHARACTER

The actual arguments to the function are of type:

Arg: $CHARACTER

The guard of the called function is:

Arg: (*OR $NIL (*CONS *UNI VERSAL *UNI VERSAL))

Anal ysi s term nated
Could not type this function. No action taken.

Resul t:
(* UNABLE- TO- TYPE*
((*UNIVERSAL) T T
(* GUARD- VI OLATI ON
((CAR ALI ST) *MARKER- 6
((ALI ST *OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UN VERSAL *UN VERSAL)))
((*MARKER-5) &7))
(($CHARACTER) ($CHARACTER)))
NI L))

Next we show two examples where the checker could not confirm segment containment and therefore
refused to validate the soundness of a signature. The first suggests a problem in the checker algorithm
with carrying variables into its final result. The checker’s strategy of carrying both abstract and concrete
type alists and of generating both minimal and maximal segments enabled it to handle almost al the cases
with which we tested it. But this case is evidence that there is still some price being paid for not having a
descriptor form, like (*BOTH &1 $CHARACTER), which provides annotation of a type variable with a
descriptor characterizing a type constraint on the variable.

( DEFUN GOO6 ( X)
( DECLARE (XARGS : GUARD (CONSP X)))
(IF (EQUAL (CAR X) 0) 0 (CONS (CAR X) NIL))))

Segnent contai nment failed
TC- SEGVENT =
(((*CONS $CHARACTER *UNI VERSAL)) -> (*CONS $CHARACTER $NI L))
| MP- SEGMVENTS = (((*CONS $I NTEGER *UNI VERSAL) -> $I NTEGER)
((*CONS &1 *UNI VERSAL) -> (*CONS &1 $NIL)))

Function: G006
Guard conputed by the tool:
((*CONS *UNI VERSAL *UNI VERSAL) )
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:
((*CONS *UNI VERSAL *UNI VERSAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: N L
Segnent s:
(((*CONS $I NTEGER * UNI VERSAL) )
-> $| NTEGER)
(((*CONS (*FREE- TYPE- VAR 1) *UNI VERSAL))
-> (*CONS (*FREE-TYPE-VAR 1) $NIL))
TC segnents contained in Segments: NL
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: N L

The second suggests a problem with the factorization of an *OR descriptor. If the troublesome segment
were factored into two segments, one with a result type of $NIL and the other $T, each would have been
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contained in one of the original signature segments. This factorization would be arelatively easy upgrade,
and its formal justification would be straightforward. But there might be a significant performance
penalty, and we would have to weigh whether it isjustified by the rare occasion where benefit is derived.

( DEFUN ARRAY1P (NAME L)
(I F (SYMBOLP NANE)
(I'F (ALISTP L)
(I F (KEYWORD- LI STP (CDR ( HEADER NAME L)))
(I F (TRUE-LI STP (DI MENSI ONS NAME L))
(IF (EQUAL (LENGTH (DI MENSI ONS NAME L)) 1)
(I'F (I NTEGERP (CAR (DI MENSI ONS NAME L)))
(I'F (I NTEGERP ( MAXI MUM LENGTH NAME L))
(IF (< 0 (CAR (DI MENSI ONS NAME L)))
(IF
(< (CAR (DI MENSI ONS NAME L))
( MAXI MUM: LENGTH NAME L))
(IF
(<= (MAXI MUM LENGTH NAME L)
(* MAXI MUM PCSI TI VE- 32- BI T- | NTEGER*) )
( BOUNDED- | NTEGER- ALI STP L
(CAR (DI MENSI ONS NAME L)))
NI L)
NIL)
NIL)
NIL)
NIL)
NI L)
NIL)
NIL)
NIL)
NIL))

Segnent contai nment failed
TC-SEGVENT = ((SNIL $NIL) -> (*OR SNIL $T))
| MP- SEGMENTS as bel ow

Function: ARRAY1P
Quard conputed by the tool:
(*UNI VERSAL * UNI VERSAL)
Guard conplete: T
Al'l called functions conplete: NL
TC Cuard:
(*UNI VERSAL *UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: N L
TC Guard Replaced by Tool CGuard: NL
Segment s:
(((*OR $NIL $NON-T- NI L- SYMBOL $T)
(*OR (*CONS (*CONS *UNI VERSAL *UNI VERSAL)
(*REC ALI STP
(*OR SNIL
(*CONS (*CONS *UNI VERSAL *UNI VERSAL)
(*RECUR ALISTP)))))
(*REC ! REC1
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T
(*CONS *UNI VERSAL (*RECUR ! REC1))
(*CONS (*OR $CHARACTER $I NTEGER $NI L
$NON- | NTEGER- RATI ONAL  $NON- T- NI L- SYMBCOL
$STRI NG $T)
*UNI VERSAL) ) )
(*REC ALI STP
(*OR $NIL
(*CONS (*CONS *UNI VERSAL *UNI VERSAL)
(*RECUR ALISTP))))))
-> $NIL)
(((*OR $NIL $NON-T- NI L- SYMBOL $T) $NIL)
-> $T)
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(((*OR $NIL $NON-T- NI L- SYMBOL $T)
(*CONS (*CONS (*OR $I NTEGER $NON-T- NI L- SYMBOL) *UNI VERSAL)
(*REC ALI STP
(*OR $NIL
(*CONS (*CONS *UN VERSAL *UNI VERSAL)
(*RECUR ALISTP))))))
-> (*OR $NIL $T))
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $STRI NG
(*CONS *UNI VERSAL *UNI VERSAL) )
* UNI VERSAL)
-> $NIL)
TC segnents contained in Segments: NL
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: NL
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Chapter 9
FUTURE WORK AND CONCLUSION

In this chapter we summarize and comment upon the significance of this research and then discuss several
avenues for its extension.

9.1 Summary

In this report we have presented a system for inferring type signatures for functions defined in a purely
applicative subset of Common Lisp. We defined a mechanism which allows a user to annotate his
function with a guard declaration, which can be an arbitrary predicate on the function’s parameters, but
which is most fruitfully used here for stating the type requirements on his parameters. The guard
mechanism has an advantage over the SATISFIES predicate of Common Lisp that it can be used to state
required relations among several parameters, but this usage is not well supported by our type system.

Starting from a very small library of pre-defined function signatures, the system accepts new function
definitions, checks that the type constraints embodied in guards are observed on function calls, and
assigns atype signature to any function for which no guard violation is diagnosed.

The type inference algorithm is heuristic and has no formal model, but the signatures it produces have a
formal semantics. We have defined a checker algorithm which validates that a signature produced by the
inference algorithm is correct with respect to our evaluation model for Lisp and an interpreter semantics
for our type descriptors. For the case where the guards of a function and all its subsidiary functions are
completely captured by type descriptors, we presented a proof establishing that any signature certified by
the checker is correct. By submitting a significant collection of typical (and some atypical) functions to
the system, we have subjectively observed that the signatures produced are "good"”, in addition to being
sound.

This system differs significantly from previous type inference efforts. Other type inference systems for
Lisp have generaly focussed on automatically annotating a program to supply compiler directives, with
the goal being to reduce the need for run-time type checking. They have operated only with respect to a
known set of previously declared types, mainly the native types for atomic Lisp objects, though some
recent work supports record types declared with DEFSTRUCT and an abstraction for simple lists.
Though some of these systems offer a more extensive treatment of primitive types and operate on a larger
subset of the Common Lisp language, judging from the literature, our system represents severa
significant steps over any previous work:

« Rather than producing annotations on forms, it generates complete function signatures
which capture ad hoc polymorphism and modularize results at function boundaries.

« It successfully infers and manipulates arbitrary recursive types which have not been
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previously declared.

« It performs the static diagnosis of type errors and, under certain constraints on the style of
expression used in guards, can certify that afunction is free from type errors.

* Itsresults are validated by arigorous mathematical proof with respect to aformal evaluation
model and aformal semantics for type signatures.

This system also differs significantly, both in style and substance, from other type systems which do
satisfy the above criteria (along with many other marvelous formal properties) but operate on languages
other than Lisp. Truly formidable type systems have been created for languages carefully designed with
type inference in mind. But to our knowledge, no other such system works on a language which treats
data structures as freely as Common Lisp. In particular, our type system supports the creation and
recognition of objects of virtually arbitrary new and undeclared structure, such as can be freely
constructed with Lisp CONS, while simultaneously supporting the ad hoc polymorphism inherent in
Lisp'sIF.

Given that the type inference problem for our Common Lisp subset is undecidable, this system has a
strongly heuristic flavor. The separation of the heuristics in the type inference algorithm and the checker
from the formal validation of its results allows for incremental improvement or complete revision in its
heuristic techniques without imposing any new proof requirement, so long as the semantic model remains
stable.

The formal underpinnings of this system and its ability to deal with recursive functions suggest a
potentially symbictic relationship with other formal, mechanical tools for analysis of Lisp functions. In
particular, powerful theorem provers which utilize Lisp-like logics are available to support mathematical
modelling of computing systems, and this type system could play the role of a specialized proof assistant
for type-related problems. Alternatively, this system could conceivably support a Lisp compiler or Lisp
system development tools in ways other Lisp type inference systems could not, by providing reliable type
annotations for complex, freely constructed structures.

9.2 FutureWork

Thiswork could be extended in a number of ways. Three threads of work are apparent:
* re-implementing or adding certain features and heuristics to improve its performance on the
task as currently defined,
« extending the system to handle an enlarged language subset, and

« finding fruitful waysto utilize the system in alarger system development context.
We will discuss each thread separately.

9.2.1 Improvementsto the System

Some of these possibilities have been previously mentioned in the report, but we collect them here and
add a few new suggestions. Some amount to little more than minor enhancements to the system, while
others suggest new approaches to particular problems which might be more fruitful than those currently
implemented.
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9.2.1-A A New Classof Variables

Probably the single most important feature which could be added to the system would be a second class of
type variable, instantiable with type descriptors rather than singleton values. This has been previously
discussed with respect to the APPEND example. Such a variable could appear within a replicating
component of a*REC descriptor, for instance. Denoting it by %1 in the following example, a signature
segment for APPEND might be:

(((*CONS % (*REC TRUE- LI STP
(*OR $NIL (*OONS % (*RECUR TRUE-LISTP)))))
&2)
-> (*CONS % (*REC | RECA (*OR & (*CONS % (*RECUR ! REC4))))))

rather than what is currently generated:

(((*CONS *UNI VERSAL
(*REC TRUE- LI STP
(*OR $NIL (*CONS *UNI VERSAL (*RECUR TRUE-LISTP)))))
&2)
-> (*CONS *UNI VERSAL
(*REC | REC4 (*OR &2 (*CONS *UNI VERSAL (*RECUR ! REC4))))))

Thus, with the help of alittle canonicalization, if we called APPEND with two lists of integers, we could
infer that the result would be alist of integers rather than atrue list terminating in alist of integers.

9.2.1-B A Combining Descriptor for Variables

Another significant effort would be to extend the descriptor language with a *BOTH form, whose first
component would be a (normal) type variable and whose second component would be a descriptor. Any
value satisfying the form would need to satisfy both the variable (i.e., the binding of the type variable
would need to equal the value) and the descriptor. Such a construct would obviate the need for the
checker’s schizophrenic strategy of carrying both abstract and concrete type alists and generating both
minimal and maximal segments. It would also remove the need for the * SUBST form and the restrictions
result component in the inference algorithm’s unification procedure. But we should not underestimate the
possible difficulty of implementing such a construct, even though its semantics in an INTERP-SIMPLE
setting are straightforward. This construct was considered during the development of the inference
algorithm, and the difficulties it presented were simply too challenging to face simultaneously with the
other problems confronted in the developmental prototype.

9.2.1-C Support for Relationsin Guards

The inability to use disjuntive forms like

(OR (SYMBOLP X) (SYMBOL-ALISTP V))

in type predicates resulted in a limitation in the power of the inference algorithm. The fundamental
problem is that the linear representation of a type alist or a guard descriptor does not allow for the
expression of a relation like the one above. A potentially worthwhile direction of inquiry would be to
study a different representation of type aists and guard descriptors, perhaps employing a clausal form
(disunctive normal form, for instance). This would allow for freer use of negation of a type alist and
enlarge the class of forms which could be used to generate complete guard descriptors. Because of the
pervasiveness of guard descriptors and type alists, it is also an issue which could have root and branch
impact on the entire system, and careful study would be required to measure the cost-benefit tradeoffs.



200 Type Checking for Common Lisp
Future Work and Conclusion

A potential benefit to the system is that this alternate representation might allow a guard expression or
type predicate to be cleanly factored into type-specific components and other residual predicates, so that
type-specific problems (like type inference) could be cleanly handled by the type system, and other
problems by some other mechanism. This suggests an approach to guard verification, blending the
capabilities of the type system and other methods, so that the support for guard verification could be
generalized to arbitrary predicates on parameters.

9.2.1-D Generating Guards

The system as designed seeks to verify guards supplied by the user. 1t would be interesting to investigate
how the tool could be put in amode in which it generates guards instead. That is, when anew function is
submitted (without a guard), the system could attempt to combine context information in the function
body with the guard requirements from all the functions called in the body to generate a guard expression
which, when holding for the parameters, would guarantee the absence of guard violations in the body.
This would involve only the addition of a new heuristic algorithm, since the process of signature
validation would be identical to that used now.

9.2.1-E Unification Involving Variables

The unification algorithm in the checker, with its merging of substitutions and <descriptor>/<subst> result
form, is a much more satisfying and tractable treatment of variables than that of the inference algorithm’s
unification routine, which combines *SUBST annotations and an extra "restrictions' component in its
result. Short of implementing the *BOTH descriptor described above, it would be worthwhile to
determine if unification in the inference algorithm could be re-implemented to use the checker’s strategy.
The challenge would be to see if the checker's strategy could support the extra descriptor forms
manipulated in the inference algorithm.

9.2.1-F Discovering Recursive Structuresin Arguments

As was mentioned with the STANDARD-CHAR-LISTP example in the previous chapter, as well asin the
discussion of the SAD-BUT-TRUE-LISTP example in Section 4.4.7, the *FIX heuristic is only
constructed on the right hand, or result, side of a segment, when it would sometimes be appropriate to
construct it on the left hand, or argument, component as well. We believe the approach could be
generalized, so that *FIX descriptors would come into play when functions decompose their arguments
recursively, as well as when they construct their results recursively. It is conceivable that this approach
could render the special agorithm for the treatment of recognizer functions unnecessary. But in any case
it islikely that for functions whose guard does not specify a recursively typed argument, but whose body
nevertheless unwinds an argument recursively, we could see a vast improvement in the quality of
signatures produced by the inference a gorithm.

9.2.1-G Employing Pure Recursive Descent

The tabular infrastructure approach used in the DERIVE-EQUATIONS/SOLVE-EQUATIONS
components of the inference algorithm was an artifact of an early and ill-conceived notion that reasonably
accurate signatures could be computed without performing an iterative approximation, given the right
supporting data structure. 1n retrospect, a straightforward recursive descent functional approach would be
the cleanest formulation of the algorithm, and re-coding in this style would yield a dividend of clarity and
likely performance improvement.
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9.2.1-H Tuningthe Checker Algorithm

The run-time performance of the checker leaves much to be desired. Given the consistent choice of
conceptual ssimplicity over computational efficiency, thisisto be expected. But if computational overhead
becomes a serious deterrent to the employment of the type system, a good place to look for improvement
would be in the checker. It is quite possible that some simple steps could be taken to contain the
explosion of cases without involving extensive formal complication, perhaps by merging segments
produced in intermediate results. This would likely require a pragmatic approach, utilizing extensive
testing to seeif such steps would result in a higher rejection rate by the checker.

9.2.1-1 Relaxingthe Style Constraint Guards

There is some inconvenience to the user in the checker’s insistence that a guard must be a conjunction of
recognizer calls on distinct parameters in order to result in complete descriptors. That the inference
algorithm has more liberal criteria is an indication that the checker could be more lenient. Again, some
extra pain in the forma analysis might result in a relaxation of the checker's requirement. Though the
CADR/CADR-GUARD example in the preceding chapter illustrates there is likely no true loss of
functionality with the current state of affairs, there is obviously some extra overhead for the user to
conform to the checker’ s requirement which could be avoided.

9.2.1-J Miscellany

This section represents a potpourri of minor enhancements which have been previously mentioned and
which would probably be worthwhile.

Just as the system notices when a recognizer is being defined, it could aso notice when a destructor
function is introduced. Thus, user abstraction functions whose bodies are essentially nests of CAR and
CDR calls could be treated uniformly with CAR and CDR, which receive special treatment in some
corners of the algorithm. (See the discussion of "feedback” in Section 4.4.7.)

NTH is a Lisp function commonly used to access elements of lengthy lists. Unfortunately, the signature
derived for NTH by the inference algorithm allows virtually no useful information to appear in the result
type. This suggests a need for special treatment, as mentioned in the previous chapter. Calls to NTH,
where the numeric argument is a constant, could be expanded in a prepass algorithm to the proper nest of
cals to CAR and CDR, thus allowing the type variable mechanism to handle the transferrence of
information from argument to result. UPDATE-NTH could be treated similarly.

Occasionaly, one would like to define a recognizer function which, for example, specifies alist of some
specific length N, but using the form (EQUAL (LENGTH FOO) N) disqualifies the function from
treatment as a recognizer. To preserve the functionality, the user must construct an ugly CONSP nest to
convey the sameidea. Thisis another form which could perhaps be transformed in a prepass so that the
ugly nest could be constructed reliably and without imposition on the user.

The ARRAY 1P test suite example in the previous chapter illustrated a case where the checker failed to
factor a segment with an *OR result type into separate segments for each digunct. This resulted in a
failure of the segment containment step. A trivial patch would be to perform this factorization. To do so
with minimal loss of efficiency, we might perform this factorization only after containment actually
failed. This kind of factorization could possibly mitigate against the loss of functionality hypothesized
above as aresult of efficiency improvementsin the checker.
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As *REC descriptors are currently defined, the top level form in the body may be a *CONS, as in the
descriptor:

(* REC PROPER- CONSP
(*CONS *UNI VERSAL (*OR $NI L (*RECUR PROPER- CONSP))))

In numerous places, extra case anaysis is required to consider this kind of form, and clarity in the
discussion of *REC descriptors can be reduced. It might be worthwhile to require that the top level form
in a *REC descriptor be an *OR. All that would likely be necessary to accomplish this is a
canonicalization applied to newly formed *REC descriptors which would bring an outer * CONS out of
the *REC body. The PROPER-CONSP descriptor above would thus be transformed to:

(* CONS * UNI VERSAL
(*REC ' RECL (*OR $NIL (*CONS *UN VERSAL (*RECUR ! RECL1)))))

9.2.2 Extensionsto the Supported Lisp Subset

A number of extensions to the base language would be relatively easy to implement using the techniques
in the current system.

9.2.2-A Global Constants

As we have mentioned, support for global constants would be trivia to implement. In fact, constants are
currently supported in the implementation of the inference algorithm. As a matter of expediency, and
because there seemed to be little of formal interest in them, constants were not supported in the checker.
Support of constants was simply disabled at the top level loop.

9.22-B LET

Though not quite so simple, support for LET was initialy provided in the inference algorithm, for the case
where the LET bindings contained no recursive calls to the function in which they appeared. The
treatment was simply to compute the type for each LET-bound variable and push it onto the type-alist for
consideration in the LET body. To simplify the task presented to the initial implementation of the
checker, we again suppressed this capability. This seemed in keeping with the notion that macros are not
supported. Nevertheless, LET seems like an entirely feasible endeavor, if restricted as above. A genera
treatment of LET in the presence of recursion gets into the realm of mutually recursive functions, which
are discussed below.

9.2.2-C Multiple-Value Functions

Multiple-value functions can be quite useful in a purely applicative language, and there seems to be no
good reason why they could not be easily supported within the inference system. One way of doing so
would be to interpret VALUES as we would LIST and MULTIPLE-VALUE-BIND as we would a
destructuring LET. Thiswould likely require little extension to the system other than to treat these forms
in a prepass.

9.2.2-D Mutually Recursive Functions

A very interesting problem would be to handle type inference for functions whose definitions are mutually
recursive. This would require the nest of all such functions to be submitted as a collection. Intuitively,
we can imagine the fundamental approach being to extend the iterative stabilization strategy in the
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following manner. Currently, we iterate over the body of a new function, with each iteration establishing
a new set of working segments, until the collection of working segments stabilizes. To handle mutual
recursion, we imagine starting the analysis by assigning an empty set of segments to each function,
making one pass over all the functions, replacing its segments with the new ones, and then repeating this
process until the working segments for all the functions have stabilized. The checker could then treat the
functions one at atime. But the proof of Lemma TC-SIGNATURE-OK would need to be modified to
support the inductive step of adding a whole collection of new signatures at once. Without having
devoted any serious thought to this prospect, we can only say it would require very careful formal
attention.

9.2.2-E Arraysand Structures

Extension to arrays and structures defined by defstruct may be problematic, since we assume our Lisp
subset is purely applicative. Common Lisp’s standard update mechanism for arrays and structures is
SETF, which is a destructive operation. Tracking the side effects of destructive operations is beyond the
current scope and spirit of this effort. A purely applicative model of arrays and structures, however,
would lend itself well to treatment within the inference system.

9.3 Symbiotic Relation to Other Tools

One purpose for which type inference has been employed in other systems is to supply inferred type
declarations to the compiler. The improvement of run-time speed of code generated with prolific type
declarations is the apparent raison d'etre for the TICL type inference system [Ma 90] and the Nimble
Type Inferencer [Baker 90].

9.3.1 Assisting a Compiler

The system described in this report could be easily modified to generate declarations in this style. A
simple mapping could be maintained in the database associating descriptors with their recognizer
functions. Whenever the type of any form is determined to correspond to some variable-free type
descriptor, a THE declaration [Steele 90] could be wrapped around the form. Similarly, DECLARE forms
could be inserted to correspond to information derived from guard expressions. Thus, afunction

( DEFUN RAWFN (X )
( DECLARE (XARGS : GUARD (I F (I NTEGER-LISTP X) (INTEGERP Y) NIL)))
(IF (EQUAL Y 0)
(CAR X)
(RAWFN (CDR X) (MNUS Y 1))))

could be annotated by the tool as follows:

(DEFUN RAWFN (X Y)

( DECLARE (XARGS : GUARD (I F (I NTEGER LI STP X) (INTEGERP Y) NIL)))
( DECLARE (TYPE | NTEGER- LI STP X))
( DECLARE (TYPE | NTEGER Y))
(IF (EQUAL Y 0)

(THE (OR I NTEGERP NULL) (CAR (THE | NTEGER-LI STP X)))

(THE (OR | NTEGERP NULL)

(RAW FN (THE | NTEGER- LI STP (CDR X))
(THE INTEGER (M NUS Y 1))))))

If for some target compiler, an INTEGER-LISTP is not useful, any such declaration could be toned down
to (OR CONSP NULL).
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While our system could likely produce improved efficiency from such an endeavor, the Nimble and TICL
systems already seem to be quite adept at producing declarations for the types of atomic objects and
support aricher collection of such types than we do. But these systems appear to provide little support for
structured objects, which is the forte of our system. One could easily imagine a partnership between some
such system and ours, whereby the one could produce type declarations for atomic objects, and our system
would be responsible for annotating forms representing structured objects and objects derived from
structures.

9.3.2 Teaming with a Theorem Prover

Perhaps the most fruitful potential placement of our type system would be to embed it within a more
general automated reasoning system for Lisp functions. In particular, if our inference tool could work in
tandem with a more general purpose theorem prover to perform tasks like guard verification, it is likely
that such problems could be factored so that the inference tool could handle type-specific questions, and
problems outside the type domain could be handled by the prover. Many typical problems presented to a
theorem prover for computable functions have type-related components, and the type inference system
could potentially operate as a specialized algorithm within a prover, just as a rewriter or a specialized
decision procedure might also operate. Tailored asit is to recursive functions, our type inference system
could be expected to make a significant contribution. On balance, we believe this approach could increase
the capability of a prover to resolve type-related problems without user intervention.

Conversely, access to assistance from a general theorem prover could allow the type system to solve a
greater number of problemsin its own domain. If, for example, the prover could assist the type inference
system in verifying guards containing predicates which lie partly outside the type domain, we could
support much greater generality in the kinds of guards one could use and still receive certified signatures
from the system. The class of functions whose signatures could be certified sound by the checker would
grow, and the tool would be more useful as a result. In short, we believe there is fertile ground for
symbiosis between the type inference system and a general purpose prover.
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Appendix A
Signatures of Functionsin theInitial State

This appendix illustrates the function signatures for al the functions in the initial system state. Each
(*FREE-TYPE-VAR n) form is a placeholder form representing a type variable, which will be instantiated
with afresh variable when the signature is invoked for use. Multiple occurrences within a segment of the
number associated with a *FREE-TYPE-VAR marker indicate that the same variable will appear in all
such positions.

Function: CONS

Guard conputed by the tool:
(*UNI VERSAL *UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Cuard:
(* UNI VERSAL *UNI VERSAL)

TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segment s:

(((*FREE-TYPE- VAR 1.) (*FREE-TYPE-VAR 2.))

-> (*CONS (*FREE-TYPE-VAR 1.) (*FREE-TYPE-VAR 2.)))
TC segnents contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signhature is certified sound: T

Function: CAR

Guard conputed by the tool:
((*OR SNIL (*CONS *UN VERSAL *UNI VERSAL)))
Guard conplete: T
Al called functions conplete: T
TC Guard:
((*OR $NIL (*CONS *UN VERSAL *UNI VERSAL)))

TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: N L
Segnent s:

(((*CONS (*FREE-TYPE-VAR 1.) *UNIVERSAL)) -> (*FREE-TYPE-VAR 1.))

((SNIL) -> $NIL)
TC segnments contained in Segnents: T

Recogni zer descriptor: N L
TC val i dates recogni zer: NL
Signhature is certified sound: T

Function: CDR
Guard conputed by the tool:
((*OR $NIL (*CONS *UN VERSAL *UNI VERSAL)))
Guard conplete: T
Al'l called functions conplete: T
TC GQuard:
((*OR $NI'L (*CONS *UN VERSAL *UN VERSAL)))
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: N L
Segnent s:
(((*CONS *UNI VERSAL (*FREE-TYPE-VAR 1.))) -> (*FREE-TYPE-VAR 1.))
(($NIL) -> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
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Signature is certified sound: T

Function: Bl NARY- +
Guard conputed by the tool:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
Guard conplete: T
Al called functions conplete: T
TC CGuard:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(($I NTEGER $I NTEGER) -> $I NTECER)

Type Checking for Common Lisp
Signatures of Functionsin the Initial State

(($I NTEGER $NON- | NTEGER- RATI ONAL) - > $NON- | NTEGER- RATI ONAL)
((SNON- | NTECGER- RATI ONAL $I NTEGER) - > $NON- | NTECGER- RATI ONAL)

( ($NON- | NTEGER- RATI ONAL $NON- | NTEGER- RATI ONAL)
-> (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC segnments contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: T

Function: UNARY- -
Guard conputed by the tool:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )

Guard conplete: T
Al called functions conplete: T
TC Cuard:

((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segment s:

(($I NTEGER) -> $I NTEGER)

(($NON- | NTEGER- RATI ONAL) - > $NON- | NTEGER- RATI ONAL)
TC segnents contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: T

Function: BI NARY- *
Guard conputed by the tool:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segment s:
((($I NTEGER $I NTEGER) -> $I NTECGER)
(($I NTEGER $NON- | NTEGER- RATI ONAL)
-> (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
((SNON- | NTEGER- RATI ONAL $I NTECER)
-> (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
((( SNON- | NTEGER- RATI ONAL $NON- | NTEGER- RATI ONAL)
-> (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC segnents contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
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Signature is certified sound: T

Function: UNARY-/
Guard conputed by the tool:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )

Guard conplete: T
Al called functions conplete: T
TC Cuard:

((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool CGuard: NL
Segment s:

(((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )

-> (*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC segnents contained in Segnents: T
Recogni zer descriptor:

NI L
TC val i dates recogni zer: NL
Signhature is certified sound: T

Function: <
Guard conputed by the tool:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
Guard conplete: T
Al called functions conplete: T
TC CGuard:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(((*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
(*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
-> (*OR $NIL $T))
TC segnments contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: T

Function: EQUAL
Guard conputed by the tool:
(*UNI VERSAL *UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Cuard:
(*UNI VERSAL *UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
((SNIL $NIL) -> $T)
(($T $T) -> $T)
(((*FREE-TYPE-VAR 1.) (*FREE-TYPE-VAR 1.)) -> $T)
((SNIL
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBCL
$STRI NG $T (*CONS *UN VERSAL *UNI VERSAL) )
$NI L)
-> $NIL)
(($T
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
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$STRI NG (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBCL
$STRI NG (*CONS *UN VERSAL *UNI VERSAL) )
(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: T

Function: CONSP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Cuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(((*CONS *UNI VERSAL *UNI VERSAL)) -> $T)
(((*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T))
-> $NIL))
TC segnments contained in Segnents: T
Recogni zer descriptor: (*CONS *UN VERSAL *UN VERSAL)
TC val i dates recognizer: T
Sighature is certified sound: T

Function: | NTEGERP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(($I NTEGER) -> $T)
(((*OR $CHARACTER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor: $I NTEGER
TC val i dates recognizer: T
Sighature is certified sound: T

Function: RATI ONALP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Guard:
(* UNI VERSAL)

TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: N L
Segnent s:

(((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) ) -> $T)

(((*OR $CHARACTER $NI L $NON- T- NI L- SYMBOL $STRI NG $T

(*CONS *UNI VERSAL *UNI VERSAL) ) )
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-> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor: (*OR $I NTEGER $NON- | NTEGER- RATI ONAL)
TC val i dates recognizer: T
Signhature is certified sound: T

Function: STRI NGP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: N L
Segnent s:
(($STRING -> 3$T)
(((*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnents contained in Segnents: T
Recogni zer descriptor: $STRI NG
TC validates recognizer: T
Signhature is certified sound: T

Function: CHARACTERP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC CGuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: N L
Segnent s:
(($CHARACTER) -> $T)
(((*OR $I NTEGER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnents contained in Segnents: T
Recogni zer descriptor: $CHARACTER
TC val i dates recognizer: T
Signature is certified sound: T

Function: SYMBOLP
Guard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC CGuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
(((*OR $NI'L $NON-T- NI L- SYMBOL $T)) -> $T)
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $STRI NG
(*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnents contained in Segnents: T
Recogni zer descriptor: (*OR $NIL $NON-T- NI L- SYMBCOL $T)
TC val i dates recogni zer: T
Signature is certified sound: T
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Function: NULL
Quard conputed by the tool:
(* UNI VERSAL)
Guard conplete: T
Al called functions conplete: T
TC Cuard:
(* UNI VERSAL)
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segment s:
(($NIL) -> $T)
(((*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBCL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL)))
-> $NIL)
TC segnments contained in Segnents: T
Recogni zer descriptor:
$NI L
TC val i dates recogni zer: T
Signature is certified sound: T

Functi on: DENOM NATOR
Guard conputed by the tool:
((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )

Quard conplete: T
Al called functions conplete: T
TC Cuard:

((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: NL
Segment s:

(((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) ) -> $I NTEGER)
TC segnents contained in Segnents: T
Recogni zer descriptor: N L
TC val i dates recogni zer: NL
Signature is certified sound: T

Function: NUMERATOR
Quard conputed by the tool:

((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
Guard conplete: T
Al called functions conplete: T
TC Cuard:

((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) )
TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool CGuard: NL
Segment s:

(((*OR $I NTEGER $NON- | NTEGER- RATI ONAL) ) -> $I NTEGER)
TC segnments contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signhature is certified sound: T

Function: SYMBOL- NAME
Guard conputed by the tool:

((*OR $NIL $NON-T- NI L- SYMBOL $T))
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:

((*OR SNIL $NON-T- NI L- SYMBOL $T))

TC Guard conplete: T
TC All called functions conplete: T
TC Guard Repl aced by Tool Guard: NL
Segnent s:
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(((*OR $NIL $NON-T- NI L-SYMBOL $T)) -> $STRI NG
TC segnments contained in Segnents: T
Recogni zer descriptor: N L
TC val i dates recogni zer: NL
Signhature is certified sound: T

Function: SYMBOL- PACKAGE- NAME
Guard conputed by the tool:

((*OR $NIL $NON-T- NI L- SYMBOL $T))
Guard conplete: T
Al'l called functions conplete: T
TC CGuard:

((*OR $NIL $NON-T- NI L- SYMBOL $T))

TC Guard conplete: T
TC All called functions conplete: T
TC Guard Replaced by Tool Guard: N L
Segnent s:

(((*OR $NIL $NON-T- NI L- SYMBOL $T)) -> $STRI NG
TC segnents contained in Segnents: T
Recogni zer descriptor: NL
TC val i dates recogni zer: NL
Signature is certified sound: T
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Appendix B
Proofs of Selected L emmas

B.1 Proof of TC-PREPASS-OK

TC-PREPASS normalizes |F expressions by ensuring that the test expressions return only T or NIL. In
any case where it cannot determine that an |F test evaluates only to T or NIL, it encapsulates the test form
in two calls to the NULL function. It also treats the special cases where the test is (or can be easily
reduced to) T or NIL, so that the entire IF form is reduced to its second or third argument, as appropriate.
The definition of TC-PREPASS and its subsidiary function TC-PREPASS-IF-PRED appears in Appendix
G.6.

The property we wish to prove is that for any non-negative integer clock, if FSisavalid representation of
our world of Lisp functions, evaluating (TC-PREPASS FORM FS) in any environment yields the same
result as evaluating FORM in the environment.

Intuitively, the argument is very simple. The TC-PREPASS algorithm performs only the two
transformations described above, and it performs them throughout the form. First let us consider the
transformation of wrapping two calls to NULL around an IF test. Since NULL is a SUBR, once the
argument is evaluated, checking the guard and returning a value require no clock time. So a BREAK-
OUT-OF-TIME is produced on E’s evaluation of acall to NULL if and only if aBREAK-OUT-OF-TIME
is produced while evaluating the parameter. Similarly for a BREAK-GUARD-VIOLATION, since the
guard to NULL isT. If evaluating an IF test does not yield a break, then the only significance of the result
iswhether it isNIL or non-NIL.

(NULL (NULL NIL)) = (NULL T) = NIL
and
(NULL (NULL <any non-NIL value>)) = (NULL NIL) =T

Thus, the evaluator will receive the same direction from the test, regardless of whether it is encased in the
two callsto NULL.

The other transformations performed by TC-PREPASS are simplifications. In the case where the
(possibly transformed) IF test isNIL, the IF isreplaced by its else arm, and where the IF test is T, the IF is
replaced by its then arm. Consider the case where the IF test isNIL. The argument for the T case will be
symmetric, with the only difference being consideration of the then arm rather than the else.

If CLOCK < 1, evaluation of either the original form or the transformed one produces a BREAK-OUT-
OF-TIME. Now consider the case where CLOCK = 1. Evauating NIL does not otherwise involve the
clock, and evaluating I F does not involve ticking the clock down on the recursive calls of E to evaluate the
test or either of the result arms. Furthermore, IF islazy, in that it does not evaluate the arm which will not
contribute to the result value. Thus, the clock on entry to the transformed form (i.e., the else form), will
be the same as it would be on entry to the else form in the original IF, and therefore aform transformed in
this manner will evaluate to a BREAK-OUT-OF-TIME if and only if the original IF form evaluates to a
BREAK-OUT-OF-TIME. A similar argument holds for a guard violation, since there is no guard check
onan|Foron NIL. Sincethe value returned by an IF form whose test is NIL isjust the value returned by
the else form, the value returned will be the same if the IF isreplaced by its else form.

The preceding argument should suffice for a proof of TC-PREPASS-OK and spare the reader from
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delving into what lies below. But for the intrepid, the proofs below involve essentialy an exhaustive
examination of cases arising from one-level expansions of the definitions of E, TC-PREPASS, and
TC-PREPASS-IF-PRED, down to recursive cals. The functions TC-PREPASS and TC-PREPASS-IF-
PRED (the latter specifically treats IF tests) are mutually recursive, and each is specified by its own
lemma. Hence, the proof of our evaluation property involves a proof of the conjunction of Lemma
TC-PREPASS-OK and Lemma TC-PREPASS-IF-PRED-OK. We present this composite proof as a proof
of each individual lemma under a joint computational induction scheme. The induction is on the number
of callsto TC-PREPASS and TC-PREPASS-IF-PRED necessary to return a result from the top level call
to TC-PREPASS. Thiswill enable usto use each lemma as an inductive assertion on each subsidiary call.

Lemma TC PREPASS- K

For any list of function signatures fs, Lisp world world,
non-negative integer clock, Lisp formform and binding
envi ronment env,

(valid-fs fs world clock)
=>
(equal (E formenv world clock)
(E (tc-prepass-formformfs) env world clock))

Lemma TC- PREPASS- | F- PRED- OK
For any list of function signatures fs, Lisp world world, non-negative
integer clock, Lisp IF formtest, and binding environnment env,

(valid-fs fs world clock)
=>
(if (break-out-of-timep (E formenv world clock))
(break-out-of-tinmep
(E (tc-prepass-if-pred formfs) env world clock))
(if (break-guard-violationp (E formenv world cl ock))
(br eak-guard-viol ati onp
(E (tc-prepass-if-pred formfs) env world clock))
(if (equal (E formenv world clock) nil)
(equal (E (tc-prepass-if-pred formfs) env world clock)
nil)
(equal (E (tc-prepass-if-pred formfs) env world clock)
t))))

We present the proof of Lemma TC-PREPASS-OK first.
Proof of Lemma TC- PREPASS- OK

First let us take care of the easy case where clock < 1. In this
case, by the definition of E, for any form both
(break-out-of-tinmep formenv world cl ock)

and

(break-out-of-tinmep (tc-prepass formfs) env world cl ock)

hol d.

For the case where clock = 1, we will do a case analysis on
the structure of form

Case 1: formis an atom

By definition, (tc-prepass formfs) = form
Trivially true.

Case 2: formis a quoted form

By definition, (tc-prepass formfs) = form
Trivially true.
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Case 3: formis a function call (f forml .. formh)

(tc-prepass (f formy .. formy fs)
= by definition
(f (tc-prepass forml fs) .. (tc-prepass fornh fs))

Therefore, we need to prove

(valid-fs fs world clock)
=>
(equal (E (f forrrl .. formh) env world cl ock)
(E (f (tc-prepass formlfs) .. (tc-prepass fornhfs))
env world clock))

In the expansion of both calls to E, the first action is to evaluate
the actual paraneters. |.e., for the first call to E, we first

eval uate (E form env world clock), and if it does not break,

then (E formp env world clock), etc. until we have eval uated

all n forms. Likew se for the prepassed forms.

We inductively assune our lemma is true. 1.e., for all i in[1..n]

(valid-fs fs world clock)
=>
(equal (E forrq env worl d cl ock)
(E (tc-prepass forn] fs) env world clock))

Thus, if either formresulted in either a break-out-of-tinme or a
br eak-guard-violation, so did the other. By the definition of E,
if evaluating an actual parameter results in a break, the value

of E for the function call is the sane break. So if any break
occurs while evaluating the actual paranmeters, we have established
our result.

Next, E finishes the evaluation of the function call, using the
the val ues conputed for the actual paraneters. This "finishing"
operation has the notation fworld,clock_ So the expansion of

both calls to E gives us:

(i world,clock

(equal ((E forml env worl d cl ock)

(E form, env world clock)))
(fworld’CIOCk((E (tc-prepass forml fs) env world cl ock)

(E (tc-prepass forml fs) env world clock))))

Again we use our inductive assunption. Applying it for each
i in[1..n] reduces the equality to T.

Case 4: formis an IF of the form(if test then-formelse-form
We can inductively assume the follow ng (from TC PREPASS- (K) :

(E test env world clock) = (E (tc-prepass test fs) env world cl ock)
(E then-formenv world clock)

= (E (tc-prepass then-formfs) env world clock)
(E el se-formenv world cl ock)

= (E (tc-prepass else-formfs) env world clock)

By definition of tc-prepass,
(tc-prepass (if test then-formelse-fornm fs)

(let ((prepassed-pred
(tc-prepass-if-pred (tc-prepass test fs) fs)))
(if (null prepassed-pred)
(tc-prepass else-formfs)
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(if (equal prepassed-pred t)
(tc-prepass then-formfs)
(list "if
pr epassed- pred
(tc-prepass then-formfs)
(tc-prepass else-formfs)))))

Qur goal is:

(valid-fs fs world clock)
=>

(equal

(E (if test then-formelse-forn) env world clock)
(E (tc-prepass (if test then-formelse-form fs) env world clock))

W will do a case analysis on the value returned by
(E test env world clock), with the cases being break-out-of-tinep,
br eak-guard-violation, nil, or some non-NL Lisp val ue.

Case 4.1 (break-out-of-timep (E test env world clock))

In this case, by the definition of E,
(break-out-of-tinmep
(E (if test then-formelse-form) env world clock))

Usi ng our inductive assunption and the case assunption gives us
(break-out-of-timep (E (tc-prepass test fs) env world clock))

Now use Lemma TC- PREPASS-| F- PRED-OK, instantiated with
form= (tc-prepass test fs). This gives us:

(break-out-of-tinep
(E (tc-prepass-if-pred (tc-prepass test fs) fs) env world clock))

We need to establish

(break-out-of-timep
(E (let ((prepassed-pred
(tc-prepass-if-pred (tc-prepass test fs) fs)))
(if (null prepassed-pred)
(tc-prepass else-formfs)
(if (equal prepassed-pred t)
(tc-prepass then-formfs)
(list "if
pr epassed- pred
(tc-prepass then-formfs)
(tc-prepass else-formfs)))))
env world clock))

W will do a case analysis based on the if structure above.
Case 4.1.1 (tc-prepass-if-pred (tc-prepass test fs) fs) = nil

Thus,
(tc-prepass (if test then-formelse-form fs)
= (tc-prepass else-formfs)

(break-out-of-timep nil env world clock) =t only when
(< clock 1). This is not consistent with our case assunption.

Case 4.1.2 (tc-prepass-if-pred (tc-prepass test fs) fs) =t
As with 4.1.1

Case 4.1.3 (tc-prepass-if-pred (tc-prepass test fs) fs) = neither t
nor nil

Thus,

(tc-prepass (if test then-formelse-form fs)
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(if (tc-prepass-if-pred (tc-prepass test fs) fs)
(tc-prepass then-formfs)
(tc-prepass else-formfs))

(Note: By this, we nean a Lisp |F formwhose test formis
(tc-prepass-if-pred (tc-prepass test fs) fs) and whose then
and else forns are the prepassed then-form and el se-form
respectively.)

Since we al ready know
(break-out-of-tinep
(E (tc-prepass-if-pred (tc-prepass test fs) fs)
env world clock))
t hen
(break-out-of-tinmep
(E (if (tc-prepass-if-pred (tc-prepass test fs) fs)
(tc-prepass then-formfs)
(tc-prepass else-formfs))
env world cl ock))
ei ther because the clock has already run down or because
E first evaluates the if test, which breaks out of tine.

Case 4.2 (break-guard-violationp (E test env world clock))

The argunent goes just like that of Case 4.1, except that we do
not need to nention the possibility of the clock running down
in the final sub-case

Case 4.3 (E test env world clock) = ni
By our inductive hypothesis
H2 (E (tc-prepass test fs) env world clock) = ni

Now use Lemma TC- PREPASS- | F- PRED- OK, instantiating with fs = fs
world = world, clock = clock, and form= (tc-prepass test fs)
H2 | ets us reduce the conclusion to

H3 (equal (E (tc-prepass-if-pred (tc-prepass test fs) fs)
env world cl ock)
nil)

(and
(valid-fs fs world clock)
(E (tc-prepass test fs) env world clock) = ni
(equal (E (tc-prepass-if-pred (tc-prepass test fs) fs)
env world cl ock)
nil) )
=>

(equal (E (if test then-formelse-fornm env world clock)
(E (tc-prepass (if test then-formelse-forn) fs)
env world clock))

oS

Expandi ng both calls of E (and using our case assunption in the
first call), we get the conclusion

(equal (E else-formenv world clock)
(E (let ((prepassed-pred
(tc-prepass-if-pred (tc-prepass test fs) fs)))
(if (null prepassed- pred)
(tc-prepass else-formfs)
(if (equal prepassed-pred t)
(tc-prepass then-formfs)
(list "if
prepassed- pred
(tc-prepass then-formfs)
(tc-prepass else-formfs)))))
env world clock))

Again, we will do a case analysis based on the if structure above

217
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Case 4.3.1 (tc-prepass-if-pred (tc-prepass test fs) fs) = nil
This gives the concl usion

(equal (E else-formenv world clock)
(E (tc-prepass else-formfs) env world clock))

whi ch by our inductive hypothesis reduces to true.
Case 4.3.2 (tc-prepass-if-pred (tc-prepass test fs) fs) =t

This contradicts H3, since

(E (tc-prepass-if-pred (tc-prepass test fs) fs) env world cl ock)
= by the case assunption

(Et env world clock)

=t

but H3 says it equals nil.

Case 4.3.3 (tc-prepass-if-pred (tc-prepass test fs) fs) equal sone
Li sp value which is neither t or nil

Then by definition of tc-prepass,
(tc-prepass (if test then-formelse-form fs)
(if (tc-prepass-if-pred (tc-prepass test fs) fs)
(tc-prepass then-formfs)
(tc-prepass else-formfs))

By definition of E,
(E (if (tc-prepass-if-pred (tc-prepass test fs) fs)
(tc-prepass then-formfs)
(tc-prepass else-formfs))
env world cl ock)
= (if (not (equal (E (tc-prepass-if-pred (tc-prepass test fs) fs)
env world clock)
nil))
(E (tc-prepass then-formfs) env world cl ock)
(E (tc-prepass else-formfs) env world clock))

Instantiating Lemma TC- PREPASS- | F- PRED- OK wi t h
form= (tc-prepass test fs), and using our case assunption
(E test env world clock) = nil, we establish

(equal (E (tc-prepass-if-pred (tc-prepass test fs) fs)

env world clock)
nil)

Thus, the test in the if formjust above sinplifies to nil, and
the whole if formsinplifies to

(E (tc-prepass else-formfs) env world cl ock)
Now gi ven our case assunption, the original left hand side of
the conclusion sinplifies to

(E el se-formenv world cl ock)
Use our inductive assunption on else-formto equate these two
forms, establishing the concl usion.

Case 4.4 (E test env world clock) = sonme non-nil Lisp value

This case is symmetric with Case 4, switching the roles of nil
and non-nil.

This conpl etes an exhaustive case analysis. QED.

Now for the proof of Lemma TC-PREPASS-IF-PRED-OK.
Proof of TC PREPASS- | F- PRED- OK

First let us take care of the easy case where clock < 1. In this
case, by the definition of E, for any form both
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(break-out-of-tinmep formenv world cl ock)

and

(break-out-of-timep (tc-prepass-if-pred formfs) env world clock)
hol d.

For the case where clock = 1, we will do a case analysis on
the structure of form

Case 1. form= nil

By definition of td-prepass-if-pred,
(tc-prepass-if-pred formfs) = nil
Trivial.

Case 2: formis an integer, T, a rational, a character, or a string

By definition of tc-prepass-if-pred,
(tc-prepass-if-pred formfs) =1t

By definition of E, (E formenv world clock) = form

(Et env world clock) =t

Case 3: formis a cons whose car is the atom quote and whose cadr
is the atomnil.

By definition of tc-prepass-if-pred,
(tc-prepass-if-pred formfs) = nil

By definition of E,
(E (quote nil) env world clock) = nil
(E nil env world clock) = nil

Case 4: formis a cons whose car is the atom quote and whose cadr
is not nil.

By definition of tc-prepass-if-pred,
(tc-prepass-if-pred formfs) =1t

By definition of E,
(E (quote form env world clock) = form
(Et env world clock) =t

Case 5: formis a variable identifier v

By the definition of tc-prepass-if-pred,
(tc-prepass-if-pred v fs) = (null (null v))
By the definition of E, (since variable evaluation does not run the
cl ock down),
(E v env world clock) = (cdr (assoc v env))
What about (E (null (null v)) env world clock)?
Nul | has no guard, and since it is a subr, it does not run the clock
down. So since we know clock > 1, we will not get a break.

Case 5.1 (equal (cdr (assoc v b)) nil)
Qur goal sinplifies to
(valid-fs fs world clock)

=>
(equal (E (null (null nil)) env world clock) nil)

The null function returns T if its argument is nil, and nil if its
argunment is anything but nil, so (null (null nil)) =nil.
Since (E nil env world clock) = nil, our goal is established.

Case 5.2 (not (equal (cdr (assoc v b)) nil))
The goal sinplifies to
(valid-fs fs world clock)

=>
(equal (E (null (null v)) env world clock) t)
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The null function returns t if its argument is nil, and nil
if its argunent is anything but nil, so (null (null v)) =1t.
Since (Et env world clock) =1t, our goal is established.

Case 6: formis an if, (if test then-formelse-form

By definition of E,
(E (if test then-formelse-forn) env world clock)
(if (equal (E test env world clock) nil)

(E el se-formenv world cl ock)

(E then-formenv world clock))

By definition of tc-prepass-if-pred and E,
(E (tc-prepass-if-pred (if test then-formelse-form fs)
env world cl ock)
(E (if (tc-prepass-if-pred test fs)
(tc-prepass-if-pred then-formfs)
(tc-prepass-if-pred else-formfs))
env world cl ock)
(if (equal (E (tc-prepass-if-pred test fs) env world clock) nil)
(E (tc-prepass-if-pred else-formfs) env world cl ock)
(E (tc-prepass-if-pred then-formfs) env world cl ock))

Qur inductive hypotheses assune the lemma is true of the function
call ed recursively on the subexpressions of its arguments. CQur goal
is

(if (break-out-of-tinmep
(E (if test then-formelse-form) env world clock))
(break-out-of-tinep
(E (tc-prepass-if-pred (if test then-formelse-forn) fs)
env world clock))
(if (break-guard-violationp
(E (if test then-formelse-form) env world clock))
(break-guard-viol ati onp
(E (tc-prepass-if-pred (if test then-formelse-form fs)
env world clock))
(if (equal (E (if test then-formelse-form env world cl ock)
nil)
(equal
(E (tc-prepass-if-pred (if test then-formelse-form fs)
env world cl ock)
nil)
(equal
(E (tc-prepass-if-pred (if test then-formelse-forn) fs)
env world cl ock)

t))))
Consi der the cases suggested by this if structure.

Case 6.1 (break-out-of-timep (E test env world clock))
By definition of E,
(break-out-of-tinep
(E (if test then-formelse-form env world clock)).
From the inductive assunption of TC PREPASS-I|F-PRED- K instantiated
with form= test,
(break-out-of-tinmep
(E (tc-prepass-if-pred test fs) env world clock)),
and by E,
(break-out-of-tinmep
(E (tc-prepass-if-pred (if test then-formelse-forn) fs)
env world clock))

Case 6.2 (break-guard-violationp (E test env world cl ock))
By definition of E,
(break-guard-viol ati onp
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(E (if test then-formelse-form env world clock))
From the inductive assunption of TC PREPASS-I|F-PRED- K instanti ated
with form= test,
(break- guard-vi ol ati onp

(E (tc-prepass-if-pred test fs) env world clock))
and by E,
(break- guard-vi ol ati onp

(E (tc-prepass-if-pred (if test then-formelse-forn) fs)

env world clock))

Case 6.3 (equal (E test env world clock) nil)
By definition of E,
(E (if test then-formelse-forn) env world clock)

(E el se-formenv world clock)
From the inductive assunption of TC PREPASS-I|F-PRED- K instantiated
with form= test,
(equal (E (tc-prepass-if-pred test fs) env world clock) nil)
and by E,
(E (tc-prepass-if-pred (if test then-formelse-form fs)
env world cl ock)

(E (tc-prepass-if-pred else-formfs) env world clock)

Case 6.3.1 (break-out-of-timep (E else-formenv world clock))
As with Case 6.1, using the inductive assunption of
TC- PREPASS- | F- PRED- K instantiated with form= el se-form

Case 6.3.2 (break-guard-violationp (E test env world clock))
As with Case 6.2, using the inductive assunption of
TC- PREPASS- | F- PRED- K instantiated with form= el se-form

Case 6.3.3 (equal (E else-formenv world clock) nil)

By definition of E,

(E (if test then-formelse-forn) env world clock) = nil

Usi ng the inductive assunption of TC PREPASS-| F- PRED- K,
instantiated with form= else-form

(equal (E (tc-prepass-if-pred else-formfs) env world clock) nil)
and by definition of E,

(E (tc-prepass-if-pred (if test then-formelse-forn) fs)

env world cl ock)
= nil, establishing the goal for this case

Case 6.3.4 (E else-formenv world clock) some non-nil Lisp value v
By definition of E,

(E (if test then-formelse-fornm env world clock) = v (non-nil)
Usi ng the inductive assunption of TC PREPASS-| F- PRED- K,
instantiated with form= else-form

(equal (E (tc-prepass-if-pred else-formfs) env world clock) t)
and by definition of E

(E (tc-prepass-if-pred (if test then-formelse-form fs)

env world clock)
=t, establishing the goal for this case

Case 6.4 (E test env world clock) = sonme non-nil Lisp value v
As with Case 6.3, exchanging the role of nil and non-nil and using
the inductive assunption of TC PREPASS-I|F-PRED- OK, instantiated
with form= then-formrather than else-form

Case 7: formis a function call of form (f forrr‘tl_ .. fornh)

Qur inductive hypotheses assune the original conjecture of
TC-PREPASS- K is true of the function called recursively on the
subexpressions of its arguments. Thus, we can assune:

(valid-fs fs world clock)

=>

for all i in[1..n],

(equal (E forrr] env worl d cl ock)

221
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(E (tc-prepass forn1 fs) env world clock))
Qur goal is:

(valid-fs fs world clock)
=>
(if (break-out-of-timep (E formenv world clock))
(break-out-of-tinep
(E (tc-prepass-if-pred formfs) env world clock))
(if (break-guard-violationp (E formenv world cl ock))
(break-guard-viol ati onp
(E (tc-prepass-if-pred formfs) env world clock))
(if (equal (E formenv world clock) nil)
(equal (E (tc-prepass-if-pred formfs) env world clock)
nil)
(equal (E (tc-prepass-if-pred formfs) env world clock)

t))))

By definition,

(td-prepass-if-pred (f forml .. fornh) fs)

if f can return only T or NIL (as determned in fs)
(f (tc-prepass formlfs)

.(ic-prepass forrrhfs))
el se
(null (null (f (tc-prepass formlfs)

.(ic-prepass fornh fs))))

(This use of fs is actually an application of the definition of
valid-fs.) Note that, by the definition of tc-prepass,

(f (tc-prepass forrrn_ fs)

.(ic-prepass forrrhfs))
= (tc-prepass (f forml .. formh))

Case 7.1 f can return only T or NIL
Qur goal sinplifies to

(valid-fs fs world clock)
=>
(if (break-out-of-timep (E formenv world clock))
(break-out-of-tinep
(E (tc-prepass formfs) env world clock))
(if (break-guard-violationp (E formenv world clock))
(br eak- guard-vi ol ati onp
(E (tc-prepass formfs) env world cl ock))
(if (equal (E formenv world clock) nil)
(equal (E (tc-prepass formfs) env world clock) nil)
(equal (E (tc-prepass formfs) env world clock) t))))

We inductively apply Lemma TC- PREPASS- K to get:

(valid-fs fs world clock)
=>
(if (break-out-of-timep (E formenv world clock))
(break-out-of-timep (E formenv world clock))
(if (break-guard-violationp (E formenv world cl ock))
(break-guard-violationp (E formenv world clock))
(if (equal (E formenv world clock) nil)
(equal (E formenv world clock) nil)
(equal (E formenv world clock) t))))

Since f returns T whenever it does not return NIL, this is
obvi ously true.



Type Checking for Common Lisp 223
Proofs of Selected Lemmas

Case 7.2 f might return sonething other than T or NIL
Qur goal sinplifies to

(valid-fs fs world clock)
=>
(if (equal (E (f form .. fornh) env world clock) nil)
(equal (E (null (null (tc-prepass (f forrrn_ .. forrrh) fs)))
env world clock)
nil)
(equal (E (null (null (tc-prepass (f formy .. formy fs)))
env world cl ock)

t))

The argunent here is the sane as in the previous case, but extended

as in Case 5 to drive E down through the calls to null. Since null

is a subr and its guard is T, evaluating (null (null x)) wll cause

an out-of-time break if and only if evaluating x causes one, and

will cause a guard break if and only if evaluating x causes one.
QED.

B.2 TheProof of RECOGNIZER-SEGMENTS-COMPLETE

Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Lemma RECOGNI ZER- SEGVENTS- COVWPLETE

G ven a recogni zer function R of the form
(defun R (x)

(decl are (xargs :guard t))

body)
with the signature:
Quard: (*universal)
Segnents: (((targ) -> $t)

((nilarg) -> $nil))

For any list of function signatures fs including R, Lisp world world
including R Lisp value v, non-negative integer clock, descriptor
arg-td, and type variabl e binding b,

(and
HL (valid-fs fs world cl ock)
H2 (I arg-td v b)
H3 (contained-in-interface arg-td targ)
H4

(not (break-out-of -timep (RVOIA.COCk \yyyy )
=>

(equal (Rworld,clock(v)) t)

Proof of Lenmma RECOGN ZER- SEGVENTS- COWPLETE

The proof uses the | enmas DUN FY- DESCRI PTORS- | NTERFACE- K and
CONTAI NED- | N- | NTERFACE- OK t 0 open up the characterizations of
the assunptions.

From the definition of recognizer function (See Section 5.6),
we know that the segnents are variable-free and that targ and
nilarg represent disjoint sets. Wen TC | NFER- S| GNATURE

val idates that a function is a recognizer, it establishes this
di sj oi ntness property by validating H5 bel ow by conputati on.
Thus, the definition of recognizer gives us the hypotheses:

H5 (equal (dunify-descriptors-interface targ nilarg) *enpty)
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H6 (null (gather-vars-in-descriptor targ))
H7 (null (gather-vars-in-descriptor nilarg))

Instantiate Lenma DUNI FY- DESCRI PTORS- | NTERFACE-OK with tda = targ,
tdb = nilarg, v =v, and b = b. Substituting fromH5 into the
result gives us:

H8 (and (I targ v b) (I nilarg v b))
=>
(I *enpty v b)

But since we know (I *enpty v b) cannot be true, then we know

H8' (not (and (I targ v b)
(I nilarg v b)))

We instantiate Lemma CONTAI NED- I N- I NTERFACE-OK, with tdl = arg-td,
td2 =targ, v =v, and b = b, to give us

(and (contained-in-interface arg-td targ)
(I arg-td v b))

=>

For sone b’, (I targ v b’)

H2 and H3 give us the antecedents to this inplication, so we can
use the concl usion:

For sone b’, (I targ v b’)

Since targ is variable-free, any binding will do for b, so we
m ght as well use b, giving us

HO (I targ v b)
But this, conbined with H8 , gives us
H9" (not (I nilarg v b))

Now use the definition of valid-fs as it applies to R with n = 1,
gtdl = *uni versal, argq = v, and segments = the ones

given above for R By the definition of recognizer, we know
(tc-all-called-functions-conplete body fs).

Thus, we have the hypothesis

H10 for all Lisp values v,

(and (not (break-out-of-timep (RVOrld.clock  yyyy
(not (null (Et ((x . v)) world clock))) )
=>
(and
(not (break- guar d-vi ol ationp (RWOrld.clock vy,
for sone binding b’ of type variables to Lisp val ues
covering the segnents
(or (I (targ $t) (v (RNorldclock yyy
(1 (nitarg $nil) (v (RVOrldclock vy by

H4 establishes (not (break-out-of-timep (Rworld’CIOCk(v)))).

Since H4 al so establishes that clock > 0, by the definition of E,
(Et ((x . v)) world clock) =t. Thus, the hypotheses of HLO are
relieved, and we establish its conclusion.

Since targ and nilarg are variable-free, any binding may
be used for b’', so again we choose b.

By expansion of the definition of |, the second conjunct in the
concl usi on of H10 gives us:

(or (and (I targ v b) (1 st (RWOrldclock ) pyy
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(and (I nilarg v b) (1 snil (RAVOrldclocke vy )y

whi ch expands further to

t Rworld,clock( V)

(or (and (I targ v b) (equal
( Rworld,clock( V)

(and (I nilarg v b) (equal nil

Using H9', we can rule out the second disjunct. This establishes

(and (1 targ v b) (equal t (RWOrld.lock )y pyy,
the second conjunct of which is our goal. QED.

B.3 TheProof of VALID-FS-CLOCK

Lemma VALI D- FS- CLOCK

For any list of function signatures fs, world world, and
non- negati ve integer cl ock,

(valid-fs fs world clock)
=>
(valid-fs fs world clock-1)

Proof of Lemma VALID- FS- CLOCK
By induction on clock.

The good-signaturep predicate required by valid-fs for each
function foo is:

for any Lisp val ues argq .. argp
(and
H1 (not (break-out-of-timep (foo

H2 (not (null
(E guard-form((aq . argq) .. (ap . argp) world clock))) )

WOI’ld,CIOCk( argq .. argn))))

=>

(and
ClL (not (break-guard-violationp (foo
c2 for sone k in[1..mM,

for sone binding b of type variables to Lisp val ues
covering tdkl .. tdkn and tdk,
(1 (tdk,l .. tdk,n tdk)

worId,cIock(

worldclockarg, . argpy)))

(argq .. argp (foo argq .. argp)))

b) ) )

Base case: clock =1
(valid-fs fs world 0) =t trivially, since for every function foo, we

have the hypothesis

world,clock

(not (break-out-of-timep (foo (argl .. argn))))

which is always fal se when clock = 0.

I nductive case: clock =i

Case 1. (break-out-of-timep (fooworld’c_l

(argq .. argp)))
Since this falsifies Hl, the conclusion is trivially true.

world,c-1

Case 2. (not (break-out-of-tinep (foo (argl .. argn))))
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Sinpl e exami nation of E (See Section 5.4.) shows
that, given two calls to E which are identical except for the
clock paraneter, if neither call runs out of tine, both calls

will return the sane value. Since our case assunption
establishes that neither call returns (break-out-of-tine), we
can equate the results of all the calls to Ewith clock =i to
their counterparts with clock = i-1, and thereby establish the
goal .

B.4 TheCentral Checker Algorithm -- TC-INFER

Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Lemma TC | NFER- OK

For any Lisp formform function signature list fs, Lisp world world
including all functions hereditarily in the call tree of form

for any non-negative integer clock, type variable bindings b,

Li sp val ues argq .. argpm

Li sp vari abl es ag - am
bi ndi ng environnment env of the form((al. argl) .. (am. argm))
wher e aq .. amincl ude all the free variables in form

ABS- ALI ST of theform((al. tdal) .. (am. tdam)),
CONC- ALI ST of the form((al. tdcl) .. (am. tdcm)),
and denoting
(tc-infer formabs-alist conc-alist fs)
b
{((m ntd]_,l . m'ntdllm m'ntdl)
((al. tdconclyl) .. (am. tdconclym))
(maxtdlyl .. maxtdl,m maxtdl))

((mntdnq .. mntdy o mntdy
((al. tdconcnyl) .. (am. tdconcn’m))
(rraxtdnll .. rraxtdn'm rraxtdn)))

Hl (and (valid-fs fs world clock)

H2 (I (tdaq .. tdag) (argq .. argyy) b)

H3 (1 (tdcl .. tdcm) (argl .. argm) b)

H4 (not (equal (tc-infer formabs-alist conc-alist fs)

*guard-vi ol ation))

H5 (tc-all-called-functions-conplete formfs)

H6 (not (break-out-of-timep (E formenv world clock))) )
=>
(and

c1 (not (break-guard-violationp (E formenv world clock)))
c2 for sone i,
for sone binding b’ covering the descriptors bel ow,
(and (I (rrintdil .. n”intdirn m'ntdi)
(argl . argm (E formenv world cl ock))

b’)

(1 (mixtdi,l .. naxtdi,m rraxtdi)
(argq .. argy (E formenv world clock))
b)

(1 (tdconci,l .. tdconci,n.p (argl .. argm) b")
(extends-binding b’ b)) )

Not e:
Hl establishes that the signatures in the systemstate fs are valid.
H2 establishes that the abs-arglist is valid.
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establishes that the conc-arglist is valid.

establishes that no guard violations are detected in the
course of analyzing form

establ i shes that the guards of all functions in the call tree
of formare conplete.

establishes that the evaluation of formtermninates wthout
exhausting the cl ock.

& & Eo

The functions EXTENDS-BINDING, MERGEABLE-BINDINGS, and MERGE-BINDINGS are defined
in Appendix B.3. Also in that appendix section are the statements and proofs of Lemmas EXTENDS-
BINDING-MONOTONIC and MERGE-BINDINGS-EXTENDS-BINDINGS. These functions and
lemmas are utilized in the following proof.

Proof of TC I NFER- OK

Note that the second conjunct of the conclusion prescribes that the
binding b’ is to cover exactly the collection of variables in the
descriptors under the quantifier. Any binding which happens to
contain excess el enments can be trimed as necessary to suit the
exact coverage requirenent. This is trivially obvious fromthe
definition of I.

We will proceed by induction on the structure of expressions.
Let us denote (E formenv world clock) with the abbreviation formval.
Case 1: formis an variable in the environnent

Denote this variable a;. By definition,
(E formenv world clock) = ar gj.

In this case, by definition, tc-infer returns a single result tuple:
(tc-infer var abs-alist conc-alist fs)
((((tdal .. tdan) —>tdai) conc-al i st ((tdcl .. tdcn) —>tdci)))

The descriptors returned for the form aj are thus the ones associ ated
with aiinthetv\n alists. W can use b as the binding we
need in the conclusion. Thus, our goal is:

Hl (and (valid-fs fs world clock)
H2 (1 (tdal .. tdam) (argl .. argm) b)
H3 (1 (tdcl .. tdcm) (argl .. argm) b)
H4 (not (equal (tc-infer formabs-alist conc-alist fs)
*guar d- vi ol ati on))
H5 (tc-all-called-functions-conplete formfs)
H6 (not (break-out-of-timep formval)) )
=>
(and
c1 (not (break-guard-violationp formval))
c2 (1 (tdal .. tdamtdai) (argl.. argm argi) b)
Cc3 (1 (tdcl .. tdcmtdci) (argl.. argm argi) b)
c (1 (tdcl .. tdcm) (argl .. argm) b)
c5 (extends-binding b b))

No guard violation can occur on evaluation of a variable, so Cl1
hol ds. The expansion of H2 is identical to the first mconjuncts
of the expansion of C2, and the expansion of H3 is identical to
the first mconjuncts of the expansion of C3. The ith conjunct
of the expansion of H2 is identical to the |last conjunct of the
expansi on of C2, and the ith conjunct of the expansion of H3 is
identical to the last conjunct of the expansion of C3. C4 is
identical to H3. C5 is trivially true
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Case 2: formis a self-evaluating literal (T, NIL, an integer, rational,
string, or character), or is a quoted form

In this case, by definition, tc-infer returns a list containing a

single tuple:

(tc-infer formabs-alist conc-alist fs)

((((tdal .. tdan) -> (descriptor-fromquote form)

conc-al i st
((tdcl .. tdcn) -> (descriptor-fromquote form)))

We can use b as the binding we need in the conclusion. Thus,
our goal is

Hl (and (valid-fs fs world clock)
H2 (I (tdaq .. tdag) (argq .. argyy) b)
H3 (1 (tdcl .. tdcm) (argl .. argm) b)
H4 (not (equal (tc-infer formabs-alist conc-alist fs)
*guar d-vi ol ati on))
H5 (tc-all-called-functions-conplete formfs)
H6 (not (break-out-of-timep formval)) )
=>
(and
(not (break-guard-violationp formval))
c2 (1 (tdal .. tdam (descriptor-fromquote form)
(argl .. argmformval)
b
c3 (1 (2dcl .. tdcm (descriptor-fromquote form)
(argl .. argmformval)
b
A (l (2dc1.. tdcpy) (argq .. argy) b)
c5 (extends-binding b b))

Q

No guard violation can occur on evaluation of a quoted form so
Cl hol ds.

We use the following | enmma, instantiating with form= form and
ot herwi se wi th namesakes.

Lema DESCRI PTOR- FROMt QUOTE- OK:

For any Lisp form binding environment env, Lisp world, type variable
bi nding b, and non-negative integer clock,

(and (is-quoted-formform
(clock # 0))
=>
(I (descriptor-fromquote form
(E formenv world clock)
b)

The proof of this lemm is presented in Appendix B.1.

The expansion of H2 is identical to the first mconjuncts of

t he expansi on of C2, and the expansion of H3 to the first m
conjuncts of the expansion of C3. Lema DESCRI PTOR- FROM QUOTE- OK
establishes the |l ast conjunct of both C2 and C3. C4 is identical
to H3. C5 is trivially true.

Case 3: formis an |F expression, say (IF test-formthen-formelse-form
We will adopt the notation that

(tc-infer (IF test-formthen-formelse-form
((al. tdal) .. (am. tdam))
((al. tdcl) .. (am. tdcm))



Type Checking for Common Lisp
Proofs of Selected Lemmas

fs)
= ((((mintdqq .. nintdq ) -> nintdy)
((al. t(’jconcll) ..'(am. tdconclm))
((maxtdqq .. maxtdq ) -> maxtdq))

.(.((rrintdnyl.. mintdy oy -> m ntdp)
((al. tdconcnyl) .. (am tdconcnm))
((maxtdn,l .. maxtdn,m) - naxtdn)))

(tc-infer test-form
((al. tdal) .. (am. tdam))
((al. tdcl) .. (am. tdcm))
fs
= ((((test- znntdll . test-mintd 'm) -> test- m'ntdl)
((al test- tdconcll) .. (am test- tdconclm))
((test- maxtdlyl . test- maxtdlm) -> test- rraxtdl))

(.(.(test m'ntd|1 . test- n”intd m) -> test- m'ntd|)
((al test- tdconc| 1) .. (a . test- tdconc|m))
((test- rTaxtd| 1 test - naxtd| m) -> test- rTaxtd|)))

(tc-infer then-form
((al. tdal) .. (am. tdam))
((aq . test-maxtdjq) .. (ay . test-maxtdj )
fs)
= ((((then-rrintdi’]_'l .. then- mntdllm) -> then-mntd; 1)
((al. then-tdconclll) .. (am t hen- tdconcllm))
((then—mixtdi,lyl ..,t1hen—rmxtd|,1'm) -> then- mathdI 1))

(((then-mi ntdi,oi’l .. then-ni ntdi’oi'm) -> then-ni ”tdi,oi)
((ag . then-tdconci0 1 - (aqm - then-tdconci,oi'm))

((then- 'thdlol,l .. then maxtdI ol,m) -> then-maxtdi’oi)))

(tc-infer else-form
((al. tdal) .. (am. tdam))
((al. test-maxtdi,l) .. (am. test-maxtdi,n,))
fs
—((((else?nntdlll . el se-mintd; 1,m) -> else-m'ntdill)
((al el se- tdconclll) .. (am el se—tdconci,lym))
((el se- malxtdI 11 - el se- rraxtdhl,m) -> el se- rraxtdill))

(((eI se- ni nt dj p|, .. else-nintd; p,.m) -> else-m ”tdi,pi)
((aq . else- tdconcip 1 .- (ay - else-tdconc; pim))

((el se- "aXtdi,pi,l .. el se-maxtd; |O|,m) -> el se- rmxtdi’pi)))

We note also that the result of
(tc-infer (IF test-formthen-formelse-form
((al. tdal) .. (am. tdam))
((aq . tdeq) .. (ap . tdcyy)
fs)
is by definition a subsequence of the append of the results
over all i for which we call

(tc-infer then-form
((aq . tdaq) .. (ay . tdayy)
((al. test-maxtdi!l) .. (am. test-naxtdi,m))
fs)

and

(tc-infer else-form

((al. tdal) .. (am. tdam))

229
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((al. test-maxtdi 1) .. (am. test-maxtdinp)
fs)

(We shall see later that we do sone filtering of cases such that
we do not necessarily call tc-infer on both the then-formand the
el se-formfor any given i.)

We can neke the inductive assunption of our lemma as it pertains to
recursive calls on subforns of the | F expression. Let us assune,
then, the follow ng hypothesis, for the test form

(and (valid-fs fs world clock)
(1 (tdal .. tdam) (argl .. argm) b)
(1 (tdcl .. tdcm) (argl .. argm) b)
(not (equal (tc-infer test-formabs-alist conc-alist fs)
*guard-viol ation))
(tc-all-called-functions-conplete test-formfs)
(not (break-out-of-timep (E test-formenv world clock))) )

=>

(and

(not (break-guard-violationp (E test-formenv world clock)))
for some i in 1..1

for sone binding b’ covering the followi ng descriptors,
(and (I (test- mntdll . test-mintd; mtest mntd)

(argl . argm (E test- form env world cl ock))
b)

(I (test- maxtdll . test- maxtdlmtest maxt dj)
(argq .. argy (E test-formenv world cl ock))
b)

(1 (test—tdconci,l .. test—tdconci,m)
(argl .. argm)
b)

(extends-binding b’" b)) )

We need to relieve the antecedents to this hypothesis.
(tc-all-called-functions-conplete formfs) trivially inplies
(tc-all-called-functions-conplete test-formfs). H6 inplies
(not (break-out-of-timep (E test-formenv world clock))), since
(E test-formenv world clock) is part of the evaluation of

(E (if test-formthen-formelse-form env world clock). H3
establ i shes the *guard-viol ation hypothesis, since if the latter
were not true, by definition of tc-infer, the former woul d not
be true, either. Since all the other antecedents to this

hypot hesis are all hypotheses in our theorem we have

establ i shed the concl usi ons:

(not (break-guard-violationp (E test-formenv world clock)))
for sone i in 1..1,
for some binding bj covering the follow ng descriptors,

(and (I (test- mntd i1 test- n”intdlmtest mntd)

&3

(argq .. argm (E test-formenv world cl ock))
b-)

(1 (test maxtdll . test-maxtd; mtest maxt d;)
(argl . argm(Etest formenv wor | d clock))
bl)

(1 (test-tdconci,l .. test-tdconci,m)

(argl .. argm)
bi)

(ext ends- bi ndi ng bi b))

By the definition of E, if the test expression of an IF

evaluates without a break to any non-NL val ue, the value of the

| F expression is the value returned by the evaluation of then-form
If it evaluates to NIL, the value of the IF expression is the val ue
returned by the evaluation of else-form Thus, consider the pool
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of results for all i in 1..1,

((test-mintdjq .. test-nmintdj  test-nintd;)
(test-tdconci 1 test-tdconci
(test-maxtdil.. test-naxtdimtest-maxtdi))

in H8. For any i where test-rraxtdi cannot possibly represent a

non-NI L val ue, we do not need to consider the possibility that
the correspondi ng context,

(test—m’ntdil.. test—rrintdim)
(test-tdconci,l .. test-tdconci,n.p
(test-maxtdi,l .. test-maxtdi’m)

is relevant in conputing a descriptor for then-form Simlarly,
if test—rmxtdi cannot possibly represent a NIL value, we do not

need to consider this context in connection with else-form

By definition, TC INFER performs a screening operation to deternine
whi ch of the test-formtuples need to be considered as a context for
anal yzing then-formand el se-form Specifically, TC INFER unifies
each test-maxtdj with a screening descriptor

(*OR $CHARACTER $I NTEGER $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL
$STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL) )

removi ng from consideration in then-formany tuple for which
this unification returns *EMPTY. Sinmilarly, for the else arm$N L
is used as a screening descriptor.

So now | et us consider two cases, depending on the outcone of the
eval uation of test-form

Case 3.1 (E test-formenv world clock) = some non-N L val ue
Thus, the value returned by the IF is the value returned by then-form
For any binding b (since the screening descriptor is variable-free),

(I (*or $character $integer $non-integer-rational $non-t-nil-synbol
$string $t (*cons *universal *universal))
(E test-formenv world clock)
b)

Consi der each tuple fromthe test-form
The formal justification for the screening operation uses the | emma:

Lemma DUNI FY- DESCRI PTORS- | NTERFACE- OK
For any descriptors tda and tdb, Lisp value v and fully
instantiating binding of type variables to Lisp values b,

(and (I tda v b)
(1 tdb v b))
=>
(I (dunify-descriptors-interface tda tdb) v b)

instantiated with v = (E test-formenv world cl ock),

tdl = test-rraxtdi, and

td2 = (*or $character $integer $non-integer-rational $non-t-nil-synbol
$string $t (*cons *universal *universal)).

Consi der the case (dunify-descriptors-interface tdl td2) = *enpty.
(I *enpty (E test-formenv world clock) b) = nil. Therefore, there
is no binding bi such that

(1 test-rraxtdi (E test-formenv world clock) bi)
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is true. This being the case, we need not consider this tuple
in analyzing then-form since there is no way this tuple can
signify a context which can result in a non-NIL value for the
test form Renoving it fromthe pool will not affect the
truth of H8.

By definition, TC |INFER uses each of the rensining
(test-rraxtdil.. test-rraxtdim)
to forma CONC-ALIST for a recursive call:

(tc-infer then-form
((al. tdal) .. (am. tdam))
((al. test-rraxtdi 1) .. (am. test-maxtdim))
fs)

So use TG INFER-OK as an inductive assunption applied to then-form
We know for any i and bi for which H8 holds, we can use this

i nductive assunption, since HL is equal to Hl' (by H' we nean
here the i-th hypothesis of the inductive assunption), H2 equals
H2', H8 guarantees H3', H4 guarantees H4', since if TC- | NFER
returned *guard-violation for the then-form it would also return
*guard-violation for the IF, H5 guarantees H5', since then-form
is a conponent of the IF, and H6 guarantees H6', since under our
case assunption, the evaluation of the then-formis part of the
eval uation of the |F, and since there was sufficient clock for
the whol e thing, there nust have been sufficient clock for any
subsi diary conputation. Thus, we establish the conclusion of
the inductive hypothesis, where 0j is the number of

tupl es generated by recursive calls to TG INFER for the i-th
type in the test-formresult,

(and
(not (break-guard-violationp (E then-formenv world clock)))
for all i such that the ith tuple survived the screen,

for sone j in [1..oi],
for sone bi- covering the follow ng descriptors,
(and (I (t’hen-m' “tdi,',l .. then-m ntdi,-’m t hen-m ”tdi,j)
(argl ..oargm (E then-formenv world clock))

I!
(1 (tLen—maxtdi-l .. then—naxtdi-mthen—naxtdi i)
(argq .. argy (E then-formenv world clock))

bi,')
(1 (tLen-tdconci,j,l . then-tdCOﬂCi,j,rrp

(argl .. argm)
bi,j)
(ext ends- bi ndi ng bij bi)))

Since the result returned by TC-INFER for the | F includes the
appended tuples of all the results fromthe recursive calls on
then-form H9 virtually establishes our goal. Since the value

of the IF is the value returned for then-form the first conjunct
of H9 establishes Cl. Using the sane existential quantifiers,
the first three conjuncts of the second conjunct of H9 establish
the first three conjuncts of C2. H8 established that

(ext ends- bi ndi ng bi b), and thus the final conjunct of H9 and

the transitivity of extends-binding, given by Lenmma
EXTENDS- Bl NDI NG TRANSI Tl VE, establish the final conjunct of C2.
Thus, we are done with this case.

Case 3.2 (E test-formenv world clock) = nil
The argunent is exactly anal ogous to Case 3.1, using $NIL for the

screen and using a recursive call on else-formto conpute the
tupl es whi ch guarantee the result.
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Case 4. formis a function call, say (f forml .. forrrb)
Let us adopt the followi ng notation:

(tc-infer (f form_l_.. forrrb)
((al. tdal) .. (am. tdam))
((al. tdcl) .. (am. tdcm))
fs)

(_(((m'ntdlll .. mintdg ) -> nintdy)
((aq . tdeconcqq) .. (ap - tdconcq p))
((maxtdyq .. ﬁaxtdllnp -> maxtdy))

.(.((m'ntdnyl . mintdy ) > mintdp)
((al. tdconcnl) .. (am tdconcnm))
((maxtdpq - r%axtdn,m) -> maxtdp)))

and for all i in[1..0], (where o is the nunber of function
ar gunent s)

(tc-infer for
((al. tdal) .. (am. tdam))

((aq . tdeq) .. (apy . tdcyy)
fs)

((((mmdill . m'ntdilm) -> m'ntdi 1)
((al. t'dconc; 11) .. (am tdconcllm))
(("aXtdl,l,l . maxtdllm) -> maxt d; 1))

(((mi AL MGy > Mt )
((aq . tdconci,|i'1) - (ap - tdconci’|i!m))
((rraxtdi,|i,1 .. rraXtdiJi,l'T'p -> WﬁXtdiJi)))

|l.e., there are Ii different 3-tuples generated for the ith
ar gunment .

We assune our |emmm inductively as it applies to each of the
function argunents. The tc-all-called-functions-conplete
hypot heses are trivially inplied by H5 the break-out-of-tinmep
hypot heses are guaranteed by H6, and the *guard-viol ation
hypot hesis is guaranteed by H3, since if the former were not
true, by definition of tc-infer, the latter would not hold
either. Since the antecedents for each of the other inductive
hypot heses are identical with the hypotheses of our |enmm, we
will sinply use the conclusion as our inductive hypothesis for
each actual argunent to f and list it as H7

H7 for each i in [1..0],
(and
(not (break-guard-violationp (E form env world clock)))
for some j in [1..5;] (the nunber of tuples for this actual),
there exists a bi ndl ng b i covering the descriptors bel ow
)
(and (I (mntd,J,l.. mntdIJmmntd i)
(argl ..oargm (E form env wor | d cl ock))
bj i)
(1 ("aXtdl,,l" maxth rTaxtd )
(argl S.oargm (E forn] env V\Drld cl ock))

b; J)

(1 (tdconcI 1 tdconcijm)
(argl .. argm)
bi i)

(extéjnds-bi nding bj; b)) )
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Furthernore by the (valid-fs fs world clock) hypothesis HlL applied
to f, we can assume the correctness of the signature fromfs for
the function f. Let us denote the fornal paraneters of f to be
Vi .- Vo the guard formguard-form and the body body-form

Let us also denote that the signature for f contains the guard
(gtdq .. gtdo)

and the segnments:

((Stdll.. Stdlo) -> Stdl) .. (Stdpl . Stdpo) -> Stdp)

From (valid-fs fs world clock), we know the followi ng about this
si gnature:

(and
(tc-all-called-functions-conplete guard-formfs)
(tc-all-called-functions-conplete body fs)
(not (break-out-of-timep
(i world,clock

((E forrrl env world clock) .. (E fornb env world clock)))))

(not (null (E guard-form
((vq .- (Eform env world clock))

(vn . (E fornb env world clock)))
world clock))) )
=>
(and
C1 (not (break- ?uard vi ol ati onp
fwordcock

((E forrrtl_ env world clock) .. (E fornb env world clock)))))
(074 for some k in [1..p]
for sone binding b of type variables to Lisp val ues
covering stdkl . stdko and stdk

(1 (stdkl . stdk0 std)
((E forrrn_ env world cI ock) .. (E fornb env world clock)
(f world,clock

((E form_l_ env world clock) .. (E fornb env world clock))))
b) )

Notice that new variables are introduced to our problemstate with
the use of this signature. By definition, when TC | NFER uses a
signature fromfs, it replaces all the variables in the stored
representation of the signature with "fresh" or previously unused
vari ables. Thus, for any two triples returned by TC I NFER, the
variables they share are linmted to those in the argunent |ist of
the call.

We would like to use the conclusion of the above-stated inplication
characterizing the signature of f. First, we nust relieve its
antecedents. H5 guarantees its tc-all-called-functions-conplete

hypot heses. H6 guarantees its break-out-of-tinep hypothesis,
since the operation
(fworld’CIOC (E formy env world clock) .. (E form, env wor |l d clock)))

is just a part of the evaluation of form and H6 ensures adequate
clock for the entire evaluation. The remaining hypothesis
reflects the guard verification step, which is handl ed as foll ows.

For each actual paraneter (E forrq env world clock), TC INFER

gat hers fromthe maxi mal segnents the result types known to be possible
(the maxtd 's fromH7) and disjoins themwith *OR as a

conservatlvely | arge representation of the type of

(E form env world clock). 1.e., consider in H7 the result

descriptors maxtdij fromthe expansion for each j of:
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for sone j in [1..Ii]
for sone binding bij'
(1 (rthdi,j,l .. naxtdi,j’m maxtdi,-)
(argq .. argy (E form env world clock))
i j)
Expand the definition of | and take the Il ast conjunct of the result,

for sone j in [1..Ii]
for sone binding bi i
(1 maxtdij (E forrri env world cl ock) bij)

We can generalize the descriptor in each case by disjoining it
with all the other rraxtdi i'’s. This is clearly valid, since

the original call to | is in the i mediate expansion of | in our
transforned result:

H3 for some j in [1..Ii]
for sone binding bi i
(I ((*or maxtdjq". maxtdj|))
1 !I

(E forrr] env worl d cl ock)
b
Now we wi sh to consider together the descriptors forned in this

manner for each i. Recall that the form above holds for all
i inl .o. W wishto claim

HO for sorrejlin l..Il, .., for sorTejOin l..IO,

(and
(1 ((*or rraxtd]_,l .. maxtlel)

(*or maxtdO,]_ .. rraxtd0,|0))
((E forml env world clock)

(E fornb env world clock))

(mer ge- bi ndi ngs* bl,jl .. bO,jo))

(ext ends- bi ndi ng (nerge-bindi ngs* bl.jl .. bO,jo) b))

MERGE- Bl NDI NGS* sinply nerges all the bindings in its argunent |ist,
usi ng MERCE- Bl NDI NGS. See Appendi x B. 3.

Modul o t he binding paraneter, the expansion of | in this form
is the conjunction of the forms just previously constructed.
To establish H9, we need show for all i in 1..0,

for sone jl in 1..I1, .., for sone jo in 1..I0,

(I ((*or maxtd;q .. maxtd; |i))
(E forrq env world cl ock)
(mer ge- bi ndi ngs* b1,j1 .. bO,jo))

Consi der the bindings so nerged to be sone collection of bindings
which sufficed for HB. W would like to use Lenma

MERGE- Bl NDI NGS- EXTENDS- Bl NDI NGS t o show t hat

mer ge- bi ndings* bq: .. bn;
( [¢] g 1’Jl O’JO)
extends each of its constituents. To do so, we nust show that each

of the constituents is nergeable with the others. Since each is an
extension of b, all the bindings of variables fromb are consistent
anmong the constituents. The binding el ements added by extension to
each were the result of distinct calls of TC-INFER on the various
for rq’ s, and since TG INFER introduces only variabl es which

remai n uni que throughout the life of the analysis, and since the
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bi ndings fromthe inductive assunptions contain no extraneous

el enents, no two invocations of TGINFER will result in new bindings
whi ch conflict with one another in a nmerge. Thus, all the
constituent bindings are nergeable with one another. And therefore
by Lenma EXTENDS- Bl NDI NG MONOTONI C, the cl ai m above follows directly
fromH8. Furthernore, since H7 establishes that each bj;

used in the nerge extends b, and since we just determ ned that the
mer ge extends each constituent bi i, by Lemma

EXTENDS- Bl NDI NG- TRANSI TI VE we establ i sh the second conj unct of H9,
thus establishing the whole.

Having formed the *dlist descriptor in H9, TC |INFER perforns
the foll owi ng conputation:

H10 (contained-in-interface (*dlist (*or maxtdlyl .. maxtlel)

(*or rraxtdoyl .. maxtdo,|0))
(*dlist gtdq .. gtdg))

Had this test failed, TC INFER would have returned *guard-violation
as its result, but H4 guarantees this did not happen, so we know
the contai nnent test succeeded. Thus, H10 is established.

Now we instantiate Lenma GUARD- COWPLETE (See Section 3.6.1)
with fs = fs, clock = clock, world = world, n = o,

each argj = (E forrr] env world clock),
argtdl .. argtdn
= (*or maxtdlyl .. maxtlel) .. (*or rraxtdo,l .. ”aXtdO,Io)'

b = (nerge- bi ndi ngs* bl.jl .. bo,j ),

and rtdq .. rtdy = (gtdq .. gtdy).

Hl equals the Hl in GUARD- COMPLETE, H9 establishes its H2,

H10 equals its H3, and H6 guarantees its H4, since the guard
evaluation is a part of the larger evaluation for which there

is sufficient clock time. So we can use the conclusion of the
instantiated lemma to give us the final antecedent of the
signature fact fromvalid-fs for the signature of f. Henceforth,
we will have at our disposal its conclusion, which we tag H11.

Thus,
mis the nunber of identifiers in the context, indexed by g
o is the nunber of paranmeters in the call to f, indexed by
Ii is the number of tuples generated for each actual i, indexed by j
p is the nunber of segnents in the signature for f, indexed by k
n is the nunber of tuples for (f fornl .. fornb), i ndexed by s
q is the nunber of elenents in the cross product (see below), indexed
by h

Qur goal is:

(and

HlL (valid-fs fs world clock)

H2 (I (tdaq .. tdagy) (argq .. argpy) b)

H3 (I (tdcl .. tdcm) (argl .. argn.p b)

H4 (not (equal (tc-infer formabs-alist conc-alist fs)

*guard-vi ol ation))

H5 (tc-all-called-functions-conplete formfs)

H6 (not (break-out-of-tinep (E formenv world clock)))

H7 for each i in 1..0,
(and
(not (break-guard-violationp (E forrq env world clock)))
for sone j in [1..Ii] (the nunber of tuples for this actual),

there exists a binding bij covering the descriptors bel ow
(and (I (m ntdi,j,l .. m”tdi,j,m m“tdi,j)
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H8

H1

C1

c2

2R

(argl.. argm(Eform env world clock))
bj i)

(1 (maxtd ijl maxtd,erraxtd i)
(argl . argm (E forrr] env world cl ock))
bj i)

)
(1 (tdconc ,jl . tdconci,j,m)
(argl . argn.p
b; J)
(extends bi ndi ng b J b)) )
for each i in 1.
for sone j in [l I-]
for sone binding b
(1 ((*or naxtdll . rraxtdui))
(E forrq env world cl ock)
°i )
1 (and
(not (break- ?uard vi ol ati onp
fwordcock
((E forrrl env world clock) .. (E forrrb env world clock)))))
for some k in [1..p],
for sone binding b’ covering stdkl .. stdko and stdk,
(1 (Stdk,l .. Stdk,O Stdk)
((E form_l_ env world clock) .. (E fornb env world cl ock)
(1 world,clock
((E forml env world clock) .. (E fornb env world clock))))
b) ) )
=>
(and
(not (break-guard-violationp (E formenv world clock)))
for sone s in [1..n],
for sone binding b’’ covering the descriptors bel ow,
(and (I (m'ntds,l .. rTintdS,mrrintdS)
(argq .. argq formval)
b’ ")
(1 (maxtds,l .. maxtds,m maxtds)
(argl .. argmformval)
b")
(1 (tdconcsl.. tdconc m) (argq .. argy b'’")
(ext ends- bi ndi ng b’ b)) )

(H9 and H10 are no | onger useful and have been di scarded.)

The first conjunct of H7 for each fOI’IT] and the first conjunct

of H11l establishes our goal Cl, which says that the entire formwl|I
eval uate wi thout guard viol ation.

Now consi der H7 again. Dropping the break-guard-violation-p result
and making all the j quantifiers distinct via subscripting as we did
in deriving H9, and fixing eachbJ to be sone binding

whi ch serves for H7, we can restate this as
for somajlin 1..Il, .., for somajoin 1..IO,

for each i in 1l..0
(and (I (m ntdi,ji,l .. mnt di,ji,m m ntdiJi)
(argl ..oargm (E forn'] env world clock))
b i.)
L
(1 (rTaXtdi,ji,l .. maxt di,ji,m maXtdiJi)
(argl S.oargm (E forn'] env world clock))

237
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bj ji)
(1 (tdconci,ji’l .. tdconci'ji,m)
(argl .. argm)
bj ji)
(ext ends- bi ndi ng bi ji b))
B
Now, nerge all the b;:, just as we did above. The sane

i’

!

argunent as used above, regarding the nergeability of these bindings
and their binding extension properties, establishes

H12 for sone jl in 1..I1, .., for sone j0 in 1..I0,
for each i in 1l..0
(and (I (m ntdi,ji,l .. mnt di,ji,m mntdi,ji)
(argl S.oargm (E forn'] env world clock))
(er ge- bi ndi ngs* b1,j1 .. bO,jo))
(1 (rthdi,ji,l .. nHXtdi,ji,m rthdi,ji)
(argl S.oargm (E forrr] env world clock))
(er ge- bi ndi ngs* bl'jl .. bO,jo))
(1 (tdconci,ji’l .. tdconci’ji,m)

(argl .. argm)
(er ge- bi ndi ngs* bl,jl .. bO,jo))

(ext ends- bi ndi ng (nerge-bi ndi ngs* bl,jl .. bO,jo) b))

By definition of TC-INFER, the next operation of the checker
algorithmis to unify two lists of descriptors, each of which
represents the collected types of the variables in the environnent,
the types of the paraneters in the function call, and the type

of the result. One list corresponds to what is known about the
called function fromits signature, the other to what is known in
the environnent of the function call.

The first list is of the form
(*uni versal 1 *uni ver sal m Stdk,l .. stdk,0 stdk)

where each *universal 4 represents the type of the g-th
identifier in the environnent, each stdki represents the type
of the ith formal paraneter to the function call, and stdk represents

the result type. Each instance of the first list is trivially
constructed froma signature segnment for the called function.

The second list is of the form

(tdal.. tdamm'ntdl rrintdoj *uni versal),

Yj o
where each tday is sone representation of the type of
the gth vari ab?e in the environment, each m ntdi- represents

the type of the ith actual paranmeter to the function call, and

*uni versal represents the result type. This list nmust be
constructed fromwhat we have al ready deternined about

our actual paranmeters. Each such |ist nmust represent some

possi bl e conbi nation of the segnents for all the actual paraneters:

(tc-infer forrq
((al. tdal) .. (am. tdam))
((al. tdcl) .. (am. tdcm))
fs)

(_(((m'ntdill .. mintdjq ) -> nintd; 9
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((al . tdconci 11) .. (am . tdconci 1m))
((maxtdj 1 1 ..,r;axtdiyllm) -> naxtdi"l)’)

(((mi g MOty <> matdg )
((ag . tdconcui’l) - (ap - tdconc”i’m))
((’thdi,Ii,l . maxtdi,|i,m) -> ’thdi,Ii)))

This construction is essentially a cross product conbining the

m ni mal segnents for each paraneter into one collection of segnents
with multiple results, one for each actual parameter. Although
when we conbi ne these segnents, the actual paraneter descriptors
shuffle neatly into a list, the context descriptors get smashed
together via descriptor unification. Thus, each conbination of
two segnents yields a list of segnents, and each segnent fromthe
list nust be simlarly conbined with each segnent for the next
paraneter. Each elenment of the cross product describes a possible
conbi nation of the types of the variables in the context which

|l eads to the corresponding |ist of actual paraneter types.

The function performng the cross product operation is
TC MAKE- ARG CROSS- PRODUCT, and its correctness |lemma is:

Lemma TG MAKE- ARG CROSS- PRODUCT- OK

Where o is the nunber of paraneters in the function call,
1 - I0 are the lengths of the lists of segnments for the actual

par aneters,
mis the nunber of variables in the context,
and denoting
( TG MAKE- ARG- CROSS- PRODUCT

(((((m ntdlll,l .. m'ntdl,l,m) -> n‘intdlll)
(tdconclll .. tdconcl,l,m)

((maxtdy'q] .. maxtdqq) -> mextdqq)

(((mi ntdgy g e MAtdg) g > matdg | )
(tdconcly|11l .. tdconc1,|1,m)
(("aXtdl,ll,l .. naxtd1’|1,m) -> maxtd1,|1)))

((((m ntdo,l,l .. mnt do,l,m) ->m ”tdo,l)
(t d(:onc0 11 -t dconco,l!m)

((n’axtdozl,l .. maxtdg 1) -> mxtdg )

(((mintdg) 1 .. mntdg) ) -> mntdg))

L 01 L 01 L 0
(tdconc0’|o,1 .. tdconcoy|0,m)
(("aXtdO,lo,l .. "aXtdO,Io,m) -> rmxtdoJo)))))

(((cptdalyl .. cptdalym)
(cptdrll.. cptdrlo)
(cptdcoﬁcl 1 cptaconcl m)

.(.(cptdaql .. cptdaqm)
(cptdrq’1 .. cptdrq'O)
(cptdcoﬁcq,J_ .. cptaconcq,m)))

For any mintd, maxtd, and tdconc descriptors, type variable binding b,

non-negative integers Il .. In, m and o, Lisp values argq .. argmy
and Lisp val ues actual 1 - act ual o
for all i in[1..0],

for sone j in [l..Ii],
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(r (m ”tdi,j,l ..om ”tdi,j,m m ”tdi,j tdconci,j,l .. tdconci,j,m)
(argl S.oargm actuali argq - - argm)
b)
=>
for sone hin[1..q],
(1 (cptdah,l .. cptdah,m cptdrh,l .. cptdrh,o
cptdconchl .. cptdconchm)
(argq .. a?gm actual q .. "act ual 0 a9y -- argey
b)

The proof of this lemm is given in Appendix B.2.

For any jl..jofor whi ch H12 holds, we instantiate

this lemma with our triples, i.e., with nanmesakes throughout,
wi th each actuali instantiated with (E form env wor | d cl ock),

and with b = (merge-bindi ngs* blj]_ .. bOj ).
The ant ecedent for TC MAKE- ARG CROSS- PRODUCT-OK is trivially
inmplied by H12, so we establish its conclusion for the correct
]1]0
for somejlin 1..I1, .., for somejoin 1..I0,
for sone hin[1..q],
(1 (cptdahl.. cptdahm
cptdrhl.. cptdrho
cptdcohchl .. cptaconch”})
(argl.. argm
(Eforml env world clock) .. (Efornb env world clock)

argq .. argm)
(mer ge- bi ndi ngs* bl,jl .. bO,jo))

This is equivalent to the following, with the transfornation
acconpl i shed sinply by separating the independent conjuncts
of the list into two groups.

H13 for son‘ejlin 1..I1, .., for son‘ejoin 1..I0,
for sone hin[1l..q],
(and

(1 (cptdahl.. cptdahmcptdrhl.. cptdrho)
(argl S.oargm
(E forrrtl_ env world clock) .. (E fornb env world clock))
(mer ge- bi ndi ngs* bl,jl .. bO,jo))

(I (cptdconcy 1 .. cptdconcy )

(argl .. argm)
(mer ge- bi ndi ngs b1'j1 .. bO,jo)))

The next step in the algorithmis to unify each of the el ements
fromthe cross product (the desired property for one of which is
represented in the first conjunct of Hl13) with each of the segnents
fromthe signature of the called function (represented in H11).
Again, to make these descriptor lists align appropriately,

they will need to be padded here and there. In the cross product

el ements, we need only add a *universal descriptor to represent the
result of the function call. Since this introduces no new constraint,
what we know fromHL3 will inply our claimabout the extended cross

product el enents, giving us the revised hypothesis:

H13' for somajlin 1..I1, .., for sorrejoin 1..I0,
for sone hin[1l..q],
(and

(1 (cptdahl.. cptdahmcptdrhl.. cptdrho*universal)
(argl . argm ’ ’ ’
(Eforml env world clock) .. (Efornb env world clock)
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formval)
(‘mer ge- bi ndi ngs* bl,jl .. bO,jo))
(I (cptdconcy 1 .. cptdconcp )
(argq .. argpyy
(er ge- bi ndi ngs* blj]_ .. bojo)))

For f's signature segnents, represented in Hll, what is missing in this
mat chup are descriptors for each of the objects in the calling context.
These will each be represented also with *universal, giving us a

nmodi fi ed hypot hesi s:

H11' for sone k in [1..p]
for sone binding b’ of type variables to Lisp val ues
covering stdkl .. stdko and stdk
(1 (*universall .. *universalmstdkl .. stdko stdk)

(argq .. argm
(Eforrrl env world clock) .. (Eforrrb env world clock)

formval)
b’)

Note that any b’ and (rmerge-bindi ngs* bl- .. bo- )
1]1 iJo
are mergeabl e, since the variables fromthe segments of f are all

fresh and hence totally disjoint fromthose in the nerged binding.
Thus, by Lemra MERGE- Bl NDI NGS- EXTENDS- Bl NDI NGS,
(mer ge- bi ndi ng (ner ge- bi ndi ngs* bl- .. bai ) b))

1 OlJo

extends both its argunents, and hence by Lemm

EXTENDS- Bl NDI NG MONOTONI C, we can take any pair of bindings
whi ch serve in H11' and H13' and use their nerge wherever
ei ther appeared before. This gives us:

H14 for sone jl in 1..I1, .., for sone j0 in 1..I0,
for sone hin[1l..q],
for sone k in [1..p],
for sone binding b’ covering Stdk,l .. Stdk,o and stdk,
(and
(1 (cptdah’]_ .. cptdah,m cptdrh,l .. cptdrh,o *uni versal )
(argl c.oargm
(E formy env world clock) .. (E fornb env world clock)
formval)
(rer ge- bi ndi ngs (nerge- bi ndi ngs* bl'jl .. bO,jo) b))

(1 (cptdconchl .. cptdconchm)
(argl .. argm)
(mer ge- bi ndi ngs (ner ge- bi ndi ngs* bl,jl .. bO,jo) b))

(I (*universal 1 *uni ver sal m Stdk,l .. Stdk,O stdk)
(argl .. argm
(E forml env world clock) .. (E fornb env world cl ock)
formval)
(mer ge- bi ndi ngs (nerge- bi ndi ngs* bl,jl .. bO,jo) b))

Now we unify pairw se the descriptor lists fromHLl and H13, i.e.
each pair characterized by the first and third conjuncts of Hl4. W
create a list of results, each element of which is a list of the same
configuration as the arguments. If an *or is returned fromthe

uni fication, each disjunct becones an el enent of this list. |If

a simple list is returned, the length of the list is one. W

are just replacing the interpretation over the *or by the

exi stential quantifier over the interpretations of the disjuncts
(Note that this is just another instance where we observe the
packagi ng protocal for DUN FY- DESCRI PTORS- | NTERFACE when t he
argunments are *dlists. See the discussion in Section 6.6.2.)

So let us denote this result:
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((m ntdlll ...om ntdl,m m nt dl,actuall ..om ntdl,actuajo m ntdl)

(m nt dtk hul .. mnt dtk h'm m nt dtk h,actuall .. mnt dtk h,actualo m nt dtk h) ) f
where by mintd we refer to a descriptor
y 1,actual p

corresponding to the type of the first actual paraneter, i.e, the
type of (Eforrrn_ env world clock), etc., and by tkh

we refer to the nunber of results produced by the unifier for the
k-th formfromHL1l" (third conjunct of H14) and the h-th formfrom
H13' (first conjunct of H14).

These mintd' s are the descriptors which will finally be a part of the
result returned by TCG-INFER In particular, in each 3-tuple of the
result, the mininmal segnent will be extracted fromone of these
unified results. The appended results of all the pairw se
unifications will formthe entire collection of mniml segnents.

So we instantiate Lemma DUN FY- DESCRI PTORS- | NTERFACE- K as fol | ows,
for each hin 1..q and k in 1..p such that Hl4 is satisfied,

(and (I (*universal 1 *uni ver sal m Stdk,l .. Stdk,o stdk)
(argl ..oargm
(E forrrl env world clock) .. (E fornb env world clock)
formval)
(rer ge- bi ndi ngs (mer ge- bi ndi ngs* bl.jl . bO,jo) b))

(1 (cptdah,J_ .. cptdah,m cptdrh,l .. cptdrh,o *uni versal )
(argl c.oargm
(E forml env world clock) .. (E fornb env world clock)
formval)
(mer ge- bi ndi ngs (nerge- bi ndi ngs* b1,j1 .. bO,jo) b')))
=>
for sone s in l"tk,h'
(I (m ”tds,l ..om ntds,m m nt ds,actuall .oom ntdS,aC’[ualo m nt ds)
(argl S.oargm
(E forrrl env world clock) .. (E forrrb env world clock)

formval)
(mer ge- bi ndi ngs (nerge- bi ndi ngs* b1'j1 .. bO,jo) b))

Since we know that sonme descriptor list fromeach of H11' and
H13' satisfies the predicate with the appropriate bindings,
then by this | enma sone descriptor list fromthe collected
results of all the pairwi se unifications satisfies the

concl usion. Thus,

for sorrejlin 1..I1, .., for sorTejOin 1..I0,
for sone s indexing the list of collected results,

(r (m ntds,l ..om ntdS,m mi nt ds,actuall — ntds,actualo nintdg
(argq .. argm

(E forrrl env world clock) .. (E forrrb env world clock)
formval)
(er ge- bi ndi ngs ( nerge- bi ndi ngs* bl'jl .. bO,jo) b))

Since we no |l onger need the descriptors for the actual paraneters, we
can drop themfromthis predicate, giving us our mninml segments
and their correctness specification:

for somajlin 1..I1, .., for sorrejoin l..IO,
for sone s indexing the list of collected results,
(1 (rﬁntds’l.. mntdsmm'ntds)
(argl.. argmformval)

(mer ge- bi ndi ngs (nerge- bi ndi ngs* bl,jl .. bO,jo) b))
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and we have established C2 of our goal.

These collected results are re-paired with the respective conc-alists
whi ch acconpani ed each of the cross product descriptors. In cases
where a particular unification produced nultiple results, the
conc-alist is paired with each of the results. Thus, the truth of

(1 (cptdconchl .. cptdconchm)

(argq .. argpy
(mer ge- bi ndi ngs (nerge- bi ndi ngs* blj]_ .. boj ) b))
1 lo

whi ch was established in Hl4, is preserved in the conclusion, where s
is the index rather than h. This establishes C4. The cptdconc's are
the tdconc’s of our ultimate result.

The maxi mal segnents for each tuple are conputed by conbining via

uni fication of the descriptors in each mniml segnment/conc-alist
pair. C4 represents what we know of the conc-alist paired with

each m nimal segnent. Again, since the CONC- ALI ST gives only
descriptors for the types of the variables in the environment and
says nothing about the type of the result of the function call (i.e.,
the conc-alist is n-ary and the mininml segnment is has arity n+l), we
need to pad the descriptor lists associated with the CONC-ALI ST before
unifying it with our mniml segments. W sinply add a *universal to
correspond to the result type. Cearly, the result value satisfies
*uni versal. Thus, for each s, we performthe unification:

(duni fy-descriptors-interface
(*dlist tdconcsl .. tdconc m *uni ver sal )
ist mnt .. mint m nt
*dl i intdgq ds,m d

((*dli st mixtds,]_’l .. nHXtdS,l,m nHXtdS,l)
(*dli st maXtdS,X,l .. maxt dS,X,m maxtdx’s))

I.e., for any given mninmal segnent, unifying against the CONC- ALI ST
may produce nultiple results, and we nake a list of them Once again,
we i nvoke DUNI FY- DESCRI PTORS- | NTERFACE- OK, instantiated for each

conbi nati on:

(and (I (tdconcs,l .. tdconcS,m *uni versal)
(argl S.oargm formval)
(mer ge- bi ndi ngs (nerge- bi ndi ngs* b1,j1 .. bO,jo) b))

(1 (rrintds’l.. MntdsmMntds)
(argl .. argmformval)
(mer ge- bi ndi ngs (nerge-bi ndi ngs bl,jl .. bO,jo) b)))

=>
for sone y in [1..X]
(1 ("aXtdS,y,l .. maxt dS,y,m rraxtds’y)
(argl Sooargm formval)
(mer ge- bi ndi ngs (nerge-bi ndi ngs bl,jl .. bO,jo) b))

Thus, each mnimal segnent, at |east one of which we have already
shown to satisfy Cl for any given paraneter val ues passing the guard
test, produces via unification with the CONC ALI ST sone nunber of
maxi mal segnents, and is formed into a mninmal segnent/conc-alist/
maxi mal segnent triple with each of them W just denonstrated

that if our mininmal segnment and our CONC-ALI ST are consistent with
our given values, then one of the maxi mal segnments will be

consi stent, too, and thus, for one of the triples, all are consistent.
The collection of triples thus forned for all the m ninal
segnent/conc-alist pairs already conputed is the conplete set
returned by TC- I NFER, and we have guaranteed that one of them
satisfies all of C2, C3, and C4. The nerged binding is the

bi nding used i n each conjunct, and since we have already shown
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that it is an extension of b, it satisfies C5 as well.
QED.

B.1 The Proof of DESCRIPTOR-FROM-QUOTE-OK

The code for DESCRIPTOR-FROM-QUOTE appearsin Appendix G.7.
Lemma DESCRI PTOR- FROVF QUOTE- OK

For any Lisp formform binding environnent env, world world, and
non-negative integer clock clock,

(and (is-quoted-formform
(clock # 0))
=>
(I (descriptor-fromquote form
(E formenv world clock)
b)

IS QUOTED-FORM returns T if its argument is a self-evaluating literal (T, NIL, a character, an integer, a
rational, a string, or a keyword) or an explicitly quoted form. DESCRIPTOR-FROM-QUOTE derives a
descriptor for any such form.

Lemma DESCRIPTOR-FROM-QUOTE-OK isashell for the following immediately subsidiary lemma.
Lemma DESCRI PTOR- FROVF QUOTED- FORM OK

For any Lisp formform binding environnent env, world world, and
non-negative integer clock clock,

(clock # 0)

=>

(I (descriptor-fromquoted-formform
(E (quote form env world clock)
b)

Proof of DESCRI PTOR- FROM QUOTE- OK

Case 1: formis T, NIL, a character, an integer, a rational,
a string, or a keyword

By the definition of E,

(E formenv world clock) = (E (quote form env world cl ock)
Using this substitution, the result follows directly from
Lema DESCRI PTOR- FROM QUOTED- FORM OK, instantiated with
form= form

Case 2: formis a cons whose car is the atom quote

The result follows directly fromusing Lenma

DESCRI PTOR- FROM QUOTED- FORM OK instantiated with form= (cadr form.
Proof of DESCRI PTOR- FROM QUOTED- FORM OK

By induction on the cons structure of forns.

Eval uation of quoted forns requires no clock time, so (clock # 0)
guarantees the E in the conclusion will not return break-out-of-tinme.
Since there are no function calls to evaluate, it will not return

a break-guard-viol ation break, either.

Case 1. form= nil
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By definition, (descriptor-fromquoted-formnil) = $nil
By definition, (E nil env world clock) = nil
By definition, (I $nil nil b) =1t

Cases 2: form= T, an integer, a non-integer rational, a character,
or a string

As with Case 1. E returns formin each case.
Case 3: formis of the form(cons car-formecdr-form
By definition,
(descriptor-fromquoted-form (cons car-formcdr-fornj)

(*cons (descriptor-fromquoted-formcar-form
(descriptor-fromquoted-formecdr-form)

Denote the result of (descriptor-fromquoted-formcar-form
as tdcar and the result of (descriptor-fromquoted-formcdr-form
as tdcdr. Use the inductive assunptions that

(1 tdcar (E (quote car-form env world clock) b)
(I tdedr (E (quote cdr-form env world clock) b)

By the definition of E,

(E (quote (cons car-formcdr-form) env world clock)

(cons car-formcdr-form

car-form
cdr-form

(E (quote car-forn) env world clock)
(E (quote cdr-form env world clock)

Thus, by equality substitution,

(E (quote (cons car-formcdr-fornm)) env world cl ock)

(cons (E (quote car-form env world clock)
(E (quote cdr-form) env world clock))

We wish to prove

(I (*cons tdcar tdcdr)
(E (quote (cons car-formcdr-fornm)) env world cl ock)
b)

But by the equality just derived,

(I (*cons tdcar tdcdr)

(cons (E (quote car-form env world clock)
(E (quote cdr-form env world clock))

b)
which, by the definition of | and our inductive assunptions,
equal s t.
QED.

B.2 The Proof of TC-MAKE-ARG-CROSS-PRODUCT-OK

Here, as in al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Lemma TG MAKE- ARG- CROSS- PRODUCT- OK
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Where o is the nunber of paraneters in the function call,
Il .. I0 are the lengths of the lists of segnents for the actual

par anet ers,
mis the nunber of variables in the context,
and denoting
( TC- MAKE- ARG- CROSS- PRODUCT

(CC((m ntd1,1'1 .. mnt dl,l,rﬂ) ->m ntdlyl)
(tdconc1,1,1 .. tdconcl,lm)

((rthdl,l,l .. maxt dl,l,r:ﬂ) -> "aXtdl,l))

(((m Atdyg g MmNty o> matdg))
(tdconcl,ll,l .. tdconclyll,m)
((rraXtlel,l .. rraxtd1'|1,m) -> I’TBXtdl"l)))

((((ni ntdg1q -~ Mntdgqpy) -> mintdgq)
(tdconcoll,l .. tdconco’l,m)

(("aXtdO,l,l .. maxt do,l,m) -> rraxtdoyl))

(((nintdg) 1 .. mntdg) g -> nintdg|)

o o "0
(tdconcoJo,l . tdconcOJO’m)
((n'axtdoy|011 . rraxtd01|o,m) -> rraxtd0,|0)))))

(((Cptdal,l .. cptdalm)
(cptdrll.. cptdrlo)
(cptdcoﬁcl 1 cpt('jconcl m))

.(.(cptdaql .. cptdaqm)
(cptdrq']_ .. cptdrq'O)
(cptdcohcqyl .. cpt('jconcq’m)))

For any mintd, maxtd, and tdconc descriptors, type variable binding b,

non-negative integers Il .. In, m and o, Lisp values argq -. argm
and Lisp val ues actual 1 - act ual o
for all i in[1l..0],

for some j in [1..1j],

(r (m mdi,j,l .. rrintdi,-’m m'ntdi!j tdconci’j’l .. tdconcilj'm)
(argq .. argmq actualj argq .. argpy
b)
=>
for sone hin[1..q],
(1 (cptdahl .. cptdahmcptdrhl .. cptdrh0
cptdcoﬁchl .. cptéiconchm)’ ’

é;ﬁrgl S.oargm act ual 1 ..'actual0 argq - - argm)

Recadll that in the setting for TC-MAKE-ARG-CROSS-PRODUCT, each list of triples in its argument is
the result of the call to TC-INFER on one of the actua parameters in our function call. Each element in
the value of the call to TC-MAKE-ARG-CROSS-PRODUCT isthe result of combining one element from
each collection of segments corresponding to the actual parameters. Thus, each is a combination of m
segments.  The combinator formats the segments to align descriptors for matching values and calls
DUNIFY-DESCRIPTORS-INTERFACE.

Proof of TC MAKE- ARG CROSS- PRODUCT- OK
The proof is by induction on o, the nunber of paraneters.

Case 1. Base case, 0 =1
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By definition, TC MAKE- ARG CROSS- PRODUCT returns its argunent intact,
except for mnor reformatting. I|.e., q = Il, for each k in

1..m each cptdah,k =m ”tdl,h,k' each cptdrh,l =m ntdl,h'

and each cptdconch,k = tdconcl,h,k. Thus, the antecedent

inour lemma is identical to the conclusion.

Case 2: |nductive case,

We inductively assune the lenma for the first r paraneters, and show
that it holds for the first r+1. In our inductive assunption, we
use nanmes prefixed with sem -cptd.. rather than cptd.. to indicate
distinction fromthe cptd..’s in the conclusion. W can use the
concl usion of the inductive assunption, since its antecedent is
trivially inplied by our hypothesis for the r+1 case. Thus, our

goal is:
(and
HL for all i in [1..r+1],
for sone j in [1..Ii],

(r (m ”tdi,j,l Loom ntdi,j,m m'ntdiJ tdconci,j,l .. tdconci,j,m)
(argl S.oargm actuali argq - - argm)
b)
H2 for sone h,
(1 (sem’-cptdahl .. sem’-cptdahm
sem - cptdr hll .. sem-cptdr h'r
sen‘i-cptdcoﬁchl .. sem -cpt(’jconchm)
(argl ..oargm act ual 1 actualr ar'gl .. argm)
b) )
=>
for sone hin[1l..q],
(1 (Cptdah,l .. cptdah'm

cptdrhl .. cptdrhr_,_l
cpt dcoﬁch 1 - cpt aconch m)

(argq .. argy actual 1 .. actualoargl.. argp
b)

By definition of TG MAKE- ARG CROSS- PRODUCT, the forms
(cptdahl .. cptdahm cptdrhl .. cptdrhr+l cpt dconchl .. cpt dconchn.p
in the conclusion are conputed fromthe forns

(sem -cpt dah 1 sem - cpt dah m
sem’-cptdrhl.. sem’-cptdrhr
sem - cpt dcor’mh 1 sem - cpt aconch m)

fromH2 and the forns
(m ”tdi,j,l ..om ntdi,j,m m'ntdiJ tdconci,j,l .. tdconci,j,m)
fromHL in the foll owi ng nanner:

(sem -cpt dah 1 sem - cpt dah m
sem-cptdrhl.. sem’-cptdrhr
sem - cpt dcor’mh 1 sem - cpt ('jconch m)

in H2 is extended with a *universal descriptor after sem'-cptdrrh to
correspond to the r+1th paraneter, giving

(sem -cpt dah,l .. sem-cpt dah’m
sem -cptdr hil - sem -cptdr h,r
*uni ver sal
sem - cpt dconch'1 .. sem-cpt dconch'm)

Gven H2 is true, then H2 nodified in this way and wi th actual r+1
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inserted in the value list surely is also true, since the

expansion of the call to |l in H2 differs fromthe expansi on of
the call to |l in the augmented formonly with the conjunction
of (I *universal actual r+1 b), which is trivially true,

in the augnented form |1.e.,

(I (sem —cptdah’]_ .. sem —cptdah,m
sem -cptdr hil - sem -cptdr h,r
sem - cpt dconchyl .. sem -cpt dconch,m)
(argl .. argm act ual 1-- act ual rargq - argm)
b)
=>
(I (sem -cptdah,l .. sem -cptdah,m
sem -cptdr hil - sem - cptdr h,r
*uni ver sal
sem - cpt dconchyl .. sem -cpt dconch’m))
(argl S.oargm act ual 1 act ual r act ual r+1 argq -- argm)

b)
Simlarly,
(m ntdr+1,j,1 ..oom ntdr+1’j,m tdrr+1,j tdconcr_,_l’j,l . tdconcr+1’j,m)
(fromHL instantiated with i = r+l) is padded out with a

*uni versal for each paranmeter 1..r, giving

(m ”tdr+1,j,1 .. m'ntdr_,_l,j,m
*uni ver sal 1 *uni ver sal i

tdr r+1,j

tdconcr+1j 1 - tdconcr+1j m)

with the justification being:

(r (m mdr+1,j,1 .om mdr+1,j,m tdr r+1,j tdconcr_i_lljll .. IdCOﬂCr+1,j,rn)
(argl ..oargm act ual r+1 argq -- argm)
b)

=

(r (m ntdr+1j 1 m ntdr+1j m *uni ver sal 1 *uni versalr tdrr+1j
tdconcr_,_i’j 1 tdconcr_’,_:’]_j np '

(argl S.oargm act ual 1 act ual r+1 @rgq -- argm)
b)

Again, this justification is trivial, since we are only adding the
requirement that for i = 1..r, (I *universal actuali b) is true.

Now we unify *dlists made from our extended descriptors using

DUNI FY- DESCRI PTORS- | NTERFACE. We will split into cases, depending
on whet her DUNI FY- DESCRI PTORS- | NTERFACE returns a sinple *dlist or
an *or of *dlists.

Case 2.1 The result is the sinple *dlist
(*dlist cptdal .. cptdam cptdrl .. cptdrr+1 cpt dconcl .. cpt dconcm)

We use Lemma DUNI FY- DESCRI PTORS- | NTERFACE- OK, instantiated below. Its
concl usi on mat ches the above descriptor.

(and (I (sem’-cptdahll .. sem -cptdah'm
sem - cptdr hi - sem - cptdr h,r
*uni ver sal
sem - cpt dconch,l .. sem-cpt dconch,m)
(argl S.oargm act ual 1 act ual r+1 @rgq -- argm)

b)
(r (m ntdr+1,j,1 .. mntdr+1,j,m
*uni ver sal 1-- *uni ver sal i

tdr r+1,j
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td°°”°r+1,j,1 . tdconcr_,_l,j,n.p
(argl ..oargm act ual 1 act ual r+1 @rgq -- argm)
b))

=>

(1 (cptdal .. cptdam cptdrl .. cptdrr+1 cpt dconcl .. cpt dconcm)

(argl ..oargm act ual 1 act ual r+1 argq - argm)
b)

The hypot heses of this |l emma are relieved by the previously
stated | predicates on the padded fornms, so we establish the
concl usi on, which is the conclusion of our main goal.

Case 2.2 The result is the *or of *dlists
(*or (*dlist cptdalyl .. cptdalym
cptdr 11 - cptdr 1,r+1
cptdconclyl .. cptdconclym)

.(;dlist cptdatl .. cptdatm

cptdrt 1 cptdrt r+1
cpt dcc;nct 1 cpt’dconct n.p)

In this case, the sane deduction is true of the *or formas was true
of the sinple *dlist fromCase 3.1. But we split the result into
separate elenments in the cross product, where each elenent is a

di sjunct of the *or. Thus, Lemma DUNI FY- DESCRI PTORS- | NTERFACE- OK

gi ves

(or (I (cptdall .. cptdalm
cptdr 1'1 .. cptdr 1,I’+1
cptdcoﬁcll .. cptﬂconclm)
(argl .. aFgm act ual 1 "act ual r+1 argq - argm)
b)

(1 (cptdat,l .. cptdat,m
cptdrt,l .. cptdrt,r_,_l
cptdconct,l .. cptdconct,m)
(argl ..oargm act ual 1 act ual r+1 argq - argm)
b))

Repl acing the "or" with an existential quantifier, we just say that

for sone hin [1..t]
(1 (cptdahl .. cptdahm
cptdah':L .. cptdah'r_,_l
cptdcoﬁchl .. cpt('jconchm)
l(lerg]_ .. a}gm act ual 1 "act ual r+1 @rgq -- argm)

There is one such collection of results for each pair of descriptor
lists selected fromthose over which we quantified in HL and H2.
Thus, consider any pair where the first satisfied HL and the
second satisfied H2. The result just given establishes our

concl usion. QED.

249
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B.3 Binding Extension Lemmas

The definitions of several simple functions on bindings are as follows:

( DEFUN EXTENDS- Bl NDI NG (BL B2)
(I F (NULL B2)
T

(AND (ASSCC (CAR (CAR B2)) B1)
(EQUAL (CAR B2) (ASSOC (CAR (CAR B2)) B1))
( EXTENDS- BI NDI NG B1 (CDR B2)))))

( DEFUN MERGEABLE- Bl NDI NGS (Bl B2)
(IF (NULL B2)
T

(AND (1 F (ASSOC (CAR (CAR B2)) B1)
(EQUAL (CDR (CAR B2)) (CDR (ASSOC (CAR (CAR B2)) Bl)))
M
( MERGEABLE- Bl NDI NGS B1 (CDR B2)))))

( DEFUN MERGE- BI NDI NGS (B1 B2)
(I F (NULL B2)
Bl
(I F (ASSOC (CAR (CAR B2)) B1)
( MERGE- BI NDI NGS B1 (CDR B2))
(CONS (CAR B2) (MERGE-BI NDINGS BL (CDR B2))))))

( DEFUN MERGE- BI NDI NGS* ( BLI ST)
(I'F (NULL BLIST)
BLI ST
( MERGE- Bl NDI NGS ( CAR BLI ST) ( MERGE- Bl NDI NGS* ( CDR BLI ST)))))

Here are some lemmas about these functions which are used in the proof of Lemma TC-INFER-OK.

Lemma EXTENDS- Bl NDI NG- MONOTONI C

For any descriptors td, Lisp value v, and bindings b and b’
where b covers the type variables in td

(and (I td v b)
(extends-binding b b))
=>

(I td v b")

Proof of Lemma EXTENDS- Bl NDI NG MONOTONI C

By the definition of EXTENDS-BI NDI NG every binding inbis
preserved in b'. Thus, the conclusion follows trivially.
Lemra MERGE- Bl NDI NGS- EXTENDS- Bl NDI NGS

For all type variable bindings bl and b2

(mer geabl e- bi ndi ngs bl b2)

=>

(and (extends-bindi ng (nerge-bindings bl b2) bl)

(ext ends- bi ndi ng (nerge-bindings bl b2) b2))

Proof of Lemma MERGE- Bl NDI NGS- EXTENDS- Bl NDI NGS

Sinmpl e inspection of the definition of MERGE-BI NDI NGS shows
bl is included in the result inits entirety, and no new

binding is included for a variable in the domain of bl
So the first conjunct of the conclusion is trivially true
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(mer geabl e- bi ndi ngs bl b2) says that if a variable & occurs in
both bl and b2, it is bound to the sane value. MERGE- Bl NDI NGS
sinply cons-es into the result any entry fromb2 for which

the variable is not in the donain of bl. So every entry

in b2 appears in (nerge-bindings bl b2), either because it

al so appears in bl and is hence in the result, or because

on account of its not being in the bl, it is cons-ed to

the result. Thus, the second conjunct is also trivially true

Lenma EXTENDS- Bl NDI NG TRANSI Tl VE
For all type bindings bl, b2, and b3

(and (extends-binding b2 bl)
(ext ends- bi ndi ng b3 b2))

=>

(ext ends- bi ndi ng b3 bl)

Proof of Lenma EXTENDS- Bl NDI NG TRANSI Tl VE

This is obvious. (extends-binding b2 bl) states that every
binding elenent in bl is present in b2. (extends-binding b3 b2)
states that every binding elenent in b2, including all the
elenments frombl, is present in b3. This establishes the

goal

B.5 TheUnifier -- DUNIFY-DESCRIPTORS

This section is a collection of detailed proofs of some significant lemmas which contributed to the proof
of DUNIFY-DESCRIPTORS-INTERFACE-OK (see Section 7.6). The last subsection includes proofs for
some of the rules with which DUNIFY -DESCRIPTORS handles the case where both arguments are * REC
descriptors. Therules are stated in Section 6.6.3.

B.4 Proof of DAPPLY-SUBST-LIST-OK

Here, as in al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Lemra DAPPLY- SUBST- LI ST- OK

For any well-formed substitution s, descriptor td, binding b
and value v, (where td can be a *dlist containing n descriptors
iff vis avalue list of Iength n, in which case the call to

is onthe list of n descriptors)

(and (interp-substs s b) (I td v b))

=>
(I (dapply-subst-list s td) v b)

A discussion of well-formed substitutions appears in Section 6.6.3, and the definition of the function
WELL-FORMED-SUBSTS, which implements the well-formedness test, isin Appendix G.8. Essentially,
each substitution element which maps a variable to another variable must be downward directed in its
mapping with respect to alexical ordering for variable names. Also, no circularities may exist within the
substitution.

The definition of DAPPLY-SUBST-LIST isasfollows:
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( DEFUN DAPPLY- SUBST- LI ST ( SUBSTS THI NG
(LET ((ATTEMPT (DAPPLY- SUBST-LI ST-1 SUBSTS THING)))
(I F (NOT (EQUAL ATTEMPT THING))
( DAPPLY- SUBST- LI ST SUBSTS ATTEMPT)
ATTEMPT)))

( DEFUN DAPPLY- SUBST- LI ST-1 ( SUBSTS THI NG)
(I F (NULL SUBSTS)
THI NG
( DAPPLY- SUBST- LI ST- 1
(CDR SUBSTS)
(SUBST (CDR (CAR SUBSTS))
(CAR (CAR SUBSTS))
THI NG : TEST # EQUAL))))

We will factor the proof, using the following lemma, which characterizes DAPPLY-SUBST-LIST-1
rather than DAPPLY-SUBST-LIST.

Lemma DAPPLY- SUBST- LI ST- OK- 1

For any well-fornmed substitution s, descriptor td, binding b
and value v, (where td can be a *dlist containing n descriptors
iff vis avalue list of length n, in which case the call to

is onthe list of n descriptors)

(and (interp-substs s b) (I td v b))

=>

(I (dapply-subst-list-1 s td) v b)

Proof of Lemma DAPPLY- SUBST- LI ST- K
The proof is by conputational induction on the nunber of
conputational steps in the evaluation of the top I evel cal
to (dapply-subst-list s td). This is a partial correctness proof,
since we are not proving termnation. Thus, we do not rule out
the possibility that the nunber of conputational steps is
infinitely large

Qur inductive assunption, which we can apply on any subsidiary
call of dapply-subst-list, is the lenma itself.

Case 1. (dapply-subst-list-1 s td) = td
Trivial. 1In this case (dapply-subst-list s td) = td and
(dappl y-subst-list s td) = td. So the conclusion is equa
to the second hypothesis.
Case 2. (dapply-subst-list-1 s td) # td
In this case, in the conclusion
(dappl y-subst-list s td)
(dappl y-subst-1ist (dapply-subst-list-1 s td) td)
Apply Lenma DAPPLY- SUBST-LI ST-OK-1, instantiated w th namesakes
Since its hypotheses are the hypotheses of our goal, we establish
its conclusion
(I (dapply-subst-list-1 s td) v b)
Now apply our inductive assunption, instantiated with

td = (dapply-subst-list-1 s td), s =s, v=v, and b = b
Thi s establishes the conclusion. CQED.

Proof of Lenmma DAPPLY- SUBST- LI ST- K- 1
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By induction on the length of s.
Case 1: (Base case) length of s =0

Trivial. (dapply-subst-list-1 s td) =td. The conclusion of the
lemma is equal to the second hypot hesis.

Case 2: (Inductive step) Assune the lemma for length of s = n and
prove it where length of s = n + 1

Qur goal is
(and
HL (interp-substs (sl .. Sn+l) b)
H2 (I td v b)
H3 (and (interp-substs (sl .. sn) b) (I td v b))
=>
(I (dapply-subst-list-1 (Sl .. sn) td) v b) )
=>

(I (dapply-subst-list-1 (Sl .. sn+1) td) v b)

We can use the conclusion of our inductive hypothesis, because
the expansion of interp-substs in Hl results in a conjunction
whose conjuncts are a superset of those in the expansion of
(interp-substs (sl .. sn) b) in the inductive hypothesis.

So our goal is now

(and

Hl (i nterp-substs (sl .. Sn+l) b)

H2 (1 td v b)

H3 (I (dapply-subst-list-1 (sl .. sn) td) v b) )
=>

(I (dapply-subst-list-1 (Sl .. sn+1) td) v b)
Let us denote Sp+1 = (& . tdi)
Case 2.1 & does not appear in (dapply-subst-list-1 (sl .. sn) td)
Trivial. By definition,
(dappl y-subst-list-1 (Sl .. sn+1) td)
(dapply-subst-list-1 (sq .. sp td)
Therefore, the goal is equal to the inductive hypothesis.
Case 2.2 & appears in (dapply-subst-list-1 (sl .. sn) td)
Expandi ng (dapply-subst-list-1 (sl .. sn+1) td) gives us
(subst & tdi (dappl y-subst-list-1 (sl .. sn) td)
Now consi der Lenmma APPLY- SUBST- K, which is stated just bel ow
Using this lenmmm, instantiated with
td = (dapply-subst-list-1 (sl .. sn) td) and all other
variables with their namesakes. H2 is equal to its first hypothesis,
and its second hypothesis is the conjunct representing & in the
expansion of HL. So we can use its conclusion, which establishes
our goal. QED.
Lemma APPLY- SUBST- OK

For any type variable & , descriptor td containing &, descriptor
tdi not containing &, Lisp value v, and type variable binding

b covering the variables in td,
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(and

HL (I td v b)
H2 (1 tdi (cdr (assoc & b)) b) )

=>

(I (subst tdi & td) v b)

Proof of Lemm APPLY- SUBST- CK

ESS5E

We present two argunents. The first is somewhat operational in
style and provides an intuitive approach. A nore rigorous account
follows. The operational account goes as follows.

Expand both calls of | in unison down to the point where we
encounter & in td. To this point, td and (subst tdi & td)

are equival ent, so the predicates generated in the evaluation of
I with respect to td and (subst tdi & td) are identical. At this

poi nt, though, where in td we encounter & , we encounter tdi in
(subst td; & td). Since we have been descending into the
structure of v as we descend into td and (subst tdi & td),

l et us also denote that we are considering the val ue Vi (j ust
to give it a name). W need to denpbnstrate, then, that

(1 & Vi b) => (I tdi Vi b). By the definition of I,

(1 & Vi b) = (equal (cdr (assoc & b))) Vi)' Substitute this
equality into the conclusion, (I tdi Vi b) to get

(1 tdi (cdr (assoc & b)) b). This is equal to our second

hypot hesi s, so we have succeeded with this joint encounter of &
intd and tdi in (subst tdi & td). Proceed through

the rest of the formin the same nmanner. An inportant thing to
not e when considering the correctness of this argunent is that the
descriptor |anguage and the interpreter | are such that the | ocal
repl acement of & in td by tdi produces a strictly |ocal

effect on the evaluation of | with respect to the two descriptors.
Now for the nore rigorous argunent.
By induction on the structure of descriptors.

Case 1. td is one of $character, $integer, $nil, $non-integer-rational
$non-t-nil-synbol, $string, $t, *enpty, or *universal

subst td; & t = td, equating the conclusion with the first
b dj & td d i h | usi ith the fi
hypot hesi s.

Case 2. td is of the form(*cons tdcar tdcdr)

We use our |enma as an inductive hypothesis on both tdcar and

tdedr. In the first case, we instantiate with td = tdcar,
v = (car v), b = b, andtdiztdi. In the latter
case, td = tdcdr and v = (cdr v). In each case, the antecedents

are easily relieved, since the second antecedent is identical
to H2, and the first antecedent is in the imedi ate expansion
of H1. This gives us the new hypotheses H3 and H4 in the goal:

(and
(I td v b)
(1 tdi v b)

(I (subst tdi & tdcar) (car v) b)
(I (subst tdi & tdcdr) (cdr v) b) )
=>

(I (subst tdi & td) v b)
By the definition of subst, the conclusion expands to

(I (*cons (subst tdi & tdcar) (subst tdi & tdcdr)) v b)
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And by the expansion of |, to

(and (consp v)
(I (subst tdi & tdcar) (car v) b)
(I (subst tdi & tdcdr) (cdr v) b))

The expansion of Hl gives (consp v), and the other two conjuncts
are fromour inductive hypotheses.

Case 3. tdis of the form(*dlist dI—tdl .. dI—tdn)
(and hence v = (vq .. vp) )

The proof is as in Case 2, using an inductive hypothesis for each
dl -tdi and Vi, and wi thout having to worry about

the (consp v) test.
Case 4. td is of the form (*or or-tdl .. or-tdn)
We enpl oy the inductive hypothesis for each or-tdi, gi ving
H3 for each i in 1..n
(and (I or-tdi v b)

(1 tdi (cdr (assoc & b)) b))
=> (|1 (subst tdi &i or-tdi) v b)

Hl expands to
(or (I or-tdlv b) .. (I or-tdn v b))
and the conclusion to
(or (I (subst td; & or-tdq) v b)
(I (subst td; & or-tdq) v b))
For whi chever disjuncts are true in the expansion of Hl, note
that we have satisfied the antecedents of the inductive hypothesis
for that or—tdi. Empl oying its conclusion establishes our goal.

Case 5. tdis a *rec form

Usi ng canonicalization Rule 2, open both occurrences of the *rec

descriptor.
(and
H1 (I (open-rec-descriptor-absolute td) v b)
H2 (1 tdi (cdr (assoc & b)) b) )
=>

(I (subst tdi & (open-rec-descriptor-absolute td)) v b)

This transforns this case to one of the other cases.

QED.

B.5 Proof of DUNIFY-DESCRIPTORS-OK

Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Lemma DUNI FY- DESCRI PTORS- OK
Denoting (dunify-descriptors tda tdb substs)
by ((tdl. substsl) .. (tdn. substsn)),

for all v and fully instantiating b,
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(and
HL (interp-substs substs b)
H2 (I tda v b)
H3 (I tdb v b))

=>

for sone i,
(and (interp-substs substsi b)
(I tdj v b))

For brevity in the exposition of the proof, we will abbreviate SUBSTS with "s", and INTERP-SUBSTS
with "I-S".

Note that this lemma is part of the large nest of unification lemmas which are being proved together by
computational induction. These lemmas include DUNIFY-DESCRIPTORS-INTERFACE-OK, DUNIFY -
DESCRIPTORS-OK, DMERGE-OK, DMERGE-DIFFERENT-SUBST-INTO-SUBSTS-LIST-OK,
DMERGE-SECOND-ORDER-OK, DMERGE-DUNIFIED-FORMS-INTO-SUBSTS-OK, and the various
lemmas which are associated with the special case rules for unifying pairs of *REC descriptors. Within
this collection of proofs, we may use any of these lemmas as an inductive assumption to characterize a
subsidiary call of afunction in question. A discussion of the induction appearsin Section 7.6.

Proof of Lemma DUNI FY- DESCRI PTORS- OK

The case structure presented in this proof reflects that of the

algorithmitself. |In each case, we assume none of the previous
cases were appropriate. For exanple, Case 1 is where tda = tdb.
For all later cases, we can assune that tda # tdb.

The al gorithm and the proof are somewhat symretric in their case
analysis, in the follow ng sense. Wenever we consider a top

| evel case where tda is some particular kind of descriptor (for
exanple, Case 2 is where tda is *enpty), the next top |evel case
is where we consider tdb to be the same kind of descriptor. The
only assynetry is that in any tdb case, we know that tda is not
the sane kind of descriptor, since we just considered that case

i mredi ately before, and can therefore assune its negation. Since
the proofs of the tdb cases will follow the sane |ine of reasoning
as the tda case preceding it, we generally omt the argunment to
save from bei ng tedious.

Case 1. tda = tdb
By definition, (dunify-descriptors tda tdb s) = ((tda . s))
Trivial, since HL = C1 and H2 = C2.

Case 2. tda = *enpty
By definition, (dunify-descriptors *enpty tdb s) = nil
Trivial, since we have a fal se hypothesis, (I *enpty v b).

Case 2'. tdb = *enpty
As with Case 1.

Case 3. tda = *universal
By definition, (dunify-descriptors *universal tdb s) = ((tdb . s))
Trivial, since Cl is equivalent to HL and C2 is equivalent to H3.

Case 3'. tdb = *universal
As with Case 2.

Case 4. tda = (*or tdal .. tdan)

Case 4.1 for sone i, tdai = tdb

By definition, (dunify-descriptors tda tdb s) = ((tdb . s))
This case is trivial, since HL = C1 and H3 = C3.

Case 4.2 for all i, tdai #z tdb
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By definition, DUNI FY- DESCRI PTORS unifies each tdai with tdb.
Ascribe the notation

(duni fy-descriptors tdaj tdb s)
((_tda-b . Si1) .. (tdajbqpy . Sim))
71 1,1 I J.my

to characterize the definition of DUN FY-DESCRI PTORS for each tdaj,
indicating that each unification produces a result with
different (descriptor . subst) pairs. So by definition,

(duni fy-descriptors tda tdb s)
((tdalbl. 31,1) .. (tdalbml. Sl,ml)

(tdapbq . . (tdanb .
(tdapby . spq) (tdapbm - Spm)

Let us apply our I emu inductively for each i, i.e.,
For each j,

(and (1-S's b) (I tdaj v b) (I tdb v b))

=>

For sone i in [1..m]

(and (I-S Sji b) ( tdajbi v b))

H2 expands by definition of | to
(or (I tdalv b) .. (I tdanv b))

For whi chever of these disjuncts holds, instantiate our inductive
hypothesis. Hl, H2, and H3 relieve its antecedents, so we can
use its conclusion, which in turn establishes our goal.

Case 4 tdb = (*or tdbl .. tdb
As with Case 3.

n

Many of the cases within Case 5 will depend on | emmas about
dner ge- newsubsts. W need a | emma showi ng that any subst
produced by dnerge-new subst is well-forned.

Lemma DVERGE- OK

For any variable & , descriptor td, and substitution list s,
and denoting (dmerge-newsubst & td s) = (sl .. sn)

HL (and (1-S s b)
H2 (I & v b)
H3 (I td v b))
=> for some k in[1..n], (I-S Sk b)

The proof of Lemma DMERGE-OK is in Appendix B.6.
Case 5. tda = &

Case 5.1 tdb = &, where i <j,

By definition,

(dunify-descriptors & & s) = ((& . sl) (& sn))
where (dnerge-new subst & & s) = (Sl .. sn)

Qur goal is:
HL (and (1-S s b)
H2 (I & v b)
H3 (I & v b))
=>

For sone k,
Cl (and (I-S Sk b)
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2 (1 & v b))

C2 follows fromH2. W need to establish(I-Sskb).
Lemma DMERCGE- K, instantiated with s =s, & =&, v =v, b =b,
and td = & gives us Cl.

Case 5.2 tdb = &, where i >j,

By definition,

(dunify-descriptors & & s) = ((& . sq) .. (& . sp))
where (dnerge-new subst & & s) = (Sl .. sn)

The proof is analogous to Case 5.1, with & and & sw tching places.
Case 5.3 tdb is a non-variable descriptor containing &

Case 5.3.1 tdb is a *rec descriptor whose body is an *or in which
& is a disjunct.3®

By definition, (dunify-descriptors & tdb s) = ((& . s))
Clearly, the theoremis true in this case. Hl guarantees Cl and H2
guar ant ees C2.

Case 5.3.2 otherwise, i.e., tdb is a *cons descriptor with an
enbedded & , or it is a *rec descriptor in which & appears,
but not as a disjunct of a top-level *or, regardl ess of how
the *rec can be expanded. (See the footnote on the previous
case.)

Thus, the & nmnust be enbedded in a *cons. (If tdb is a *rec,
we know by assunption that & cannot be a terminating disjunct.
l.e, if we raised all disjunction in the *rec body to the top,
& could not be a top-level disjunct, and if any nested *rec
descriptor appears as a top-level disjunct and its body is
treated simlarly, & could not appear as one of its top-Ievel
di sjuncts, and so on recursively. Therefore, any occurrence
of & nust appear within a *cons.)

By definition in this case,

(duni fy-descriptors & tdb) =
(duni fy-descriptors & (screen-var-fromdescriptor & tdb))

where screen-var-fromdescriptor effectively replaces each
occurrence of & by *enpty and canonicalizes, renam ng any *rec
descri ptor whose body changed in the process.3” Consider:

Lemma UNI FY- VAR- EMBEDDED- VAR

Where by (*cons .. & ..), we mean a *cons descriptor in which

a variable & appears, separated fromthe top of the descriptor only
by encasing *cons descriptors, (For exanple, (*cons & td) or

(*cons tdl (*cons td2 & )) )

(I & v b)
=>

(not (I (*cons .. & ..) v b))

Proof of Lemma UN FY- VAR- EMBEDDED- VAR

36

Exanpl es:
(*rec foo (*or & (*cons St $nil) (*cons *universal (*recur foo))))

(*rec bim(*or (*rec bar (*or & (*cons $integer (*recur bar))))
(*cons Scharacter (*recur bin)))

37
The code implementing this case is presented in Appendix G.10.
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The hypothesis requires (equal v (cdr (assoc & b))).

(I (*cons .. & ..) v b) requires

(equal <sone CAR/ CDR nest of v> (cdr (assoc & b))), where the
CAR/ CDR nest is the one constructed by the unw ndi ng of

(I (*cons .. & ..) v b). Since no CONS data val ue can

contain a conponent which is equal to the CONS itself, this is a
contradiction. QED.

This | emma establishes that we can reduce the problemw th
screen-var-fromdescriptors, since it sinply renoves from
consi deration cases which would require (I & v b) and

(I (*cons .. & ..) v b) to be sinmultaneously true. Thus
transformed, we use our inductive assunption of

DUNI FY- DESCRI PTORS- OK on the recursive call, establishing
the goal .

Case 5.4 tdb is a *rec descriptor in which some variable other than
& can be a top level disjunct.

By definition,
(duni fy-descriptors & tdb s)
= (duni fy-descriptors & (open-rec-descriptor-absolute tdb)38 s)

OPEN- REC- DESCRI PTOR- ABSOLUTE si nply represents the invocation of
Canoni cal i zation Rule #2, which is justified sinply by opening up
the definition of I on the *rec form This reduces the problem
to one of those already considered, where tdb is either an *or

or a *cons, and we are done by the inductive hypothesis.

Case 5.5 tdb is a non-variable not containing &,

In this case, by definition

(duni fy-descriptors & tdb s) = ((& . sl) (& sn))
where (dnerge-newsubst & tdb s) = (sl .. sn).

Qur theoremis
HL (and (1-S s b)
H2 (I & v b)
H3 (1 tdb v b))
=>
For sone Kk,
Cl (and (I-S Sk b)
c2 (I & v b))

As usual, C2 follows fromH2. W need to establish (I-S Sk b) .
Lemma DMERGE-CK, instantiated with s = s, & = &, v=v, b=bhb,
and td = tdb gives us Cl.

Case 5. tdb is a variable.
As with Case 5.

Case 6. tda = (*rec foo foobody)

Case 6.1 tdb = (*rec bar barbody)
This is not proven in general, but by virtue of application of a
collection of reduction rules, each tried in sequence until one of
themis found to be eligible and is used. Each reduction rule is
either proven to be sound with respect to our semantics for
DUNI FY- DESCRI PTORS or coul d be proven sound by application of
simlar proof techniques. The final reduction rule in the
collection is unconditionally eligible, so some reduction rule

38

ngEN-REC—DESCRI PTOR-ABSOLUTE returns the body (or CADDR) of tdb with the *RECUR form for the * REC replaced by
tdb.
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wi Il always produce a result, and the proof of soundness for this
case is therefore the conjoined proofs for all the rules. The
rules are naned Rule Dunify-*Reci for sonme integer i, and are
stated and proved in Appendix B.7.

Case 6.2 tdb is not a *rec descriptor
In this case, DUN FY-DESCRI PTORS heuristically chooses one of two
different actions, each of which is denonstrated sound by the
argunents bel ow.

Choi ce 6.2.1:
Apply Canonicalization Rule 2 (which opens *rec descriptors) to
tda. Thus, (dunify-descriptors tda tdb s) =
(duni fy-descriptors (open-rec-descriptor-absolute tda) tdb s)

The justification is the canonicalization rule proof that
(I (*rec ..) v b)
=>

(I (open-rec-descriptor-absolute (*rec ..) v b)

Wth the problemthus transformed, it falls under one of the
other cases, and we are done by the inductive hypothesis.

Choice 6.2.2: (punt)
(duni fy-descriptors tda tdb s) = ((tdb . s))
This is trivially sound, as Hl is equivalent to Cl and C2 is
equi valent to H3. (This case represents discovery of a TERM RECS
| oop. See the discussion in Section 6.6.3.

Case 6. tdb = (*rec foo foobody)
As with Case 6. 2.
Case 7. tda = (*cons tdacar tdacdr)
Case 7.1 tdb is one of {$character, $integer, $nil,
$non-integer-rational, $non-t-nil-synbol,
$string $t}

By definition,
(duni fy-descriptors (*cons tdacar tdacdr) tdb s) = ()

Qur conjecture is trivially true, since expanding H2 gives us
(and (consp v) (I tdacar (car v) b) (I tdacdr (cdr v) b))

and (consp v) is mutually exclusive with the expansion of H3 in
each of the 7.1 cases, nanely (characterp v), (integerp v), etc.

Case 7.2 tdb = (*cons tdbcar tdbcdr)
This can be treated anal ogously to Case 8 bel ow, as a speci al
case where the nunber of descriptors in each *DLIST is two.
Al though the flow of control through our | is down a different
path in the algorithm the procedure followed is virtually
the sanme. The | predicate for this case is
(I (*cons tdcar tdcdr) (cons vl v2) b)
(and (consp (cons v1 v2)) (I tdcar vl b) (I tdcdr v2 b))
Whereas for (*dlist tdl .. tdn), and val ues Vi - Yy
(1 (tdl.. tdn) (Vl" vn) b)
(and (I tdq vq b) .. (I tdy vy b)

The only extra baggage is the consp test, which is trivially true.
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Case 7. tdb = (*cons tdbcar tdbcdr)
As with Case 7.1.

Case 8. tda = (*dlist tdal .. tdan) and
tdb = (*dlist tdbq .. tdbp)

Comment: *dlist fornms are never nested within any other descriptors.
Furthernore, they are only unified with other *dlists of the sane
| engt h.

We denote that

(duni fy-descriptors
(*dlist tdaq .. tdap (*dlist tdbq .. tdbpy s)

= (((*dlist tdabqq .. tdab,q) . sq)
((*dlist tdaby .. tdabp ) - sp))}
Thus, the conjecture we wish to prove is:

For all (Vl .. vn) and b,

HL (and (I-S s b)
H2 (1 (tdal.. tdan) (vl.. vn) b)
H3 (1 (tdbl.. tdbn) (Vl" vn) b))
=
For sone i in 1..m

(and (1-S sj b) (I (tdabqj.. tdabpyj)) (vq .. vy b))
Let us use the follow ng notation:

(duni fy-descriptors tdai tdbi s)

((tdabi,l' Si,l) .. (tdabi,O' Si,O))
The proof will be by induction on the length of the *dlist.
Base case: n =0

By definition,
(duni fy-descriptors (*dlist) (*dlist) s) = (((*dlist) . s))

Since | reduces i mediately to true when given N L argunents,
we are left with the trivial inference:
(and (I-Ss b) t t) == (1-Ss b)

I nductive case: Assune the theoremfor n - 1, prove it for n.
Let us denote

(duni fy-descriptors
(*dlist tdaq .. tdap_q) (*dlist tdbq .. tdbpy_q) s)

= (((*dlist tdabll . tdabn_ll) . Sn_ll)

((*dlist tdaby .. tdabp_g ) - sp_gp)}
and for each k in 1..p
(duni fy-descriptors tdan tdbn Sp—1 k)
= ((tdabpky - Spkd) - (tdabpgm - Spkmy))
By definition,

(duni fy-descriptors
(*dlist tdaq .. tdap (*dlist tdbq .. tdbp s)

= the append for all k in 1..p of
(((*dlist tdabq | .. tdabp_q | tdabypq) - spk1)

((*dlist tdaby | .. tdabp_j tdabnkm) - Spim))

Qur inductive hypothesis for

261
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(duni fy-descriptors
(*dlist tdaq .. tdap_q) (*dlist tdbq .. tdb,_q) s)
gives us

H4 For all v and b,
(and (1-S s b)
(1 (tdal .. tdan_l) (Vl . Vn_l) b)
(I (tdbq .. tdby_q) (Vq .. V=1 b))
=>
For sone k in 1..p,
(and (I-S Sn-1,k b) (I (tdabl,k .. tdabn—l,k) (vl .. vn_l) b))

We assune DUNI FY- DESCRI PTORS- K i nductively on subsidiary calls,
including the call

(duni fy-descriptors tdan tdbn Sn—l,k)
Thus, the inductive hypothesis gives us:

H5 For any k in 1..p, v and b,
(and (1-Ssp_1Kkb) (I tdap v b) (I tdby v b))
=>
For sone j in l..nk,
(and (I-S Snkj b) (I tdabnkj v b))

Hl, H2, and H3 relieve the antecedents for H4, since the expansions
of | and I-Sin Hl, H2, and H3 establish a superset of the predicates
produced by the expansions of those calls in the hypotheses for H4.
Thus, we establish the conclusion in H4.

Now we would like to enploy H5. Consider the cases k in 1..p
satisfying the predicate in the conclusion of H4. The first conjunct
of this predicate establishes the (I-S Sn-1.k b) hypot hesis

in H5. The final conjunct in the expansi ons of | in H2 and H3
establish its second and third hypothesis, respectively. Thus,

we establish the conclusion in H5 for sone k and j.

Finally, the second conjunct in the conclusion of H4, plus the second
conjunct of the conclusion of H5 establish the second conjunct of

our goal, and for that same j and k, the first conjunct of H5
establishes the first conjunct of the goal, and we are done.

Case 9. tda = $integer; Cherwi se without |oss of generality,
suppose the anal ogous proof will hold true for the cases where tda
is $character, $nil, $non-integer-rational, $non-t-nil-synbol,
$string, or $t.

Case 9.1 tdb in {$character $nil $non-integer-rational
$non-t-nil-synbol $string $t}

(duni fy-descriptors $integer tdb s) = ().

Trivially true, since (I $integer v b) = (integerp v), and
(integerp v) cannot be true if (I tdb v b) is true.

((1 tdb v b) = (characterp v) when tdb = $character, etc.)
Thus we have a fal se hypothesis.

Case 9.2 tdb = (*cons tdcar tdcdr) for any tdcar and tdcdr.
(duni fy-descriptors $integer tdb s) = ()

Trivially true, as with Case 7.1.

This conpl etes an exhaustive case anal ysis.

QED.
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B.6 Proof of DMERGE-OK

Note that DMERGE-OK and several other lemmas proved in this section are part of the large nest of
unification lemmas which are being proved together by computational induction. These lemmas include
DUNIFY-DESCRIPTORS-INTERFACE-OK, DUNIFY-DESCRIPTORS-OK, DMERGE-OK,
DMERGE-DIFFERENT-SUBST-INTO-SUBSTS-LIST-OK, DMERGE-SECOND-ORDER-OK,
DMERGE-DUNIFIED-FORMS-INTO-SUBSTS-OK, and the various lemmas which are associated with
the special case rules for unifying pairs of *REC descriptors. Within this collection of proofs, we may use
any of these lemmas as an inductive assumption to characterize a subsidiary call of afunction in question.
A discussion of the induction appearsin Section 7.6.

The code implementing DMERGE-NEW-SUBST isin Appendix G.9.
Lemma DMERGE- OK

For any variable & , descriptor td, and substitution list s,
and denoting (dmerge-newsubst & td s) = (sq .. sp)

HL (and (1-S s b)
H2 (I & v b)
H3 (I td v b))
=> for some k in[1..n], (I-S Sk b)

To prove this lemma, we will need some lemmas about subsidiary functions within DMERGE-NEW-
SUBST. DINSERT-SUBST simply inserts a new substitution element for &i into a substitution in which
&i isnot already mapped.
Lemma DI NSERT- SUBST- OK

For any substitution s, binding b, variable &, Lisp value v,
and descriptor td,

HL (and (1-S s b)
H2 (I & v b)
H3 (I td v b)
=> (1-S (dinsert-subst & td s) b)

Proof of Lenma DI NSERT- SUBST- K

This is easy. (1-S s b) guarantees the |-S predicate for every
el enent of (dinsert-subst & td s) except the one for & . For
& we need to know (I td (cdr (assoc & b)) b). H2 gives us
(equal (cdr (assoc & b)) v), which we substitute into the H3 to
equate it with the goal.

Lemma DREPLACE- SUBST- OK

For any type variable & , substitution s with & in its donain,
descriptor td, binding b, and Lisp value v,

HL (and (I-S s b)
H2 (I & v b)
H3 (I td v b)

=> (1-S (dreplace-subst & td s) b)
By definition, (dreplace-subst & td ( .. (& . tdold) .. )
sinply replaces the entry (& . tdold) with (& . td).
The proof of DREPLACE-SUBST-OK is virtually identical to the proof
of DI NSERT- SUBST- CK.
Lemma DMERGE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST- OK

For any non-negative integer o, well-forned substitutions
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1 - Sg and dus, and binding b,

and denoting, where (dutd . dus) is some dunified form and

& is a variable in the domain of dus whose binding is tdi,

( DVERGE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST & (dutd . dus) (sq .. sg))

= (srrn_ .. srrh)

(and
H1 (1-S dus b)
H2 for some k in [1..0], (I-Sskb))

=> for sone i in [1..n], (I-S sm b)
Proof of DMERGE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST- K

We will induct on o, the length of SUBSTS-LIST. If o =0, then
H2 is false, and the lemma is trivially true. Now we

will assume the result for o = mand prove it for o = m+ 1.
Qur inductive hypothesis is:

H3 (and (1-S dus b)
for sone k in[1..mM, (I—Sskb))
=> for sone i in[1l..n], (I-Ssn] b)

By definition,
( DMERGE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST & (td . s) (sq .. SO))

is the append of the results of
( DMERGE- NEW SUBST & (cdr (assoc & s)) s;) for each j in 1..o0.

So we will also want to use an inductive Lypot hesi s on
DMVERGE- NEW SUBST, which is Lenmma DMERGE- OK:

H4 For any variable & , descriptor td, and substitution list s,
where we denote (dmerge-newsubst & td s) = (sdrrn_ .. sdmh)
(and (1-S s b)
(I & v b)
(I td v b))
=> for some j in[1l..n], (I-S sdn] b)

Hl, as it applies to the variable & in the donain of dus, gives us
H5 (1 tdi (cdr (assoc & b)) b)

Since we are trying to prove our lenma for the case where o = m+ 1,
H2 gives us:

for sonme k in [1..m+1l], (I-S Sk b)

Case 1. (I-S Sm+1 b) is not true.

Then H2 equates to the second hypothesis of H3, so we can use
the conclusion of H3. Since the substs over which it quantifies
are part of the result, we have established the goal directly.

Case 2. (I—Ssm+1 b) is true
Then we can instantiate H4 with s = spuq, b = b,
v = (cdr (assoc & b)), td = tdi, and & = & . W can use the

concl usi on of H4 because our case assunption guarantees its first
hypot hesi s, and H5 guarantees its third hypothesis. The

second antecedent, (I & v b), expands to

(equal v (cdr (assoc & b))), which is established by our
instantiation of v. So we have:

for sonme j, (I-S sdn] b)
Since these substs are part of the result, one of themwill

satisfy the conclusion. QED

Lemma DMVERGE- SECOND- ORDER- OK
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For all descriptors dutd, substitution dus, and binding b, such
that (& .. &p) are variables in the domain of dus3® and

(tdq .. tdy are the bindings for (& .. &) in dus,*

and denoti ng

( DVERGE- SECOND- ORDER- SUBSTS (&1 .. &p) (dutd . dus) (sq1 .. sy))

= (smq .. s,
HL (and (I-S dus b)
H2 for some k in [1..n, (I-Sskb))

=> for some i in[1l..n], (I-S sm b)

Proof of DVERGE- SECOND- ORDER- OK
We will induct on p. If p =20, the result (srrl.. srrh)

is equal to (sl .. sm). Thus, H2 equates with the concl usion.
Now, we will assume the result for p = and prove the

result for p =j + 1. CQur inductive hypothesis, then, is

H3 (and (1-S dus b)

for sone k in[1..mM, (I—Ssk b))
=> for sone i in[1l..0], (I-Ssn]'i b)

wher e ( DVMERCGE- SECOND- ORDER- SUBSTS (&1 .. &) (dutd . dus) (51 .. sm))
= (smiq .. sng

Hl satisfies the first hypothesis of H3, H2 the second, so we get
to use the conclusion of H3. By definition (using & +1 as a
vari abl e nane),

( DVERGE- SECOND- ORDER- SUBSTS (&1 .. & +1) (dutd . dus) (sq .. S;p)

( DVERGE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST
& +1 (dutd . dus) (sm’l .. snj 0))

So we wish to use Lemma DMERCE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST- OK,
just proved above. W instantiate it with & = & +1 and

(sq1 .- so)=(sn11.. snjo). Qur Hl satisfies its first
hypothesis. Qur specification that & +1 is in the domain of dus
satisfies its requirenent that & is in the domain of dus, and

the conclusion of H3 satisfies its H2. So we can use its result
to characterize the value returned by

( DVERGE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST
& +1 (dutd . dus) (smjq .. snjg)),

gi ving us

for sone i in[1..n], (I-S sm b)

By definition, the result returned by

DMVERCE- DI FFERENT- SUBST- | NTO- SUBSTS- LI ST-OK is the result we return.
So this satisfies our conclusion. QED

Lenmma DMVERGE- DUNI FI ED- FORMS- | NTO- SUBSTS- OK

For any substitution list s, binding b, descriptors tdsl .. tdsm,
and substitutions $S1 .. SSmy such that the variable

39

Thisis anotational convenience which may be somewhat misleading. These variables need not be contiguously named, nor is& 1
rt?qén red to be among them. We mean merely to say that thereis alist of variable names of length p, each of which isin the domain
of dus.

40

It isknown that the bindings of those variables are different from the onesin the $1 - Smr
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& is bound in s, and denoting
(dmer ge- duni fi ed-forms-into-substs
((tdsl. ssl) .. (tdsm. ssm)) & s)

=(sy .- sp
HL (and (I-S s b)
H2 for sone j in[1..mM, (and (I-S ssJ- b) (I tde v b))
H3 (I & v b))

=> for sone k in[1..n] (I-S Sk b)
Proof of DMERGE- DUNI FI ED- FORMS- | NTO- SUBSTS- OK

DMVERGE- DUNI FI ED- FORMS- | NTO- SUBSTS si nply naps the function
DVERGE- DUNI FI ED- FORM | NTO- SUBSTS over the pairs inits first
argument, appending all the results. W will consider whether
DVERGE- DUNI FI ED- FORM | NTO- SUBSTS preserves the |-S property when
the pair it is given satisfies the | and I-S properties.

Case 1. ss; contains no substs (other than for & ) which differ
froms.

In this case, by definition,

(dmer ge- duni fi ed-forminto-substs (tdsj . ssj) & s)
= ((drepl ace-subst & tdsJ- s))

l.e., we just replace the binding for & in s with tds;.

By Lemma DREPLACE- SUBST- K, since we have a case where
(I tds; v b) and (I-S s b) are true, then

(I-S (drepl ace-subst & tde s) b) is true, establishing our goal.
Case 2. ssJ- contains substs (other than for & ) which differ froms.
In this case, by definition,

(dmer ge- duni fi ed-forminto-substs (tdsj . ssj) & s)

(drepl ace- subst -i n-second- or der - subst s
&i tdsj (drer ge- second- order -substs diff-substs (tdsj . ssj) (s)))

where diff-substs is the list of variables whose bindings in
ssJ- differ fromthose in s.

So we wish to use Lenmma DMERGE- SECOND- ORDER- OK, instantiating for
the j satisfying H2 with (& .. &) = diff-substs, dutd = tdsJ-,
dus = ss;, (sl.. sn) = the singleton list (s), and b = b.

Qur Hl establishes its H2, and our H2 for the appropriate j
satisfies its HlL, so we can use its conclusion, giving us

(where (nmsoq .. rrsoo) = the substitution lists returned

by DMERGE- SECOND- ORDER- SUBSTS)
H4 for some | in[1..0], (I-S ms0| b)
By definition,

(drepl ace-subst -i n-second- order-substs & tdsj (msol . msoo))

((drepl ace-subst &i tdsJ- msol)
.(drepl ace-subst & tdsJ- msoo))

So consi der Lemma DREPLACE- SUBST-OK. Instantiated for the |
whi ch suffices for H4withs=m30|, & =&, v =v, b =b, and
td = tdsj, it gives us

(and (I1-S ]| b)
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(I & v b)
(I tds; v b)
=> (1-S (drepl ace-subst & tdsj mso|) b)

H4 relieves its first hypothesis, H3 its second, and H2 its third.
Thus, it yields

for sone | in [1..0], (I-S (dreplace-subst & tdsj rrso|) b)

And since our result is the list of results of all these
drepl ace-subst invocations, this establishes our goal.
(l.e., o =n and each (drepl ace-subst & tdsJ- rT50|) = S|.)

QED.

Now we can return to our proof of DMERGE-OK.
Lemma DMERGE- OK

For any variable & , descriptor td, and substitution list s,
and denoting (dmerge-newsubst & td s) = (sq .. sp)

HL (and (1-S s b)
H2 (I & v b)
H3 (I td v b))
=> for some k in[1..n], (I-S Sk b)

Proof of Lemma DMERGE- K

Consi der two cases, as suggested by the function dnerge-new subst.
Case 1: (assoc & s) = nil

In this case, (dnmerge-newsubst & td s) = ((dinsert-subst & td s)).
Then Lermma DI NSERT- SUBST- OK gi ves us our result directly.

Case 2: (cdr (assoc & s)) is not equal to nil.
Let us say that (cdr (assoc & s)) = tdsi and adopt the notation that
(duni fy-descriptors td tdsi s) =((tdsi1. ssil) .. (tdsim. ssim))

Expanding 1-S in Hl, we have a conjunct

(I tdsi (cdr (assoc & b)) b). Expanding | in H2 gives us
(equal (cdr (assoc & b)) v). W use DUNI FY- DESCRI PTORS- K
as in inductive hypothesis, instantiated with tda = td,

tdb = tdsi, and substs = s. This gives us

(and (1-S's b) (I td v b) (I tdsi v b))

=>

for sone j, (and (I-S ssij b) (I tdsij v b))

We can use the conclusion of the inductive hypothesis, since HL gives
its first hypothesis, H3 gives the second, and

(I tdsi (cdr (assoc & b)) b) and the equality

(equal (cdr (assoc & b)) v) give us the third hypothesis.

This gives us concl usion:

H4 for sone j, (and(I-Sssijb) (1 tdsijvb))
By definition in this case,
(dmer ge- new subst & td s) and hence (sq .. sp)
(dmer ge-duni fi ed-forns-into-substs
((tdsil. ssil) .. (tdsim. ssim)) & s))

So instantiate Lenma DMERGE- DUNI FI ED- FORMS- | NTO- SUBSTS- K with

s =s, b=h, tdsi:tdsiifor all i, & = &, and
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ssj = ssii for all i. The antecedents for this | emm
are satisfied by HL, H2, and H4. So where

(dner ge-duni fi ed-forns-into-substs
((tdsil. ssil) .. (tdsim. ssim)) & s)
=(s1 .. sp

this | emma gives us
for sone k in[1..n] (I-S Sk b)

which is our goal. QED.

B.7 The DUNIFY-DESCRIPTORS *REC Rules

This section contains the proofs of some, but not all of special-case rules employed by DUNIFY -
DESCRIPTORS to handle the situations where both its DESCRIPTOR1 and DESCRIPTOR2 arguments
are *REC descriptors. The rules are described and listed in Section 6.6.3. Each rule corresponds with a
lemma which validates the application of the rule. The collected proofs of these lemmas are what satisfy
Case 6.1 of the proof of DUNIFY-DESCRIPTORS-OK.

For selected rules, we state and prove the associated lemmas here. In many respects, the rules are very
similar. Because of this similarity, the proofs of the corresponding lemmas are very similar in style and
technique. Rather than burdening this document with the exhaustive proofs of al the rules, we present
selected examples which are sufficient to show the proof techniques to provide convincing evidence that
the other rules can be proven sound by similar arguments. The rules proved include some of the simplest
and the most challenging, since the ssimple ones exemplify the proof style most succinctly, and the
difficult ones bear the most scrutiny. The rule base is intended to be extendable, so other rules could be
added, and their proofs would almost certainly follow the models given here.

Recall, as discussed in Section B.5, that each of these lemmas is included in the large nest of lemmas
about mutually recursive functions in the unifier. The proof of this collection of lemmas is by a grand
computational induction on the length of the unification computation. Any lemmain the nest may be used
as an inductive assertion corresponding to the result of any subsidiary call in the algorithm. The *REC
rules typically include recursive calls to DUNIFY-DESCRIPTORS-INTERFACE in cases where the
arguments are known to be variable-free, or to DUNIFY-DESCRIPTORS for arguments which could
contain variables. In the first case, we use DUNIFY-DESCRIPTORS-INTERFACE-OK as the inductive
assertion, in the latter we use DUNIFY-DESCRIPTORS-OK. As with the other lemmas in the nest, the
*REC rule lemmas are partial correctness results, since we have not give a termination proof.

Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value. Also, we abbreviate INTERP-SUBSTS with "I-S". Furthermore, each rule is stated
in terms of named *REC descriptors, with names like "foo", "bar", and "bim". In each case, after having
introduced these descriptors, we refer to them simply by name. Finally, arbitrary component descriptors
of the *RECs are typically named di, where i is some integer, and we use dij to signify the result returned
by (DUNIFY-DESCRIPTORS-INTERFACE di dj).
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B-A Rule Dunify-*Recl

Theruleis:

Rul e Duni fy-*Recl
(duni fy-descriptors
(*rec foo (*or $nil (*cons dl (*recur foo0))))
(*rec bar (*or $nil (*cons d2 (*recur bar))))
s)

((_(*rec bim (*or $nil (*cons d12 (*recur bim))) . s))

Thisisavery simple *REC rule. We do not have to worry about variables at all; they cannot occur in a
replicating component of a *REC descriptor, so D1 and D2 are variable-free. (See the discussion of
replicating componentsin Section 5.2.) Thus, substitutions are not an issue. The substitution s never gets
extended, and it appearsin the result intact.

Our rule for this case says that the definition of (DUNIFY-DESCRIPTORS foo bar s) is the single pair
foomed by s and a *REC descriptor which is of the same form as foo but with
(DUNIFY-DESCRIPTORS-INTERFACE d1 d2) replacing d1. Thus, the lemma which corresponds to
our ruleis:
Lenma DUNI FY- * REC1- OK
For any value v, substitution s, and binding b,
(and
HL (1-S s b)
H2 (I foo v b)
H3 (I bar v b)
H4 (equal (dunify-descriptors-interface dl d2) di2) )
=>

(_and (I-Ss b) (I bimv b))

H1 - H3 are the standard hypotheses about the arguments to DUNIFY -DESCRIPTORS in lemmas about
the unifier. H4 specifies the result returned from the recursive call to DUNIFY-DESCRIPTORS-
INTERFACE, tying it to the use of the same term d12 in bim. The conclusion is the image of the
conclusion to Lemma DUNIFY-DESCRIPTORS-OK for this case, stated in terms of the result
constructed according to the rule.

Proof of Lemma DUNI FY-* RECL- OK

Hl establishes the first conjunct of the conclusion. To establish
the second conjunct, we will induct on the structure of v.

Case 1: v = nil

By the definition of I, the second conjunct of the conclusion
expands to

(or (equal v nil) .. )

establishing the goal trivially.

Case 2: v2 = sonme non-N L atom

This contradicts H2, which by the definition of I expands to
(or (equal v nil) (and (consp v) .. ) )

Case 3: v is of the form= (cons vcar vcdr)

Expand H2 and H3 and elimnate the null disjuncts, which are
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fal se under our case assunption, to give

H2" (and (consp v) (I dl1 vcar b) (I foo vecdr b))
H3' (and (consp v) (I d2 vcar b) (I bar vecdr b))

Using H4, instantiate Lenma DUN FY- DESCRI PTORS- | NTERFACE- OK wi t h
tda = dl, tdb =d2, b = b, and v = vcar. The second conjuncts of
H2' and H3' relieve the hypotheses in the instantiated | emms,
allowing us to use the concl usion,

H5 (I dl12 vcar b)

Now use Lemma DUN FY-*RECL- OK as an inductive assertion, instantiating
with foo = foo, bar = bar, b = b, dl1 = dl, d2 = d2, and v = vcdr.
H2', H3', and H4 relieve the hypot heses, giving us the concl usion

H6 (I bimvcdr b)
Expandi ng the definition of I in the conclusion gives

(or (equal v nil)
(and (consp v) (I d12 vcar b) (I bimvcdr b)))

Qur case assunption establishes (consp v), H5 gives (I d12 vcar b),
and H6 gives (I bimvcdr b), establishing the goal and conpleting
the case analysis. QED.

B-B Rule Dunify-*Rec3

Rul e Duni fy-*Rec3

Where d2, d3, and d4 contain no variables and d3 is either a
primtive descriptor or a disjunction of primtive descriptors,

and denoti ng

(duni fy-descriptors & (*rec bar (*or d3 (*cons d4 (*recur bar)))) s)

= (& . sp) .- (& . sp).

(duni fy-descriptors (*rec foo (*or & (*cons d2 (*recur foo
(*rec bar (*or d3 (*cons d4 (*recur bar
s)

))))
))))

((_(*rec bim(*or & (*cons d24 (*recur bim))) . sl)

(.(;‘rec bim(*or & (*cons d24 (*recur bim))) . sn) )

Rule Dunify-*Rec3, stated as a theorem in terms of the interpreter, and assuming the constraints we
placed on our descriptors above, is:

Lenma DUNI FY-* REC3- K

For any Lisp value v, substitution s, and binding b,
(and

(I-S s b)
H2 (1 foo v b)
H3 (I bar v b)
H4
H5

H

=

(equal (dunify-descriptors-interface d2 d4) d24)

(equal (dunify-descriptors & d3) ((& . sl) (& sn))) )
=>
for sone i in 1..n,

(and (I1-S Sj b) (I bimv b))

Proof of Lemma DUNI FY-* REC3- OK

Expand | in H2 and H3 to give
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H2" (or (I & v b) (and (consp v) (I d2 (car v) b) (I foo (cdr v) b)))
H3" (or (I d3 v b) (and (consp v) (I d4 (car v) b) (I bar (cdr v) b)))

Expand | in the conclusion also, giving
for sone i in 1..n,
(and (I1-S Sj b)
(or (I & v b)

(and (consp v) (I d24 (car v) b) (I bim(cdr v) b))))
We induct on the structure of v.
Case 1. v is atomc

Instantiate Lenma DUNI FY- DESCRI PTORS-OK with tda = &, tdb = bar
substs =s, v =v, and b = b. The consp disjunct in H2 is clearly
false, so the first disjunct nust hold. This, Hl, and H3 allow

us to use the conclusion of the instantiated DUN FY- DESCRI PTORS- OK
gi ving us

for sone i,
(and (I1-S Sj b) (I & v b))

Thi s establishes our concl usion.
Case 2. v is of the form(cons vcar vcdr)

Since d3 is either a primtive or a disjunction of primtives
it cannot represent a cons. Thus, the second disjunct of H3
must hol d, giving us

H3'' (and (consp v) (I d4 (car v) b) (I bar (cdr v) b))
Now consi der the cases suggested by H2’
Case 2.1 (I & v b)

Instantiate Lenma DUNI FY- DESCRI PTORS-OK with tda = &, tdb = bar
substs = s, v =v, and b = b. Hl, our Case 2.1 assunption, and
H3 relieve the | etma’ s hypot heses, so we can use the concl usion

for sone i,
(and (I1-S Sj b) (I & v b))

Thi s establishes our concl usion.
Case 2.2 (and (consp v) (I d2 (car v) b) (I foo (cdr v) b))

I nstantiate Lenma DUNI FY- DESCRI PTORS- | NTERFACE- OK wi t h

tda = d2, tdb = d4, v = vcar, and b = b. The second
conjunct of H3'' and the second conjunct of our Case 2.2
assunption relieve the | emma’ a hypot heses, establishing the
concl usi on

H6 (I d24 (car v) b)

Now i nstanti ate Lenma DUN FY- DESCRI PTORS-OK with tdl = foo
td2 = bar, v = (cdr v), b = Db, and substs =s. Hl, the third
conjunct of the case assunption, and the third conjunct of
H3'' relieve the hypotheses, giving us the conclusion

H7 for sone i
(and (I-S Sj b) (I bim(cdr v) b))

Choosing the i for which H7 holds, the first conjunct of H7
establishes the first conjunct of the conclusion. (consp v)
fromthe case assunption, H6, and the second conjunct of H7
establish the second disjunct of the second conjunct of the
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goal, thus establishing the goal for this case and conpl eting
the case analysis. QED.

B-C Rule Dunify-*Recb

Rul e Duni fy-*Rec5

Wth no variables appearing in either descriptor, and denoting
(duni fy-descriptors-interface
dl (*cons d4 (*rec bar (*or d3 (*cons d4 (*recur bar))))))
= dl4bar, and
(duni fy-descriptors-interface
d3 (*cons d2 (*rec foo (*or dl (*cons d2 (*recur fo00))))))
= d32f oo

(duni fy-descriptors
(*rec foo (*or dl (*cons d2 (*recur fo0))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
s)

(((*rec bim(*or d13 dl4bar d32foo (*cons d24 (*recur bim))) . s))

Rule Dunify-*Rec5 is very general, in that it does not require d1 or d3 to be consfree. Since al the
non-replicating terms in a *REC body can be gathered into an *OR, d1 and d3 represent any such terms,
with the only other restriction being that they are variable-free. The lemma corresponding to theruleis:

Lemma DUNI FY- * REC5- OK

For any Lisp value v, binding b, and substitution s
(and
(1-S's b)
(I foo v b)
(I bar v b)
(equal (dunify-descriptors-interface d1 d3) di3)
(equal (dunify-descriptors-interface dl1 (*cons d4 (*recur bar)))
dl4bar)
(equal (dunify-descriptors-interface d3 (*cons d2 (*recur fo00)))
d32f 00)
(equal (dunify-descriptors-interface d2 d4) d24) )
=>

(and (1-S's b) (I bimv b))

3 5 HESSE

Proof of Lemma DUNI FY-* REC5- OK

Hl establishes the first conjunct of the conclusion. The second
conj unct expands to

Cl (or (I di3 v b)

c2 (1 dl4dbar v b)

c3 (I d32foo v b)

(07} (and (consp v) (I d24 (car v) b) (I bim(cdr v) b)))
Expandi ng the definition of I in H2 and H3 yields

H2" (or (I dl1 v b)

(and (consp v) (I d2 (car v) b) (I foo (cdr v) b)))
H3" (or (I d3 v b)

(and (consp v) (I d4 (car v) b) (I bar (cdr v) b)))

We will induct on the structure of v.

Case 1. v is atomic
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This establishes the first disjunct of H2' and H3', since the
consp tests will fail. As suggested by H4, instantiate Lemm
DUNI FY- DESCRI PTORS- | NTERFACE-OK with tda = d1, tdb =d3, v = v
and b = b. H2' and H3' relieve its hypotheses, giving us the
concl usi on

(1 di13 v b)
whi ch equals Cl, establishing the goal
Case 2. v is of the form(cons vcar vcdr)

We will consider pairwi se the cases suggested by H2' and H3’
In each case, we will instantiate Lemma

DUNI FY- DESCRI PTORS- | NTERFACE- OK as suggest ed by one or nore of
H - H7

Case 2.1 (and (I d1 v b) (I d3 v b))

Proceed exactly as in Case 1, using the Case 2.1 assunption to
relieve the hypotheses of DUN FY- DESCRI PTORS- | NTERFACE- OK

Case 2.2 (and (I d1 v b)
(and (consp v) (I d4 (car v) b) (I bar (cdr v) b)))

I nstantiate DUN FY- DESCRI PTORS- | NTERFACE- OK according to H5
with tda = d1, tdb = (*cons d4 bar), v =v, and b = b. CQur
case assunption establishes the antecedents, giving us the
concl usion, (I dl4bar v b), which is equal to C2, establishing
t he goal

Case 2.3 (and (and (consp v) (I d2 (car v) b) (I foo (cdr v) b))
(I d3 v b))

I nstanti ate DUNI FY- DESCRI PTORS- | NTERFACE- K according to H6
with tda = d3, tdb = (*cons d2 foo), v =v, and b = b. Qur
Case 2.3 assunption establishes the first antecedent, and
expanding the definition of | in the second antecedent yields
a formequal to the first disjunct of our case assunption
Thus we establish the conclusion, (I d32foo v b), which is
equal to C3, establishing the goal

Case 2.4 (and (and (consp v) (I d2 (car v) b) (I foo (cdr v) b))
(and (consp v) (I d4 (car v) b) (I bar (cdr v) b)))

I nstantiate DUN FY- DESCRI PTORS- | NTERFACE-OK with tda = d2

tdb = d4, v = vcar, and b = b. The antecedents are relieved
by the second conjunct of each conjunct of the case assunption
This gives us

H8 (I d24 (car v) b)

Now use our Lemma DUNI FY-*REC5- OK as an inductive assertion
instantiating with v = (cdr v), s =s, and b = b. Hl and

H4 - H7 are identical to their respective antecedents in the
i nductive assertion, and the conjuncts of our case assunption
establish H2 and H3 respectively in the inductive assertion
This gives us the conclusion

HO (I bim(cdr v) b)
The (consp v) fromthe case assunption, H8, and H9 conbi ne

to establish C4, establishing the goal and conpleting the
case analysis. QED.
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B-D RuleDunify-*Recll

Rul e Duni fy-*Rec1l
Where d2, d3, and d4 contain no variables, and adopting the notation

(duni fy-descriptors & (*rec bar (*or d3 (*cons d4 (*recur bar)))) s)
=((& . s .. (& . sp)

(duni fy-descriptors
d3 (*cons d2 (*rec foo (*or & (*cons d2 (*recur f00))))) s)
= ((d32f001. sd31) .. (d32foom. sd3m)),

(duni fy-descriptors (*rec foo (*or & (*cons d2 (*recur foo
(*rec bar (*or d3 (*cons d4 (*recur bar
s)

— =

)))
)))

((_(*rec bim(*or & (*cons d24 (*recur bim))) . sl)

(.(;‘rec bim (*or & (*cons d24 (*recur bim))) . sn)
((*rec baml (*or d32fooq (*cons d24 (*recur banl)))) . sd3q)

(.(;rec bamm (*or d32foom (*cons d24 (*recur bamm))) . sd3m)
)

For further notational convenience, let

"bam " signify (*rec bam (*or d32f 00j (*cons d24 (*recur bami))))
Rule Dunify-*Recl1, stated as a theorem in terms of the interpreter, and assuming the constraints we
placed on our descriptors above, is:
Lemma DUNI FY-* REC11- OK

For any Lisp value v, binding b covering foo and bar, and
substitution s,

(and
HL (1-S s b)
H2 (I foo v b)
H3 (I bar v b)
H4 (equal (dunify-descriptors-interface d2 d4) d24)
H5 (equal (dunify-descriptors & bar s)

(& . sy .. (& . sp))

H6 (equal (dunify-descriptors d3 (*cons d2 foo) s)

((d32f001. sd31) .. (d32foom. sd3n9)) )
=>
(or
Cl for sonme i in 1..n,
(and (I1-S Sj b)
(I (*rec bim(*or & (*cons d24 (*recur bim))) v b))
C2 for some k in 1..m
(and (I1-S sd3k b)
(I (*rec bank (*or d32foo) (*cons d24 (*recur bank)))) v b)))

Proof of Lemma DUN FY-*RECL1- OK
First we expand | in H2 and H3 to get
H2' (or (I & v b)
(and (consp v) (I d2 (car v) b) (I foo (cdr v) b)))

H3" (or (I d3 v b)
(and (consp v) (I d4 (car v) b) (I bar (cdr v) b)))
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Cl expands by definition of I to

Cl' for some i in 1..n,
(and (I-S Sj b)
(or (I & Vv b)

(and (consp v) (I d24 (car v) b) (I bim(cdr v) b))))
C2 expands by definition of I to

C2' for sone k in 1l..m
(and (I1-S sd3k b)
(or (I d32fookv b)
(and (consp v) (I d24 (car v) b) (I bank (cdr v) b))))

We will induct on the structure of v.
Case 1. v is an atom

This rules out the consp disjuncts in H2' and H3'. Instantiate
Lemra DUNI FY- DESCRI PTORS- K as suggested by H5, with tda = &,
tdb = bar, v = v, substs =s, and b = b. Hl, H2’, and H3 relieve
its hypotheses, establishing the conclusion:

for sone i,
(and (I1-S Sj b) (I & v b))

Thi s establishes both conjuncts of Cl'.
Case 2. v is of the form(cons vcar vcdr)
Consi der pairw se the cases suggested by H2' and H3'.
Case 2.1 (I & v b)
Proceed as with Case 1.

Case 2.2 (and (and (consp v) (I d2 (car v) b) (I foo (cdr v) b))
(1 d3 v b))

Instantiate Lenma DUN FY- DESCRI PTORS- OK as suggested by H6, with
tda = d3, tdb = (*cons d2 foo), v = v, substs = s, and b = b. H1
and the second conjunct of our case assunption are equal to the
first two antecedents, and the expansion of the third antecedent
is equal to the first conjunct of the case assunption. So we have
establ i shed the concl usion:

for sone k in 1..m
(and (I-S sd3k b) (I d32fookv b))

Thi s establishes both conjuncts of C2'.

Case 2.3 (and (and (consp v) (I d2 (car v) b) (I foo (cdr v) b))
(and (consp v) (I d4 (car v) b) (I bar (cdr v) b)))

First instantiate Lenma DUN FY- DESCRI PTORS- | NTERFACE- OK as
suggested by H4, with tda = d2, tdb = d4, v = (car v), and
b = b. Thus, its first hypothesis is (I d2 (car v) b), and
the second is (I d4 (car v) b). These are both relieved by
the case assunption, so we have established the concl usion:

H7 (I d24 (car v) b)

Now use our Lenma DUNI FY-*REC11- OK as an inductive assertion,
instantiated with v = (cdr v), s =s, and b = b. HL and H4 - H6
are identical with the hypotheses of the inductive assertion,
and H2 and H3 are established by the |last conjunct of each
conjunct of our case assunption. W do not need Cl here, but

C2 gives us:
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H8 for some kin 1..m
(and (I-S sd3k b) (I bank (cdr v) b))

This establishes the first conjunct of our goal. The (consp v)
termfrom our case assunption, H7, and H8 conbine to establish
the second disjunct of the second conjunct. Thus, we have
establ i shed the goal.

This conpletes the case analysis. QED.

B.6 Descriptor Canonicalization

The canonicalization rules are stated in the form "td1l ==> td2", where td1 is a generic representation of
descriptors eligible for the canonicalization, and td2 is the representation of the form into which those
descriptors are canonicalized. By "==>" we mean only that

( PCANONI CALI ZE- DESCRI PTOR TD1) = TD2

Although the canonicalization is directed, each rule happens to be an equality, in the sense that td1 and td2
represent the same set of values under any interpretation by INTERP-SIMPLE. All that is required for
soundness of each rule "td1 ==>td2" is proof of an associated lemma of the form:

For all value v and binding b,
(1 tdl v b)
=>

(1 td2 v b)

Since it would be tedious to restate each rule in this form, we simply provide the rule notation, but the
proofs follow the INTERP-SIMPLE model. Each rule is annotated with the name of the function in which
it isimplemented.

Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Rul e 1:
(*OR $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL
$NON- T- NI L- SYMBOL $STRI NG $T (*CONS *UNI VERSAL *UNI VERSAL) )
==> *UNl VERSAL
From functi on PCONSOLI DATE- UNI VERSAL- DESCRI PTORS

Proof: (I *universal v b) =T for any v and b.

The reverse implication is also straightforward. It requires the knowledge that the only data items in our
world are characters, integers, NIL, non-integer rational numbers, symbols other than T or NIL, strings, T,
and conses whose atomic leaves are among the aforementioned. This, of course, is a basic and valid
assumption in the problem domain. Thus, proof is simply to show by cases in the data space that for some
disunct of the *OR descriptor, (I <digunct> v b) holds for any v and b. l.e, if the object v were a
character, then for any b,

(I (*or $character $integer $nil $non-integer-rational
$non-t-nil-symbol $string $t (*cons *universal *universal))
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since this call to | would expand to a disjunction of calls, one of which, (I $character v b), would hold.
The same kind of argument would apply to all other types of datain the world.

Rule 2

(*rec foo (... (*recur foo) ...))

==> (... (*rec foo (... (*recur foo) ...)) ...)
from functi on OPEN- REC- DESCRI PTOR- ABSOLUTE

Comment: Thisisalittle strange, because the very function which performs this canonicalization is part of
the definition of the semantics. When the interpreter encounters a *REC form, it calls itself recursively
with the argument (OPEN-REC-DESCRIPTOR-ABSOLUTE form). Thus, the validity of this
canonicalization istrivialy established.

Proof :
(I (*rec foo (... (*recur foo) ...)) v b)
= by expanding the definition of
(r (... (*rec foo (... (*recur foo) ...)) ...) v b)
Rule 3
(... (*rec foo (... (*recur foo) ...)) ...)
==> (*rec foo (... (*recur foo) ...))

From functi on PFOLD- RECS- | F- PCSSI BLE

Comment: By this notation we indicate that the forms represented by the (... ...) outside the *REC
descriptor are identical to those represented by the (... ...) inside the *REC but outside the (*RECUR
FOO). Moreover, we intend that there may be more than one (*RECUR FOO) inside the *REC, and in
this case, the larger form would have matching occurrences of the * REC.

Pr oof :

This follows directly fromthe proof for Rule 2. |If we apply the
interpreter to the right hand side and let it run one step, we
reduce the right hand side to the left hand side

Rul e 4:
(*or .. (*or d1 .. d2) ..) ==> (*or .. d1 .. d2 ..)
From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Pr oof :

(I (*or .. (*or d1 .. d2) ..))
= (by definition of I)

(or ..

(I (*or d1 .. d2) v b)
)

= kby definition of 1)
(or (or (I di1 v b)

(I d2 v b))
= kby associativity of OR)
(or .
(1 d1 v b)
(I d2 v b)
)
and

(I (*or .. dl1 .. d2 ..) v b)
= (by definition of I|)

(or .

(1 d1 v b)

(I d2 v b)

Thus, the two sides are equival ent.
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Rul e 5:
(*or .. d1 .. d1 ..) ==> (*or .. d1 .. ..)
From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Comment: This rule characterizes any multiple occurrence of a descriptor as arguments of an *or.

Pr oof :
(I (*or .. d1 .. d1..) v b)
= (by definition of 1)

(or ..
(I d1 v b)
(I di v b)
o)
= (by tautol ogy)
(or ..

(I d1 v b)
o)
= (by definition of 1I)

(I (*or .. d1 .. ..) v b)
Rule 6
(*or .. *enpty .. ) ==> (*or .. .. )

From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Comment: This rule characterizes any occurrence of *EMPTY as an argument of an *OR. The proof is
analogous in any such scenario.

Proof :
(I (*or .. *enpty .. ) v b)
= (by definition of 1)
(or ..
(I *enpty v b)
)

= (by definition of | in the *enpty case)
(or ..
ni
)
= (by disjunctive syllogism
(or ..
)

= kby definition of 1)
(I (*or .. ..) v b

Rule 7.
Where d does not contain a (*recur foo)
(*or d (*rec foo (*or d .. (*recur fo00))))
==> (*rec foo (*or d .. (*recur fo00)))
From functi on PREMOVE- RECURSI VE- EXPANSI ON- DUPLI CATES

Pr oof :

(*or d (*rec foo (*or d .. (*recur fo00))))
= (by Rule 2)

(*or d (*or d .. (*rec foo (*or d .. (*recur f00)))))
= (by Rule 5)

(*or d .. (*rec foo (*or d .. (*recur fo00))))
= (by Rule 3)

(*rec foo (*or d .. (*recur fo0)))

Rule 8

(*or (*cons d1 d2) (*cons d3 d2)) ==> (*cons (*or dl d3) d2)
Fr om PMERGE- OR- DESCRI PTOR- CONSES

Pr oof :

(I (*or (*cons dl1 d2) (*cons d3 d2)) v b)
= (by definition of I|)

(or (I (*cons d1 d2) v b)
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(I (*cons d3 d2) v b))
= (by definition of 1I)
(or (and (consp v)
(1 d1 (car v) b)
(1 d2 (cdr v) b))
(and (consp v)
(1 d3 (car v) b)
(1 d2 (cdr v) b)))
= (by distributive property)
(and (or (and (consp v)
(I d1 (car v) b)
(I d2 (cdr v) b))
(consp v))
(or (and (consp v)
(1 d1 (car v) b)
(1 d2 (cdr v) b))
(I d3 (car v) b))
(or (and (consp v)
(I d1 (car v) b)
(I d2 (cdr v) b))
(1 d2 (cdr v) b)))
= (by sinplification)
(and (consp v)
(or (and (consp v)
(I d1 (car v) b)
(1 d2 (cdr v) b))
(I d3 (car v) b))
(1 d2 (cdr v) b))
= (by distributive property)
(and (consp v)
(and (or (consp v)
(I d3 (car v) b))
(or (I d1 (car v) b)
(I d3 (car v) b))
(or (I d2 (cdr v) b)
(1 d3 (car v) b)))
(1 d2 (cdr v) b))
= (by sinplification)
(and (consp v)
(or (consp v)
(I d3 (car v) b))
(or (I d1 (car v) b)
(I d3 (car v) b))
(or (I d2 (cdr v) b)
(I d3 (car v) b))
(I d2 (cdr v) b))
= (by distributive property)
(and (consp v)
(consp v)
(or (I d1 (car v) b)
(I d3 (car v) b))
(1 d2 (cdr v) b)
(1 d2 (cdr v) b))
= (by tautol ogy)
(and (consp v)
(or (I d1 (car v) b)
(I d3 (car v) b))
(1 d2 (cdr v) b))
= (by definition of i)
(I (*cons (*or di1 d3) d2))

Rul e 9:
(*or (*cons dl1 d2) (*cons dl1 d3)) ==> (*cons d1 (*or d2 d3))
Fr om PMERGE- OR- DESCRI PTOR- CONSES

Pr oof :
As with Rule 8

Rul e 10
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(*or .. *universal ..) ==> *universal
from PCANONI CALI ZE- OR- DESCRI PTOR

Pr oof :
(I *universal v b) = T, so the proof is trivial.

Rule 11:

(*or d) ==>d
I.e., the *OR encapsul ates only one disjunct.
From PCANONI CALI ZE- OR- DESCRI PTOR

Pr oof :
(I (*or d) v b)
= (by definition of |NTERP-S|I MPLE- OR)
(or (I d v b)
nil)
= (by definition of OR)
(I dv b)

Rul e 12:

(*or) ==> *enpty

Here, the *OR encapsul ates no disjuncts.
From PCANONI CALI ZE- OR- DESCRI PTOR

Pr oof :
(I (*or) v b)

= (by definition of |NTERP-SI MPLE-OR)
NI L

(I *enpty v b)
= (by definition of |NTERP-SI MPLE- OR)
NI L

Rul e 13:
(*OR .. d1 .. d2..) ==> (*OR.. d2 .. d1 ..)
Fr om PCANONI CALI ZE- OR- DESCRI PTOR

Comment: This rule alows the placement of *OR diguncts into a canonical order, determined by the
lexical ordering function DESCRIPTOR-ORDER.

Proof :
(I (*or .. d1 .. d2 ..) v b)
= (by definition of |NTERP-SI MPLE- OR)

(or ..
(I d1 v b)
(I d2 v b)
)
= (by commutativity of OR
(or ..
(I d2 v b)
(I di v b)
)
= (by definition of |NTERP-S|I MPLE- OR)
(I (*or .. d2 .. dl..) v b)
Rul e 14:

(*cons *enpty d) ==> *enpty
f rom PCANONI CALI ZE- CONS- DESCRI PTOR

Proof :
(I (*cons *enpty d) v b)
= (by definition of I)
(and (consp v)
(I *enpty v b)
(I dv b))
= (by definition of 1)
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(and (consp v)
nil
(I dv b))
= (by sinplification)
nil
= (by definition of 1)
(I *enmpty v b)

Rul e 15:
(*cons d *enpty) ==> *enpty
Fr om PCANONI CALI ZE- CONS- DESCRI PTOR

Proof: As with Rule 14.

Rul e 16:
(*rec foo (*or tdfoo (*recur foo))) ==> (*rec bar tdbar)

wher e tdbar = (subst (*recur bar) (*recur foo) tdfoo)
and bar is a new *rec nanme and hence (*recur bar) does not occur in

tdfOO'
From functi on CANONI CALI ZE- REC- FOR- DUNI FY.

Comment: The critical feature of the left hand side is that the (*RECUR FOO) form is atop-level digunct
in the body of the *REC. Theidea motivating this canonicalization is that since the (*RECUR FOO) adds
no information not already present in the rest of the descriptor, it can be eliminated. The *REC must be
renamed, since all occurrences of * REC forms with the same label in any given context must be identical.

Proof :

We wish to prove that for any value v and binding b,

(and (I (*rec foo (*or ‘dfoo (*recur foo))) v b)
(equal tdbar (subst (*recur bar) (*recur foo) tdfoo))
for any x,
(equal (subst x (*recur bar) tdfoo) tdfoo)

=>

(I (*rec bar tdbar) v b)

The third hypothesis is the inage of the requirenent that bar is
a fresh *rec | abel.

The "subst" function here uses the "equal " test.
We will do this proof by proving a slightly nore general |enma:

For any descriptor td, Lisp value v and bi nding b,
(and
HL (I td v b)
H2 (equal tdbar (subst (*recur bar) (*recur foo) tdfoo))
H3 for any x, (equal (subst x (*recur bar) tdfoo) tdfoo)
=>
(I (subst (*rec bar tdlbar)
(*rec foo (*or tdlf00 (*recur fo0)))
td)
v
b)

Qur main lemma is just an instantiation of this lemma, with
td = (*rec foo (*or tdfoo (*recur foo0))).

We will proceed by conputational induction on the Iength of the
conputation by I. In a strange sense, this is a partial correctness
proof, since a certain ordering of the conputation of

(I (*rec foo (*or tdfoo (*recur foo))) v b)

is obviously non-terminating, i.e., the ordering which dives
infinitely into the second disjunct.
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Case 1. td = *enpty
This falsifies HIL.

Case 2. tdis a primtive descriptor, a type variable, or *universal
The substitution in the conclusion is a no-op, so Hl establishes
the goal .

Case 3. td is of the form(*cons tdcar tdcdr)
By definition of subst, the conclusion becones
(I (*cons (subst (*rec bar tdlbar)
(*rec foo (*or tdlf00 (*recur fo0)))
tdcar)
(subst (*rec bar tdlbar)
(*rec foo (*or tdlf00 (*recur fo00)))
tdcdr))
v b)
= by the definition of |
(and (consp v)
(I (subst (*rec bar tdlbar)
(*rec foo (*or tdlfoo (*recur fo00)))
tdcar)
(car v) b)
(I (subst (*rec bar tdlbar)
(*rec foo (*or tdlfoo (*recur fo00)))

tdcar)
(cdr v) b))
Hl expands, by the definition of I, to

(and (consp v) (I tdcar (car v) b) (I tdcdr (cdr v) b))

Thus, the first conjunct of the goal is established. The other
conjuncts are established by using the | emma as an inductive
assertion, instantiated first with td = tdcar, v = (car v), and
b = b, and again with td = tdecdr, v = (cdr v), and b = b. This
establ i shes the goal .

Case 4. td is of the form(*or tdl .. tdn)
By the definition of I, HL becones

(or (I tdlv b) .. (I tdnv b))

and the concl usi on becones

(or (I (subst (*rec bar tdlbar)
(*rec foo (*or tdlf00 (*recur fo0)))
tdl)
v b)

(I (subst (*rec bar tdlbar)
(*rec foo (*or tdlf00 (*recur fo00)))
tdp)
v b))

Choose any tdi for which HL holds and use the | enmma as an

i nductive assertion, instantiating with td = tdi, vV = v,

and b = b. This establishes one disjunct of the goal, which
suffices.

Case 5. tdis a *rec formother than foo
By the definition of I, HL becones

(I (open-rec-descriptor-absolute td) v b)
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Since the formin the conclusion is also a *rec descriptor,
t he concl usi on becones

(1 (open-rec-descriptor-absolute
(subst (*rec bar tdlbar)

(*rec foo (*or tdlfo0 (*recur fo0)))
td)))

v b)

Since (open-rec-descriptor-absolute td) replaces no instances of
(*rec foo (*or tdlf00 (*recur foo))), this formequals

(I (subst (*rec bar tdlbar)
(*rec foo (*or tdlf00 (*recur fo00)))

(open-rec-descriptor-absolute td))
v b)

Use the I emma as an inductive assertion with v = v, b = b, and
td = (open-rec-descriptor-absolute td).

Case 6. td = (*rec foo (*or tdlf00 (*recur fo0)))
Notice that the conclusion sinplifies to
(I (*rec bar tdlbar) v b)

By the definitions of | and open-rec-descriptor-absolute, HlL
becones

(or (I (subst (*rec foo (*or tdlfoo (*recur fo00)))
(*recur foo)

tdlfoo)
v b)
(I (*rec foo (*or tdlf00 (*recur fo0o))) v b))
Consi der each case separately.
Case 6.1 (I (*rec foo (*or tdlfy, (*recur foo))) v b)

Use the | emma as an inductive assertion with v = v, b = b,
and td = (*rec foo (*or tdlfoo (*recur foo))). The

conclusion sinplifies to our goal.

Case 6.2 (I (subst (*rec foo (*or tdlfoo (*recur fo0)))
(*recur foo)

t dlfOO)

v b)

Use the |l emma as an inductive hypothesis, with v = v, b = b,
and td = (subst (*rec foo (*or tdlf00 (*recur fo00)))

(*recur foo)

t dlfoo)

Since our case assunption establishes its antecedent, this
gi ves us

(I (subst (*rec bar tdlbar)
(*rec foo (*or tdlfoo (*recur fo00)))
(subst (*rec foo (*or tdlfoo (*recur fo0)))
(*recur foo)

tdlfoo))
v b)

Not i ce that tdl]c00 cannot |exically contain
(*rec foo (*or tdlfoo (*recur foo))), since that woul d make
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it alexically infinite term So, the outer subst can repl ace
only those instances of (*rec foo (*or tdlfoo (*recur fo00)))

which were injected by the inner subst. So the term above is
equal to

(I (subst (*rec bar tdlbar)
(*recur foo)

tdlfog)

v b)
Now expand the definition of | in our conclusion.
(I (open-rec-descriptor-absolute (*rec bar tdlbar)) v b)
By the definition of open-rec-descriptor-absolute, this equals
(1 (subst (*rec bar tdlbar) (*recur bar) tdlbar)
Substitute, using the equality in H2, to get

(I (subst (*rec bar tdlbar)

(*recur bar)
(subst (*recur bar) (*recur foo) tdfoo))

v b)
Substitute, using the equality in H3, to get

(I (subst (*rec bar tdlbar)
(*recur foo)

tdfoo)
v b)
This is what we established above.
QED.
Rul e 17:

VWhere within (.. (*RECUR FOO) ..) there is no *OR enclosing the
(*RECUR FOO), but sonme *CONS enclosing it,

(*REC FOO (.. (*RECUR FOO) ..)) ==> *EMPTY
From functi on PCANONI CAL| ZE- REC- DESCRI PTOR

Comment: With this notation, we indicate a *REC structure with no terminating disunct. Thus, it can
represent only infinite objects, and since these are not allowed in our subset, we reduce the form to
*EMPTY.

Pr oof :
Let us performthe proof on a canonical exanple, so we avoid getting
tangled up in notation. W wll prove

(*REC FOO (*CONS d (*RECUR FOO))) = (*REC FOO (*CONS d *EMPTY))

We will prove this by induction on the depth (in the CDR) of the data
obj ect v.

First, clearly (I (*REC FOO (*CONS d *EMPTY)) v b) is always NL,
since if vis atomc, it is not a CONS, and if it is a CONS, the
expansi on of (I (*REC FOO (*CONS d *EMPTY)) v b),

i.e.,

(AND ( CONSP V)
(I d (CARV) B)
(I *EMPTY (CDR V) B))

is always NIL, since (I *EMPTY (CDRV) B) = NIL.
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So our task is to prove for any v and b
(I (*REC FOO (*CONS d (*RECUR FOO))) v b) = NIL
For the sake of illustrating our induction schema, consider

( DEFUN LEN (X)
(IF (ATOMX) 0 (+ 1 (LEN (CDR X)))))

G ven a CONS structure, LEN returns an integer which is its
length, i.e., the nunber of successive calls to CDR required
to reach an atomic value. W induct on the length of v.

Base Case 1: v is atonmic ((len v) = 0)
(I (*rec foo (*cons d (*recur foo))) v b) = ni
since v is not a cons

I nductive Case: Assune the lemma is true for (len v) =n, and
prove it for (len v) = n+l

So v = (cons vcar vcdr), where (len v) = n+l and (len vcdr) = n
The inductive hypothesis is,
For all v’ = (cons vcar’ vcdr’'), where (len vecdr’) = n,
(I (*rec foo (*cons d (*recur foo))) v' b) = ni

(I (*rec foo (*cons d (*recur foo))) (cons vcar vcdr) b)

(and (consp (cons vcar vcdr))
(I d vcar b)
(I (*rec foo (*cons d (*recur foo))) vcdr b))
= by the inductive hypothesis, since (len vcdr) = n
(and (consp (cons vcar vcdr))
(I d vcar b)
nil)
=ni

QED

Rul e 18
Where (*dlist dl1 .. dfoo .. dn) and (*dlist d1 .. dbar .. dn)
are identical except that they differ in one position, dfoo vs. dbar
(*or ... (*dlist d1 .. dfoo .. dn) ... (*dlist d1 .. dbar .. dn) ...)
= (*or ... (*dlist d1 .. (*or dfoo dbar) .. dn) ...)
From functi on PCANONI CALI ZE- OR- DESCRI PTOR

Comment: An *OR of *DLISTS s not a conventional descriptor. But it isformed on exit from DUNIFY -
DESCRIPTORS-INTERFACE when we call it with *DLIST descriptors, whenever multiple results are
returned from its call to DUNIFY-DESCRIPTORS. Thus, rather than there being a semantic notion of an
*OR of *DLISTs, this packaging is just a protocol with any function which cals DUNIFY-
DESCRIPTORS-INTERFACE with *DLIST arguments, alowing DUNIFY-DESCRIPTORS
INTERFACE to behave polymorphically. The caler has the obligation to unpack the *OR. and to treat
thelist of results as a disjunction of possibilities. Hence, this canonicalization allows a merging of results.

Proof :
W will let v be the list of values (vl .. vfoobar .. vn)

(or (I (d1 .. dfoo .. dn) (vl .. vfoobar .. vn) b)
(I (d1 .. dbar .. dn) (vl .. vfoobar .. vn) b))
= (or (and (I di1 vl b)
ki df oo vfoobar b)

(I dn vn b))
(and (1 dl1 vl b)

(1 dbar vfoobar b)
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(I dn vn b))
= distributing OR over AND and reducing all instances of
(OR x x) to x
(and (1 dl1 vl b)

kbr (1 df oo vfoobar b)
(I dbar vfoobar b))

(I dn vn b))
= by definition of
(and (I d1 v1 b)

ki (*or dfoo dbar) vfoobar b)

(I dn vn b))
= by definition of
(I (d1 .. (*or dfoo dbar) .. dn)
(vl .. vfoobar .. vn)
b)
QED

B.7 The Containment Algorithm

The lemmas proved in this section are CONTAINED-IN-OK and ICONTAINED-IN-OK and some
lemmas associated with their *REC rules, ICONTAINED-IN-EQUAL-TDS, which is subsidiary to
ICONTAINED-IN-OK, and UNIVERSALIZE-SINGLETON-VARS-1-OK, which is subsidiary to
CONTAINED-IN-INTERFACE-OK.

For afull discussion of the containment algorithm, see Section 6.8.

B.8 Proof of Lemma CONTAINED-IN-OK

CONTAINED-IN-OK isthe soundness lemma for the CONTAINED-IN agorithm, which is employed by
CONTAINED-IN-INTERFACE whenever neither of the descriptors contain type variables. The main
part of the proof is in the section which follows immediately. One case in this proof is deferred in this
section. This is the case where both DESCRIPTOR1 and DESCRIPTOR2 are *REC descriptors. The
proof approach for this case isin the second section to follow.

For a description of CONTAINED-IN, see Section 6.8.3.

B-E CONTAINED-IN-OK, Top Level Proof

Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.

Lenma CONTAI NED- | N- OK
For any descriptors tdl and td2, Lisp value v, and binding bl

(and
HL (null (gather-variabl es-in-descriptor tdl))
H2 (null (gather-variabl es-in-descriptor td2))
H3 (contained-in tdl td2)
H4 (I tdl v bl))

=>
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For sone b2, (I td2 v b2)

Comment: The b2 used here is irrelevant, since the descriptors are
vari abl e-free.

The proof of soundness of CONTAINED-IN is actually the "simultaneous" proof of the conjunction of a
collection of lemmas whose proofs rely on one another. The nest includes Lemma CONTAINED-IN-OK
and the correctness lemmas for all the *REC containment rules. The proof is by computational induction
on the length of the computation by CONTAINED-IN. This allows the assumption of any appropriate
lemma within the nest to characterize the result of any recursive call in the computation subsidiary to the
top level call.

Recall that CONTAINED-IN aso takes a third argument, TERM-RECS, which is employed solely as a
mechanism for terminating the computation in certain cases. As such, it has no effect on the soundness
argument, which does not rely on termination, and to avoid clutter in the lemmas and proofs, we simply
omit mention of it. One could think of it as being a universally quantified variable in the lemma with no
particular demands placed onit.

Proof of Lermma CONTAI NED- | N- OK

Qur case anal ysis takes each case in sequence, so each one
assumes the negation of all previous cases.

Since tdl and td2 are variable-free and the al gorithmintroduces no
new variabl es, bl and b2 are irrelevant to the eval uation of

(I tdl v bl) and (I td2 v b2). W fix b2 to equal bl and sinply
refer to b to elimnate any confusion. Now proceed by cases.

Case 1. tdl = td2
Trivial. For any v and b, (I tdl v b) => (I td2 v b)

Case 2. tdl = *enpty
By definition, (contained-in tdl td2) =t.
Trivial. For any v and b, (I tdl v b) = nil, falsifying H4.

Case 3. td2 = *enpty
Trivial. By definition, (contained-in tdl td2) = nil, falsifying H3.

Case 4. tdl = *universal
By definition, (contained-in tdl td2) = nil, falsifying H3.

Case 5. td2 = *universal
By definition, (contained-in tdl td2)
For all v and b, (I *universal v b) =
concl usi on.

=t.
t, establishing the

Case 6. tdl = (*or tdll .. tdln)
By definition,
(contained-in tdl td2) =
all i in[1..n], (contained-in tdli td2)
By definition,
(1 (*or tdll .. tdln) v b) = (or (I tdllv b) .. (I tdlnv b)).
Use the inductive assunption of our |emmua for each tdli, i.e.

For all tdli and td2, v, and b,

(and (null (gather-variabl es-in-descriptor tdli))
(null (gather-variabl es-in-descriptor td2))
(contained-in tdli td2)

(1 tdli v b))
=>

(1 td2 v b)
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We have already established that the first three antecedents hol d.
For any i such that (I tdli v b) is true, use the inductive
assunption to note that (I td2 v b) is true. This establishes the
goal .

Case 7. tdl is a *rec descriptor

Case 7.1. td2 = (*or .. tdl .. )
By definition, (contained-in tdl td2) =t.
By definition, (I (*or .. tdl .. ) vb) =(or .. (I tdl v b) .. )
Since (I tdl v b) is the antecedent in the conclusion, this makes
the inplication trivially true.

Case 7.2. td2 is a *rec descriptor
This case is handled with a set of rules exhaustively covering all
possi bl e pairs of *rec descriptors. Selected rules are proved
separately. For these proofs, see Appendix B-F.
For a complete list of the rules, see Section 6.8.3.
By definition for this case, contained-in tests the enabling
condition for each rule in succession until it finds an
appropriate case, and then the result is given by the action
conmponent of the rule. A default rule which is unconditionally
enabl ed ensures that all cases are handl ed. Thus, by our
conput ati onal induction schenma, the proof for this case is by
strai ghtforward instantiation of the | emma associated with the
appropriate rule.

Case 7.3. td2 falls under neither Case 7.1 nor 7.2.
By definition, (contained-in tdl td2)
= (contained-in (open-rec-descriptor-absolute tdl) td2).
This equality is maintai ned under canonicalization Rule 2 (See
Section 6.7) for opening *rec descriptors.
Therefore, we appeal to the inductive hypothesis, instantiated
with tdl = (open-rec-descriptor-absolute tdl).

Case 8. td2 = (*or td21 .. td2n)

By definition, (contained-in tdl td2)
= (or (contained-in tdl td21) .. (contained-in tdl tdZn)).

Al'so by definition, (I td2 v b) = (or (I td2q v b) .. (I td2,v b)).
Use the inductive assunption for any i in [1..n] that:

For all tdi, td2i, v, and b,

(and (null (gather-variabl es-in-descriptor tdl))
(null (gather-variabl es-in-descri ptor td2i))
(contained-in tdl td2i)

(1 tdl v b))

=>

(I td2j v b)

Choose any i such that (contained-in tdl td2i). We know one

exists, by the expansion of H3. Then use the inductive assunption
for that i to establish (I td2i v b). This in turn establishes

(or .. (I td2; v b) .. ) and our goal, (I td2 v b).

Case 9. td2 is a *rec descriptor
By definition, (contained-in tdl td2)
= (contained-in tdl (open-rec-descriptor-absolute td2)).
This transformation is valid under canonicalization Rule 2 for
opening *rec descriptors. W appeal to the inductive hypothesis,
instantiated with td2 = (open-rec-descriptor-absolute td2).

Case 10. tdl = (*dlist tdll . tdln) and td2 = (*dlist td21 .. td2n)
v is a list of values (Vl .. vn).

By definition,



Type Checking for Common Lisp 289
Proofs of Selected Lemmas

(contained-in tdl td2)
= (and (contained-in tdll td21) .. (contained-in tdln td2n))

Consi der the inductive assunptions for each i,

For any descriptors tdli and td2i, val ue Vi, and binding b,
(and (null (gather-variabl es-in-descriptor tdli))
(null (gather-variabl es-in-descriptor td2i))
(contained-in tdli td2i)
(I tdij vj b))
=>
(1 td2i Vi b)

We can use these inductive hypot heses because:

1) If there are no variables in tdl and td2, then there are no
variables in the conponents of tdl and td2.
2) (contained-in tdli td2i) is established by case assunption.

3) For all i, (I tdli Vi b) is established by the
antecedent in our main goal, (I tdl v b), which expands directly to

(and (1 tdlq vq b) .. (I tdly vy b)).

We can choose an arbitrary b for all the inductive hypotheses to share,
since in the absence of variables the binding has no bearing on the
value of I. This sane b will suffice for our goal, which is then
established by the conjunction of the conclusions of our inductive
hypot heses.

Case 11. tdl = (*cons tdlcar tdlcdr) and td2 = (*cons td2car td2cdr)
This is anal ogous to Case 10, where the |lists of arguments are

of length 2, the descriptor constructor is *cons rather than *dlist,
and the value is (cons (car v) (cdr v) rather than (Vl .. vn).

The proof is exactly anal ogous to Case 10, with these surface issues
taken into consideration.

Case 12. tdl = (*cons tdlcar td2cdr) and td2 is a primtive descriptor
(contained-in tdl td2) = nil, falsifying the antecedent H3.

Case 13. tdl is a primtive descriptor and td2 = (*cons td2car td2cdr).
(contained-in tdl td2) = nil, falsifying the antecedent H3.

Case 14. tdl = $integer (Wthout |oss of generality, this same argunent
applies to the cases for other printive descriptors)

Case 14.1. td2 = $integer
To show (contained-in tdl td2) =t, we consider tw cases.

Case 14.1.1 (integerp v)
(I tdl v b) =t for any b
(I td2 v b) =t for any b

Case 14.1.2 (not (integerp v))
(I tdl v b) = nil for any b, falsifying H4.

Case 14.2 td2 = sone other primtive
(contained-in tdl td2) = nil, falsifying the antecedent H3.

This conpl etes an exhaustive case anal ysis.

QED.
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B-F The CONTAINED-IN *REC Rules

This section gives the proof approach for the case where both DESCRIPTOR1 and DESCRIPTOR?2 are
*REC descriptors, which is handled by application of a collection of specia purpose rules. Each rule has
an enabling condition which is essentially a pattern matching predicate on the forms of the descriptors.
Each rule aso has an action, which determines whether containment exists for that case. The first such
rule which is enabled for given arguments makes the complete determination. Collectively, the proofs of
soundness of all these rules is sufficient to prove the soundness of the algorithm for this case, since
collectively they provide an exhaustive case analysis.

Each rule coincides with a lemma stated in terms of INTERP-SIMPLE. The statement of these lemmas
and their proofs are supplied for only some of the rules stated here, but these examples should provide
adequate demonstration that the other rules are provable by the same techniques. In particular, Rule
Contain-* REC2 was chosen for proof because it is a simple rule illustrating the basic technique, and Rule
Contain-* REC5 was chosen because it is perhaps the most complex of the rules.

Recall that the lemma corresponding to each rule is a member of the nest of lemmas, including
CONTAINED-IN-OK, which we are proving simultaneously via computational induction on the length of
the computation by CONTAINED-IN. This alows the assumption of each lemma with regard to every
subsidiary call within the computation.

There are numerous rules, and they are al stated in Section 6.8.3. The rules are stylistically quite similar.
Most reduce the problem to one or more containment problems for component descriptors, and hence the
assumption of CONTAINED-IN-OK in their proofs.

Since the CONTAINED-IN algorithm is only invoked when both of its arguments are variable-free, we
have a standing assumption on all the rules that the descriptors in question are variable-free. Thus their
components are also variable-free, and CONTAINED-IN may be called recursively.

Many of the rules have a NIL result, indicating that containment does not exist. The soundness proofs for
these rules are trivial, since returning a NIL result negates one of the antecedents to the lemma which
would correspond to any such rule.

Furthermore, there are some rules whose names end with a "’". These rules are generaly symmetric
variants of the rules with the same, but unprimed, names. Their proofs would be similarly symmetric.
Rule Contain-* REC2 has just such avariant.

The rules are employed in the following manner. When CONTAINED-IN is called with the two *REC
descriptors, it invokes each rule in sequence until it finds one whose enabling condition establishes that
the *REC descriptors are of the form indicated by canonical example as FOO and BAR. The rule then
indicates the definition of CONTAINED-IN for *REC descriptors of that form. The lemmas are
generically of the same following form as CONTAINED-IN-OK:

For any variable-free *rec descriptors of the formfoo and bar,
Li sp value v, and type variabl e binding bil,

(and (contained-in foo bar)
(I foo v bl))

=>

for sone binding b2,

(I bar v b2)

but with the (CONTAINED-IN FOO BAR) hypothesis replaced by the right hand side of the containment
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rule. This simply reflects the fact that for this case, the right hand side provides the definition of
CONTAINED-IN for this case.

So consider the following containment rule.

Rul e Cont ai n-* REC2

(contained-in (*rec foo (*or $nil (*cons dl (*recur foo0)
(*rec bar (*or $nil (*cons d2 (*recur bar)

— —

))
B )))

(contained-in dl1 d2)

This rule reduces the containment problem for * REC descriptors of the form characterized by FOO and
BAR to the containment problem for D1 and D2.

For notational convenience, let

"foo" denote (*rec foo (*or $nil (*cons dl (*recur fo00))))
"bar" denote (*rec bar (*or $nil (*cons d2 (*recur bar))))

We wish to prove a lemma validating this rule as an inference in the CONTAINED-IN algorithm. The
rule corresponds to and is justified by the lemma:

Lemma CONTAI N-* REC2- OK
For any (variable-free) descriptors dl1 and d2, where foo is a
descriptor of the form (*rec foo (*or $nil (*cons dl (*recur fo0))))
and bar is a descriptor of the form
(*rec bar (*or $nil (*cons d2 (*recur bar)))),
for any Lisp value v, and type variabl e binding bl,
(and
HL (null (gather-variabl es-in-descriptor foo))
H2 (null (gather-variabl es-in-descriptor bar))
H3 (contained-in dl d2)
H4 (I foo v bl))
=>
For sone b2, (I bar v b2)

We will use CONTAINED-IN-OK as an inductive hypothesis.
Proof of Lemma CONTAI N-* REC2- K

W will induct on the structure of the value v.

In H4, (I foo v bl) expands by definition of I to
(or (I $nil v bl) (I (*cons dl1 foo) v bl)),

whi ch expands further, giving the revised hypothesis,

HA* (or (I $nil v bl)
(and (consp v) (I d1 (car v) bl) (I foo (cdr v) bl))).

Simlarly in the conclusion, (I bar v b2) expands to
(or (I $nil v b2) (I (*cons d2 bar) v b2)),

whi ch expands further, giving the revised concl usion
For sone b2,

(or (I $nil v b2)
(and (consp v) (I d2 (car v) b2) (I bar (cdr v) b2))).
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Now | et us consider the cases suggested by H4’

Case 1. (I $nil v bl)
This establishes the first disjunct of the conclusion directly.

Case 2. (and (consp v) (I dl1 (car v) bl) (I foo (cdr v) bl))

Here we will use Lenmma CONTAI NED-I N-OK as an inductive hypothesis
on both (car v) and (cdr v). Instantiate it once with tdl = dl
td2 = d2, bl = bl, and v = (car v). W need to relieve its

hypot heses. Since dl is syntactically a part of foo, HL
guarantees (null (gather-variables-in-descriptor dl))

Li kewi se for H2 and d2. H3 is preserved. Qur case assunption
relieves its H4. Thus, we can use the conclusion

H5 For some b2, (I d2 (car v) b2")

Now i nstantiate Lemma CONTAI NED-IN-OK again, with tdl = foo
td2 = bar, v = (cdr v), and bl = bl. Again, Hl, H2, and our
case assunption relieve its hypotheses, giving us

H6 For sone b2'', (I bar (cdr v) b2'")

Since foo, bar, dl, and d2 are all variable-free

the contents of the bindings quantified in H5, H6, and the
conclusion are all immterial. For the sake of clean exposition
then, we sinply instantiate b2, b2, and b2’ with bl

Then, H5, H6, and the (consp v) conjunct fromour case assunption
toget her establish the conclusion. QD

Now let us consider:
Rul e Cont ai n-*REC5

(contained-in (*rec foo (*or dl1 (*cons d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar)))))
(or (and (contained-in dl d3) (contained-in d2 d4))
(contained-in foo d3)
(and (contained-in dl1 bar) (contained-in d2 d4)))

Thisrule corresponds to and is justified by the following lemma:
Lemma CONTAI N- * REC5- CK

For any descriptors dl, d2, d3, and d4, where foo is a descriptor of
the form (*rec foo (*or dl1 (*cons d2 (*recur foo)))) and bar is a
descriptor of the form (*rec bar (*or d3 (*cons d4 (*recur bar))))
For any value v and binding bil,

(and
HL (null (gather-variabl es-in-descriptor foo))
H2 (null (gather-variabl es-in-descriptor bar))
H3 (or (and (contained-in dl d3) (contained-in d2 d4))
(contained-in foo d3)
(and (contained-in dl1 bar) (contained-in d2 d4)))
H4 (I foo v bl))
=>
For sone binding b2, (I bar v b2)

For notational convenience, let

"foo" denote (*rec foo (*or dl1 (*cons d2 (*recur fo00))))
"bar" denote (*rec bar (*or d3 (*cons d4 (*recur bar))))
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Proof of Lemma CONTAI N-* REC5- OK

Since foo and bar are variable-free, then dl, d2, d3, and d4, by
virtue of being syntactically contained in either foo or bar, are
al so variable-free, and we will proceed under that notion w thout
further mention. Furthernore, there is no need to be concerned
about the bindings bl, b2, or any others, since because there

are no variables in the problemstate, they never conme into play

in the evaluation of |I. So let us just use bl as a witness for
any bi ndi ng.
We will induct on the structure of v.

In H4, (I foo v bl) expands by definition of | to
(or (I d1 v bl) (I (*cons d2 foo) v bl))
whi ch expands further to

H4'" (or (1 dl v bl)
(and (consp v) (I d2 (car v) bl) (I foo (cdr v) bl)))

Simlarly in the conclusion, (I bar v bl) (using bl for b2)
expands to (or (I d3 v bl) (I (*cons d4 bar) v bl)), which
expands further to the revised concl usion

(or (I d3 v bl)
(and (consp v) (I d4 (car v) bl) (I bar (cdr v) bl)))

Now proceed by the cases suggested by H3
Case 1. (and (contained-in dl1 d3) (contained-in d2 d4))
Case 1.1 v is an atomic value
Since (consp v) cannot hold, H4' gives us
(1 d1 v bl)
Instantiate Lenma CONTAINED-IN-OK with tdl = d1, td2 = d3, and
v = v. The first conjunct of the case assunption relieves its
H3, and (I dl1 v bl) relieves its H4, giving us
(1 d3 v bl)
whi ch establishes the first disjunct of the conclusion
Case 1.2 v is a cons
Now consi der the cases suggested by H4

Case 1.2.1 (I dl1 v bl)

Instantiate Lenma CONTAI NED- I N-OK as above and proceed to the
goal in the same way.

Case 1.2.2 (and (consp v) (I d2 (car v) bl) (I foo (cdr v) bl))

Instantiate Lenma CONTAINED-IN-OK with tdl = d2, td2 = d4
and v = (car v). Qur case assunptions (contained-in d2 d4)
and (I d2 (car v) bl) relieve its hypotheses, giving

(I d4 (car v) bil)
Now use our Lemma CONTAI N-*REC5- OK as the inductive hypot hesis
for (cdr v). Instantiate it with tdl = foo, td2 = bar, and
v = (cdr v). Qur Case 1 assunption and (I foo (cdr v) bil)
fromthe Case 1.2.2 assunption let us use its conclusion

(1 bar (cdr v) bil)

These two results, plus our (consp v) case assunption establish

the goal
Case 2. (contained-in foo d3)

Instantiate Lemma CONTAINED-IN-OK with tdl = foo, td2 = d3, and

293
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v = v. The case assunption and the original H4 relieve its
hypot heses. This gives us

(1 d3 v bl)
whi ch establishes the goal

Case 3. (and (contained-in dl bar) (contained-in d2 d4))
Case 3.1 v is an atom

Instantiate Lenma CONTAINED-IN-OK with tdl = dl1, td2 = bar, and
v =v. H4 gives us

(1 d1 v bl)
This and our case assunption (contained-in dl bar) allow us to
use the concl usion

(I bar v bil)
whi ch establishes the goal

Case 3.2 v is a cons
Consi der cases suggested by H4’
Case 3.2.1 (I dl v bil)
Proceed as with Case 3.1
Case 3.2.2 (and (consp v) (I d2 (car v) bl) (I foo (cdr v) bl))

Instantiate Lenma CONTAINED-IN-OK with tdl = d2, td2 = d4
and v = (car v). (contained-in d2 d4) fromour Case 3
assunption and (I d2 (car v) bl) fromour Case 3.2.2 assunption
relieve its hypotheses, giving us

(I d4 (car v) bil)

Now use Lemra CONTAI N-*REC5- OK as the inductive hypothesis
for (cdr v). Instantiate it with tdl = foo, td2 = bar, and
v = (cdr v). CQur Case 3 assunption relieves its H3, and
(I foo (cdr v) bl) fromthe Case 3.2.2 assunption relieves its
H4, so we obtain its conclusion
(1 bar (cdr v) bil)

These two results, plus our (consp v) case assunption establish
t he goal

This conpl etes the case analysis. QED.

B.9 ICONTAINED-IN-OK

ICONTAINED-IN-OK is the soundness lemma for the ICONTAINED-IN agorithm, which is employed
by CONTAINED-IN-INTERFACE whenever either of the descriptors contain type variables. The main
part of the proof isin the section which follows immediately. One of its more significant cases is factored
into Lemma ICONTAINED-IN-EQUAL-TDS, which is proved in the next section. Also deferred in the
main text is the case where both DESCRIPTOR1 and DESCRIPTOR?Z are *REC descriptors. The proof
approach for this case isin the third section to follow.

For a description of ICONTAINED-IN, see Section 6.8.5.

B-G Proof of Lemma | CONTAINED-IN-OK

Here, asin al our other lemmas and proofs, "I" is a shorthand notation representing INTERP-SIMPLE
when its second and third arguments are lists, INTERP-SIMPLE-1 when these arguments are a single
descriptor and value.
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Lemra | CONTAI NED- | N- OK:

For any descriptors tdl and td2, sinple napping m Lisp value v,
synbolic value reference vref, and binding bl covering the
variables in tdil,

(and

H1 (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-in-descriptor td2))

H2 (well-forned-mappi ng mvref bl)
H3 (icontained-in tdl (dapply-subst-list-1 mtd2) vref)
H4 (1 tdl v bl) )

=>

For sone b2, (I td2 v b2)

Note: Recall that ICONTAINED-IN takes another argument, TERM-RECS, which is employed solely as
a mechanism for terminating the computation in certain cases. As such, it has no effect on the soundness
argument, which does not rely on termination. To avoid clutter in the lemmas and proofs, we simply omit
further mention of it, though one could think of it as being universally quantified and arbitrarily
instantiable.

Proof of Lermma | CONTAI NED- 1 N- OK

For brevity, we abbreviate the functi on name DAPPLY- SUBST-LI ST-1
with "A-S-1".

Let us elimnate the existential quantifier on b2 fromthe outset,
claimng and | ater denopnstrating that a binding which woul d suffice
is constructed by (nmake-binding-from mapping mv bl), defined as
fol l ows:

( DEFUN MAKE- Bl NDI NG- FROM MAPPI NG (M V B1 VREF)
(IF (NULL M
NI L
(IF (EQUAL (CDR (CAR M) '$T)
(CONS (CONS (CAR (CAR M) T)
( MAKE- BI NDI NG- FROM MAPPI NG (CDR M V Bl VREF))
(IF (EQUAL (CDR (CAR M) ’$NIL)
(CONS (CONS (CAR (CAR M) NiL)
( MAKE- BI NDI NG- FROM MAPPI NG (CDR M V Bl VREF))
(I F (VAR ABLE- NAVEP (CDR (CAR M))
(CONS (CONS (CAR (CAR M) (CDR (ASSOC (CDR (CAR M) B1)))
( MAKE- BI NDI NG- FROM MAPPI NG (CDR M V Bl VREF))
(I'F (1 NP-EQUAL VREF (CDR (CAR M))
(CONS (CONS (CAR (CAR M)
(EVAL (SUBST (LI ST ’® QUOTE V)
VREF
(COR (CAR M))))
( MAKE- BI NDI NG- FROM MAPPI NG (CDR M V Bl VREF))
( MAKE- BI NDI NG- FROM MAPPI NG (CDR M V B1 VREF)))))))

The EVAL function used here is the normal Lisp EVAL, since this

al | ows MAKE- Bl NDI NG FROM MAPPI NG t o be executable in a normal

Lisp world. In our formal world, this call of EVAL corresponds
toacall to Ewith the sane form any binding (since the form

is a ground term), any world containing the SUBRs CAR, CDR

DLI ST- ELEM and REC-TAIL, and any positive integer clock. Since
the only functions invoked are SUBRs, no clock ticks are

consunmed. (Al though DLI ST-ELEM and REC-TAIL are not in our initial
dat abase of function signatures, they certainly could be. W chose
not to include them because the scenario just described here is
somewhat hypothetical and is relevant only to the proof, not to
the nornmal operation of the system)

Thus our theoremis transfornmed to:
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For any descriptors tdl and td2, sinple nmapping m Lisp value v,
synbolic val ue reference vref, and binding bl covering the
variables in tdil,

(and
HL (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-i n-descriptor td2))
H2 (well-forned-mappi ng mvref bl)
H3 (icontained-in tdl (A-S mtd2) vref)
H4 (1 tdl v bl) )
>

(I td2 v (make-binding-from mapping mv bl vref))

H2 guarantees that if (VAR ABLE-NAMEP (CDR (CAR M)), (CDR (CAR M)
is mapped in Bl, and al so that

(SUBST (LIST ' QUOTE V) VREF (CDR (CAR M))
is avalid formto evaluate and will do so wi thout error.

The proof is by conputational induction on the length of the
conputation by | CONTAINED-IN. This allows the assunption of
the |l enrma on every recursive call.

Qur case anal ysis takes each case in sequence, as in the algorithm
so each one assunes the negation of the case assunptions of all
previ ous cases.

Case 1. tdl = (A-S-1 mtd2)
By definition, (icontained-in tdl (A-S-1 mtd2) vref) =1t

Since there are no value references in tdl, our case assunption rules
out the possibility that mmaps & to a value ref.

This case is captured in the followi ng | emma:
Lemma | CONTAI NED- | N- EQUAL- TDS

For any descriptors tdl and td2, sinple napping m containing no
synbolic value references on the right hand side, synbolic val ue
reference vref, Lisp value v, and type variable binding bl
covering the variables in tdi,

(and
H1 (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-in-descriptor td2))
H2 (wel | -forned- mappi ng mvref bl)
H3 (I tdl v bl)
H4 (equal tdl (dapply-subst-list-1 mtd2)) )
=>
(I td2 v (make-binding-from mapping mv bl vref))

The proof of this lemma is in Appendix B-H.

Case 2. tdl = *enpty
Trivial. For any v and bl, (I tdl v bl) =nil, falsifying the
ant ecedent of the concl usion.

Case 3. (A-S-1 mtd2) = *enpty, and therefore td2 = *enpty.
Trivial. By definition, (icontained-in tdl *enmpty m) = nil,
fal sifying H3.

Case 4. (A-S-1 mtd2) = vref

In this case, mnaps sone type variable & to vref, and td2 = & .
By definition of make-binding-from mapping, then, the binding
produced by (nmake-binding-fromnmapping mv bl vref) maps & to v.
Therefore, the conclusion sinplifies as follows, by the definition
of I:
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(I & v (make-binding-frommapping mv bl vref)) = (equal v v).

Case 5. (and (value-refp (A-S-1 mtd2))

(not (equal (A-S-1 mtd2) vref)))
By definition (icontained-in tdl (A-S-1 mtd2) vref) = nil
fal sifying hypot hesis H3.

Case 6. tdl = *universal
By definition for any td2 except *universal (already considered
in Case 1), (icontained-in *universal td2 m = nil, falsifying H3.

Case 7. (A-S-1 mtd2) = *universal
(and therefore td2 = *universal)
For all v and b2, (I td2 *universal b2) =1t, establishing the
concl usi on.

Case 8. tdl = (*or tdll .. tdln)
By definition,
(icontained-in tdl (A-S-1 mtd2) vref)
=all i in[1l..n],
(icontained-in tdli (A-S-1 mtd2) vref)
By definition,
(I (*or tdll .. tdln) v b) = (or (I tdllv by .. (I tdlnv b)).
This case follows by use of | CONTAINED-IN-OK as an inductive
assunption for each i in 1..n. For any i such that
(I tdli v b) is true, use the inductive assunption to note
that, (I td2 v (neke-binding-fromnmapping mv bl vref)) is true.
Thi s establishes the goal.

Case 9. tdl is a *rec descriptor

Case 9.1. (A-S1 mtd2) = (*or .. tdl .. )
By definition, (icontained-in tdl (*or .. tdl .. ) vref) =1t.
A-S-1 preserves the structure of td2, nodifying only the
positions in which variables appear. W know, then, that td2 is
of the form(*or .. td2j ..), where (A-S-1 mtd2) = tdl.

The conclusion sinplifies as follows, by the definition of I:

(I (*or .. td2i ..) Vv (nmeake-bindi ng-from nmapping mv bl vref))
= (or .. (I td2i v (meke-bi ndi ng-frommapping mv bl vref)) .. )

From this point, we appeal to Lenma | CONTAI NED- OK as an i nductive
assunption, instantiating with tdl = tdl, td2 = td2i, vV =V,
m=m bl = bl, and vref = vref. This establishes the goal by
establishing the disjunct displayed above.

Note: The "equality" test the system enploys to conpare the first
argurment of icontained-in to the disjuncts is really an isonorphism
test which allows the disjunct to be identical except for the

name used as a *rec label. A trivial observation is that for

any two nane-i sonorphic *rec descriptors recl and rec2,

for all v and b, (I recl v b) => (I rec2 v b). Thus, nane

i sonorphismis all that is required here.

Case 9.2. (A-S1 mtd2) is a *rec descriptor
This case is handled with a set of rules exhaustively covering al
possi bl e pairs of *rec descriptors. For a conplete list of the rules
and for proofs of sonme selected rules, see Appendix B-1
By definition for this case, icontained-in tests the enabling
condition for each rule in succession until it finds an
appropriate one, and then the result is given by the action
conmponent of the rule. Thus, by our computational induction
schema, the proof for this case is by straightforward
instantiation of the | enma associated with the appropriate
rule

Case 9.3. (A-S-1 mtd2) falls under neither Case 9.1 nor 9.2.
By definition, (icontained-in tdl (A-S-1 mtd2) vref)
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= (icontained-in (open-rec-descriptor-absolute tdl)
(A-S-1 mtd2)
vref).
We appeal to the inductive assunption instantiating with
tdl = (open-rec-descriptor-absolute tdl). Note that
open-rec-descriptor-absol ute introduces no new variabl es, so
Hl is preserved, H3 is preserved by the definition of
i contained-in (as above), and H4 is guaranteed by
canoni cal i zation Rule 2 for opening *rec descriptors.

Case 10. (A-S-1 mtd2) = (*or td2q .. td2,)

Recal | that applying our nmapping mto td2 preserves structure
except for variables. Thus, we can see that td2 is of the
form(*or td2q .. td2,) and

(*or td21’ .. tdzn’)

(*or (A-S1 mtd21) .. (AS1 mtdzn))

Since the cases where tdl is one of td2, *universal, *enpty, an *or,
or a *rec have been covered above, we know tdl is a *cons or a
primtive.

By definition, (icontained-in tdl (A-S-1 mtd2) vref)
= (or (icontained-in tdl (A-S-1 mtd21) vref)

(icontained-in tdl (A-S1 mtdzn) vref)).

Al so by definition of I,
(I td2 v b2) = (or (I tdzlv b2) .. (I td2nv b2)).

We will use | CONTAINED- | N-OK as an inductive assunption applied

for each td2i as necessary. |If thereis noi in [1..n] such
that (icontained-in tdl (A-S-1 mtd2i) vref) is true, then
H3 is false. So there is such an i, and we use the inductive

assunption for that i to establish

(1 td2i v (rmeke- bi ndi ng-from mapping mv bl vref)).

This in turn establishes

(or .. (I td2i v (meke-bi ndi ng-frommapping mv bl vref)) .. )
and therefore

(I td2 v (nmake-bindi ng-from mapping mv bl vref)).

That is our goal.

Case 11. (A-S-1 mtd2) is a *rec descriptor
By definition,
(icontained-in tdl (A-S-1 mtd2) vref)
= (icontained-in tdl
(open-rec-descriptor-absolute (A-S-1 mtd2))
vref).
We appeal to the inductive assunption, noting that
open-rec-descriptor-absol ute introduces no new variabl es, so
Hl is preserved, and H3 is preserved by the definition of
i contained-in (as above).

To use the lemma as an inductive assunption in this manner
requires that the second argunment be an A-S-1 form but in the
second argument here, the A-S-1 formis encapsulated in a call
to open-rec-descriptor-absolute. Note, however, the follow ng
| emma, which is obviously true.

Lemma A-S-1- OPEN- REC- COWUTE
For any *rec descriptor td and well-forned mappi ng m

(open-rec-descriptor-absolute (A-S-1 mtd))

(A-S-1 m (open-rec-descriptor-absolute td))
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Thus, we can properly use the inductive assunption.

Case 12. tdl = (*dlist tdll .. tdln) and
(A-S1 mtd2) = (*dlist td29" .. td2y)
In this case, v is a list of values, which we denote (vq .. vp).

We know, because A-S-1 preserves structure, that td2 nay be
witten as (*dlist td2q .. td2,), where

(*dlist td2q" .. td2

(*dlist (AS1 mtd2q) .. (A-S1 mtd2y))

n)

By definition,

(icontained-in
(*dlist tdlq .. tdlp)
(*dlist (AAS1 mtd27) .. (AS1 mtd2y)
vref)

(and (icontained-in tdlq (A-S-1 mtd2q) (dlist-elemvref 1))

(icontained-in tdln (A-S-1 mtdzn) (dlist-elemvref n)))

Consi der our inductive assunption, | CONTAI NED-IN K instanti ated
for all i, with tdl = tdli, td2 = td2i, Vo= v,
vref = (dlist-elemvref i), bl = bl, and m= m (By
(dlist-elemvref i) we nean the formwhose CARis dlist-elem
whose cadr is the synbolic value reference vref, and whose caddr
is the integer i.) Thus, the inductive assunption is:

and
Hl( (di sjoint (gather-variabl es-in-descriptor tdli)
(gather-vari abl es-in-descriptor tdz))
H2 (well-forned-mapping m(dlist-elemvref i) bl)
H3 (icontained-in tdlj (AS-1 mtd2) (dlist-elemvref i))
H (I tdli Vi bl) )
=>
(1 tdz;
Vi
(make- bi ndi ng-f r om mappi ng mv;j bl (dlist-elemvref i)))

We can use each instance of the inductive assunption, since

1. The disjointness of variables in tdl and td2 guarantees the
di sjointness of variables in the respective conponents of
tdl and td2.

2. (well-fornmed-mapping mvref bl) =>
(wel | -formed-mapping m(dlist-elemvref i) bl)
since the well-formed-nmappi ng predicate’s concern with the
second argunent is linmted to its root, and
(root-of-var-ref vref) = (root-of-var-ref (dlist-elemvref i)).
See the discussion of WELL- FORMED- MAPPI NG i n Section 7.8.

3. H3 of each inductive hypothesis is guaranteed by the expansion
of our H3, given above, and

4. H4 of the main theorem expands directly into a conjunction of
ternms for all i, (I tdli Vi bl).

The expansion by definition of |I of our goal,
(I td2 v (make-binding-frommapping mv bl vref)), is

(and (I td2q vq (meke-binding-frommapping mv bl vref))
(I td2n Vi (make- bi ndi ng-from mapping mv bl vref)))

By Lemma EXTENDS- Bl NDI NG MONOTONI C ( See Appendix B.3), if we can
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show that for all i in 1..n, (make-binding-frommpping mv bl vref)
ext ends (nmake- bi ndi ng-from mappi ng m Vi bl (dlist-elemvref i)),
we will have established our goal. This requires us to show that

every binding in

(make- bi ndi ng- from mappi ng mv; bl (dlist-elemvref i))

is preserved in (nmake-binding-frommapping mv bl vref). By
exam ning the definition of nake-bindi ng-from mappi ng above
one may clearly see that if a variable & is mapped to $T
$NI'L, or a variable & in bl, then make-binding-from mappi ng
produces the same binding elenent in both cases. Neither

the second nor fourth argunents are involved. |If & is mapped
to a synbolic value reference mvref, there are two cases to
consider. First, if (dlist-elemvref i) does not occur in
mvref, there will be no binding elenent for & in

(make- bi ndi ng-from mapping mv; bl (dlist-elemvref i)).

So we do not need to be concerned about the binding for &

in (make-bindi ng-from mapping mv bl vref) to establish the
extends property. Second, if (dlist-elemvref i) does occur
within mvref, then

(make- bi ndi ng-from mapping mv; bl (dlist-elemvref i))
includes a binding el ement mapping & to the value produced

by evaluating mvref with the form (dlist-elemvref i) replaced
by the val ue Ut Al so

(make- bi ndi ng-from mapping mv bl vref) includes a binding

el enment nmapping & to the val ue produced by eval uating mvref
with vref replaced by v. Since evaluating (dlist-elemv i)

gi ves Vi, the values in the two bindings are equal, and

thus the binding of & fromthe inductive assunption is preserved
inthe larger result. This establishes the goal.*

Case 13. tdl = (*cons tdlcar tdlcdr) and td2 = (*cons td2car td2cdr)
This is handl ed by | CONTAI NED-I N anal ogously to Case 12, where

the length of the *dlist is two, where *cons is the constructor
instead of *dlist, where car and cdr are the accessors rather

than dlist-elem and the value v is a cons rather than a list

of values. The argunent is exactly anal ogous

Case 14. tdl = (*cons tdlcar td2cdr) and (A-S-1 mtd2) is a
primtive descriptor

By definition
(icontained-in tdl (A-S-1 mtd2) vref) = nil
fal sifying H3

Case 15. tdl is a primtive descriptor and
(A-S-1 mtd2) = (*cons td2car td2cdr)

By definition,
(icontained-in tdl (*cons td2car td2cdr) vref) = nil
falsifying H3

Case 16. tdl = $integer and (A-S-1 mtd2) = sonme other
primtive descriptor

By definition
(icontained-in tdl (A-S-1 mtd2) vref) =nil,
fal sifying H3

Thi s conpl etes an exhaustive case analysis. QED.

a1

It so happens that (make-binding-from-mapping m v bl wvref) is the merge of al the bindings
(make-binding-from-mapping m Vi bl (dlist-elem vref i)), but showing thisis a stronger result than we need.
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B-H Proof of Lemmal CONTAINED-IN-EQUAL-TDS

Lemma | CONTAI NED- | N- EQUAL- TDS

For any descriptors tdl and td2, sinple napping m containing no
synbolic value references on the right hand side, synbolic val ue
reference vref, Lisp value v, and type variable binding bl
covering the variables in tdi,

(and
H1 (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-in-descriptor td2))
H2 (wel | -forned- mappi ng mvref bl)
H3 (I tdl v bl)
H4 (equal tdl (dapply-subst-list-1 mtd2)) )
=>
(I td2 v (make-binding-from mapping mv bl vref))

As in the proof of Lemma ICONTAINED-IN-OK, we abbreviate the function DAPPLY -SUBST-LIST-1
with"A-S-1".

Proof of Lenma | CONTAI NED- | N- EQUAL- TDS

We will proceed by a conputational induction on the |ength of
the conputation by I.

Consi der by cases the structure of td2.

Case 1. td2 = $integer (Wthout |oss of generality, the cases
where td2 is one of $character, $nil, $non-integer-rational,
$non-t-nil-synbol, $string $t, *enpty, or *universal follow
the sane sinple argunent.)

Since td2 is variable-free, (A-S-1 mtd2) = td2, and the binding
constructed by (nmake-bindi ng-from mapping mv bl vref) has no
effect on the val ue of

(1 td2 v (make-binding-frommapping mv bl vref)).

H3 and H4 establish the concl usion.

Case 2. td2 = &

Consi der by cases the possible values of (assoc & n

Case 2.1. (assoc & m) = nil (i.e., & is not mapped in nm
Then (A-S-1 mtd2) = td2. But by H4, tdl = td2, and by Hi,
the variables in tdl and td2 are distinct. Since td2 is a
variabl e, we have a contradiction.

Case 2.2. (assoc & m = (& . $t)
(A-S1 mtd2)
definition of in H3,
(1 tdl v bl) (I $t v bl) = (equal v t).

Thus, for any binding b', (I td2 v b') = (I $t t b)) =1t,
establishing the goal .

td2 = $t. By H4, tdl = $t. Expanding the

Case 2.3. (assoc & m = (& . $nil)
Exactly anal ogous to Case 2. 2.
Case 2.4 (assoc & mM = (& . &)

Then (A-S-1 mé& ) =& . By H4, tdl = & . By H3,
(I tdl v bl) = (I & v bl)
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= (by definition of I)

(equal v (cdr (assoc & bl)))
By the definition of nake-binding-from napping,
(make- bi ndi ng-from mapping mv bl vref) includes the el enent
(& . (cdr (assoc & bl))). Therefore, in the conclusion,
(I & v (make-binding-frommapping mv bl vref))

(equal v (cdr (assoc & bl)))
whi ch we established above.

Case 3. td2 = (*or td2q .. td2p)

The following lenma is obviously true fromthe definition of A-S-1.

For any descriptors tdl .. tdn and napping m
(A-S-1 m(*or tdl .. tdn)) = (*or (A-S-1 mtdl) .. (A-S-1 mtdn))

By this | emrm,
(A-S-1 mtd2)

(*or (A-S1 mtd21) .. (AS1 mtdzn))

Therefore, for some tdll .. tdln,
tdl = (*or tdll.. tdln), where for each i in 1..n,
(by H4) tdli = (A-S1 mtd2i). I'n H3,

(I (*or tdlq .. tdlpy v bl)
= (by definition of I)
(or (I tdlq v bl) .. (I tdl, v bl))

Usi ng our |l ema as an inductive hypothesis for whichever i
(I tdl; v bl) holds,

(I td2i v (make-bi ndi ng-from mapping mv bl vref))

This is one of the disjuncts in the conclusion, when we expand
by the definition of I.

(I (*or td21 .. td2n)
v
(make- bi ndi ng-from mapping mv bl vref))

(or (I td2q v (make-binding-frommapping mv bl vref))
(1 td2n v (rmeke- bi ndi ng-from mapping mv bl vref)))
Case 4. td2 = (*dlist td2q .. td2p)

The following lenma is obviously true fromthe definition of A-S-1.

For any descriptors tdl .. tdn and napping m
(A-S-1 m(*dlist tdl .. tdn))
= (*dlist (AAS-1 mtdl) .. (A-S-1 mtdn))

By this | emms,
(A-S-1 mtd2)

(*dlist (AS1 mtd2q) .. (A-S1 mtd2y))

Therefore, for sone tdll .. tdln,
tdl = (*dlist tdll.. tdln), where for each i in 1..n,
(by H4) tdli:(A—S—l mtd2i). In H3,

(1 (*dlist tdll . tdln) (vl .. vn) bl)
= (by definition of 1)
(and (I tdlq vq bl) .. (I tdly vy bl))
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We use our |lenmma as an inductive hypothesis for all i,
instantiating withtdlztdli, td2:td2i, V=V m=m
vref = the form(dlist-elemvref i), and bl = bl. This gives us

(and (I td21
V1
(make- bi ndi ng-f rom mappi ng mvq bl (dlist-elemvref 1)))
(I td2p
v

(make- bi ndi ng-from mappi ng mvp bl (dlist-elemvref n))))

(Here by the notation (dlist-elemvref i), we nean the form whose
car is the atomdlist-elem whose cadr is vref, and whose caddr
is the integer i, rather than the value of applying the function
dlist-elemto the synbolic value reference vref.)

It is given that mcontains no synbolic value references on its

right hand sides. (If it had, (make-binding-frommapping mv bl vref)
woul d include a value reference. This is not possible, since

(make-bi nding-frommapping mv bl vref) = tdl, and tdl cannot

include a synbolic value reference.) By exam nation of the definition
of make-binding-frommapping, it is clear that

(make- bi ndi ng-f rom mappi ng m v bl (dlist-elemvref i))

(make- bi ndi ng-from mapping mv bl vref)

since in the absence of synbolic value references in m neither
the second (value) nor the fourth (value reference) paraneters
play any role in the result. Substituting this equality into
the result above gives us

(and (I td2q vq (meke-binding-frommapping mv bl vref))

(1 td2n Vi (make- bi ndi ng-from mapping mv bl vref)))
This is identical to the conclusion with | expanded.
Case 5. td2 = (*cons td2car td2cdr)
This case is anal ogous to Case 4, with *cons used as the constructor
rather than *dlist, car and cdr as the destructors rather than
dlist-elem and the value v is a cons rather than a |ist of values.
Case 6. td2 = (*rec foo foobody)
Use the inductive assunption, instantiated with
tdl = (open-rec-descriptor-absolute tdl),
td2 = (open-rec-descriptor-absolute td2),
m=m v =v, bl =bl, and vref = vref. The hypotheses are
relieved as follows. (W denote each H in the inductive assunption
with H ). Open-rec-descriptor-absolute introduces no
new variables, so Hl establishes HI’. H2 is equal to H2'.

H3 establishes H3' by Canonicalization Rule 2. Consider the | emm

Lemma A- S- 1- OPEN- REC- COWUTE
For any *rec descriptor td and well-forned mappi ng m

(open-rec-descriptor-absolute (A-S-1 mtd))

(A-S-1 m (open-rec-descriptor-absolute td))

Fromthis |l emma, we see H4 establishes H4'. The concl usion,
then, gives us
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(I (open-rec-descriptor-absolute td2)
\Y
(make- bi ndi ng-from mapping mv bl vref))

whi ch, by Canonicalization Rule 2 is equal to our goal.

Thi s conpl etes an exhaustive case analysis. QED.

B-l ThelCONTAINED-IN *REC Rules

What follows is a list of al the containment rules used in ICONTAINED-IN to handle the case where
both arguments are *REC descriptors. Each rule gives the definition of ICONTAINED-IN for the case
where the arguments are *REC descriptors of a certain form (where some previous case in
ICONTAINED-IN did not apply). Each rule coincides with a lemma stated in terms of the descriptor
interpreter. The statement of these lemmas and their proofs are supplied for only some of the rules stated
here, but these examples should provide adequate demonstration that the other rules are provable by the
same techniques. Most of these rules are exactly analogous to the similarly numbered Contain-* Rec rules
and are justified by the same means as those rules. The ones which are different in nature are those where
type variables or Lisp variable references appear in the arguments, and these rules are the ones which are
presented for proof. Some of the rules yield a NIL result for ICONTAINED-IN, and we note that the
proofs of these rules are trivial, since a NIL result negates one of the antecedents to the lemma which
would correspond to the rule.

Note that descriptors appearing within replicating components of the *REC descriptors are variable-free,
by the definition of well-formedness for * REC descriptors. (For a discussion, see Section 5.2.) Thus, the
rules frequently have an invocation of the CONTAINED-IN algorithm, rather than ICONTAINED-IN, on
the right hand side. For example, see Rule IContain-*Rec2. For the same reason, descriptors appearing
within replicating components are also free of symbolic value references, since such a reference could
have only gotten there via replacement of a type variable in application of a mapping.

Rul e | Cont ai n-*RECL
Where the two *recs differ only in nane,

(icontained-in (*rec foo ( .. (*recur foo) .. ))
(*rec bar ( .. (*recur bar) .. ))
vref)

=t

The proof of the following rule is like the proof for
Rul e Cont ai n-*REC2. (See Appendi x B-F.)

Rul e | Cont ai n-* REC2

(icontained-in (*rec foo (*or $nil (*cons dl1 (*recur foo
(*rec bar (*or $nil (*cons d2 (*recur bar
vref)

— =

)))
)))

(contained-in dl d2)

The proof of the following is also |ike the proof for
Rul e Contain-*REC2, with the *CONS argunents reversed.

Rul e | Cont ai n-* REC2’

(icontained-in (*rec foo (*or $nil (*cons (*recur foo) dl)))
(*rec bar (*or $nil (*cons (*recur bar) d2)))
vref)

(contained-in dl d2)

Rul e | Cont ai n-*REC3
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VWhere dl is either a primtive (non-cons) descriptor or an
*OR of primitive non-cons descriptors, and simlarly for d3,

(icontained-in (*rec foo (*or dl (*cons d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
vref)

(and (contained-in dl1 d3) (contained-in d2 d4))

Rul e | Cont ai n-* REC3’
Where dl1 and d3 are either primtive non-cons descriptors or
*ORs of primtive non-cons descriptors,

(icontained-in (*rec foo (*or dl (*cons (*recur foo) d2)))
(*rec bar (*or d3 (*cons (*recur bar) d4)))
vref)

(and (contained-in dl1 d3) (contained-in d2 d4))

The following is self-evident. (*rec bar (*or *universal .. )) is
equi val ent to *uni versal .

Rul e | Cont ai n-* REC40

(icontained-in (*rec foo .. )
(*rec bar (*or *universal .. ))
vref)

=t

The following rule is proved bel ow

Rul e | Cont ai n-*REC41

(icontained-in (*rec foo .. )
(*rec bar (*or vref (*cons d2 (*recur bar))))
vref)

=t

The proof of |Contain-*RECA2 follows easily in the sane manner as
| Cont ai n- *RECA1.

Rul e | Cont ai n-*REC42

(icontained-in (*rec foo .. )
(*rec bar (*or (*or .. vref .. ) (*cons .. )))
vref)

=t
The following rule is proved bel ow.

Rul e | Cont ai n-* REC43
VWhere d3 is a primtive descriptor or a disjunction of primtive
descriptors,

(icontained-in
(*rec foo (*or d3 (*cons d4 (*recur fo0))))
(*rec bar (*or (rec-tail vref) (*cons d2 (*recur bar))))
vref)

(_contai ned-in d4 d2)

The following rule is proved bel ow.

Rul e | Cont ai n- * REC44

(icontained-in (*rec bim(*or & (*cons dl (*recur bin)gg;

(*rec bar (*or & (*cons d2 (*recur bar)
vr ef)

(contained-in dl d2)

The proof of the following is simlar to that of | Contain-*REC44.
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Rul e | Cont ai n-* REC45
Where d1 and d2 contain no vari abl es,

(icontained-in
(*rec bim(*or & (*cons dl (*recur binm)))
(*rec bar (*or (*or .. & .. ) (*cons d2 (*recur bar))))
vref)

(contained-in dl d2)

The proof of the following rule is trivial, since the NIL result
negates the antecedent that the result is non-N L.

Rul e | Cont ai n-* REC46
Where d2, d3, and d4 contain no vari abl es,

(icontained-in (*rec foo (*or & (*cons d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
vref)

=nil

The proof of the following rule is exactly anal ogous to the
proof for Rule *Contain5.

Rul e | Cont ai n-*RECS
When there are variables in either foo or bar,

(icontained-in (*rec foo (*or dl (*cons d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
vref)

(or (and (contained-in dl1 d3) (contained-in d2 d4))

(contained-in foo d3)
(and (contained-in dl bar) (contained-in d2 d4)))

Rul e | Cont ai n- * REC6

There are no type vari abl es anywhere and d1 and d4 all ow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors.

(icontained-in
(*rec foo (*or dl1 (*cons d2 (*cons d3 (*recur fo00)))))
(*rec bar (*or d4 (*cons d5 (*recur bar))))
vref)
(and (contained-in dl d4)
(contained-in d2 d5)
(contained-in d3 db5))

The proof of the following rule is trivial.

Rul e | Cont ai n-* REC6’

There are no type variabl es anywhere and d1 and d4 all ow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors.

(icontained-in
(*rec bar (*or d4 (*cons d5 (*recur bar))))
(*rec foo (*or dl (*cons d2 (*cons d3 (*recur fo00)))))
vref)

nil

Rul e | Cont ai n-*REC7

There are no type vari abl es anywhere and d1 and d4 allow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors,

(icontained-in
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(*rec foo (*or dl (*cons (*recur foo) (*recur fo00))))
(*rec bar (*or d2 (*cons (*recur bar) (*recur bar))))
vref)

(contained-in dl1 d2)

Rul e | Cont ai n- * REC8

There are no type vari abl es anywhere and d1 and d5 all ow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors,

(icontained-in
(*rec foo (*or dl1 (*cons d2 (*cons d3 (*cons d4 (*recur fo00))))))
(*rec bar (*or d5 (*cons d6 (*recur bar))))
vref)

(and (contained-in dl d5)
(contained-in d2 d6)
(contai ned-in d3 db6)
(contained-in d4 d6))

The proof of the following rule is trivial.

Rul e | Cont ai n-* REC8’

There are no type variabl es anywhere and d1 and d5 all ow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors,

(icontained-in
(*rec bar (*or d5 (*cons d6 (*recur bar))))
(*rec foo (*or dl (*cons d2 (*cons d3 (*cons d4 (*recur f00))))))
vref)

nil
The proof of the following rule is trivial.

Rul e | Cont ai n-* REC9

There are no type variabl es anywhere and dl1 and d5 all ow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors,

(icontained-in
(*rec foo (*or dl1 (*cons d2 (*cons d3 (*cons d4 (*recur f00))))))
(*rec bar (*or d5 (*cons d6 (*cons d7 (*recur bar)))))
vref)

nil
The proof of the following rule is trivial.

Rul e | Cont ai n-* REC9’

There are no type vari abl es anywhere and d1 and d5 all ow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors,

(icontained-in
(*rec bar (*or d5 (*cons d6 (*cons d7 (*recur bar)))))
(*rec foo (*or dl (*cons d2 (*cons d3 (*cons d4 (*recur fo00))))))
vref)

nil

Rul e | Cont ai n-*REC10

There are no type vari abl es anywhere and d2 and d4 allow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors,

(icontained-in (*rec foo (*cons d1 (*or d2 (*recur fo0))))
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(*rec bar (*cons d3 (*or d4 (*recur bar))))
vref)

(and (contained-in dl1 d3) (contained-in d2 d4))

Rul e | Cont ai n-*REC11

There are no type variabl es anywhere and d2 and d3 all ow no
*cons forns, i.e., they are primtive descriptors or

di sjunctions of primtive descriptors

(icontained-in (*rec foo (*cons dl1 (*or d2 (*recur fo00))))
(*rec bar (*or d3 (*cons d4 (*recur bar))))
vref)

(and (contained-in dl1 d4) (contained-in d2 d3))
The proof of the following rule is trivial

Rul e | Cont ai n-*REC11’
There are no type variables in bar and d3 is a
primitive descriptor or a disjunction of primtive descriptors

(icontained-in (*rec bar (*or d3 d4))
(*rec foo (*cons dl d2)))

ni

Rul e | Cont ai n-* REC13

There are no type vari abl es anywhere and d1, d3, d5, and d7
allow no *cons forns, i.e., they are primtive descriptors or
di sjunctions of primtive descriptors

(icontained-in
(*rec foo (*or dl (*cons d2 (*or d3 (*cons d4 (*recur fo00))))))
(*rec bar (*or d5 (*cons d6 (*or d7 (*cons d8 (*recur bar))))))
vref)
(and (contained-in dl d5)
(contained-in d2 d6)
(contai ned-in d3 d7)
(contained-in d4 d8))

Rule I Contain-*RECO is a default, to be enployed to administer failure
then the preconditions for all the other rules have not been satisfied
The proof is trivial

Rul e | Cont ai n-*RECO
(icontained-in foo bar vref) = ni

Now for the soundness proofs of some of the rules above. Each rule being proved will be followed by
statement of the lemma corresponding to the rule, and then the lemmawill be proved. Lemmas following
the same pattern could be stated for the other rules and proved using similar techniques.

Recall that the main theorem we are trying to prove is the following.
Lenma | CONTAI NED- | N- OK

For any descriptors tdl and td2, sinple nmapping m Lisp value v,
synbolic val ue reference vref, and binding bl covering the
variables in tdl

(and
H1L (disjoint (gather-variables-in-descriptor tdl)
(gat her-vari abl es-i n-descriptor td2))
H2 (well-forned-mappi ng mvref bl)
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H3 (icontained-in tdl (dapply-subst-list-1 mtd2) vref)
H4 (1 tdl v bl) )

=>

For sone b2, (I td2 v b2)

Note that for each of our rules, the descriptor in the second argument to ICONTAINED-IN is not the TD2
in this theorem, but rather (DAPPLY-SUBST-LIST-1 M TD2). So in each of the following, we will use a
shorthand "bar-td2" to represent the *REC descriptor TD2, we will use "bar" to represent the second
argument in the icontained-in rule, i.e., (DAPPLY-SUBST-LIST M bar-td2). We will aso abbreviate
DAPPLY-SUBST-LIST-1 with "A-S-1".

Rul e | Cont ai n-*REC41

(icontained-in (*rec foo .. )
(*rec bar (*or vref (*cons .. (*recur bar) ..)))
vref)

=t

For notational convenience, let

"foo" denote (*rec foo .. )
"bar" denote (*rec bar (*or vref (*cons .. (*recur bar) ..)))
"bar-td2" denote (*rec bar (*or & (*cons .. (*recur bar) ..)))

The lemma corresponding to thisruleis:

Lemma | CONTAI N- * REC41- OK

For any descriptors foo, bar, and bar-td2 of the form prescribed,
and for any sinply mapping m Lisp value v, synbolic value reference
vref, and binding bl covering the variables in foo,

(and

H1 (disjoint (gather-variables-in-descriptor foo)
(gat her-vari abl es-in-descri ptor bar-td2))

H2 (wel | -forned- mappi ng mvref bl)
H3 (equal bar (A-S-1 mbar-td2))
H4 (icontained-in foo (A-S-1 mbar-td2) vref)
H5 (I foo v bl))
>

(I bar-td2 v (nmeke-binding-frommapping mv bl vref))
Proof of Lermma | CONTAI N-* REC41- OK

From H3, we know m naps type variable & to vref.
I.e., we know that bar-td2 is of the form

(*rec bar (*or & (*cons .. (*recur bar) ..)))

By H2 and the definition of make-bindi ng-from mappi ng,
(make- bi ndi ng-from mapping mv bl vref) maps & to v.

(I (*rec bar (*or & (*cons .. (*recur bar) ..)))
v
(make- bi ndi ng-from mapping mv bl vref))
= by the canonicalization function open-rec-descriptor-absolute
(I (*or &
(*cons ..
(*rec bar (*or & (*cons .. (*recur bar) ..)))

)
v

(make- bi ndi ng-from mapping mv bl vref))
= by the definition of |
(or (I & v (make-binding-frommapping mv bl vref))

(I (*cons ... ) v (make-binding-fromnmapping mv bl vref)))
= si nce (make-bi ndi ng-from mapping mv bl vref) maps & to v
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(or (equal v v) ..)
=t

QED

Rul e | Cont ai n- * REC43
VWhere d3 is a primtive descriptor or a disjunction of prinmitive
descriptors,

(icontained-in
(*rec foo (*or d3 (*cons d4 (*recur fo00))))
(*rec bar (*or (rec-tail vref) (*cons d2 (*recur bar))))
vref)

(contained-in d4 d2)

For notational convenience, let

"foo" denote (*rec foo (*or d3 (*cons d4 (*recur fo00))))
"bar" denote (*rec bar (*or (rec-tail vref)

(*cons d2 (*recur bar))))
"bar-td2" denote (*rec bar (*or & (*cons d2 (*recur bar))))

The lemma corresponding to thisruleis:

Lenma | CONTAI N- * REC4A3- K

For any descriptors foo, bar, and bar-td2 of the form prescribed,
and for any sinple mapping m Lisp value v, synbolic value reference
vref, and binding bl covering the variables in foo,

(and

HL (disjoint (gather-variables-in-descriptor foo)
(gat her-vari abl es-in-descri ptor bar-td2))

H2 (wel | -forned-nmapping mvref bl)
H3 (equal bar (A-S-1 mbar-td2))
H4 (contained-in d4 d2)
H5 (I foo v bl))

=>
C (I bar-td2 v (make-binding-frommapping mv bl vref))

Proof of Lemma | CONTAI N-* REC43- OK

From H3 we know m naps type variable & to the form

(rec-tail vref) (i.e., the formwhose car is the atomrec-tail
and whose cadr is the synbolic value reference vref).

From H2 and the definition of make-binding-from mappi ng,

we know t he binding from (nmake- bi ndi ng-from mapping mv bl vref)
maps & to the value (rec-tail v). H5 expands by definition of
I to

(or (I d3 v bl) (I (*cons d4 foo) v bl)),

which in turn expands to:

H5" (or (I d3 v bl)
(and (consp v)
(I d4 (car v) bl)
(I foo (cdr v) bl)))

The conclusion, (I bar-td2 v (make-binding-frommapping mv bl vref)),
expands to

C (or (I & v (nmake-binding-frommapping mv bl vref))
(and (consp v)
(1 d2 (car v) (make-binding-frommapping mv bl vref))
(I bar-td2 (cdr v) (make-binding-frommapping mv bl vref))))

Now consi der the probl em by cases, as suggested in H5 .
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Case 1 (I d3 v bl)

A condition on the rule is that d3 is a primtive (non-cons)
descriptor or a disjunction of primtive descriptors. Therefore
(I d3 v bl) can only be true if the value v is an atom c val ue
This limts our options in the conclusion to establishing

(I & v (make-binding-frommapping mv bl vref)). No problem
As previously stated, (make-binding-frommapping mv bl vref)
maps & to (rec-tail v). By the definition of rec-tail, if

v is an atom (rec-tail v) =v. So by the definition of I,

(I & v (make-binding-frommapping mv bl vref)) = (equal v v)
since (make-binding-frommapping mv bl vref) maps & to

the value (rec-tail v)

Case 2 (and (consp v)
(I d4 (car v) bil)
(I foo (cdr v) bl))

It suffices to establish

c1 (and (consp v)
c2 (I d2 (car v) (make-binding-frommapping mv bl vref))
c3 (1 bar-td2 (cdr v) (make-binding-frommapping mv bl vref)))

Cl follows directly fromthe case assunption.
C2 follows inmediately from Lenma CONTAI NED- | N- CK:

Lemma CONTAI NED- | N- OK
For any descriptors tdl and td2, Lisp value v, and binding bl

(and
HL (null (gather-variabl es-in-descriptor tdl))
H2 (null (gather-variabl es-in-descriptor td2))
H3 (contained-in tdl td2)
H4 (1 tdl v bl))

=>

For sone b2, (I td2 v b2)

Comment: The b2 used here is irrelevant, since the descriptors are
vari abl e-free

We instantiate this lemma with tdl = d4, td2 = d2, v = (car v)

and bl = bl. The well-formedness rule for *rec descriptors
establishes that d2 and d4 have no variables, since both d2 and
d4 appear in replicating conponents of their respective *rec
descriptors. H4 equals the third antecedent. The fourth and
final antecedent is established by our case assunption. So we

can use the conclusion. As always, in the absence of variables
the bindings are irrelevant to the evaluation of I, so b2 nay as
wel | be the binding (nmeke-binding-fromnmapping mv bl vref). This
establ i shes C2

To establish C3, we use | CONTAI N-*REC43- K, as an inductive
assertion on the CDRs, instantiating with m=m vref = vref,

bl = bl, and v = (cdr v). Qur case assunption (I foo (cdr v) bl))
mat ches H5 of the inductive assertion. The other antecedents

mat ch hypotheses in our nain goal. Therefore, we can use the
concl usi on

(I bar-td2 (cdr v) (make-binding-frommapping m(cdr v) bl vref))
Qur final subgoal
c3 (I bar-td2 (cdr v) (make-binding-frommapping mv bl vref)))

is directly inplied by the conclusion of the inductive hypothesis
The bindi ng (make-bi ndi ng-from mapping mv bl vref) is equa
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to (make-binding-from mapping m(cdr v) bl vref), since
(rec-tail (cdr v)) = (rec-tail v) under the (consp v) assunption.
In either case it is the final atonmic tail of the argunent.

QED.

Rul e | Cont ai n- * REC44

Where d1 and d2 contain no vari abl es,

(icontained-in (*rec foo (*or & (*cons dl1 (*recur fo00))))
(*rec bar (*or & (*cons d2 (*recur bar))))
vref)

(contained-in dl1 d2)

For notational convenience, let

"foo" denote (*rec foo (*or & (*cons dl1 (*recur fo0))))
"bar" denote (*rec bar (*or & (*cons d2 (*recur bar))))
"bar-td2" denote (*rec bar (*or & (*cons d2 (*recur bar))))

The lemma corresponding to thisruleis:

Lemma | CONTAI N- * REC44- OK

For any descriptors foo, bar, and bar-td2 of the form prescribed,
and for any sinple mapping m Lisp value v, synbolic value reference
vref, and binding bl covering the variables in foo,

(and

HL (disjoint (gather-variables-in-descriptor foo)
(gat her-vari abl es-in-descri ptor bar-td2))

H2 (well-forned-mappi ng mvref bl)
H3 (equal bar (A-S-1 mbar-td2))
H4 (contained-in dl d2)
H5 (I foo v bl))

=>
C (I bar-td2 v (make-binding-frommapping mv bl vref))

Proof of Lemma | CONTAI N-* REC44- OK

Note that since Hl guarantees the disjointness of the variables in
foo and bar-td2, the only way & could appear in both foo and bar is
if the mapping mhad introduced it in place of some other variable
not appearing in foo. Let us denote this variable &. The

mapping m then, nust contain (& . & ).

Now expand H5, giving
H5"  (or (I & v bl)
(and (consp v)
(1 d1 (car v) bil)
(I foo (cdr v) bl)))
and expand C, giving
C (or (I & v (nmake-binding-from mapping mv bl vref))
(and (consp v)
(I d2 (car v) (make-binding-frommapping mv bl vref))
(1 bar-td2 (cdr v) (make-binding-frommapping mv bl vref))))
Split into cases, according to H5' .
Case 1 (I & v bil)

By the definition of I, (I & v bl) expands to
(equal v (cdr (assoc & bl))).

Now consi der (nmake-bindi ng-from mapping mv bl vref). By definition
of make- bi ndi ng-from nmappi ng, when an entry (& . & ) appears in
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the mapping m the binding for & in the result is the sanme as

the binding of & in bl. The (well-forned-mapping mvref bl)
predicate in H2 guarantees that & is bound in bl. So with this

in mind, we see that (I & v (make-binding-frommapping mv bl vref))
expands by the definition of | to (equal v (cdr (assoc & bl)))

whi ch we established above

Case 2 (and (consp v)
(I d1 (car v) bil)
(I foo (cdr v) bl))

We will attenpt to establish the second disjunct of Cl’

c1 (and (consp v)
c2 (1 d2 (car v) (make-binding-frommapping mv bl vref))
c3 (I bar-td2 (cdr v) (make-binding-frommapping mv bl vref)))

Cl appears in the case assunption

C2 follows inmediately from Lenma CONTAI NED- I N-OK, instantiated
with tdl = dl, td2 = d2, v = (car v), and bl = bl. The

wel | -formedness property for *rec descriptors establishes that

nei ther dl1 nor d2 contain any variables, since they appear within
a replicating component of the *rec form Thus the variable-free
hypot heses are satisfied. H4 is equal to the third antecedent

of CONTAINED-I N-OK. Qur case assunption (I dl1 (car v) bl)
establishes its final antecedent. So we can use the concl usion
As always, in the absence of variables, the bindings are
irrelevant to the evaluation of |, so b2 may as well be
(make-bi ndi ng-frommapping mv bl vref). This establishes C

To establish C3, we use our |lemm as an inductive assunption on the
CDRs, instantiating wwth m=m bl = bl, v = (cdr v), and
vref = the form (cdr vref)

H2 inplies H2 of our inductive assertion, since

wel | - f or ned- mappi ng only uses the root of the second argunent, and

(root-of-var-ref vref) = (root-of-var-ref (cdr vref))

Qur case assunption (I foo (cdr v) bl)) matches H5 of the inductive
assertion. The other antecedents match hypotheses in our main goal
Therefore, we can use the concl usion

(I bar-td2 (cdr v) (make-binding-frommpping m(cdr v) bl (cdr vref)))

Since bar-td2 has no synbolic value references and its only variable
is &, the only point at which the binding enters in the eval uation
of these two calls of | is with respect to &, and from what we
know of mand fromthe definition of make-bindi ng-from mappi ng

we see that & maps to the binding of & in both

(make- bi ndi ng-from mapping m (cdr v) bl vref) and

(make- bi ndi ng-frommapping mv bl vref). Hence, C3 follows from
the concl usion of the inductive hypothesis

QED.

B.10 Proof of Lemma UNIVERSALIZE-SINGLETON-VARS-1-OK

Lemma UNIVERSALIZE-SINGLETON-VARS-1-OK supports the proof of Lemma ICONTAINED-IN-
INTERFACE-OK in Section 7.8.

Lemma TC- UNI VERSALI ZE- SI NGLETON- VARS- 1- K
For all descriptors td, values v, type variable bindings b, and
lists vlist containing all the type variabl es which appear only

once within td,

(I (tc-universalize-singleton-vars-1 td vlist) v b)
=>
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For sonme b’ (I td v b")

Let us suppose that TC-UNIVERSALIZE-SINGLETON-VARS-1 is defined as follows:

( DEFUN TC- UNI VERSALI ZE- SI NGLETON- VARS- 1 ( TD VLI ST)
(I'F (NULL VLI ST)
NI L
(SUBST ' * UNI VERSAL
(CAR VLI ST)
( TC- UNI VERSALI ZE- S| NGLETON VARS- 1 TD (CDR VLI ST)))))

This is not quite the style in which TC-UNIVERSALIZE-SINGLETON-VARS is coded, but it is
functionally equivalent. (Actualy in the implementation, TC-UNIVERSALIZE-SINGLETON-VARS
gathers a list of all variables in td, with each instance represented, and then calls TC-UNIVERSALIZE-
SINGLETON-VARS-1 with this list. TC-UNIVERSALIZE-SINGLETON-VARS-1 substitutes
*UNIVERSAL for each variable in TD which occurs exactly oncein the list.)
Proof of Lemma TG UN VERSALI ZE- SI NGLETON- VARS- 1- K
The proof is by induction on vlist.
Base case: vlist = nil

By definition,

(tc-universalize-singleton-vars-1 td vlist) = td

establishing the goal trivially, with b’ = b.
I nductive case: vlist = (cons & vlist’)

We assune our |enma inductively, establishing

(I (tc-universalize-singleton-vars-1 td (cdr vlist)) v b)

=>

For sone b’ (I tdv b'")

Thus, our goal is

(1 (subst *universal

&i
(tc-universalize-singleton-vars-1 td (cdr vlist)))
v b)
=>

For sone b’ (I td v b")

Consi der the follow ng functions, which will serve as
W t nesses.

( DEFUN FI ND- Rl GHT- SUBSTS (VAR V TD)
(I F (EQUAL VAR TD)

(LIST V)
(I F (ATOM TD)
NI L

(1 F (OR- DESCRI PTORP TD)
(FI ND- ALL- RI GHT- SUBSTS VAR V (CDR TD))
(1 F (REC- DESCRI PTORP TD)
( FI ND- RI GHT- SUBSTS
VAR V ( OPEN- REC- DESCRI PTOR- ABSCLUTE TD))
; td is a *cons
(I1F (ATOM V)
NI L
(APPEND ( FI ND- RI GHT- SUBSTS
VAR (CAR V) (CADR TD))
(FI ND- RI GHT- SUBSTS
VAR (CDR V) (CADDR TD)))))))))
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( DEFUN FI ND- ALL- Rl GHT- SUBSTS (VAR V TD-LI ST)
(I F (NULL TD-LIST)
NI L
( APPEND ( FI ND- Rl GHT- SUBSTS VAR V (CAR TD-LI ST))
( FI ND- ALL- Rl GHT- SUBSTS VAR V (CDR TD-LIST)))))

G ven a variable VAR a Lisp value V, and a descriptor TD,

FI ND- Rl GHT- SUBSTS returns all the possible bindings for VAR
under which V could satisfy TD. Since we do not allow
variables in a replicating component of a *REC, the variable
wi |l never be required to sinultaneously be bound to nore
than one of these bindings. Furthernore, FIND Rl GHT-SUBSTS
termi nates because the size of V decreases when it recurs
with a *CONS, and there is always a *CONS al ong any path

(in the sense of recursive descent) through the body of a
*REC descriptor to any *RECUR within the body.

The binding we need to denonstrate our conclusion is sinply
any b’ which satisfied our inductive hypothesis, nodified
tomap & to the correct value. Forma collection of

bi ndings by extending b’’ with the pair (& . v;) for

each v; returned by (find-right-substs & v td). By
"extendi ng" we nean either adding the pair to b’’ if there
is no binding for & in b'’, or by replacing the binding for
& in b’ with v;. There is no danger in replacing

a binding for &, because it will be replaced in one of our

new bi ndi ngs by every possible correct binding for & . Thus,
if a binding for & is correct inb’’, in one of our extended

bindings, it will be preserved.

So wherever some conponent of v was required to satisfy

the instance of *UN VERSAL which replaced & in the descriptor

in our hypothesis, for one of our bindings b, constructed
as above, v will satisfy & . QED.
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Appendix C
A Set-Based Semantics

In Chapter 5, we mentioned that several alternate semantic models were considered before we settled on
the INTERP-SIMPLE semantics. This appendix describes one of those models, one in which type
descriptor variables can be instantiated by other descriptors, rather than by singleton values. We
abandoned this model because of a desire for a more computational style of semantics. As this was a
work in progress when abandoned, it is no doubt imperfect.

This appendix consists of notes originating from a discussion with Matt Kaufmann about semantics,
which were extended and elaborated as the ideas were developed. Some of the discussion reflects that the
ideas were in flux. Kaufmann provided the first draft of the definition of Eval and the statement of the
theorems proved.

Let TD be the set of type descriptors, and let CLU be the Common Lisp universe of objects. Let TA be
the set of type assignments, i.e. functions mapping the set of type variables to the power set of CLU,
P(CLU). For the purpose of communication, we may sometimes refer to TA as mapping from type
variables to variable-free descriptors, as any variable-free descriptor is an exact representation of a set of
Lisp values.

We define a function "Eval", to be a mapping from a type descriptor and a type assignment to a set of
Common Lisp values.

Eval: TD x TA -> P(CLU)

defined by recursion as follows.

Eval (*enpty,a) = enpty set

Eval (*uni versal ,a) = P(CLU)

Eval (&n,a) = a(&n) for &1 a type variable.

Eval (td,a) = "the obvious set" if td is a basic type descriptor like
*integer, *nil, etc.

Eval ((*AND tdl td2),a) = Eval (tdl,a) intersect Eval (td2,a)

{This *AND descriptor is not the one inplenented, which is only
transitory and has a special relationship to partially defined
recursive descriptors. This *AND was i ntroduced here because
a possible extension to the descriptor |anguage and the inference
al gorithm m ght nake it possible to deal nore accurately with
variables in recursive forns.}

Eval ((*OR tdl td2),a) = Eval (tdl,a) union Eval (td2, a)
Eval (*CONS tdl td2,a) =
{(cons v1 v2)|(nenber v1 Eval (tdl,a)) and (menber v2 Eval (td2,a))}

Some discussion leads up to the definition of Eval((*REC <rec-name> td),a). Consider an example of a
recursive descriptor:

T = (*rec tl (*or $nil (*cons *universal (*recur tl))))

Then consider the descriptor T, derived from T by replacing the recursion point with a fresh variable,
which we will cal &*.

To = (*or $nil (*cons *universal &))

We define the semanticsof T as



318 Type Checking for Common Lisp
A Set-Based Semantics

Eval (T,a) = 0" P,"Y(phi)

i.e., the union over all naturals n of the function Pan with the initial argument of the empty set, where P,
is defined

Pa(s) = Eval (TO, a ++ {<&,s>}) ("++" is an appendi ng operator)
The expansions of this function are as follows (where "x" is a Cartesian product employing the CONS
constructor):

The base set is 0O.

Pa([l) = Eval (TO' a ++ {<&, 0>})

= (*or $nil (*cons *universal *enpty)) = {nil}
so P(0) =0 O {nil} ={nil}
Pa({nil}) = Eval (T a ++ {<&, {nil}>})
={nil} O (Universe x {nil})
so P(P(O)) = {nil} O (Universe x {nil}).
Cal |l the above set SI1.
Po(S1) = Eval (T, a ++ {<&,Sl>})

={nil} O (Universe x S1)
={nil} O (Universe x {nil}) O (Universe x (Universe x {nil}))
which is P(P(P(O)))

etc.

Notice that 0 O P(0) O P(P(0)) ...

Another notation for the big union "0" P,"(0)" isthe form
Uni on{P,'(D): n O w

Here, "W" is omega, the set of al natural numbers, the "[0" is "member", so the set qudifier is a
guantification over al natural numbers, with n being the quantified variable.

So in general, when we have arecursive descriptor

T = (*rec <recnane> td)

we have

To = td/ ((*recur <recname>) . &)

and we define the semanticsof T as

Eval (T.a) = 0" p,/(D)

where
Pa(s) = Eval (To, a ++ {<&,s>})
A proof of the following rewrite rule would have been crucia to the proof of unification. | did not get

around to this proof before abandoning this semantic model. With respect to the preceding fixed point
semantics, we would have needed to prove the equivalence:

Eval ((*REC <rec-nane> td),a) =
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Eval (td((*rec <rec-name> td)/(*recur <rec-nanme>)), a)

Next, we will need a notion of descriptor substitution. A substitution is ssmply a function from a set of
type variables into TD. The notion of application of substitution, written td/s (for td in TD and s a
substitution) has a simple recursive definition, defined as follows. Note that we can view the identity
substitution s_id as the empty function.

Definition of "/": (descriptor, substs) -> descriptor

&/s = s(&)
primis = prim where "prinf' is one of
{ $CHARACTER $I NTEGER $NI L $NON- | NTEGER- RATI ONAL $NON- T- NI L- SYMBOL

$STRI NG $T}

*uni versal /s = *universal

*enpty/s = *enpty

(*cons t1 t2)/s = (*cons tl/s t2/s)

(*or t1t2)/s = (*or tl/s t2/s)

(*and t1 t2)/s = (*and tl/s t2/s)

(*rec <recnane> td)/s = (*rec <recnane> td/s)

We can define an ordering on substitutions as follows:

sl <= s2 iff
for all ain TA and all type variables &n,
Eval (s1(&n),a) 0O Eval (s2(&n), a).

Using these semantics and definitions we can derive a number of properties.

C.1 Monotonicity

If s1 <= s2, then for all tdin TD and all a in TA
Eval (td/sl1,a) O Eval (td/s2,a).

Pr oof :

Case 1 td = &

td/sl = si(&) td/s2 = s2(&)

Eval (sl1(& ), a) O Eval (s2(&), a) def of <=

Case 2 td sinple, *enpty, or *universal
td/sl = td/s2 = td Eval (td,a) = Eval (td, a)

Case 3 td = (*cons tdl td2)
Goal : all a in TA
Eval ((*cons tdl td2)/s1,a) O Eval ((*cons tdl td2)/s2,a)
By definition of /:
Eval ((*cons tdl/sl td2/sl),a) O Eval ((*cons tdl/s2 td2/s2), a)
By def of Eval:
{(*cons v1 v2)|vl O Eval (tdl/sl1,a) and v2 O Eval (td2/s1,a)}
O

{(*cons v3 v4)|v3 O Eval (tdl/s2,a) and v4 O Eval (td2/s2,a)}
Wth 1) and 2) as base cases and the induction hypothesis:
Eval (td/s1,a) O Eval (td/s2,a).

Note that A 0 Cand B O D
=> {(cons a b)] a O Aand b O B}

O

{(cons ¢ d)|] ¢ O Candd O D
where A = Eval (tdl/sl,a), B = Eval (td2/sl,a),

C = EBEval (tdl1l/s2,a), and D = Eval (td2/s2, a)

and we are done.

Case 4 td = (*or tdl td2)



320 Type Checking for Common Lisp
A Set-Based Semantics

Goal : all a in TA
Eval ((*or tdl td2)/sl,a) O Eval ((*or tdl td2)/s2,a)
By def of /:
Eval ((*or tdl/sl td2/sl),a) O Eval ((*or tdl/s2 td2/s2),a)
By def of Eval:
Eval (tdl/sl1,a) O Eval (td2/s1,a)
O
Eval (td1l/s2,a) 0O Eval (td2/s2, a)
Wth 1) and 2) as base cases and the induction hypothesis:
Eval (td/s1,a) O Eval (td/s2,a)
we can assume Eval (tdl/sl,a) 0O Eval (tdl/s2,a)
and Eval (td2/s1,a) O Eval (td2/s2,a)
and applying the general rule
AOCand BOD=>A0OBOCUOD
we are done.

Case 5 td = (*and tdl td2)
Same proof as *or, but with intersection instead of union.

Case 6 td = (*rec <rec-nanme> td)
Prove: all a in TA
Eval ((*rec <rec-nanme> td)/sl, a)
O
Eval ((*rec <rec-nanme> td)/s2, a)
By def of /, this reduces to
Eval ((*rec <rec-name> td), a) O Eval ((*rec <rec-nanme> td), a)
which is trivially true.
QED.

C.2 Maximality of the*UNIVERSAL Substitution

Let su be a substitution napping every type variable in its donain
to *universal. Then for every substitution s with domain contained in
the donmain of su, we have s <= su. |In particular, s_id <= su.

Proof: Easy.

C.3 Elimination of Variables

Let su be a substitution mapping every type variable in its
domai n to *universal, and suppose

f |=(tdl/su, td2/su,..., tdn/su) -> td

Then f |= (tdl, td2, ..., tdn) -> td.

Proof: By definition of "|=", we need to show that for all ain TA
and all (x1,...,xn) such that xi is a menber of Eval (tdi,a) for
1<=i<=n, then f(x1,...,xn) is a nmenber of Eval (td,a). So, fix ain TA
and (x1,...,xn) such that xi is a menber of Eval (tdi,a) for 1<=i<=n;
we need to show that f(x1,...,xn) is a nenber of Eval(td,a).

By Properties 1 and 2, we have that Eval (tdi,a) O Eval (tdi/su,a)

for 1<=i<=n. It follows that xi O Eval (tdi/su,a) for 1<=i