
[This Page Intentionally Left Partially Blank.]

[Using FrontMatter Library of 24-Oct-85]

A VERIFIED OPERATING SYSTEM KERNEL

APPROVED BY
DISSERTATION COMMITTEE:

Copyright

by

William R. Bevier

1987

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1987

A VERIFIED OPERATING SYSTEM KERNEL

by

WILLIAM R. BEVIER, B.A., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

iii

ACKNOWLEDGEMENTS

I want to thank my committee members Bob Boyer, J Moore, J. C. Browne,

Don Fussell and Don Good. All contributed to making the dissertation better than I could

have done on my own. Particular thanks are due to Don Good, who saw to it that I was

supported at the Institute for Computing Science at the University of Texas while

working on this dissertation.

Thanks to everyone at the Institute for Computing Science for making it such

an enjoyable place to work. Conversations with Matt Kaufmann, Bill Young, Warren

Hunt and Mike Smith were very valuable. Matt Kaufmann read the first draft of the

dissertation. Larry Smith built a prototype editor-based interface to the Boyer-Moore

theorem prover which made my life much easier. Larry Akers and Larry Smith kindly

protected me from other duties during the last months of preparation of the dissertation.

Thanks again to all.

Thanks to my wife Susan, without whom completion of this dissertation would

not have been possible or nearly as satisfying.

William R. Bevier

The University of Texas at Austin
December, 1987

iv

A VERIFIED OPERATING SYSTEM KERNEL

Publication No.

William Richard Bevier, Ph.D.
The University of Texas at Austin, 1987

Supervising Professors: Robert S. Boyer, J Strother Moore

We present a multitasking operating system kernel, called KIT, written in the

machine language of a uni-processor von Neumann computer. The kernel is proved to

implement, on this shared computer, a fixed number of conceptually distributed

communicating processes. In addition to implementing processes, the kernel provides the

following verified services: process scheduling, error handling, message passing, and an

interface to asynchronous devices. The problem is stated in the Boyer-Moore logic, and

the proof is mechanically checked with the Boyer-Moore theorem prover.

1

Chapter 1

Introduction

1.1 The Thesis

Since Dijkstra’s report on the "THE"-multiprogramming system [Dijkstra68],

many operating systems have been designed as a hierarchy of cooperating processes.

Brinch Hansen [BrinchHansen70] named the lowest layer of such a hierarchy the

nucleus, or kernel. The purpose of a kernel is to simulate processes and implement

process communication. The virtual machine which results is a base for building higher

layers of an operating system.

To date, research in the verification of operating systems has not adequately

penetrated the kernel layer. It is possible to apply formal methods such as Hoare logic to

kernel verification, but the specifications which arise are large and tedious to prove. The

situation begs for mechanical aids. Some formal systems which can be used to specify

operating systems take a notion of process as a primitive. Those who attempt to use such

systems to verify an implementation typically rely upon low-level machine-dependent

procedures which cannot be verified with the formal methods under consideration. These

primitive procedures are usually critical to the correct implementation of a process.

The purpose of this work is to address the problem of operating systems kernel

verification. In particular, we are concerned with the correct implementation of processes.

We present a kernel, which we call "KIT", written in the assembler language of a uni-

processor computer with a typical von Neumann architecture. (The name KIT is not a

tortured acronym, but is intended to suggest the three words kernel, isolated, tasks.) KIT

is proved to implement, on a shared computer, a fixed number of conceptually distributed

communicating processes. In addition to implementing processes, the kernel provides the

following verified services:

2

• Process scheduling and allocation of CPU time,

• Response to program error conditions (e.g. unrecognized opcode),

• Single-word message passing among processes,

• Character I/O to asynchronous devices.

The result is an operating system kernel which correctly implements a set of

concurrent processes. A set of communicating processes will run as specified on KIT

provided there are no hardware errors. The operating system is proved not to introduce

implementation bugs. KIT and its specification are defined in the Boyer-Moore logic, and

the proof is mechanically checked with the Boyer-Moore theorem prover [ACL].

It is important to say what we do not handle. We take UNIX as a point of

comparison. The UNIX kernel as described by Bach [UNIX] contains two main

components: the file subsystem, which besides implementing a file structure also hides

the device interface from the user level; and the process control subsystem, which

includes process creation and deletion, process communication, process scheduling and

memory management.

KIT deals with a subset of these phenomena. It handles process scheduling,

process communication (by message passing), and a terminal device interface. There is

no dynamic creation of processes or communication channels. There is no file system.

KIT’s memory management is strictly that supplied by the hardware - it does not include

virtual memory. The hardware memory management is not assumed to be correct,

though. The verification of KIT requires a proof that the hardware protection mechanism

permits the implementation of isolated address spaces.

Therefore, while KIT is not big enough to be considered a kernel for a general

purpose operating system, it does confront some key operating system phenomena. It is

adequate for a small special purpose system such as a communications processor. KIT is

fully operational in that it runs on a machine which can be simulated in the Boyer-Moore

logic.

3

1.2 Process Isolation

We identify a process with the machine state to which it has access. Processes

have two kinds of state: private and shared. There are two corresponding kinds of

transitions on a process: private, which alters only a process’s private state, and

communication, which may alter the shared state and the private state of a process.

As explained later, the highest level specification for KIT is a definition of a

single communicating process, which defines some elementary message passing

primitives. These primitives are the only communication transitions available to a

process. The remaining transitions are required to be private ones.

Our goal is to prove that multiple instances of the process definition are

implemented by KIT running on a particular uni-processor von Neumann machine. In the

implementation, a process’s private state consists of a segment of machine memory and

some CPU registers. Its shared state consists of some message buffers. The private

transitions are implemented as the set of non-privileged machine instructions.

Communication transitions are implemented as supervisor services implemented by KIT

routines.

At the specification level, process isolation is a trivial property. The proof that

a task’s private state can change only when it is active is a matter of examining a single

small definition. At the implementation level, the private state of a process is not

transparently isolated from others. It is not at all obvious that a private transition on one

process leaves other process states unchanged. To prove that KIT implements multiple

processes requires the following results.

• A machine instruction executed in user mode alters only the private state of
the current task. The private state of other tasks and the shared state are
protected.

• The services implemented by the kernel alter private and shared state only in
ways specified by the process definition.

The first result is largely a property of the machine architecture. We prove that

4

the protection mechanism of the target machine permits the implementation of private

state and private transitions as required by the process definition. The kernel guarantees

that some conditions required by the machine protection theorem are invariant.

The second result is obtained by verifying kernel code. We prove that state

changes made by each kernel routine correspond to changes to the abstract state at the

level of the process definition.

1.3 A Characterization of this Work

We wish to leave the reader with no doubt regarding one of our goals: to verify

KIT at the machine code level. Below we give a small portion of an assembler language

listing of the kernel. This is the portion which saves the state of the current task on an

interrupt. We give the details of our implementation of KIT in chapter

IMPLEMENTATION, but we hope at this point to emphasize the level of verification we

perform. This code places the address of an entry in a task table into register 2, and saves

the task-visible state of the CPU of our target machine in that entry. Our verification

proves that the processor state is saved correctly so that the fiction that each process owns

the processor is maintained.

The assembler language representation of our code is not the object of proof.

We go yet lower. We verify the assembler output of the source code: a sequence of

numbers which our target machine is capable of interpreting.

5

SAVE-STATE
(move (2 temp-r2) (1 r2)) ;; Save R2
(move (2 temp-r3) (1 r3)) ;; Save R3
(move (1 r3) readyq) ;; R3 points to ready queue
(call qfirst) ;; R2 has current task id
save-state-return
(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length
(add (1 r2) task-table) ;; R2 points to current task table entry
(move (3 r2 pc-field) (2 reg-save-area interrupt-pc-field))
(move (3 r2 sp-field) (2 reg-save-area interrupt-sp-field))
(move (3 r2 r2-field) (2 temp-r2))
(move (3 r2 r3-field) (2 temp-r3))
(move (3 r2 r4-field) (1 r4))
(move (3 r2 r5-field) (1 r5))
(move (3 r2 r6-field) (1 r6))
(move (3 r2 r7-field) (1 r7))
(add (1 r2) flag-field) ;; bump index register
(move (3 r2) (2 reg-save-area interrupt-flag-field))
(move (1 r2) (2 temp-r2)) ;; Restore R2 & R3.
(move (1 r3) (2 temp-r3)) ;; This is necessary for SVC interrupts.
(return)

1.4 Plan of Dissertation

The script of Boyer-Moore forms which defines and verifies KIT contains

approximately one thousand definitions and thirty-five hundred lemmas. This script is

the heart of the dissertation. The challenge is to explain this script in a coherent fashion.

In Chapter INTERPRETERS we discuss our approach to verifying KIT. Chapters

SPECIFICATION through VERIFICATION discuss the specification, implementation

and verification of KIT by examining the highest level definitions and theorems in the

script. Chapter QUEUES presents in detail the specification, implementation and

verification of queues, which permeate the kernel. Chapter CONCLUSION surveys

related work and summarizes our effort. Subsequent volumes contain the script and an

index of names in the script. Numbers printed with events in the text are indices into the

script. The index gives the page numbers on which events occur in this volume.

1.5 The Boyer-Moore Logic and its Proof Checker

A description of the Boyer-Moore logic and its proof checker appears in

Appendix BMLOGIC. The description is taken with permission from [quant]. We make

some comments on our usage of the theorem prover. These comments assume familiarity

with the logic and the theorem prover.

6

We make use of shells to define a number of record structures. We describe our

shells by giving the shell constructor, shell recognizer and shell accessors as shown in the

example of the shell FOO below. This example illustrates how we display an ADD-SHELL

event.
Shell Definition.
Add the shell FOO with recognizer FOO-SHELLP,
defining the record structure <A, B>.

We place no type restrictions on the fields of a shell. The event ADD-SHELL in the

Boyer-Moore logic does not permit associating arbitrary predicates with fields. Since we

cannot say everything about a shell within the ADD-SHELL form, we choose to say nothing.

If we wish to restrict the fields of a shell to have certain values, we define a predicate in

the logic which recognizes a constrained shell.

We found that we could not manage our large script of events with globally

enabled rewrite rules and definitions. Each event in the script is therefore immediately

disabled. The DISABLE events are not displayed in the script but should be understood to

be present. Our approach to guiding the theorem prover to a proof therefore requires

liberal use of ENABLE hints on lemmas. We found this actually to be quite congenial. A

given lemma typically immediately relies upon a fairly small number of support lemmas

and definitions. When proposing a lemma to the theorem prover, we can guess at a

number of definitions and lemmas which must be enabled. The others we discover as we

see the prover fail. We found that using this approach we were always engaged in a

positive proof search and were never battling a rewriter which was taking us in a bad

direction due to an enabled but forgotten rule. As we became more and more familiar

with our script we found we were able to remember the names of many lemmas. We also

invented mechanical aids for discovering the names of applicable lemmas.

While a lemma typically relies on a small number of immediate supporters,

there are exceptions. To ease the burden of enabling large numbers of events, we created

a new event DEFTHEORY. The form (DEFTHEORY <NAME> <LIST-OF-NAMES>) binds a name to a

list of earlier event names. In subsequent events, the hint (ENABLE-THEORY NAME) enables

all events to which NAME is bound.

7

Chapter 2

Defining Finite State Machines with Recursive Functions

KIT is verified by proving a correspondence between the behavior of two finite

state machines. An abstract finite state machine serves as an operational specification.

The kernel running on the bare computer is also defined as a finite state machine. In this

chapter we explain how we define finite state machines, and describe the form of the

correspondence theorem between two machines. We give a brief overview of the kernel

proof, stating the correspondence theorem which establishes KIT’s correctness.

2.1 Interpreters

We define a finite state machine by an interpreter function. An interpreter

function models transitions to a machine over an arbitrary but finite time span. It is a

dyadic function of the form Int : S × O → S, where S is a set of machine states and O is

a set of oracles for a machine. An oracle has two roles. It determines the finite time span

for which a machine invocation operates, and it may introduce non-deterministic state

changes into a machine, including communication with other machines.

In a simple situation the set of natural numbers N can be chosen as the oracle

set. An interpreter of the form Int : S × N → S models a machine which operates in

complete isolation. Such a machine can be defined in the Boyer-Moore logic as follows.

The function STEP advances the state of this machine. The expression (MACHINE1 STATE N)

is the state obtained by applying N successive applications of STEP to STATE.
Definition.
(MACHINE1 STATE N)

=
(IF (ZEROP N)

STATE
(MACHINE1 (STEP STATE) (SUB1 N)))

8

In a more typical situation, an oracle is a list which represents a finite time-

sequenced series of external events impinging on a machine. The length of the oracle

determines the time span over which the machine operates. An element of the oracle is

either a single external event, or a symbol such as ’TICK indicating no event. The

interpreter consumes the next element of the oracle at each step, and runs until the oracle

is exhausted. The definition of MACHINE2 gives the form of such an interpreter. In this

example, the function CONSUME-INPUT consumes the next element of the oracle,

incorporating it into the state of the machine so that the input is visible to STEP.
Definition.
(MACHINE2 STATE ORACLE)

=
(IF (NOT (LISTP ORACLE))

STATE
(MACHINE2 (STEP (CONSUME-INPUT STATE (CAR ORACLE)))

(CDR ORACLE)))

2.2 Interpreter Equivalence Theorems

In this section we describe several types of theorem which establish a

correspondence between two machines. We call such theorems interpreter equivalence

theorems.

We wish to define an implements relation on two machines. Let

IntA : SA × OA → SA and IntC : SC × OC → SC be interpreter functions which define

two machines MA and MC. (The subscripts A and C are chosen to suggest abstract and

concrete machines.) Let MapUp : SC → SA be an abstraction function which maps a

concrete state to an abstract state. We say that MC implements MA if the following

theorem holds.

∀ sC ∈ SC
∀ oA ∈ OA

(1) ∃ oC ∈ OC such that

MapUp (IntC (sC, oC)) = IntA (MapUp (sC), oA).

Figure INTERPRETER-EQUIVALENCE illustrates the correspondence which the

implements relation establishes.

9

Figure 2-1: Interpreter Equivalence

In this paper we prove a theorem of the form of (1). Notice that if there is a

function MapDown : SA → SC, and ∀ sA ∈ SA, MapUp (MapDown (sA)) = sA, then from

(1) we get a stronger relation given by (2).

∀ sA ∈ SA
∀ oA ∈ OA

(2) ∃ oC ∈ OC such that

MapUp (IntC (MapDown (sA), oC)) = IntA (sA, oA).

Sometimes we find it convenient to reverse the quantification on the abstract

and concrete oracles. Then we get an interpreter equivalence theorem of the form given

by (3). Figure INTERPRETER-EQUIVALENCE also describes this formula.

∀ sC ∈ SC
∀ oC ∈ OC

(3) ∃ oA ∈ OA such that

MapUp (IntC (sC, oC)) = IntA (MapUp (sC), oA)

10

We cannot state (1), (2) or (3) in the quantifier-free Boyer-Moore logic. For (1)

we replace the existential variable oC with a function CORACLE which computes the oracle

required by IntC to match the behavior of IntA. Typically, this is a function both of the

initial concrete state and the value of oA. We re-state (1) in the Boyer-Moore logic as

follows. The predicate GOOD-CSTATE identifies an element of the set of concrete machine

states.
Theorem. IMPLEMENTS-RELATION:
(IMPLIES (GOOD-CSTATE CSTATE)

(EQUAL (MAPUP (INT-C CSTATE (CORACLE CSTATE ORACLE)))
(INT-A (MAPUP CSTATE) ORACLE)))

2.3 The KIT Proof Structure

The main result in the verification of KIT is the theorem

OS-IMPLEMENTS-PARALLEL-TASKS. It is an interpreter equivalence theorem which

demonstrates that the behavior of a single task running under the kernel implements an

abstract definition of a process. In this theorem, the functions TASK-PROCESSOR and

TM-PROCESSOR are interpreter functions. The function PROJECT-ITH-TASK is the mapping

function. Our goal in this dissertation is to explain the content of this theorem.
Theorem {4623}. OS-IMPLEMENTS-PARALLEL-TASKS:
(IMPLIES
(AND (GOOD-OS OS)

(PLISTP ORACLE)
(FINITE-NUMBERP I (LENGTH (AK-PSTATES (MAPUP-OS OS)))))

(EQUAL (PROJECT-ITH-TASK I (TM-PROCESSOR OS (OS-ORACLE OS ORACLE)))
(TASK-PROCESSOR (PROJECT-ITH-TASK I OS)

I
(CONTROL-ORACLE I (MAPUP-OS OS) ORACLE))))

The problem is decomposed into two steps, as pictured in Figure

PROOF-STRUCTURE. An intermediate machine, called the abstract kernel gives an

operational specification for KIT. The proof of OS-IMPLEMENTS-PARALLEL-TASKS is a result

of the theorems AK-IMPLEMENTS-PARALLEL-TASKS and CORRECTNESS-OF-OPERATING-SYSTEM,

which handle the top and bottom interpreter equivalence theorems, respectively, of

Figure PROOF-STRUCTURE.

11

Figure 2-2: KIT Proof Structure

Theorem {1689}. AK-IMPLEMENTS-PARALLEL-TASKS (rewrite):
(IMPLIES (AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE))))

Theorem {4621}. CORRECTNESS-OF-OPERATING-SYSTEM (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE))
(EQUAL (MAPUP-OS (TM-PROCESSOR OS (OS-ORACLE OS ORACLE)))

(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

The verification of KIT spans these layers of interpreters. The task layer is at

the top. It provides a definition of a single communicating process. The second layer, the

abstract kernel, gives the kernel specification. The abstract kernel contains a fixed

number of task states. The state space of the abstract kernel is such that the isolation of

task states is easily established. A function PROJECT maps the state of ith task out of the

abstract kernel and up to the task layer.

12

The bottom layer defines the target machine. The target machine is a very

simple von Neumann computer. We are particularly interested in the state of a target

machine when loaded with the machine code for KIT. In such a machine state, defined by

the predicate GOOD-OS, the implementations of tasks are not transparently isolated. We

must prove that they are isolated as defined by the abstract kernel. The function MAPUP-OS

maps the kernel state up to an abstract kernel state. It not only maps up the state of each

task, but the state of all data structures (e.g. the ready queue) which the kernel uses to

manage tasks.

13

Chapter 3

The Specification of KIT

In this chapter we describe the finite state machines which define the task and

abstract kernel layers of Figure 2-2. These serve as specifications for KIT. For each layer

we describe a state set and an interpreter function. We occasionally make reference to

intended implementation details to foreshadow later chapters.

3.1 The Task Layer

The top layer defines an independent process, called a task, capable of

communicating with other processes. We wish to prove correct a particular

implementation of tasks.

Figure NETWORK depicts an instance of a network structure of

communicating processes. This figure contains a star with five points, while our

definition allows an arbitrary but fixed number of points. Single-headed arrows indicate

communication in the direction of the arrowhead. Double-headed arrows abbreviate two

single-headed arrows, one going in each direction. Each node of Figure NETWORK

represents a process. The nodes at the points of the star are implemented as KIT tasks.

The nodes at the extreme perimeter, which communicate with tasks in one direction only,

are implemented as I/O devices.

The task layer defines a single task’s view of this process network. The state

space of a task consists of two parts: a private state which is accessible only to the

owning task, and a shared state which is used for implementing inter-task

communication. We distinguish two categories of transitions on a task: private transitions

update only the private state, communication transitions update the shared state. The

14

Figure 3-1: Network

state space of a task is described in the Boyer-Moore logic by the shell TASK. The

TASK-PSTATE field is the private state of a task. The TASK-CHANNELS field is the shared state

containing an implementation of the communication network in which tasks participate.
Shell Definition {1386}.
Add the shell TASK with recognizer TASK-SHELLP,
defining the record structure <TASK-PSTATE, TASK-CHANNELS>.

We remind readers unfamiliar with the Boyer-Moore logic that the form

(TASK A B) constructs a task state with private state A and channel state B. If X is a task

object, then the form (TASK-PSTATE X) accesses its private state field, and

(TASK-CHANNELS X) accesses its channel state.

15

The TASK-CHANNELS field contains an implementation of the network structure.

It is a three-tuple of tables of fixed-size buffers. The TASK-IBUFFERS table is for

communication with input devices, the TASK-OBUFFERS table is for communication with

output devices, and the TASK-MBUFFERS table contains message buffers for communicating

with other tasks. The names we place on these fields merely suggest a lower-level

implementation. At this level, a task’s view of a device differs from its view of another

task only in the name space each occupies, as suggested by Figure 3-1.
Definition {1387}.
(TASK-IBUFFERS TASK) = (CAR (TASK-CHANNELS TASK))

Definition {1388}.
(TASK-OBUFFERS TASK) = (CADR (TASK-CHANNELS TASK))

Definition {1389}.
(TASK-MBUFFERS TASK) = (CADDR (TASK-CHANNELS TASK))

The predicate GOOD-TASK completes the definition of the state set of a task. It

recognizes a proper task state with given limits on the number of buffers. The predicates

GOOD-TASK-BUFFER-LIST and GOOD-TASK-BUFFER-TABLE place limits on the length of buffers

and the type of their contents. The predicate GOOD-ADDRESS-SPACE recognizes a proper

target machine address space. It reveals our intention to implement the private state of a

task as an address space of some target machine. At this point, we offer no definition of

GOOD-ADDRESS-SPACE.
Definition {1433}.
(GOOD-TASK TASK ILENGTH OLENGTH MLENGTH)

=
(AND (TASK-SHELLP TASK)

(GOOD-ADDRESS-SPACE (TASK-PSTATE TASK)
(LENGTH (TM-MEMORY (TASK-PSTATE TASK))))

(EQUAL (LENGTH (TASK-IBUFFERS TASK)) ILENGTH)
(GOOD-TASK-BUFFER-LIST (TASK-IBUFFERS TASK)

(TASK-IBUFFER-CAPACITY))
(EQUAL (LENGTH (TASK-OBUFFERS TASK)) OLENGTH)
(GOOD-TASK-BUFFER-LIST (TASK-OBUFFERS TASK)

(TASK-OBUFFER-CAPACITY))
(EQUAL (LENGTH (TASK-MBUFFERS TASK)) MLENGTH)
(GOOD-TASK-BUFFER-TABLE (TASK-MBUFFERS TASK)

MLENGTH
(TASK-MBUFFER-CAPACITY)))

The interpreter function which defines the transitions on a task is called

TASK-PROCESSOR. The first formal argument, TASK, is a task state. For convenience, and this

is the only place we diverge from the pattern, we split this interpreter’s oracle into two

16

formal arguments. The argument I is the identifier of the task in the network which the

task can sense only through its shared state. The task identifier is a non-negative integer

in some bounded range. The argument ORACLE is a list each of whose elements is either T,

indicating that the task is active and should take a step on its own initiative, or not T,

indicating that the task is not active at this step. In the latter case, the oracle supplies a

triple which contains the value of the channel state at the end of the current step. We shall

see later that the kernel, which implements a fixed number of task states, can construct

the oracle argument to a task. Notice that the function TASK-UPDATE-CHANNELS, which

updates a task state on a non-active step, preserves the private state of the task. Therefore

a task’s private state is not altered when the task is not active.

An active task step is defined by the function TASK-STEP. The predicate

TASK-COMMUNICATIONP determines if the current transition is a communication transition. If

so, the task executes a communication step, otherwise a private step. A private step is

defined to be a fetch-execute operation. We thus require a task’s private state to contain

its own control state. There is no requirement in this definition that only a single task is

active in any instant, but KIT runs on a single processor and implements tasks in this

way.
Definition {1425}.
(TASK-PROCESSOR TASK I ORACLE)

=
(IF (LISTP ORACLE)

(IF (TASK-ACTIVEP (CAR ORACLE))
(TASK-PROCESSOR (TASK-STEP TASK I)

I
(CDR ORACLE))

(TASK-PROCESSOR (TASK-UPDATE-CHANNELS TASK (CAR ORACLE))
I
(CDR ORACLE)))

TASK)

Definition {1424}.
(TASK-ACTIVEP X) = (EQUAL X T)

Definition {1422}.
(TASK-STEP TASK I)

=
(IF (TASK-COMMUNICATIONP TASK)

(TASK-COMMUNICATION-STEP TASK I)
(TASK-PRIVATE-STEP TASK))

Definition {1423}.
(TASK-UPDATE-CHANNELS TASK CHANNELS)

=
(TASK (TASK-PSTATE TASK) CHANNELS)

17

Definition {1421}.
(TASK-PRIVATE-STEP TASK)

=
(TASK (TASK-FETCH-EXECUTE (TASK-PSTATE TASK))

(TASK-CHANNELS TASK))

The definition of TASK-COMMUNICATION-STEP specifies the communication

primitives which the kernel implements. These are the operations send, receive, input and

output. Send and receive access the message buffers, input the input buffers and output

the output buffers. There is one bounded message buffer for each <i,j> pair of task

identifiers. Message buffer <i,j> handles messages flowing from task i to task j.

Communication with input and output buffers is simpler. Task i can receive only from

input buffer i, and can send only to output buffer i. The units of information which are

passed are implemented as single target machine words.

The communication primitives are sensitive to empty and full buffers. An

attempt to retrieve information from an empty buffer results in no change to the task

state, so the next time the task is active it will be in the same state from which it initially

tried to receive and will therefore attempt to retrieve from the same buffer again. We give

the definitions of send, receive, input and output below. The function

TASK-STORE-MESSAGE defines a convention by which messages are delivered to the private

state of a task. The function TASK-UPDATE-CONTROL updates the control state of a task so

that the communication operation is stepped over.
Definition {1416}.
(TASK-EXECUTE-SEND MSG SRCID DESTID TASK)

=
(IF (QFULLP2 SRCID DESTID (TASK-MBUFFERS TASK) (TASK-MBUFFER-CAPACITY))

TASK
(TASK (TASK-UPDATE-CONTROL (TASK-PSTATE TASK))

(LIST (TASK-IBUFFERS TASK)
(TASK-OBUFFERS TASK)
(ENQ2 MSG SRCID DESTID (TASK-MBUFFERS TASK)))))

18

Definition {1417}.
(TASK-EXECUTE-RECEIVE SRCID DESTID TASK)

=
(IF (QEMPTYP2 SRCID DESTID (TASK-MBUFFERS TASK))

TASK
(TASK (TASK-UPDATE-CONTROL

(TASK-STORE-MESSAGE
(QFIRST2 SRCID DESTID (TASK-MBUFFERS TASK))
(TASK-PSTATE TASK)))

(LIST (TASK-IBUFFERS TASK)
(TASK-OBUFFERS TASK)
(DEQ2 SRCID DESTID (TASK-MBUFFERS TASK)))))

Definition {1418}.
(TASK-EXECUTE-OUTPUT CHAR ID TASK)

=
(IF (QFULLP (GETNTH ID (TASK-OBUFFERS TASK)) (TASK-OBUFFER-CAPACITY))

TASK
(TASK (TASK-UPDATE-CONTROL (TASK-PSTATE TASK))

(LIST (TASK-IBUFFERS TASK)
(ENQ-ITH-BUFFER CHAR ID (TASK-OBUFFERS TASK))
(TASK-MBUFFERS TASK))))

Definition {1419}.
(TASK-EXECUTE-INPUT ID TASK)

=
(IF (QEMPTYP (GETNTH ID (TASK-IBUFFERS TASK)))

TASK
(TASK (TASK-UPDATE-CONTROL

(TASK-STORE-MESSAGE
(QFIRST (GETNTH ID (TASK-IBUFFERS TASK)))
(TASK-PSTATE TASK)))

(LIST (DEQ-ITH-BUFFER ID (TASK-IBUFFERS TASK))
(TASK-OBUFFERS TASK)
(TASK-MBUFFERS TASK))))

The functions GETNTH and PUTNTH are the list accessing primitives. GETNTH

accesses the nth element of a list. PUTNTH stores a value in the nth location in a list.
Definition {210}.
(GETNTH N L)

=
(IF (LISTP L)

(IF (ZEROP N)
(CAR L)
(GETNTH (SUB1 N) (CDR L)))

0)

Definition {211}.
(PUTNTH V N L)

=
(IF (LISTP L)

(IF (ZEROP N)
(CONS V (CDR L))
(CONS (CAR L)

(PUTNTH V (SUB1 N) (CDR L))))
L)

19

A list structure is used to represent buffers. Buffers are bounded FIFO queues.

The primitives which manipulate a buffer are given below. They are all obvious, except

perhaps QREPLACE, which replaces the last element of a queue with a new item. The

functions ENQ2, DEQ2, QFIRST2, QFULLP2 and QEMPTYP2 mentioned above access a

2-dimensional table of buffers, and are defined in terms of the primitives listed below.
Definition {470}.
(QFIRST LIST) = (CAR LIST)

Definition {471}.
(ENQ ITEM LIST) = (APPEND LIST (LIST ITEM))

Definition {472}.
(DEQ LIST) = (CDR LIST)

Definition {473}.
(QEMPTYP LIST) = (EQUAL (LENGTH LIST) 0)

Definition {474}.
(QFULLP LIST MAX) = (NOT (LESSP (LENGTH LIST) MAX))

Definition {475}.
(QREPLACE ITEM QUEUE) = (ENQ ITEM (NONLAST QUEUE))

The communication primitives are the only transitions explicitly defined at the

task layer. Recall that the definition of a private step is the application of a fetch-execute

operation to the private state of a task. We intend to define TASK-FETCH-EXECUTE to be

exactly a target machine’s fetch-execute operation. The verification of KIT includes a

proof that the target machine’s architecture implements isolated address spaces in a way

which satisfies this definition of a task.
Definition {1415}.
(TASK-FETCH-EXECUTE PSTATE) = (TM-FETCH-EXECUTE PSTATE)

This concludes the description of our definition of a task. We have in mind a

network of communicating processes whose communication structure is suggested by

Figure 3-1. The task layer formalizes the view of this network taken by one of the nodes

at the points of the star. We intend to implement the network on a computer running a

multi-programmed operating system connected to a set of asynchronous input and output

devices. Figure 3-1 suggests clearly our intended implementation.

• Tasks are those processes which communicate via the message buffers. A
full star network among tasks is defined. They are completely implemented
by an operating system running on a computer.

• Input devices communicate only with tasks, and in one direction only:
device to task.

20

• Output devices communicate only with tasks, and in one direction only: task
to device.

The task layer serves as a specification for the kernel. The channel state and

channel transitions are completely defined. Private state and private transitions are

defined to coincide with some implementation machine. Choosing the private state to be

implemented as an address space on a target machine is an idea common in operating

systems. The proof that our chosen target machine implements private states in a way

which satisfies our definition of a task is one of the most important results in the

verification of KIT.

3.2 The Abstract Kernel Layer

The task layer defines the communication transitions in which a task may

engage, but says nothing of how tasks are activated. The abstract kernel layer defines a

scheme for activating a finite set of tasks. The distinction between a task and an I/O

device is made more concrete. Each task has a state known completely to the abstract

kernel, while the state of an I/O device is unspecified. Devices communicate with the

kernel only through shared ports. A number of task management operations are specified,

including time slicing, scheduling and error handling.

The state space of the abstract kernel is described by the shell AK which defines

a 10-tuple. The AK-PSTATES field is a fixed-size array of the private states of tasks. The

private state of a task is easily proved to be isolated from the others by virtue of the

properties of array access. The fields AK-IBUFFERS, AK-OBUFFERS and AK-MBUFFERS contain

the shared state and, when grouped into a list, are identical to the channel state at the task

layer. The remaining fields introduce the state required to implement task management

and communication with I/O devices. The AK-READYQ is a queue of task identifiers. Task

identifiers are integers in a range bounded by the number of tasks. The first element of

the ready queue is the identifier of the current task. The field AK-STATUS is an array, one

element for each task, which gives the current status of the task. The AK-RWSTATE field is a

running/wait state flag. The kernel waits when no tasks are ready to run. The field

21

AK-CLOCK is the program timer used to control time slicing. The fields AK-IPORTS and

AK-OPORTS define an array of input and output ports for communication with devices.
Shell Definition {1443}.
Add the shell AK with recognizer AK-SHELLP,
defining the record structure
<AK-PSTATES, AK-IBUFFERS, AK-OBUFFERS, AK-MBUFFERS, AK-READYQ,
AK-STATUS, AK-RWSTATE, AK-CLOCK, AK-IPORTS, AK-OPORTS>.

The predicate GOOD-AK defines the abstract kernel state set. It places restrictions

on each field of an AK shell. In addition, GOOD-AK states two invariants on the abstract

kernel. First, the ready queue is a permutation of the set of ready tasks as defined by the

task status array. Second, the kernel is in the wait state if and only if the ready queue is

empty. These two invariants are required to prove that the predicate GOOD-AK is an

invariant on the abstract kernel interpreter. The constant function AK-TASKIDLUB defines

the number of tasks which AK supports.
Definition {1444}.
(AK-TASKIDLUB) = 16

Definition {1532}.
(GOOD-AK AK)

=
(AND (AK-SHELLP AK)

(EQUAL (LENGTH (AK-PSTATES AK)) (AK-TASKIDLUB))
(GOOD-ADDRESS-SPACE-LIST (AK-PSTATES AK))
(EQUAL (LENGTH (AK-IBUFFERS AK)) (AK-TASKIDLUB))
(GOOD-TASK-BUFFER-LIST (AK-IBUFFERS AK) (TASK-IBUFFER-CAPACITY))
(EQUAL (LENGTH (AK-OBUFFERS AK)) (AK-TASKIDLUB))
(GOOD-TASK-BUFFER-LIST (AK-OBUFFERS AK) (TASK-OBUFFER-CAPACITY))
(EQUAL (LENGTH (AK-MBUFFERS AK)) (AK-TASKIDLUB))
(GOOD-TASK-BUFFER-TABLE (AK-MBUFFERS AK)

(AK-TASKIDLUB)
(TASK-MBUFFER-CAPACITY))

(PLISTP (AK-READYQ AK))
(LESSP (LENGTH (AK-READYQ AK)) (ADD1 (AK-TASKIDLUB)))
(FINITE-NUMBER-LISTP (AK-READYQ AK) (AK-TASKIDLUB))
(EQUAL (LENGTH (AK-STATUS AK)) (AK-TASKIDLUB))
(GOOD-STATUS-LIST (AK-STATUS AK))
(FINITE-NUMBERP (AK-RWSTATE AK) 2)
(FINITE-NUMBERP (AK-CLOCK AK) (TM-WORDLUB))
(PLISTP (AK-IPORTS AK))
(EQUAL (LENGTH (AK-IPORTS AK)) (TM-PORT-LENGTH))
(GOOD-TM-IPORT-ARRAY (AK-IPORTS AK))
(PLISTP (AK-OPORTS AK))
(EQUAL (LENGTH (AK-OPORTS AK)) (TM-PORT-LENGTH))
(GOOD-TM-OPORT-ARRAY (AK-OPORTS AK))
(PERMUTATION (AK-READYQ AK) (AK-READY-SET AK))
(IFF (AK-WAITING AK) (QEMPTYP (AK-READYQ AK))))

Definition {357}.
(FINITE-NUMBERP N LUB) = (AND (NUMBERP N) (LESSP N LUB))

22

Definition {359}.
(FINITE-NUMBER-LISTP L LUB)

=
(IF (LISTP L)

(AND (FINITE-NUMBERP (CAR L) LUB)
(FINITE-NUMBER-LISTP (CDR L) LUB))

T)

The interpreter function which defines the transitions on the abstract kernel is

AK-PROCESSOR. The argument AK represents the state of the abstract kernel. The oracle

argument is a list. Each element of the list is either an input interrupt, an output interrupt

or neither. An input interrupt is a 2-tuple containing a device identifier and a character.

An output interrupt is a 1-tuple containing only a device identifier. The function

AK-POST-INTERRUPT incorporates an interrupt into the state of the machine by updating one

of the ports. AK-POST-INTERRUPT raises the interrupt flag in an input port on an input

interrupt, and writes the character into a character buffer in the port. Similarly,

AK-POST-INTERRUPT raises an interrupt in an output port on an output interrupt. When an

oracle element is not an I/O interrupt, no state change is made by AK-POST-INTERRUPT. The

abstract kernel is defined to post interrupts in a way identical to the target machine.

Chapter IMPLEMENTATION contains the formal details about the structure of ports and

I/O interrupt posting.
Definition {1516}.
(AK-PROCESSOR AK ORACLE)

=
(IF (LISTP ORACLE)

(AK-PROCESSOR (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))

AK)

The function AK-STEP defines the single-step function of the abstract kernel.

Input and output interrupt processing has the highest priority. The functions

AK-INPUT-INTERRUPT-HANDLER and AK-OUTPUT-INTERRUPT-HANDLER define the input and

output interrupt handlers. AK-WAITING determines if the machine is in the wait state. If so,

no state change occurs. If none of the above conditions hold, the error status of the

current task is checked. The function AK-ERROR-HANDLER defines the kernel’s error handler.

A clock interrupt signals the end of the current task’s time slice. The function

AK-CLOCK-INTERRUPT-HANDLER defines the task switch on a clock interrupt. The function

23

AK-SVC-INTERRUPTP detects a request to call a kernel function in behalf of the current task

("svc" abbreviates "supervisor call"). The services provided by the kernel are exactly the

communication primitives of the task layer: send, receive, input and output. The function

AK-SVC-HANDLER defines these operations at the abstract kernel layer. Finally, if none of the

above conditions hold, the current task takes a private step as defined by

AK-PRIVATE-STEP.

Like the private step function at the task layer, AK-PRIVATE-STEP depends on the

target machine’s fetch-execute function, TM-FETCH-EXECUTE. AK-PRIVATE-STEP applies

TM-FETCH-EXECUTE to the current task’s private state. More precisely, the ith element of

the private state array is replaced by the application of TM-FETCH-EXECUTE to that element,

where i is the identifier of the current task. The isolation of private states is a simple

result.
Definition {1514}.
(AK-STEP AK)

=
(IF (AK-INPUT-INTERRUPTP AK)

(AK-INPUT-INTERRUPT-HANDLER
(AK-INTERRUPTING-INPUT-PORT (AK-IPORTS AK))
AK)

(IF (AK-OUTPUT-INTERRUPTP AK)
(AK-OUTPUT-INTERRUPT-HANDLER

(AK-INTERRUPTING-OUTPUT-PORT (AK-OPORTS AK))
AK)

(IF (AK-WAITING AK)
AK

(IF (AK-ERRORP AK)
(AK-ERROR-HANDLER AK)

(IF (AK-CLOCK-INTERRUPTP AK)
(AK-CLOCK-INTERRUPT-HANDLER AK)

(IF (AK-SVC-INTERRUPTP AK)
(AK-SVC-HANDLER AK)

(AK-PRIVATE-STEP AK)))))))

24

Definition {1505}.
(AK-PRIVATE-STEP AK)

=
(AK (AK-FETCH-EXECUTE (AK-TASKID AK) (AK-PSTATES AK))

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(AK-RWSTATE AK)
(SUB1 (AK-CLOCK AK))
(AK-IPORTS AK)
(AK-OPORTS AK))

Definition {1461}.
(AK-FETCH-EXECUTE ID PSTATES)

=
(PUTNTH (TM-FETCH-EXECUTE (GETNTH ID PSTATES))

ID
PSTATES)

Definition {1446}.
(AK-TASKID AK) = (QFIRST (AK-READYQ AK))

An AK step is an application of one of five interrupt functions, or is a private

step, or is a noop in the case of a waiting machine with no I/O interrupts. The definitions

of the five AK interrupt handlers provide a specification for the services which must be

provided by the implementation of KIT on the target machine. The definition of a private

step establishes a constraint on the protection mechanism provided by the target

machine’s architecture. In the remainder of this section we examine each of the five

interrupt handlers, beginning with the simplest.

3.2.1 The Clock Interrupt Handler

AK-CLOCK-INTERRUPT-HANDLER defines a simple round-robin scheduling

algorithm. The identifier of the current task is the first element of the ready queue. On a

clock interrupt, the first element of the ready queue is removed and enqueued at the end

of the ready queue. The dispatcher senses an empty ready queue and sets the kernel state

accordingly: the kernel is put in the wait state if the ready queue is empty, otherwise the

kernel is put in the run state and the program clock is initialized. On a clock interrupt the

length of the ready queue is not changed, so the former condition does not hold. The

same primitives which manipulate buffers also manipulate the ready queue. All are finite

queues represented as list structures.

25

Definition {1490}.
(AK-CLOCK-INTERRUPT-HANDLER AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(ENQ (AK-TASKID AK) (DEQ (AK-READYQ AK)))
(AK-STATUS AK)
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1489}.
(AK-DISPATCHER AK)

=
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(IF (QEMPTYP (AK-READYQ AK))

(AK-WAIT-STATE)
(AK-RUN-STATE))

(IF (QEMPTYP (AK-READYQ AK))
(AK-CLOCK AK)
(AK-TIME-SLICE))

(AK-IPORTS AK)
(AK-OPORTS AK))

3.2.2 The Error Handler

A clock interrupt does not change the length of the ready queue or the status of

a task. The error trap mechanism illustrates these situations. The error handler aborts the

current task and prevents it from running again by removing its identifier from the head

of the ready queue and updating its status to indicate an error condition. The status is

updated by storing the 2-tuple (LIST (AK-ERROR-STATUS) 0) in the entry of AK-STATUS

indexed by the current task identifier. An element of the status array is a 2-tuple

(status-flag taskid). A task’s status is one of ready, error, waiting-to-send,

waiting-to-receive, waiting-to-input or waiting-to-output. When a task is marked waiting

to send or receive, the identifier of the task upon which it is waiting is recorded in the

second element of the status tuple. For the other status-flag values a 0 is stored in the

second element.

26

Definition {1491}.
(AK-ERROR-HANDLER AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-ERROR-STATUS) 0)

(AK-TASKID AK)
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

3.2.3 The Supervisor Call Handler

The function AK-SVC-HANDLER interprets a request for one of a set of services

provided by the kernel. These are exactly the communication primitives defined at the

task layer: send, receive, input and output. AK-SVC-HANDLER itself is just a case split on the

requested service. The functions AK-SRCID, AK-DESTID and AK-MESSAGE define conventions

by which tasks pass arguments to the supervisor call handler.

The functions which define the services are given below. These services

perform transitions on the buffers. In addition, they define operations on the kernel data

structures which manage task activations.
Definition {1504}.
(AK-SVC-HANDLER AK)

=
(IF (AK-SEND-INSTRUCTIONP AK)

(AK-EXECUTE-SEND (AK-MESSAGE AK) (AK-TASKID AK) (AK-DESTID AK) AK)

(IF (AK-RECEIVE-INSTRUCTIONP AK)
(AK-EXECUTE-RECEIVE (AK-SRCID AK) (AK-TASKID AK) AK)

(IF (AK-TYO-INSTRUCTIONP AK)
(AK-EXECUTE-OUTPUT (AK-MESSAGE AK) (AK-TASKID AK) AK)

(AK-EXECUTE-INPUT (AK-TASKID AK) AK))))

3.2.3.1. Send

The form (AK-EXECUTE-SEND MSG SRCID DESTID AK) gives an AK state which

defines the send transition. If the buffer which implements communication from task

SRCID to task DESTID is full, then the sending task is made to wait. Otherwise, the message

27

is delivered and the destination task is made ready if it had been waiting for a message

from the sender. The function AK-UPDATE-CONTROL updates the control state of the sending

task to step beyond the send request.
Definition {1494}.
(AK-EXECUTE-SEND MSG SRCID DESTID AK)

=
(IF (QFULLP2 SRCID DESTID (AK-MBUFFERS AK) (TASK-MBUFFER-CAPACITY))

(AK-BLOCK-SEND SRCID DESTID AK)
(AK-EXECUTE-SEND-TO-BUFFER MSG SRCID DESTID AK))

Definition {1492}.
(AK-BLOCK-SEND SRCID DESTID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-SEND-STATUS) DESTID)

SRCID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1493}.
(AK-EXECUTE-SEND-TO-BUFFER MSG SRCID DESTID AK)

=
(AK (AK-UPDATE-CONTROL SRCID (AK-PSTATES AK))

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(ENQ2 MSG SRCID DESTID (AK-MBUFFERS AK))
(IF (AK-WAITING-TO-RECEIVEP SRCID DESTID AK)

(ENQ DESTID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-RECEIVEP SRCID DESTID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0)

DESTID
(AK-STATUS AK))

(AK-STATUS AK))
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK))

3.2.3.2. Receive

The form (AK-EXECUTE-RECEIVE SRCID DESTID AK) gives an AK state which

defines the receive operation. If the buffer which implements communication from task

SRCID to task DESTID is empty, then the receiving task is made to wait. Otherwise, the

message is dequeued from the buffer and delivered to the receiving task. If the sender is

waiting on a full buffer, it is made ready again. The function AK-STORE-MESSAGE defines

the convention by which messages are delivered to the private state of a task.

28

Definition {1497}.
(AK-EXECUTE-RECEIVE SRCID DESTID AK)

=
(IF (QEMPTYP2 SRCID DESTID (AK-MBUFFERS AK))

(AK-BLOCK-RECEIVE SRCID DESTID AK)
(AK-EXECUTE-RECEIVE-FROM-BUFFER SRCID DESTID AK))

Definition {1495}.
(AK-BLOCK-RECEIVE SRCID DESTID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-RECEIVE-STATUS) SRCID)

DESTID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1496}.
(AK-EXECUTE-RECEIVE-FROM-BUFFER SRCID DESTID AK)

=
(AK (AK-UPDATE-CONTROL

DESTID
(AK-STORE-MESSAGE (QFIRST2 SRCID DESTID (AK-MBUFFERS AK))

DESTID
(AK-PSTATES AK)))

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(DEQ2 SRCID DESTID (AK-MBUFFERS AK))
(IF (AK-WAITING-TO-SENDP SRCID DESTID AK)

(ENQ SRCID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-SENDP SRCID DESTID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0)

SRCID
(AK-STATUS AK))

(AK-STATUS AK))
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK))

3.2.3.3. Input

The input supervisor service handles a request by a task for a character from an

input device. The abstract kernel buffers characters arriving from each input port and

delivers them to the owning task on request. The function AK-EXECUTE-INPUT defines the

input supervisor service. It accesses the input buffer indexed by the formal argument ID.

If the buffer is empty, it blocks the requesting task. Otherwise, it removes the first

character on the device input buffer and delivers it to the requesting task.

29

Definition {1503}.
(AK-EXECUTE-INPUT ID AK)

=
(IF (QEMPTYP (GETNTH ID (AK-IBUFFERS AK)))

(AK-BLOCK-INPUT ID AK)
(AK-EXECUTE-INPUT-FROM-BUFFER ID AK))

Definition {1501}.
(AK-BLOCK-INPUT ID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-INPUT-STATUS) 0)

ID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1502}.
(AK-EXECUTE-INPUT-FROM-BUFFER ID AK)

=
(AK (AK-UPDATE-CONTROL

ID
(AK-STORE-MESSAGE (QFIRST (GETNTH ID (AK-IBUFFERS AK)))

ID
(AK-PSTATES AK)))

(PUTNTH (DEQ (GETNTH ID (AK-IBUFFERS AK)))
ID
(AK-IBUFFERS AK))

(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK))

3.2.3.4. Output

The output supervisor service handles a request by a task to send a character to

an output device. The abstract kernel buffers characters waiting to be sent to a device,

delivering one each time an output buffer is non-empty and its associated device is idle.

The function AK-EXECUTE-OUTPUT defines the output supervisor service. It accesses the

output buffer indexed by the formal argument ID. If the buffer is full, the requesting task

is blocked. Otherwise, a character is enqueued on the buffer. If the associated device is

idle, an output interrupt is triggered, causing the output interrupt handler to initiate an

output to the device. I/O ports and I/O interrupts at the abstract kernel layer are defined to

coincide with the implementation at the target machine layer.

30

Definition {1500}.
(AK-EXECUTE-OUTPUT CHAR ID AK)

=
(IF (QFULLP (GETNTH ID (AK-OBUFFERS AK))

(TASK-OBUFFER-CAPACITY))
(AK-BLOCK-OUTPUT ID AK)
(AK-EXECUTE-OUTPUT-TO-BUFFER CHAR ID AK))

Definition {1498}.
(AK-BLOCK-OUTPUT ID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(DEQ (AK-READYQ AK))
(PUTNTH (LIST (AK-OUTPUT-STATUS) 0)

ID
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

Definition {1499}.
(AK-EXECUTE-OUTPUT-TO-BUFFER CHAR ID AK)

=
(AK (AK-UPDATE-CONTROL ID (AK-PSTATES AK))

(AK-IBUFFERS AK)
(ENQ-ITH-BUFFER CHAR ID (AK-OBUFFERS AK))
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(IF (AK-OPORT-IDLEP ID (AK-OPORTS AK))

(AK-POST-OUTPUT-INTERRUPT ID (AK-OPORTS AK))
(AK-OPORTS AK)))

3.2.4 The Input Interrupt Handler

An input interrupt is a non-deterministic event supplied by AK’s oracle. It

signals the arrival of a character from an input device. The main functions of the input

interrupt handler are: to enqueue the arriving input character on the designated buffer, to

clear the input interrupt signal, and to make the owning task ready if it is waiting for

input. The state in which the input interrupt handler leaves the kernel depends on whether

the kernel is waiting. When waiting, the ready queue is empty. If the task which owns the

interrupting input device is waiting on input that task is made ready and is dispatched,

otherwise the kernel remains waiting. If the kernel is running, the current task is resumed

without calling the dispatcher.

31

Definition {1509}.
(AK-INPUT-INTERRUPT-HANDLER ID AK)

=
(IF (AK-WAITING AK)

(AK-WAITING-INPUT-INTERRUPT-HANDLER ID AK)
(AK-RUNNING-INPUT-INTERRUPT-HANDLER ID AK))

Definition {1507}.
(AK-WAITING-INPUT-INTERRUPT-HANDLER ID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-UPDATE-IBUFFER ID AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-INPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-INPUTP ID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-CLEAR-INPUT-INTERRUPT ID (AK-IPORTS AK))
(AK-OPORTS AK)))

Definition {1508}.
(AK-RUNNING-INPUT-INTERRUPT-HANDLER ID AK)

=
(AK (AK-PSTATES AK)

(AK-UPDATE-IBUFFER ID AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-INPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-INPUTP ID AK)
(PUTNTH (LIST (AK-READY-STATUS) 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-CLEAR-INPUT-INTERRUPT ID (AK-IPORTS AK))
(AK-OPORTS AK))

The function AK-UPDATE-IBUFFER updates the input buffer. The I/O interface

does not allow the kernel to make an input device wait. The condition of overflow is

signaled by delivering to the buffer an overflow character, which is a message larger than

the greatest possible character. This gives the owning task a method of detecting

overflow. If an input buffer is full, AK-UPDATE-IBUFFER replaces the last character on the

queue with an overflow character. If the buffer is not full but the input port indicates an

overflow, an overflow character is enqueued on the input buffer. Otherwise, no overflow

error has occurred either at the buffer or port, and the character is enqueued.

32

3.2.5 The Output Interrupt Handler

An output interrupt signals that an output has been completed and an output

device is idle. Our definition of the abstract kernel is not comprehensive enough to

specify the precise relationship between a command to start output to a device and the

corresponding output interrupt signaling completion of the output. Output interrupts can

be treated only as non-deterministic events supplied by AK’s oracle.

An output interrupt transition is defined as follows. In all cases, the output

interrupt is cleared. If the corresponding output buffer is non-empty, then a new output is

started. If the owning task had been waiting on a full output buffer, it is made ready

again. The conditions of full buffer and empty buffer are mutually exclusive, so a task

cannot be waiting when a buffer is empty. Like the input interrupt handler, the state in

which the output interrupt handler leaves the kernel also depends on whether or not the

kernel is waiting. When waiting, the ready queue is empty. If the task which owns the

interrupting output device is waiting on output that task is made ready and is dispatched,

otherwise the kernel remains waiting. If the kernel is running, the current task is resumed

without calling the dispatcher.
Definition {1512}.
(AK-OUTPUT-INTERRUPT-HANDLER ID AK)

=
(IF (AK-WAITING AK)

(AK-WAITING-OUTPUT-INTERRUPT-HANDLER ID AK)
(AK-RUNNING-OUTPUT-INTERRUPT-HANDLER ID AK))

33

Definition {1510}.
(AK-WAITING-OUTPUT-INTERRUPT-HANDLER ID AK)

=
(AK-DISPATCHER

(AK (AK-PSTATES AK)
(AK-IBUFFERS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-OBUFFERS AK)
(DEQ-ITH-BUFFER ID (AK-OBUFFERS AK)))

(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-OUTPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-OUTPUTP ID AK)
(PUTNTH ’(0 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-CLEAR-OUTPUT-INTERRUPT ID (AK-OPORTS AK))
(AK-START-OUTPUT (QFIRST (GETNTH ID (AK-OBUFFERS AK)))

ID
(AK-OPORTS AK)))))

Definition {1511}.
(AK-RUNNING-OUTPUT-INTERRUPT-HANDLER ID AK)

=
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-OBUFFERS AK)
(DEQ-ITH-BUFFER ID (AK-OBUFFERS AK)))

(AK-MBUFFERS AK)
(IF (AK-WAITING-TO-OUTPUTP ID AK)

(ENQ ID (AK-READYQ AK))
(AK-READYQ AK))

(IF (AK-WAITING-TO-OUTPUTP ID AK)
(PUTNTH ’(0 0) ID (AK-STATUS AK))
(AK-STATUS AK))

(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(IF (QEMPTYP (GETNTH ID (AK-OBUFFERS AK)))

(AK-CLEAR-OUTPUT-INTERRUPT ID (AK-OPORTS AK))
(AK-START-OUTPUT (QFIRST (GETNTH ID (AK-OBUFFERS AK)))

ID
(AK-OPORTS AK))))

This concludes our excursion through the definition of the abstract kernel. The

remaining details of the kernel’s definition occur in the proof script. Like the task layer,

AK relies on the target machine’s definition of the fetch-execute step on the private state of

a task. It also uses the target machine’s implementation of communication with I/O

devices. AK is abstract in the following ways.

• The private state spaces of tasks are transparently isolated. This provides an
important constraint on the implementation.

34

• The data structures used to manage tasks are represented as high-level list
structures.

• The transitions on the kernel state are specified functionally. All kernel
operations take place in a single abstract step.

35

Chapter 4

The Implementation of KIT

In this chapter we define the target machine upon which we implement KIT.

We then present the kernel source code. We include the code in the text not because we

find it particularly readable, but because the existence of this verified low-level code is

one of the most important characteristics of this work.

4.1 The Target Machine

We arrive at the bottom rung of the ladder in Figure 2-2 to discuss the target

machine TM. The target machine is a simple von Neumann computer. It is not based on

any existing physical machine because we are not interested in the task of formalizing an

existing machine. We intend for TM to be straightforward.

TM has simple architectural support for multi-programming. This support

consists of a base/limit register pair mechanism for memory protection, and a

supervisor/user mode flag for protecting privileged operations. TM is a 16-bit machine.

Main memory consists of 216 16-bit words. The processor state contains 8 general

purpose registers, one of which is the program counter and another a stack pointer. There

are four flag fields: a 2-bit condition code, a 6-bit error code, a supervisor call flag, and a

7-bit supervisor call identifier. Processor registers which are accessible only in the

supervisor mode are the base/limit register pair, a supervisor address limit register, the

supervisor/user mode flag, a running/wait state flag and the program clock. TM is capable

of asynchronous character I/O. It communicates with 16 input devices and 16 output

devices by an array of input ports and an array of output ports. Table PMS gives a

summary of the TM architecture in PMS notation [PMS].

36

Memory state

Mp[0:65535]<0:15> main memory of 216 16-bit words

Pc state

R[0:7]<0:15> 8 general purpose registers;
R[0] is the PC; R[1] is the SP

CC<0:1> 2-bit condition code
ERROR<0:5> 6-bit error code
SVCFLAG 1-bit svc call flag
SVCID<0:6> 7-bit svc identifier

BASE<0:15> 16-bit address base register
LIMIT<0:15> 16-bit address limit register
SLIMIT<0:15> 16-bit address defining the upper limit

of the supervisor based at address 0 in
memory

SVMODE supervisor/user mode flag
RWSTATE running/wait state flag
CLOCK<0:15> program clock used for time slicing

I/O interface

IPORTS[0:15](<0:1>;<0:1>;<0:7>) an array of 16 input ports;
each port is a 3-tuple
(interrupt-flag, error-flag, character-buffer)

OPORTS[0:15](<0:1>;<0:1>;<0:7>) an array of 16 output ports;
each port is a 3-tuple
(interrupt-flag, busy-flag, character-buffer)

Table 4-1: PMS Description of TM

The structure of the target machine is described in the Boyer-Moore logic by

the shell TM. The fields defined by the shell correspond to the fields described in Table

PMS.
Shell Definition {668}.
Add the shell TM with recognizer TM-SHELLP,
defining the record structure
<TM-MEMORY, TM-REGS, TM-CC, TM-ERROR, TM-SVCFLAG, TM-SVCID,
TM-BASE, TM-LIMIT, TM-SLIMIT, TM-SVMODE, TM-RWSTATE, TM-CLOCK,
TM-IPORTS, TM-OPORTS>.

The predicate GOOD-TM defines the target machine state space. Each TM

component is represented as a natural number, a list of natural numbers, or, in the case of

I/O ports, a tuple of natural numbers. The maximum sizes of the components are defined

by constant functions, some of which are given below. This is a slightly more abstract

37

representation of a machine than one which uses sequences of bits (bit vectors). We

justify this level of abstraction by observing that there is a 1-1 mapping between bit

vectors of a given size and the set of natural numbers from 0 to the maximum number

representable by the bit vector. Therefore the natural number representation for a

machine is isomorphic to a bit vector representation. In addition, if we had chosen to go

all the way down to a bit vector representation we would have been obliged to verify TM’s

ALU, a problem treated by Hunt [Hunt85] and beyond the scope of this work.
Definition {907}.
(GOOD-TM TM)

=
(AND (TM-SHELLP TM)

(PLISTP (TM-MEMORY TM))
(EQUAL (LENGTH (TM-MEMORY TM)) (TM-MEMLENGTH))
(FINITE-NUMBER-LISTP (TM-MEMORY TM)

(TM-WORDLUB))
(PLISTP (TM-REGS TM))
(EQUAL (LENGTH (TM-REGS TM)) (TM-REGLENGTH))
(FINITE-NUMBER-LISTP (TM-REGS TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-CC TM) (TM-CCLUB))
(FINITE-NUMBERP (TM-ERROR TM) (TM-ERRORLUB))
(FINITE-NUMBERP (TM-SVCFLAG TM) (TM-SVCFLAGLUB))
(FINITE-NUMBERP (TM-SVCID TM) (TM-SVCIDLUB))
(FINITE-NUMBERP (TM-BASE TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-LIMIT TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-SLIMIT TM) (TM-WORDLUB))
(FINITE-NUMBERP (TM-SVMODE TM) 2)
(FINITE-NUMBERP (TM-RWSTATE TM) 2)
(FINITE-NUMBERP (TM-CLOCK TM) (TM-WORDLUB))
(PLISTP (TM-IPORTS TM))
(EQUAL (LENGTH (TM-IPORTS TM))(TM-PORT-LENGTH))
(GOOD-TM-IPORT-ARRAY (TM-IPORTS TM))
(PLISTP (TM-OPORTS TM))
(EQUAL (LENGTH (TM-OPORTS TM)) (TM-PORT-LENGTH))
(GOOD-TM-OPORT-ARRAY (TM-OPORTS TM)))

Definition {613}.
(TM-WORDSIZE) = 16

Definition {614}.
(TM-WORDLUB) = (EXP 2 (TM-WORDSIZE))

Definition {682}.
(TM-PORT-LENGTH) = 16

The structure of input and output ports is formalized using shells. An input port

is a 3-tuple containing an interrupt flag, an error flag which is used to indicate overflow

on the input port, and a character buffer. An output port is a 3-tuple containing an

interrupt flag, a busy flag, and a character buffer. The functions GOOD-TM-IPORT-ARRAY and

GOOD-TM-OPORT-ARRAY recognize fixed-length arrays of I/O ports with bounded

components.

38

Shell Definition {748}.
Add the shell TM-IPORT with recognizer TM-IPORTP,
defining the record structure
<TM-IINTERRUPT-FLAG, TM-IERROR-FLAG, TM-ICHAR>.

Shell Definition {749}.
Add the shell TM-OPORT with recognizer TM-OPORTP,
defining the record structure
<TM-OINTERRUPT-FLAG, TM-OBUSY-FLAG, TM-OCHAR>.

The function TM-PROCESSOR is the interpreter function which defines the

transitions on a TM state. The formal argument TM represents a machine state, and the

formal argument ORACLE represents an oracle identical to an abstract kernel oracle. That is,

an oracle is a list some of whose elements are I/O interrupts. An input interrupt is a

2-tuple which gives an input character and a device id, accessed by the functions

TM-IDATUM and TM-IDEVID, respectively. An output interrupt merely contains a device id,

accessed by the function TM-ODEVID.
Definition {883}.
(TM-PROCESSOR TM ORACLE)

=
(IF (LISTP ORACLE)

(TM-PROCESSOR (TM-STEP (TM-POST-INTERRUPT (CAR ORACLE) TM))
(CDR ORACLE))

TM)

TM-POST-INTERRUPT incorporates interrupts into the state of the machine so that

they can be sensed. An input interrupt for device i is posted by changing the value of the

ith input port as follows: the interrupt flag is raised, the error flag gets the previous value

of the interrupt flag to signal an overflow condition, the input character is written to the

character buffer. An output interrupt for device i is posted by changing the value of the

ith output port as follows: the interrupt flag is raised, the busy flag is cleared, the

character buffer is cleared (although this action is superfluous). When the current oracle

element is not an I/O interrupt, TM-POST-INTERRUPT makes no change to the state of the

machine.

39

Definition {881}.
(TM-POST-INTERRUPT EVENT TM)

=
(IF (TM-DEVICE-INPUT-EVENTP EVENT)

(TM-SET-IPORTS (TM-POST-INPUT-INTERRUPT (REMAINDER (TM-IDATUM EVENT)
(TM-CHARLUB))

(REMAINDER (TM-IDEVID EVENT)
(TM-PORT-LENGTH))

(TM-IPORTS TM))
TM)

(IF (TM-DEVICE-OUTPUT-EVENTP EVENT)
(TM-SET-OPORTS (TM-POST-OUTPUT-INTERRUPT (REMAINDER (TM-ODEVID E

(TM-PORT-LEN
(TM-OPORTS TM))

TM)
TM))

Definition {752}.
(TM-POST-INPUT-INTERRUPT CHAR ID PORTS)

=
(PUTNTH (TM-IPORT 1

(TM-IINTERRUPT-FLAG (GETNTH ID PORTS))
CHAR)

ID
PORTS)

Definition {755}.
(TM-POST-OUTPUT-INTERRUPT ID PORTS)

=
(PUTNTH (TM-OPORT 1 0 0) ID PORTS)

The function TM-STEP defines the single step function for the TM interpreter. It

gives the interrupt structure of the target machine. Each of the interrupt branches of

TM-STEP (an input interrupt, an output interrupt, an error trap, a clock interrupt and a

supervisor call interrupt) does a PSW swap, which partially saves the state of the CPU in

a fixed location of memory and loads a new program counter giving the address of an

operating system interrupt handling routine. When no I/O interrupt occurs and TM is in

the wait state, TM-STEP returns the current machine state unchanged. The function

TM-FETCH-EXECUTE defines the instruction fetch-execute cycle of the target machine.

40

Definition {882}.
(TM-STEP TM)

=
(IF (TM-INPUT-INTERRUPTP TM)

(TM-EXECUTE-INPUT-INTERRUPT TM)

(IF (TM-OUTPUT-INTERRUPTP TM)
(TM-EXECUTE-OUTPUT-INTERRUPT TM)

(IF (TM-WAITING TM)
TM

(IF (TM-ERRORP TM)
(TM-EXECUTE-ERROR-INTERRUPT TM)

(IF (TM-CLOCK-INTERRUPTP TM)
(TM-EXECUTE-CLOCK-INTERRUPT TM)

(IF (TM-SVC-INTERRUPTP TM)
(TM-EXECUTE-SVC-INTERRUPT TM)

(TM-FETCH-EXECUTE TM)))))))

We wish to examine interrupts and the fetch-execute cycle more closely.

Before doing so, we examine some of the primitive functions in the definition of TM

which update the TM state. In particular, we examine memory and register access. First,

for every field in the TM structure we have defined a function which updates that field and

no other. For instance, the function TM-SET-CC returns a TM state with an updated condition

code.
Definition {687}.
(TM-SET-CC CC TM)

=
(TM (TM-MEMORY TM)

(TM-REGS TM)
CC
(TM-ERROR TM)
(TM-SVCFLAG TM)
(TM-SVCID TM)
(TM-BASE TM)
(TM-LIMIT TM)
(TM-SLIMIT TM)
(TM-SVMODE TM)
(TM-RWSTATE TM)
(TM-CLOCK TM)
(TM-IPORTS TM)
(TM-OPORTS TM))

The interface to memory and register access is defined by the functions

TM-FETCH and TM-STORE. An address argument to these functions is a 2-tuple constructed

by the function REAL-ADDR. The REAL-ADDR-NUM field is a number used as a datum or an

41

address. The REAL-ADDR-SOURCE field indicates how the number is used: as a datum, as a

register address, or as a memory address. TM-FETCH and TM-STORE follow the convention

that a REAL-ADDR-SOURCE value of 0 indicates a datum, a value of 1 indicates a register

address, and otherwise a memory address. Given a REAL-ADDR, TM-FETCH returns either the

datum portion of the address, or the contents of a register, or the contents of a memory

word. TM-STORE makes no state change when given a REAL-ADDR with source 0, and

otherwise updates a location in either the registers or memory. Notice that when the

machine is in user mode, a memory address is treated as a displacement from the current

base register.
Definition {773}.
(TM-FETCH ADDR TM)

=
(IF (ZEROP (REAL-ADDR-SOURCE ADDR))

(REAL-ADDR-NUM ADDR)

(IF (EQUAL (REAL-ADDR-SOURCE ADDR) 1)
(TM-FETCH-FROM-REGMEM (REAL-ADDR-NUM ADDR) TM)

(TM-FETCH-FROM-MEMORY (REAL-ADDR-NUM ADDR) TM)))

Definition {774}.
(TM-STORE VALUE ADDR TM)

=
(IF (ZEROP (REAL-ADDR-SOURCE ADDR))

TM

(IF (EQUAL (REAL-ADDR-SOURCE ADDR) 1)
(TM-STORE-IN-REGMEM VALUE (REAL-ADDR-NUM ADDR) TM)

(TM-STORE-IN-MEMORY VALUE (REAL-ADDR-NUM ADDR) TM)))

Definition {757}.
(REAL-ADDR SOURCE NUM) = (LIST SOURCE NUM)

Definition {758}.
(REAL-ADDR-SOURCE REAL-ADDR) = (CAR REAL-ADDR)

Definition {759}.
(REAL-ADDR-NUM REAL-ADDR) = (CADR REAL-ADDR)

Definition {769}.
(TM-FETCH-FROM-MEMORY ADDR TM)

=
(IF (TM-IN-SUPERVISOR-MODE TM)

(GETNTH ADDR (TM-MEMORY TM))
(GETNTH (PLUS (TM-BASE TM) ADDR) (TM-MEMORY TM)))

42

Definition {770}.
(TM-STORE-IN-MEMORY VALUE ADDR TM)

=
(IF (TM-IN-SUPERVISOR-MODE TM)

(TM-SET-MEMORY (PUTNTH VALUE ADDR (TM-MEMORY TM)) TM)
(TM-SET-MEMORY (PUTNTH VALUE

(PLUS (TM-BASE TM) ADDR)
(TM-MEMORY TM))

TM))

Definition {771}.
(TM-FETCH-FROM-REGMEM ADDR TM)

=
(GETNTH ADDR (TM-REGS TM))

Definition {772}.
(TM-STORE-IN-REGMEM VALUE ADDR TM)

=
(TM-SET-REGS (PUTNTH VALUE ADDR (TM-REGS TM)) TM)

Now we return to the subject of interrupts. Table CLOCK-INTERRUPT

describes what happens on a clock interrupt: the current program counter, stack pointer

and flags fields are stored in memory locations [0:2]. A new program counter is loaded

from a fixed location in memory giving the address of the clock interrupt handler, the

stack pointer is loaded with the supervisor limit address (a stack occupies the high

address end of a memory segment), and the machine is put in supervisor mode.

mem[0:2] <- [pc,sp,flags]
pc <- mem[3]
sp <- slimit - 1
svmode <- supervisor-mode

Table 4-2: The TM Clock Interrupt

We explore the formal definition of the clock interrupt given by

TM-EXECUTE-CLOCK-INTERRUPT. The machine is put in supervisor mode (the TM-SET-SVMODE

expression), the program counter, stack pointer, and flags are saved in location 0 through

2 of memory (the call to TM-STORE-OLD-PSW-ON-INTERRUPT), the program counter is loaded

with a new value (the call to TM-FETCH-NEW-PC-ON-INTERRUPT), and the stack pointer is set

to one less than the supervisor limit register (the TM-SET-SP expression). In

TM-STORE-OLD-PSW-ON-INTERRUPT, the function TM-INCRN-ADDRESS increments an address a

given number of times. This is how we arrange to store CPU state in three successive

memory locations. TM-PACK-PSW packs the flags fields into a single number. All of the

other interrupt transitions referenced in TM-STEP are defined in a similar fashion.

43

Definition {862}.
(TM-EXECUTE-CLOCK-INTERRUPT TM)

=
(TM-SET-SP (TM-DECR (TM-SLIMIT TM))
(TM-FETCH-NEW-PC-ON-INTERRUPT (TM-CLOCK-NEW-PC-ADDR)
(TM-STORE-OLD-PSW-ON-INTERRUPT (TM-REGISTER-SAVE-AREA-ADDR)
(TM-SET-SVMODE (TM-SUPERVISOR-MODE)

TM))))

Definition {859}.
(TM-FETCH-NEW-PC-ON-INTERRUPT ADDR TM)

=
(TM-SET-PC (TM-FETCH-FROM-MEMORY ADDR TM) TM)

Definition {860}.
(TM-STORE-OLD-PSW-ON-INTERRUPT ADDR TM)

=
(TM-STORE (TM-PC TM)

(REAL-ADDR 2 ADDR)
(TM-STORE (TM-SP TM)

(TM-INCRN-ADDRESS 1 (REAL-ADDR 2 ADDR))
(TM-STORE (TM-PACK-PSW (TM-CC TM)

(TM-ERROR TM)
(TM-SVCFLAG TM)
(TM-SVCID TM))

(TM-INCRN-ADDRESS 2 (REAL-ADDR 2 ADDR))
TM)))

Definition {721}.
(TM-REGISTER-SAVE-AREA-ADDR) = 0

We have seen the function TM-FETCH-EXECUTE referenced at the task and abstract

kernel layers. It defines TM’s fetch-execute cycle. The function TM-GOOD-PC-ADDRESS

determines if the address contained in the program counter causes a protection error as

defined by the current contents of the limit register. If so, the error flag is set. Otherwise,

the current instruction is fetched and executed. In addition, the program clock is

decremented. The function TM-EXECUTE fetches the current instruction’s arguments and

computes absolute addresses based on the indicated address mode. TM has four address

modes: immediate, memory direct, register, and register indirect. Memory addresses

must be less than the current value of the limit register, otherwise causing a protection

error. When running in user mode a memory address supplied by an instruction is treated

as a displacement from the current base register.
Definition {858}.
(TM-FETCH-EXECUTE TM)

=
(IF (TM-GOOD-PC-ADDRESS TM)

(TM-EXECUTE (TM-FETCH-OPCODE TM) (TM-DECREMENT-CLOCK TM))
(TM-SET-ERROR (TM-PC-ADDRESS-ERROR) (TM-DECREMENT-CLOCK TM)))

44

Table INSTRUCTION-SET documents TM’s small instruction set. The purpose

of the table is to suggest the extent of the instruction set. We have defined only those

instructions required to program the operating system. Other instructions can be added

with the cost of proving that each one satisfies the GOOD-TM invariant. TM has instructions

of zero, one and two arguments. The parameters which occur in Table

INSTRUCTION-SET should be interpreted as real addresses: one of memory address,

register address or immediate operand. In the case of binary operations, a result is stored

at the location indicated by the first argument. The condition code is a 2-bit value which

indicates two ALU conditions: zero/non-zero and carry/no-carry.

Non-Privileged Operations

ADD a b add, set the condition code
BR a set the pc unconditionally
BRZ a set the pc if cc = <zero,non-overflow>
BRNZ a set the pc if cc #≠# <zero,non-overflow>
CALL a save the pc on the stack, load a new pc
COMPARE a b set the condition code based on numerically

comparing a and b
DECR a decrement, set the condition code
DECR-MOD a b decrement a modulo b, set the condition code
INCR a increment, set the condition code
INCR-MOD a b increment a modulo b, set the condition code
MOD a b a mod b, set the condition code
MOVE a b move b to location indicated by a
MULT a b multiply, set the condition code
RETURN set the pc to the top element of the stack
SVC addr raise the svcflag, set the svcid

Privileged Operations

LBASE a load the base register
LLIMIT a load the limit register
LPSW a load the pc, sp and flags; put the machine in user mode
POST a raise the output interrupt flag in the output

port given by the argument
RUN put the machine in the run state
TIME a set the clock
STOUT a b start output on the device indicated by a;

the output character is given by b
SVCR a load the pc, sp and flags; put the machine

in user mode; clear the svcflag
TESTI a test the indicated input port for an overflow error
TESTO a test the indicated output port for busy
WAIT put the machine in the wait state

Table 4-3: TM’s Instruction Set

We give the formal definition of the addition operation, TM-EXECUTE-ADD. It

45

takes three arguments, two real addresses indicating the addition operands, and the

current state of the machine. TM-EXECUTE-ADD returns a new machine state by storing the

the result of the addition at the location indicated by the first address, and updating the

condition code to reflect two conditions: whether the result is zero, and whether the

result has a carry out.
Definition {778}.
(TM-EXECUTE-ADD ADDR1 ADDR2 TM)

=
(TM-STORE (ALU-VALUE (TM-ALU-PLUS (TM-FETCH ADDR1 TM)

(TM-FETCH ADDR2 TM)))
ADDR1
(TM-SET-CC (TM-CC-VALUE (TM-ALU-PLUS (TM-FETCH ADDR1 TM)

(TM-FETCH ADDR2 TM)))
TM))

Definition {707}.
(TM-CC-VALUE ALU-RESULT)

=
(IF (ZEROP (ALU-VALUE ALU-RESULT))

(IF (FALSEP (ALU-CARRY ALU-RESULT))
(TM-ZERO-NO-CARRY-CONDITION)
(TM-ZERO-CARRY-CONDITION))

(IF (FALSEP (ALU-CARRY ALU-RESULT))
(TM-NON-ZERO-NO-CARRY-CONDITION)
(TM-NON-ZERO-CARRY-CONDITION)))

TM’s ALU performs the following operations: plus, difference, times,

remainder, increment, decrement, increment-mod and decrement-mod. Increment-mod

takes two arguments and increments its first argument modulo its second argument.

Decrement-mod decrements its first argument modulo its second argument. Besides

returning an integer value, each ALU operation also sets a carry bit. Remainder is a

powerful operation. The kernel in fact uses this operation only to take the remainder of a

number by some power of two. Therefore the remainder operation in the ALU could be

replaced by a simpler mask operation to satisfy the needs of the kernel.

This completes our summary of TM. It is a very simple von Neumann machine.

It provides some support for the implementation of tasks, but cannot accomplish this on

its own. The operating system kernel which must be written for TM has the significant job

of spanning the gap to the abstract kernel.

46

4.2 The Code

In this section we present the source code of KIT. We present it as a listing in

an assembler language written for TM, annotated with comments. A quoted list containing

each line (minus comments) of the source code is equal to the function OS-SOURCE. This

function, which appears in the script, is a constant function defining a list containing the

assembler language source. The source code contains routines which correspond to the

interrupt handlers specified at the abstract kernel level.

The kernel resides in a segment of memory beginning at location 0. Remaining

memory segments are occupied by tasks. Figure LAYOUT-OF-KERNEL describes the

memory layout of the kernel segment. It identifies the data structures required by the

kernel.

• Register Save Area. This is a 3-word segment built into the definition of TM

which is used to partially save the CPU state on an interrupt.

• Interrupt Vector. These addresses, also built into TM’s definition, contain the
addresses of the interrupt handlers.

• Locals. A set of local variables used by the operating system.

• Task Table. This is a kernel data structure which contains the CPU state of
each task.

• Segment Table. The table contains a base/limit register pair for each task,
defining the location and length of each task’s memory segment.

• Ready Queue. An implementation of the ready queue.

• Status Table. An implementation of the task status table.

• Ibuffer, Obuffers, Mbuffers. Implementations of the buffer tables.

• Code. The kernel machine code.

• Stack. The kernel’s stack.

The assembler is a simple one written in the Boyer-Moore logic. It plays no

part in the proof since we verify the output of the assembler, which is a list of numbers

that TM interprets. The grammar accepted by the assembler is given in Table

GRAMMAR. The primitives of the grammar are <SYMBOL> and <NATNUM>. <NATNUM> is

understood to be a number bounded by TM’s wordsize. The grammar defines six forms. A

47

Figure 4-1: Layout of Kernel

<SYMBOL> makes an entry in the symbol table, associating a symbol with a displacement

from the start of the source code. A <DCL> makes an entry in the symbol table to associate

a symbol with a user supplied number. The <DC> form initializes a contiguous sequence of

memory words and is used for declaring data storage. The remaining forms define the

syntax of nullary, unary and binary operations. An <ARG> is a list containing an address

mode, a value and an optional displacement. In the syntax for <ARG>, <SYMBOL> is an

abbreviation for (0 <SYMBOL> 0) and (<MODE> <VALUE>) is an abbreviation for

(<MODE> <VALUE> 0).

This description of the grammar, plus the informal documentation of the

48

<GRAM> ::= <FORM>*

<FORM> ::= <SYMBOL> | <DCL> | <DC> | <0ARY-OP> |
<1ARY-OP> | <2ARY-OP>

<DCL> ::= (DCL <SYMBOL> <NATNUM>)

<DC> ::= (DC <NATNUM> <VALUE>)

<0ARY-OP> ::= (<SYMBOL>)

<1ARY-OP> ::= (<SYMBOL> <ARG>)

<2ARY-OP> ::= (<SYMBOL> <ARG> <ARG>)

<ARG> ::= <SYMBOL> | (<MODE> <VALUE>) |
(<MODE> <VALUE> <DISP>)

<MODE> ::= <NATNUM>[0..3]

<DISP> ::= <NATNUM>[0..7]

<VALUE> ::= <NATNUM> | <SYMBOL>

Table 4-4: Grammar for TM Assembler

instruction set in Table 4-3 should make it possible to read the assembler language

source. Of course, all questions about details must be answered by consulting the

definition of TM in the script. The assembler packs operations into one, two or three

machine words. The format of machine instructions is not important. To be able to read

the source code, the following facts should be understood about TM’s interpretation of

instructions.

• The address modes are as follows: 0 - immediate operand, 1- register, 2 -
memory, 3 - register indirect.

• Data movement in a binary operation is from right to left. For the instruction
(ADD A B), the sum of A and B is placed in the location indicated by A
unless A is an immediate operand, in which case a result is not stored.

• Register 0 is the program counter, and register 1 is the stack pointer.

The source listing contains three sections. First is a series of DCL forms, defining

symbols for the assembler. Next is a series of DC forms defining the data areas. The

remainder contains programs.

We provide a guide to one part of the source, the clock interrupt handler,

exhibiting small portions of the listing. Consult the definition of AK-CLOCK-INTERRUPT

49

handler in Section 3.2.1 for the specification. The clock interrupt handler begins at the

address with label CLOCK-INTERRUPT-HANDLER. Control passes to the clock interrupt handler

after a clock interrupt. The routine SAVE-STATE is called to save the state of the current

task in the task table. Upon return, the clock interrupt handler loads the address of the

ready queue into register 3, and then calls QFIRST, which places the first element of a

queue into register 2. DEQUEUE is called to remove the first element from the ready queue.

And then ENQUEUE is called to place what was the first queue element at the end of the

queue. Finally, control branches to the dispatcher to resume the next task.
CLOCK-INTERRUPT-HANDLER
(call save-state) ;; First, save the state of the current task.
trace-label1
(move (1 r3) readyq) ;; R3 points to readyq
(call qfirst) ;; Put current taskid in R2
(call dequeue) ;; DEQUEUE the current task from the READYQ
(call enqueue) ;; ENQUEUE the current task
trace-label2
(br dispatcher) ;; Resume next task

The function AK-DISPATCHER in Section 3.2.1 specifies the dispatching operation.

The dispatcher checks for an empty ready queue. If empty, the machine is put in the wait

state. Otherwise, QFIRST is called to obtain the taskid which as the first element of the

ready queue. RESTORE-STATE is called to initialize the CPU with most of this task’s CPU

state - all but the program counter, stack pointer and flags. Upon return, the program

clock is reset, and an LPSW instruction is done to complete the context switch.
DISPATCHER ;; Allocate CPU to first task on readyq.
(move (1 r3) readyq) ;; Point R3 to readyq
(call qemptyp) ;; Readyq empty?
dispatcher-trace-label1
(brz readyq-empty)
(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
dispatcher-trace-label2
(time (2 time-slice 0)) ;; set clock
(lpsw (2 reg-save-area))

READYQ-EMPTY
(wait)

50

;; ------------- Beginning of KIT source --------------
;; ---------- Assembler symbolic declarations ----------
(dcl r0 0)
(dcl r1 1)
(dcl r2 2)
(dcl r3 3)
(dcl r4 4)
(dcl r5 5)
(dcl r6 6)
(dcl r7 7)

;; format of interrupt save-area
(dcl interrupt-pc-field 0)
(dcl interrupt-sp-field 1)
(dcl interrupt-flag-field 2)
(dcl svcid-addr 8)
(dcl input-devid-addr 8)
(dcl input-char-addr 9)
(dcl output-devid-addr 9)
(dcl charlub 256)

;; svcids
(dcl send-svcid 0)
(dcl receive-svcid 1)
(dcl tyo-svcid 2)
(dcl tyi-svcid 3)

;; format of a task table entry
(dcl task-table-length 144)
(dcl task-table-entry-length 9)
(dcl pc-field 0)
(dcl sp-field 1)
(dcl r2-field 2)
(dcl r3-field 3)
(dcl r4-field 4)
(dcl r5-field 5)
(dcl r6-field 6)
(dcl r7-field 7)
(dcl flag-field 8) ;; displacement after bumping base register

;; format of a queue entry: [headaddr tailaddr currlength maxlength qarry]
;; where qarry is reserved for length maxlength
(dcl readyq-length 20)
(dcl qhead-field 0)
(dcl qtail-field 1)
(dcl qcurrlength-field 2)
(dcl qmaxlength-field 3)
(dcl qarray-field 4)

;; format of segment table
(dcl segment-table-length 32)
(dcl base-field 0)
(dcl limit-field 1)

;; format of status table
(dcl status-entry-length 2)
(dcl status-flag-field 0)
(dcl status-taskid-field 1)
(dcl ready-status 0)
(dcl error-status 1)
(dcl send-status 2)

51

(dcl receive-status 3)
(dcl output-status 4)
(dcl input-status 5)

;; Buffer lengths
(dcl input-buffer-length 8)
(dcl output-buffer-length 8)
(dcl message-buffer-length 8)

;; Values for access 2D array of message buffers
;; The address of MBUFFER[sourceid,destid] is
;; MBUFFERS + (sourceid * SOURCE-MULTIPLIER) + (destid * DEST-MULTIPLIER)
(dcl source-multiplier 128)
(dcl dest-multiplier 8)
(dcl taskidlub 16)

;; ---------- Data areas in operating system ----------
reg-save-area (dc 3 0) ;; [pc sp flags]
clock-new-pc (dc 1 clock-interrupt-handler)
error-new-pc (dc 1 error-interrupt-handler)
svc-new-pc (dc 1 svc-interrupt-handler)
input-new-pc (dc 1 input-interrupt-handler)
output-new-pc (dc 1 output-interrupt-handler)
interrupt-data (dc 2 0) ;; various interrupts cause information to be stored he
branch-address (dc 1 0)
time-slice (dc 1 1000)
current-taskid (dc 1 0)
temp-r2 (dc 1 0)
temp-r3 (dc 1 0)
task-table (dc 144 0)
segment-table (dc 32 0)
readyq (dc 20 0)
status-table (dc 32 0)
ibuffers (dc 128 0)
obuffers (dc 128 0)
mbuffers (dc 512 0)

(dc 512 0)
(dc 512 0)
(dc 512 0)

;; ---------- KIT Source Code ----------
SAVE-STATE
(move (2 temp-r2) (1 r2)) ;; Save R2
(move (2 temp-r3) (1 r3)) ;; Save R3
(move (1 r3) readyq) ;; R3 points to ready queue
(call qfirst) ;; R2 has current task id
save-state-return
(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length
(add (1 r2) task-table) ;; R2 points to current task table entry
(move (3 r2 pc-field) (2 reg-save-area interrupt-pc-field))
(move (3 r2 sp-field) (2 reg-save-area interrupt-sp-field))
(move (3 r2 r2-field) (2 temp-r2))
(move (3 r2 r3-field) (2 temp-r3))
(move (3 r2 r4-field) (1 r4))
(move (3 r2 r5-field) (1 r5))
(move (3 r2 r6-field) (1 r6))
(move (3 r2 r7-field) (1 r7))
(add (1 r2) flag-field) ;; bump index register
(move (3 r2) (2 reg-save-area interrupt-flag-field))
(move (1 r2) (2 temp-r2)) ;; Restore R2 & R3.
(move (1 r3) (2 temp-r3)) ;; This is necessary for SVC interrupts.

52

(return)

RESTORE-STATE
;; Assume R2 has id of selected task.
(move (1 r3) (1 r2)) ;; R3 has next taskid, too
(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length
(add (1 r2) task-table) ;; R2 now points to the next task table e
(mult (1 r3) 2)
(add (1 r3) segment-table) ;; R3 pts to segment table entry for next
(lbase (3 r3 base-field)) ;; restore base register
(llimit (3 r3 limit-field)) ;; restore limit register
(move (1 r3) (1 r2))
(add (1 r3) flag-field) ;; R3 points to flag field of task table
(move (2 reg-save-area interrupt-pc-field) (3 r2 pc-field))
(move (2 reg-save-area interrupt-sp-field) (3 r2 sp-field))
(move (2 reg-save-area interrupt-flag-field) (3 r3))
(move (1 r7) (3 r2 r7-field))
(move (1 r6) (3 r2 r6-field))
(move (1 r5) (3 r2 r5-field))
(move (1 r4) (3 r2 r4-field))
(move (1 r3) (3 r2 r3-field))
(move (1 r2) (3 r2 r2-field))
;; We must leave R0 & R1 alone since they’re the PC & SP.
;; A LPSW will restore them from the register save area.
(return)

CLOCK-INTERRUPT-HANDLER
(call save-state) ;; First, save the state of the current task.
trace-label1
(move (1 r3) readyq) ;; R3 points to readyq
(call qfirst) ;; Put current taskid in R2
(call dequeue) ;; DEQUEUE the current task from the READYQ
(call enqueue) ;; ENQUEUE the current task
trace-label2
(br dispatcher) ;; Resume next task

ERROR-INTERRUPT-HANDLER
(call save-state) ;; First, save the state of the current task.
trace-label3
(move (1 r3) readyq) ;; R3 points to readyq
(call qfirst) ;; Put current taskid in R2
(call dequeue) ;; DEQUEUE the current task from the READYQ
trace-label4
(mult (1 r2) status-entry-length)
(add (1 r2) status-table) ;; r2 points to entry for current task in status ta
(move (3 r2 status-flag-field) error-status)
(move (3 r2 status-taskid-field) 0)
(br dispatcher) ;; Resume next task

SVC-INTERRUPT-HANDLER
;; The memory location SVCID-ADDR contains the svcid.
(call save-state)
trace-label5
(mod (2 svcid-addr) 4) ;; Fix the svcid to a number less than 4.
(compare (2 svcid-addr) send-svcid) ;; is it a request to SEND?
(brz send-svc-handler)
(compare (2 svcid-addr) receive-svcid) ;; is it a request to RECEIVE?
(brz receive-svc-handler)
(compare (2 svcid-addr) tyo-svcid) ;; a TYO request?
(brz tyo-svc-handler)
(br tyi-svc-handler)

53

SEND-SVC-HANDLER
;; Conventions:
;; Low order bits of R2 contain destination id
;; R3 contains message.
;; Move these to R6 and R7.
(move (1 r6) (1 r2))
(mod (1 r6) taskidlub) ;; R6 has destination id
(move (1 r7) (1 r3)) ;; R7 has message
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label6
(move (2 current-taskid) (1 r2)) ;; save current taskid

;; Compute address of MBUFFER[source, dest], and test for a full buffer.
(move (1 r4) (1 r6)) ;; R4 contains destination id
(mult (1 r4) dest-multiplier)
(move (1 r3) (1 r2)) ;; R3 contains source id (i.e. current id)
(mult (1 r3) source-multiplier)
(add (1 r3) (1 r4))
(add (1 r3) mbuffers) ;; R3 points to message buffer
trace-label7
(call qfullp)
(brz block-send) ;; If buffer full, block the sending task.

;; Else, message buffer isn’t full. Perform send and resume task.
(move (1 r2) (1 r7)) ;; R2 has the message
(call enqueue) ;; R3 still points to the message buffer
trace-label8

;; Check for destination task waiting. R6 has destination taskid.
(move (1 r3) (1 r6)) ;; Move destination id to R3.
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(compare (3 r3 status-flag-field) receive-status) ;; Waiting to receive?
(brnz svc-resume-task) ;; If not, resume task.
(compare (3 r3 status-taskid-field) (2 current-taskid)) ;; Else, from current ta
(brnz svc-resume-task) ;; If not, resume task
;; Else the destination task was waiting to receive from the current task.
;; Make it ready.
(move (3 r3 status-flag-field) ready-status)
(move (3 r3 status-taskid-field) 0)
(move (1 r2) (1 r6)) ;; R2 has destination id
(move (1 r3) readyq) ;; R3 points to readyq
(call enqueue)
trace-label9
(br svc-resume-task)

BLOCK-SEND
;; Remove the current task from the readyq and mark it waiting to send.
(move (1 r3) readyq)
(call dequeue)
trace-label10
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) send-status)
(move (3 r3 status-taskid-field) (1 r6))
(br dispatcher)

RECEIVE-SVC-HANDLER
;; Conventions:

54

;; Low order bits of R2 contain source id
;; Put message in R3 of current task.
(move (1 r6) (1 r2))
(mod (1 r6) taskidlub) ;; R6 has source id
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label11
(move (2 current-taskid) (1 r2)) ;; save current taskid

;; Compute address of MBUFFER[source, dest], and test for a full buffer.
(move (1 r4) (1 r2)) ;; R4 contains destination id (i.e. current id)
(mult (1 r4) dest-multiplier)
(move (1 r3) (1 r6)) ;; R3 contains source id
(mult (1 r3) source-multiplier)
(add (1 r3) (1 r4))
(add (1 r3) mbuffers) ;; R3 points to message buffer
trace-label12
(call qemptyp)
(brz block-receive) ;; If buffer empty, block the receiving task.

;; Else, message buffer isn’t empty. Perform receive and resume task.
(call qfirst) ;; R2 has the message.
(call dequeue) ;; Dequeue the message buffer.
trace-label13
(move (1 r3) (2 current-taskid))
(mult (1 r3) task-table-entry-length) ;; multiply by task table entry length
(add (1 r3) task-table) ;; R3 points to current task table entry
(move (3 r3 r3-field) (1 r2)) ;; Move message to current task’s R3.
trace-label14

;; Check for source task waiting. R6 has source taskid.
(move (1 r3) (1 r6)) ;; Move source id to R3.
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(compare (3 r3 status-flag-field) send-status) ;; Waiting to send?
(brnz svc-resume-task) ;; If not, resume task.
(compare (3 r3 status-taskid-field) (2 current-taskid)) ;; Send to current task?
(brnz svc-resume-task) ;; If not, resume task
;; Else the destination task was waiting to receive from the current task.
;; Make it ready.
(move (3 r3 status-flag-field) ready-status)
(move (3 r3 status-taskid-field) 0)
(move (1 r2) (1 r6)) ;; R2 has destination id
(move (1 r3) readyq) ;; R3 points to readyq
(call enqueue)
trace-label15
(br svc-resume-task)

BLOCK-RECEIVE
;; Remove the current task from the readyq and mark it waiting to receive.
(move (1 r3) readyq)
(call dequeue)
trace-label16
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) receive-status)
(move (3 r3 status-taskid-field) (1 r6))
(br dispatcher)

TYO-SVC-HANDLER

55

;; Conventions:
;; Low order bits of R3 contain character.
;; The current taskid is also the device id.
;; Move this to R7.
(move (1 r7) (1 r3)) ;; R7 has character
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label17
(move (2 current-taskid) (1 r2)) ;; save current taskid (equals device id)

;; Compute address of OBUFFER[devid], and test for a full buffer.
(move (1 r3) (1 r2)) ;; R3 contains devid (i.e. current taskid)
(mult (1 r3) output-buffer-length)
(add (1 r3) obuffers) ;; R3 points to the current output buffer
trace-label18
(call qfullp)
(brz block-tyo) ;; If buffer full, block the sending task.

;; Else, message buffer isn’t full. Perform send and resume task.
(move (1 r2) (1 r7)) ;; R2 has the character.
(call enqueue) ;; R3 still points to the message buffer
trace-label19

;; Check for idle output device. If idle, post an output interrupt
(testo (2 current-taskid)) ;; Test for idle device
(brnz svc-resume-task) ;; If not idle, resume task
(post (2 current-taskid)) ;; Else, post an output interrupt so the
;; output interrupt handler starts an output.
(br svc-resume-task)

BLOCK-TYO
;; Remove the current task from the readyq and mark it waiting to output.
(move (1 r3) readyq)
(call dequeue)
trace-label20
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) output-status)
(move (3 r3 status-taskid-field) 0)
(br dispatcher)

TYI-SVC-HANDLER
;; Conventions:
;; The current taskid is also the device id.
;; Put the input character in R3 of the current task.
(move (1 r3) readyq)
(call qfirst) ;; R2 has current taskid
trace-label21
(move (2 current-taskid) (1 r2)) ;; save current taskid (equals device id)

;; Compute address of IBUFFER[devid], and test for a empty buffer.
(move (1 r3) (1 r2)) ;; R3 contains devid (i.e. current taskid)
(mult (1 r3) input-buffer-length)
(add (1 r3) ibuffers) ;; R3 points to the current input buffer
trace-label22
(call qemptyp)
(brz block-tyi) ;; If buffer empty, block the current task.

;; Else, input buffer isn’t empty. Perform input and resume task.
(call qfirst) ;; R2 has the next input character.

56

(call dequeue) ;; Dequeue the input buffer.
trace-label23
(move (1 r3) (2 current-taskid))
(mult (1 r3) task-table-entry-length) ;; multiply by task table entry length
(add (1 r3) task-table) ;; R3 points to current task table entry
(move (3 r3 r3-field) (1 r2)) ;; Move message to current task’s R3.
(br svc-resume-task)

BLOCK-TYI
;; Remove the current task from the readyq and mark it waiting to input.
(move (1 r3) readyq)
(call dequeue)
trace-label24
(move (1 r3) (2 current-taskid))
(mult (1 r3) status-entry-length) ;; R3 has displacement to status entry
(add (1 r3) status-table) ;; R3 has absolute address of status entry
(move (3 r3 status-flag-field) input-status)
(move (3 r3 status-taskid-field) 0)
(br dispatcher)

INPUT-INTERRUPT-HANDLER
;; The memory location INPUT-DEVID-ADDR contains the ID of the interrupting devi
;; The memory location INPUT-CHAR-ADDR contains the input character.
;;
;; Pseudo Code:
;;
;; If the owning task is waiting to input
;; then put the ID on the readyq
;; update the status of the task
;; endif
;;
;; If the input buffer is full
;; then replace the last queue element with the overflow character
;; else if the input device signals an overflow error
;; then enqueue an overflow character on the input buffer
;; else enqueue the character on the input buffer
;; endif
;; endif
;;
(move (2 branch-address) dispatcher) ;; initialize BRANCH-ADDRESS to DISPATCHE

;; exit via dispatcher when waiting
(move (2 temp-r3) (1 r3)) ;; Save R3 because we must use it.
(move (1 r3) readyq) ;; R3 points to readyq
(call qemptyp) ;; check for empty readyq;

;; if empty, no need to save state
trace-label25
(brz iih-skip-save-state)
(move (2 branch-address) resume-task) ;; We’ll exit via RESUME-TASK
(move (1 r3) (2 temp-r3)) ;; Restore R3 for save-state
(call save-state)
trace-label26

iih-skip-save-state
(move (1 r5) (2 input-devid-addr)) ;; R5 has devid
(mult (1 r5) status-entry-length) ;; R5 has displacement to status entry
(add (1 r5) status-table) ;; R5 has absolute address of status entry
(compare (3 r5 status-flag-field) input-status) ;; Waiting to input?
(brnz check-for-full-input-buffer)
;; The task which owns this device is waiting to input; Make it ready to run.
(move (1 r2) (2 input-devid-addr)) ;; R2 has taskid
(move (1 r3) readyq) ;; R3 points to readyq

57

(call enqueue) ;; enq taskid on readyq
trace-label27
(move (3 r5 status-flag-field) ready-status)
(move (3 r5 status-taskid-field) 0)
trace-label28

check-for-full-input-buffer
(move (1 r3) (2 input-devid-addr)) ;; R3 has devid
(mult (1 r3) input-buffer-length)
(add (1 r3) ibuffers) ;; R3 points to the current input buffer
(call qfullp)
(brnz check-for-iport-error)
;; The input buffer is full. Replace the last queue element with the new charact
;; with the overflow bit set.
(move (1 r2) (2 input-char-addr))
(add (1 r2) charlub) ;; R2 now has character with the overflow bi
(call qreplace) ;; R3 still points to the current input buff
trace-label29
(br (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TAS

check-for-iport-error
(testi (2 input-devid-addr)) ;; Test input device for overflow error
(brnz enqueue-input-character) ;; if no error, enqueue the current characte
;; Else, enqueue the overflow character
(move (1 r2) (2 input-char-addr))
(add (1 r2) charlub) ;; R2 now has character with the overflow bi
(call enqueue) ;; R3 still points to the current input buff
trace-label30
(br (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TAS

enqueue-input-character
(move (1 r2) (2 input-char-addr))
(call enqueue) ;; R3 still points to the current input buff
trace-label31
(br (2 branch-address))

OUTPUT-INTERRUPT-HANDLER
;; The location OUTPUT-DEVID-ADDR of memory contains id of the interrupting devi
;; This also happens to be the id of the process which owns that output device.
;;
;; Pseudo Code:
;;
;; If the owning task is waiting to output
;; then put the id on the readyq
;; update to status of the task
;; endif
;;
;; if the output buffer is empty
;; then clear the output interrupt
;; else start another output
;; deq the output buffer
;; endif
;;
;; Resume the current task
;;
;; End of Pseudo Code
;;
(move (2 branch-address) dispatcher) ;; initialize BRANCH-ADDRESS to DISPATCHE

;; exit via dispatcher when waiting
(move (2 temp-r3) (1 r3)) ;; Save R3 because we must use it.
(move (1 r3) readyq) ;; R3 points to readyq

58

(call qemptyp) ;; check for empty readyq;
;; if empty, no need to save state

trace-label32
(brz oih-skip-save-state)
(move (2 branch-address) resume-task) ;; We’ll exit via RESUME-TASK
(move (1 r3) (2 temp-r3)) ;; Restore R3 for save-state
(call save-state)
trace-label33

oih-skip-save-state
(move (1 r5) (2 output-devid-addr)) ;; R5 has devid
(mult (1 r5) status-entry-length) ;; R5 has displacement to status entry
(add (1 r5) status-table) ;; R5 has absolute address of status entry
(compare (3 r5 status-flag-field) output-status) ;; Waiting to output?
(brnz check-for-empty-output-buffer)
;; The task which owns this device is waiting to output; Make it ready to run.
(move (1 r2) (2 output-devid-addr)) ;; R2 has taskid
(move (1 r3) readyq) ;; R3 points to readyq
(call enqueue) ;; enq taskid on readyq
trace-label34
(move (3 r5 status-flag-field) ready-status)
(move (3 r5 status-taskid-field) 0)
trace-label35

check-for-empty-output-buffer
(move (1 r3) (2 output-devid-addr)) ;; R3 has devid
(mult (1 r3) output-buffer-length)
(add (1 r3) obuffers) ;; R3 points to the current output buffer
(call qemptyp)
(brz (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TAS
;; Else the buffer is not empty, start the next output
(call qfirst) ;; Put the next output character in R2
(stout (2 output-devid-addr) (1 r2))
(call dequeue) ;; Deq the output buffer
trace-label36
(br (2 branch-address)) ;; branch to either DISPATCHER or RESUME-TAS

DISPATCHER ;; Allocate CPU to first task on readyq.
(move (1 r3) readyq) ;; Point R3 to readyq
(call qemptyp) ;; Readyq empty?
dispatcher-trace-label1
(brz readyq-empty)
(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
dispatcher-trace-label2
(time (2 time-slice 0)) ;; set clock
(lpsw (2 reg-save-area))

READYQ-EMPTY
(wait)
pc-after-wait

SVC-RESUME-TASK ;; Return to current task (readyq is not empty).
(move (1 r3) readyq) ;; Point R3 to readyq
(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
svc-resume-task-trace-label1
(svcr (2 reg-save-area))

RESUME-TASK ;; Return to current task (readyq is not empty).
(move (1 r3) readyq) ;; Point R3 to readyq

59

(call qfirst) ;; Put next taskid in R2
(call restore-state) ;; resume next task
resume-task-trace-label1
(lpsw (2 reg-save-area))

ENQUEUE
;; Assume R2 contains item to enqueue
;; R3 points to queue
;; this routine assumes queue not currently full
;; pseudo-code:
;; store the item where ever the tail index points
;; increment the current length
;; increment the tail index (mod max-index)
(move (1 r4) (1 r3))
(add (1 r4) qarray-field)
(add (1 r4) (3 r3 qtail-field)) ;; r4 has address of free slot
(move (3 r4) (1 r2)) ;; store item
(incr (3 r3 qcurrlength-field)) ;; increment current length
(incrm (3 r3 qtail-field) (3 r3 qmaxlength-field)) ;; increment tail
(return)

QREPLACE
;; Assume R3 points to non-empty queue.
;; Replace last queue element with contents of R2.
;;
(move (1 r4) (3 r3 qtail-field)) ;; R4 has queue tail index
(decrm (1 r4) (3 r3 qmaxlength-field)) ;; decrement tail pointer
(add (1 r4) (1 r3)) ;; add address of queue
(add (1 r4) qarray-field) ;; R4 has address of last slot in queue
(move (3 r4) (1 r2)) ;; store item
(return)

DEQUEUE
;; assume R3 points to queue;
;; this routine assumes queue not currently empty
;; pseudo-code:
;; decrement current queue length
;; increment head index (mod maxlength)
(decr (3 r3 qcurrlength-field)) ;; decrement the current length of the queue
(incrm (3 r3 qhead-field) (3 r3 qmaxlength-field))
(return)

QFIRST
;; Assume R3 points to queue.
;; Put first queue item in R2.
;; This routine assumes queue not currently empty.
(move (1 r2) (1 r3)) ;; R2 points to queue
(add (1 r2) qarray-field) ;; R2 points to the qarray
(add (1 r2) (3 r3 qhead-field)) ;; R2 points to the first queue element
(move (1 r2) (3 r2)) ;; put the first element into R2
(return)

QEMPTYP
;; assume R3 points to queue
;; set CC to zero if queue is empty
(compare (3 r3 qcurrlength-field) 0)
(return)

QFULLP
;; assume R3 points to queue
;; set CC to zero if queue is full

60

(compare (3 r3 qcurrlength-field) (3 r3 qmaxlength-field))
(return)

END-OF-OS-SOURCE

4.3 Flowcharts

As an aid to following the kernel, we present flowcharts for each interrupt

handler. The flowcharts are not design aids, but were created after the fact to depict the

control flow through each interrupt handler. There are 38 final states which can be

reached after entering the kernel at the start of one of the interrupt handlers. These 38

final states are depicted by 38 exit boxes. Oval boxes are used to depict kernel entry and

exit points. An oval box with a line beneath is a continuation onto a following page.

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Chapter 5

The Verification of KIT

In this chapter we outline the correctness proof for the kernel. In Section

OS-LAYER we define an interpreter OS-PROCESSOR which is intermediate between the

target machine and abstract kernel. This machine captures the state transitions

accomplished by the operating system implementation. We prove an equivalence

theorem between a TM-PROCESSOR running KIT and an OS-PROCESSOR. The proof of

CORRECTNESS-OF-OPERATING-SYSTEM (see Section 2.3) then reduces to proving that

OS-PROCESSOR implements AK-PROCESSOR. Figure REVISED-PROOF-STRUCTURE is a

modification of Figure 2-2 which reveals the role of OS-PROCESSOR. In subsequent sections

of this chapter we discuss the proofs of OS-IMPLEMENTS-AK and

AK-IMPLEMENTS-PARALLEL-TASKS.

5.1 The Operating System Layer

The operating system layer defines an interpreter which mediates between the

target machine and the abstract kernel. It defines the transitions accomplished by KIT’s

interrupt handlers on the target machine. An operating system state is a TM loaded with a

particular program. Therefore, the shell TM gives the structure of an OS state as well as a

TM state. The predicate GOOD-OS defines the operating system layer state set and formalizes

the pictorial description of the kernel layout given by Figure 4-1. GOOD-OS places

constraints on various registers and memory locations.

We examine the conjuncts of GOOD-OS. First, an OS state must be a GOOD-TM. The

next five of conjuncts of GOOD-OS define the contents of the interrupt vector. The predicate

(GOOD-CPU-LIST (TABLE (TM-CPU-LENGTH) (OS-TASK-TABLE OS))) states that each entry of

the task table is a valid CPU state. (We define the function TABLE below.) The next three

75

Figure 5-1: Revised KIT Proof Structure

conjuncts constrain the segment table. The segments defined by the segment table must

all lie within main memory, they must be mutually disjoint and they must be disjoint

from the kernel. The predicate (FINITE-NUMBER-QUEUEP (OS-READYQ OS) (AK-TASKIDLUB)

(AK-TASKIDLUB)) states that the ready queue is a bounded queue containing only valid task

identifiers. The predicate (GOOD-STATUS-LIST (TABLE (AK-STATUS-LENGTH)

(OS-STATUS-TABLE OS))) recognizes a valid status table implementation. The next three

76

conjuncts define valid implementations of the three buffer tables. The formula

(EQUAL (OS-CODE OS) (OS-MACHINE-CODE)) states that the code segment of the kernel

contains a particular constant, the kernel machine code. The identity

(EQUAL (TM-SLIMIT OS) (OS-LIMIT)) requires the target machine slimit register to be

equal to a particular number, defined by (OS-LIMIT), large enough to contain the kernel.

The predicate (EQUAL (GETNTH (OS-TIME-SLICE-ADDRESS) (TM-MEMORY OS))

(AK-TIME-SLICE)) ensures that the time slice granted to tasks by the kernel is exactly the

value specified by the abstract kernel.
Definition {1874}.
(GOOD-OS OS)

=
(AND
(GOOD-TM OS)
(EQUAL (GETNTH (TM-CLOCK-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-CLOCK-INTERRUPT-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-ERROR-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-ERROR-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-SVC-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-SVC-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-INPUT-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-INPUT-INTERRUPT-HANDLER-ADDRESS))
(EQUAL (GETNTH (TM-OUTPUT-NEW-PC-ADDR) (TM-MEMORY OS))

(OS-OUTPUT-INTERRUPT-HANDLER-ADDRESS))
(GOOD-CPU-LIST (TABLE (TM-CPU-LENGTH) (OS-TASK-TABLE OS)))
(FINITE-SEGMENT-TABLEP (TABLE 2 (OS-SEGMENT-TABLE OS)) (TM-MEMLENGTH))
(MUTUALLY-DISJOINT (TABLE 2 (OS-SEGMENT-TABLE OS)))
(DISJOINT-EVERYWHERE 0 (OS-LIMIT) (TABLE 2 (OS-SEGMENT-TABLE OS)))
(FINITE-NUMBER-QUEUEP (OS-READYQ OS) (AK-TASKIDLUB) (AK-TASKIDLUB))
(GOOD-STATUS-LIST (TABLE (AK-STATUS-LENGTH) (OS-STATUS-TABLE OS)))
(FINITE-NUMBER-QUEUE-LISTP (TABLE (OS-IBUFFER-LENGTH) (OS-IBUFFERS OS))

(TASK-IBUFFER-CAPACITY)
(TM-WORDLUB))

(FINITE-NUMBER-QUEUE-LISTP (TABLE (OS-OBUFFER-LENGTH) (OS-OBUFFERS OS))
(TASK-OBUFFER-CAPACITY)
(TM-WORDLUB))

(FINITE-NUMBER-QUEUE-LISTP (TABLE (OS-MBUFFER-LENGTH) (OS-MBUFFERS OS))
(TASK-MBUFFER-CAPACITY)
(TM-WORDLUB))

(EQUAL (OS-CODE OS) (OS-MACHINE-CODE))
(EQUAL (TM-SLIMIT OS) (OS-LIMIT))
(EQUAL (GETNTH (OS-TIME-SLICE-ADDRESS) (TM-MEMORY OS))

(AK-TIME-SLICE))
(NOT (TM-IN-SUPERVISOR-MODE OS))
(PERMUTATION (MAPUP-QUEUE (OS-READYQ OS)) (OS-READY-SET OS))
(IFF (TM-WAITING OS) (ARRAY-QEMPTYP (OS-READYQ OS)))
(IMPLIES
(NOT (TM-WAITING OS))
(AND (EQUAL (TM-BASE OS)

(BASE (GETNTH (OS-CURRENT-TASKID OS)
(TABLE 2 (OS-SEGMENT-TABLE OS)))))

(EQUAL (TM-LIMIT OS)
(LIMIT (GETNTH (OS-CURRENT-TASKID OS)

(TABLE 2 (OS-SEGMENT-TABLE OS))))))))

77

The remaining conjuncts of GOOD-OS define invariants on the operating system

layer. First, the operating system interpreter is always in user mode. We next have two

invariants that are present at the abstract kernel layer: the ready queue is a permutation of

the set of ready tasks as defined by the status table, and the operating system is waiting if

and only if the ready queue is empty. The final conjunct of GOOD-OS identifies the current

base/limit register pair with a particular entry in the segment table.

The function TABLE referenced above is an abstraction function, which

unflattens a flat representation of a table consisting of fixed-length elements of size N.
Definition {409}.
(TABLE N L)

=
(IF (ZEROP N)

L
(IF (LISTP L)

(CONS (GETSEG 0 N L)
(TABLE N (NTHCDR N L)))

NIL))

The function OS-PROCESSOR is the interpreter function for the operating system

layer. It takes as arguments an OS state and an oracle which is identical to a TM oracle.

OS-STEP is the single step function at the operating system layer. It defines an interrupt

structure identical to TM’s. Recall that the state returned by TM-STEP on an interrupt is

described by a simple PSW swap. The state returned by OS-STEP on an interrupt is not a

PSW swap, but a machine state describing the effect of an interrupt handler. An OS

interrupt step equals some positive number of TM steps occurring after the same interrupt.
Definition {3635}.
(OS-PROCESSOR OS ORACLE)

=
(IF (LISTP ORACLE)

(OS-PROCESSOR (OS-STEP (TM-POST-INTERRUPT (CAR ORACLE) OS))
(CDR ORACLE))

OS)

78

Definition {3634}.
(OS-STEP OS)

=
(IF (TM-INPUT-INTERRUPTP OS)

(OS-INPUT-INTERRUPT-HANDLER OS)

(IF (TM-OUTPUT-INTERRUPTP OS)
(OS-OUTPUT-INTERRUPT-HANDLER OS)

(IF (TM-WAITING OS)
OS

(IF (TM-ERRORP OS)
(OS-ERROR-HANDLER OS)

(IF (TM-CLOCK-INTERRUPTP OS)
(OS-CLOCK-INTERRUPT-HANDLER OS)

(IF (TM-SVC-INTERRUPTP OS)
(OS-SVC-HANDLER OS)

(TM-FETCH-EXECUTE OS)))))))

We now provide more detailed information on the definitions of GOOD-OS and

OS-STEP to make clear how the machine code program which defines KIT fits into the

definition of the OS layer.

We examine the conjunct (EQUAL (OS-CODE OS) (OS-MACHINE-CODE)) of GOOD-OS

in some detail to see how GOOD-OS incorporates the assembled machine code into the

definition of the OS layer. The function OS-CODE (see below) is defined to be a particular

segment of memory. (GETSEG N K L) is the segment of list L beginning at location N with

length K. The address and length of OS-CODE is determined by the values of particular

labels in the symbol table constructed by the assembler. OS-MACHINE-CODE is that segment

of the assembled source code which contains the machine code which we wish to have

interpreted by the target machine. The value of OS-MACHINE-CODE is a list of numbers

bounded by TM-WORDLUB which results from assembling the KIT source code. Other

segments of memory which are mentioned in GOOD-OS are defined similarly.
Definition {1770}.
(OS-CODE OS)

=
(GETSEG (OS-CODE-ADDRESS)

(OS-CODE-LENGTH)
(TM-MEMORY OS))

Definition {1751}.
(OS-CODE-ADDRESS) = (LOOKUP ’SAVE-STATE (OS-SYMTAB))

79

Definition {1755}.
(OS-CODE-LENGTH)

=
(DIFFERENCE (LOOKUP ’END-OF-OS-SOURCE (OS-SYMTAB))

(OS-CODE-ADDRESS))

Definition {1761}.
(OS-MACHINE-CODE)

=
(GETSEG (OS-CODE-ADDRESS)

(OS-CODE-LENGTH)
(CAR (ASSEMBLE (OS-SOURCE))))

GOOD-OS constrains the target machine to be loaded with a particular program.

The function OS-STEP gives the state changes produced by executing the program. We

examine the clock interrupt handler in some detail. When in a state recognized by

GOOD-OS, a clock interrupt causes the target machine to be placed in the supervisor mode,

and places the address of the clock interrupt handler in the program counter. When in the

supervisor mode TM is not interruptible. Therefore, TM will take some number of steps

until the clock interrupt handler relinquishes control by resuming a task in user mode.

The function OS-CLOCK-INTERRUPT-HANDLER defines the change to the state of the machine

produced by the clock interrupt handler. (See the function OS-STEP.)

80

Definition {2288}.
(OS-CLOCK-INTERRUPT-HANDLER OS)

=
(TM
(PUTNTH
(GETNTH (TIMES (TM-CPU-LENGTH)

(ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)))
(OS-NEW-TASK-TABLE OS))

0
(PUTNTH
(GETNTH (PLUS 1

(TIMES (TM-CPU-LENGTH)
(ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS))))

(OS-NEW-TASK-TABLE OS))
1
(PUTNTH
(GETNTH (PLUS 8

(TIMES (TM-CPU-LENGTH)
(ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS))))

(OS-NEW-TASK-TABLE OS))
2
(PUTNTH (TM-R2 OS) (OS-TEMP-R2-ADDRESS)
(PUTNTH (TM-R3 OS) (OS-TEMP-R3-ADDRESS)
(PUTSEG (OS-NEW-TASK-TABLE OS) (OS-TASK-TABLE-ADDRESS)
(PUTSEG (OS-SEGMENT-TABLE OS) (OS-SEGMENT-TABLE-ADDRESS)
(PUTSEG (OS-CLOCK-NEW-READYQ OS) (OS-READYQ-ADDRESS)
(PUTSEG (OS-CODE OS) (OS-CODE-ADDRESS)
(PUTNTH (OS-SAVE-STATE-RETURN-ADDRESS)

(SUB1 (SUB1 (OS-LIMIT)))
(PUTNTH (OS-DISPATCHER-TRACE-LABEL2) (SUB1 (OS-LIMIT))

(TM-MEMORY OS))))))))))))
(OS-NEW-REGS (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-CC (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-ERROR (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-SVCFLAG (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-SVCID (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-BASE (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(OS-NEW-LIMIT (ARRAY-QFIRST (OS-CLOCK-NEW-READYQ OS)) OS)
(TM-SLIMIT OS)
(TM-USER-MODE)
(TM-RUN-STATE)
(AK-TIME-SLICE)
(TM-IPORTS OS)
(TM-OPORTS OS))

OS-CLOCK-INTERRUPT-HANDLER is a large function. We let the theorem prover help

us construct it as follows. We present to the theorem prover the event

TRACE-CLOCK-INTERRUPT-HANDLER (see below), where OS-INTENDED-CLOCK-INTERRUPT defines

the TM clock interrupt transition for a GOOD-OS, and OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER

is an oracle giving the number of steps required to complete execution of the clock

interrupt handler (a list of ticks). Notice that the lemma states an equality which we do

not expect to prove: that running the clock interrupt handler produces no state change.

81

Proposition. TRACE-CLOCK-INTERRUPT-HANDLER (rewrite):
(IMPLIES

(AND (GOOD-OS OS)
(NOT (TM-WAITING OS)))

(EQUAL (TM-PROCESSOR (OS-INTENDED-CLOCK-INTERRUPT OS)
(OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER OS))

OS))

In letting the theorem prover attempt a proof, the left hand side of the equality

is rewritten to a form not involving calls to TM-PROCESSOR by replacing the call to

TM-PROCESSOR with as many nested calls of TM-STEP as indicated by

OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER. The nested calls to TM-STEP are opened up and

simplified. The resulting expression describes the final state of the clock interrupt

handler. The rewriter in effect symbolically executes the operating system. We intercept

the output of the theorem prover when the final state expression is generated, edit it to

clean it up a bit, and use the resulting expression to define OS-CLOCK-INTERRUPT-HANDLER.

We then submit the event TRACE-CLOCK-INTERRUPT-HANDLER again, this time placing the

form (OS-CLOCK-INTERRUPT-HANDLER OS) on the right hand side of the equation.
Theorem {2296}. TRACE-CLOCK-INTERRUPT-HANDLER (rewrite):
(IMPLIES

(AND (GOOD-OS OS)
(NOT (TM-WAITING OS)))

(EQUAL (TM-PROCESSOR (OS-INTENDED-CLOCK-INTERRUPT OS)
(OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER OS))

(OS-CLOCK-INTERRUPT-HANDLER OS)))

The definition of OS-STEP is possible only when all paths through all interrupt

handlers have been traced with such lemmas. The tracing lemmas and their support

lemmas form a large part of the KIT script. The story sounds simple, but in fact the

tracing lemmas are the most difficult to get the theorem prover to check. The lemmas

require getting correct all the details of addressing complicated data structures.

The definition of OS-STEP handles the issue of time abstraction with respect to

the correspondence of TM and AK. Figure TRACES compares the trace of a TM running KIT

with a trace of an OS machine. In a TM trace, an interrupt step is followed by some number

of fetch-execute steps occurring in supervisor mode. A contiguous number of such steps

is accomplished in a single OS step. OS-PROCESSOR handles the time differential between TM

82

and AK. As a by-product of the definition of OS-PROCESSOR, we get termination of the

operating system. OS-PROCESSOR can be defined only after running each path of the

operating system to termination.

Figure 5-2: Traces of TM and OS

5.2 The Target Machine Implements the Operating System

In this section we discuss the equivalence of the target machine loaded with

KIT and the operating system layer described in the previous section. The identity

function is the abstraction function from a target machine state to an operating system

state. TM-PROCESSOR and OS-PROCESSOR differ in the way they consume the oracle. As

explained in Section 5.1, an interrupt step defined by OS-STEP comprehends multiple steps

of the target machine. The exact relationship can be established by defining an

intermediate processor TIMED-TM-PROCESSOR, which calls TM-PROCESSOR on each interrupt

for as many steps as necessary to complete execution of the interrupt handler.
Definition {3639}.
(TIMED-TM-PROCESSOR TM ORACLE)

=
(IF (LISTP ORACLE)

(TIMED-TM-PROCESSOR
(TIMED-TM-STEP (TM-POST-INTERRUPT (CAR ORACLE) TM))
(CDR ORACLE))

TM)

83

Definition {3638}.
(TIMED-TM-STEP TM)

=
(IF (TM-INPUT-INTERRUPTP TM)

(TM-PROCESSOR (TM-EXECUTE-INPUT-INTERRUPT TM)
(OS-TIME-FOR-INPUT-INTERRUPT-HANDLER TM))

(IF (TM-OUTPUT-INTERRUPTP TM)
(TM-PROCESSOR (TM-EXECUTE-OUTPUT-INTERRUPT TM)

(OS-TIME-FOR-OUTPUT-INTERRUPT-HANDLER TM))

(IF (TM-WAITING TM)
TM

(IF (TM-ERRORP TM)
(TM-PROCESSOR (TM-EXECUTE-ERROR-INTERRUPT TM)

(OS-TIME-FOR-ERROR-HANDLER TM))

(IF (TM-CLOCK-INTERRUPTP TM)
(TM-PROCESSOR (TM-EXECUTE-CLOCK-INTERRUPT TM)

(OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER TM))

(IF (TM-SVC-INTERRUPTP TM)
(TM-PROCESSOR (TM-EXECUTE-SVC-INTERRUPT TM)

(OS-TIME-FOR-SVC-HANDLER TM))

(TM-FETCH-EXECUTE TM)))))))

Speaking loosely, TIMED-TM-PROCESSOR and OS-PROCESSOR run "faster" than

TM-PROCESSOR. TIMED-TM-PROCESSOR and OS-PROCESSOR consume a single element of the

oracle to handle an interrupt while TM-PROCESSOR requires more than one. The function

OS-ORACLE constructs from an OS-PROCESSOR oracle an oracle with enough "ticks" inserted

to enable TM-PROCESSOR to match the operation of OS-PROCESSOR.
Definition {3641}.
(OS-ORACLE OS ORACLE)

=
(IF (LISTP ORACLE)

(APPEND
(OS-ORACLE-STEP (CAR ORACLE)

(TM-POST-INTERRUPT (CAR ORACLE) OS))
(OS-ORACLE (TIMED-TM-STEP (TM-POST-INTERRUPT (CAR ORACLE) OS))

(CDR ORACLE)))
ORACLE)

84

Definition {3640}.
(OS-ORACLE-STEP EVENT OS)

=
(IF (TM-INPUT-INTERRUPTP OS)

(CONS EVENT (OS-TIME-FOR-INPUT-INTERRUPT-HANDLER OS))

(IF (TM-OUTPUT-INTERRUPTP OS)
(CONS EVENT (OS-TIME-FOR-OUTPUT-INTERRUPT-HANDLER OS))

(IF (TM-WAITING OS)
(LIST EVENT)

(IF (TM-ERRORP OS)
(CONS EVENT (OS-TIME-FOR-ERROR-HANDLER OS))

(IF (TM-CLOCK-INTERRUPTP OS)
(CONS EVENT (OS-TIME-FOR-CLOCK-INTERRUPT-HANDLER OS))

(IF (TM-SVC-INTERRUPTP OS)
(CONS EVENT (OS-TIME-FOR-SVC-HANDLER OS))

(LIST EVENT)))))))

The lemma TM-IMPLEMENTS-TIMED-TM establishes the correspondence between

TM-PROCESSOR and TIMED-TM-PROCESSOR. The interrupt branches of TIMED-TM-PROCESSOR-STEP

have the form of the tracing lemmas used to generate the definition of OS-STEP. It

therefore is a simple matter to prove that TIMED-TM-PROCESSOR is identical to OS-PROCESSOR,

that is they describe the same function on a GOOD-OS state. We therefore get the

implements relation between the TM and OS layers, stated in TM-IMPLEMENTS-OS. The

theorem states that the TM layer implements the OS layer if I/O interrupts are adequately

spaced - long enough to execute a path of the operating system. The longest path in our

system takes 112 steps. So 112 is a crude measure of the minimum gap between I/O

interrupts. This requirement carries up through higher layers of the proof.
Theorem {3644}. TM-IMPLEMENTS-TIMED-TM (rewrite):
(EQUAL (TM-PROCESSOR TM (OS-ORACLE TM ORACLE))

(TIMED-TM-PROCESSOR TM ORACLE))

Theorem {3654}. TM-IMPLEMENTS-OS (rewrite):
(IMPLIES (GOOD-OS OS)

(EQUAL (TM-PROCESSOR OS (OS-ORACLE OS ORACLE))
(OS-PROCESSOR OS ORACLE)))

85

5.3 The Operating System Implements the Abstract Kernel

The proof that the operating system layer implements the abstract kernel is the

heart of the verification of KIT. This result is established by the theorem

OS-IMPLEMENTS-AK. Its proof is long. The abstraction function MAPUP-OS is large since

there are many state components to map, and their mapping is non-trivial.
Theorem {4620}. OS-IMPLEMENTS-AK (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE))
(EQUAL (MAPUP-OS (OS-PROCESSOR OS ORACLE))

(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

MAPUP-OS constructs an abstract kernel state from an operating system state. We

will examine the mapping of each component, dispatching the simple ones first. Observe

that the running/wait state flag, the program clock, the input ports and the output ports are

mapped up to the abstract kernel with no transformation. The status table is mapped by

the function TABLE, which collects a flat list into a list of tuples of a given size.
Definition {1953}.
(MAPUP-OS OS)

=
(AK (MAPUP-OS-TASKS OS)

(MAPUP-OS-IBUFFERS OS)
(MAPUP-OS-OBUFFERS OS)
(MAPUP-OS-MBUFFERS OS)
(MAPUP-QUEUE (OS-READYQ OS))
(TABLE (AK-STATUS-LENGTH)

(OS-STATUS-TABLE OS))
(TM-RWSTATE OS)
(TM-CLOCK OS)
(TM-IPORTS OS)
(TM-OPORTS OS))

The mappings of the ready queue and buffer tables make use of a common

abstraction function MAPUP-QUEUE, which maps an implementation of finite queues up to

list structures. The formal details of MAPUP-QUEUE and a description of how we verify

queue operations appears in Chapter QUEUES. Suffice it to say for the present that the

operating system uses a circular implementation of finite queues.
Definition {1949}.
(MAPUP-QUEUE-LIST L)

=
(IF (LISTP L)

(CONS (MAPUP-QUEUE (CAR L))
(MAPUP-QUEUE-LIST (CDR L)))

NIL)

86

Definition {1950}.
(MAPUP-OS-IBUFFERS OS)

=
(MAPUP-QUEUE-LIST (TABLE (OS-IBUFFER-LENGTH)

(OS-IBUFFERS OS)))

Definition {1951}.
(MAPUP-OS-OBUFFERS OS)

=
(MAPUP-QUEUE-LIST (TABLE (OS-OBUFFER-LENGTH)

(OS-OBUFFERS OS)))

Definition {1952}.
(MAPUP-OS-MBUFFERS OS)

=
(TABLE (AK-TASKIDLUB)

(MAPUP-QUEUE-LIST (TABLE (OS-MBUFFER-LENGTH)
(OS-MBUFFERS OS))))

The function MAPUP-OS-TASKS maps out of the operating system state a list of

task address spaces. An address space is defined as a target machine which contains just

that portion of the machine which is visible to a single task running in user mode. The

function MAPUP-ADDRESS-SPACE formalizes this notion. It builds a target machine which

contains a given CPU state (general purpose registers and flags) and a segment of

memory defined by a given base and limit. The base register is initialized to 0, and the

limit register is initialized to the given limit. The machine is put in the user operating

mode. Remaining target machine components have don’t care values since they are not

accessible in user mode.
Definition {1948}.
(MAPUP-OS-TASKS OS) = (MAPUP-TASKS 0 OS)

Definition {1947}.
(MAPUP-TASKS TASKID OS)

=
(IF (LESSP TASKID (AK-TASKIDLUB))

(CONS (MAPUP-TASK TASKID OS)
(MAPUP-TASKS (ADD1 TASKID) OS))

NIL)

Definition {1946}.
(MAPUP-TASK TASKID OS)

=
(MAPUP-ADDRESS-SPACE (TM-MEMORY OS)

(MAPUP-REGS TASKID OS)
(MAPUP-CC TASKID OS)
(MAPUP-ERROR TASKID OS)
(MAPUP-SVCFLAG TASKID OS)
(MAPUP-SVCID TASKID OS)
(MAPUP-BASE TASKID OS)
(MAPUP-LIMIT TASKID OS))

87

Definition {1266}.
(MAPUP-ADDRESS-SPACE MEMORY REGS CC ERROR SVCFLAG SVCID BASE LIMIT)

=
(TM (GETSEG BASE LIMIT MEMORY)

REGS CC ERROR SVCFLAG SVCID 0 (FIX LIMIT)
0 (TM-USER-MODE) 0 0 0 0)

The values chosen to initialize a task’s address space (i.e. the values occurring

as arguments to MAPUP-ADDRESS-SPACE in MAPUP-TASK) are extracted from the state of the

operating system. The ith task’s memory segment is defined by the segment of memory

identified by the ith base/limit register pair in the segment table. The ith task’s CPU state

depends on whether or not the operating system is in the wait state, and the identity of the

current task. If the operating system state is waiting, then the CPU state of task i is

contained in the ith entry of the task table. If the operating system state is running, the

CPU state of the current task is the current state of the CPU. The contents of the task

table is not up to date for this task. Otherwise, the CPU state of the ith task is extracted

from the task table. These points are formalized in the function MAPUP-CPU.
Definition {1939}.
(MAPUP-REGS TASKID OS)

=
(GETSEG 0 (TM-REGLENGTH) (MAPUP-CPU TASKID OS))

Definition {1940}.
(MAPUP-CC TASKID OS)

=
(TM-UNPACK-CC (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

Definition {1941}.
(MAPUP-ERROR TASKID OS)

=
(TM-UNPACK-ERROR (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

Definition {1942}.
(MAPUP-SVCFLAG TASKID OS)

=
(TM-UNPACK-SVCFLAG (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

Definition {1943}.
(MAPUP-SVCID TASKID OS)

=
(TM-UNPACK-SVCID (GETNTH (TM-REGLENGTH) (MAPUP-CPU TASKID OS)))

Definition {1944}.
(MAPUP-BASE TASKID OS)

=
(BASE (GETNTH TASKID (TABLE 2 (OS-SEGMENT-TABLE OS))))

Definition {1945}.
(MAPUP-LIMIT TASKID OS)

=
(LIMIT (GETNTH TASKID (TABLE 2 (OS-SEGMENT-TABLE OS))))

88

Definition {1938}.
(MAPUP-CPU TASKID OS)

=
(IF (TM-WAITING OS)

(GETNTH TASKID
(TABLE (TM-CPU-LENGTH)

(OS-TASK-TABLE OS)))
(IF (EQUAL TASKID (OS-CURRENT-TASKID OS))

(TM-CPU OS)
(GETNTH TASKID

(TABLE (TM-CPU-LENGTH)
(OS-TASK-TABLE OS)))))

We now can define a function required for the definition of the task layer,

GOOD-ADDRESS-SPACE. This predicate must hold on the private state of a task.

GOOD-ADDRESS-SPACE recognizes a TM with a memory of a given length, and running in

user mode. MAPUP-ADDRESS-SPACE satisfies GOOD-ADDRESS-SPACE when it is constructed from

a valid target machine.
Definition {1194}.
(GOOD-ADDRESS-SPACE X MEMLENGTH)

=
(AND (TM-SHELLP X)

(NUMBERP MEMLENGTH)
(LEQ MEMLENGTH (TM-MEMLENGTH))
(PLISTP (TM-MEMORY X))
(FINITE-NUMBER-LISTP (TM-MEMORY X) (TM-WORDLUB))
(EQUAL (LENGTH (TM-MEMORY X)) MEMLENGTH)
(PLISTP (TM-REGS X))
(FINITE-NUMBER-LISTP (TM-REGS X) (TM-WORDLUB))
(EQUAL (LENGTH (TM-REGS X)) (TM-REGLENGTH))
(FINITE-NUMBERP (TM-CC X) (TM-CCLUB))
(FINITE-NUMBERP (TM-ERROR X) (TM-ERRORLUB))
(FINITE-NUMBERP (TM-SVCFLAG X) (TM-SVCFLAGLUB))
(FINITE-NUMBERP (TM-SVCID X) (TM-SVCIDLUB))
(EQUAL (TM-BASE X) 0)
(EQUAL (TM-LIMIT X) MEMLENGTH)
(EQUAL (TM-SVMODE X) (TM-USER-MODE)))

The proof of OS-IMPLEMENTS-AK is by induction over the oracle argument to

AK-PROCESSOR. It is a simple consequence of the theorem OS-STEP-IMPLEMENTS-AK-STEP,

whose proof we give.
Theorem {4612}. OS-STEP-IMPLEMENTS-AK-STEP (rewrite):
(IMPLIES (GOOD-OS OS)

(EQUAL (MAPUP-OS (OS-STEP OS))
(AK-STEP (MAPUP-OS OS))))

Proof:

This conjecture simplifies, rewriting with
OS-NOT-IN-SUPERVISOR-MODE, AK-SVC-INTERRUPTP-MAPUP-OS,

89

AK-CLOCK-INTERRUPTP-MAPUP-OS, AK-ERRORP-MAPUP-OS,
AK-WAITING-MAPUP-OS, AK-OUTPUT-INTERRUPTP-MAPUP-OS, and
AK-INPUT-INTERRUPTP-MAPUP-OS, and unfolding TM-OUTPUT-INTERRUPTP,
TM-INPUT-INTERRUPTP, OS-STEP, AK-INTERRUPTING-OUTPUT-PORT,
AK-INTERRUPTING-INPUT-PORT, and AK-STEP, to the following six new
formulas:

Case 6. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))

(EQUAL
(MAPUP-OS (OS-OUTPUT-INTERRUPT-HANDLER OS))
(AK-OUTPUT-INTERRUPT-HANDLER

(TM-INTERRUPTING-OUTPUT-PORT (AK-OPORTS (MAPUP-OS OS)))
(MAPUP-OS OS)))).

But this again simplifies, applying the lemma
CORRECTNESS-OF-OUTPUT-INTERRUPT-HANDLER, to:

T.

Case 5. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(TM-ERRORP OS))

(EQUAL (MAPUP-OS (OS-ERROR-HANDLER OS))
(AK-ERROR-HANDLER (MAPUP-OS OS)))),

which again simplifies, rewriting with
CORRECTNESS-OF-OS-ERROR-HANDLER, to:

T.

Case 4. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS))
(NOT (TM-CLOCK-INTERRUPTP OS))
(TM-SVC-INTERRUPTP OS))

(EQUAL (MAPUP-OS (OS-SVC-HANDLER OS))
(AK-SVC-HANDLER (MAPUP-OS OS)))).

However this again simplifies, rewriting with the lemma
CORRECTNESS-OF-SVC-HANDLER, to:

T.

Case 3. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS))
(NOT (TM-CLOCK-INTERRUPTP OS))
(NOT (TM-SVC-INTERRUPTP OS)))

(EQUAL (MAPUP-OS (TM-FETCH-EXECUTE OS))

90

(AK-PRIVATE-STEP (MAPUP-OS OS)))),

which again simplifies, applying the lemma
CORRECTNESS-OF-TM-FETCH-EXECUTE, to:

T.

Case 2. (IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(NOT (TM-SOME-OUTPUT-INTERRUPTP (TM-OPORTS OS)))
(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS))
(TM-CLOCK-INTERRUPTP OS))

(EQUAL (MAPUP-OS (OS-CLOCK-INTERRUPT-HANDLER OS))
(AK-CLOCK-INTERRUPT-HANDLER (MAPUP-OS OS)))),

which again simplifies, rewriting with
CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER, to:

T.

Case 1. (IMPLIES
(AND (GOOD-OS OS)

(TM-SOME-INPUT-INTERRUPTP (TM-IPORTS OS)))
(EQUAL
(MAPUP-OS (OS-INPUT-INTERRUPT-HANDLER OS))
(AK-INPUT-INTERRUPT-HANDLER

(TM-INTERRUPTING-INPUT-PORT (AK-IPORTS (MAPUP-OS OS)))
(MAPUP-OS OS)))).

This again simplifies, applying the lemma
CORRECTNESS-OF-INPUT-INTERRUPT-HANDLER, to:

T.

Q.E.D.

The lemmas CORRECTNESS-OF-OUTPUT-INTERRUPT-HANDLER,

CORRECTNESS-OF-INPUT-INTERRUPT-HANDLER, CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER,

CORRECTNESS-OF-OS-ERROR-HANDLER and CORRECTNESS-OF-SVC-HANDLER establish the

correctness of each of the interrupt handlers and have identical form. The theorem

CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER is stated as an example.
Theorem {3680}. CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NOT (TM-ERRORP OS)))

(EQUAL (MAPUP-OS (OS-CLOCK-INTERRUPT-HANDLER OS))
(AK-CLOCK-INTERRUPT-HANDLER (MAPUP-OS OS))))

The proof of each interrupt handler correctness theorem follows the same

pattern: open up the definition of MAPUP-OS and prove that the abstraction of each OS field

91

equals the corresponding AK field. The proof is therefore a large case split, the details of

which we leave to the script.

The verification of the interrupt handlers gives five of the six cases required to

prove OS-STEP-IMPLEMENTS-AK-STEP. The remaining case requires a proof that a fetch-

execute step at the OS layer implements a fetch-execute step at the AK layer. This result is

stated by the theorem CORRECTNESS-OF-TM-FETCH-EXECUTE.
[Theorem {2078}. CORRECTNESS-OF-TM-FETCH-EXECUTE (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NOT (TM-CLOCK-INTERRUPTP OS)))

(EQUAL (MAPUP-OS (TM-FETCH-EXECUTE OS))
(AK-FETCH-EXECUTE (MAPUP-OS OS))))

Recall that AK-FETCH-EXECUTE is defined as the application of TM-FETCH-EXECUTE

to the current abstract address space. Therefore the proof of

CORRECTNESS-OF-TM-FETCH-EXECUTE is a result about the interaction of TM-FETCH-EXECUTE

and the address space abstraction. At the AK layer, address spaces are clearly isolated.

Each address space is an element of the array AK-PSTATES. There is no sharing of data

among address spaces. Therefore address space isolation is a simple result of the

properties of array access. At the OS layer address space isolation is not nearly as

transparent. A task’s address space is computed from a segment of memory, the current

CPU state and the current contents of the data structure OS-TASK-TABLE.

The proof of CORRECTNESS-OF-TM-FETCH-EXECUTE is accomplished by a case split

on the current task identifier. The theorem MAPUP-CURRENT-TASK-TM-FETCH-EXECUTE states

that TM-FETCH-EXECUTE behaves as desired on the current address space, and

MAPUP-TASK-SEPARATION states the property that TM-FETCH-EXECUTE has no effect on an

address space which is not current.
Theorem {2069}. MAPUP-CURRENT-TASK-TM-FETCH-EXECUTE (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS)))
(EQUAL (MAPUP-TASK (OS-CURRENT-TASKID OS)

(TM-FETCH-EXECUTE OS))
(TM-FETCH-EXECUTE (MAPUP-TASK (OS-CURRENT-TASKID OS)

OS))))

92

Theorem {2070}. MAPUP-TASK-SEPARATION (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NUMBERP TASKID)
(LESSP TASKID (AK-TASKIDLUB))
(NOT (EQUAL TASKID (OS-CURRENT-TASKID OS))))

(EQUAL (MAPUP-TASK TASKID (TM-FETCH-EXECUTE OS))
(MAPUP-TASK TASKID OS)))

These lemmas in turn rely on important properties of TM’s architecture.

TM-FETCH-EXECUTE-COMMUTES-WITH-MAPUP-ADDRESS-SPACE states that TM-FETCH-EXECUTE, when

in user mode, may be applied to the entire state of the target machine, or to just a single

address space, with identical effect on that address space. It is this theorem which allows

us to apply TM-FETCH-EXECUTE at all levels of the specification and definition of KIT. And

it is this theorem which formalizes our intuitive understanding of what an address space

is. The invariant defined by GOOD-OS ensures that the conditions required by this theorem

always hold.
Theorem {1382}. TM-FETCH-EXECUTE-COMMUTES-WITH-MAPUP-ADDRESS-SPACE (rewr
(IMPLIES

(AND (GOOD-TM TM)
(LEQ (PLUS (TM-BASE TM) (TM-LIMIT TM))

(TM-MEMLENGTH))
(NOT (TM-IN-SUPERVISOR-MODE TM)))

(EQUAL (TM-FETCH-EXECUTE (MAPUP-ADDRESS-SPACE (TM-MEMORY TM)
(TM-REGS TM)
(TM-CC TM)
(TM-ERROR TM)
(TM-SVCFLAG TM)
(TM-SVCID TM)
(TM-BASE TM)
(TM-LIMIT TM)))

(MAPUP-ADDRESS-SPACE (TM-MEMORY (TM-FETCH-EXECUTE TM))
(TM-REGS (TM-FETCH-EXECUTE TM))
(TM-CC (TM-FETCH-EXECUTE TM))
(TM-ERROR (TM-FETCH-EXECUTE TM))
(TM-SVCFLAG (TM-FETCH-EXECUTE TM))
(TM-SVCID (TM-FETCH-EXECUTE TM))
(TM-BASE (TM-FETCH-EXECUTE TM))
(TM-LIMIT (TM-FETCH-EXECUTE TM)))))

The theorem TM-FETCH-EXECUTE-MAPUP-ADDRESS-SPACE-SEPARATION states the

main protection theorem. In a machine state for which GOOD-OS holds, applying

TM-FETCH-EXECUTE has no effect on the address space of a task which is not the current

task.

93

Theorem {2048}. TM-FETCH-EXECUTE-MAPUP-ADDRESS-SPACE-SEPARATION (rewrit
(IMPLIES
(AND (GOOD-OS OS)

(NOT (TM-WAITING OS))
(NUMBERP TASKID)
(LESSP TASKID (AK-TASKIDLUB))
(NOT (EQUAL TASKID (OS-CURRENT-TASKID OS))))

(EQUAL
(MAPUP-ADDRESS-SPACE (TM-MEMORY (TM-FETCH-EXECUTE OS))

REGS CC ERROR SVCFLAG SVCID
(BASE (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS)))
(LIMIT (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS))
(MAPUP-ADDRESS-SPACE (TM-MEMORY OS)

REGS CC ERROR SVCFLAG SVCID
(BASE (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS)))
(LIMIT (GETNTH TASKID

(TABLE 2 (OS-SEGMENT-TABLE OS))

5.4 The Abstract Kernel Implements Tasks

The correctness theorem for the abstract kernel establishes that the kernel

implements a set of independent tasks. The commutativity diagram in Figure

AK-IMPLEMENTS-PARALLEL-TASKS depicts the relation which theorem

AK-IMPLEMENTS-PARALLEL-TASKS states.
Theorem {1689}. AK-IMPLEMENTS-PARALLEL-TASKS (rewrite):
(IMPLIES (AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE))))

The abstraction function is PROJECT, which projects the state of the ith task out

of an abstract kernel state. PROJECT composes a task state from the ith address space and

the shared buffers.
Definition {1672}.
(PROJECT I AK)

=
(TASK (GETNTH I (AK-PSTATES AK))

(AK-CHANNELS AK))

Definition {1671}.
(AK-CHANNELS AK)

=
(LIST (AK-IBUFFERS AK) (AK-OBUFFERS AK) (AK-MBUFFERS AK))

In AK-IMPLEMENTS-PARALLEL-TASKS, TASK-PROCESSOR’s oracle is a function of the

94

Figure 5-3: AK Implements Parallel Tasks

task identifier, the initial abstract kernel state and the abstract kernel’s oracle.

CONTROL-ORACLE mirrors AK-PROCESSOR. It constructs an oracle for the task layer by building

a list which at each step contains T if the indicated task is current in the abstract kernel, or

contains the shared state which results from a step of the abstract kernel.
Definition {1674}.
(CONTROL-ORACLE I AK ORACLE)

=
(IF (LISTP ORACLE)

(CONS
(CONTROL-ORACLE-STEP I (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

NIL)

95

Definition {1673}.
(CONTROL-ORACLE-STEP I AK)

=
(IF (AK-INPUT-INTERRUPTP AK)

(AK-CHANNELS
(AK-INPUT-INTERRUPT-HANDLER

(TM-INTERRUPTING-INPUT-PORT (AK-IPORTS AK))
AK))

(IF (AK-OUTPUT-INTERRUPTP AK)
(AK-CHANNELS

(AK-OUTPUT-INTERRUPT-HANDLER
(TM-INTERRUPTING-OUTPUT-PORT (AK-OPORTS AK))
AK))

(IF (AK-WAITING AK)
(AK-CHANNELS AK)

(IF (AK-ERRORP AK)
(AK-CHANNELS (AK-ERROR-HANDLER AK))

(IF (AK-CLOCK-INTERRUPTP AK)
(AK-CHANNELS (AK-CLOCK-INTERRUPT-HANDLER AK))

(IF (AK-SVC-INTERRUPTP AK)
(IF (EQUAL I (AK-TASKID AK))

T
(AK-CHANNELS (AK-SVC-HANDLER AK)))

(IF (EQUAL I (AK-TASKID AK))
T
(AK-CHANNELS (AK-PRIVATE-STEP AK)))))))))

The proof of AK-IMPLEMENTS-PARALLEL-TASKS is by induction on ORACLE and is

given below. The induction step, CASE 2, is proved by a case split which considers

whether or not the task identifier I indicates an active task. We must have that an AK step

implements a step on an active task as specified by the task layer. On a non-active task,

the control oracle constructed by CONTROL-ORACLE-STEP must contain the shared state

which AK generates.
Theorem {1689}. AK-IMPLEMENTS-PARALLEL-TASKS (rewrite):
(IMPLIES (AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE))))

Proof:

This conjecture can be simplified, using the abbreviations
FINITE-NUMBERP, IMPLIES, NOT, OR, AND, ACCESS-AK-POST-INTERRUPT,
and LENGTH-AK-PSTATES-AK-STEP, to two new formulas:

96

Case 2. (IMPLIES
(AND
(LISTP ORACLE)
(IMPLIES
(AND

(GOOD-AK (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
(FINITE-NUMBERP I

(LENGTH (AK-PSTATES AK))))
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(PROJECT I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))))

(GOOD-AK AK)
(NUMBERP I)
(LESSP I (LENGTH (AK-PSTATES AK))))

(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))
(TASK-PROCESSOR (PROJECT I AK)

I
(CONTROL-ORACLE I AK ORACLE)))),

which simplifies, applying GOOD-AK-AK-POST-INTERRUPT,
GOOD-AK-AK-STEP, CDR-CONS, and CAR-CONS, and opening up
FINITE-NUMBERP, AND, IMPLIES, AK-PROCESSOR, CONTROL-ORACLE, and
TASK-PROCESSOR, to the following two new formulas:

Case 2.2.
(IMPLIES
(AND
(LISTP ORACLE)
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(PROJECT I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))

(GOOD-AK AK)
(NUMBERP I)
(LESSP I (LENGTH (AK-PSTATES AK)))
(NOT
(TASK-ACTIVEP

(CONTROL-ORACLE-STEP I
(AK-POST-INTERRUPT (CAR ORACLE)

AK)))))
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))

97

(CDR ORACLE)))
(TASK-PROCESSOR
(TASK-UPDATE-SHARED-STATE
(PROJECT I AK)
(CONTROL-ORACLE-STEP I

(AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))).

This again simplifies, using linear arithmetic, rewriting with
the lemma AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP, and expanding the
function FINITE-NUMBERP, to:

T.

Case 2.1.
(IMPLIES
(AND
(LISTP ORACLE)
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(PROJECT I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))

(GOOD-AK AK)
(NUMBERP I)
(LESSP I (LENGTH (AK-PSTATES AK)))
(TASK-ACTIVEP
(CONTROL-ORACLE-STEP I

(AK-POST-INTERRUPT (CAR ORACLE) AK))))
(EQUAL
(PROJECT I
(AK-PROCESSOR

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE)))

(TASK-PROCESSOR
(TASK-STEP (PROJECT I AK) I)
I
(CONTROL-ORACLE I

(AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))
(CDR ORACLE))))),

which again simplifies, using linear arithmetic, applying the
lemma AK-IMPLEMENTS-ACTIVE-TASK-STEP, and expanding
FINITE-NUMBERP, to:

T.

Case 1. (IMPLIES
(AND (NOT (LISTP ORACLE))

(GOOD-AK AK)
(NUMBERP I)

98

(LESSP I (LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE)))),

which simplifies, opening up the functions AK-PROCESSOR,
CONTROL-ORACLE, LISTP, and TASK-PROCESSOR, to:

T.

Q.E.D.

The critical support lemmas used in AK-IMPLEMENTS-PARALLEL-TASKS are given

below. AK-IMPLEMENTS-ACTIVE-TASK-STEP establishes that the abstract kernel’s transition

on the current task is identical to a step on an active task at the task layer. This requires

checking that the communication primitives are implemented correctly, which is not

difficult since the representation of buffers is identical at the abstract kernel and task

layers. The lemma AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP is a matter of demonstrating that

CONTROL-ORACLE contains the appropriate shared state on a non-active task step, and that no

transition occurs on the indicated task’s private state.
Theorem {1688}. AK-IMPLEMENTS-ACTIVE-TASK-STEP (rewrite):
(IMPLIES
(AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK)))
(TASK-ACTIVEP

(CONTROL-ORACLE-STEP I
(AK-POST-INTERRUPT (CAR ORACLE) AK))))

(EQUAL (PROJECT I (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))
(TASK-STEP (PROJECT I AK) I)))

Theorem {1681}. AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP (rewrite):
(IMPLIES
(AND (GOOD-AK AK)

(FINITE-NUMBERP I (LENGTH (AK-PSTATES AK)))
(NOT (TASK-ACTIVEP

(CONTROL-ORACLE-STEP I
(AK-POST-INTERRUPT (CAR ORACLE)

AK)))))
(EQUAL (PROJECT I (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK)))

(TASK-UPDATE-SHARED-STATE
(PROJECT I AK)
(CONTROL-ORACLE-STEP I

(AK-POST-INTERRUPT (CAR ORACLE)
AK)))))

99

5.5 Composing the Interpreter Equivalence Theorems

We have described the correctness proof between each consecutive pair of

layers in Figure 5-1. These lemmas can be used to prove a single theorem which spans all

layers. Using TM-IMPLEMENTS-OS and OS-IMPLEMENTS-AK we get the theorem

CORRECTNESS-OF-OPERATING-SYSTEM which is the main operating system correctness

theorem. Recall from Section 5.2 that the theorem states that the TM layer matches the AK

layer if I/O interrupts occur at the TM layer with a frequency low enough to always allow

an interrupt handler to complete. The longest time span taken by an interrupt handler in

KIT is 112 steps, so this is a crude measure of the minimum gap between I/O interrupts.

This figure is fairly small, so the frequency of interrupts is not required to be very low. If

the frequency condition is violated at the TM layer, then an interrupt will be ignored, and

process isolation will still be preserved.
Theorem {4621}. CORRECTNESS-OF-OPERATING-SYSTEM (rewrite):
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE))
(EQUAL (MAPUP-OS (TM-PROCESSOR OS (OS-ORACLE OS ORACLE)))

(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

Combining this result with AK-IMPLEMENTS-PARALLEL-TASKS gives the result

which spans the entire ladder of Figure 5-1. The theorem OS-IMPLEMENTS-PARALLEL-TASKS

establishes the result that the operating system running on the target machine TM

implements our abstract definition of a parallel process.
Theorem {4623}. OS-IMPLEMENTS-PARALLEL-TASKS:
(IMPLIES (AND (GOOD-OS OS)

(PLISTP ORACLE)
(FINITE-NUMBERP I (LENGTH (AK-PSTATES (MAPUP-OS OS)))))

(EQUAL (PROJECT-ITH-TASK I
(TM-PROCESSOR OS

(OS-ORACLE OS ORACLE)))
(TASK-PROCESSOR (PROJECT-ITH-TASK I OS)

I
(CONTROL-ORACLE I

(MAPUP-OS OS)
ORACLE))))

100

Chapter 6

Queues

In this chapter we take a detailed look at how we verify operations on queues.

The buffers and ready queue of the abstract kernel are implemented as bounded queues,

so this explanation reveals much of the effort involved in proving that the operating

system implements the abstract kernel.

6.1 An Implementation of Queues

We have already seen the queue primitives at the abstract kernel level. We

repeat them here.
Definition {470}.
(QFIRST TABLE) = (CAR TABLE)

Definition {471}.
(ENQ ITEM TABLE) = (APPEND TABLE (LIST ITEM))

Definition {472}.
(DEQ TABLE) = (CDR TABLE)

Definition {473}.
(QEMPTYP TABLE) = (EQUAL (LENGTH TABLE) 0)

Definition {474}.
(QFULLP TABLE MAX) = (NOT (LESSP (LENGTH TABLE) MAX))

Definition {475}.
(QREPLACE ITEM QUEUE) = (ENQ ITEM (NONLAST QUEUE))

Definition {458}.
(NONLAST L) = (GETSEG 0 (SUB1 (LENGTH L)) L)

We wish to implement queues of finite length in the store of a computer. We

choose to implement them circularly. That is, a head and tail pointer cycle around a fixed

size segment of memory. We call our queue implementation an array queue, suggesting

an implementation in a memory array. We implement queues whose contents are single

memory words.

101

The format of an array queue is a 4-tuple appended to a memory segment

containing the queue elements. We give the format of the 4-tuple, where QARRAY refers to

the appended memory segment.

• HEAD : An index into QARRAY giving the location of the first queue element.

• TAIL : An index into QARRAY giving the location of the first free slot at the end
of the queue.

• CURRLENGTH : The current length of the queue.

• MAXLENGTH : The maximum length of the queue. The length of QARRAY.

The format of an ARRAY-QUEUE is formalized by the following definitions, which

give indices to the various queue fields within an ARRAY-QUEUE.
Definition {494}.
(QHEAD-FIELD) = 0

Definition {495}.
(QTAIL-FIELD) = 1

Definition {496}.
(QCURRLENGTH-FIELD) = 2

Definition {497}.
(QMAXLENGTH-FIELD) = 3

Definition {498}.
(QARRAY-FIELD) = 4

The predicate ARRAY-QUEUEP recognizes a segment of memory which contains a

well formed ARRAY-QUEUE. It states all the required relationships among the fields of a

queue. The most intricate property is expressed by the function ARRAY-QINDEX-RELATION

which relates the HEAD and TAIL positions to the current length of the queue. Figure

DELTA depicts the measurement made by the function DELTA, the "wrap around" distance

from HEAD to TAIL in a queue. ARRAY-QINDEX-RELATION states that if HEAD and TAIL are

identical, then the queue length is QMAXLENGTH (i.e. the queue is full), otherwise the queue

length is QCURRLENGTH.

102

Figure 6-1: Delta

Definition {506}.
(ARRAY-QUEUEP QUEUE)

=
(AND (PLISTP QUEUE)

(EQUAL (LENGTH QUEUE)
(PLUS (QARRAY-FIELD)

(GETNTH (QMAXLENGTH-FIELD) QUEUE)))
(NUMBERP (GETNTH (QHEAD-FIELD) QUEUE))
(NUMBERP (GETNTH (QTAIL-FIELD) QUEUE))
(NUMBERP (GETNTH (QCURRLENGTH-FIELD) QUEUE))
(NOT (ZEROP (GETNTH (QMAXLENGTH-FIELD) QUEUE)))
(LESSP (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(LESSP (GETNTH (QTAIL-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(LESSP (GETNTH (QCURRLENGTH-FIELD) QUEUE)

(ADD1 (GETNTH (QMAXLENGTH-FIELD) QUEUE)))
(ARRAY-QINDEX-RELATION QUEUE))

Definition {505}.
(ARRAY-QINDEX-RELATION QUEUE)

=
(EQUAL (DELTA (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QTAIL-FIELD) QUEUE)
(GETNTH (QMAXLENGTH-FIELD) QUEUE))

(IF (ZEROP (GETNTH (QCURRLENGTH-FIELD) QUEUE))
(GETNTH (QMAXLENGTH-FIELD) QUEUE)
(GETNTH (QCURRLENGTH-FIELD) QUEUE)))

Definition {499}.
(DELTA A B MAX)

=
(IF (LEQ B A)

(PLUS (DIFFERENCE MAX A) B)
(DIFFERENCE B A))

The following functions define ARRAY-QUEUE primitives which correspond to the

abstract queue primitives. They state precisely how the state of an ARRAY-QUEUE is changed

by each operation. Recall that the form (PUTNTH V N L) is the list which is identical to L

except for the Nth element, which is equal to V. (GETNTH N L) is the Nth element of L.

103

Definition {520}.
(ARRAY-ENQ ITEM QUEUE)

=
(PUTNTH (INCR-MOD (GETNTH (QTAIL-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(QTAIL-FIELD)
(PUTNTH (ADD1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
(PUTNTH ITEM

(PLUS (QARRAY-FIELD)
(GETNTH (QTAIL-FIELD) QUEUE))

QUEUE)))

Definition {521}.
(ARRAY-DEQ QUEUE)

=
(PUTNTH (INCR-MOD (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(QHEAD-FIELD)
(PUTNTH (SUB1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
QUEUE))

Definition {522}.
(ARRAY-QFIRST QUEUE)

=
(GETNTH (PLUS (QARRAY-FIELD)

(GETNTH (QHEAD-FIELD) QUEUE))
QUEUE)

Definition {523}.
(ARRAY-QFULLP QUEUE)

=
(EQUAL (GETNTH (QCURRLENGTH-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))

Definition {524}.
(ARRAY-QEMPTYP QUEUE)

=
(ZEROP (GETNTH (QCURRLENGTH-FIELD) QUEUE))

Definition {560}.
(ARRAY-QREPLACE ITEM QUEUE)

=
(ARRAY-ENQ ITEM (ARRAY-NONLAST QUEUE))

Definition {547}.
(ARRAY-NONLAST QUEUE)

=
(PUTNTH (DECR-MOD (GETNTH (QTAIL-FIELD) QUEUE)

(GETNTH (QMAXLENGTH-FIELD) QUEUE))
(QTAIL-FIELD)
(PUTNTH (SUB1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
QUEUE))

Definition {464}.
(INCR-MOD N LUB)

=
(IF (LESSP (ADD1 N) LUB) (ADD1 N) 0)

Definition {465}.
(DECR-MOD N LUB)

=
(IF (ZEROP N) (SUB1 LUB) (SUB1 N))

104

6.2 The Correctness of the Queue Implementation

MAPUP-QUEUE is the abstraction function from ARRAY-QUEUEs to abstract queues.

DELTA-SEGMENT is the workhorse. In the definition of DELTA-SEGMENT, S is a list and A and B

are indices into the list. DELTA-SEGMENT constructs the segment which wraps around S,

whose first element is S(A) and whose last element is the one preceding S(B).
Definition {579}.
(MAPUP-QUEUE QUEUE)

=
(IF (ARRAY-QEMPTYP QUEUE)

NIL
(DELTA-SEGMENT (GETNTH (QHEAD-FIELD) QUEUE)

(GETNTH (QTAIL-FIELD) QUEUE)
(GETSEG (QARRAY-FIELD)

(GETNTH (QMAXLENGTH-FIELD) QUEUE)
QUEUE)))

Definition {574}.
(DELTA-SEGMENT A B S)

=
(IF (LEQ B A)

(APPEND (GETSEG A (DIFFERENCE (LENGTH S) A) S)
(GETSEG 0 B S))

(GETSEG A (DIFFERENCE B A) S))

The relationship between DELTA and DELTA-SEGMENT is expressed by the theorem

DELTA-EQUALS-LENGTH-DELTA-SEGMENT.
Theorem {575}. DELTA-EQUALS-LENGTH-DELTA-SEGMENT (rewrite):
(IMPLIES (AND (LESSP A (LENGTH S))

(LESSP B (LENGTH S)))
(EQUAL (LENGTH (DELTA-SEGMENT A B S))

(DELTA A B (LENGTH S))))

We prove the correctness of the ARRAY-QUEUE implementation before we

consider any machine code. The following theorems establish the correctness of each of

the queue primitives.
Theorem {585}. CORRECTNESS-OF-ARRAY-ENQ (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QFULLP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-ENQ ITEM QUEUE))

(ENQ ITEM (MAPUP-QUEUE QUEUE))))

Theorem {593}. CORRECTNESS-OF-ARRAY-DEQ (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-DEQ QUEUE))

(DEQ (MAPUP-QUEUE QUEUE))))

105

Theorem {594}. CORRECTNESS-OF-ARRAY-QFIRST (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (ARRAY-QFIRST QUEUE)

(QFIRST (MAPUP-QUEUE QUEUE))))

Theorem {595}. CORRECTNESS-OF-ARRAY-QEMPTYP (rewrite):
(IMPLIES (ARRAY-QUEUEP QUEUE)

(EQUAL (ARRAY-QEMPTYP QUEUE)
(QEMPTYP (MAPUP-QUEUE QUEUE))))

Theorem {596}. CORRECTNESS-OF-ARRAY-QFULLP:
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(EQUAL MAX
(GETNTH (QMAXLENGTH-FIELD) QUEUE)))

(EQUAL (ARRAY-QFULLP QUEUE)
(QFULLP (MAPUP-QUEUE QUEUE) MAX)))

Theorem {602}. CORRECTNESS-OF-ARRAY-NONLAST (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-NONLAST QUEUE))

(NONLAST (MAPUP-QUEUE QUEUE))))

Theorem {603}. CORRECTNESS-OF-ARRAY-QREPLACE (rewrite):
(IMPLIES (AND (ARRAY-QUEUEP QUEUE)

(NOT (ARRAY-QEMPTYP QUEUE)))
(EQUAL (MAPUP-QUEUE (ARRAY-QREPLACE ITEM QUEUE))

(QREPLACE ITEM (MAPUP-QUEUE QUEUE))))

6.3 Using the Queue Correctness Theorems

We explain how the queue correctness theorems are used in the verification of

KIT. The KIT source code contains subroutines for queue manipulations. The annotated

text of the subroutine ENQUEUE is displayed below. See Section 4.2 for comments on how

to read the source code.
ENQUEUE
;; Assume R2 contains item to enqueue
;; R3 points to queue
;; this routine assumes queue not currently full
;; pseudo-code:
;; store the item where ever the tail index points
;; increment the current length
;; increment the tail index (mod max-index)
(move (1 r4) (1 r3))
(add (1 r4) qarray-field)
(add (1 r4) (3 r3 qtail-field)) ;; r4 has address of free slot
(move (3 r4) (1 r2)) ;; store item
(incr (3 r3 qcurrlength-field)) ;; increment current length
(incrm (3 r3 qtail-field) (3 r3 qmaxlength-field)) ;; increment tail
(return)

One might expect that we would state an entry and exit specification for

ENQUEUE and prove a theorem which embodies its correctness. We have not chosen this

106

approach because of the ugly theorem which arises. Recall that we are verifying at the

machine code level. Programs reside in a flat address space. The statement of a

correctness theorem for ENQUEUE must include conditions such as "the program counter

contains the address of the first instruction in ENQUEUE". Due to the flat address space, the

statement of the theorem would change whenever we make a change to KIT which moves

the starting address of ENQUEUE.

Our approach is to ignore subroutines. When we prove a lemma which traces a

path through a call to ENQUEUE, we recognize an expression which matches the definition

of ARRAY-ENQ and arrange for the rewriter to fold the expression up into a call to

ARRAY-ENQ. The lemma CONTRACT-ARRAY-ENQ accomplishes this. Immediately upon

encountering a sequence of PUTNTHs which matches the form of the definition of

ARRAY-ENQ, the rewriter replaces the expression by an ARRAY-ENQ form.
Theorem {2079}. CONTRACT-ARRAY-ENQ (rewrite):
(IMPLIES
(EQUAL MAXLENGTH (GETNTH (QMAXLENGTH-FIELD) QUEUE))
(EQUAL (PUTNTH (INCR-MOD (GETNTH (QTAIL-FIELD) QUEUE) MAXLENGTH)

(QTAIL-FIELD)
(PUTNTH (ADD1 (GETNTH (QCURRLENGTH-FIELD) QUEUE))

(QCURRLENGTH-FIELD)
(PUTNTH ITEM

(PLUS (QARRAY-FIELD)
(GETNTH (QTAIL-FIELD) QUEUE))

QUEUE)))
(ARRAY-ENQ ITEM QUEUE)))

The functions like OS-CLOCK-INTERRUPT-HANDLER which express the state of the

machine at the end of an OS interrupt handler have already made a small step across the

gap from the operating system layer to the abstract kernel layer. Array manipulation

expressions are bundled up into calls to the ARRAY-QUEUE primitives, which have been

independently verified to implement abstract queues.

107

Chapter 7

Conclusion

7.1 Related Work

We review three areas of related work: the program verification techniques

upon which our work is based, previous attempts to verify operating systems, and

microprogram verification.

7.1.1 Specification and Proof Methods

Our approach to the specification and verification of KIT derives from well

known earlier work. The implements relation established by an interpreter equivalence

theorem is an instance of Milner’s weak simulation relation [Milner]. Hoare’s approach

to proving the correctness of data representations [Hoare], similar to Milner’s work, is

also a precursor. The application of Hoare’s method can be most clearly seen in our

treatment of queues.

Several attempts to verify operating systems cite the work of Milner, Hoare and

others who have suggested similar approaches to verification. The methodology for

designing operating system software proposed by Robinson and his co-workers

[Robinson] calls for a sequence of abstract machines, each related by an implements

relation. Kemmerer [Kemmerer] acknowledges a debt to Milner and Hoare in applying

the Alphard methodology [Alphard] to the verification of a portion of the security kernel

of UCLA Secure Unix. Rushby [Rushbyc] described an approach to kernel verification

similar to ours. Hunt [Hunt85] proved an interpreter equivalence theorem to establish the

correctness of a microprocessor.

108

7.1.2 Operating System Verification

Two areas predominate in operating system verification: verification of parallel

processes, and verification of security properties.

The correctness of parallel programs is a large area we do not attempt to review

exhaustively. The area of parallelism is primarily concerned with proving safety and

liveness properties of sets of processes under various models of process communication.

Above the kernel level, an operating system can be viewed as a set of cooperating parallel

processes. So, techniques for verifying parallel processes can be applied to operating

system verification above the kernel level. Our work logically supports this work. The

purpose of our work is to verify a kernel implementation. We don’t reason about the

correctness of a particular set of concurrent processes, but prove that any set of processes

which can be implemented on KIT is implemented without errors introduced by KIT.

We mention a number of efforts in operating system verification whose main

contributions are in techniques for verifying parallel programs. The seminal work in this

area is the "THE"-multiprogramming system [Dijkstra68] in which process

synchronization via semaphores is implemented at the lowest layer. This work reveals to

what advantage an operating system can be designed as a system of communicating

sequential processes.

Saxena [Saxena] considers low level issues of processor and memory sharing in

a multiprogrammed operating system. The design of a scheduler and memory manager,

synchronized via monitors, is verified. A design methodology involving hierarchical

decomposition and structured programming is discussed.

Flon’s dissertation [Flon77] treats two subjects related to the correctness of

operating systems. First, a methodology for the design, implementation and verification

of operating systems is discussed. This methodology employs data abstraction to

implement modular programs. A simple process dispatcher is specified, implemented and

verified. Second, the problem of the total correctness of parallel programs is considered.

109

Karp [Karp83] proposes an extension of Pascal to include a method of process

communication called a module, similar to a Simula Class. Concurrent systems expressed

in this language can be demonstrated to be failure free, which is a notion of non-

termination. The application of this communication model to operating systems is

demonstrated.

Security is the other major area in operating system verification. In the early

seventies the notion became current that a security policy should be implemented in the

nucleus of an operating system, a security kernel. A number of efforts attempted to

design, implement and verify a security kernel. A security policy given by Bell and

LaPadula [BellLapadula] was the first attempt to formalize a specification for a security

kernel. Alternative formulations of security were given by Feiertag, Levitt and Robinson

[FeiertagModel], and by Popek and Farber [Popek].

The goals of each security kernel project were similar in outline: design a

security kernel, prove that the design satisfies a formally described security policy,

implement the kernel, and prove the implementation correct. Some projects were

intended to complete only an initial portion of this sequence of goals. The goals were met

with varying success.

Neumann and co-workers designed a provably secure operating system (PSOS)

[PSOS, PSOSFinalReport] based on a capability mechanism. Parts of the design proof

were sketched. An implementation was not completed. The main result of the project was

a hierarchical methodology for operating system design [Robinson].

A group at Ford Aerospace designed a kernelized secure operating system

(KSOS) [KSOS, KSOSDevelopment] intended to provide a secure operating system with

an interface compatible with UNIX. The security policy for KSOS was approximately the

Bell and LaPadula model. Information flow theorems at the design level were checked on

the Boyer-Moore theorem prover. An implementation was written in MODULA, but

code proofs were not anticipated and not done. The KSOS project benefited from the

design methodology developed for PSOS.

110

The UCLA Secure Unix project [UCLASecureUnix, Walker] had a goal similar

to the KSOS project: a Unix system built on a security kernel. The top level security

policy was based on Popek and Farber’s security model. The policy was enforced by a

policy manager process outside the kernel. The kernel is responsible for manipulating

processes and capabilities as allowed by the policy manager. This security kernel is more

completely verified than the others. Kemmerer’s dissertation [Kemmerer] reports on a

design proof for the security kernel. The kernel was implemented in an extended version

of Pascal, and some code level proofs were completed in the XIVUS verification system

[XIVUS].

Other security kernels are reported in the literature, including the KVM/370

project [KVM370], and SCOMP [SCOMP]. The Secure Ada Target (SAT, now called

LOCK) [SAT] is an ongoing project at Honeywell. Landwehr [Landwehr] gives a useful

summary of the state of the art circa 1983.

Rushby criticizes the kernel approach to system security [Rushbya]. We do not

repeat his argument, but point out that the alternative approach to security which he

proposes results in a mandate for the type of verification carried out for KIT: a proof of

the isolation of processes implemented in a shared environment.

The relationship between our work and that reported in the literature can be

summarized as follows. There are two main threads in operating system verification:

verification of parallel processes, and verification of security. The work in parallel

processes lies inherently above the level of verification reported for KIT. The work in

security reaches in principle down to the implementation level of KIT, but no one has

previously reached that level.

111

7.1.3 Microprogram Verification

We mention the subject of microprogram verification to indicate its relation to

our work. The goal of microprogram verification is to prove the correctness of an

implementation of a machine architecture. Our work is based on a specification for a

machine architecture, so our work lies logically just above the level of microprogram

verification. Conceptually, the two areas can be merged. By targeting a verified kernel to

a verified architecture we can combine the two levels of verification to span a much

larger implementation gap.

The techniques of microprogram verification are similar to ours. The

correctness theorem is stated as a machine simulation relation - an architecture level at

the abstract end, and a register-transfer level at the low end. Paths through microcode are

traced to relate a series of low steps to a high step. See [Hunt85], [Joyner], [SDVS] for

examples of this work.

7.2 Comments and Summary

7.2.1 The Size of the KIT Project

The KIT project was conceived as an attempt to prove task isolation in a kernel

written for a very simple von Neumann machine. We placed the following requirements

on the problem. We felt that the combination of these constraints would force us to

confront issues not before treated in operating system verification.

• Tasks must be able to communicate by some means. Therefore, task isolation
really means limited task communication.

• The target machine’s architecture must contain a very simple protection
mechanism. We did not want the architecture to be so powerful that the
entire problem would be solved at that level.

• The target machine must permit communication with asynchronous devices.
Therefore, the operating system must field interrupts.

• All code must be verified. This meant that we would verify machine code.

The first three months were spent in an attempt to define the problem in such a

way that the only property which required verification was task isolation. We felt, for

112

instance, that the verification of a particular scheduling algorithm was beyond the scope

of this work. We also felt that the verification of various data structure implementations,

particularly queues, were not of primary concern. We failed in our attempt to separate

concerns. The reason for this was our requirement for an extremely simple target

machine. With such a simple machine, we could not isolate the aspects we hoped not to

verify. Therefore, everything necessary to create a completely operational, but simple,

kernel was included.

A year passed. In that time we defined a prototype task, abstract kernel and

target machine. We proved that the abstract kernel implemented a task. We proved

several kernel routines including the clock interrupt handler and error handler. In doing

so we learned the overall structure of the kernel proof. We learned our technique for

making the theorem prover symbolically execute machine code. We went through several

revisions of our theory of arrays. This was our first experience in using the Boyer-Moore

theorem prover for a proof deeper than ASSOCIATIVITY-OF-APPEND, although we were

already familiar with the Boyer-Moore logic.

At this point, with our support theories well in hand, we started the project

almost from scratch. We defined the target machine to be simpler than the prototype had

been. We revised our specifications for the abstract kernel. We wrote the complete kernel

and proved its correctness. This took three months.

The size of the script is extremely large. We attribute this primarily to the

inherent complexity of the problem. There is simply a large gap to span from a target

machine as simple as TM to the level of our abstract kernel. The bulk of our script is

devoted to three areas.

• The trace lemmas which result in the definition of the operating system
layer.

• The proof of the operating system layer invariant.

• The proof of the correctness of the operating system layer - i.e. that the
operating system layer implements the abstract kernel.

These are large because an enormous number of cases must be considered. We must

113

prove that each of thirty-eight paths through the kernel correctly manipulates each of ten

abstract kernel fields, most of which are structured objects. The trace lemmas were the

most difficult to check. The theorem prover required much help by way of rewrite

lemmas to symbolically execute the address computations which occurred in each path.

We found, though, that while the initial lemmas in each of the three proofs above were

slow going, later proofs became progressively easier. Toward the end we generated the

lemmas we needed by merely editing previous lemmas.

To understand the size of the script, one must also consider the starting point:

the elementary theory of numbers and lists built into the Boyer-Moore theorem prover.

Much groundwork was required in terms of facts about arithmetic, sets and arrays. The

script contains a complete target machine definition and operating system specification.

There is much more in the script than the KIT code and its proof.

The verification revealed bugs in the operating system code. Simple bugs, like

naming an incorrect register, or using the wrong address mode, were revealed at the time

a tracing lemma was proved. During tracing it became obvious when a data structure was

addressed incorrectly. More difficult bugs were revealed during the proof that each KIT

routine implements the corresponding abstract kernel operation. The most insidious bug

revealed at this stage was one in which the state of the current task was not accurately

restored after processing an I/O interrupt. The bug would have caused a supervisor call

request to be ignored if an I/O interrupt occurred immediately after the request, but

before the request had been handled. Such time-dependent errors are difficult to find by

testing.

KIT is so small that it is likely that a group of competent programmers could

produce in a short time a highly reliable version using traditional coding and testing

techniques. Without the goal of mechanical verification, it is unlikely that the

specification for KIT would be stated as explicitly as we have done. Therefore, it is

questionable whether all the issues which we encountered during our proof would be

considered by traditional means. In particular, the proof that the target machine permits

114

the implementation of isolated address spaces would likely have to be assumed. If a

programming team got so far as to state a specification in as much detail as our abstract

kernel, it is unlikely that a hand proof of KIT with respect to this specification would be

convincing. The proof is so large that a mechanical check is virtually a necessity in

making sure that all cases have been considered.

7.2.2 The Significance of the KIT Project

The purpose of KIT is to provide verified task isolation. That is, tasks can

communicate only in specified ways. As a result, a verified set of communicating

processes will run as specified on KIT provided there are no hardware errors. KIT is

guaranteed not to introduce implementation bugs, since all code is verified.

A number of significant results are required to establish the main theorem.

• The termination of kernel routines.

• The correctness of the address space abstraction, i.e., that an address space
can be viewed as an independent machine.

• The isolation of the operating system from tasks on the target machine.

• The inability of a task to enter supervisor mode.

Therefore, the verification of KIT checks important security properties. We

have proved task isolation, the protection of the operating system from tasks, and the

inability of tasks to enter supervisor mode. Our small system is tamper proof. These

results are fundamental to computer security but have received scant attention in formal

verification. Previous attempts to verify security have been concerned with models of

security in which data and processes are tagged with security levels. The issues involved

in correctly implementing multiple processes on shared resources have been largely

ignored.

The proof is accomplished by establishing a machine simulation theorem which

relates KIT to a definition of a process which appears to be running on its own machine.

KIT is shown to implement a fixed number of conceptually distributed communicating

processes. The specification machine is so abstract that the proof of its properties is quite

115

tractable. An example of a property which is trivial to establish at this level is the

protection of a process’s private state. We have not stated and proved other properties,

but clearly it is preferable to do so at the high end than at the low end. Because the

implements relation is proved, properties established at the high end hold (under some

state space mapping) at the low end.

There is a technical advantage in pushing operational specifications to as

abstract a level as possible in the Boyer-Moore logic, and using machine simulation

theorems to establish correctness. The advantage is that the Boyer-Moore theorem

prover’s definitional principle gives a proof of the unique existence of every function

defined, and therefore a proof of consistency of the specification. If our method had been

to prove a set of properties stated directly about the implementation of KIT, then not only

would their statement have been difficult, but the consistency issue would have been

confronted.

Nearly all the difficulties in our proof occurred in establishing the implements

relation between the operating system running on the target machine (the OS layer, see

Figure 5-1) and the abstract kernel. These difficulties were largely due to issues unrelated

to task isolation: the verification of queues, tracing paths through the operating system

code. We have found no good solutions to the problem of verifying machine code. Our

method is shown to work for a small example, but whether it is tractable for a large

system is an open question.

What we can learn from the exercise is the structure which the proof of a kernel

may take: a machine simulation theorem between an abstract kernel and the kernel

implementation. The abstract kernel makes much simpler a number of issues which are

quite complex at the kernel implementation level: the termination of kernel operations,

low level representation of data structures, isolation of processes. Making sure that the

interrupt structure of the abstract kernel is identical to the interrupt structure of the target

machine makes possible an inductive proof of the machine simulation theorem. Even if,

in a larger system, a mechanical proof of a kernel implementation is unfeasible, the

116

existence of a specification at the level of KIT’s abstract kernel gives a good guide for

hand verification.

The exercise of verifying KIT also reveals some necessary properties at the

architecture level which make the proof possible. We have formalized the notion of an

address space for our simple target machine, and proved the correctness and protection

theorems which make it possible to view an address space as an isolated private machine.

In a future in which hardware is formally specified and verified, such theorems can be

checked early about a hardware design.

7.2.3 Future Work

This work can be carried forward. More complex phenomena in several areas

may be considered. At the top end, more sophisticated methods of inter-task

communication may be specified, e.g. shared segments and files. An obvious deficiency

in KIT from the point of view of general purpose operating systems is the absence of

dynamic process and channel creation. These issues should get attention if we hope to

verify usable general purpose systems. Fixed systems like KIT, though, do have their

applications, such as communications processing. Due to the difficulty of verifying large

amounts of machine code, these issues may not be tractable until we find a way to verify

a high-level language version of the kernel.

At the low end, more complex architectures can be considered to great

advantage. We restricted this work to an extremely simple hardware protection

mechanism. A more sophisticated protection mechanism can make the isolation proof

much easier. Of great interest, and in a slightly different vein, are the real-time properties

of a system. Although we have not proved such properties, it is possible to consider

proofs of response time to external events. It would be worthwhile to relax the property

of the non-interruptibility of the supervisor for such proofs. Considering such low-level

phenomena at the hardware/software boundary may have some immediate impact since,

if our experience with KIT is any indication, proofs at this level tend to be relatively

short.

117

KIT’s message passing mechanism is a subset of that specified for the

programming language Gypsy [Gypsy205, GypsyConcurrency]. Given the right

compiler, it is possible to think of KIT as a verified run-time environment for a subset of

Gypsy. Accomplishing this is another goal for the future.

118

Appendix A.

The Boyer-Moore Logic and its Theorem Prover1

In [acl] we describe a quantifier free first-order logic and a large and

complicated computer program that proves theorems in that logic. The major application

of the logic and theorem prover is the formal verification of properties of computer

programs, algorithms, system designs, etc. In this section we describe the logic and the

theorem prover.

A.1 The Logic

A complete and precise definition of the logic can be found in Chapter III of

[ACL] together with the minor revisions detailed in section 3.1 of [META].

We use the prefix syntax of Pure Lisp to write down terms. For example, we

write (PLUS I J) where others might write PLUS(I,J) or I+J.

The logic is first-order, quantifier free, and constructive. It is formally defined

as an extension of propositional calculus with variables, function symbols, and the

equality relation. We add axioms defining the following:

• the Boolean objects (TRUE) and (FALSE), abbreviated T and F;

• The if-then-else function, IF, with the property that (IF x y z) is z if x
is F and y otherwise;

• the Boolean "connector functions" AND, OR, NOT, and IMPLIES; for
example, (NOT p) is T if p is F and F otherwise;

• the equality function EQUAL, with the property that (EQUAL x y) is T or
F according to whether x is y;

1Written by Boyer and Moore. Taken with permission from [quant].

119

• inductively constructed objects, including:
• Natural Numbers. Natural numbers are built from the constant
(ZERO) by successive applications of the constructor function ADD1.
The function NUMBERP recognizes natural numbers, e.g., is T or F
according to whether its argument is a natural number or not. The
function SUB1 returns the predecessor of a non-0 natural number.

• Ordered Pairs. Given two arbitrary objects, the function CONS returns
an ordered pair containing them. The function LISTP recognizes
such pairs. The functions CAR and CDR return the two components of
such a pair.

• Literal Atoms. Given an arbitrary object, the function PACK
constructs an atomic symbol with the given object as its "print name."
LITATOM recognizes such objects and UNPACK returns the print
name.

• We call each of the classes above a "shell." T and F are each considered the
elements of two singleton shells. Axioms insure that all shell classes are
disjoint;

• the definitions of several useful functions, including:
• LESSP which, when applied to two natural numbers, returns T or F

according to whether the first is smaller than the second;

• LEX2, which, when applied to two pairs of naturals, returns T or F
according as whether the first is lexicographically smaller than the
second; and

• COUNT which, when applied to an inductively constructed object,
returns its "size;" for example, the COUNT of an ordered pair is one
greater than the sum of the COUNTs of the components.

The logic provides a principle under which the user can extend it by the

addition of new shells. By instantiating a set of axiom schemas the user can obtain a set

of axioms describing a new class of inductively constructed n-tuples with type-

restrictions on each component. For each shell there is a recognizer (e.g., LISTP for the

ordered pair shell), a constructor (e.g., CONS), an optional empty object (e.g., there is

none for the ordered pairs but (ZERO) is the empty natural number), and n accessors

(e.g., CAR and CDR).

The logic provides a principle of recursive definition under which new function

symbols may be introduced. Consider the definition of the list concatenation function:

120

Definition.
(APPEND X Y)

=
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y))
Y).

The equations submitted as definitions are accepted as new axioms under certain

conditions that guarantee that one and only one function satisfies the equation. One of

the conditions is that certain derived formulas be theorems. Intuitively, these formulas

insure that the recursion "terminates" by exhibiting a "measure" of the arguments that

decreases, in a well-founded sense, in each recursion. A suitable derived formula for

APPEND is:
(IMPLIES (LISTP X)

(LESSP (COUNT (CDR X))
(COUNT X))).

However, in general the user of the logic is permitted to choose an arbitrary measure

function (COUNT was chosen above) and one of several relations (LESSP above).

The rules of inference of the logic, in addition to those of propositional calculus

and equality, include mathematical induction. The formulation of the induction principle

is similar to that of the definitional principle. To justify an induction schema it is

necessary to prove certain theorems that establish that, under a given measure, the

inductive hypotheses are about "smaller" objects than the conclusion.

Using induction it is possible to prove such theorems as the associativity of

APPEND:
Theorem.
(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C))).

A.2 The Mechanization of the Logic

The theorem prover for the logic, as it stood in 1979, is described completely in

[acl]. Many improvements have been added since. In [Meta] we describe a

"metafunction" facility which permits the user to define new proof procedures in the

logic, prove them correct mechanically, and have them used efficiently in subsequent

proof attempts. During the period 1980-1985 a linear arithmetic decision procedure was

121

integrated into the rule-driven simplifier. The problems of integrating a decision

procedure into a heuristic theorem prover for a richer theory are discussed in [Linear].

The theorem prover is briefly sketched here.

The theorem prover is a computer program that takes as input a term in the

logic and repeatedly transforms it in an effort to reduce it to non-F. The theorem prover

employs eight basic transformations:

• decision procedures for propositional calculus, equality, and linear
arithmetic;

• term rewriting based on axioms, definitions and previously proved lemmas;

• application of verified user-supplied simplifiers called "metafunctions;"

• renaming of variables to eliminate "destructive" functions in favor of
"constructive" ones;

• heuristic use of equality hypotheses;

• generalization by the replacement of terms by type-restricted variables;

• elimination of apparently irrelevant hypotheses; and

• mathematical induction.

The theorem prover contains many heuristics to control the orchestration of these basic

techniques.

In a shallow sense, the theorem prover is fully automatic: the system accepts

no advice or directives from the user once a proof attempt has started. The only way the

user can alter the behavior of the system during a proof attempt is to abort the proof

attempt. However, in a deeper sense, the theorem prover is interactive: the system’s

behavior is influenced by the data base of lemmas which have already been formulated

by the user and proved by the system. Each conjecture, once proved, is converted into

one or more "rules" which guide the theorem prover’s actions in subsequent proof

attempts.

A data base is thus more than a logical theory: it is a set of rules for proving

theorems in the given theory. The user leads the theorem prover to "difficult" proofs by

"programming" its rule base. Given a goal theorem, the user generally discovers a proof

122

himself, identifies the key steps in the proof, and then formulates them as lemmas, paying

particular attention to their interpretation as rules.

The key role of the user in our system is guiding the theorem prover to proofs

by the strategic selection of the sequence of theorems to prove and the proper formulation

of those theorems. Successful users of the system must know how to prove theorems in

the logic and must understand how the theorem prover interprets them as rules.

123

Appendix B.

Index of Events in this Volume

AK-BLOCK-INPUT 27
AK-BLOCK-OUTPUT 29
AK-BLOCK-RECEIVE 26
AK-BLOCK-SEND 25
AK-CHANNELS 92
AK-CLOCK-INTERRUPT-HANDLER 23
AK-DISPATCHER 23
AK-ERROR-HANDLER 24
AK-EXECUTE-INPUT 27
AK-EXECUTE-INPUT-FROM-BUFFER 28
AK-EXECUTE-OUTPUT 28
AK-EXECUTE-OUTPUT-TO-BUFFER 29
AK-EXECUTE-RECEIVE 26
AK-EXECUTE-RECEIVE-FROM-BUFFER 27
AK-EXECUTE-SEND 25
AK-EXECUTE-SEND-TO-BUFFER 26
AK-FETCH-EXECUTE 22
AK-IMPLEMENTS-ACTIVE-TASK-STEP 97
AK-IMPLEMENTS-NON-ACTIVE-TASK-STEP 97
AK-IMPLEMENTS-PARALLEL-TASKS 10, 92, 94
AK-INPUT-INTERRUPT-HANDLER 29
AK-OUTPUT-INTERRUPT-HANDLER 31
AK-PRIVATE-STEP 22
AK-PROCESSOR 21
AK-RUNNING-INPUT-INTERRUPT-HANDLER 30
AK-RUNNING-OUTPUT-INTERRUPT-HANDLER 32
AK-STEP 22
AK-SVC-HANDLER 25
AK-TASKID 22
AK-TASKIDLUB 20
AK-WAITING-INPUT-INTERRUPT-HANDLER 30
AK-WAITING-OUTPUT-INTERRUPT-HANDLER 32
ARRAY-DEQ 102
ARRAY-ENQ 102
ARRAY-NONLAST 102
ARRAY-QEMPTYP 102
ARRAY-QFIRST 102
ARRAY-QFULLP 102
ARRAY-QINDEX-RELATION 101
ARRAY-QREPLACE 102
ARRAY-QUEUEP 101
CONTRACT-ARRAY-ENQ 105
CONTROL-ORACLE 93
CONTROL-ORACLE-STEP 94
CORRECTNESS-OF-ARRAY-DEQ 103
CORRECTNESS-OF-ARRAY-ENQ 103
CORRECTNESS-OF-ARRAY-NONLAST 104
CORRECTNESS-OF-ARRAY-QEMPTYP 104

124

CORRECTNESS-OF-ARRAY-QFIRST 104
CORRECTNESS-OF-ARRAY-QFULLP 104
CORRECTNESS-OF-ARRAY-QREPLACE 104
CORRECTNESS-OF-CLOCK-INTERRUPT-HANDLER 89
CORRECTNESS-OF-OPERATING-SYSTEM 10, 98
DECR-MOD 102
DELTA 101
DELTA-EQUALS-LENGTH-DELTA-SEGMENT 103
DELTA-SEGMENT 103
DEQ 18, 99
ENQ 18, 99
FINITE-NUMBER-LISTP 20
FINITE-NUMBERP 20
FOO 5
GETNTH 17
GOOD-ADDRESS-SPACE 87
GOOD-AK 20
GOOD-OS 75
GOOD-TASK 14
GOOD-TM 36
INCR-MOD 102
MAPUP-ADDRESS-SPACE 86
MAPUP-BASE 86
MAPUP-CC 86
MAPUP-CPU 87
MAPUP-CURRENT-TASK-TM-FETCH-EXECUTE 90
MAPUP-ERROR 86
MAPUP-LIMIT 86
MAPUP-OS 84
MAPUP-OS-IBUFFERS 85
MAPUP-OS-MBUFFERS 85
MAPUP-OS-OBUFFERS 85
MAPUP-OS-TASKS 85
MAPUP-QUEUE 103
MAPUP-QUEUE-LIST 84
MAPUP-REGS 86
MAPUP-SVCFLAG 86
MAPUP-SVCID 86
MAPUP-TASK 85
MAPUP-TASK-SEPARATION 91
MAPUP-TASKS 85
NONLAST 99
OS-CLOCK-INTERRUPT-HANDLER 79
OS-CODE 77
OS-CODE-ADDRESS 77
OS-CODE-LENGTH 78
OS-IMPLEMENTS-AK 84
OS-IMPLEMENTS-PARALLEL-TASKS 10, 98
OS-MACHINE-CODE 78
OS-ORACLE 82
OS-ORACLE-STEP 83
OS-PROCESSOR 76
OS-STEP 77
OS-STEP-IMPLEMENTS-AK-STEP 87
PROJECT 92
PUTNTH 17
QARRAY-FIELD 100
QCURRLENGTH-FIELD 100
QEMPTYP 18, 99
QFIRST 17, 99
QFULLP 18, 99

125

QHEAD-FIELD 100
QMAXLENGTH-FIELD 100
QREPLACE 18, 99
QTAIL-FIELD 100
REAL-ADDR 40
REAL-ADDR-NUM 40
REAL-ADDR-SOURCE 40
TABLE 76
TASK-ACTIVEP 15
TASK-EXECUTE-INPUT 17
TASK-EXECUTE-OUTPUT 17
TASK-EXECUTE-RECEIVE 16
TASK-EXECUTE-SEND 16
TASK-FETCH-EXECUTE 18
TASK-IBUFFERS 14
TASK-MBUFFERS 14
TASK-OBUFFERS 14
TASK-PRIVATE-STEP 15
TASK-PROCESSOR 15
TASK-STEP 15
TASK-UPDATE-CHANNELS 15
TIMED-TM-PROCESSOR 81
TIMED-TM-STEP 82
TM-CC-VALUE 43
TM-EXECUTE-ADD 43
TM-EXECUTE-CLOCK-INTERRUPT 41
TM-FETCH 39
TM-FETCH-EXECUTE 42
TM-FETCH-EXECUTE-COMMUTES-WITH-MAPUP-ADDRESS-SPACE 91
TM-FETCH-EXECUTE-MAPUP-ADDRESS-SPACE-SEPARATION 92
TM-FETCH-FROM-MEMORY 40
TM-FETCH-FROM-REGMEM 40
TM-FETCH-NEW-PC-ON-INTERRUPT 41
TM-IMPLEMENTS-OS 83
TM-IMPLEMENTS-TIMED-TM 83
TM-PORT-LENGTH 36
TM-POST-INPUT-INTERRUPT 38
TM-POST-INTERRUPT 37
TM-POST-OUTPUT-INTERRUPT 38
TM-PROCESSOR 37
TM-REGISTER-SAVE-AREA-ADDR 41
TM-SET-CC 39
TM-STEP 38
TM-STORE 40
TM-STORE-IN-MEMORY 40
TM-STORE-IN-REGMEM 40
TM-STORE-OLD-PSW-ON-INTERRUPT 41
TM-WORDLUB 36
TM-WORDSIZE 36
TRACE-CLOCK-INTERRUPT-HANDLER 80

126

References

[Bach 86] M.J. Bach.
The Design of the UNIX Operating System.
Prentice-Hall, Englewood Cliffs, N.J., 1986.

[Bell 71] C.G. Bell, A. Newell.
Computer Structures: Readings and Examples.
McGraw-Hill, New York, 1971.

[Bell 75] D.E. Bell, L.J. LaPadula.
Secure Computer Systems: Unified Exposition and Multics

Interpretation.
Technical Report MTR-2997, The Mitre Corporation, July, 1975.

[Berson 79] T.A. Berson, G.L. Barksdale, Jr.
KSOS - Development Methodology for a Secure Operating System.
In AFIPS Conference Proceedings, pages 365-371. 1979.

[Boebert 85] W.E. Boebert, W.D. Young, R.Y. Kain, S.A. Hansohn.
Secure Ada Target: Issues, System, Design, and Verification.
In Proceedings of the Symposium on Security and Privacy, pages

176-183. 1985.

[Boyer 79] R. S. Boyer, J S. Moore.
A Computational Logic.
Academic Press, New York, 1979.

[Boyer 81] R.S. Boyer, J S. Moore.
Metafunctions: Proving Them Correct and Using them Efficiently as

New Proof Procedures.
The Correctness Problem in Computer Science.
Academic Press, London, 1981.

[Boyer 85] R.S. Boyer, J S. Moore.
Integrating Decision Procedures into Heuristic Theorem Provers: A

Case Study of Linear Arithmetic.
Technical Report ICSCA-CMP-44, Institute for Computing Science,

University of Texas at Austin, January, 1985.

127

[Boyer 87] R.S. Boyer, J S. Moore.
The Addition of Bounded Quantification and Partial Functions to A

Computational Logic and its Theorem Prover.
Technical Report ICSCA-CMP-52, Institute for Computing Science,

University of Texas at Austin, January, 1987.

[BrinchHansen 70]
P. Brinch Hansen.
The Nucleus of a Multiprogramming System.
CACM 13(4):238-241,250, April, 1970.

[Dijkstra 68] E.W. Dijkstra.
The Structure of the "THE"-Multiprogramming System.
CACM 11(5):341-346, May, 1968.

[Feiertag 77] R.J. Feiertag, K.N. Levitt, L. Robinson.
Proving Multilevel Security of a System Design.
In Proceedings 6th ACM Symposium on Operating System Principles,

pages 57-65. 1977.

[Feiertag 79] R.J. Feiertag, P.G. Neumann.
The Foundations of a Provably Secure Operating System (PSOS).
In AFIPS Conference Proceedings, pages 329-334. 1979.

[Flon 77] L. Flon.
On the Design and Verification of Operating Systems.
PhD thesis, Carnegie-Mellon University, 1977.

[Fraim 83] L. Fraim.
Scomp: A Solution to the Multilevel Security Problem.
Computer 16(7):26-34, July, 1983.

[Gold 79] B.D. Gold, R.R.Linde, R.J. Peeler, M. Schaefer, J.F. Scheid, P.D.
Ward.
A Security Retrofit of VM/370.
In AFIPS Conference Proceedings, pages 335-344. 1979.

[Good 75] D.I. Good, R.L. London, W.W. Bledsoe.
An Interactive Program Verification System.
IEEE Transactions on Software Engineering 1(1):59-67, March, 1975.

[Good 79] D.I. Good, R.M. Cohen, J. Keeton-Williams.
Principles of Proving Concurrent Programs in Gypsy.
Technical Report ICSCA-CMP-15, Institute for Computing Science,

University of Texas at Austin, January, 1979.

[Good 86] D.I. Good, R.L. Akers, L.M. Smith.
Report on Gypsy 2.05.
Technical Report 1, Computational Logic, Inc, October, 1986.

128

[Hoare 72] C.A.R. Hoare.
Proof of Correctness of Data Representations.
Acta Informatica 1:271-281, 1972.

[Hunt 85] W.A. Hunt, Jr.
FM8501: A Verified Microprocessor.
Technical Report 47, Institute for Computing Science, University of

Texas at Austin, December, 1985.

[Joyner 76] W.H. Joyner, G.B. Leeman, W.C. Carter.
Automated Verification of Microprograms.
Technical Report, IBM Thomas J. Watson Research Center, April,

1976.

[Karp 83] R.A. Karp.
Proving Operating Systems Correct.
UMI Research Press, Ann Arbor, Michigan, 1983.

[Kemmerer 82] R.A. Kemmerer.
Formal Verification of an Operating System Security Kernel.
UMI Research Press, Ann Arbor, Michigan, 1982.

[Landwehr 83] C.E. Landwehr.
The Best Available Technologies for Computer Security.
Computer 16(7):86-100, July, 1983.

[Marcus 84] L. Marcus, S.D. Crocker, J.R. Landauer.
SDVS: A System for Verifying Microcode Correctness.
In The Seventh Annual Microprogramming Workshop, pages 246-255.

1984.

[McCauley 79] E.J. McCauley, P.J. Drongowski.
KSOS - The Design of a Secure Operating System.
In AFIPS Conference Proceedings, pages 345-353. 1979.

[Milner 71] R. Milner.
An Algebraic Definition of Simulation Between Programs.
Technical Report AIM-142, Stanford AI Project, February, 1971.

[Neumann 77] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, L. Robinson.
A Provably Secure Operating System: The System, Its Applications,

and Proofs.
Technical Report, SRI, February, 1977.

[Popek 78] G.J. Popek, D.A. Farber.
A Model for Verification of Data Security in Operating Systems.
CACM 21(9):737-749, September, 1978.

[Popek 79] G.J. Popek, M. Kampe, C.S. Kline, A. Stoughton, M. Urban,
E. Walton.
UCLA Secure Unix.
In AFIPS Conference Proceedings, pages 355-364. 1979.

129

[Robinson 77] L. Robinson, K.N. Levitt, P.G. Neumann, A.R. Saxena.
A Formal Methodology for the Design of Operating System Software.
Current Trends in Programming Methodology, Volume I: Software

Specification and Design.
Prentice-Hall, Englewood Cliffs, N.J., 1977.

[Rushby 81a] J. Rushby.
Proof of Separability: A Verification Technique for a Class of Security

Kernels.
Technical Report SSM/8, Computing Laboratory, University of

Newcastle upon Tyne, May, 1981.

[Rushby 81b] J. Rushby.
Specification and Design of Secure Systems.
Technical Report SSM/6, Computing Laboratory, University of

Newcastle upon Tyne, March, 1981.

[Saxena 76] A.R. Saxena.
A Verified Specification of a Hierarchical Operating System.
PhD thesis, Stanford University, 1976.

[Walker 80] B.J. Walker, R.A. Kemmerer, G.J. Popek.
Specification and Verification of the UCLA Unix Security Kernel.
CACM 23(2):118-131, February, 1980.

[Wulf 76] W.A. Wulf, R.L. London, M. Shaw.
Abstraction and Verification in Alphard: Introduction to Language

and Methodology.
Technical Report ISI/RR-76-46, USC Information Sciences Institute,

June, 1976.

VITA

William Richard Bevier, the son of M. Joan Hughes Bevier and Richard Herman Bevier,

was born in Geneva, Illinois on July 15, 1950. He entered Beloit College in Beloit,

Wisconsin in 1968, completing a B.A. in Mathematics in 1972. He completed an M.S. in

Computer Science at Northern Illinois University during the years 1974 to 1977, where

he was employed the following three years as an instructor in Computer Science. He

entered the The Graduate School of the University of Texas in 1980. In 1982 he married

Susan Francis Geis of Downers Grove, Illinois. Their son Henry Richard Bevier was born

in 1984, and their daughter Anne Elizabeth Bevier was born in 1987.

Permanent Address: 821 Harris Ave.
Austin, Texas 78705

This dissertation was typed by the author.

v

TABLE OF CONTENTS

Acknowledgements . iii

Abstract . iv

Table of Contents . v

Chapter 1. Introduction . 1

1.1. The Thesis . 1
1.2. Process Isolation . 3
1.3. A Characterization of this Work . 4
1.4. Plan of Dissertation . 5
1.5. The Boyer-Moore Logic and its Proof Checker . 5

Chapter 2. Defining Finite State Machines with Recursive Functions 7

2.1. Interpreters . 7
2.2. Interpreter Equivalence Theorems . 8
2.3. The KIT Proof Structure . 10

Chapter 3. The Specification of KIT . 13

3.1. The Task Layer . 13
3.2. The Abstract Kernel Layer . 20

3.2.1. The Clock Interrupt Handler . 24
3.2.2. The Error Handler . 25
3.2.3. The Supervisor Call Handler . 26

3.2.3.1. Send . 26
3.2.3.2. Receive . 27
3.2.3.3. Input . 28
3.2.3.4. Output . 29

3.2.4. The Input Interrupt Handler . 30
3.2.5. The Output Interrupt Handler . 32

vi

Chapter 4. The Implementation of KIT . 35

4.1. The Target Machine . 35
4.2. The Code . 46
4.3. Flowcharts . 60

Chapter 5. The Verification of KIT . 74

5.1. The Operating System Layer . 74
5.2. The Target Machine Implements the Operating System 82
5.3. The Operating System Implements the Abstract Kernel 85
5.4. The Abstract Kernel Implements Tasks . 93
5.5. Composing the Interpreter Equivalence Theorems 99

Chapter 6. Queues . 100

6.1. An Implementation of Queues . 100
6.2. The Correctness of the Queue Implementation . 104
6.3. Using the Queue Correctness Theorems . 105

Chapter 7. Conclusion . 107

7.1. Related Work . 107
7.1.1. Specification and Proof Methods . 107
7.1.2. Operating System Verification . 108
7.1.3. Microprogram Verification . 111

7.2. Comments and Summary . 111
7.2.1. The Size of the KIT Project . 111
7.2.2. The Significance of the KIT Project . 114
7.2.3. Future Work . 116

Appendix A. The Boyer-Moore Logic and its Theorem Prover2 118

A.1. The Logic . 118
A.2. The Mechanization of the Logic . 120

2Written by Boyer and Moore. Taken with permission from [Boyer 87].

vii

Appendix B. Index of Events in this Volume . 123

References . 126

VITA . 130

viii

LIST OF TABLES

Table 4-1: PMS Description of TM 36
Table 4-2: The TM Clock Interrupt 42
Table 4-3: TM’s Instruction Set 44
Table 4-4: Grammar for TM Assembler 48

ix

LIST OF FIGURES

Figure 2-1: Interpreter Equivalence 9
Figure 2-2: KIT Proof Structure 11
Figure 3-1: Network 14
Figure 4-1: Layout of Kernel 47
Figure 5-1: Revised KIT Proof Structure 75
Figure 5-2: Traces of TM and OS 82
Figure 5-3: AK Implements Parallel Tasks 94
Figure 6-1: Delta 102

