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We present a multitasking operating system kernel, called KIT, written in the
machine language of a uni-processor von Neumann computer. The kernel is proved to
implement, on this shared computer, a fixed number of conceptualy distributed
communicating processes. In addition to implementing processes, the kernel provides the
following verified services. process scheduling, error handling, message passing, and an
interface to asynchronous devices. The problem is stated in the Boyer-Moore logic, and

the proof is mechanically checked with the Boyer-Moore theorem prover.



Chapter 1

Introduction

1.1 TheThesis

Since Dijkstra’s report on the "THE"-multiprogramming system [Dijkstra68],
many operating systems have been designed as a hierarchy of cooperating processes.
Brinch Hansen [BrinchHansen70] named the lowest layer of such a hierarchy the
nucleus, or kernel. The purpose of a kernel is to simulate processes and implement
process communication. The virtual machine which results is a base for building higher

layers of an operating system.

To date, research in the verification of operating systems has not adequately
penetrated the kernel layer. It is possible to apply formal methods such as Hoare logic to
kernel verification, but the specifications which arise are large and tedious to prove. The
situation begs for mechanical aids. Some forma systems which can be used to specify
operating systems take a notion of process as a primitive. Those who attempt to use such
systems to verify an implementation typically rely upon low-level machine-dependent
procedures which cannot be verified with the formal methods under consideration. These

primitive procedures are usually critical to the correct implementation of a process.

The purpose of thiswork is to address the problem of operating systems kernel
verification. In particular, we are concerned with the correct implementation of processes.
We present a kernel, which we call "KIT", written in the assembler language of a uni-
processor computer with a typical von Neumann architecture. (The name KIT is not a
tortured acronym, but is intended to suggest the three words kernel, isolated, tasks.) KIT
is proved to implement, on a shared computer, a fixed number of conceptually distributed
communicating processes. In addition to implementing processes, the kernel provides the

following verified services:



* Process scheduling and allocation of CPU time,
» Response to program error conditions (e.g. unrecognized opcode),
* Single-word message passing among processes,

* Character /0O to asynchronous devices.

The result is an operating system kernel which correctly implements a set of
concurrent processes. A set of communicating processes will run as specified on KIT
provided there are no hardware errors. The operating system is proved not to introduce
implementation bugs. KIT and its specification are defined in the Boyer-Moore logic, and

the proof is mechanically checked with the Boyer-Moore theorem prover [ACL].

It is important to say what we do not handle. We take UNIX as a point of
comparison. The UNIX kernel as described by Bach[UNIX] contains two main
components: the file subsystem, which besides implementing a file structure also hides
the device interface from the user level; and the process control subsystem, which
includes process creation and deletion, process communication, process scheduling and

memory management.

KIT deas with a subset of these phenomena. It handles process scheduling,
process communication (by message passing), and a terminal device interface. Thereis
no dynamic creation of processes or communication channels. There is no file system.
KIT’s memory management is strictly that supplied by the hardware - it does not include
virtual memory. The hardware memory management is not assumed to be correct,
though. The verification of KIT requires a proof that the hardware protection mechanism

permits the implementation of isolated address spaces.

Therefore, while KIT is not big enough to be considered a kernel for a general
purpose operating system, it does confront some key operating system phenomena. It is
adequate for a small special purpose system such as a communications processor. KIT is
fully operational in that it runs on a machine which can be simulated in the Boyer-Moore
logic.



1.2 Process | solation

We identify a process with the machine state to which it has access. Processes
have two kinds of state: private and shared. There are two corresponding kinds of
transitions on a process. private, which aters only a process's private state, and

communication, which may alter the shared state and the private state of a process.

As explained later, the highest level specification for KIT is a definition of a
single communicating process, which defines some elementary message passing
primitives. These primitives are the only communication transitions available to a

process. The remaining transitions are required to be private ones.

Our goa is to prove that multiple instances of the process definition are
implemented by KIT running on a particular uni-processor von Neumann machine. In the
implementation, a process's private state consists of a segment of machine memory and
some CPU registers. Its shared state consists of some message buffers. The private
transitions are implemented as the set of non-privileged machine instructions.
Communication transitions are implemented as supervisor services implemented by KIT

routines.

At the specification level, processisolation is atrivial property. The proof that
atask’s private state can change only when it is active is a matter of examining a single
small definition. At the implementation level, the private state of a process is not
transparently isolated from others. It is not at all obvious that a private transition on one
process leaves other process states unchanged. To prove that KIT implements multiple

processes requires the following results.

» A machine instruction executed in user mode aters only the private state of
the current task. The private state of other tasks and the shared state are
protected.

* The services implemented by the kernel ater private and shared state only in
ways specified by the process definition.

The first result is largely a property of the machine architecture. We prove that



the protection mechanism of the target machine permits the implementation of private
state and private transitions as required by the process definition. The kernel guarantees

that some conditions required by the machine protection theorem are invariant.

The second result is obtained by verifying kernel code. We prove that state
changes made by each kernel routine correspond to changes to the abstract state at the

level of the process definition.

1.3 A Characterization of this Work

We wish to leave the reader with no doubt regarding one of our goals: to verify
KIT at the machine code level. Below we give a small portion of an assembler language
listing of the kernel. This is the portion which saves the state of the current task on an
interrupt.  We give the details of our implementation of KIT in chapter
IMPLEMENTATION, but we hope at this point to emphasize the level of verification we
perform. This code places the address of an entry in atask table into register 2, and saves
the task-visible state of the CPU of our target machine in that entry. Our verification
proves that the processor state is saved correctly so that the fiction that each process owns

the processor is maintained.

The assembler language representation of our code is not the object of proof.
We go yet lower. We verify the assembler output of the source code: a sequence of

numbers which our target machine is capable of interpreting.



SAVE- STATE

(move (2 tenp-r2) (1 r2)) ;; Save R2

(move (2 tenp-r3) (1 r3)) ;; Save R3

(move (1 r3) readyq) ;; R3 points to ready queue

(call gfirst) ;7 R2 has current task id
save-state-return

(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length

(add (1 r2) task-table) ;; R2 points to current task table entry
(move (3 r2 pe-field) (2 reg-save-area interrupt-pc-field))

(move (3 r2 sp-field) (2 reg-save-area interrupt-sp-field))

(move (3 r2 r2-field) (2 temp-r2))

(move (3 r2 r3-field) (2 temp-r3))

(move (3 r2 r4-field) (1 r4))

(move (3 r2 r5-field) (1 r5))

(move (3 r2 r6-field) (1r6))

(move (3 r2 r7-field) (1r7))

(add (1r2) flag-field) ; bunp index register

(move (3 r2) (2 reg-save-area interrupt-flag-field))

(move (1 r2) (2 tenp-r2)) ;; Restore R2 & R3.

(move (1 r3) (2 temp-r3)) ;; This is necessary for SVC interrupts.
(return)

1.4 Plan of Dissertation

The script of Boyer-Moore forms which defines and verifies KIT contains
approximately one thousand definitions and thirty-five hundred lemmas. This script is
the heart of the dissertation. The challenge is to explain this script in a coherent fashion.
In Chapter INTERPRETERS we discuss our approach to verifying KIT. Chapters
SPECIFICATION through VERIFICATION discuss the specification, implementation
and verification of KIT by examining the highest level definitions and theorems in the
script. Chapter QUEUES presents in detail the specification, implementation and
verification of queues, which permeate the kernel. Chapter CONCLUSION surveys
related work and summarizes our effort. Subsequent volumes contain the script and an
index of names in the script. Numbers printed with events in the text are indices into the

script. The index gives the page numbers on which events occur in this volume.

1.5 The Boyer-Moore Logic and its Proof Checker

A description of the Boyer-Moore logic and its proof checker appears in
Appendix BMLOGIC. The description is taken with permission from [quant]. We make
some comments on our usage of the theorem prover. These comments assume familiarity

with the logic and the theorem prover.



We make use of shells to define a number of record structures. We describe our
shells by giving the shell constructor, shell recognizer and shell accessors as shown in the
example of the shell Foo below. This example illustrates how we display an Abb- sHELL

event.

Shel | Definition.
Add the shell FOO with recogni zer FOO SHELLP,
defining the record structure <A, B>.

We place no type restrictions on the fields of a shell. The event abb- sHeLL in the
Boyer-Moore logic does not permit associating arbitrary predicates with fields. Since we
cannot say everything about a shell within the aob- sHeLL form, we choose to say nothing.
If we wish to restrict the fields of a shell to have certain values, we define a predicate in

the logic which recognizes a constrained shell.

We found that we could not manage our large script of events with globally
enabled rewrite rules and definitions. Each event in the script is therefore immediately
disabled. The bi sABLE events are not displayed in the script but should be understood to
be present. Our approach to guiding the theorem prover to a proof therefore requires
liberal use of enaBLE hints on lemmas. We found this actually to be quite congenial. A
given lemma typicaly immediately relies upon afairly small number of support lemmas
and definitions. When proposing a lemma to the theorem prover, we can guess at a
number of definitions and lemmas which must be enabled. The others we discover as we
see the prover fail. We found that using this approach we were always engaged in a
positive proof search and were never battling a rewriter which was taking us in a bad
direction due to an enabled but forgotten rule. As we became more and more familiar
with our script we found we were able to remember the names of many lemmas. We also

invented mechanical aids for discovering the names of applicable lemmas.

While a lemma typically relies on a small number of immediate supporters,
there are exceptions. To ease the burden of enabling large numbers of events, we created
anew event DEFTHEORY. The form ( DEFTHEORY <NAME> <LI ST- OF- NAMES>) binds a nameto a
list of earlier event names. In subsequent events, the hint (ENABLE- THEORY Nanve) enables

all events to which Nnave is bound.



Chapter 2

Defining Finite State Machines with Recursive Functions

KIT is verified by proving a correspondence between the behavior of two finite
state machines. An abstract finite state machine serves as an operational specification.
The kernel running on the bare computer is also defined as a finite state machine. In this
chapter we explain how we define finite state machines, and describe the form of the
correspondence theorem between two machines. We give a brief overview of the kernel

proof, stating the correspondence theorem which establishes KIT’ s correctness.

2.1 Interpreters

We define a finite state machine by an interpreter function. An interpreter
function models transitions to a machine over an arbitrary but finite time span. It is a
dyadic function of theformInt : S x O - S where Sisa set of machine statesand O is
a set of oracles for a machine. An oracle has two roles. It determines the finite time span
for which a machine invocation operates, and it may introduce non-deterministic state

changes into a machine, including communication with other machines.

In a smple situation the set of natural numbers N can be chosen as the oracle
set. An interpreter of the form Int : S x N — S models a machine which operates in
complete isolation. Such a machine can be defined in the Boyer-Moore logic as follows.
The function step advances the state of this machine. The expression (MACHI NEL STATE N)

is the state obtained by applying N successive applications of STEP to STATE.

Definition.
(MACHI NE1 STATE N)

(I F_( ZEROP N)
STATE
(MACHI NE1 ( STEP STATE) (SUBL N)))



In a more typical situation, an oracle is a list which represents a finite time-
sequenced series of external events impinging on a machine. The length of the oracle
determines the time span over which the machine operates. An element of the oracle is
either a single external event, or a symbol such as ' T indicating no event. The
interpreter consumes the next element of the oracle at each step, and runs until the oracle
is exhausted. The definition of macHi N2 gives the form of such an interpreter. In this
example, the function consuve-1NPUT consumes the next element of the oracle,

incorporating it into the state of the machine so that the input is visible to sTep.

Definition.
(MACHI NE2 STATE ORACLE)

(I'F (NOT (LI STP ORACLE))
STATE
(MACHI NE2 ( STEP ( CONSUME- | NPUT STATE ( CAR ORACLE)))
(CDR ORACLE)))

2.2 Interpreter Equivaence Theorems
In this section we describe several types of theorem which establish a
correspondence between two machines. We call such theorems interpreter equivalence

theorems.

We wish to define an implements relation on two machines. Let

Inty : Sy X Op - Syand Ints @ & x O — & beinterpreter functions which define
two machines M, and M. (The subscripts A and C are chosen to suggest abstract and
concrete machines.) Let MapUp : S - S, be an abstraction function which maps a
concrete state to an abstract state. We say that M implements M, if the following
theorem holds.

Osc O S

Oop O Oy
(1) Ooc O O such that

MapUp (Int: (S¢, 0¢)) = Inty (MapUp (Sp), 04)-

Figure INTERPRETER-EQUIVALENCE illustrates the correspondence which the
implements relation establishes.



Figure 2-1: Interpreter Equivalence

In this paper we prove a theorem of the form of (1). Notice that if there is a
function MapDown : S, - S, and O'sy O S, MapUp (MapDown (s,)) = s,, then from
(1) we get astronger relation given by (2).

Osy O Sy
o, O Op
(2 Ooc O O such that

MapUp (Int- (MapDown (s,), 0c)) = Inty (Sa, 04)-

Sometimes we find it convenient to reverse the quantification on the abstract
and concrete oracles. Then we get an interpreter equivalence theorem of the form given
by (3). Figure INTERPRETER-EQUIVALENCE also describes this formula.

Usc U &
Ooc O O¢
(3 0o, O Oy such that

MapUp (Int: (Sc, 0c)) = Inty (MapUp (S¢), 04)
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We cannot state (1), (2) or (3) in the quantifier-free Boyer-Moore logic. For (1)
we replace the existential variable o with a function coracLE which computes the oracle
required by Int. to match the behavior of Int,. Typicaly, thisis a function both of the
initial concrete state and the value of 0,. We re-state (1) in the Boyer-Moore logic as
follows. The predicate coop- csTATE identifies an element of the set of concrete machine

states.

Theorem | MPLEMENTS- RELATI ON:
(1 MPLI ES ( GOOD- CSTATE CSTATE)
(EQUAL (MAPUP (| NT-C CSTATE ( CORACLE CSTATE ORACLE)))
(I NT-A (MAPUP CSTATE) ORACLE)))

2.3 TheKIT Proof Structure

The man result in the verification of KIT is the theorem
CS- | MPLEMENTS- PARALLEL-TASKS. It is an interpreter equivalence theorem which
demonstrates that the behavior of a single task running under the kernel implements an
abstract definition of a process. In this theorem, the functions TAsk- PROCESSOR and
TM PROCESSOR are interpreter functions. The function PROJECT- I TH- TASK iS the mapping

function. Our goadl in this dissertation is to explain the content of this theorem.

Theor em {4623}. 0S- | MPLEMENTS- PARALLEL- TASKS:
(T MPLIES
(AND ( GOOD- 05 C5)
(PLI STP ORACLE)
(FI NI TE-NUMBERP | (LENGTH ( AK- PSTATES ( MAPUP-CS CS)))))
(EQUAL (PRQJECT-1TH TASK | (TM PROCESSOR CS ( 0S- ORACLE OS ORACLE)))
( TASK- PROCESSOR ( PROJECT- | TH- TASK | 0S)
|
( CONTROL- ORACLE | (MAPUP- 0S 0S) ORACLE))))

The problem is decomposed into two steps, as pictured in Figure
PROOF-STRUCTURE. An intermediate machine, called the abstract kernel gives an
operational specification for KIT. The proof of os- 1 MPLENMENTS- PARALLEL- TASKS iS a result
of the theorems AK- 1 MPLEMENTS- PARALLEL- TASKS and CORRECTNESS- OF- OPERATI NG- SYSTEM,
which handle the top and bottom interpreter equivalence theorems, respectively, of
Figure PROOF-STRUCTURE.
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Figure 2-2: KIT Proof Structure

Theor em {1689}.  AK- | MPLEMENTS- PARALLEL- TASKS (rewrite):
(TMPLIES (AND ( GOOD- AK AK)
(FI NI TE-NUMBERP | (LENGTH (AK- PSTATES AK))))
(EQUAL (PROJECT | (AK- PROCESSOR AK CRACLE))
( TASK- PROCESSOR ( PROJECT | AK)
|
( CONTROL- ORACLE | AK CRACLE))))

Theor em {4621}, CORRECTNESS- OF- OPERATI NG- SYSTEM (rewrite):
(TMPLIES (AND ( GOOD- OS 08)
(PLI STP ORACLE))
(EQUAL (MAPUP-CS ( TM PROCESSOR CS ( 0S- CRACLE OS ORACLE)))
( AK- PROCESSCR ( MAPUP- OS OS) ORACLE)))

The verification of KIT spans these layers of interpreters. The task layer is at
the top. It provides a definition of a single communicating process. The second layer, the
abstract kernel, gives the kernel specification. The abstract kernel contains a fixed
number of task states. The state space of the abstract kernel is such that the isolation of
task states is easily established. A function PrayecT maps the state of ith task out of the
abstract kernel and up to the task layer.
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The bottom layer defines the target machine. The target machine is a very
simple von Neumann computer. We are particularly interested in the state of a target
machine when loaded with the machine code for KIT. In such a machine state, defined by
the predicate coop- os, the implementations of tasks are not transparently isolated. We
must prove that they are isolated as defined by the abstract kernel. The function mapup- os
maps the kernel state up to an abstract kernel state. It not only maps up the state of each
task, but the state of al data structures (e.g. the ready queue) which the kernel uses to
manage tasks.



Chapter 3

The Specification of KIT

In this chapter we describe the finite state machines which define the task and
abstract kernel layers of Figure 2-2. These serve as specifications for KIT. For each layer
we describe a state set and an interpreter function. We occasionally make reference to

intended implementation details to foreshadow later chapters.

3.1 TheTask Layer
The top layer defines an independent process, called a task, capable of
communicating with other processes. We wish to prove correct a particular

implementation of tasks.

Figure NETWORK depicts an instance of a network structure of
communicating processes. This figure contains a star with five points, while our
definition alows an arbitrary but fixed number of points. Single-headed arrows indicate
communication in the direction of the arrowhead. Double-headed arrows abbreviate two
single-headed arrows, one going in each direction. Each node of Figure NETWORK
represents a process. The nodes at the points of the star are implemented as KIT tasks.
The nodes at the extreme perimeter, which communicate with tasks in one direction only,
areimplemented as I/O devices.

The task layer defines a single task’s view of this process network. The state
space of a task consists of two parts. a private state which is accessible only to the
owning task, and a shared state which is used for implementing inter-task
communication. We distinguish two categories of transitions on atask: private transitions

update only the private state, communication transitions update the shared state. The

13
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Figure 3-1: Network
state space of a task is described in the Boyer-Moore logic by the shell Task. The
TAsk- PSTATE field is the private state of atask. The Task- cHANNELS field is the shared state

containing an implementation of the communication network in which tasks participate.

Shel |l Definition {1386}.
Add the shell TASK with recogni zer TASK- SHELLP,
defining the record structure <TASK- PSTATE, TASK- CHANNELS>.

We remind readers unfamiliar with the Boyer-Moore logic that the form
(TASK A B) constructs a task state with private state A and channel state B. If x is a task
object, then the form (TAsk-PSTATE X) accesses its private state field, and

( TASK- CHANNELS X) accesses its channdl state.
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The TAsk- cHanNELS field contains an implementation of the network structure.
It is a three-tuple of tables of fixed-size buffers. The TAsk-1BUFFERS table is for
communication with input devices, the Task- oBUFFERs table is for communication with
output devices, and the Task- MBUFFERS table contains message buffers for communicating
with other tasks. The names we place on these fields merely suggest a lower-level
implementation. At this level, atask’s view of a device differs from its view of another

task only in the name space each occupies, as suggested by Figure 3-1.

Definition {1387}.
(TASK- | BUFFERS TASK) = (CAR ( TASK- CHANNELS TASK))

Definition {1388}.
(TASK- OBUFFERS TASK)

Definition {1389}.
( TASK- MBUFFERS TASK) = (CADDR ( TASK- CHANNELS TASK))

(CADR ( TASK- CHANNELS TASK))

The predicate coop- TAsk completes the definition of the state set of a task. It
recognizes a proper task state with given limits on the number of buffers. The predicates
GOOD- TASK- BUFFER- LI ST and Goop- TASK- BUFFER- TABLE place limits on the length of buffers
and the type of their contents. The predicate Goob- ADDRESS- SPACE recognizes a proper
target machine address space. It reveals our intention to implement the private state of a
task as an address space of some target machine. At this point, we offer no definition of

GOOD- ADDRESS- SPACE.

Definition {1433}.
(GOCD- TASK TASK | LENGTH OLENGTH M_ENGTH)

(AND ( TASK- SHELLP TASK)
( GOOD- ADDRESS- SPACE ( TASK- PSTATE TASK)
(LENGTH ( TM MEMORY ( TASK- PSTATE TASK))))
(EQUAL (LENGTH (TASK- | BUFFERS TASK)) | LENGTH)
( GOOD- TASK- BUFFER- LI ST ( TASK- | BUFFERS TASK)
( TASK- | BUFFER- CAPACI TY) )
(EQUAL (LENGTH ( TASK- OBUFFERS TASK)) OLENGTH)
( GOOD- TASK- BUFFER- LI ST ( TASK- OBUFFERS TASK)
( TASK- OBUFFER- CAPACI TY) )
(EQUAL (LENGTH ( TASK- MBUFFERS TASK)) M.ENGTH)
( GOOD- TASK- BUFFER- TABLE ( TASK- MBUFFERS TASK)
MLENGTH
( TASK- MBUFFER- CAPAC! TY) ) )

The interpreter function which defines the transitions on a task is called
TASK- PRoCESSOR. The first formal argument, Task, is atask state. For convenience, and this

is the only place we diverge from the pattern, we split this interpreter’s oracle into two



16

forma arguments. The argument 1 is the identifier of the task in the network which the
task can sense only through its shared state. The task identifier is a non-negative integer
in some bounded range. The argument oracLE is alist each of whose elementsis either T,
indicating that the task is active and should take a step on its own initiative, or not T,
indicating that the task is not active at this step. In the latter case, the oracle supplies a
triple which contains the value of the channel state at the end of the current step. We shall
see later that the kernel, which implements a fixed number of task states, can construct
the oracle argument to a task. Notice that the function TASk- UPDATE- CHANNELS, Which
updates atask state on a non-active step, preserves the private state of the task. Therefore
atask’s private state is not altered when the task is not active.

An active task step is defined by the function Task-ster. The predicate
TASK- COMVUNI CATI oNP determines if the current transition is a communication transition. If
S0, the task executes a communication step, otherwise a private step. A private step is
defined to be a fetch-execute operation. We thus require a task’s private state to contain
its own control state. There is nho requirement in this definition that only a single task is

active in any instant, but KIT runs on a single processor and implements tasks in this

way.
Definition {1425}.
( TASK- PROCESSOR TASK | ORACLE)

(I F (LI STP ORACLE)
(I F (TASK- ACTI VEP ( CAR ORACLE))
( TASK- PROCESSOR ( TASK- STEP TASK 1)
|

(CDR ORACLE))
( TASK- PROCESSOR ( TASK- UPDATE- CHANNELS TASK ( CAR ORACLE))
|
(CDR ORACLE)))
TASK)
Definition {1424}.
(TASK- ACTI VEP X) = (EQUAL X T)

Definition {1422}.
(TASK- STEP TASK 1)

(I'F ( TASK- COWUNI CATI ONP TASK)
( TASK- COMMUNI CATI ON- STEP TASK 1)
( TASK- PRI VATE- STEP TASK) )
Definition {1423}.
( TASK- UPDATE- CHANNELS TASK CHANNELS)

(TASK ( TASK- PSTATE TASK) CHANNELS)
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Definition {1421}.
( TASK- PRI VATE- STEP TASK)

(TASK ( TASK- FETCH EXECUTE ( TASK- PSTATE TASK))
( TASK- CHANNELS TASK) )

The definition of TAsk- covmuNi cATI on-STEP  specifies the communication
primitives which the kernel implements. These are the operations send, receive, input and
output. Send and receive access the message buffers, input the input buffers and output
the output buffers. There is one bounded message buffer for each <i,j> pair of task
identifiers. Message buffer <i,j> handles messages flowing from task i to task j.
Communication with input and output buffersis simpler. Task i can receive only from
input buffer i, and can send only to output buffer i. The units of information which are

passed are implemented as single target machine words.

The communication primitives are sensitive to empty and full buffers. An
attempt to retrieve information from an empty buffer results in no change to the task
state, so the next time the task is active it will be in the same state from which it initialy
tried to receive and will therefore attempt to retrieve from the same buffer again. We give
the definitions of send, receive, input and output below. The function
TASK- STORE- MESSAGE defines a convention by which messages are delivered to the private
state of a task. The function TAsk- UPDATE- CONTROL updates the control state of a task so

that the communication operation is stepped over.

Definition {1416}.
( TASK- EXECUTE- SEND MSG SRCI D DESTI D TASK)

(I F (QFULLP2 SRCI D DESTI D ( TASK- MBUFFERS TASK) ( TASK- MBUFFER- CAPACI TY))
TASK
(TASK ( TASK- UPDATE- CONTROL ( TASK- PSTATE TASK))
(LI ST (TASK- | BUFFERS TASK)
( TASK- OBUFFERS TASK)
(ENQ@ MBG SRCI D DESTI D ( TASK- MBUFFERS TASK)))))
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Definition {1417}.
( TASK- EXECUTE- RECEI VE SRCI D DESTI D TASK)

(I F (QEMPTYP2 SRCI D DESTI D ( TASK- MBUFFERS TASK))
TASK
(TASK ( TASK- UPDATE- CONTROL
( TASK- STORE- MESSAGE
(QFI RST2 SRCI D DESTI D ( TASK- MBUFFERS TASK) )
( TASK- PSTATE TASK)))
(LI ST (TASK- | BUFFERS TASK)
( TASK- OBUFFERS TASK)
(DEQ SRCI D DESTI D ( TASK- MBUFFERS TASK)))))

Definition {1418}.
( TASK- EXECUTE- OUTPUT CHAR | D TASK)

(IF (QFULLP (GETNTH I D ( TASK- OBUFFERS TASK)) ( TASK- OBUFFER- CAPAC! TY))
TASK
(TASK ( TASK- UPDATE- CONTROL ( TASK- PSTATE TASK))
(LI ST (TASK- | BUFFERS TASK)
(ENQ | TH BUFFER CHAR | D ( TASK- OBUFFERS TASK) )
( TASK- MBUFFERS TASK))))

Definition {1419}.
( TASK- EXECUTE- | NPUT | D TASK)

(I F (QEMPTYP (GETNTH I D ( TASK- | BUFFERS TASK)))
TASK
(TASK ( TASK- UPDATE- CONTROL
( TASK- STORE- MESSAGE
(QFI RST (GETNTH | D ( TASK- | BUFFERS TASK)))
( TASK- PSTATE TASK)))
(LI ST (DEQ | TH BUFFER | D ( TASK- | BUFFERS TASK))
( TASK- OBUFFERS TASK)
( TASK- MBUFFERS TASK) ) ))

The functions cetntH and pPuTnNTH are the list accessing primitives. GETNTH

accesses the nth element of alist. PuTNTH Stores avalue in the nth location in alist.

Definition {210}.
(GETNTH N L)

(IF (LISTP L)
(IF (ZEROP N)
(CAR L)
(GETNTH (SUBL N) (CDR L)))
0)

Definition {211}.
(PUTNTH V N L)

(I'F (LISTP L)
(I F (ZEROP N)
(CONS V (CDR L))
(CONS (CAR L)
(PUTNTH V (SUBL N) (CDR L))))
L)
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A list structure is used to represent buffers. Buffers are bounded FIFO queues.
The primitives which manipulate a buffer are given below. They are all obvious, except
perhaps qrepLACE, which replaces the last element of a queue with a new item. The
functions ENe, DEQ, QFIRST2, QFuLLP2 and ceEwPTYP2 mentioned above access a

2-dimensional table of buffers, and are defined in terms of the primitives listed below.

Definition {470}.
(QFIRST LIST) = (CAR LI ST)

Definition {471}.

(ENQ I TEM LI ST) = (APPEND LI ST (LI ST I TEM)
Definition {472}.
(DEQ LI ST) = (CDR LI ST)

Definition {473}.
(QEMPTYP LIST) = (EQUAL (LENGTH LI ST) 0)

Definition {474}.
(QFULLP LIST MAX) = (NOT (LESSP (LENGTH LI ST) MAX))

Definition {475}.
(QREPLACE | TEM QUEUE) = (ENQ | TEM ( NONLAST QUEUE))

The communication primitives are the only transitions explicitly defined at the
task layer. Recall that the definition of a private step is the application of a fetch-execute
operation to the private state of a task. We intend to define Task- FETCH EXECUTE t0 be
exactly a target machine's fetch-execute operation. The verification of KIT includes a
proof that the target machine's architecture implements isolated address spaces in a way

which satisfies this definition of atask.

Definition {1415}.
( TASK- FETCH- EXECUTE PSTATE) = ( TM FETCH EXECUTE PSTATE)

This concludes the description of our definition of a task. We have in mind a
network of communicating processes whose communication structure is suggested by
Figure 3-1. The task layer formalizes the view of this network taken by one of the nodes
at the points of the star. We intend to implement the network on a computer running a
multi-programmed operating system connected to a set of asynchronous input and output

devices. Figure 3-1 suggests clearly our intended implementation.

* Tasks are those processes which communicate via the message buffers. A
full star network among tasks is defined. They are completely implemented
by an operating system running on a computer.

* Input devices communicate only with tasks, and in one direction only:
device to task.
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* QOutput devices communicate only with tasks, and in one direction only: task
to device.

The task layer serves as a specification for the kernel. The channel state and
channel transitions are completely defined. Private state and private transitions are
defined to coincide with some implementation machine. Choosing the private state to be
implemented as an address space on a target machine is an idea common in operating
systems. The proof that our chosen target machine implements private states in a way
which satisfies our definition of a task is one of the most important results in the

verification of KIT.

3.2 The Abstract Kernel Layer

The task layer defines the communication transitions in which a task may
engage, but says nothing of how tasks are activated. The abstract kernel layer defines a
scheme for activating a finite set of tasks. The distinction between a task and an 1/0
device is made more concrete. Each task has a state known completely to the abstract
kernel, while the state of an 1/O device is unspecified. Devices communicate with the
kernel only through shared ports. A number of task management operations are specified,

including time slicing, scheduling and error handling.

The state space of the abstract kernel is described by the shell ak which defines
a 10-tuple. The ak- psTATEs field is a fixed-size array of the private states of tasks. The
private state of a task is easily proved to be isolated from the others by virtue of the
properties of array access. The fields Ak- | BUFFERS, Ak- OBUFFERS and Ak- MBUFFERS contain
the shared state and, when grouped into a list, are identical to the channel state at the task
layer. The remaining fields introduce the state required to implement task management
and communication with 1/0 devices. The ak- READYQ is a queue of task identifiers. Task
identifiers are integers in a range bounded by the number of tasks. The first element of
the ready queue is the identifier of the current task. The field ak- sTATUS is an array, one
element for each task, which gives the current status of the task. The ak- RvsTATE field isa
running/wait state flag. The kernel waits when no tasks are ready to run. The field
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AK- CLOCK is the program timer used to control time dlicing. The fields Ak-1 PorTs and

AK- oporTs define an array of input and output ports for communication with devices.

Shel |l Definition {1443}.

Add the shell AK w th recogni zer AK-SHELLP,

defining the record structure

<AK- PSTATES, AK-I|BUFFERS, AK-OBUFFERS, AK- MBUFFERS, AK- READYQ
AK- STATUS, AK- RWBTATE, AK-CLCCK, AK-|PORTS, AK-OPORTS>.

The predicate coop- Ak defines the abstract kernel state set. It places restrictions
on each field of an Ak shell. In addition, coop- Ak states two invariants on the abstract
kernel. First, the ready queue is a permutation of the set of ready tasks as defined by the
task status array. Second, the kernel is in the wait state if and only if the ready queue is
empty. These two invariants are required to prove that the predicate coop Ak is an
invariant on the abstract kernel interpreter. The constant function ak- Taski bLue defines

the number of tasks which Ak supports.

Definition {1444}.
(AK-TASKIDLUB) = 16

Definition {1532}.
(GOOD- AK AK)

(AND (AK- SHELLP AK)

(EQUAL (LENGTH (AK- PSTATES AK)) (AK- TASKI DLUB))
( GOOD- ADDRESS- SPACE- LI ST ( AK- PSTATES AK))
(EQUAL (LENGTH (AK- | BUFFERS AK)) (AK- TASKI DLUB))
( GOOD- TASK- BUFFER- LI ST ( AK- | BUFFERS AK) ( TASK- | BUFFER- CAPACI TY))
(EQUAL (LENGTH (AK- OBUFFERS AK)) (AK- TASKI DLUB))
( GOOD- TASK- BUFFER- LI ST ( AK- OBUFFERS AK) ( TASK- OBUFFER- CAPACI TY) )
(EQUAL (LENGTH (AK- MBUFFERS AK)) (AK- TASKI DLUB))
( GOOD- TASK- BUFFER- TABLE ( AK- MBUFFERS AK)

( AK- TASKI DLUB)

( TASK- MBUFFER- CAPAC! TY) )
(PLI STP ( AK- READYQ AK))
(LESSP (LENGTH (AK- READYQ AK)) (ADDL (AK- TASKI DLUB)))
(FI NI TE- NUMBER: LI STP ( AK- READYQ AK) ( AK- TASKI DLUB))
(EQUAL (LENGTH (AK- STATUS AK)) (AK- TASKI DLUB))
( GOOD- STATUS- LI ST ( AK- STATUS AK))
(FI NI TE- NUMBERP ( AK- RABTATE AK) 2)
(FI NI TE- NUMBERP ( AK- CLOCK AK) (TM WORDLUB))
(PLI STP (AK- | PORTS AK))
(EQUAL (LENGTH (AK-|PORTS AK)) (TM PORT- LENGTH))
( GOOD- TM | PORT- ARRAY ( AK- | PORTS AK))
(PLI STP ( AK- OPORTS AK))
(EQUAL (LENGTH (AK- OPORTS AK)) (TM PORT- LENGTH))
( GOOD- TM OPCRT- ARRAY ( AK- OPORTS AK) )
( PERVUTATI ON ( AK- READYQ AK) ( AK- READY- SET AK))
(I FF (AK-WAI TI NG AK) (QEMPTYP ( AK- READYQ AK))))

Definition {357}.
(FI'Nl TE-NUMBERP N LUB) = (AND (NUMBERP N) (LESSP N LUB))
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Definition {359}.
(FI'NI TE- NUMBER- LI STP L LUB)

(I'F (LISTP L)
(AND (FI NI TE- NUMBERP (CAR L) LUB)

( FI NI TE- NUMBER- LI STP (CDR L) LUB))
m

The interpreter function which defines the transitions on the abstract kernel is
AK- PROCESSOR. The argument Ak represents the state of the abstract kernel. The oracle
argument is a list. Each element of the list is either an input interrupt, an output interrupt
or neither. An input interrupt is a 2-tuple containing a device identifier and a character.
An output interrupt is a 1-tuple containing only a device identifier. The function
AK- PCST- | NTERRUPT incorporates an interrupt into the state of the machine by updating one
of the ports. Ak- PoST- I NTERRUPT raises the interrupt flag in an input port on an input
interrupt, and writes the character into a character buffer in the port. Similarly,
AK- POST- | NTERRUPT raiSes an interrupt in an output port on an output interrupt. When an
oracle element is not an 1/O interrupt, no state change is made by Ak- PosT- | NTERRUPT. The
abstract kernel is defined to post interrupts in a way identical to the target machine.
Chapter IMPLEMENTATION contains the formal details about the structure of ports and

I/O interrupt posting.

Definition {1516}.
( AK- PROCESSOR AK ORACLE)

(I'F (LI STP ORACLE)
( AK- PROCESSOR ( AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))

(CDR ORACLE))
AK)

The function aAk- sTerP defines the single-step function of the abstract kernel.
Input and output interrupt processing has the highest priority. The functions
AK- | NPUT- | NTERRUPT- HANDLER  @and  AK- QUTPUT- | NTERRUPT- HANDLER  define the input and
output interrupt handlers. ak- wai TI NG determines if the machine is in the wait state. If so,
no state change occurs. If none of the above conditions hold, the error status of the
current task is checked. The function ak- ERRoR- HANDLER defines the kernel’ s error handler.
A clock interrupt signals the end of the current task’s time dice.  The function

AK- CLOCK- | NTERRUPT- HANDLER defines the task switch on a clock interrupt. The function
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AK- SVC- | NTERRUPTP detects a request to call a kernel function in behalf of the current task
("svc" abbreviates "supervisor call"). The services provided by the kernel are exactly the
communication primitives of the task layer: send, receive, input and output. The function
AK- SVC- HANDLER defines these operations at the abstract kernel layer. Finaly, if none of the
above conditions hold, the current task takes a private step as defined by

AK- PRI VATE- STEP.

Like the private step function at the task layer, Ak- PRI VATE- STEP depends on the
target machine’'s fetch-execute function, T™ FETCH EXECUTE.  AK- PRI VATE- STEP applies
TM FETCH EXECUTE tO the current task’s private state. More precisely, the ith element of
the private state array is replaced by the application of Tm FETcH ExecUTE to that element,
where i is the identifier of the current task. The isolation of private states is a simple

result.

Definition {1514}.
(AK- STEP AK)

(I E (AK- | NPUT- | NTERRUPTP AK)
( AK- | NPUT- | NTERRUPT- HANDLER
( AK- | NTERRUPTI NG- | NPUT- PORT ( AK- | PORTS AK))
AK)

(I F (AK- QUTPUT- | NTERRUPTP AK)
( AK- OUTPUT- | NTERRUPT- HANDLER
( AK- | NTERRUPTI NG- OUTPUT- PORT ( AK- OPCRTS AK))
AK)

(I'F (AK-VAI TI NG AK)
AK

(I F (AK- ERRORP AK)
( AK- ERROR- HANDLER AK)

(I F (AK- CLOCK- | NTERRUPTP AK)
( AK- CLOCK- | NTERRUPT- HANDLER AK)

(I F (AK- SVC | NTERRUPTP AK)
( AK- SVC- HANDLER AK)

(AK- PRI VATE- STEP AK)))))))
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Definition {1505}.

( AK- PRI VATE- STEP AK)

(AK ( AK- FETCH EXECUTE ( AK- TASKI D AK) ( AK- PSTATES AK))
( AK- | BUFFERS AK)
( AK- OBUFFERS AK)
( AK- MBUFFERS AK)
( AK- READYQ AK)
(AK- STATUS AK)
( AK- RASTATE AK)
(SUB1 (AK-CLOCK AK))
(AK- | PORTS AK)
( AK- OPORTS AK) )

Definition {1461}.
( AK- FETCH EXECUTE | D PSTATES)

(PUTNTH ( TM FETCH EXECUTE ( GETNTH | D PSTATES))

D
PSTATES)

Definition {1446}.
(AK-TASKI D AK) = (QFI RST ( AK- READYQ AK))

An Ak step is an application of one of five interrupt functions, or is a private
step, or isanoop in the case of awaiting machine with no 1/0O interrupts. The definitions
of the five Ak interrupt handlers provide a specification for the services which must be
provided by the implementation of KIT on the target machine. The definition of a private
step establishes a constraint on the protection mechanism provided by the target
machine's architecture. In the remainder of this section we examine each of the five

interrupt handlers, beginning with the simplest.

3.2.1 The Clock Interrupt Handler

AK- CLOCK- | NTERRUPT- HANDLER ~ defines a  simple  round-robin  scheduling
algorithm. The identifier of the current task is the first element of the ready queue. On a
clock interrupt, the first element of the ready queue is removed and enqueued at the end
of the ready queue. The dispatcher senses an empty ready queue and sets the kernel state
accordingly: the kernel is put in the wait state if the ready queue is empty, otherwise the
kernel is put in the run state and the program clock isinitialized. On a clock interrupt the
length of the ready queue is not changed, so the former condition does not hold. The
same primitives which manipulate buffers also manipulate the ready queue. All are finite

gueues represented as list structures.
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Definition {1490}.
( AK- CLOCK- | NTERRUPT- HANDLER AK)

( AK- DI SPATCHER

(AK (AK- PSTATES AK)
( AK- | BUFFERS AK)
( AK- CBUFFERS AK)
( AK- MBUFFERS AK)
(ENQ (AK- TASKI D AK) (DEQ (AK- READYQ AK)))
( AK- STATUS AK)
( AK- RWSTATE AK)
( AK- CLOCK AK)
( AK- | PORTS AK)
( AK- CPORTS AK)))

Definition {1489}.
( AK- DI SPATCHER AK)

(AK (AK- PSTATES AK)

( AK- | BUFFERS AK)

( AK- OBUFFERS AK)

( AK- MBUFFERS AK)

( AK- READYQ AK)

( AK- STATUS AK)

(I F (QEMPTYP ( AK- READYQ AK))
( AK- WAI T- STATE)
( AK- RUN- STATE) )

(I F (QEMPTYP ( AK- READYQ AK))
( AK- CLOCK AK)
( AK- TI ME- SLI CE))

( AK- | PORTS AK)

( AK- OPORTS AK))

3.2.2 The Error Handler

A clock interrupt does not change the length of the ready queue or the status of
atask. The error trap mechanism illustrates these situations. The error handler aborts the
current task and prevents it from running again by removing its identifier from the head
of the ready queue and updating its status to indicate an error condition. The status is
updated by storing the 2-tuple (LI ST (Ak- ERROR- STATUS) 0) in the entry of Ak- sTATUS
indexed by the current task identifier. An element of the status array is a 2-tuple
(status-flag taskid). A task’s status is one of ready, error, waiting-to-send,
waiting-to-receive, waiting-to-input or waiting-to-output. When atask is marked waiting
to send or receive, the identifier of the task upon which it is waiting is recorded in the
second element of the status tuple. For the other status-flag values a o is stored in the

second element.
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Definition {1491}.
( AK- ERROR- HANDLER AK)

( AK- DI SPATCHER
(AK (AK- PSTATES AK)
( AK- | BUFFERS AK)
( AK- OBUFFERS AK)
( AK- MBUFFERS AK)
(DEQ ( AK- READYQ AK))
(PUTNTH (LI ST ( AK- ERROR- STATUS) 0)
(AK- TASKI D AK)
( AK- STATUS AK))
( AK- RASTATE AK)
( AK- CLOCK AK)
(AK- 1 PORTS AK)
( AK- OPORTS AK)))
3.2.3 The Supervisor Call Handler
The function aAk- svc- HANDLER interprets a request for one of a set of services
provided by the kernel. These are exactly the communication primitives defined at the
task layer: send, receive, input and output. Ak- svc- HANDLER itself is just a case split on the
requested service. The functions Ak- sral b, Ak- DESTI D and Ak- NESSAGE define conventions

by which tasks pass arguments to the supervisor call handler.

The functions which define the services are given below. These services
perform transitions on the buffers. In addition, they define operations on the kernel data

structures which manage task activations.

Definition {1504}.
(AK- SVC- HANDLER AK)

(I'F (AK- SEND- | NSTRUCTI ONP AK)
( AK- EXECUTE- SEND ( AK- MESSAGE AK) (AK- TASKI D AK) (AK-DESTID AK) AK)

(I F (AK- RECEI VE- | NSTRUCTI ONP AK)
( AK- EXECUTE- RECEI VE ( AK- SRCI D AK) (AK- TASKI D AK) AK)

(I F (AK- TYO | NSTRUCTI ONP AK)
( AK- EXECUTE- OUTPUT ( AK- MESSAGE AK) (AK- TASKI D AK) AK)

( AK- EXECUTE- | NPUT ( AK- TASKI D AK) AK))))

3.2.3.1. Send
The form (Ak- EXECUTE- SEND MBG SRCID DESTID AK) Qives an Ak state which
defines the send transition. If the buffer which implements communication from task

sral D to task pesTi Dis full, then the sending task is made to wait. Otherwise, the message
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is delivered and the destination task is made ready if it had been waiting for a message
from the sender. The function Ak- UPDATE- conTROL updates the control state of the sending

task to step beyond the send request.

Definition {1494}.
( AK- EXECUTE- SEND MSG SRCI D DESTI D AK)

(I F (QFULLP2 SRCI D DESTI D (AK- MBUFFERS AK) ( TASK- MBUFFER- CAPACI TY))
( AK- BLOCK- SEND SRCI D DESTI D AK)
( AK- EXECUTE- SEND- TO- BUFFER MSG SRCI D DESTI D AK))

Definition {1492},
(AK- BLOCK- SEND SRCI D DESTI D AK)

( AK- DI SPATCHER
(AK (AK- PSTATES AK)

( AK- | BUFFERS AK)

( AK- OBUFFERS AK)

( AK- MBUFFERS AK)

( DEQ ( AK- READYQ AK))

(PUTNTH (LI ST ( AK- SEND- STATUS) DESTI D)
SRCI D
( AK- STATUS AK))

( AK- RWSTATE AK)

( AK- CLOCK AK)

( AK- | PORTS AK)

( AK- OPORTS AK)))

Definition {1493}.
( AK- EXECUTE- SEND- TO- BUFFER MSG SRCI D DESTI D AK)

( AK ( AK- UPDATE- CONTROL SRCI D ( AK- PSTATES AK))
( AK- | BUFFERS AK)
( AK- OBUFFERS AK)
(ENQ@ MBG SRCI D DESTI D ( AK- MBUFFERS AK))
(I F (AK-WAI TI NG TO RECEI VEP SRCI D DESTI D AK)
( ENQ DESTI D ( AK- READYQ AK))
( AK- READYQ AK))
(I F (AK-WAI TI NG TO RECEI VEP SRCI D DESTI D AK)
(PUTNTH (LI ST ( AK- READY- STATUS) 0)
DESTI D
( AK- STATUS AK))
( AK- STATUS AK))
( AK- RWBTATE AK)
( AK- CLOCK AK)
( AK- | PORTS AK)
( AK- CPORTS AK) )

3.2.3.2. Receive

The form (AK- EXECUTE- RECEI VE SRCID DESTID AK) Qives an Ak state which
defines the receive operation. If the buffer which implements communication from task
SRcl D to task DESTI D is empty, then the receiving task is made to wait. Otherwise, the
message is dequeued from the buffer and delivered to the receiving task. If the sender is

waiting on a full buffer, it is made ready again. The function Ak- sToRe- MesSsAGE defines

the convention by which messages are delivered to the private state of a task.
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Definition {1497}.
( AK- EXECUTE- RECEI VE SRCI D DESTI D AK)
(1 F (QEMPTYP2 SRCI D DESTI D ( AK- MBUFFERS AK))
( AK- BLOCK- RECEI VE SRCI D DESTI D AK)
( AK- EXECUTE- RECEI VE- FROM BUFFER SRCI D DESTI D AK))

Definition {1495}.
( AK- BLOCK- RECEI VE SRCI D DESTI D AK)

( AK- DI SPATCHER
(AK ( AK- PSTATES AK)

( AK- | BUFFERS AK)

( AK- OBUFFERS AK)

( AK- MBUFFERS AK)

( DEQ ( AK- READYQ AK))

(PUTNTH (LI ST ( AK- RECEI VE- STATUS) SRCI D)
DESTI D
( AK- STATUS AK))

( AK- RWBTATE AK)

( AK- CLOCK AK)

( AK- | PORTS AK)

( AK- CPORTS AK)))

Definition {1496}.
( AK- EXECUTE- RECEI VE- FROM BUFFER SRCI D DESTI D AK)

( AK ( AK- UPDATE- CONTROL
DESTI D
( AK- STORE- MESSAGE ( QFI RST2 SRCI D DESTI D ( AK- MBUFFERS AK))
DESTI D
( AK- PSTATES AK)))
( AK- | BUFFERS AK)
( AK- OBUFFERS AK)
(DEQ SRCI D DESTI D (AK- MBUFFERS AK))
(I F (AK-WAI TI NG TO- SENDP SRCI D DESTI D AK)
(ENQ SRCI D ( AK- READYQ AK))
( AK- READYQ AK))
(I F (AK-WAI TI NG TO- SENDP SRCI D DESTI D AK)
(PUTNTH (LI ST (AK- READY- STATUS) 0)
SRCI D
( AK- STATUS AK))
( AK- STATUS AK))
( AK- RWBTATE AK)
( AK- CLOCK AK)
( AK- | PORTS AK)
( AK- CPORTS AK))

3.2.3.3. Input

The input supervisor service handles a request by atask for a character from an
input device. The abstract kernel buffers characters arriving from each input port and
delivers them to the owning task on request. The function aAk- Execute- | NPUT defines the
input supervisor service. It accesses the input buffer indexed by the formal argument i b.

If the buffer is empty, it blocks the requesting task. Otherwise, it removes the first
character on the device input buffer and deliversit to the requesting task.
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Definition {1503}.
( AK- EXECUTE- | NPUT | D AK)

(I F (QEMPTYP (GETNTH I D ( AK- | BUFFERS AK)))
( AK- BLOCK- | NPUT | D AK)
( AK- EXECUTE- | NPUT- FROMt BUFFER | D AK))

Definition {1501}.
(AK- BLOCK- I NPUT | D AK)

( AK- DI SPATCHER
(AK ( AK- PSTATES AK)

( AK- | BUFFERS AK)

( AK- OBUFFERS AK)

( AK- MBUFFERS AK)

( DEQ ( AK- READYQ AK))

(PUTNTH (LI ST (AK- | NPUT- STATUS) 0)
ID
( AK- STATUS AK))

( AK- RWBTATE AK)

( AK- CLOCK AK)

( AK- | PORTS AK)

( AK- CPORTS AK)))

Definition {1502}.
( AK- EXECUTE- | NPUT- FROMt BUFFER | D AK)

( AK ( AK- UPDATE- CONTROL
ID
( AK- STORE- MESSAGE ( QFI RST (GETNTH | D ( AK- | BUFFERS AK)))
D
( AK- PSTATES AK)))
(PUTNTH (DEQ ( GETNTH | D ( AK- | BUFFERS AK)))
D
( AK- | BUFFERS AK) )
( AK- OBUFFERS AK)
( AK- MBUFFERS AK)
( AK- READYQ AK)
( AK- STATUS AK)
( AK- RWSTATE AK)
( AK- CLOCK AK)
( AK- | PORTS AK)
( AK- OPORTS AK))

3.2.3.4. Output

The output supervisor service handles a request by atask to send a character to
an output device. The abstract kernel buffers characters waiting to be sent to a device,
delivering one each time an output buffer is non-empty and its associated device is idle.
The function ak- ExecuTE- autPuT defines the output supervisor service. It accesses the
output buffer indexed by the formal argument 1 p. If the buffer is full, the requesting task
is blocked. Otherwise, a character is enqueued on the buffer. If the associated device is
idle, an output interrupt is triggered, causing the output interrupt handler to initiate an
output to the device. 1/0O ports and 1/0 interrupts at the abstract kernel layer are defined to
coincide with the implementation at the target machine layer.
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Definition {1500}.
( AK- EXECUTE- QUTPUT CHAR | D AK)

(I F (QFULLP (GETNTH | D (AK- OBUFFERS AK))
( TASK- OBUFFER- CAPAC! TY) )
( AK- BLOCK- QUTPUT | D AK)
( AK- EXECUTE- OUTPUT- TO- BUFFER CHAR | D AK))

Definition {1498}.
( AK- BLOCK- QUTPUT | D AK)

( AK- DI SPATCHER
(AK (AK- PSTATES AK)

( AK- | BUFFERS AK)

( AK- OBUFFERS AK)

( AK- MBUFFERS AK)

( DEQ ( AK- READYQ AK))

(PUTNTH (LI ST ( AK- OUTPUT- STATUS) 0)
ID
( AK- STATUS AK))

( AK- RWSTATE AK)

( AK- CLOCK AK)

( AK- | PORTS AK)

( AK- OPORTS AK)))

Definition {1499}.
( AK- EXECUTE- QUTPUT- TO- BUFFER CHAR | D AK)

( AK ( AK- UPDATE- CONTROL | D ( AK- PSTATES AK))

( AK- | BUFFERS AK)

(ENQ | TH BUFFER CHAR | D ( AK- OBUFFERS AK))

( AK- MBUFFERS AK)

( AK- READYQ AK)

( AK- STATUS AK)

( AK- RWSTATE AK)

( AK- CLOCK AK)

( AK- | PORTS AK)

(I F (AK- OPORT- | DLEP | D (AK- OPORTS AK))
( AK- POST- QUTPUT- | NTERRUPT | D ( AK- OPCRTS AK))
( AK- OPORTS AK)))

3.2.4 The Input Interrupt Handler

An input interrupt is a non-deterministic event supplied by ak’'s oracle. It
signals the arrival of a character from an input device. The main functions of the input
interrupt handler are: to enqueue the arriving input character on the designated buffer, to
clear the input interrupt signal, and to make the owning task ready if it is waiting for
input. The state in which the input interrupt handler leaves the kernel depends on whether
the kernel is waiting. When waiting, the ready queue is empty. If the task which owns the
interrupting input device is waiting on input that task is made ready and is dispatched,
otherwise the kernel remains waiting. If the kernel is running, the current task is resumed
without calling the dispatcher.
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Definition {1509}.

(AK- I NPUT- | NTERRUPT- HANDLER | D AK)

(1 F (AK-WAI TI NG AK)
(AK- VWAI TI NG | NPUT- | NTERRUPT- HANDLER | D AK)
( AK- RUNNI NG- | NPUT- | NTERRUPT- HANDLER | D AK))

Definition {1507}.
(AK- VWAI TI NG | NPUT- | NTERRUPT- HANDLER | D AK)

( AK- DI SPATCHER
(AK ( AK- PSTATES AK)

( AK- UPDATE- | BUFFER | D AK)

( AK- OBUFFERS AK)

( AK- MBUFFERS AK)

(I F (AK-WAI TI NG TO- | NPUTP | D AK)
(ENQ I D ( AK- READYQ AK))
( AK- READYQ AK) )

(I'F (AK-WAI TI NG TO- | NPUTP | D AK)
(PUTNTH (LI ST ( AK- READY- STATUS) 0) | D (AK- STATUS AK))
( AK- STATUS AK))

( AK- RWSTATE AK)

( AK- CLOCK AK)

( AK- CLEAR- | NPUT- | NTERRUPT | D ( AK- | PORTS AK))

( AK- CPORTS AK)))

Definition {1508}.
(AK- RUNNI NG | NPUT- | NTERRUPT- HANDLER | D AK)
(AK ( AK- PSTATES AK)
( AK- UPDATE- | BUFFER | D AK)
( AK- OBUFFERS AK)
( AK- MBUFFERS AK)
(I F (AK-WAI TI NG TO- | NPUTP | D AK)
(ENQ I D ( AK- READYQ AK))
( AK- READYQ AK) )
(I F (AK-WAI TI NG TO- | NPUTP | D AK)
(PUTNTH (LI ST ( AK- READY- STATUS) 0) | D (AK- STATUS AK))
( AK- STATUS AK))
( AK- RWSTATE AK)
( AK- CLOCK AK)
( AK- CLEAR- | NPUT- | NTERRUPT | D ( AK- | PORTS AK))
( AK- OPORTS AK))

The function Ak- UPDATE- | BUFFER updates the input buffer. The 1/O interface
does not alow the kernel to make an input device wait. The condition of overflow is
signaled by delivering to the buffer an overflow character, which is a message larger than
the greatest possible character. This gives the owning task a method of detecting
overflow. If an input buffer is full, Ak- UPDATE- | BUFFER replaces the last character on the
gueue with an overflow character. If the buffer is not full but the input port indicates an
overflow, an overflow character is enqueued on the input buffer. Otherwise, no overflow

error has occurred either at the buffer or port, and the character is enqueued.
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3.2.5 The Output Interrupt Handler

An output interrupt signals that an output has been completed and an output
device is idle. Our definition of the abstract kernel is not comprehensive enough to
specify the precise relationship between a command to start output to a device and the
corresponding output interrupt signaling completion of the output. Output interrupts can

be treated only as non-deterministic events supplied by A<’ s oracle.

An output interrupt transition is defined as follows. In all cases, the output
interrupt is cleared. If the corresponding output buffer is non-empty, then a new output is
started. If the owning task had been waiting on a full output buffer, it is made ready
again. The conditions of full buffer and empty buffer are mutually exclusive, so a task
cannot be waiting when a buffer is empty. Like the input interrupt handler, the state in
which the output interrupt handler leaves the kernel also depends on whether or not the
kernel is waiting. When waiting, the ready queue is empty. If the task which owns the
interrupting output device is waiting on output that task is made ready and is dispatched,
otherwise the kernel remains waiting. If the kernel is running, the current task is resumed

without calling the dispatcher.

Definition {1512}.
( AK- QUTPUT- | NTERRUPT- HANDLER | D AK)

(I F (AK-WAI TI NG AK)
( AK- WAI TI NG OUTPUT- | NTERRUPT- HANDLER | D AK)
( AK- RUNNI NG- OUTPUT- | NTERRUPT- HANDLER | D AK))
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Definition {1510}.
(AK- WAI TI NG QUTPUT- | NTERRUPT- HANDLER | D AK)

( AK- DI SPATCHER
(AK (AK- PSTATES AK)

( AK- | BUFFERS AK)

(I F (QEMPTYP (GETNTH | D ( AK- OBUFFERS AK)))
( AK- OBUFFERS AK)
(DEQ | TH- BUFFER | D ( AK- OBUFFERS AK)))

( AK- MBUFFERS AK)

(I F (AK-WAI TI NG TO- QUTPUTP | D AK)
(ENQ I D ( AK- READYQ AK))
( AK- READYQ AK) )

(I F (AK-WAI TI NG TO- QUTPUTP | D AK)
(PUTNTH ’ (0 0) ID (AK- STATUS AK))
( AK- STATUS AK))

( AK- RWBTATE AK)

( AK- CLOCK AK)

( AK- | PORTS AK)

(I F (QEMPTYP (GETNTH | D ( AK- OBUFFERS AK)))
( AK- CLEAR- OUTPUT- | NTERRUPT | D ( AK- OPORTS AK))
( AK- START- OUTPUT ( QFI RST ( GETNTH | D ( AK- OBUFFERS AK)))

D
( AK- OPORTS AK)))))

Definition {1511}.
( AK- RUNNI NG- QUTPUT- | NTERRUPT- HANDLER | D AK)

(AK (AK- PSTATES AK)
( AK- | BUFFERS AK)
(I F (QEMPTYP (GETNTH | D ( AK- OBUFFERS AK)))
( AK- OBUFFERS AK)
(DEQ | TH- BUFFER | D ( AK- OBUFFERS AK)))
( AK- MBUFFERS AK)
(I F (AK-WAI TI NG TO- QUTPUTP | D AK)
(ENQ I D ( AK- READYQ AK))
( AK- READYQ AK) )
(I F (AK-WAI TI NG TO- OUTPUTP | D AK)
(PUTNTH * (0 0) ID (AK- STATUS AK))
( AK- STATUS AK))
( AK- RWBTATE AK)
( AK- CLOCK AK)
( AK- | PORTS AK)
(I F (QEMPTYP (GETNTH | D ( AK- OBUFFERS AK)))
( AK- CLEAR- OUTPUT- | NTERRUPT | D ( AK- OPORTS AK))
( AK- START- OUTPUT ( QFI RST (GETNTH | D ( AK- OBUFFERS AK)))
ID
( AK- OPORTS AK))))

This concludes our excursion through the definition of the abstract kernel. The

remaining details of the kernel’s definition occur in the proof script. Like the task layer,

AK relies on the target machine' s definition of the fetch-execute step on the private state of

a task. It also uses the target machine’'s implementation of communication with 1/0

devices. Akisabstract in the following ways.

* The private state spaces of tasks are transparently isolated. This provides an
important constraint on the implementation.



 The data structures used to manage tasks are represented as high-level list
structures.

* The transitions on the kernel state are specified functionally. All kernel
operations take place in asingle abstract step.



Chapter 4

The Implementation of KIT

In this chapter we define the target machine upon which we implement KIT.
We then present the kernel source code. We include the code in the text not because we
find it particularly readable, but because the existence of this verified low-level code is

one of the most important characteristics of thiswork.

4.1 The Target Machine

We arrive at the bottom rung of the ladder in Figure 2-2 to discuss the target
machine Tm The target machine is a smple von Neumann computer. It is not based on
any existing physical machine because we are not interested in the task of formalizing an

existing machine. Weintend for Tmto be straightforward.

™ has simple architectural support for multi-programming. This support
consists of a base/limit register pair mechanism for memory protection, and a
supervisor/user mode flag for protecting privileged operations. T™is a 16-hit machine.
Main memory consists of 216 16-bit words. The processor state contains 8 genera
purpose registers, one of which is the program counter and another a stack pointer. There
are four flag fields: a 2-bit condition code, a 6-bit error code, a supervisor call flag, and a
7-bit supervisor call identifier. Processor registers which are accessible only in the
supervisor mode are the base/limit register pair, a supervisor address limit register, the
supervisor/user mode flag, a running/wait state flag and the program clock. T™is capable
of asynchronous character 1/O. It communicates with 16 input devices and 16 output
devices by an array of input ports and an array of output ports. Table PMS gives a

summary of the Tmarchitecturein PM S notation [PMS§].
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Menory state

Mp[ 0: 65535] <0: 15>

36

mai n menory of 2 16-bit words

8 general purpose registers;
R[0] is the PC,c R1] is the SP

16-bit address base register
16-bit address limt register
16-bit address defining the upper limt
of the supervisor based at address O in

Pc state
R[ 0: 7] <0: 15>
CC<0: 1> 2-bit condition code
ERROR<0: 5> 6-bit error code
SVCFLAG 1-bit svc call flag
SVCI D<0: 6> 7-bit svc identifier
BASE<0: 15>
LI M T<0: 15>
SLI M T<0: 15>

menory

SVMODE supervi sor/user node flag
RWSTATE running/wait state flag
CLOCK<0: 15>

program cl ock used for time slicing

I/Ointerface

| PORTS[ 0: 15] (<0: 1>; <0: 1>; <0: 7>)

OPORTSJ[ 0: 15] (<0: 1>; <0: 1>; <0: 7>)

an array of 16 input ports;
each port is a 3-tuple
(interrupt-flag, error-flag, character-buffer)

an array of 16 output ports;

PMS.

each port is a 3-tuple

(interrupt-flag, busy-flag, character-buffer)

Table4-1. PMS Description of TM

The structure of the target machine is described in the Boyer-Moore logic by
the shell ™M The fields defined by the shell correspond to the fields described in Table

Shell Definition {668}.

Add the shell TMw th recogni zer TM SHELLP,

defining the record structure

<TM MEMORY, TM REGS, TM CC, TM ERROR, TM SVCFLAG, TM SVCI D,

TMBASE, TMLIMT, TMSLIMT, TM SVMODE, TM RWSTATE, TM CLOCK,

TM | PORTS, TM OPORTS>.

The predicate coop- ™™ defines the target machine state space.

Each ™

component is represented as a natural number, alist of natural numbers, or, in the case of

I/0 ports, atuple of natural numbers. The maximum sizes of the components are defined

by constant functions, some of which are given below. This is a dightly more abstract
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representation of a machine than one which uses sequences of bits (bit vectors). We
justify this level of abstraction by observing that there is a 1-1 mapping between bit
vectors of a given size and the set of natura numbers from O to the maximum number
representable by the bit vector. Therefore the natural number representation for a
machine is isomorphic to a bit vector representation. In addition, if we had chosen to go
al the way down to a bit vector representation we would have been obliged to verify TM's

ALU, aproblem treated by Hunt [Hunt85] and beyond the scope of this work.

Definition {907}.
(GOO0D-TM T™

(AND (TM SHELLP T™
(PLI STP (TM MEMORY TM))
(EQUAL (LENGTH (TM MEMORY TM) (TM MEMLENGTH))
(FI NI TE- NUMBER- LI STP ( TM MEMORY TM

( TM WORDLUB) )

(PLI STP (TM REGS TM)
(EQUAL (LENGTH (TM REGS TM) (TM REGLENGTH))
(FI NI TE- NUMBER- LI STP (TM REGS TM ( TM WORDLUB))
(FI NI TE- NUMBERP (TM-CC TM) ( TM CCLUB))
(FI NI TE- NUMBERP (TM ERROR TM) ( TM ERRORLUB))
(FI NI TE- NUMBERP ( TM SVCFLAG TM ( TM SVCFLAGLUB))
(FI NI TE- NUMBERP (TM SVCID TM (TM SVCI DLUB))
(FI NI TE- NUMBERP ( TM BASE TM) (TM WORDLUB))
(FINI TE-NUMBERP (TMLIMT TM (TM WORDLUB))
(FI NI TE-NUMBERP (TM-SLIMT TM ( TM WORDLUB))
(FI NI TE- NUMBERP ( TM SVYMODE TM) 2)
(FI NI TE- NUMBERP ( TM RWBTATE TM) 2)
(FI NI TE- NUMBERP (TM CLOCK TM) (TM WORDLUB))
(PLI STP (TM | PORTS TM)
(EQUAL (LENGTH (TM | PORTS TM) ( TM PORT- LENGTH) )
( GOOD- TM | PORT- ARRAY ( TM | PORTS TM))
(PLI STP (TM OPORTS TM)
(EQUAL (LENGTH (TM OPORTS TM)) ( TM PORT- LENGTH))
( GOOD- TM OPORT- ARRAY ( TM OPORTS TM) ) )

Definition {613}.
(TM WORDSI ZE) = 16

Definition {614}.
(TMWORDLUB) = (EXP 2 (TM WORDSI ZE))

Definition {682}.
(TM PORT-LENGTH) = 16

The structure of input and output ports is formalized using shells. An input port
is a 3-tuple containing an interrupt flag, an error flag which is used to indicate overflow
on the input port, and a character buffer. An output port is a 3-tuple containing an
interrupt flag, a busy flag, and a character buffer. The functions coop- T™ | PORT- ARRAY and
GOOD- TM OPORT- ARRAY  recognize fixed-length arrays of 1/0O ports with bounded

components.
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Shel |l Definition {748}.

Add the shell TM I PORT with recogni zer TM | PORTP,
defining the record structure

<TM | | NTERRUPT- FLAG, TM | ERROR- FLAG TM | CHAR>.

Shel |l Definition {749}.

Add the shell TM OPORT w th recogni zer TM OPCRTP,
defining the record structure

<TM O NTERRUPT- FLAG, TM OBUSY- FLAG, TM OCHAR>.

The function ™ PrRoceEssoR is the interpreter function which defines the
transitions on a ™™ state. The formal argument ™™ represents a machine state, and the
formal argument orRACLE represents an oracle identical to an abstract kernel oracle. That is,
an oracle is a list some of whose elements are I/O interrupts. An input interrupt is a
2-tuple which gives an input character and a device id, accessed by the functions
T™ | DATUM and T | DEVI D, respectively. An output interrupt merely contains a device id,

accessed by the function Tm cpevi D.

Definition {883}.
(TM PROCESSOR TM ORACLE)

(I F_( LI STP ORACLE)

( TM PROCESSOR ( TM STEP ( TM POST- | NTERRUPT ( CAR ORACLE) TM)
(CDR ORACLE))
™

TM POST- | NTERRUPT incorporates interrupts into the state of the machine so that
they can be sensed. An input interrupt for devicei is posted by changing the value of the
ith input port as follows: the interrupt flag is raised, the error flag gets the previous value
of the interrupt flag to signal an overflow condition, the input character is written to the
character buffer. An output interrupt for device i is posted by changing the value of the
ith output port as follows. the interrupt flag is raised, the busy flag is cleared, the
character buffer is cleared (although this action is superfluous). When the current oracle
element is not an I/O interrupt, T™™ PosT- | NTERRUPT Makes no change to the state of the

machine.
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Definition {881}.
(TM PCST- | NTERRUPT EVENT TM

(I F (TM DEVI CE- | NPUT- EVENTP EVENT)
( TM SET- | PORTS ( TM: POST- | NPUT- | NTERRUPT ( REMAI NDER ( TM | DATUM EVENT)
( TM CHARLUB) )
( REMAI NDER ( TM | DEVI D EVENT)
( TM PORT- LENGTH) )
(TM | PORTS TM)
™
(I F ( TM DEVI CE- QUTPUT- EVENTP EVENT)
( TM SET- OPORTS ( TM POST- QUTPUT- | NTERRUPT ( REMAI NDER ( TM ODEVI D E
( TM PORT- LEN
(TM OPORTS TM)
™
™)

Definition {752}.
(TM PGST- | NPUT- | NTERRUPT CHAR | D PORTS)
(PUTNTH (TM | PORT 1
(TM 1 | NTERRUPT- FLAG ( GETNTH | D PORTS))
CHAR)
ID
PORTS)

Definition {755}.
(TM PGST- QUTPUT- | NTERRUPT | D PORTS)

(PUTNTH (TM OPORT 1 0 0) | D PORTS)

The function Tv sTep defines the single step function for the Tv interpreter. It
gives the interrupt structure of the target machine. Each of the interrupt branches of
™™ STEP (@n input interrupt, an output interrupt, an error trap, a clock interrupt and a
supervisor call interrupt) does a PSW swap, which partially saves the state of the CPU in
a fixed location of memory and loads a new program counter giving the address of an
operating system interrupt handling routine. When no 1/O interrupt occurs and TM isin
the wait state, T sTEP returns the current machine state unchanged. The function

T™ FETCH ExECUTE defines the instruction fetch-execute cycle of the target machine.
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Definition {882}.
(TM STEP T™

(I'F (TM | NPUT- | NTERRUPTP TM
( TM: EXECUTE- | NPUT- | NTERRUPT TM

(I'F (TM QUTPUT- | NTERRUPTP TM
( TM EXECUTE- OUTPUT- | NTERRUPT TM

(IF (TMVAITING T™M
™

(I F (TM ERRORP TM
( TM EXECUTE- ERROR- | NTERRUPT TM)

(I F (TM CLOCK- | NTERRUPTP TM
( TM: EXECUTE- CLOCK- | NTERRUPT TM

(I'F (TM SVC- | NTERRUPTP TM
( TM EXECUTE- SVC- | NTERRUPT TM

(TM FETCH EXECUTE TM))))))

We wish to examine interrupts and the fetch-execute cycle more closely.
Before doing so, we examine some of the primitive functions in the definition of ™
which update the Tv state. In particular, we examine memory and register access. First,
for every field in the Tmstructure we have defined a function which updates that field and
no other. For instance, the function T seT- cc returns a Tmstate with an updated condition

code.

Definition {687}.
(TM SET-CC CC TM

(TM (TM MEMORY TM
(TM REGS T™
cc
(TM ERROR TM
(TM SVCFLAG T™
(TM SVCI D T™
(TM BASE T™
(TMLIMT T™
(TMSLIMT T™
(TM SYMODE TM
(TM RWSTATE T™
(TM CLOCK T™
(TM | PORTS TM
(TM CPORTS TM))

The interface to memory and register access is defined by the functions
™™ FETCH and ™™ sTORE. An address argument to these functions is a 2-tuple constructed

by the function reaL- ADDR. The ReaL- ADDR- NuM field is a number used as a datum or an
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address. The ReAL- ADDR- source field indicates how the number is used: as a datum, as a
register address, or as a memory address. T FETcH and Tm sTore follow the convention
that a ReaL- ADDR- soURCE value of o indicates a datum, a value of 1 indicates a register
address, and otherwise a memory address. Given a REAL- ADDR, TM FETCH returns either the
datum portion of the address, or the contents of a register, or the contents of a memory
word. T sToRE makes no state change when given a rReaL- ADDR with source o, and
otherwise updates a location in either the registers or memory. Notice that when the
machine is in user mode, a memory address is treated as a displacement from the current

base register.

Definition {773}.
(TM FETCH ADDR TM

(I F (ZEROP ( REAL- ADDR- SOURCE ADDR))
( REAL- ADDR- NUM ADDR)

(I F (EQUAL ( REAL- ADDR- SOURCE ADDR) 1)
( TM FETCH FROM REGVEM ( REAL- ADDR- NUM ADDR) TM

( TM FETCH FROM MEMORY ( REAL- ADDR- NUM ADDR) TM)))

Definition {774}.

(TM STORE VALUE ADDR TM

(1 F (ZEROP ( REAL- ADDR- SOURCE ADDR))
™

(I F (EQUAL ( REAL- ADDR- SOURCE ADDR) 1)
( TM STORE- | N- REGVEM VALUE ( REAL- ADDR- NUM ADDR) TM

( TM STORE- | N- MEMORY VALUE ( REAL- ADDR- NUM ADDR) TM)))

Definition {757}.
(REAL- ADDR SOURCE NUM = (LI ST SOURCE NUM

Definition {758}.

( REAL- ADDR- SOURCE REAL- ADDR) = ( CAR REAL- ADDR)
Definition {759}.

( REAL- ADDR- NUM REAL- ADDR) = ( CADR REAL- ADDR)

Definition {769}.
(T™M FETCH FROM MEMORY ADDR TM

(I'F (TM | N- SUPERVI SOR- MODE TM
( GETNTH ADDR ( TM MEMORY TM)
(GETNTH (PLUS (TM BASE TM) ADDR) (TM MEMORY TM))
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Definition {770}.
(TM STORE- | N MEMORY VALUE ADDR TM

(I'F (TM | N- SUPERVI SOR- MODE TM
( TM SET- MEMORY ( PUTNTH VALUE ADDR ( TM MEMORY TM)) TM
( TM SET- MEMORY ( PUTNTH VALUE

(PLUS (TM BASE TVM) ADDR)
(TM MEMORY TM))

™)

Definition {771}.
(T™M FETCH FROM REGVEM ADDR TM

( GETNTH ADDR (TM REGS TM)

Definition {772}.
(TM STORE- | N- REGVEM VALUE ADDR TM

( TM SET- REGS ( PUTNTH VALUE ADDR (TM REGS TM)) T™

Now we return to the subject of interrupts. Table CLOCK-INTERRUPT
describes what happens on a clock interrupt: the current program counter, stack pointer
and flags fields are stored in memory locations [0:2]. A new program counter is loaded
from a fixed location in memory giving the address of the clock interrupt handler, the
stack pointer is loaded with the supervisor limit address (a stack occupies the high

address end of amemory segment), and the machineis put in supervisor mode.

meni 0: 2] <- [pc,sp, flags]
pc <- nmen{3]

sp <- slimt - 1
svnode <- supervi sor-node

Table4-2: TheTM Clock Interrupt

We explore the forma definition of the clock interrupt given by
TM EXECUTE- CLOCK- | NTERRUPT. The machine is put in supervisor mode (the Tv seT- svmopE
expression), the program counter, stack pointer, and flags are saved in location O through
2 of memory (the call to TM STORE- OLD- PSW ON- | NTERRUPT), the program counter is loaded
with a new value (the call to T FETCH NEW PC- ON- | NTERRUPT), and the stack pointer is set
to one less than the supervisor limit register (the T seT-sp expression). In
TM STORE- OLD- PSW ON- | NTERRUPT, the function T I NCRN- ADDRESS increments an address a
given number of times. This is how we arrange to store CPU state in three successive
memory locations. Tv PAck- Psw packs the flags fields into a single number. All of the

other interrupt transitions referenced in Tm sTer are defined in a similar fashion.
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Definition {862}.
( TM EXECUTE- CLOCK- | NTERRUPT TM

(TM SET-SP (TM DECR (TMSLIMT T™)
( TM FETCH NEW PC- ON- | NTERRUPT ( TM CLOCK- NEW PC- ADDR)
( TM STORE- OLD- PSW ON- | NTERRUPT ( TM REG STER- SAVE- AREA- ADDR)
( TM SET- SVMCDE ( TM SUPERVI SOR- MODE)

™)))
Definition {859}.
(T™M FETCH NEW PC- ON- | NTERRUPT ADDR TM
(T™ SET- PC ( TM FETCH FROM MEMORY ADDR TM) TM
Definition {860}.
(TM STORE- OLD- PSW ON- | NTERRUPT ADDR TM

(TM STORE (TM PC TM
( REAL- ADDR 2 ADDR)
(TM STORE (TM SP TM
( TM | NCR\- ADDRESS 1 ( REAL- ADDR 2 ADDR))
(TM STORE ( TM PACK- PSW (TM CC TM
(TM ERROR TM
( TM SVCFLAG T™M
(TMSVCID T™)
( TM | NCR\- ADDRESS 2 ( REAL- ADDR 2 ADDR))

™))

Definition {721}.
(TM REG STER- SAVE- AREA- ADDR) = 0

We have seen the function Tv FETcH EXECUTE referenced at the task and abstract
kernel layers. It defines TMs fetch-execute cycle. The function T™ GooD- PC- ADDRESS
determines if the address contained in the program counter causes a protection error as
defined by the current contents of the limit register. If so, the error flag is set. Otherwise,
the current instruction is fetched and executed. In addition, the program clock is
decremented. The function ™ Execute fetches the current instruction’s arguments and
computes absolute addresses based on the indicated address mode. T has four address
modes. immediate, memory direct, register, and register indirect. Memory addresses
must be less than the current value of the limit register, otherwise causing a protection
error. When running in user mode a memory address supplied by an instruction is treated

as a displacement from the current base register.

Definition {858}.
(T™M FETCH EXECUTE TM

(I F ( TM GOOD- PC- ADDRESS TM
( TM EXECUTE ( TM FETCH OPCODE TM) ( TM DECREMENT- CLOCK TM))
( TM SET- ERRCR ( TM PC- ADDRESS- ERROR) ( TM DECREMENT- CLOCK TM) ) )



Table INSTRUCTION-SET documents TM s small instruction set. The purpose
of the table is to suggest the extent of the instruction set. We have defined only those
instructions required to program the operating system. Other instructions can be added
with the cost of proving that each one satisfies the cooo- Tminvariant. ™ has instructions
of zero, one and two arguments. The parameters which occur in Table
INSTRUCTION-SET should be interpreted as real addresses. one of memory address,
register address or immediate operand. In the case of binary operations, a result is stored
at the location indicated by the first argument. The condition code is a 2-bit value which

indicatestwo ALU conditions: zero/non-zero and carry/no-carry.

Non- Privi | eged Operations

ADD a b add, set the condition code

BR a set the pc unconditionally

BRZ a set the pc if cc = <zero, non-overfl ow>
BRNZ a set the pc if cc ### <zero, non-overfl ow>
CALL a save the pc on the stack, |load a new pc

COWPARE a b set the condition code based on nunerically
conparing a and b

DECR a decrenent, set the condition code

DECR-MOD a b decrenent a nodulo b, set the condition code
I NCR a increnent, set the condition code

INCR-MOD a b increment a nodulo b, set the condition code
MDD a b a nod b, set the condition code

MOVE a b move b to location indicated by a

MILT a b multiply, set the condition code

RETURN set the pc to the top el ement of the stack
SVC addr rai se the svcflag, set the svcid

Privil eged Operations

LBASE a | oad the base register
LLIMT a load the limt register
LPSW a |l oad the pc, sp and flags; put the machine in user node
PCST a raise the output interrupt flag in the output
port given by the argunent
RUN put the machine in the run state
TIME a set the clock

STQUT a b start output on the device indicated by a
the output character is given by b

SVCR a load the pc, sp and flags; put the machine
in user node; clear the svcflag
TESTI a test the indicated input port for an overflow error
TESTO a test the indicated output port for busy
WAI T put the machine in the wait state

Table4-3: TM’sInstruction Set

We give the formal definition of the addition operation, T EXECUTE- ADD. |t
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takes three arguments, two real addresses indicating the addition operands, and the
current state of the machine. Tm EXEcUTE- ADD returns a new machine state by storing the
the result of the addition at the location indicated by the first address, and updating the
condition code to reflect two conditions: whether the result is zero, and whether the

result has acarry out.

Definition {778}.
( T™M EXECUTE- ADD ADDR1 ADDR2 TM
(TM STORE ( ALU- VALUE (TM ALU-PLUS (TM FETCH ADDRL TM
(TM FETCH ADDR2 TM))
ADDR1
(TM SET-CC (TM CC- VALUE ( TM ALU- PLUS (TM FETCH ADDR1 TM
(TM FETCH ADDR2 TM))
™)

Definition {707}.
(TM CC- VALUE ALU- RESULT)
(1 F (ZEROP (ALU- VALUE ALU- RESULT))
(1 F (FALSEP (ALU- CARRY ALU- RESULT))
( TM- ZERO- NO- CARRY- CONDI TI ON)
( TM ZERO- CARRY- CONDI TI ON) )
(I F (FALSEP (ALU- CARRY ALU- RESULT))

( TM NON- ZERO- NO- CARRY- CONDI TI ON)
( TM NON- ZERO- CARRY- CONDI TI ON) ) )

™s ALU peforms the following operations: plus, difference, times,
remainder, increment, decrement, increment-mod and decrement-mod. Increment-mod
takes two arguments and increments its first argument modulo its second argument.
Decrement-mod decrements its first argument modulo its second argument. Besides
returning an integer value, each ALU operation also sets a carry bit. Remainder is a
powerful operation. The kernel in fact uses this operation only to take the remainder of a
number by some power of two. Therefore the remainder operation in the ALU could be

replaced by a simpler mask operation to satisfy the needs of the kernel.

This completes our summary of Tv It is a very simple von Neumann machine.
It provides some support for the implementation of tasks, but cannot accomplish this on
its own. The operating system kernel which must be written for Tv has the significant job

of spanning the gap to the abstract kernel.
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4.2 The Code

In this section we present the source code of KIT. We present it asalisting in
an assembler language written for v, annotated with comments. A quoted list containing
each line (minus comments) of the source code is equal to the function os- source. This
function, which appears in the script, is a constant function defining a list containing the
assembler language source. The source code contains routines which correspond to the
interrupt handlers specified at the abstract kernel level.

The kernel resides in a segment of memory beginning at location 0. Remaining
memory segments are occupied by tasks. Figure LAY OUT-OF-KERNEL describes the
memory layout of the kernel segment. It identifies the data structures required by the

kernel.

* Register Save Area. Thisis a 3-word segment built into the definition of ™™
which is used to partialy save the CPU state on an interrupt.

* Interrupt Vector. These addresses, also built into T™v s definition, contain the
addresses of the interrupt handlers.

* Locals. A set of local variables used by the operating system.

» Task Table. Thisis a kernel data structure which contains the CPU state of
each task.

» Segment Table. The table contains a base/limit register pair for each task,
defining the location and length of each task’s memory segment.

» Ready Queue. An implementation of the ready queue.

» Status Table. An implementation of the task status table.

* Ibuffer, Obuffers, Mbuffers. Implementations of the buffer tables.
 Code. The kernel machine code.

» Stack. The kernel’ s stack.

The assembler is a simple one written in the Boyer-Moore logic. It plays no
part in the proof since we verify the output of the assembler, which is a list of numbers
that T interprets. The grammar accepted by the assembler is given in Table
GRAMMAR. The primitives of the grammar are <syvBoL> and <NATNUM>. <NATNUM> iS
understood to be a number bounded by ™ swordsize. The grammar defines six forms. A
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Figure4-1: Layout of Kernel
<symBoL> makes an entry in the symbol table, associating a symbol with a displacement
from the start of the source code. A <bcL> makes an entry in the symbol table to associate
a symbol with a user supplied number. The <pc> form initializes a contiguous segquence of
memory words and is used for declaring data storage. The remaining forms define the
syntax of nullary, unary and binary operations. An <ARG> is a list containing an address
mode, a value and an optional displacement. In the syntax for <ARe>, <symBaL> is an
abbreviation for (o <svymBoL> 0) and (<MoDE> <VALUE>) IS an abbreviation for

(<MODE> <VALUE> 0).

This description of the grammar, plus the informal documentation of the



<GRAM>

<FORW>

<DCL>

<DC

<0ARY- OP> ::

<1ARY-OP> ::

<2ARY- OP> ::

<ARG>

<MODE>

<Dl SP>

<VALUE>
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<FORW>*

<SYMBOL> | <DCL> | <DC> | <O0ARY-OP> |
<1ARY- OP> | <2ARY- OP>

(DCL <SYMBOL> <NATNUM>)
(DC <NATNUM> <VALUE>)
(<SYMBOL>)

(<SYMBOL> <ARG>)
(<SYMBOL> <ARG> <ARG>)

<SYMBOL> | (<MODE> <VALUE>) |
(<MCDE> <VALUE> <DI SP>)

<NATNUMS[ 0. . 3]
<NATNUMH[ 0. . 7]

<NATNUM> | <SYMBOL>

Table 4-4: Grammar for TM Assembler

instruction set in Table 4-3 should make it possible to read the assembler language

source. Of course, al questions about details must be answered by consulting the

definition of Tv in the script. The assembler packs operations into one, two or three

machine words. The format of machine instructions is not important. To be able to read

the source code, the following facts should be understood about T™'s interpretation of

instructions.

» The address modes are as follows: 0 - immediate operand, 1- register, 2 -
memory, 3 - register indirect.

» Data movement in a binary operation is from right to left. For the instruction
(ADD A B), the sum of A and B is placed in the location indicated by A
unless A is an immediate operand, in which case aresult is not stored.

* Register 0 isthe program counter, and register 1 isthe stack pointer.

The source listing contains three sections. First is a series of bcL forms, defining

symbols for the assembler. Next is a series of bc forms defining the data areas. The

remainder contains programs.

We provide a guide to one part of the source, the clock interrupt handler,

exhibiting small portions of the listing. Consult the definition of Ak- cLock- I NTERRUPT
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handler in Section 3.2.1 for the specification. The clock interrupt handler begins at the
address with label cLock- I NTERRUPT- HANDLER.  Control passes to the clock interrupt handler
after a clock interrupt. The routine save- sTATE is called to save the state of the current
task in the task table. Upon return, the clock interrupt handler loads the address of the
ready queue into register 3, and then calls gri rsT, which places the first element of a
gueue into register 2. peQUEUE is called to remove the first element from the ready queue.
And then EnQUELE is called to place what was the first queue element at the end of the

gueue. Finaly, control branches to the dispatcher to resume the next task.
CLOCK- | NTERRUPT- HANDLER

(call save-state) ;; First, save the state of the current task.
trace-| abel 1

(nmove (1 r3) readyq) ;; R3 points to readyq

(call gfirst) ;; Put current taskid in R2

(cal | dequeue) ;; DEQUEUE the current task fromthe READYQ
(cal | enqueue) ;5 ENQUEUE the current task

trace-| abel 2

(br dispatcher) ;; Resune next task

The function Ak- bi sPATCHER in Section 3.2.1 specifies the dispatching operation.
The dispatcher checks for an empty ready queue. If empty, the machine is put in the wait
state. Otherwise, ori RsT is called to obtain the taskid which as the first element of the
ready queue. RESTORE- STATE is called to initialize the CPU with most of this task’s CPU
state - al but the program counter, stack pointer and flags. Upon return, the program

clock isreset, and an Lpswinstruction is done to complete the context switch.

DI SPATCHER ;; Allocate CPU to first task on readyq.
(rmove (1 r3) readyq) ;; Point R3 to readyq

(call genptyp) ;, Readyq enpty?

di spatcher-trace-| abel 1

(brz readyg-enpty)

(call gfirst) ;; Put next taskid in R2
(call restore-state) ;; resune next task

di spat cher-trace-| abel 2

(time (2 tinme-slice 0)) ;; set clock

(I psw (2 reg-save-area))

READYQ EMPTY
(wai t)



ro 0)
(dcl r1 1)
(dcl r2 2)
(dcl r3 3)
(dcl r4 4)
(dcl r5 5)
(dcl r6 6)
(dcl r7 7)
;; format of interrupt save-area
(dcl interrupt-pc-field 0)
(dcl interrupt-sp-field 1)
(dcl interrupt-flag-field 2)
(dcl svci d-addr 8)
(dcl input-devid-addr 8)
(dcl input-char-addr 9)
(dcl out put -devi d-addr 9)
(dcl charlub 256)
;5 svcids
(dcl send-svcid 0)
(dcl receive-svcid 1)
(dcl tyo-svcid 2)
(dcl tyi-svcid 3)
;; format of a task table entry
(dcl task-table-length 144)
(dcl task-table-entry-length 9)
(dcl pc-field 0)
(dcl sp-field 1)
(dcl r2-field 2)
(dcl r3-field 3)
(dcl r4-field 4)
(dcl r5-field 5)
(dcl r6-field 6)
(dcl r7-field 7)
(dcl flag-field 8) ;; displacenent after bunping base register

;; format of a queue entry:

------------- Begi nning of KIT source -----

Assenbl er synbolic declarations

[ headaddr tailaddr currlength maxl ength garry]

;; Where garry is reserved for |ength naxl ength

(dcl
(dcl
(dcl
(dcl
(dcl
(dcl

readyg-
ghead- f
qtail -fi
qcurrlen

ength 20)
eld 0)

eld 1)
gth-field 2)

gmax| ength-field 3)

garray-f

ield 4)

;; format of segment table
segment -t abl e-1 ength 32)

(dcl
(dcl
(dcl

base-fie
limt-fi

Id 0)
eld 1)

;; format of status table

(dcl
(dcl
(dcl
(dcl
(dcl
(dcl

status-e
status-f
status-t
ready- st
error-st

ntry-length 2)
lag-field 0)
askid-field 1)
atus 0)

atus 1)

send- status 2)

50
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(dcl receive-status 3)
(dcl output-status 4)
(dcl input-status 5)

Buf fer | engths
(dcl input-buffer-length 8)
(dcl output-buffer-length 8)
(dcl nessage-buffer-1length 8)

;; Values for access 2D array of nessage buffers

;; The address of MBUFFER] sourceid, destid] is

;3 MBUFFERS + (sourceid * SOURCE- MIULTI PLI ER) + (destid * DEST-MJLTI PLI ER)
(dcl source-nultiplier 128)

(dcl dest-multiplier 8)

(dcl taskidlub 16)

e Data areas in operating system----------

reg-save-area (dc 3 0) ;; [pc sp flags]
cl ock- new pc (dc 1 clock-interrupt-handler)
error-new pc (dc 1 error-interrupt-handler)
SvVC- new pc (dc 1 svc-interrupt-handler)
i nput - new pc (dc 1 input-interrupt-handler)
out put-newpc (dc 1 output-interrupt-handler)
interrupt-data (dc 2 0) ;; various interrupts cause information to be stored he
branch-address (dc 1 0)
time-slice (dc 1 1000)
current-taskid (dc 1 0)
tenp-r2 (dc 1 0)
temp-r3 (dc 1 0)
task-tabl e (dc 144 0)
segnent-table (dc 32 0)
readyq (dc 20 0)
status-tabl e (dc 32 0)
i buffers (dc 128 0)
obuffers (dc 128 0)
nmbuffers (dc 512 0)
(dc 512 0)
(dc 512 0)
(dc 512 0)
LR KIT Source Code ----------
SAVE- STATE
(move (2 tenmp-r2) (1 r2)) ;; Save R2
(move (2 tenmp-r3) (1 r3)) ;; Save R3
(move (1 r3) readyq) ;7 R3 points to ready queue
(call gfirst) ;7 R2 has current task id
save-state-return
(mult (1 r2) task-table-entry-length) ;; multiply by task table entry I ength
(add (1 r2) task-table) ;; R2 points to current task table entry

(move (3 r2 pe-field) (2 reg-save-area interrupt-pc-field))
(move (3 r2 sp-field) (2 reg-save-area interrupt-sp-field))
(move (3 r2 r2-field) (2 temp-r2))

(move (3 r2 r3-field) (2 tenp-r3))

(move (3 r2 r4-field) (1 r4))

(move (3 r2 r5-field) (1 r5))

(move (3 r2 r6-field) (1 r6))

(move (3 r2 r7-field) (1 r7))

(add (1 r2) flag-field) ;; bunp index register
(move (3 r2) (2 reg-save-area interrupt-flag-field))
(move (1 r2) (2 temp-r2)) ;; Restore R2 & R3.

(move (1 r3) (2 tenp-r3)) ;; This is necessary for SVCinterrupts
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(return)

RESTORE- STATE
;; Assune R2 has id of selected task.

(move (1 r3) (1r2)) ;7 R3 has next taskid, too

(mult (1 r2) task-table-entry-length) ;; multiply by task table entry length
(add (1 r2) task-table) ;7 R2 now points to the next task table e
(mult (1 7r3) 2)

(add (1 r3) segnent-table) ;; R3 pts to segnent table entry for next
(I base (3 r3 base-field)) ;; restore base register

(Ilimt (3 r3limt-field)) ;; restore limt register

(move (1 r3) (17r2))

(add (1 r3) flag-field) ;; R3 points to flag field of task table
(nmove (2 reg-save-area interrupt-pc-field) (3 r2 pe-field))

(move (2 reg-save-area interrupt-sp-field) (3 r2 sp-field))

(move (2 reg-save-area interrupt-flag-field) (3 r3))

(move (1 r7) (3r2r7-field))

(move (1 r6) (3 r2r6-field))

(move (1 r5) (3 r2r5-field))

(move (1 r4) (3 r2r4-field))

(move (1 r3) (3 r2r3-field))

(mve (1 r2) (3 r2r2-field))

;7 We nust leave RO & RL alone since they're the PC & SP.
A LPSWwi Il restore themfromthe regi ster save area.

(return)

CLOCK- | NTERRUPT- HANDLER

(call save-state) ;; First, save the state of the current task.
trace-| abel 1

(rmove (1 r3) readyq) ;; R3 points to readyq

(call gfirst) ;7 Put current taskid in R2

(cal | dequeue) ;; DEQUEUE the current task fromthe READYQ
(cal |l enqueue) ;; ENQUEUE t he current task

trace-| abel 2

(br dispatcher) ;; Resune next task

ERROR- | NTERRUPT- HANDLER

(call save-state) ;; First, save the state of the current task.
trace-| abel 3

(rmove (1 r3) readyq) ;7 R3 points to readyq

(call gfirst) ;; Put current taskid in R2

(cal | dequeue) ;; DEQUEUE the current task fromthe READYQ

trace-| abel 4
(mult (1 r2) status-entry-1length)

(add (1 r2) status-table) ;; r2 points to entry for current task in status ta
(rmove (3 r2 status-flag-field) error-status)

(nmove (3 r2 status-taskid-field) 0)

(br dispatcher) ;; Resune next task

SVC- | NTERRUPT- HANDLER

;; The nenory | ocation SVCl D- ADDR contains the svcid.
(call save-state)

trace-| abel 5

(mod (2 svcid-addr) 4) ;; Fix the svcid to a nunber less than 4.
(conmpare (2 svcid-addr) send-svcid) ;; is it a request to SEND?
(brz send-svc-handl er)

(conpare (2 svcid-addr) receive-svcid) ;; is it a request to RECElVE?
(brz receive-svc-handl er)

(conpare (2 svcid-addr) tyo-svcid) ;5 a TYO request?

(brz tyo-svc-handl er)
(br tyi-svc-handler)
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SEND- SVC- HANDLER
. Conventions
- Low order bits of R2 contain destination id
- R3 cont ai ns nessage
Move these to R6 and R7
(rmove (1 r6) (1 r2))

(mod (1 r6) taskidl ub) ;; R6 has destination id
(move (1 r7) (1 r3)) ., R7 has nmessage

(rmove (1 r3) readyq)

(call gfirst) ;7 R2 has current taskid
trace-| abel 6

(nmove (2 current-taskid) (1 r2)) ;; save current taskid

;; Conpute address of MBUFFER] source, dest], and test for a full buffer
(move (1 r4) (1 r6)) ;; R4 contains destination id

(rmult (1 r4) dest-nultiplier)
(move (1 r3) (1r2))

(rmult (1 r3) source-mnultiplier)
(add (1 r3) (1 r4))

; R3 contains source id (i.e. current id)

(add (1 r3) nbuffers) ;; R3 points to nessage buffer

trace-| abel 7

(call gfullp)

(brz bl ock-send) ;; If buffer full, block the sending task
;; Else, message buffer isn't full. Performsend and resune task

(move (1 r2) (1r7)) ;7 R2 has the message

(cal |l enqueue) ;; R3 still points to the nessage buffer

trace-| abel 8

;; Check for destination task waiting. R6 has destination taskid

(move (1 r3) (1 r6)) ;; Move destination id to R3

(mult (1 r3) status-entry-Iength) ;; R3 has displacenment to status entry

(add (1 r3) status-table) ;; R3 has absol ute address of status entry
(conpare (3 r3 status-flag-field) receive-status) ;; Wiiting to receive?

(brnz svc-resune-task) ;5 If not, resune task

(conpare (3 r3 status-taskid-field) (2 current-taskid)) ;; Else, fromcurrent ta
(brnz svc-resumne-task) ;7 If not, resume task

;; Else the destination task was waiting to receive fromthe current task
;7 Make it ready.

(rmove (3 r3 status-flag-field) ready-status)

(rmove (3 r3 status-taskid-field) 0)

(move (1 r2) (1 r6)) ;7 R2 has destination id

(rmove (1 r3) readyq) ;; R3 points to readyq

(cal |l enqueue)

trace-| abel 9

(br svc-resune-task)

BLOCK- SEND

;; Renove the current task fromthe readyg and mark it waiting to send
(rmove (1 r3) readyq)

(cal | dequeue)

trace-| abel 10

(rmove (1 r3) (2 current-taskid))

(mul't (1 r3) status-entry-1length) ;; R3 has displacenent to status entry
(add (1 r3) status-table) ;7 R3 has absol ute address of status entry
(rmove (3 r3 status-flag-field) send-status)

(rmove (3 r3 status-taskid-field) (1 r6))

(br dispatcher)

RECEI VE- SVC- HANDLER
Conventi ons:



s Low order bits of R2 contain source id
- Put message in R3 of current task
(rmove (1 r6) (1 r2))

(mod (1 r6) taskidl ub) ;; R6 has source id
(rmove (1 r3) readyq)

(call gfirst) ;7 R2 has current taskid
trace-|abel 11

(rmove (2 current-taskid) (1 r2)) ;; save current taskid

;; Conput e address of MBUFFER] source, dest], and test for a full buffer

(move (1 r4) (1 r2)) ;; R4 contains destination id (i.e. current id)
(mult (1 r4) dest-multiplier)
(move (1 r3) (1 r6)) ;; R3 contains source id

(mult (1 r3) source-nultiplier)

(add (1 r3) (1 r4))

(add (1 r3) nbuffers) ;; R3 points to nmessage buffer

trace-| abel 12

(call genptyp)

(brz bl ock-receive) ;; |f buffer enpty, block the receiving task

El se, nessage buffer isn't enpty. Performreceive and resune task
(call gfirst) ;; R2 has the nessage
(cal |l dequeue) ;; Dequeue the nessage buffer
trace-| abel 13
(move (1 r3) (2 current-taskid))

(rmult (1 r3) task-table-entry-length) ;; multiply by task table entry I ength
(add (1 r3) task-table) ;; R3 points to current task table entry
(move (3 r3 r3-field) (1 r2)) ;; Move nessage to current task’s R3

trace- 1| abel 14

;; Check for source task waiting. R6 has source taskid

(move (1 r3) (1 r6)) ;; Move source id to R3

(mult (1 r3) status-entry-length) ;7 R3 has displacenent to status entry

(add (1 r3) status-table) ;7 R3 has absol ute address of status entry
(conpare (3 r3 status-flag-field) send-status) ;; Waiting to send?

(brnz svc-resune-task) ;5 If not, resune task

(conpare (3 r3 status-taskid-field) (2 current-taskid)) ;; Send to current task?
(brnz svc-resune-task) ;5 If not, resune task

;; Else the destination task was waiting to receive fromthe current task
Make it ready.

(move (3 r3 status-flag-field) ready-status)

(rmove (3 r3 status-taskid-field) 0)

(move (1 r2) (1 r6)) ;; R2 has destination id

(nmove (1 r3) readyq) ;; R3 points to readyq

(cal | enqueue)

trace-| abel 15

(br svc-resune-task)

BLOCK- RECEI VE

;; Renove the current task fromthe readyg and mark it waiting to receive
(rmove (1 r3) readyq)

(cal |l dequeue)

trace-| abel 16

(rmove (1 r3) (2 current-taskid))

(mult (1 r3) status-entry-1length) ;7 R3 has displacenent to status entry
(add (1 r3) status-table) ;; R3 has absol ute address of status entry
(rmove (3 r3 status-flag-field) receive-status)

(rmove (3 r3 status-taskid-field) (1 r6))

(br dispatcher)

TYO SVC- HANDLER
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;; Conventions

- Low order bits of R3 contain character

- The current taskid is also the device id
;; Move this to R7

(move (1 r7) (1 r3)) i R7 has character

(rmove (1 r3) readyq)

(call gfirst) 7 R2 has current taskid

trace- | abel 17

(move (2 current-taskid) (1 r2)) ;; save current taskid (equals device id)

;; Conpute address of OBUFFER devid], and test for a full buffer

(move (1 r3) (1 r2)) ;; R3 contains devid (i.e. current taskid)
(mult (1 r3) output-buffer-Iength)

(add (1 r3) obuffers) ;; R3 points to the current output buffer
trace-| abel 18

(call gfullp)

(brz bl ock-tyo) i, | f buffer full, block the sending task
;; Else, nessage buffer isn't full. Performsend and resune task

(move (1 r2) (1r7)) ;7 R2 has the character

(cal | enqueue) ;7 R3 still points to the nessage buffer

trace-| abel 19

Check for idle output device. If idle, post an output interrupt

(testo (2 current-taskid)) ;; Test for idle device
(brnz svc-resumne-task) ;7 If not idle, resune task
(post (2 current-taskid)) ;; Else, post an output interrupt so the

;; output interrupt handler starts an output.
(br svc-resume-task)

BLOCK- TYO

;; Renove the current task fromthe readyg and mark it waiting to output.
(rmove (1 r3) readyq)

(cal | dequeue)

trace-| abel 20

(move (1 r3) (2 current-taskid))

(mult (1 r3) status-entry-Iength) ;7 R3 has displacenment to status entry
(add (1 r3) status-table) ;; R3 has absol ute address of status entry
(nmove (3 r3 status-flag-field) output-status)

(rmove (3 r3 status-taskid-field) 0)

(br dispatcher)

TYI - SVC- HANDLER

;; Conventions

- The current taskid is also the device id

;; Put the input character in R3 of the current task
(move (1 r3) readyq)

(call gfirst) ;7 R2 has current taskid
trace-| abel 21
(rmove (2 current-taskid) (1 r2)) ;; save current taskid (equals device id)

;; Conpute address of |BUFFER[ devid], and test for a enpty buffer

(move (1 r3) (1r2)) ;; R3 contains devid (i.e. current taskid)
(mult (1 r3) input-buffer-1ength)
(add (1 r3) ibuffers) ;; R3 points to the current input buffer

trace-| abel 22

(call qgenptyp)
(brz bl ock-tyi) ;; |f buffer enpty, block the current task

;; Else, input buffer isn't enpty. Performinput and resune task
(call gfirst) ;7 R2 has the next input character
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(cal | dequeue) ;; Dequeue the input buffer.
trace-| abel 23
(move (1 r3) (2 current-taskid))

(mult (1 r3) task-table-entry-length) ;; multiply by task table entry length
(add (1 r3) task-table) ;; R3 points to current task table entry
(move (3 r3 r3-field) (1 r2)) ;; Move nmessage to current task’'s R3.

(br svc-resune-task)

BLOCK- TYI

;; Renove the current task fromthe readyg and mark it waiting to input.
(rmove (1 r3) readyq)

(cal |l dequeue)

trace-| abel 24

(move (1 r3) (2 current-taskid))

(mult (1 r3) status-entry-1length) ;7 R3 has displacenent to status entry
(add (1 r3) status-table) ;; R3 has absol ute address of status entry
(rmove (3 r3 status-flag-field) input-status)

(rmove (3 r3 status-taskid-field) 0)

(br dispatcher)

| NPUT- | NTERRUPT- HANDLER
;7 The nenory | ocation | NPUT- DEVI D- ADDR contains the ID of the interrupting devi
;7 The nenory | ocation | NPUT- CHAR- ADDR cont ai ns the input character.

Pseudo Code:

;; If the owning task is waiting to input
s then put the ID on the readyq

- update the status of the task
;ooendif

;; If the input buffer is full

- then replace the last queue element with the overfl ow character
- else if the input device signals an overflow error

i then enqueue an overflow character on the input buffer
s el se enqueue the character on the input buffer

i endi f

;ooendif

(rmove (2 branch-address) dispatcher) ;; initialize BRANCH ADDRESS to DI SPATCHE
;; exit via dispatcher when waiting

(rmove (2 tenp-r3) (1 r3)) ;; Save R3 because we mnust use it.

(rmove (1 r3) readyq) ;; R3 points to readyq

(call genptyp) ;7 check for enpty readyq;

if enpty, no need to save state
trace-| abel 25

(brz iih-skip-save-state)
(rmove (2 branch-address) resune-task) ;; W'll exit via RESUME- TASK
(move (1 r3) (2 tenp-r3)) ;; Restore R3 for save-state

(call save-state)
trace-| abel 26

iih-skip-save-state

(move (1 r5) (2 input-devid-addr)) ;; R5 has devid

(mult (1 r5) status-entry-Iength) ;; R5 has displacenent to status entry
(add (1 r5) status-table) ;; R5 has absol ute address of status entry
(conpare (3 r5 status-flag-field) input-status) ;; Waiting to input?

(brnz check-for-full-input-buffer)

;; The task which owns this device is waiting to input; Make it ready to run.
(move (1 r2) (2 input-devid-addr)) ;; R2 has taskid

(rmove (1 r3) readyq) ;7 R3 points to readyq
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(cal |l enqueue) ;; enq taskid on readyq
trace-| abel 27

(nmove (3 r5 status-flag-field) ready-status)

(nmove (3 r5 status-taskid-field) 0)

trace-| abel 28

check-for-full-input-buffer
(move (1 r3) (2 input-devid-addr)) ;; R3 has devid
(mult (1 r3) input-buffer-1ength)
(add (1 r3) ibuffers) ;7 R3 points to the current input buffer
(call gfullp)
(brnz check-for-iport-error)
The input buffer is full. Replace the |ast queue element with the new charact

;7 with the overflow bit set.
(move (1 r2) (2 input-char-addr))

(add (1 r2) charlub) ;7 R2 now has character with the overflow b
(call greplace) ;7 R3 still points to the current input buff
trace-| abel 29

(br (2 branch-address)) ;; branch to either DI SPATCHER or RESUME- TAS
check-for-iport-error

(testi (2 input-devid-addr)) ;; Test input device for overflow error
(brnz enqueue-input-character) ;; if no error, enqueue the current characte

El se, enqueue the overfl ow character
(rmove (1 r2) (2 input-char-addr))

(add (1 r2) charl ub) ;7 R2 now has character with the overflow b

(cal |l enqueue) ;7 R3 still points to the current input buff
trace-| abel 30

(br (2 branch-address)) ;; branch to either DI SPATCHER or RESUME- TAS

enqueue- i nput - char act er

(rmove (1 r2) (2 input-char-addr))

(cal | enqueue) ;7 R3 still points to the current input buff
trace-| abel 31

(br (2 branch-address))

QUTPUT- | NTERRUPT- HANDLER
;; The location OUTPUT- DEVI D- ADDR of menory contains id of the interrupting dev
;7 This also happens to be the id of the process which owns that output device

;; Pseudo Code

;7 If the owning task is waiting to output
s then put the id on the readyq
- update to status of the task
7, endif
;; 1f the output buffer is enpty
- then clear the output interrupt
- el se start another output
s deq the output buffer
;7 endif
;; Resune the current task

End of Pseudo Code

(rmove (2 branch-address) dispatcher) 7, initialize BRANCH ADDRESS to DI SPATCHE

7, exit via dispatcher when waiting
(nmove (2 tenmp-r3) (1 r3)) ;; Save R3 because we nust use it.

(rmove (1 r3) readyq) ;7 R3 points to readyq
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(call genptyp) ;; check for enpty readyq
;; 1f enpty, no need to save state
trace-| abel 32
(brz oih-skip-save-state)
(rmove (2 branch-address) resune-task) ;; W'l exit via RESUME- TASK
(move (1 r3) (2 tenp-r3)) ;; Restore R3 for save-state
(call save-state)
trace- | abel 33

oi h-ski p-save-state
(move (1 r5) (2 output-devid-addr)) ;; R5 has devid

(mult (1 r5) status-entry-1length) ;; R5 has displacenent to status entry
(add (1 r5) status-table) ;; R5 has absol ute address of status entry
(conpare (3 r5 status-flag-field) output-status) ;; Waiting to output?

(brnz check-for-enpty-output-buffer)
The task which owns this device is waiting to output; Mike it ready to run
(move (1 r2) (2 output-devid-addr)) ;; R2 has taskid
(rmove (1 r3) readyq) ;7 R3 points to readyq
(call enqueue) 7, enq taskid on readyq
trace-| abel 34
(rmove (3 r5 status-flag-field) ready-status)
(rmove (3 r5 status-taskid-field) 0)
trace-| abel 35

check-f or - enpt y- out put - buf fer

(rmove (1 r3) (2 output-devid-addr)) ;; R3 has devid

(mult (1 r3) output-buffer-Iength)

(add (1 r3) obuffers) ;; R3 points to the current output buffer
(call genptyp)

(brz (2 branch-address)) ;; branch to either DI SPATCHER or RESUME- TAS
;; Else the buffer is not enpty, start the next output

(call gfirst) ;; Put the next output character in R2
(stout (2 output-devid-addr) (1 r2))

(cal | dequeue) ;; Deq the output buffer

trace-| abel 36

(br (2 branch-address)) ;; branch to either DI SPATCHER or RESUME- TAS
DI SPATCHER ;; Allocate CPU to first task on readyq

(rmove (1 r3) readyq) ;; Point R3 to readyq

(call genptyp) ;; Readyq enpty?

di spatcher-trace-| abel 1
(brz readyg-enpty)

(call gfirst) ;; Put next taskid in R2
(call restore-state) ;; resune next task

di spat cher-trace-| abel 2

(time (2 time-slice 0)) ;; set clock

(I psw (2 reg-save-area))
READYQ EMPTY

(wait)

pc-after-wait

SVC- RESUME- TASK ;; Return to current task (readyq is not enpty)

(rmove (1 r3) readyq) ;; Point R3 to readyq
(call gfirst) ;; Put next taskid in R2
(call restore-state) ;; resune next task

svc-resune-task-trace-| abel 1
(sver (2 reg-save-area))

RESUME- TASK ;; Return to current task (readyq is not enpty)
(rmove (1 r3) readyq) ;; Point R3 to readyq



(call gfirst) ;; Put next taskid in R2
(call restore-state) ;; resunme next task

resunme-task-trace-1|abel 1
(I psw (2 reg-save-area))

ENQUEUE

;; Assune R2 contains itemto enqueue

R3 points to queue

;; this routine assunes queue not currently ful

;' pseudo- code

i store the itemwhere ever the tail index points

s increment the current length

increnent the tail index (nmod nmax-index)

(move (1 r4) (1 r3))

(add (1 r4) garray-field)

(add (1r4) (3 r3 qtail-field))
(move (3 r4) (1r2)) s
(incr (3 r3 gcurrlength-field)) -
(incrm (3 r3 qtail-field) (3 r3 gmaxl
(return)

QREPLACE

r4 has address of free slot

store item

increment current length
ength-field)) ;; increnent tai

;5 Assunme R3 points to non-enpty queue
Repl ace | ast queue elenent with contents of R2

(move (1 r4) (3 r3 qtail-field))

(decrm (1 r4) (3 r3 gmaxlength-field)) ;

(add (1rd4) (1r3))

(add (1 r4) garray-field)
(move (3 r4) (17r2))
(return)

DEQUEUE
;; assume R3 points to queue

;7 R4 has queue tai

., R4 has address of
;; store item

;; this routine assunes queue not currently enpty

;5 pseudo- code
; decrenment current queue |ength

- increnent head i ndex (nmod maxl ength)

(decr (3 r3 qcurrlength-field)) ;;
(incrm (3 r3 ghead-field) (3 r3 gmax
(return)

QFI RST
;5 Assume R3 points to queue
Put first queue itemin R2

decrenent the current
ength-field))

;; This routine assunes queue not currently enpty.

(move (1 r2) (1 r3)) -
(add (1 r2) garray-field) -
(add (1 r2) (3 r3 ghead-field)) ;;
(move (1 r2) (3 r2)) -
(return)

QEMPTYP

;; assune R3 points to queue

;; set CCto zero if queue is enpty
(conpare (3 r3 qcurrlength-field) 0)
(return)

QFULLP
;; assume R3 points to queue
set CCto zero if queue is ful

R2 points to queue

i ndex

decrenent tail pointer
;; add address of queue

| ast sl ot

in queue

I ength of the queue

R2 points to the qgarray
R2 points to the first queue el enent

put the first el enent

into R2
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(conpare (3 r3 qcurrlength-field) (3 r3 gmaxlength-field))
(return)

END- OF- OS- SOURCE

4.3 Flowcharts

As an aid to following the kernel, we present flowcharts for each interrupt
handler. The flowcharts are not design aids, but were created after the fact to depict the
control flow through each interrupt handler. There are 38 final states which can be
reached after entering the kernel at the start of one of the interrupt handlers. These 38
final states are depicted by 38 exit boxes. Oval boxes are used to depict kernel entry and
exit points. An oval box with aline beneath is a continuation onto a following page.
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Chapter 5

The Verification of KIT

In this chapter we outline the correctness proof for the kernel. In Section
OS-LAYER we define an interpreter os- PRocessor Which is intermediate between the
target machine and abstract kernel. This machine captures the state transitions
accomplished by the operating system implementation. We prove an equivalence
theorem between a T Processor running KIT and an os-processor. The proof of
CORRECTNESS- OF- OPERATI NG- SYSTEM  (see  Section 2.3) then reduces to proving that
0s- PROCESSOR implements ak- PrRocessor. Figure REVISED-PROOF-STRUCTURE is a
modification of Figure 2-2 which reveals the role of as- PRoCESSOR. In subsequent sections
of this chapter we discuss the proofs of osIMLEMENTS-AK  and

AK- | MPLEMENTS- PARALLEL- TASKS.

5.1 The Operating System Layer

The operating system layer defines an interpreter which mediates between the
target machine and the abstract kernel. It defines the transitions accomplished by KIT's
interrupt handlers on the target machine. An operating system state is a Tmloaded with a
particular program. Therefore, the shell Tm gives the structure of an os state as well as a
TMmstate. The predicate coop- os defines the operating system layer state set and formalizes
the pictorial description of the kernel layout given by Figure 4-1. coop-os places
constraints on various registers and memory locations.

We examine the conjuncts of coop- os. First, an os state must be a cooo- TM The
next five of conjuncts of coop- os define the contents of the interrupt vector. The predicate
(GOOD- CPU- LI ST (TABLE (TM CPU-LENGTH) (OS-TASK- TABLE 05))) states that each entry of
the task table is avalid CPU state. (We define the function TasLE below.) The next three

74
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Figure5-1: Revised KIT Proof Structure
conjuncts constrain the segment table. The segments defined by the segment table must
al lie within main memory, they must be mutually digoint and they must be digoint
from the kernel. The predicate (FI NI TE- NUVMBER- QUEUEP (OS- READYQ OS) ( AK- TASKI DLUB)
( AK- TASKI DLUB) ) States that the ready gqueue is a bounded queue containing only valid task
identifiers.  The  predicate  (GoOD- STATUS- LI ST ( TABLE ( AK- STATUS- LENGTH)

(Os- STATUS- TABLE 05))) recognizes a valid status table implementation. The next three
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conjuncts define valid implementations of the three buffer tables. The formula
(EQUAL (O5-CODE 0B) (OS-MACHINE-coDE)) States that the code segment of the kernel
contains a particular constant, the kernel machine code. The identity
(EQUAL (TMSLIMT 05) (Os-LIMT)) requires the target machine dlimit register to be
equal to a particular number, defined by (os-Lim 1), large enough to contain the kernel.
The predicate (EQUAL  (GETNTH  (OS- Tl ME- SLI CE- ADDRESS) (TM MEMORY  0S))
(AK-TI ME- SLI CE)) ensures that the time dlice granted to tasks by the kernel is exactly the

value specified by the abstract kernel.

Definition {1874}.
(GO0D- Cs 0s)

( AND
( GOOD- T™ ©8)
(EQUAL ( GETNTH ( TM CLOCK- NEW PC- ADDR) ( TM MEMORY 0S))
( OS- CLOCK- | NTERRUPT- HANDL ER- ADDRESS) )
(EQUAL (GETNTH ( TM ERROR- NEW PC- ADDR) ( TM MEMORY CS))
( OS- ERROR- HANDLER- ADDRESS) )
(EQUAL (GETNTH ( TM SVC- NEW PC- ADDR) ( TM MEMORY OS))
( OS- SVC- HANDLER- ADDRESS) )
(EQUAL (GETNTH ( TM | NPUT- NEW PC- ADDR) ( TM NEMORY CS))
( OS- | NPUT- | NTERRUPT- HANDLER- ADDRESS) )
(EQUAL ( GETNTH ( TM OUTPUT- NEW PC- ADDR) ( TM MEMORY OS))
( OS- QUTPUT- | NTERRUPT- HANDL ER- ADDRESS) )
( GOOD- CPU- LI ST (TABLE (TM CPU-LENGTH) ( OS- TASK- TABLE 0S)))
( FI NI TE- SEGVENT- TABLEP ( TABLE 2 ( OS- SEGVENT- TABLE OS)) ( TM MEMLENGTH))
( MUTUALLY- DI SJO NT (TABLE 2 ( OS- SEGVENT- TABLE 05)))
(DI SJO NT- EVERYWHERE 0 (QOS-LIM T) (TABLE 2 (OS- SEGVENT- TABLE OS)))
( FI NI TE- NUMBER- QUEUEP ( OS- READYQ OS) ( AK- TASKI DLUB) ( AK- TASKI DLUB))
( GOOD- STATUS- LI ST ( TABLE ( AK- STATUS- LENGTH) ( OS- STATUS- TABLE OS)))
( FI NI TE- NUMBER- QUEUE- LI STP ( TABLE ( CS- | BUFFER- LENGTH) ( GS- | BUFFERS 0S))
( TASK- | BUFFER- CAPAC! TY)
( TM VORDLUB) )
( FI NI TE- NUMBER- QUEUE- LI STP ( TABLE (OS- OBUFFER- LENGTH) (OS- OBUFFERS CS))
( TASK- OBUFFER- CAPAC! TY)
( TM WORDLUB) )
( FI NI TE- NUMBER- QUEUE- LI STP ( TABLE ( OS- MBUFFER:- LENGTH) ( CS- MBUFFERS 0S))
( TASK- MBUFFER- CAPAC! TY)
( TM WORDLUB) )
(EQUAL (CS- CODE 0S) (OS- MACHI NE- CODE) )
(EQUAL (TMSLIMT CS) (OS-LIMT))
(EQUAL ( GETNTH ( OS- Tl ME- SLI CE- ADDRESS) ( TM MEMORY OS))
( AK- TI ME- SLI CE) )
(NOT ( TM | N- SUPERVI SOR- MODE 0S))
( PERVUTATI ON ( MAPUP- QUEUE ( OS- READYQ 0S)) ( OS- READY- SET C5))
(I FF (TM VAl TING OS) (ARRAY- GEMPTYP (OS- READYQ 0S)))
(I MPLI ES
(NOT (TM WAl TI NG OS))
(AND (EQUAL (TM BASE C5)
( BASE ( GETNTH (OS- CURRENT- TASKI D CS)
(TABLE 2 (OS- SEGVENT- TABLE 0S)))))
(EQUAL (TMLIMT OS)
(LIM T (GETNTH ( OS- CURRENT- TASKI D OS)
(TABLE 2 (OS- SEGVENT- TABLE 05))))))))
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The remaining conjuncts of coop- os define invariants on the operating system
layer. First, the operating system interpreter is aways in user mode. We next have two
invariants that are present at the abstract kernel layer: the ready queue is a permutation of
the set of ready tasks as defined by the status table, and the operating system iswaiting if
and only if the ready queue is empty. The final conjunct of coop- os identifies the current

base/limit register pair with a particular entry in the segment table.

The function TABLE referenced above is an abstraction function, which

unflattens a flat representation of atable consisting of fixed-length elements of size N.

Definition {409}.
(TABLE N L)

(IF_(ZERCPN)
L
(IF (LISTP L)
(CONS (GETSEG 0 N L)

(TABLE N (NTHCDR N L)))
NIL))

The function os- PRocESSOR IS the interpreter function for the operating system
layer. It takes as arguments an os state and an oracle which is identical to a T™ oracle.
os- STEP s the single step function at the operating system layer. It defines an interrupt
structure identical to TMs. Recall that the state returned by ™ sTEP on an interrupt is
described by a simple PSW swap. The state returned by cs- sTEP on an interrupt is not a
PSW swap, but a machine state describing the effect of an interrupt handler. An os

interrupt step equals some positive number of TMsteps occurring after the same interrupt.

Definition {3635}.
(OS- PROCESSOR OS ORACLE)

(I F (LI STP ORACLE)
( OS- PROCESSOR ( 0S- STEP ( TM POST- | NTERRUPT ( CAR ORACLE) C5))
(CDR ORACLE))
os)
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Definition {3634}.
(OS- STEP (8)

(I'F (TM | NPUT- | NTERRUPTP CS)
( CS- | NPUT- | NTERRUPT- HANDLER CS)

(I F (TM OUTPUT- | NTERRUPTP OS)
( OS- OUTPUT- | NTERRUPT- HANDLER OS)

(IF (TM WA TING 0S)
s

(I F (TM ERRORP (CX5)
( OS- ERROR- HANDLER (C)

(I F (TM CLOCK- | NTERRUPTP (CS)
( OS- CLOCK- | NTERRUPT- HANDLER CS)

(I F (TM SVC | NTERRUPTP 0OS)
( 0S- SVC- HANDLER 06)

(TM FETCH EXECUTE 0S)))))))

We now provide more detailed information on the definitions of coop- os and
os- sTEP to make clear how the machine code program which defines KIT fits into the

definition of the cs layer.

We examine the conjunct (EQUAL (0s- CODE 0S) ( OS- MACHI NE- CODE)) Of Goop- s
in some detail to see how coop- os incorporates the assembled machine code into the
definition of the os layer. The function os- cope (see below) is defined to be a particular
segment of memory. (GETSEG N K L) iS the segment of list L beginning at location N with
length k. The address and length of cs- cooe is determined by the values of particular
labels in the symbol table constructed by the assembler. os- MacH Ne- copk is that segment
of the assembled source code which contains the machine code which we wish to have
interpreted by the target machine. The value of os-macH Ne- cope is a list of numbers
bounded by ™ woroLuB which results from assembling the KIT source code. Other

segments of memory which are mentioned in coop- os are defined similarly.

Definition {1770}.
(Os- CODE ©s)

( GETSEG ( OS- CODE- ADDRESS)
( OS- CODE- LENGTH)
(TM MEMORY 0S))

Definition {1751}.
( OS- CODE- ADDRESS) = (LOOKUP ' SAVE- STATE ( OS- SYMTAB))
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Definition {1755}.
( OS- CODE- LENGTH)

(DI FFERENCE (LOOKUP * END- OF- OS- SOURCE ( OS- SYMTAB) )
( OS- CODE- ADDRESS) )

Definition {1761}.
(OS- MACHI NE- CODE)

( GETSEG ( OS- CODE- ADDRESS)

( OS- CODE- LENGTH)
(CAR (ASSEMBLE (0S- SOURCE))))

Goop- os constrains the target machine to be loaded with a particular program.
The function os- sTEP gives the state changes produced by executing the program. We
examine the clock interrupt handler in some detail. When in a state recognized by
aood- os, a clock interrupt causes the target machine to be placed in the supervisor mode,
and places the address of the clock interrupt handler in the program counter. When in the
supervisor mode T™ is not interruptible. Therefore, ™™ will take some number of steps
until the clock interrupt handler relinquishes control by resuming a task in user mode.
The function os- cLock- | NTERRUPT- HANDLER defines the change to the state of the machine

produced by the clock interrupt handler. (See the function cs- sTeEP.)
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Definition {2288}.
( OS- CLOCK- | NTERRUPT- HANDLER OS)

(T™
( PUTNTH
(GETNTH (TI MES ( TM CPU- LENGTH)
( ARRAY- QFI RST ( 0S- CLOCK- NEW READYQ C85)))
( OS- NEW TASK- TABLE 08S))
0
( PUTNTH
(GETNTH (PLUS 1
(TIMES (TM CPU- LENGTH)
( ARRAY- QFI RST ( 0S- CLOCK- NEW READYQ C8))))
( OS- NEW TASK- TABLE 0S))
1
( PUTNTH
(GETNTH (PLUS 8
(TIMES ( TM CPU- LENGTH)
( ARRAY- QFI RST ( 0S- CLOCK- NEW READYQ C85))))
( OS- NEW TASK- TABLE 06))
2
(PUTNTH (TM R2 OS) (OS- TEMP- R2- ADDRESS)
(PUTNTH (TM R3 0S) (OS- TEMP- R3- ADDRESS)
( PUTSEG ( OS- NEW TASK- TABLE OS) ( OS- TASK- TABLE- ADDRESS)
( PUTSEG ( OS- SEGVENT- TABLE 0S) ( OS- SEGVENT- TABLE- ADDRESS)
( PUTSEG ( 0S- CLOCK- NEW READYQ 0S) ( OS- READYQ ADDRESS)
( PUTSEG ( OS- CODE CS) ( OS- CODE- ADDRESS)
( PUTNTH ( OS- SAVE- STATE- RETURN- ADDRESS)
(SUBL (SUBL (OS-LIMT)))
(PUTNTH ( OS- DI SPATCHER- TRACE- LABEL2) (SUBL (OS-LIMT))
(TM MEMORY 05))))))))))))
( OS- NEW REGS ( ARRAY- QFI RST ( OS- CLOCK- NEW READYQ CS)) 0S)
(OS- NEW CC ( ARRAY- QFI RST ( 0S- CLOCK- NEW READYQ 0S)) OS)
( OS- NEW ERROR ( ARRAY- QFI RST ( 0S- CLOCK- NEW READYQ 0S)) OS)
( OS- NEW SVCFLAG ( ARRAY- QFI RST ( OS- CLOCK- NEW READYQ CS)) 06)
(OS- NEW SVCI D ( ARRAY- QFI RST ( 0S- CLOCK- NEW READYQ CS)) OS)
( OS- NEW BASE ( ARRAY- QFI RST ( OS- CLOCK- NEW READYQ CS)) 08)
(OS-NEWLIM T (ARRAY- QFI RST (OS- CLOCK- NEW READYQ 0S)) OS)
(TMSLIM T C5)
( TM USER- MODE)
( TM RUN- STATE)
( AK- TI ME- SLI CE)
(TM | PORTS CS)
(TM CPORTS C5))

Os- CLOCK- | NTERRUPT- HANDLER IS a large function. We let the theorem prover help
us construct it as follows. We present to the theorem prover the event
TRACE- CLOCK- | NTERRUPT- HANDLER (See below), where os- | NTENDED- cLock- | NTERRUPT defines
the Tm clock interrupt transition for a coop- os, and cs- TI ME- FOR- CLOCK- | NTERRUPT- HANDLER
is an oracle giving the number of steps required to complete execution of the clock
interrupt handler (a list of ticks). Notice that the lemma states an equality which we do

not expect to prove: that running the clock interrupt handler produces no state change.
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Proposi tion. TRACE- CLOCK- | NTERRUPT- HANDLER (rewrite):
(T MPLIES
(AND ( GOOD- CS 08)
(NOT (TM VAl TING 0S)))
(EQUAL ( TM PROCESSOR ( OS- | NTENDED- CLOCK- | NTERRUPT OS)
( 0S- TI ME- FOR- CLOCK- | NTERRUPT- HANDLER OS) )
0s))

In letting the theorem prover attempt a proof, the left hand side of the equality
is rewritten to a form not involving calls to ™ PRocEssor by replacing the call to
TM PROCESSOR  With as many nested cals of Tmster as indicated by
OS- TI ME- FOR- CLOCK- | NTERRUPT- HANDLER.  The nested calls to T sTep are opened up and
simplified. The resulting expression describes the final state of the clock interrupt
handler. The rewriter in effect symbolically executes the operating system. We intercept
the output of the theorem prover when the final state expression is generated, edit it to
clean it up a bit, and use the resulting expression to define os- cLack- | NTERRUPT- HANDLER.
We then submit the event TRACE- cLOCK- | NTERRUPT- HANDLER again, this time placing the

form ( os- cLock- | NTERRUPT- HANDLER 08) 0on the right hand side of the equation.

Theorem {2296} . TRACE- CLOCK- | NTERRUPT- HANDLER (rewrite):
(1 MPLI ES
(AND ( GOOD- Cs 09)
(NOT (TMWAITING 05)))
(EQUAL (TM PROCESSOR ( OS- | NTENDED- CLOCK- | NTERRUPT OS)
(OS- Tl ME- FOR- CLOCK- | NTERRUPT- HANDLER OS))
(Os- CLOCK- | NTERRUPT- HANDLER 0S)))

The definition of os- sTEP is possible only when al paths through al interrupt
handlers have been traced with such lemmas. The tracing lemmas and their support
lemmas form a large part of the KIT script. The story sounds simple, but in fact the
tracing lemmas are the most difficult to get the theorem prover to check. The lemmas

require getting correct all the details of addressing complicated data structures.

The definition of cs- sTer handles the issue of time abstraction with respect to
the correspondence of Tmand ak. Figure TRACES compares the trace of a Tmrunning KIT
with atrace of an os machine. In aTtmtrace, an interrupt step is followed by some number
of fetch-execute steps occurring in supervisor mode. A contiguous number of such steps

is accomplished in a single cs step. os- PrRocessor handles the time differential between v



82

and ak. As a by-product of the definition of os- PRocESSOR, We get termination of the
operating system. os-PRocESSOR can be defined only after running each path of the

operating system to termination.

Figure5-2: Tracesof TM and OS

5.2 The Target Machine Implements the Operating System

In this section we discuss the equivalence of the target machine loaded with
KIT and the operating system layer described in the previous section. The identity
function is the abstraction function from a target machine state to an operating system
state. ™™ PRocESSOR and os- PRocessor differ in the way they consume the oracle. As
explained in Section 5.1, an interrupt step defined by os- sTEr comprehends multiple steps
of the target machine. The exact relationship can be established by defining an
intermediate processor TI MED- TM PROCESSCOR, Which calls T PRocESSCR on each interrupt

for as many steps as necessary to complete execution of the interrupt handler.

Definition {3639}.
(TT MED- TMF PROCESSOR TM ORACLE)
(I F (LI STP ORACLE)
( TI MED- TM PROCESSOR
(TI MED- TM STEP ( TM POST- | NTERRUPT ( CAR ORACLE) TM)
(CDR ORACLE))

™
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Definition {3638}.
(TIVED- TM STEP TM

(I'F (TM | NPUT- | NTERRUPTP TM
( TM PROCESSCR ( TM EXECUTE- | NPUT- | NTERRUPT TM
( OS- TI ME- FOR- | NPUT- | NTERRUPT- HANDLER TM) )

(I'F (TM OUTPUT- | NTERRUPTP TM
( TM PROCESSCR ( TM EXECUTE- OUTPUT- | NTERRUPT TM
( CS- TI ME- FOR- OUTPUT- | NTERRUPT- HANDLER TM) )

(IF (TMVAITING T™M
™

(I F (TM ERRORP TM
( TM PROCESSCR ( TM- EXECUTE- ERROR- | NTERRUPT TM
( CS- TI ME- FOR- ERROR- HANDLER TM) )

(I'F (TM CLOCK- | NTERRUPTP TM
( TM PROCESSCR ( TM EXECUTE- CLOCK- | NTERRUPT TM
( 0S- TI ME- FOR- CLOCK- | NTERRUPT- HANDLER TM) )

(I F (TM SVC- | NTERRUPTP T™
( TM PROCESSCR ( TM EXECUTE- SVC- | NTERRUPT T™
( CS- TI ME- FOR- SVC- HANDLER TM) )

(TM FETCH EXECUTE TM))))))

Speaking loosely, TIMED TM PROCESSOR and os- PRoCESSOR run "faster” than
TM PROCESSOR. Tl MED- TM PROCESSOR and 0s- PROCESSOR consume a single element of the
oracle to handle an interrupt while T PRocESSOR requires more than one. The function
0s- ORACLE constructs from an os- PRocESSOR Oracle an oracle with enough "ticks" inserted

to enable T™ PrRacESSOR to match the operation of os- PROCESSOR.

Definition {3641}.
(OS- ORACLE Os ORACLE)

(I F (LI STP ORACLE)
( APPEND
( OS- ORACLE- STEP ( CAR ORACLE)
( TM POST- | NTERRUPT (CAR ORACLE) ©5))
(0S- ORACLE (TI MED- TM STEP ( TM POST- | NTERRUPT ( CAR ORACLE) OS))
(CDR ORACLE)))
ORACLE)



Definition {3640}.
( OS- ORACLE- STEP EVENT OS)

(I'F (TM | NPUT- | NTERRUPTP CS)
( CONS EVENT (OS- Tl ME- FOR- | NPUT- | NTERRUPT- HANDLER CS) )

(I F (TM OUTPUT- | NTERRUPTP OS)
( CONS EVENT (OS- Tl ME- FOR- OUTPUT- | NTERRUPT- HANDLER OS))

(IF (TM WA TING 0S)
(LI ST EVENT)

(I F (TM ERRORP (CX5)
(CONS EVENT ( OS- Tl ME- FOR- ERROR- HANDLER 0S))

(I F (TM CLOCK- | NTERRUPTP (CS)
(CONS EVENT (OS- Tl ME- FOR- CLOCK- | NTERRUPT- HANDLER CS) )

(I F (TM SVC | NTERRUPTP 0OS)
(CONS EVENT (OS- Tl ME- FOR- SVC- HANDLER OS))

(LIST EVENT)))))))

The lemma Tv | MPLEMENTS- TI MED- TM establishes the correspondence between
TM PROCESSOR and T1 MED- TM PROCESSOR. The interrupt branches of T1 MED- TM PROCESSOR- STEP
have the form of the tracing lemmas used to generate the definition of os-step. It
therefore is a simple matter to prove that TI MED- TM PROCESSCR IS identical to os- PROCESSCR,
that is they describe the same function on a cood- os state.  We therefore get the
implements relation between the Tv and os layers, stated in ™™ I MPLEMENTS- 0. The
theorem states that the Tv layer implements the cs layer if 1/0 interrupts are adequately
spaced - long enough to execute a path of the operating system. The longest path in our
system takes 112 steps. So 112 is a crude measure of the minimum gap between 1/0

interrupts. This requirement carries up through higher layers of the proof.

Theorem {3644}. TM | MPLEMENTS- TI MED- TM (rewrite):
(EQUAL (TM PROCESSOR TM (OS- ORACLE TM ORACLE))
(TI MED- TM PROCESSOR TM ORACLE) )

Theorem {3654}. TM | MPLEMENTS-CS (rewite):
(1 MPLI ES (GOOD- S 0S)
(EQUAL (TM PROCESSOR OS (0S- ORACLE OS ORACLE))
(OS- PROCESSOR OS ORACLE)))
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5.3 The Operating System Implements the Abstract Kernel

The proof that the operating system layer implements the abstract kernel is the
heart of the verification of KIT. This result is established by the theorem
0s- | MPLEMENTS- AK.  Its proof is long. The abstraction function mapup- cs is large since

there are many state components to map, and their mapping is non-trivial.

Theorem {4620}. OS-| MPLEMENTS-AK (rewite):
(I MPLI ES (AND (GOOD- Cs ©S)
(PLI STP ORACLE))
(EQUAL ( MAPUP- OS ( Os- PROCESSOR OGS ORACLE))
( AK- PROCESSOR ( MAPUP- OS OS) ORACLE)))

MAPUP- 05 constructs an abstract kernel state from an operating system state. We
will examine the mapping of each component, dispatching the simple ones first. Observe
that the running/wait state flag, the program clock, the input ports and the output ports are
mapped up to the abstract kernel with no transformation. The status table is mapped by

the function TaeLE, which collects aflat list into alist of tuples of agiven size.

Definition {1953}.
(MAPUP- OS OS)

( AK ( MAPUP- CS- TASKS OS)
( MAPUP- CS- | BUFFERS OS)
( MAPUP- OS- OBUFFERS 06)
( MAPUP- OS- MBUFFERS 06)
( MAPUP- QUEUE ( OS- READYQ 08))
(TABLE ( AK- STATUS- LENGTH)
( OS- STATUS- TABLE C5))
(TM RWSTATE 0S)
(TM CLOCK OS)
(TM | PORTS OS)
(TM CPORTS C5))

The mappings of the ready queue and buffer tables make use of a common
abstraction function mapup- QUEUE, which maps an implementation of finite queues up to
list structures. The formal details of mapuP- QUELE and a description of how we verify
gueue operations appears in Chapter QUEUES. Suffice it to say for the present that the

operating system uses a circular implementation of finite queues.

Definition {1949},
(MAPUP- QUEUE- LI ST L)

(I F_(LI STP L)
(CONS ( MAPUP- QUEUE (CAR L))
( MAPUP- QUEUE- LI ST (CDR L)))
NIL)
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Definition {1950}.
( MAPUP- GS- | BUFFERS 0S)

( MAPUP- QUEUE- LI ST ( TABLE ( CS- | BUFFER- LENGTH)
(OS- 1 BUFFERS 05)))

Definition {1951}.

( MAPUP- OS- OBUFFERS 0S)

( MAPUP- QUEUE- LI ST ( TABLE ( OS- OBUFFER- LENGTH)
(OS- OBUFFERS 08)))

Definition {1952}.

( MAPUP- OS- MBUFFERS CS)

( TABLE ( AK- TASKI DLUB)
( MAPUP- QUEUE- LI ST ( TABLE ( OS- MBUFFER- LENGTH)
( 0S- MBUFFERS 085))))

The function maPupP- os- TASKS maps out of the operating system state a list of
task address spaces. An address space is defined as a target machine which contains just
that portion of the machine which is visible to a single task running in user mode. The
function maPuP- ADDRESS- SPACE formalizes this notion. It builds a target machine which
contains a given CPU state (genera purpose registers and flags) and a segment of
memory defined by a given base and limit. The base register is initialized to 0, and the
limit register is initialized to the given limit. The machine is put in the user operating
mode. Remaining target machine components have don't care values since they are not

accessible in user mode.

Definition {1948}.
(MAPUP- OS- TASKS 0S) = ( MAPUP- TASKS 0 OS)

Definition {1947}.
( MAPUP- TASKS TASKI D 0S)

(I F (LESSP TASKI D ( AK- TASKI DLUB))
(CONS ( MAPUP- TASK TASKI D 0OS)
( MAPUP- TASKS (ADDL TASKI D) OS))
NI L)

Definition {1946}.
( MAPUP- TASK TASKI D OS)

( MAPUP- ADDRESS- SPACE ( TM MEMORY (CS)
( MAPUP- REGS TASKI D 0S)
( MAPUP- CC TASKI D OS)
( MAPUP- ERROR TASKI D OS)
( MAPUP- SVCFLAG TASKI D 0S)
( MAPUP- SVCI D TASKI D OS)
( MAPUP- BASE TASKI D 0OS)
(MAPUP-LIM T TASKI D OS))



87

Definition {1266}.
( MAPUP- ADDRESS- SPACE MEMORY REGS CC ERROR SVCFLAG SVCI D BASE LIMT)

(TM ( GETSEG BASE LIM T MEMORY)

REGS CC ERROR SVCFLAG SVCID 0 (FIX LIMT)
0 (TM USER-MODE) 0 0 0 0)

The values chosen to initialize a task’s address space (i.e. the values occurring
as arguments to MAPUP- ADDRESS- SPACE iN MAPUP- TASK) are extracted from the state of the
operating system. The ith task’s memory segment is defined by the segment of memory
identified by the ith base/limit register pair in the segment table. The ith task’s CPU state
depends on whether or not the operating system isin the wait state, and the identity of the
current task. If the operating system state is waiting, then the CPU state of task i is
contained in the ith entry of the task table. If the operating system state is running, the
CPU state of the current task is the current state of the CPU. The contents of the task
table is not up to date for this task. Otherwise, the CPU state of the ith task is extracted

from the task table. These points are formalized in the function mapup- cru.
Definition {1939},
(MAPUP- REGS TASKI D 08)
(GETSEG 0 (TM REGLENGTH) (MAPUP- CPU TASKI D OS))
Definition {1940},
(MAPUP- CC TASKI D 08)
( TM- UNPACK- CC ( GETNTH ( TM REGLENGTH) ( MAPUP- CPU TASKI D 085)))
Definition {1941}.
(MAPUP- ERROR TASKI D OS)
( TM UNPACK- ERROR ( GETNTH ( TM REGLENGTH) ( MAPUP- CPU TASKI D C8)))
Definition {1942}.
(MAPUP- SVCFLAG TASKI D 08)
( TM UNPACK- SVCFLAG ( GETNTH ( TM REGLENGTH) ( MAPUP- CPU TASKI D CS)))
Definition {1943}.
(MAPUP- SVCI D TASKI D OS)
( TM- UNPACK- SVCI D ( GETNTH ( TM REGLENGTH) ( MAPUP- CPU TASKI D C85)))
Definition {1944}.
(MAPUP- BASE TASKI D 08)
(BASE (GETNTH TASKI D (TABLE 2 (OS- SEGVENT- TABLE 08))))
Definition {1945}.
(MAPUP-LIM T TASKI D O8S)

(LIM T (GETNTH TASKI D (TABLE 2 ( OS- SEGVENT- TABLE 085))))
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Definition {1938}.
( MAPUP- CPU TASKI D 0S)

(I'F (TM WA TING 0S)
( GETNTH TASKI D
(TABLE ( TM CPU- LENGTH)
(CS- TASK- TABLE 08)))

(I F (EQUAL TASKI D ( OS- CURRENT- TASKI D OS))

(TM CPU CB)
( GETNTH TASKI D
(TABLE ( TM CPU- LENGTH)
(0S- TASK- TABLE 08)))))

We now can define a function required for the definition of the task layer,
GOOD- ADDRESS- SPACE.  This predicate must hold on the private state of a task.
GOOD- ADDRESS- SPACE recognizes a TM with a memory of a given length, and running in
user mode. MAPUP- ADDRESS- SPACE Satti Sfies Goob- ADDRESS- SPACE When it is constructed from

avalid target machine.

Definition {1194}.
( GOOD- ADDRESS- SPACE X MEMLENGTH)

(AND (TM SHELLP X)
( NUMBERP MEMLENGTH)
(LEQ MEMLENGTH ( TM MEMLENGTH) )
(PLI STP ( TM MEMORY X))
( FI NI TE- NUMBER- LI STP ( TM MEMORY X) ( TM WORDLUB) )
(EQUAL (LENGTH (TM MEMORY X)) MEMLENGTH)
(PLI STP (TM REGS X))
(FI NI TE- NUMBER- LI STP ( TM REGS X) (TM WORDLUB))
(EQUAL (LENGTH (TM REGS X)) (TM REGLENGTH))
(FI NI TE- NUMBERP (TM CC X) (TM CCLUB))
(FI NI TE- NUMBERP ( TM ERROR X) (TM ERRORLUB))
(FI NI TE- NUMBERP ( TM SVCFLAG X) ( TM SVCFLAGLUB))
(FI NI TE- NUMBERP (TM SVCI D X) (TM SVCI DLUB))
(EQUAL (TM BASE X) 0)
(EQUAL (TMLIMT X) MEM.ENGTH)
(EQUAL (TM SVMODE X) (TM USER- MCDE)))

The proof of os-I MPLEMENTS- AK IS by induction over the oracle argument to
AK- PROCESSCR. It is a simple consequence of the theorem ©s- STEP- | MPLEMENTS- AK- STEP,

whose proof we give.

Theorem {4612}. OS- STEP-| MPLEMENTS- AK- STEP (rewite):
(1 MPLI ES (GOOD- CS 0S)
(EQUAL ( MAPUP-CS (COs-STEP 09))
(AK- STEP (MAPUP-CS 0S))))

Pr oof :

This conjecture sinplifies, rewiting with
OS- NOT- | N- SUPERVI SOR- MODE, AK- SVC- | NTERRUPTP- MAPUP- CS,
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AK- CLOCK- | NTERRUPTP- MAPUP- OS, AK- ERRORP- MAPUP- OS,

AK- WAI TI NG MAPUP- CS, AK- OUTPUT- | NTERRUPTP- MAPUP- CS, and

AK- | NPUT- | NTERRUPTP- MAPUP- OS, and unf ol di ng TM OUTPUT- | NTERRUPTP,
TM | NPUT- | NTERRUPTP, CS- STEP, AK- | NTERRUPTI NG QUTPUT- PORT,

AK- | NTERRUPTI NG- | NPUT- PORT, and AK-STEP, to the follow ng six new
fornul as:

Case 6. (IMPLIES
(AND ( GOOD- CS C5)
(NOT ( TM SOVE- | NPUT- | NTERRUPTP ( TM | PORTS C8S)))
( TM SOVE- OUTPUT- | NTERRUPTP ( TM OPORTS C85)))
( EQUAL
( MAPUP- OS ( GS- OUTPUT- | NTERRUPT- HANDLER CS) )
( AK- OUTPUT- | NTERRUPT- HANDLER
( TM | NTERRUPTI NG- OUTPUT- PORT ( AK- OPORTS ( MAPUP- OS 0S)))
(MAPUP-GS 0S)))) .

But this again sinplifies, applying the | emma
CORRECTNESS- OF- QUTPUT- | NTERRUPT- HANDLER, t o:

T.

Case 5. (IMPLIES

( AND ( GOOD- CS C5)
(NOT ( TM SOVE- | NPUT- | NTERRUPTP ( TM | PORTS 085)))
(NOT ( TM SOVE- QUTPUT- | NTERRUPTP ( TM OPCRTS 0S)))
(NOT (TM WAI TI NG OS))
(TM ERRORP C5))

(EQUAL ( MAPUP- GS ( OS- ERROR- HANDLER CS))

( AK- ERROR- HANDLER ( MAPUP- CS 085))) ),

whi ch again sinplifies, rewiting with
CORRECTNESS- OF- OS- ERROR- HANDLER, to:

T.

Case 4. (I MPLIES

(AND ( GOOD- 05 C5)
(NOT ( TM SOVE- | NPUT- | NTERRUPTP ( TM | PORTS C85)))
(NOT ( TM SOVE- OUTPUT- | NTERRUPTP ( TM OPORTS 0S)))
(NOT (TM VAl TI NG OS))
(NOT (TM ERRORP 0S))
(NOT ( TM CLOCK- | NTERRUPTP CS))
( TM SVC- | NTERRUPTP 0OS))

(EQUAL ( MAPUP- GS ( CS- SVC- HANDLER 0S))

( AK- SVC- HANDLER ( MAPUP- CS C5)))) .

However this again sinplifies, rewiting with the | emma
CORRECTNESS- OF- SVC- HANDLER, to:

T.

Case 3. (IMPLIES

(AND ( GOOD- 05 C5)
(NOT ( TM SOVE- | NPUT- | NTERRUPTP ( TM | PORTS C85)))
(NOT ( TM SOVE- OUTPUT- | NTERRUPTP ( TM OPORTS 0S)))
(NOT (TM WAl TI NG OS))
(NOT (TM ERRORP 0S))
(NOT ( TM CLOCK- | NTERRUPTP CS))
(NOT (TM SVC- | NTERRUPTP CS)))

(EQUAL (MAPUP- S ( TM FETCH EXECUTE CS))



CORRECTNESS- OF- | NPUT- | NTERRUPT- HANDLER,

( AK- PRI VATE- STEP ( MAPUP-CS 08)))),

whi ch again sinplifies, applying the | emma
CORRECTNESS- OF- TM FETCH EXECUTE, t o:

T.

Case 2. (I MPLIES

(AND ( GOOD- 05 C5)
(NOT ( TM SOVE- | NPUT- | NTERRUPTP ( TM | PORTS C8S)))
(NOT ( TM SOVE- OUTPUT- | NTERRUPTP ( TM OPORTS C85)))
(NOT (TM VAI TI NG OS))
(NOT (TM ERRORP 0S))
( TM CLOCK- | NTERRUPTP CS))

(EQUAL ( MAPUP- GS ( OS- CLOCK- | NTERRUPT- HANDLER CS))

( AK- CLOCK- | NTERRUPT- HANDLER ( MAPUP- CS QS)))),

whi ch again sinplifies, rewiting with
CORRECTNESS- OF- CLOCK- | NTERRUPT- HANDLER, t o:

T.

Case 1. (IMPLIES

( AND ( GOOD- CS C5)
( TM SOME- | NPUT- | NTERRUPTP ( TM | PORTS OS)))

( EQUAL

( MAPUP- OGS ( CS- | NPUT- | NTERRUPT- HANDLER CS) )

( AK- | NPUT- | NTERRUPT- HANDLER
( TM | NTERRUPTI NG- | NPUT- PORT ( AK- | PORTS ( MAPUP- CS CS)))
( MAPUP-CS 09)))) .

This again sinplifies, applying the | emma
CORRECTNESS- OF- | NPUT- | NTERRUPT- HANDLER, to:

T.

90

The lemmas CORRECTNESS- OF- OUTPUT- | NTERRUPT- HANDLER,

CORRECTNESS- OF- OS- ERROR- HANDLER ~ and ~ CORRECTNESS- OF- SVC- HANDLER — establish

CORRECTNESS- OF- CLOCK- | NTERRUPT- HANDLER iS Stated as an example.

Theor em {3680}. CORRECTNESS- OF- CLOCK- | NTERRUPT- HANDLER (rewrite):
(IMPLIES (AND (GOOD-OS 0S)
(NOT (TM VAl TI NG OS))
(NOT ( TM ERRORP CS)))
(EQUAL ( MAPUP- GS ( OS- CLOCK- | NTERRUPT- HANDLER CS))
( AK- CLOCK- | NTERRUPT- HANDLER ( MAPUP- CS CS))))

CORRECTNESS- OF- CLOCK- | NTERRUPT- HANDLER,
the

correctness of each of the interrupt handlers and have identical form. The theorem

The proof of each interrupt handler correctness theorem follows the same

pattern: open up the definition of maPuP- os and prove that the abstraction of each os field
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equals the corresponding Ak field. The proof is therefore a large case split, the details of

which we leave to the script.

The verification of the interrupt handlers gives five of the six cases required to
prove os- STEP- | MPLEMENTS- AK- STEP. The remaining case requires a proof that a fetch-
execute step at the os layer implements a fetch-execute step at the ak layer. Thisresult is

stated by the theorem CoRRECTNESS- OF- TM FETCH- EXECUTE.

Theorem {2078}. CORRECTNESS- OF- TM FETCH EXECUTE (rewrite):
(TMPLIES (AND (GOOD- CS OS)
(NOT (TM WA TING 0S))
(NOT ( TM CLOCK- | NTERRUPTP 0S)))
(EQUAL ( MAPUP- OS ( TM FETCH EXECUTE 0S))
( AK- FETCH EXECUTE ( MAPUP-CS 05))))

Recall that Ak- FETCcH EXECUTE IS defined as the application of T FETCH EXECUTE
to the current abstract address space. Therefore the  proof  of
CORRECTNESS- OF- TM FETCH- EXECUTE IS a result about the interaction of T FETCH EXECUTE
and the address space abstraction. At the Ak layer, address spaces are clearly isolated.
Each address space is an element of the array ak- psTATES. There is no sharing of data
among address spaces. Therefore address space isolation is a simple result of the
properties of array access. At the os layer address space isolation is not nearly as
trangparent. A task’s address space is computed from a segment of memory, the current

CPU state and the current contents of the data structure os- TASK- TABLE.

The proof of corRRECTNESS- OF- TM FETCH- EXECUTE IS accomplished by a case split
on the current task identifier. The theorem MAPUP- CURRENT- TASK- TM FETCH- EXECUTE States
that T™ FETCH EXECUTE behaves as desired on the current address space, and
MAPUP- TASK- SEPARATI ON States the property that T FETcH ExecuTE has no effect on an

address space which is not current.

Theor em { 2069}.  MAPUP- CURRENT- TASK- TM FETCH EXECUTE (rewrite):
(TMPLIES (AND ( GOOD- OS 06)
(NOT (TM WAI TING 0S)))
( EQUAL ( MAPUP- TASK (OS- CURRENT- TASKI D CS)
( TM FETCH EXECUTE C85))
( TM FETCH EXECUTE ( MAPUP- TASK ( OS- CURRENT- TASKI D CS)

05))))
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Theor em {2070}.  MAPUP- TASK- SEPARATI ON (rewrite):
(TMPLIES (AND ( GOOD- OS O8)
(NOT (TM WAl TI NG OS))
( NUMBERP TASKI D)
(LESSP TASKI D ( AK- TASKI DLUB) )
(NOT (EQUAL TASKI D ( OS- CURRENT- TASKI D 0S))))
(EQUAL ( MAPUP- TASK TASKI D ( TM FETCH EXECUTE OS))
( MAPUP- TASK TASKI D 0S)))

These lemmas in turn rely on important properties of T™s architecture.
TM FETCH EXECUTE- COMMUTES- W TH MAPUP- ADDRESS- SPACE States that TM FETCH EXECUTE, when
in user mode, may be applied to the entire state of the target machine, or to just a single
address space, with identical effect on that address space. It is this theorem which alows
us to apply ™ FeTcH Execute at al levels of the specification and definition of KIT. And
it is this theorem which formalizes our intuitive understanding of what an address space
is. The invariant defined by coop- os ensures that the conditions required by this theorem

always hold.

Theor em {1382} . TM FETCH EXECUTE- COWUTES- W TH- MAPUP- ADDRESS- SPACE (T ewr
(T MPLI ES
(AND (GOOD-TM TM
(LEQ (PLUS (TMBASE TM (TMLIMT TM)
( TM MEMLENGTH) )
(NOT (TM | N- SUPERVI SOR- MODE TM) ) )
(EQUAL (TM FETCH EXECUTE ( MAPUP- ADDRESS- SPACE ( TM MEMORY TM
(TM REGS T™
(TM CC T™
(TM ERRCR T™
(TM SVCFLAG T™
(TM SVCI D T™M
(TM BASE T™
(TMLIMT T™))
( MAPUP- ADDRESS- SPACE ( TM MEMORY ( TM FETCH EXECUTE TM) )
(TM REGS ( TM FETCH EXECUTE TM)
(TM CC ( TM FETCH EXECUTE TM)
(TM ERROR ( TM FETCH EXECUTE TM)
( TM SVCFLAG ( TM FETCH EXECUTE TM)
(TM SVCI D ( TM FETCH EXECUTE TM)
(TM BASE ( TM FETCH EXECUTE TM)
(TMLIM T (TM FETCH EXECUTE TM))))

The theorem Tm FETCH EXECUTE- MAPUP- ADDRESS- SPACE- SEPARATI ON states the
main protection theorem. In a machine state for which coop-os holds, applying
T™ FETCH EXECUTE has no effect on the address space of a task which is not the current
task.



93

Theor em {2048}.  TM FETCH EXECUTE- MAPUP- ADDRESS- SPACE- SEPARATI ON (rewrit
(I MPLI ES
( AND ( GOOD- CS 0S)
(NOT (TM VAl TI NG OS))
( NUMBERP TASKI D)
(LESSP TASKI D ( AK- TASKI DLUB) )
(NOT (EQUAL TASKI D ( OS- CURRENT- TASKI D 0S))))
( EQUAL
( MAPUP- ADDRESS- SPACE ( TM MEMCRY ( TM FETCH- EXECUTE 0S))
REGS CC ERROR SVCFLAG SVCI D
(BASE (GETNTH TASKI D
(TABLE 2 (OS- SEGVENT- TABLE OS)))
(LIM T (GETNTH TASKI D
(TABLE 2 (OS- SEGVENT- TABLE OS))
( MAPUP- ADDRESS- SPACE ( TM MEMORY CS)
REGS CC ERROR SVCFLAG SVCI D
(BASE (GETNTH TASKI D
(TABLE 2 (OS- SEGVENT- TABLE 0OS)))
(LIM T (GETNTH TASKI D
(TABLE 2 (OS- SEGVENT- TABLE OS))

5.4 The Abstract Kernel Implements Tasks

The correctness theorem for the abstract kernel establishes that the kernel
implements a set of independent tasks. The commutativity diagram in Figure
AK-IMPLEMENTS-PARALLEL-TASKS depicts the relation which theorem

AK- | MPLEMENTS- PARALLEL- TASKS States.

Theorem {1689}. AK-| MPLEMENTS- PARALLEL- TASKS (rewite):
(I MPLI ES (AND ( GOOD- AK AK)
(FI'NI TE- NUMBERP | (LENGTH ( AK- PSTATES AK))))
(EQUAL (PRQIECT | (AK-PROCESSOR AK ORACLE))
( TASK- PROCESSOR ( PROJECT | AK)
|
( CONTROL- ORACLE | AK ORACLE))))

The abstraction function is Prasect, which projects the state of the ith task out
of an abstract kernel state. PRaJECT composes a task state from the ith address space and

the shared buffers.

Definition {1672}.
(PRQIECT | AK)

(TASK (GETNTH | ( AK- PSTATES AK))
( AK- CHANNELS AK))

Definition {1671}.
(AK- CHANNELS AK)

(LI ST (AK- | BUFFERS AK) (AK- OBUFFERS AK) (AK- MBUFFERS AK))

N AK- | MPLEMENTS- PARALLEL- TASKS, TASK- PROCESSCOR'S oracle is a function of the
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Figure5-3: AK Implements Parallel Tasks
task identifier, the initial abstract kernel state and the abstract kernel’s oracle.
CONTROL- ORACLE MITOrS AK- PROCESSOR. It constructs an oracle for the task layer by building
alist which at each step contains T if the indicated task is current in the abstract kernel, or

contains the shared state which results from a step of the abstract kernel.

Definition {1674}.
( CONTROL- ORACLE | AK ORACLE)

(I F (LI STP ORACLE)
( CONS
( CONTROL- ORACLE- STEP | ( AK- POST- | NTERRUPT (CAR ORACLE) AK))
( CONTROL- ORACLE |
( AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE)))
NI L)



Definition {1673}.
( CONTROL- ORACLE- STEP | AK)

(I'F (AK- | NPUT- | NTERRUPTP AK)
( AK- CHANNELS
( AK- | NPUT- | NTERRUPT- HANDLER
( TM | NTERRUPTI NG- | NPUT- PORT ( AK- | PORTS AK))

AK))

(I F ( AK- OUTPUT- | NTERRUPTP AK)
( AK- CHANNELS
( AK- QUTPUT- | NTERRUPT- HANDLER
( TM | NTERRUPTI NG- OUTPUT- PORT ( AK- OPORTS AK) )

AK))

(I F (AK-WAI TI NG AK)
( AK- CHANNELS AK)

(I F (AK- ERRORP AK)
( AK- CHANNELS ( AK- ERROR- HANDLER AK) )

(I F (AK- CLOCK- | NTERRUPTP AK)
( AK- CHANNELS ( AK- CLOCK- | NTERRUPT- HANDLER AK) )

(I F (AK- SVC- | NTERRUPTP AK)
(IF (EQUAL | (AK-TASKID AK))
T

( AK- CHANNELS ( AK- SVC- HANDLER AK)))

(IF (EQUAL | (AK-TASKID AK))
T

( AK- CHANNELS ( AK- PRI VATE- STEP AK)))))))))
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The proof of Ak- 1 MPLEMENTS- PARALLEL- TASKS IS by induction on oracLE and is

given below. The induction step, case 2, is proved by a case split which considers

whether or not the task identifier 1 indicates an active task. We must have that an AK step

implements a step on an active task as specified by the task layer. On a non-active task,

the control oracle constructed by conTRoL- oRaCLE- STEP must contain the shared state

which Ak generates.

Theorem {1689}. AK- | MPLEMENTS- PARALLEL- TASKS (rewrite):
(TMPLIES (AND (GOOD- AK AK)

(FI NI TE-NUMBERP | (LENGTH (AK- PSTATES AK))))

(EQUAL (PROJECT | (AK- PROCESSOR AK ORACLE))

Pr oof :

( TASK- PROCESSOR ( PROJECT | AK)
|
( CONTROL- ORACLE | AK ORACLE))))

This conjecture can be sinplified, using the abbreviations

FI NI TE- NUMBERP,

I MPLIES, NOT, OR, AND, ACCESS-AK-POST-I| NTERRUPT,

and LENGTH- AK- PSTATES- AK- STEP, to two new fornul as:



Case 2. (IMPLIES
( AND
(LI STP ORACLE)
(I MPLI ES
( AND
( GOOD- AK ( AK- STEP ( AK- POST- | NTERRUPT (CAR ORACLE) AK)))
( FI NI TE- NUVBERP |
(LENGTH ( AK- PSTATES AK))))
( EQUAL
( PROJECT |
( AK- PROCESSOR
( AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE)))
( TASK- PROCESSOR
( PROJECT |
( AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK)))
[
( CONTROL- ORACLE |
( AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE)))))
( GOOD- AK AK)
( NUVBERP 1)
(LESSP | (LENGTH ( AK- PSTATES AK))))
(EQUAL (PROJECT | (AK- PROCESSOR AK ORACLE))
( TASK- PROCESSOR ( PROJECT | AK)
|
( CONTROL- ORACLE | AK ORACLE)))),

whi ch sinplifies, applying GOOD AK- AK- POST- | NTERRUPT,
GOOD- AK- AK- STEP, CDR- CONS, and CAR- CONS, and opening up

FI' NI TE- NUMBERP, AND, | MPLI ES, AK-PROCESSOR, CONTROL- ORACLE, and
TASK- PROCESSOR, to the followi ng two new fornmnul as:

Case 2. 2.
(I MPLI ES
( AND
(LI STP ORACLE)
( EQUAL
(PROJECT |
( AK- PROCESSOR
(AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE)))
( TASK- PROCESSOR
(PROJECT |
(AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK)))
|
( CONTROL- ORACLE |
(AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE))))
( GOOD- AK  AK)
(NUMBERP | )
(LESSP | (LENGTH ( AK- PSTATES AK)))
(Nor
( TASK- ACTI VEP
( CONTROL- ORACLE- STEP |
( AK- POST- | NTERRUPT ( CAR ORACLE)
AK)))))
( EQUAL
(PRQIECT |
( AK- PROCESSOR
(AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
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(CDR ORACLE)))
( TASK- PROCESSOR
( TASK- UPDATE- SHARED- STATE
(PROJECT | AK)
( CONTROL- ORACLE- STEP |
( AK- POST- | NTERRUPT (CAR ORACLE) AK)))
[
( CONTROL- ORACLE |
( AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE))))).

This again sinplifies, using linear arithmetic, rewiting with
the | emma AK- | MPLEMENTS- NON- ACTI VE- TASK- STEP, and expandi ng t he
function FI N TE- NUMBERP, to:

T.

Case 2.1.
(I MPLI ES
( AND
(LI STP ORACLE)
( EQUAL
(PROJECT |
( AK- PROCESSOR
(AK- STEP ( AK- PGST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE)))
( TASK- PROCESSOR
(PROJECT |
(AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK)))
|
( CONTROL- ORACLE |
(AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE))))
( GOOD- AK AK)
(NUMBERP |)
(LESSP | (LENGTH ( AK- PSTATES AK)))
( TASK- ACTI VEP
( CONTROL- ORACLE- STEP |
(AK- PCST- | NTERRUPT (CAR ORACLE) AK))))
( EQUAL
(PRQIECT |
( AK- PROCESSOR
(AK- STEP ( AK- PGST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE)))
( TASK- PROCESSOR
(TASK- STEP (PRQIECT | AK) 1)
|

( CONTROL- ORACLE |
( AK- STEP ( AK- POST- | NTERRUPT ( CAR ORACLE) AK))
(CDR ORACLE))))),

which again sinplifies, using linear arithnetic, applying the
| emma AK- | MPLEMENTS- ACTI VE- TASK- STEP, and expandi ng
FI NI TE- NUMBERP, to:

T.

Case 1. (IMPLIES
(AND (NOT (LI STP ORACLE))
( GOOD- AK AK)
( NUVBERP 1)
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(LESSP | (LENGTH ( AK- PSTATES AK))))
(EQUAL (PROJECT | (AK- PROCESSOR AK ORACLE))
( TASK- PROCESSOR ( PROJECT | AK)
|
( CONTROL- ORACLE | AK ORACLE)))),

which sinplifies, opening up the functions AK-PROCESSOR,
CONTROL- ORACLE, LI STP, and TASK- PROCESSOR, to:

T.

QE D.

The critical support lemmas used in Ak- | MPLEVENTS- PARALLEL- TASKS are given
below. Ak-1 MPLEMENTS- ACTI VE- TASK- STEP establishes that the abstract kernel’s transition
on the current task is identical to a step on an active task at the task layer. This requires
checking that the communication primitives are implemented correctly, which is not
difficult since the representation of buffers is identical at the abstract kernel and task
layers. The lemma Ak- | MPLEMENTS- NON- ACTI VE- TASK- STEP IS a matter of demonstrating that
CONTROL- ORACLE contains the appropriate shared state on a non-active task step, and that no

transition occurs on the indicated task’ s private state.

Theor em {1688}.  AK- | MPLEMENTS- ACTI VE- TASK- STEP (rewrite):
(T MPLIES
(AND (GOOD- AK AK)
(FI NI TE-NUMBERP | (LENGTH (AK- PSTATES AK)))
( TASK- ACTI VEP
( CONTROL- ORACLE- STEP |
( AK- POST- | NTERRUPT (CAR ORACLE) AK))))
(EQUAL (PRQJECT | (AK- STEP ( AK- POST- | NTERRUPT (CAR ORACLE) AK)))
(TASK- STEP (PRQIECT | AK) 1)))

Theorem {1681}. AK- | MPLEMENTS- NON- ACTI VE- TASK- STEP (rewrite):
(TMPLIES
(AND ( GOOD- AK AK)
(FI NI TE-NUMBERP | (LENGTH (AK- PSTATES AK)))
(NOT ( TASK- ACTI VEP
( CONTROL- ORACLE- STEP |
( AK- POST- | NTERRUPT ( CAR ORACLE)
AK)))))
(EQUAL (PRQJECT | (AK- STEP ( AK- POST- | NTERRUPT (CAR ORACLE) AK)))
( TASK- UPDATE- SHARED- STATE
(PROJECT | AK)
( CONTROL- ORACLE- STEP |
( AK- POST- | NTERRUPT ( CAR ORACLE)
AK))))
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5.5 Composing the Interpreter Equivalence Theorems

We have described the correctness proof between each consecutive pair of
layersin Figure 5-1. These lemmas can be used to prove a single theorem which spans all
layers. Using TwmIMLEMENTS-0s and  os-I MPLEMENTS-AK We get the theorem
CORRECTNESS- OF- OPERATI NG SYSTEM Which is the main operating system correctness
theorem. Recall from Section 5.2 that the theorem states that the Tmlayer matches the ak
layer if 1/O interrupts occur at the Tmlayer with a frequency low enough to always allow
an interrupt handler to complete. The longest time span taken by an interrupt handler in
KIT is 112 steps, so this is a crude measure of the minimum gap between 1/0 interrupts.
Thisfigureisfairly small, so the frequency of interruptsis not required to be very low. [f
the frequency condition is violated at the v layer, then an interrupt will be ignored, and

process isolation will still be preserved.

Theor em {4621}, CORRECTNESS- OF- OPERATI NG- SYSTEM (rewrite):
(TMPLIES (AND ( GOOD- OS 0S)
(PLI STP ORACLE))
(EQUAL (MAPUP- CS ( TM PROCESSOR CS ( 0S- ORACLE OS ORACLE)))
( AK- PROCESSCR ( MAPUP- OS OS) ORACLE)))

Combining this result with Ak- 1 MPLEMENTS- PARALLEL- TASKS gives the result
which spans the entire ladder of Figure 5-1. The theorem os- | MPLENMENTS- PARALLEL - TASKS
establishes the result that the operating system running on the target machine ™

implements our abstract definition of aparallel process.

Theor em {4623}. OS-| MPLEVENTS- PARALLEL- TASKS:
(IMPLIES (AND (GOOD-OS 08S)
(PLI STP ORACLE)
(FI NI TE- NUMBERP | (LENGTH (AK- PSTATES ( MAPUP-CS CS)))))
(EQUAL ( PROJECT- | TH TASK |
( TM PROCESSCR OS
(OS- ORACLE OS ORACLE)))
( TASK- PROCESSOR ( PROJECT- | TH- TASK | CS)
|
( CONTROL- ORACLE |
( MAPUP- CS 0S)
ORACLE))))




Chapter 6

Queues

In this chapter we take a detailed look at how we verify operations on queues.
The buffers and ready queue of the abstract kernel are implemented as bounded queues,
so this explanation reveals much of the effort involved in proving that the operating

system implements the abstract kernel.

6.1 An Implementation of Queues
We have already seen the queue primitives at the abstract kernel level. We

repeat them here.

Definition {470}.
(QFI RST TABLE) = (CAR TABLE)

Definition {471}.
(ENQ I TEM TABLE) = (APPEND TABLE (LIST I TEM)

Definition {472}.
(DEQ TABLE) = (CDR TABLE)

Definition {473}.
(QEMPTYP TABLE) = (EQUAL (LENGTH TABLE) 0)

Definition {474}.
(QFULLP TABLE MAX) = (NOT (LESSP (LENGTH TABLE) MAX))

Definition {475}.
(QREPLACE | TEM QUEUE) = (ENQ | TEM ( NONLAST QUEUE))

Definition {458}.
(NONLAST L) = (GETSEG 0 (SUB1 (LENGTH L)) L)

We wish to implement queues of finite length in the store of a computer. We
choose to implement them circularly. That is, a head and tail pointer cycle around afixed
size segment of memory. We call our queue implementation an array queue, suggesting
an implementation in a memory array. We implement queues whose contents are single

memory words.
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The format of an array queue is a 4-tuple appended to a memory segment
containing the queue elements. We give the format of the 4-tuple, where QarrAY refers to

the appended memory segment.
* HEAD : An index into arrAY giving the location of the first queue el ement.

* TAIL : Anindex into array giving the location of the first free slot at the end
of the queue.

* CURRLENGTH : The current length of the queue.

* MAXLENGTH : The maximum length of the queue. The length of qarray.

The format of an ARraY- QUELE is formalized by the following definitions, which

give indices to the various queue fields within an ARRAY- QUEUE.

Definition {494}.
(QHEAD-FI ELD) = 0

Definition {495}.
(QTAIL-FIELD) =1

Definition {496}.
(QCURRLENGTH- FI ELD) = 2

Definition {497}.
( QVAXLENGTH- FI ELD) = 3

Definition {498}.
(QARRAY-FI ELD) = 4

The predicate ARRAY- QUEUEP recognizes a segment of memory which contains a
well formed ArRrAY- QUEUE. It states all the required relationships among the fields of a
gueue. The most intricate property is expressed by the function ARRAY- Q NDEX- RELATI ON
which relates the HeaD and 1Al L positions to the current length of the queue. Figure
DELTA depicts the measurement made by the function peLTA, the "wrap around” distance
from HEAD tO TAIL in a gqueue. ARRAY- Q NDEX- RELATI ON states that if HEaD and TAIL are
identical, then the queue length is quaxLeENGTH (i.€. the queue is full), otherwise the queue
length is QCURRLENGTH.
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Figure6-1: Delta

Definition {506}.
( ARRAY- QUEUEP QUEUE)

(AND (PLI STP QUEUE)

(EQUAL (LENGTH QUEUE)

(PLUS ( QARRAY- FI ELD)

(GETNTH ( QVAXLENGTH- FI ELD) QUEUE)))

( NUMBERP ( GETNTH ( QHEAD- FI ELD) QUEUE))
( NUMBERP ( GETNTH ( QTAI L- FI ELD) QUEUE))
( NUMBERP ( GETNTH ( QCURRLENGTH- FI ELD) QUEUE))
(NOT (ZEROP (GETNTH ( QVAXLENGTH- FI ELD) QUEUE)))
(LESSP ( GETNTH ( QHEAD- FI ELD) QUEUE)

( GETNTH ( QUAXLENGTH- FI ELD) QUEUE))
(LESSP ( GETNTH ( QTAI L- FI ELD) QUEUE)

( GETNTH ( QUAXLENGTH- FI ELD) QUEUE))
(LESSP ( GETNTH ( QCURRLENGTH- FI ELD) QUEUE)

(ADDL (GETNTH ( QVAXLENGTH- FI ELD) QUEUE)))
( ARRAY- Q NDEX- RELATI ON QUEUE) )

Definition {505}.
( ARRAY- Q NDEX- RELATI ON QUEUE)

(EQUAL (DELTA (GETNTH ( QHEAD- FI ELD) QUEUE)
(GETNTH ( QTAI L- FI ELD) QUEUE)
( GETNTH ( QUAXLENGTH- FI ELD) QUEUE))
(I F (ZEROP ( GETNTH ( QCURRLENGTH- FI ELD) QUEUE))
( GETNTH ( QUAXLENGTH- FI ELD) QUEUE)
( GETNTH ( QCURRLENGTH- FI ELD) QUEUE)))

Definition {499}.
(DELTA A B MAX)

(IF (LEQ B A)

(PLUS (DI FFERENCE MAX A) B)
(DI FFERENCE B A))

The following functions define ArrRAY- QUEUE primitives which correspond to the
abstract queue primitives. They state precisely how the state of an ARRAY- QUEUE is changed
by each operation. Recall that the form (puTNTH v N L) isthe list which isidentical to L

except for the nth element, whichisequal tov. (GETNTH N L) isthe nth element of L.



Definition {520}.
( ARRAY- ENQ | TEM QUEUE)

(PUTNTH (1 NCR- MOD ( GETNTH ( QTAI L- FI ELD) QUEUE)
( GETNTH ( QUAXLENGTH- FI ELD) QUEUE))

( QTAI L- FI ELD)
(PUTNTH (ADDL ( GETNTH ( QCURRLENGTH- FI ELD) QUEUE))

( QCURRLENGTH- FI ELD)

(PUTNTH | TEM

(PLUS ( QARRAY- FI ELD)
( GETNTH ( QTAI L- FI ELD) QUEUE))

QUEUE) ))

Definition {521}.
( ARRAY- DEQ QUEUE)

(PUTNTH (| NCR- MOD ( GETNTH ( QHEAD- FI ELD) QUEUE)
( GETNTH ( QUAXLENGTH- FI ELD) QUEUE))
( HEAD- FI ELD)
(PUTNTH (SUB1 ( GETNTH ( QCURRLENGTH- FI ELD) QUEUE))
( QCURRLENGTH- FI ELD)

QUEUE) )

Definition {522}.
(ARRAY- QFI RST QUEUE)

(GE'T‘NTH (PLUS ( QARRAY- FI ELD)
(GETNTH ( QHEAD- FI ELD) QUEUE))
QUEUE)
Definition {523}.
(ARRAY- QFULLP QUEUE)

(EQUAL (GETNTH ( QCURRLENGTH- FI ELD) QUEUE)
(GETNTH ( QUAXLENGTH- FI ELD) QUEUE) )

Definition {524}.

( ARRAY- EMPTYP QUEUE)

(ZEROP (GETNTH ( QCURRLENGTH- FI ELD) QUEUE))

Definition {560}.

( ARRAY- QREPLACE | TEM QUEUE)

(ARRAY- ENQ | TEM ( ARRAY- NONLAST QUEUE) )

Definition {547}.

( ARRAY- NONLAST QUEUE)

( PUTNTH ( DECR- MOD ( GETNTH ( QTAI L- FI ELD) QUEUE)
( GETNTH ( QUAXLENGTH- FI ELD) QUEUE))
( QTAI L- FI ELD)
(PUTNTH (SUB1 ( GETNTH ( QCURRLENGTH- FI ELD) QUEUE))
( QCURRLENGTH- FI ELD)

QUEUE) )

Definition {464}.
(I'NCR-MOD N LUB)

(I F_(LESSP (ADDL N) LUB) (ADDL N) 0)

Definition {465}.
(DECR-MOD N LUB)

(I F_(ZER(P N) (SUBL LUB) (SUBL N))
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6.2 The Correctness of the Queue Implementation

MAPUP- QUELE IS the abstraction function from ARRAY- QUELES to abstract queues.
DELTA- SEGMVENT iS the workhorse. In the definition of DELTA- SEGVENT, sisalist and A and B
are indices into the list. DELTA- SEGQVENT constructs the segment which wraps around s,

whose first element is s(A) and whose last element is the one preceding s(B) .

Definition {579}.
( MAPUP- QUEUE QUEUE)

(I F_(ARRAY- QEMPTYP QUEUE)
NI L
( DELTA- SEGVENT ( GETNTH ( QHEAD- FI ELD) QUEUE)
(GETNTH ( QTAI L- FI ELD) QUEUE)
( GETSEG ( QARRAY- FI ELD)
( GETNTH ( QUAXLENGTH- FI ELD) QUEUE)

QUEUE) ))

Definition {574}.
(DELTA- SEGVENT A B S)

(IF (LEQ B A
( APPEND ( GETSEG A (DI FFERENCE (LENGTH S) A) S)
(GETSEG 0 B 9))
(GETSEG A (DI FFERENCE B A) S))

The relationship between peLTA and DELTA- SEGVENT is expressed by the theorem

DELTA- EQUALS- LENGTH- DELTA- SEGVENT.

Theorem {575}. DELTA- EQUALS- LENGTH- DELTA- SEGVENT (rewrite):
(I MPLIES (AND (LESSP A (LENGTH S))
(LESSP B (LENGTH S)))
(EQUAL (LENGTH (DELTA- SEGVENT A B S))
(DELTA A B (LENGTH S))))

We prove the correctness of the array- QuEUE implementation before we
consider any machine code. The following theorems establish the correctness of each of

the queue primitives.

Theorem {585}. CORRECTNESS- OF- ARRAY-ENQ (rewrite):
(I MPLI ES (AND ( ARRAY- QUEUEP QUEUE)
(NOT ( ARRAY- QFULLP QUEUE) ))
(EQUAL ( MAPUP- QUEUE ( ARRAY- ENQ | TEM QUEUE))
(ENQ | TEM ( MAPUP- QUEUE QUEUE))))

Theor em {593}. CORRECTNESS- OF- ARRAY- DEQ (rewrite):
(TMPLIES (AND ( ARRAY- QUEUEP QUEUE)
(NOT ( ARRAY- GEMPTYP QUEUE)))
( EQUAL ( MAPUP- QUEUE ( ARRAY- DEQ QUEUE))
( DEQ ( MAPUP- QUEUE QUEUE))))
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Theorem {594} . CORRECTNESS- OF- ARRAY- QFI RST (rewite):
(TMPLIES (AND ( ARRAY- QUEUEP QUEUE)
(NOT ( ARRAY- GEMPTYP QUEUE)))
(EQUAL ( ARRAY- QFI RST QUEUE)
( QFI RST ( MAPUP- QUEUE QUEUE))))

Theorem {595}. CORRECTNESS- OF- ARRAY- CEMPTYP (rewrite):
(1 MPLI ES ( ARRAY- QUEUEP QUEUE)
(EQUAL ( ARRAY- QEMPTYP QUEUE)
(QEMPTYP ( MAPUP- QUEUE QUEUE))))

Theorem {596}. CORRECTNESS- OF- ARRAY- QFULLP:
(' MPLI ES (AND ( ARRAY- QUEUEP QUEUE)
(EQUAL MAX
(GETNTH ( QUAXLENGTH- FI ELD) QUEUE)))
(EQUAL (ARRAY- QFULLP QUEUE)
(QFULLP ( MAPUP- QUEUE QUEUE) MAX)))

Theorem {602}. CORRECTNESS- OF- ARRAY- NONLAST (rewrite):
(TMPLIES (AND ( ARRAY- QUEUEP QUEUE)
(NOT ( ARRAY- GEMPTYP QUEUE)))
(EQUAL ( MAPUP- QUEUE ( ARRAY- NONLAST QUEUE))
( NONLAST ( MAPUP- QUEUE QUEUE))))

Theorem {603}. CORRECTNESS- OF- ARRAY- QREPLACE (rewrite):
(I MPLI ES (AND ( ARRAY- QUEUEP QUEUE)
(NOT ( ARRAY- QEMPTYP QUEUE) ) )
(EQUAL ( MAPUP- QUEUE ( ARRAY- QREPLACE | TEM QUELUE) )
(QREPLACE | TEM ( MAPUP- QUEUE QUEUE))))

6.3 Using the Queue Correctness Theorems

We explain how the queue correctness theorems are used in the verification of
KIT. The KIT source code contains subroutines for queue manipulations. The annotated
text of the subroutine enQuELE is displayed below. See Section 4.2 for comments on how

to read the source code.
ENQUEUE

;; Assune R2 contains itemto enqueue

- R3 points to queue

;; this routine assunes queue not currently full
pseudo- code:

o store the itemwhere ever the tail index points
s increment the current |ength
increment the tail index (md max-index)

‘(m)ve (1r4) (17r3))
(add (1 r4) garray-field)

(add (1r4) (3r3 qgtail-field)) ;; r4 has address of free slot
(move (3 r4) (17r2)) ;; store item

(incr (3 r3 gecurrlength-field)) ;; increment current length
(incrm (3 r3 qtail-field) (3 r3 gmaxlength-field)) ;; increnent tail

(return)

One might expect that we would state an entry and exit specification for

ENQUEUE and prove a theorem which embodies its correctness. We have not chosen this
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approach because of the ugly theorem which arises. Recall that we are verifying at the
machine code level. Programs reside in a flat address space. The statement of a
correctness theorem for ENQUELE must include conditions such as "the program counter
contains the address of the first instruction in enqueue”. Due to the flat address space, the
statement of the theorem would change whenever we make a change to KIT which moves

the starting address of ENQUEUE.

Our approach is to ignore subroutines. When we prove alemma which traces a
path through a call to ENQUEUE, we recoghize an expression which matches the definition
of ArRAY-ENQ and arrange for the rewriter to fold the expression up into a call to
ARRAY-ENQ. The lemma coNTRACT- ARRAY-ENQ accomplishes this. Immediately upon
encountering a sequence of putnths which matches the form of the definition of

ARRAY- ENQ, the rewriter replaces the expression by an array- Eng form.

Theorem {2079}. CONTRACT- ARRAY-ENQ (rewite):
(1 MPLI ES
(EQUAL MAXLENGTH ( GETNTH ( QVAXLENGTH- FI ELD) QUEUE))
(EQUAL (PUTNTH (1 NCR-MOD ( GETNTH ( QTAI L- FI ELD) QUEUE) MAXLENGTH)
(QTAI L- FI ELD)
(PUTNTH (ADD1 (GETNTH ( QCURRLENGTH- FI ELD) QUEUE))
( QCURRLENGTH- FI ELD)
(PUTNTH | TEM
(PLUS ( QARRAY- FI ELD)
(GETNTH (QTAI L- FI ELD) QUEUE))
QUEUE) ))
(ARRAY- ENQ | TEM QUEUE) ))

The functions like os- cLock- | NTERRUPT- HANDLER Which express the state of the
machine at the end of an os interrupt handler have already made a small step across the
gap from the operating system layer to the abstract kernel layer. Array manipulation
expressions are bundled up into calls to the ArRraY- QUEUE primitives, which have been

independently verified to implement abstract queues.



Chapter 7

Conclusion

7.1 Related Work
We review three areas of related work: the program verification techniques
upon which our work is based, previous attempts to verify operating systems, and

microprogram verification.

7.1.1 Specification and Proof Methods

Our approach to the specification and verification of KIT derives from well
known earlier work. The implements relation established by an interpreter equivalence
theorem is an instance of Milner’'s weak simulation relation [Milner]. Hoare's approach
to proving the correctness of data representations [Hoare], similar to Milner's work, is
also a precursor. The application of Hoare's method can be most clearly seen in our

trestment of queues.

Several attempts to verify operating systems cite the work of Milner, Hoare and
others who have suggested similar approaches to verification. The methodology for
designing operating system software proposed by Robinson and his co-workers
[Robinson] calls for a sequence of abstract machines, each related by an implements
relation. Kemmerer [Kemmerer] acknowledges a debt to Milner and Hoare in applying
the Alphard methodology [Alphard] to the verification of a portion of the security kernel
of UCLA Secure Unix. Rushby [Rushbyc] described an approach to kernel verification
similar to ours. Hunt [Hunt85] proved an interpreter equivalence theorem to establish the

correctness of a microprocessor.
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7.1.2 Operating System Verification
Two areas predominate in operating system verification: verification of parallel

processes, and verification of security properties.

The correctness of parallel programsis alarge areawe do not attempt to review
exhaustively. The area of paralelism is primarily concerned with proving safety and
liveness properties of sets of processes under various models of process communication.
Above the kernel level, an operating system can be viewed as a set of cooperating parallel
processes. So, techniques for verifying parallel processes can be applied to operating
system verification above the kernel level. Our work logically supports this work. The
purpose of our work is to verify a kernel implementation. We don't reason about the
correctness of a particular set of concurrent processes, but prove that any set of processes

which can be implemented on KIT isimplemented without errorsintroduced by KIT.

We mention a number of efforts in operating system verification whose main
contributions are in techniques for verifying paralel programs. The seminal work in this
area is the "THE"-multiprogramming system [Dijkstra68] in which process
synchronization via semaphores is implemented at the lowest layer. This work reveals to
what advantage an operating system can be designed as a system of communicating

sequential processes.

Saxena [Saxenad] considers low level issues of processor and memory sharing in
a multiprogrammed operating system. The design of a scheduler and memory manager,
synchronized via monitors, is verified. A design methodology involving hierarchical

decomposition and structured programming is discussed.

Flon's dissertation [Flon77] treats two subjects related to the correctness of
operating systems. First, a methodology for the design, implementation and verification
of operating systems is discussed. This methodology employs data abstraction to
implement modular programs. A simple process dispatcher is specified, implemented and

verified. Second, the problem of the total correctness of parallel programsis considered.
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Karp [Karp83] proposes an extension of Pascal to include a method of process
communication called a module, similar to a Simula Class. Concurrent systems expressed
in this language can be demonstrated to be failure free, which is a notion of non-
termination. The application of this communication model to operating systems is
demonstrated.

Security is the other major area in operating system verification. In the early
seventies the notion became current that a security policy should be implemented in the
nucleus of an operating system, a security kernel. A number of efforts attempted to
design, implement and verify a security kernel. A security policy given by Bell and
LaPadula[BellLapadula] was the first attempt to formalize a specification for a security
kernel. Alternative formulations of security were given by Feiertag, Levitt and Robinson
[FeiertagModel], and by Popek and Farber [Popek].

The goals of each security kernel project were similar in outline: design a
security kernel, prove that the design satisfies a formally described security policy,
implement the kernel, and prove the implementation correct. Some projects were
intended to complete only an initial portion of this sequence of goals. The goals were met

with varying success.

Neumann and co-workers designed a provably secure operating system (PSOS)
[PSOS, PSOSFinalReport] based on a capability mechanism. Parts of the design proof
were sketched. An implementation was not completed. The main result of the project was

ahierarchica methodology for operating system design [Robinson].

A group at Ford Aerospace designed a kernelized secure operating system
(KSOS) [KSOS, KSOSDevelopment] intended to provide a secure operating system with
an interface compatible with UNIX. The security policy for KSOS was approximately the
Bell and LaPadula model. Information flow theorems at the design level were checked on
the Boyer-Moore theorem prover. An implementation was written in MODULA, but
code proofs were not anticipated and not done. The KSOS project benefited from the
design methodology developed for PSOS.
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The UCLA Secure Unix project [UCLA SecureUnix, Walker] had agoal similar
to the KSOS project: a Unix system built on a security kernel. The top level security
policy was based on Popek and Farber’s security model. The policy was enforced by a
policy manager process outside the kernel. The kernel is responsible for manipulating
processes and capahilities as alowed by the policy manager. This security kernel is more
completely verified than the others. Kemmerer's dissertation [Kemmerer] reports on a
design proof for the security kernel. The kernel was implemented in an extended version
of Pascal, and some code level proofs were completed in the XI1VUS verification system
[XIVUS].

Other security kernels are reported in the literature, including the KVM/370
project [KVM370], and SCOMP [SCOMP]. The Secure Ada Target (SAT, now called
LOCK) [SAT] is an ongoing project at Honeywell. Landwehr [Landwehr] gives a useful

summary of the state of the art circa 1983.

Rushby criticizes the kernel approach to system security [Rushbya). We do not
repeat his argument, but point out that the alternative approach to security which he
proposes results in a mandate for the type of verification carried out for KIT: a proof of

the isolation of processesimplemented in a shared environment.

The relationship between our work and that reported in the literature can be
summarized as follows. There are two main threads in operating system verification:
verification of parallel processes, and verification of security. The work in parallé
processes lies inherently above the level of verification reported for KIT. The work in
security reaches in principle down to the implementation level of KIT, but no one has

previously reached that level.
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7.1.3 Microprogram Verification

We mention the subject of microprogram verification to indicate its relation to
our work. The goa of microprogram verification is to prove the correctness of an
implementation of a machine architecture. Our work is based on a specification for a
machine architecture, so our work lies logically just above the level of microprogram
verification. Conceptually, the two areas can be merged. By targeting a verified kernel to
a verified architecture we can combine the two levels of verification to span a much

larger implementation gap.

The techniques of microprogram verification are similar to ours. The
correctness theorem is stated as a machine simulation relation - an architecture level at
the abstract end, and a register-transfer level at the low end. Paths through microcode are
traced to relate a series of low steps to a high step. See [Hunt85], [Joyner], [SDVS] for

examples of thiswork.

7.2 Comments and Summary

7.2.1 The Size of the KIT Project

The KIT project was conceived as an attempt to prove task isolation in a kernel
written for a very simple von Neumann machine. We placed the following requirements
on the problem. We felt that the combination of these constraints would force us to

confront issues not before treated in operating system verification.

 Tasks must be able to communicate by some means. Therefore, task isolation
really means limited task communication.

» The target machine's architecture must contain a very simple protection
mechanism. We did not want the architecture to be so powerful that the
entire problem would be solved at that level.

* The target machine must permit communication with asynchronous devices.
Therefore, the operating system must field interrupts.

« All code must be verified. This meant that we would verify machine code.

The first three months were spent in an attempt to define the problem in such a

way that the only property which required verification was task isolation. We felt, for
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instance, that the verification of a particular scheduling algorithm was beyond the scope
of thiswork. We also felt that the verification of various data structure implementations,
particularly queues, were not of primary concern. We failed in our attempt to separate
concerns. The reason for this was our requirement for an extremely simple target
machine. With such a simple machine, we could not isolate the aspects we hoped not to
verify. Therefore, everything necessary to create a completely operational, but simple,

kernel was included.

A year passed. In that time we defined a prototype task, abstract kernel and
target machine. We proved that the abstract kernel implemented a task. We proved
severa kernel routines including the clock interrupt handler and error handler. In doing
so we learned the overall structure of the kernel proof. We learned our technique for
making the theorem prover symbolically execute machine code. We went through several
revisions of our theory of arrays. Thiswas our first experience in using the Boyer-Moore
theorem prover for a proof deeper than Assocl ATI vi TY- OF- APPEND, although we were

already familiar with the Boyer-Moore logic.

At this point, with our support theories well in hand, we started the project
amost from scratch. We defined the target machine to be simpler than the prototype had
been. We revised our specifications for the abstract kernel. We wrote the complete kernel

and proved its correctness. Thistook three months.

The size of the script is extremely large. We attribute this primarily to the
inherent complexity of the problem. There is ssimply a large gap to span from a target
machine as simple as Tv to the level of our abstract kernel. The bulk of our script is

devoted to three areas.

» The trace lemmas which result in the definition of the operating system
layer.

» The proof of the operating system layer invariant.

» The proof of the correctness of the operating system layer - i.e. that the
operating system layer implements the abstract kernel.

These are large because an enormous number of cases must be considered. We must
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prove that each of thirty-eight paths through the kernel correctly manipulates each of ten
abstract kernel fields, most of which are structured objects. The trace lemmas were the
most difficult to check. The theorem prover required much help by way of rewrite
lemmas to symbolically execute the address computations which occurred in each path.
We found, though, that while the initial lemmas in each of the three proofs above were
slow going, later proofs became progressively easier. Toward the end we generated the

lemmas we needed by merely editing previous lemmas.

To understand the size of the script, one must also consider the starting point:
the elementary theory of numbers and lists built into the Boyer-Moore theorem prover.
Much groundwork was required in terms of facts about arithmetic, sets and arrays. The
script contains a complete target machine definition and operating system specification.

There is much more in the script than the KIT code and its proof.

The verification revealed bugs in the operating system code. Simple bugs, like
naming an incorrect register, or using the wrong address mode, were revealed at the time
atracing lemma was proved. During tracing it became obvious when a data structure was
addressed incorrectly. More difficult bugs were revealed during the proof that each KIT
routine implements the corresponding abstract kernel operation. The most insidious bug
revealed at this stage was one in which the state of the current task was not accurately
restored after processing an /O interrupt. The bug would have caused a supervisor call
request to be ignored if an 1/O interrupt occurred immediately after the request, but
before the request had been handled. Such time-dependent errors are difficult to find by
testing.

KIT is so small that it is likely that a group of competent programmers could
produce in a short time a highly reliable version using traditional coding and testing
techniques. Without the goa of mechanical verification, it is unlikely that the
specification for KIT would be stated as explicitly as we have done. Therefore, it is
guestionable whether all the issues which we encountered during our proof would be

considered by traditional means. In particular, the proof that the target machine permits
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the implementation of isolated address spaces would likely have to be assumed. If a
programming team got so far as to state a specification in as much detail as our abstract
kernel, it is unlikely that a hand proof of KIT with respect to this specification would be
convincing. The proof is so large that a mechanical check is virtually a necessity in

making sure that all cases have been considered.

7.2.2 The Significance of the KIT Project

The purpose of KIT is to provide verified task isolation. That is, tasks can
communicate only in specified ways. As a result, a verified set of communicating
processes will run as specified on KIT provided there are no hardware errors. KIT is

guaranteed not to introduce implementation bugs, since all codeis verified.

A number of significant results are required to establish the main theorem.
* The termination of kernel routines.

 The correctness of the address space abstraction, i.e., that an address space
can be viewed as an independent machine.

 Theisolation of the operating system from tasks on the target machine.

» Theinability of atask to enter supervisor mode.

Therefore, the verification of KIT checks important security properties. We
have proved task isolation, the protection of the operating system from tasks, and the
inability of tasks to enter supervisor mode. Our small system is tamper proof. These
results are fundamental to computer security but have received scant attention in formal
verification. Previous attempts to verify security have been concerned with models of
security in which data and processes are tagged with security levels. The issues involved
in correctly implementing multiple processes on shared resources have been largely

ignored.

The proof is accomplished by establishing a machine simulation theorem which
relates KIT to a definition of a process which appears to be running on its own machine.
KIT is shown to implement a fixed number of conceptually distributed communicating

processes. The specification machine is so abstract that the proof of its propertiesis quite
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tractable. An example of a property which is trivial to establish at this level is the
protection of a process's private state. We have not stated and proved other properties,
but clearly it is preferable to do so at the high end than at the low end. Because the
implements relation is proved, properties established at the high end hold (under some
state space mapping) at the low end.

There is a technical advantage in pushing operational specifications to as
abstract a level as possible in the Boyer-Moore logic, and using machine simulation
theorems to establish correctness. The advantage is that the Boyer-Moore theorem
prover's definitional principle gives a proof of the unique existence of every function
defined, and therefore a proof of consistency of the specification. If our method had been
to prove a set of properties stated directly about the implementation of KIT, then not only
would their statement have been difficult, but the consistency issue would have been

confronted.

Nearly al the difficulties in our proof occurred in establishing the implements
relation between the operating system running on the target machine (the os layer, see
Figure 5-1) and the abstract kernel. These difficulties were largely due to issues unrelated
to task isolation: the verification of queues, tracing paths through the operating system
code. We have found no good solutions to the problem of verifying machine code. Our
method is shown to work for a small example, but whether it is tractable for a large

system is an open guestion.

What we can learn from the exercise is the structure which the proof of a kernel
may take: a machine simulation theorem between an abstract kernel and the kernel
implementation. The abstract kernel makes much simpler a number of issues which are
quite complex at the kernel implementation level: the termination of kernel operations,
low level representation of data structures, isolation of processes. Making sure that the
interrupt structure of the abstract kernel isidentical to the interrupt structure of the target
machine makes possible an inductive proof of the machine simulation theorem. Even if,

in a larger system, a mechanical proof of a kernel implementation is unfeasible, the
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existence of a specification at the level of KIT's abstract kernel gives a good guide for

hand verification.

The exercise of verifying KIT also reveals some necessary properties at the
architecture level which make the proof possible. We have formalized the notion of an
address space for our simple target machine, and proved the correctness and protection
theorems which make it possible to view an address space as an isolated private machine.
In a future in which hardware is formally specified and verified, such theorems can be

checked early about a hardware design.

7.2.3 Future Work

This work can be carried forward. More complex phenomena in several areas
may be considered. At the top end, more sophisticated methods of inter-task
communication may be specified, e.g. shared segments and files. An obvious deficiency
in KIT from the point of view of general purpose operating systems is the absence of
dynamic process and channel creation. These issues should get attention if we hope to
verify usable general purpose systems. Fixed systems like KIT, though, do have their
applications, such as communications processing. Due to the difficulty of verifying large
amounts of machine code, these issues may not be tractable until we find away to verify

ahigh-level language version of the kernel.

At the low end, more complex architectures can be considered to great
advantage. We restricted this work to an extremely simple hardware protection
mechanism. A more sophisticated protection mechanism can make the isolation proof
much easier. Of great interest, and in a dightly different vein, are the real-time properties
of a system. Although we have not proved such properties, it is possible to consider
proofs of response time to external events. It would be worthwhile to relax the property
of the non-interruptibility of the supervisor for such proofs. Considering such low-level
phenomena at the hardware/software boundary may have some immediate impact since,
if our experience with KIT is any indication, proofs at this level tend to be relatively
short.
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KIT's message passing mechanism is a subset of that specified for the

programming language Gypsy [Gypsy205, GypsyConcurrency].  Given the right
compiler, it is possible to think of KIT as a verified run-time environment for a subset of

Gypsy. Accomplishing thisis another goal for the future.



Appendix A.

The Boyer-Moore Logic and its Theorem Proverl

In[acl] we describe a quantifier free first-order logic and a large and
complicated computer program that proves theorems in that logic. The major application
of the logic and theorem prover is the forma verification of properties of computer
programs, algorithms, system designs, etc. In this section we describe the logic and the

theorem prover.

A.1ThelLogic
A complete and precise definition of the logic can be found in Chapter 111 of
[ACL] together with the minor revisions detailed in section 3.1 of [META].

We use the prefix syntax of Pure Lisp to write down terms. For example, we
write (PLUS | J) where others might write PLUS( |, J) or | +J.

The logic isfirst-order, quantifier free, and constructive. It is formally defined
as an extension of propositional calculus with variables, function symbols, and the

equality relation. We add axioms defining the following:
* the Boolean objects ( TRUE) and ( FALSE) , abbreviated T and F;

* The if-then-else function, | F, with the property that (1 F x y z) isz if x
isF andy otherwise;

« the Boolean "connector functions' AND, OR, NOT, and | MPLI ES; for
example, (NOT p) isTif pisF and F otherwise;

» the equality function EQUAL, with the property that ( EQUAL x y) isT or
F according to whether X isy:;

Iwritten by Boyer and Moore. Taken with permission from [quant].
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* inductively constructed objects, including:

* Natural Numbers. Natural numbers are built from the constant
(ZERO) by successive applications of the constructor function ADD1.
The function NUVMBERP recognizes natural numbers, e.g., is T or F
according to whether its argument is a natural number or not. The
function SUBL returns the predecessor of anon-0 natural number.

* Ordered Pairs. Given two arbitrary objects, the function CONS returns
an ordered pair containing them. The function LI STP recognizes
such pairs. The functions CAR and CDR return the two components of
such apair.

* Literal Atoms. Given an arbitrary object, the function PACK
constructs an atomic symbol with the given object as its "print name."
LI TATOM recognizes such objects and UNPACK returns the print
name.

» We call each of the classes above a"shell.” T and F are each considered the
elements of two singleton shells. Axioms insure that al shell classes are
digoint;

* the definitions of several useful functions, including:

* LESSP which, when applied to two natural numbers, returns T or F
according to whether the first is smaller than the second;

* LEX2, which, when applied to two pairs of naturals, returns T or F
according as whether the first is lexicographically smaller than the
second; and

+ COUNT which, when applied to an inductively constructed object,
returns its "size;" for example, the COUNT of an ordered pair is one
greater than the sum of the COUNTSs of the components.

The logic provides a principle under which the user can extend it by the
addition of new shells. By instantiating a set of axiom schemas the user can obtain a set
of axioms describing a new class of inductively constructed n-tuples with type-
restrictions on each component. For each shell there is arecognizer (e.g., LI STP for the
ordered pair shell), a constructor (e.g., CONS), an optional empty object (e.g., there is
none for the ordered pairs but ( ZERO) is the empty natural number), and n accessors
(e.g., CARand CDR).

The logic provides a principle of recursive definition under which new function

symbols may be introduced. Consider the definition of the list concatenation function:
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Definition.
(APPEND X )

(1 F_( LI STP X)
g{)cows (CAR X) (APPEND (CDR X) Y))
The equations submitted as definitions are accepted as new axioms under certain
conditions that guarantee that one and only one function satisfies the equation. One of
the conditions is that certain derived formulas be theorems. Intuitively, these formulas
insure that the recursion "terminates’ by exhibiting a "measure”’ of the arguments that
decreases, in a well-founded sense, in each recursion. A suitable derived formula for

APPEND is:

(I MPLIES (LI STP X)
(LESSP ( COUNT (CDR X))
(COUNT X))).
However, in general the user of the logic is permitted to choose an arbitrary measure

function (COUNT was chosen above) and one of several relations (LESSP above).

The rules of inference of the logic, in addition to those of propositional calculus
and equality, include mathematical induction. The formulation of the induction principle
is smilar to that of the definitional principle. To justify an induction schema it is
necessary to prove certain theorems that establish that, under a given measure, the

inductive hypotheses are about "smaller" objects than the conclusion.

Using induction it is possible to prove such theorems as the associativity of
APPEND:

Theorem.
(EQUAL ( APPEND ( APPEND A B) C)
(APPEND A (APPEND B C))).

A.2 The Mechanization of the Logic

The theorem prover for the logic, asit stood in 1979, is described completely in
[acl]. Many improvements have been added since. In[Meta] we describe a
"metafunction” facility which permits the user to define new proof procedures in the
logic, prove them correct mechanicaly, and have them used efficiently in subsequent

proof attempts. During the period 1980-1985 a linear arithmetic decision procedure was
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integrated into the rule-driven simplifier. The problems of integrating a decision
procedure into a heuristic theorem prover for a richer theory are discussed in [Linear].

The theorem prover is briefly sketched here.

The theorem prover is a computer program that takes as input a term in the
logic and repeatedly transforms it in an effort to reduce it to non-F. The theorem prover

employs eight basic transformations:

* decision procedures for propositional calculus, equaity, and linear
arithmetic;

* term rewriting based on axioms, definitions and previously proved lemmas;
* application of verified user-supplied smplifiers called "metafunctions;"

* renaming of variables to eliminate "destructive" functions in favor of
"constructive' ones;

* heuristic use of equality hypotheses,
» generalization by the replacement of terms by type-restricted variables,
« elimination of apparently irrelevant hypotheses; and
» mathematical induction.
The theorem prover contains many heuristics to control the orchestration of these basic

techniques.

In a shallow sense, the theorem prover is fully automatic: the system accepts
no advice or directives from the user once a proof attempt has started. The only way the
user can alter the behavior of the system during a proof attempt is to abort the proof
attempt. However, in a deeper sense, the theorem prover is interactive: the system’s
behavior is influenced by the data base of lemmas which have aready been formulated
by the user and proved by the system. Each conjecture, once proved, is converted into
one or more "rules' which guide the theorem prover's actions in subsequent proof

attempts.

A data base is thus more than a logical theory: it is aset of rules for proving
theorems in the given theory. The user leads the theorem prover to "difficult” proofs by

"programming" its rule base. Given a goal theorem, the user generally discovers a proof
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himself, identifies the key steps in the proof, and then formulates them as lemmas, paying

particular attention to their interpretation as rules.

The key role of the user in our system is guiding the theorem prover to proofs
by the strategic selection of the sequence of theorems to prove and the proper formulation
of those theorems. Successful users of the system must know how to prove theoremsin

the logic and must understand how the theorem prover interprets them asrules.



Appendix B.

Index of Eventsin thisVVolume

AK- BLOCK- | NPUT 27

AK- BLOCK- QUTPUT 29

AK- BLOCK- RECEI VE 26

AK- BLOCK- SEND 25

AK- CHANNELS 92

AK- CLOCK- | NTERRUPT- HANDLER 23

AK- DI SPATCHER 23

AK- ERROR- HANDLER 24

AK- EXECUTE- | NPUT 27

AK- EXECUTE- | NPUT- FROM BUFFER 28

AK- EXECUTE- QUTPUT 28

AK- EXECUTE- QUTPUT- TO- BUFFER 29

AK- EXECUTE- RECEI VE 26

AK- EXECUTE- RECEI VE- FROM BUFFER 27

AK- EXECUTE- SEND 25

AK- EXECUTE- SEND- TO- BUFFER 26

AK- FETCH EXECUTE 22

AK- | MPLEMENTS- ACTI VE- TASK- STEP 97

AK- | MPLEMENTS- NON- ACTI VE- TASK- STEP 97
AK- | MPLEMENTS- PARALLEL- TASKS 10, 92, 94
AK- | NPUT- | NTERRUPT- HANDLER 29

AK- QUTPUT- | NTERRUPT- HANDLER 31

AK- PRI VATE- STEP 22

AK- PROCESSCR 21

AK- RUNNI NG- | NPUT- | NTERRUPT- HANDLER 30
AK- RUNNI NG- QUTPUT- | NTERRUPT- HANDLER 32
AK- STEP 22

AK- SVC- HANDLER 25

AK- TASKI D 22

AK- TASKI DLUB 20

AK- WAI TI NG- | NPUT- | NTERRUPT- HANDLER 30
AK- WAl TI NG QUTPUT- | NTERRUPT- HANDLER 32
ARRAY- DEQ 102

ARRAY- ENQ 102

ARRAY- NONLAST 102

ARRAY- CEMPTYP 102

ARRAY- QFI RST 102

ARRAY- QFULLP 102

ARRAY- Q NDEX- RELATI ON 101

ARRAY- QREPLACE 102

ARRAY- QUEUEP 101

CONTRACT- ARRAY- ENQ 105

CONTROL- CRACLE 93

CONTROL- ORACLE- STEP 94

CORRECTNESS- OF- ARRAY- DEQ 103
CORRECTNESS- OF- ARRAY- ENQ 103
CORRECTNESS- OF- ARRAY- NONLAST 104
CORRECTNESS- OF- ARRAY- CEMPTYP 104

123
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CORRECTNESS- OF- ARRAY- QFI RST 104
CORRECTNESS- OF- ARRAY- QFULLP 104
CORRECTNESS- OF- ARRAY- QREPLACE 104
CORRECTNESS- OF- CLOCK- | NTERRUPT- HANDLER 89
CORRECTNESS- OF- OPERATI NG- SYSTEM 10, 98
DECR- MOD 102

DELTA 101

DELTA- EQUALS- LENGTH- DELTA- SEGVENT 103
DELTA- SEGVENT 103

DEQ 18, 99

ENQ 18, 99

FI NI TE- NUMBER- LI STP 20

FI NI TE- NUMBERP 20

FOO 5

GETNTH 17

GOOD- ADDRESS- SPACE 87

GOOD- AK 20

GOOD- 08 75

GOOD- TASK 14

GOOD- TM 36

| NCR- MOD 102

MAPUP- ADDRESS- SPACE 86

MAPUP- BASE 86

MAPUP- CC 86

MAPUP- CPU 87

MAPUP- CURRENT- TASK- TM FETCH EXECUTE 90
MAPUP- ERROR 86

MAPUP- LI M T 86

MAPUP- CS 84

MAPUP- CS- | BUFFERS 85

MAPUP- CS- MBUFFERS 85

MAPUP- OS- OBUFFERS 85

MAPUP- CS- TASKS 85

MAPUP- QUEUE 103

MAPUP- QUEUE- LI ST 84

MAPUP- REGS 86

MAPUP- SVCFLAG 86

MAPUP- SVCI D 86

MAPUP- TASK 85

MAPUP- TASK- SEPARATI ON 91

MAPUP- TASKS 85

NONLAST 99

0S- CLOCK- | NTERRUPT- HANDLER 79
0S- CODE 77

OS- CODE- ADDRESS 77

OS- CODE- LENGTH 78

0S- | MPLEMENTS- AK 84

OS- | MPLEMENTS- PARALLEL- TASKS 10, 98
0S- MACHI NE- CODE 78

0S- ORACLE 82

OS- ORACLE- STEP 83

0S- PROCESSOR 76

0S- STEP 77

OS- STEP- | MPLEMENTS- AK- STEP 87
PROJECT 92

PUTNTH 17

QARRAY- FI ELD 100

QCURRLENGTH- FI ELD 100

QEMPTYP 18, 99

QFIRST 17, 99

QFULLP 18, 99
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QHEAD- FI ELD 100
QVAXLENGTH- FI ELD 100

QREPLACE 18, 99

QTAI L- FI ELD 100

REAL- ADDR 40

REAL- ADDR- NUM 40

REAL- ADDR- SOURCE 40

TABLE 76

TASK- ACTI VEP 15

TASK- EXECUTE- | NPUT 17

TASK- EXECUTE- QUTPUT 17

TASK- EXECUTE- RECE| VE 16

TASK- EXECUTE- SEND 16

TASK- FETCH EXECUTE 18

TASK- | BUFFERS 14

TASK- MBUFFERS 14

TASK- OBUFFERS 14

TASK- PRI VATE- STEP 15

TASK- PROCESSCR 15

TASK- STEP 15

TASK- UPDATE- CHANNELS 15

TI MED- TM PROCESSCR 81

TI MED- TM STEP 82

TM CC- VALUE 43

TM EXECUTE- ADD 43

TM EXECUTE- CLOCK- | NTERRUPT 41
TM FETCH 39

TM FETCH EXECUTE 42

TM FETCH EXECUTE- COMMUTES- W TH- MAPUP- ADDRESS- SPACE 91
TM FETCH EXECUTE- MAPUP- ADDRESS- SPACE- SEPARATI ON 92
TM FETCH FROVt MEMORY 40

TM FETCH FROWVt REGVEM 40

TM FETCH NEW PC- ON- | NTERRUPT 41
TM | MPLEMENTS- OS 83

TM | MPLEMENTS- TI MED- TM 83

TM PORT- LENGTH 36

TM POST- | NPUT- | NTERRUPT 38

TM POST- | NTERRUPT 37

TM POST- QUTPUT- | NTERRUPT 38

TM PROCESSOR 37

TM REG STER- SAVE- AREA- ADDR 41
TM SET- CC 39

TM STEP 38

TM STORE 40

TM STORE- | N- MEMORY 40

TM STORE- | N- REGVEM 40

TM STORE- OLD- PSW ON- | NTERRUPT 41
TM WORDLUB 36

TM WORDSI ZE 36

TRACE- CLOCK- | NTERRUPT- HANDLER 80
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