

1

CODE 2.0 User and Reference Manual

March 24, 1993

Peter Newton

Seema Y. Khedekar

2

1.0 Intr oduction

CODE is a graphical parallel programming environment. The idea behind it is that users can cre-
ate parallel programs by drawing and then annotating a picture. This picture is then automatically
translated by the CODE system into a parallel program that can be compiled and run on a target
parallel machine such as the Sequent Symmetry.

CODE programs are graphs (of the nodes and arcs variety). Graphs are an excellent vehicle for
parallel programming because they directly display both parallel operations and communications
structure. Nodes represent operations and arcs represent relationships among them, primarily
showing dataflow. The next chapter provides an overview of CODE.

1.1 CODE’s Goals

Wide acceptance of parallel architectures has been hindered by the lack of effective tools for pro-
gramming them. CODE represents an attempt to ameliorate this problem. Parallel programming
environments must satisfy three practical goals in order to be effective. They must be easy to use
so that non-specialists can write programs. They must permit a wide variety of programs to be
expressed in a reasonably portable notation so that programs are not bound to a single architec-
ture, and they must produce efficient executable structures. The purpose of parallel computing is
speed, after all. CODE integrates many technologies and ideas in order to satisfy these goals.

• Ease of Use

CODE simplifies parallel programming by giving users a graphical interface in which they can
express programs using a very abstract computational model. Programming is reduced to drawing
pictures and then declaratively annotating them. There are no low-level primitives to learn, only
declarative annotations. The CODE programming model combines aspects of both dataflow and
shared-memory programming styles so algorithms that are biased towards either can be expressed
directly. The model is also designed to support reuse of program components at all levels.

• Portability

The CODE model is the result of compromise. It is as expressive as its designers could make it
while containing no features that preclude implementation on either shared or partitioned memory
address space architecures. The model is designed to be implementable on all common MIMD
machines. Of course, there is no magic bullet to solve the portability problem. Some algorithms
are inherently biased towards a particular architecture. CODE reduces this problem by allowing
programs to be expressed in an abstract notation that is not closely bound to any one architecture.

• Efficiency

The CODE computational model is designed to be as expressive as possible without being diffi-
cult to compile. Traditional sequential compilers have utilized optimization technology for
decades. CODE attempts to use similar technologies but applies them at a higher level of abstrac-
tion. CODE is implemented using object-oriented programming techniques that allow optimiza-

3

tions to be added easily. CODE’s designers hope that performance-critical segments will be
idiomatic. Optimizations can be added over time to cover common programming paradigms.

1.2 Overview of this Manual

This document consists of two major pieces, the User Manual chapters and a Reference Manual
that is included as a substantial appendix. The User Manual sections are intended to be introduc-
tory. They attempt to present the most important aspects of CODE clearly and with many exam-
ples. There is no attempt to be complete-- only the most important points are covered. The
Reference Manual defines the complete language. It is intended for those who already grasp the
essential elements of CODE.

Those who wish to learn the CODE system may do well to adopt the following plan.

1. Read chapters 1 and 2 and to get an overall view of how CODE works. Then read appendix 1.
(Do not skip this appendix!)

2. Sit down at a workstation and actually run CODE while reading chapter 4. When a user inter-
face feature is mentioned, try it. The goal in chapter 4 is not to create programs, it is to
manipulate the user interface and draw pictures. When you can draw graphs, and open and
fill out attribute forms with random text and menu choices, you are ready to move on to
the next step.

3. Remain at your computer and work through the tutorial examples in chapter 5. These will guide
you through every step in creating and running CODE programs. You will want to exit
CODE and restart it when you begin chapter 5.

4. Skim through the rest of the User Manual chapters.

5. Start programming for real, refering to the Reference Manual sections in the appendix when
you get stuck.

1.3 CODE Distribution and Support

At this time, there are no fixed mechanisms or policies for the distribution and support of CODE.
You may try sending email (in preference order) to:

code@pompadour.csres.utexas.edu
newton@cs.utexas.edu (Peter Newton)
bwest@cs.utexas.edu (Brian West)
browne@cs.utexas.edu (James C. Browne)

4

2.0 Overview of the CODE Language

CODE is a graphical parallel programming language. You create parallel programs with it by
drawing and annotating pictures. When you first run CODE, an empty window will appear on
your workstation screen. You draw pictures into this window using a mouse.

2.1 An Example Program

A graph is a type of diagram that consists of nodes (represented by icons in CODE) and arcs that
interconnect the nodes. CODE pictures are graphs in which there are several node types with dif-
ferent meanings and uses. Each different node type is represented by a different icon. The most
important type of node is the Unit of Computation (UC) node. These represent sequential compu-
tations that can be composed into parallel programs by drawing arcs that show dataflow among
them. Figure 2.1 shows a complete CODE program that has been created using only UC nodes
and dataflow arcs.

Figure 2.1: A CODE Program

The program integrates a function over an interval by dividing the interval in half and integrating
over each piece separately. The results are summed to form the final answer. This program con-
sists of four UC nodes. The arcs represent information that is created by one UC and is needed
before another UC can begin its sequential computation. When the program runs, it first executes
(or fires) the UC called “Split Interval” which divides the interval in half and sends the endpoints
of the sub-intervals to the “Integ Half” nodes. These do the integration and can run in parallel
since there is no arc from one to the other. Node “Sum & Print” waits for results from the parallel
integrations and then adds them together and prints this sum. The arcs represent unbounded FIFO
queues of data.

Drawing the graph is only one part of creating a CODE program. You also have to annotate it.

5

These annotations define many aspects of the program-- what sequential computation a UC node
will perform, under what conditions it can fire, what data types are defined for the program, etc.
Annotatations are performed by filling out attribute forms associated with the object being
defined. Figure 2.2 shows the attribute form associated with a UC node.

Figure 2.2: UC Node Attribute Form

Notice the fields for “Terminate node?” and “Start node?”. The programmer must designate
exactly one UC node in the program to be the Start Node and exactly one node to be the Termi-
nate node. When a CODE program is run the system first executes the Start Node to get the com-
putation started. The firing of the Terminate Node signals the end of the computation to the CODE
system.

Most of the attributes of a UC node are supplied by filling in stanzas of text in the Node Specifica-
tion field of the attribute form. These stanzas are written in a small mostly declarative textual pro-
gramming langauge. The annotations of the four nodes in the integration program are described
below.

// ***** Node Split Interval ***********
output_ports { IntegInfo I1; IntegInfo I2; }
vars { real a; real b; int n; IntegInfo i1; IntegInfo i2; }
comp {
 a = ReadReal();
 b = ReadReal();
 n = ReadInt();
 i1.a = a;
 i1.b = (b - a)/2.0;
 i1.n = n/2;
 i2.a = i1.b;
 i2.b = b;
 i2.n = n - i1.n;
}
routing_rules {

6

 TRUE => I1 <- i1; I2 <- i2;
}

Consider Split Interval’s annotations. Output ports are a node’s private names for arcs that leave
it. Input ports are a node’s private names for arcs that enter it. More on this later. For now, it is
enough to realize that two arcs that it calls I1 and I2 leave Split Interval. The type name of the data
that will be placed on these arcs is IntegInfo, a structure that contains the endpoints of an interval
and the number of points to use in the integration.

The Vars stanza of a node defines local variables that are inside the node and are used by its
sequential computation.

The Comp stanza defines the sequential compuation. Note the calls to functions ReadReal and
ReadInt. These functions are ordinary sequential functions written in C. It is expected that all sub-
stantial sequential computations will be encapsulated in such ordinary functions that are defined
outside of CODE (although CODE has facilities to help in managing, placing, and compiling
them).

Since Split Interval is the Start Node, its computation will be run immediately when the program
is executed. After it is complete, the routing rules are evaluated. Routing rules determine what
values will be placed on what outgoing arcs and have the form shown.

Guard, Guard, ..., Guard => Binding; Binding; ...; Binding;

Guards are Boolean expressions and Bindings are either assignment statements or “Arc Outputs”
that use a “<-” operator to place a value onto an arc. All bindings are performed from left to right
on all routing rules whose guards all evaluate to TRUE. Node Split Interval places struct i1 onto
arc I1 and struct i2 onto arc I2. These define the intervals that the Integ Half nodes will integrate.

Both of the Integ Half nodes have identical attribute sets. Only one of them must be discussed,
and the only new stanza is the Firing Rules Stanza.

// ******* Both Node Integ Half are identical *********
input_ports { IntegInfo I; }
output_ports { real S; }
vars { IntegInfo i; real val; }
firing_rules {
 I -> i =>
}
comp {
 val = simp(i.a, i.b, i.n);
}
routing_rules {
 TRUE => S <- val;
}

Firing rules serve two purposes. They define the conditions under which a UC node is allowed to
fire, and they describe what arcs have values removed from them and placed into local variables
for use by the node’s sequential computation. Firing rules have the same general form as routing

7

rules.

Guard, Guard, ..., Guard => assign_stmt; assign_stmt; ...assign_stmt; ;

However, guards represent either Boolean expressions or “Arc Inputs” that extract information
from arcs using the “->” operator. Only assignment statements appear on the left hand side.

Arc inputs represent both a condition and a binding. The notation “I -> i” represents the condition
or guard “there is a value on arc I” and the binding “remove a value from arc I and place it into
variable i”. A UC node may execute whenever all of the guards on any of its firing rules are
TRUE. Such a rules is said to be “satisfied”. When the node fires, the bindings and assignment
statements associatedwith the satisfied rule are performed. Hence, Integ Half may fire whenever
there is a value on arc I. It extracts a value from I and places it into variable i for use by the nodes’
computation.

It is possible for a node to have many firing rules. As indicated above, the node may fire when any
of them are satisfied. If more than one rule is satisifed, the CODE system chooses one of the satis-
fied rules arbitrarily and performs its bindings before firing the node.

So, the nodes Integ Half wait for a value on arc I, perform an integration described by the interval
received, and then pass the result out on arc S.

Node Sum & Print has a firing rule that requires it to wait for values on both arcs S1 and S2 before
it can fire. When it fires, it prints the sum of the values received and, since it is the Terminate
Node, signals the end of the computation.

// ******* Node Sum & Print **********
input_ports { real S1; real S2; }
vars { real s1; real s2; }
firing_rules {
 S1 -> s1, S2 -> s2 =>
}
comp {
 PrintReal(s1+s2);
}

The last issue in the Integration program is the annotation of arcs. The annotations are shown in
figure 2.1 and are called “arc topology specifications”. They serve to bind names between nodes.
As mentioned above, nodes use ports as local names for arcs. Arc topology specifications bind
port names together. For example, the specification

.I1 => .I

indicates that output port I1 is to be bound to input port I. When you draw an arc between UC
nodes, you must specify what pair of ports the arc binds.

It is reasonable to think of UC nodes as being analagous to integrated circuits. The port names of
the UC serve the same purpose as the pin names on the IC. You place UCs into a graph in any way

8

you like and connect them with arcs rather than wires. The arc topology specification describes
what “pins” have been connected.

2.2 CODE Objects Ar e Actually Templates

It is time to confess that the description of CODE so far, although completely correct, has been
oversimplified. The notations as they have been described are inadequate as the basis for a pro-
gramming system because they are static. The graph drawn represents a completely fixed compu-
tation and communication structure. Many real-world algorithms do not fit into this view. Aspects
of their structure depend on runtime information. As a simple case, one may wish to prepare a
program that will utilize as many processors as happen to be available at a particular moment to
perform a certain task. Perhaps the desired structure is as shown in figure 2.3 where there are N

Figure 2.3: A Dynamic Computation Structure

replicated nodes in the center, where N is a runtime determined value. Structures that are dictated
by runtime parameters are called “dynamic”.

CODE directly supports the specification of dynamic structures. Rather than being static, every
node or arc users draw in CODE can be instantiated any number of times at runtime. The instanti-
ations are named by integer valued indices. Hence, it is more accurate to sat that you are creating
a

template

 for a node rather than a node itself when you draw and annotate a UC node as
described above.

The simplest way to use the template is to use the instantiation of it that has no indices. This is
what was done in the Integration program.

The Integration program is limited to two-way parallelism. There are only two Integ Half nodes to
run in parallel. An N-way parallel program can easily be envisioned that would use N “Integ”
nodes each of which integrates a fraction of the interval of size (b - a)/N. A CODE program that
implements this scheme is shown in figure 2.4. The node Integ is instantiated N times using the
structure shown in figure 2.3.

The “[*]” by the name is a comment reminding the viewer that the node is instianted multiple
times. In fact, all parts of UC node name serve only as comments and are optional attributes.

• • •

9

Figure 2.4: Another Integration Program

The multiple instantiation is specified by annotations that will be described in later chapers. The
important idea to remember now is that all CODE objects you draw are in reality templates that
may be instantiated many times, with the different instantiations named by zero to seven integer
valued indices. The graph depicts static aspects of the program. Annotations capture dynamic
aspects.

2.3 Other CODE Nodes

There are other node types than UC nodes in CODE. Many of these serve to heirarchically struc-
ture programs, exactly as subprograms and Call statements do in conventional languages such as
C or Fortran. Figure 2.5 shows all of CODE’s node types.

CODE graphs play the role of subprograms. In general, CODE programs consist of many graphs
that interact by means of Call nodes. The Integration program is simply a single graph program.

Just as with subprograms in conventional languages, CODE graphs have formal parameters.
There are defined by Interface nodes and Creation Parameter nodes. Actual parameters are arcs
that enter or leave Call nodes. These arcs are bound (by means of arc topology specifications) to
Interface or Creation Parameter nodes within the called graph. Graph calling and parameter bind-
ing will be fully described in a later chapter.

Name Sharing Relation nodes introduce shared variables. UC nodes that access them must declare
themselves to be either readers or writers of the variable. This too will be described later.

10

Figure 2.5: All CODE Node Types

2.4 Translating and Running CODE Programs

Once a CODE program has been drawn and annotated, the CODE system can translate it into a
program that can be compiled and run on a parallel machine. This process will be described in a
later chapter but the general idea is that the user clicks on the translate button at the top of the
CODE window and picks a target machine type, such as the Sequent Symmetry. CODE will pro-
duce a program in C that realizes the computation and communications structures expressed by
the graph. The user may then compile and run this program on the parallel machine.

Users are offered choices on how CODE will optimize and instrument the program. For example,
one can ask CODE to automatically have the program be instrumented to measure how long each
UC takes to fire and how often it fires.

11

3.0 Hardwar e Requirements

CODE runs on Sun 4 (Sparc) workstations, either color or monochrome. It requires approxi-
mately 3 MB of disk space. You must have X-windows installed since CODE runs under it. You
may use any window management system including OpenWindows and Motif.

At this time, CODE has a translator only for the Sequent Symmetry parallel processor. Hence,
you will need access to such a machine to run any CODE programs you create.

It is most convenient if you can store your programs on a disk that is mounted on both the parallel
machine and the Sun workstation. In this case, you can simply switch to a window on the work-
station in which you have logged into the parallel machine and type “make” to compile the paral-
lel program generated by CODE. It is better but not necessary to have the disk physically
connected to the parallel machine rather than the Sun workstation. This configuration maximizes
I/O performance for running parallel programs.

Figure 3.1 - Ideal Hardware Configuration

Installation instructions are distributed with the CODE software.

Sun
Work-
station

Sequent

Symmetry

Disk space for
CODE programs
and parallel code
generated from
them.

(Remote mount on Sun)

Ethernet

12

4.0 The CODE User Interface

This chapter describes how to use CODE’s graphical interface. It explains how to perform the
tasks you must know how to do in order to program in CODE. For example, you must be able to
draw nodes and arcs and fill out attribute forms. Perhaps the best way to learn is to run CODE and
try the operations described below as you read about them. To run CODE, enter

code2 progname.grf

at the UNIX prompt. This will run CODE and open a program called “progname”, creating it if
necessary. Of course, code2 must be on your UNIX path. Also, it is possible that you will need a
configuration file called “.coderc” in your home directory in order to set a path variable that
CODE requires. See the code2 UNIX man page and installation instructions. You must be running
some form of X-windows to use CODE. We have run it under X11R4, X11R5, and OpenWin-
dows.

When CODE starts, it opens a single window. All activity will take place within it. The window is
divided into two parts, a black banner line full of buttons and labels at the top, and an area of
empty space in which you will draw graphs. Figure 4.1 shows the CODE window. Several of the
buttons and the banner line have been labeled. All operations involve clicking (press the mouse
button and release without moving the mouse) on some part of the window. Only a single mouse
button is needed. Use the left button on multiple button mice. As a note to Macintosh users,
CODE does not use double clicking or dragging.

CODE’s user interface can be considered as two separate components. There are facilities for
drawing graphs and facilities for annotating graphs by filling out forms. They will be discussed
separately.

Program
button

Graph
button

Banner
Line Exit

buttonTool
button

Save
button

Figure 4.1 - CODE Window

13

4.1 Drawing Graphs

CODE provides a numbers of “tools” for drawing graphs. There is a tool for creating nodes and
arcs, a tool for moving them, a tool for deleting them, etc. Each tool has a cursor associated with
it. Figure 4.2 shows the CODE cursors. Their names and uses are as follows.

• Create Creates objects such as nodes, arcs, and graphs.
• Open Opens attribute forms of objects.
• Copy Permits nodes, arcs, and graphs to be copied.
• Travel Permits display of different graphs and programs.
• Move Moves nodes, arcs, etc. on the screen.
• Erase Deletes objects. Use the Undo button to bring them back.
• Square Changes arcs to run only vertically and horizontally. Click on an arc to square it.

The default cursor is the Create cursor. When you first run CODE, this cursor will be active. It is
shaped like a pencil and is used to create (meaning draw) things.

You change from one cursor to another by clicking (left button) on the Tool button in the banner
line. A menu of tools will appear. You click once to make the menu appear and then click again to
make a choice from it.

There is also an optional shortcut for changing tools. Click the right mouse button. A graphical
menu of tools will appear. This is the only use CODE makes of the right button. The middle but-
ton is never used.

You draw a node by clicking on empty space with the Create cursor. A menu of node types will
pop up. Pick one by clicking on it. A node will appear where you first clicked. Remeber to click
with the left mouse button.

Draw an arc by clicking the create cursor on the tip of an outgoing arrow on a node. Click again
on the end of an incoming arrow to complete the arc. See “Drawing an Arc” in section 4.3.

Click the Move cursor on an object to move it. Click the Erase cursor on an object to delete it, and
so on.

Figure 4.2 - CODE Cursor Tools

14

CODE programs actually consist of a set of graphs, not just one. You draw and work on them one
at a time. When you first run it, CODE creates a graph with the default name “main.” You can
create a new graph by clicking the Create cursor on the Graph button and entering a name for the
new graph. You can view a different graph in the set of graphs you have created by clicking the
Travel cursor on the Graph button. A menu (with scroll bars in case you have many graphs) will
appear.

When you click the Open cursor on an object, its attribute form appears. These are discussed in
the next section. For now, note that attributes that apply to the entire program are (logically
enough) in the Program attribute form. Open it by clicking the Open cursor on the Program but-
ton. Open the current graph’s attribute form by clicking the Open cursor on the Graph button.

Notice that the tools have a faintly object-oriented flavor. They do the right thing when you click
them on different parts of the screen. The program button represents the entire problem. You open
the program’s attribute form by clicking the Open cursor on the Program button. Make a form go
away by clicking on empty space outside of it. You can travel to (load) another CODE program by
clicking the Travel cursor on the Program button. The Graph button represents the currently dis-
played graph. Click the Open cursor on it to open the graph’s attribute form. Click the travel cur-
sor on it to display a different graph. Click the Create cursor on it to make a new graph, and so on.

4.2 Annotating Graphs Via Forms

Once you have drawn a graph, you must annotate it. As has been mentioned, you click the Open
cursor on an object to open its attribute form. This works for nodes, arcs, the Program button, and
the Graph button. Figure 4.3 show a UC node’s attribute form.

Figure 4.3 - UC Node Attribute Form

15

Forms are hierarchical. They contain fields that are references to other things called entry meth-
ods. These include forms, menus, scrolling tables, and text editor boxes. For example, the Node
Name field is a small text editor box. Click on it, and a text box will appear. You can enter a name
for the node in this box. The name will be displayed next to the node, but you can move it with the
Move cursor. You make forms, menus, text boxes, etc. go away by clicking on something else.
You go to what you clicked on. After you finish entering a node name, click on white space in the
UC form to return to it. Click on empty space outside the form to exit it altogether.

Figure 4.4 shows a large text box open on top of a form. You may move an entry method by click-
ing in its title bar and dragging. This is useful in case you need to slide something out of the way.
CODE’s text editor boxes use emacs key bindings, although only a small subset are supported.
For large editing tasks, press ESC-e (the escape key followed by e) to bring up a window running
the editor defined by your EDITOR environment variable. You may also define this editor in your
“.coderc” file using the “editor” variable.

Here is a summary of some of the important key bindings used in text editor boxes. The symbol
“^” means to hold down the control key. A “region” is the text between the mark and the current
location of the cursor.

^f Forward character^bBackwards character
^n Next linê p Previous line
^a Beginning of linêeEnd of line
^v Next pageESC-vPrevious page
^z Scroll forward one lineESC-zScroll back one lne
^d Delete characterDELDelete character to the left.

Figure 4.4 - A Text Box

16

^k Delete to end of linê@Set mark at cursor
^w Delete to region to yank bufferESC-wCopy region to yank buffer
^y Paste at cursor

Click the left mouse button to position the cursor.
Click outside the form to exit it.

4.3 Specific Operations

These section describes many of the important operations you will have to be able to do in order
to use CODE. It also summarizes some of the information above.

Leaving CODE

To leave CODE, click any cursor on the Exit button. You will be asked if you wish to save
changes.

Saving Changes Without Leaving CODE

Click the Create cursor on the Program button. A menu will appear that has save as an option. Do
this often as protection against crashes.

Drawing a Node

Click the Create cursor on empty space. Pick a node type from the menu that will appear. Figure
X.X shows the different node types. Figure 4.5 shows the menu.

Drawing an Ar c

To create an arc, begin by clicking (press and release!) the Create cursor on the tip of an arrow
leaving a node. You are now in arc drawing mode. Click on empty space to create intermediate
points (elbows). Click on the beginning on an incoming arrow on a node to complete the arc.
Click on the point at which you started the arc to cancel drawing it, or you can finish it and then
delete it with the Erase cursor. It is necessary to aim the mouse with some care when you are

Figure 4.5 - Node Menu

17

drawing arcs, but it is easy after a little practice. Figure 4.6 show points on a node at with an arc
can be started and finished.

Creating a New Graph

Click the Create cursor on the Graph button. Select “create” from the menu and enter a name for
the graph.

Creating a New Program

Exit CODE and start it again using the program name as the command line argument.

Opening an Attribute Form

Click the Open cursor on the object-- node, arc, Program button, or Graph button. When clicking
on an arc, avoid clicking on its intermediate points. Click outside of the form to close it. There
will be a beep when you close a the form if you have made a syntax error within it. Semantic
errors are not caught until you translate your program.

Changing Cursor Tools

Click any Cursor on the Tool button or click the right mouse button.

Scrolling the Graph View Ar ea

What do you do if your graph is too large for the CODE window? The best advice is to use more
graphs and Call nodes to hierarchically structure your program. You can also use your X window
manager to resize the CODE window, or you can scroll by clicking any cursor on the Scroll but-
ton. A scroll window will appear. Use its scroll bars to scroll the graph view one node at a time.
The scroll window itself shows a zoomed-out view of the CODE graph. Every node is represented
by a single pixel. Click in this area to jump to a particular part of the graph. Figure 4.7 shows the
scroll window.

Click at the beginning of an in-arrow to complete an arc.

Click at the end of an out-arrow to start an arc.

Figure 4.6 - Arc Drawing Points

18

Viewing a Different Graph

CODE programs consist of a set of graphs that are drawn independently. There is no way to view
more than one graph at a time. To view a particular graph, click the Travel cursor on the graph
button. A scrolling menu of graphs will appear. Click to pick one. Figure 4.8 shows this scrolling
menu.

Once a Call node has been annotated with the name of the graph that it calls, you can travel to that
graph by clicking the travel cursor on the Call node. Click on the Return button to return to the
Calling graph.

Translating a Program for Execution

Once you drawn and properly annotated a CODE program, you can translate it into parallel C
source code for a particular architecture by clicking any cursor on the Translate button and select-
ing an architecture. Error messages will be written onto the terminal window from which you ran
CODE. See the chapter on translation in this manual. The “List” menu pick dumps a text-form of
your program to the terminal window. It is primarily a debugging tool for us.

Click in this whitespace to move to part
of graph shown.

Click on vertical scroll bar to scroll
vertically one node at a time.

Click on horizontal scroll bar to
scroll horizontally one node at a
time.

Figure 4.7 - The Scroll Window

Click on a name to select it.

Click on the box to select a name by
typing it.

Click on a scroll bar to scroll.

Figure 4.8 - Scrolling Menu of Graphs

19

Deleting Things

Delete a node arc, etc. by clicking on it with the Erase cursor. Undo undoes this. Redo undoes the
undo!

Moving Things on the Screen

Clink on a node, label, arc intermediate point, etc. with the Move cursor. Move the mouse to the
desired location and click again.

Writing on the Graph

You can write comments right on the graph by clicking the Open cursor on empty space. A text
box will appear. Enter your comment into it and click outside it to make it go away. The comment
can be moved with the Move cursor, edited with the Open cursor, and deleted with the Erase cur-
sor.

Copying Things

Use the Copy cursor to copy things, along with their attributes. For example, to copy a node, click
on it with the Copy cursor. Click again on empty space, and the copy will appear at that point.

4.4 Online Help

CODE has an elaborate online help system that uses hypertext. Click any cursor on the Manual
button to bring up the online manual. The What and How buttons enable two kinds of context-
sensitive help. The How button describes how to use the user interface. For example, if you click
on it while a UC attribute form it open, it will tell you how to manipulate forms. The What button
tells you what you are supposed to do with the user interface at a given point. If you click on it
while a UC attribute form it open, it will describe the purpose and meaning of the various fields in
the form. Figure 4.9 shows the help box that would appear if you clicked on the How button while
a text editor box is active. Click on the underlined (or highlighted on color monitors) text for more
help on that subject.

20

Figure 4.10 shows the form that would appear if you clicked on “drag” in the help box. Click on
the hooked arrow icon to return to the previous help box. Click on the house icon to return to the
home (or root) help box. Click on the little square icon at the upper left of the help box to turn
help mode off.

Figure 4.9 - A Help Box

Figure 4.10 - Help Box Icons

21

5.0 Tutorial Example

The following tutorials assume that the user has read Chapters 1,2 and 4 of this manual and has a
basic familiarity with graphical interfaces which employ mice and menus to communicate with
users, with X windows, and with UNIX commands and editors. These tutorials will guide you,
step by step, through the process of creating and running CODE programs.

5.1 TUTORIAL : EXAMPLE 1

In this example we will be creating a CODE program that sums the elements of a 100 element
vector. We first initialize two vectors of 50 elements each and then add the two vectors seperately,
in parallel. The resulting partial sums are then added to produce the final sum.

Contents of the Tutorial

I. Preliminaries
II. Entering Example 1

Step 1. Draw all the nodes and arcs in a graph.
Step 2.Use attribute forms to enter all information about the nodes, arcs, graphs and

programs.
III. Executing Example 1 on the Sequent.

Step 1. Save and compile the program.
Step 2. Create the files which record the node function definitions.
Step 3. Create the executable and run it.

I. Preliminaries

Get the X-Windows system running. Create a directory to hold the files associated with the pro-
gram and

cd

 to that directory. Before runnng CODE, ensure that it is present on your UNIX path
(or be prepared to type a complete path name). Then enter

 code2 sumvector.grf

at the UNIX prompt. This will run CODE and create a program called “sumvector.” A single win-
dow will be opened and all activity will take place within it. Figure 4.1 shows the CODE window.

II. Entering Example 1

Our goal is to draw the following graph:

22

Figure 5.1.1

You may enter and annotate the nodes and arcs of your program in any order, but we will adopt
the following sequence of operations:

Step 1. Draw all the nodes and arcs in a graph.
Step 2. Use attribute forms to enter all information about the nodes, arcs, graphs and

programs.

Before we start, it is important to point out that you should save your work periodically. Then, in
the (unlikely of course!) event that the CODE system crashes, your work will not be lost.

To saving your work as you go:

With create cursor in the CODE window, click on the program button. A menu of program options
will pop up. Pick the save option by clicking on it. By doing this regularly you can avoid losing
your work in case of a system crash.

Correcting mistakes :
a. Finish, drawing the node or arc.

 b. Select the erase cursor from the tool window.
c. Place the erase cursor on the object to be deleted and click the left mouse button.
d. If you want to undo the deletion, click on the 'Undo' button in the upper part of the CODE

window.
e. Clicking on the 'Redo' button undoes the undo !

 f. If you make any syntax errors while entering, CODE will beep to let you know that you
 have made a mistake.

STEP 1. Draw all the Nodes and Ar cs in a Graph

A.

 Draw all the nodes.

23

1.Draw the UC node, INIT by

a. Position the create cursor in the CODE window, where the UC INIT is to be located.
b. Click with the left mouse button, to bring up the menu of node types.
c. Pick the Unit of Computation (UC) node by clicking on it.

2. Draw the UC's ADD1, ADD2, and PRINTSUM.
.

B.

 Draw all the arcs.

1. Draw the arc V1 by,

a. With the create cursor, click on the lower arrow of UC, INIT.
b. Also, click on the upper arrow of UC, ADD1.

2. Draw the arcs V2, SUM1 and SUM2.

At this point the graph looks like Fig. 5.1.2.

Fig. 5.1.2

STEP 2. Use Attribute Forms to enter all Information about Nodes, Ar cs
Graphs and Programs

A.

 Enter information about the nodes

1. Enter information about INIT

a. Select the open cursor from the tool window.

24

b. Click the open cursor on the UC INIT to open its attribute form. It looks like Fig.5.1.3

c. Click on the node name field and a text box will appear. Enter the name 'INIT' in this
box. You can make the text box go away by clicking on the white space in the UC form
to return to it.

 d. The value in the UID field is automatically generated by CODE. It is a debugging aid
which you can ignore for now.

 e. The termination node and start node fields will have a default value of 'No'. Since INIT
 is a start node, update the Start node field to 'Yes'.

f. The Node Function Signatures and Node Function Definitions fields are to be left
 blank.

Fig. 5.1.3

g. Click on the Node Specification field. A text box labelled 'Text of UC Specs' will
 appear. Fig. 5.1.4 shows the code to be entered in this text box. This code can also be
 entered via a window running the editor defined by your EDITOR environment
 variable. To bring up this window press ESC-e(the escape key followed by e).
 After entering the code, you can exit from the window, the way you would normally
 exit from your editor.

25

Fig.5.1.4

h. The documentation field is to be left blank.

i. To exit the UC INIT attribute form, click on the white space outside the form in the
 CODE window.

The name 'INIT' will be displayed next to the node, but you can move it with the Move
 cursor.

2. Enter information about ADD1 as in 1.

 The one difference is that ADD1 is not a Start node. The code to be entered in the Node
 Specification field of ADD1 is as shown below,

input_ports {
 Vect Y1;
}

output_ports {
 int P1;
}

vars {
 Vect V1[50]; int i; int sum1;
}

firing_rules {
 Y1 -> V1 =>
}

26

comp {
 i=0;
 sum1=0;
 while (i<50) {
 sum1=sum1+V1[i];
 i=i+1;
 }
}

routing_rules {
 TRUE => P1 <- sum1;
}

3. Enter information about ADD2 as in 1.

The one difference is that ADD1 is not a Start node. The code to be entered in the Node
 Specification field of ADD2 is as shown below,

input_ports {
 Vect Y2;
}

output_ports {
 int P2;
}

vars {
 Vect V2[50]; int i; int sum2;
}

firing_rules {
 Y2 -> V2 =>
}

comp {
 i=0;
 sum2=0;
 while (i<50) {
 sum2=sum2+V2[i];
 i=i+1;
 }
}

routing_rules {
 TRUE => P2 <- sum2;
}

4. Enter information about PRINTSUM as in 1.

The one difference is that PRINTSUM must be designated as a termination node. The
 code to be entered in the Node Specification field of PRINTSUM is as shown below,

input_ports {
 int Q1; int Q2;
}

27

vars {
 int sum1; int sum2; int sum;
}

firing_rules {
 Q1 -> sum1, Q2 -> sum2 =>
}

comp {
 sum=sum1+sum2;
 print(sum1,sum2,sum);
}

B.

 Enter information about the arcs

1. Enter information about V1

a. Click the open cursor on the arc V1 to open its attribute form. It looks like Fig. 5.1.5.

Fig.5.1.5

b. Click on the name field and a text box will appear. Enter the name 'V1' in this box. You
 can make the text box go away by clicking on the white space in the Value Passing
 Relation form to return to it

c. The value in the UID field is automatically generated by CODE.

d. Click on the Arc Topology Rule field and another text box will appear. The code to be
 entered in this text box is shown below,

.X1 => .Y1

e. Exit from both the text box and the form by clicking on the white space outside the
 two in the CODE window.

 The name 'V1' will be displayed next to the arc, but you can move it with the Move cursor.

2. Enter information about V2, SUM1 and SUM2 as in 1.

28

The Arc Topology Rule field of V2 is,

.X2 => .Y2

The Arc Topology Rule for SUM1 is,

.P1 => .Q1

 The Arc Topology Rule for SUM2 is,

.P2 => .Q2

C.

 Enter information about the program

a. Click the open cursor on the Program button in the CODE window, to open its
 attribute form. It looks like Fig. 5.1.6.

Fig.5.1.6

b. The values in the program name and UID fields are automatically generated by
 CODE.

c. Click on the Global Types field and a text box will appear. The code to be entered in
 this text box is shown below,

type Vect is array of int;

d. Click on the Global Function Signatures field and another text box will appear. The
 code to be entered in this text box is shown below,

void print(int i, int j, int k);

 e. The Global Function Definitions and Documentation fields are to be left blank.

 f. Click on the Translation Options field, to bring up it’s attribute form. Now, click on the
 ‘Object Files to Link’ field. A textbox will appear. Enter the name of the file in which
 node function definitions will be specified, in this textbox.

29

filename.o

g. Exit from the program form by clicking on the white space outside the form in the
 CODE window.

III. Executing Example1 on the Sequent

We will now compile and run the program in the following order:

Step 1. Save and compile the program.
Step 2. Create the files which record the node function definitions.
Step 3. Create the executable and run it.

STEP 1. Save and Compile the Program

a. Click the create cursor on the Program button and select the 'save' option.
b. Click the create cursor on the Translate button and select the 'Sequent' option.
c. If there are any errors, these are displayed in the window from where CODE was run.
d. Eliminate the errors, if any.
e. After the program has been successfully compiled and saved, exit the program by

 clicking on the Exit button. Select the 'save' option and quit.

At this stage, the following files and directories will be present under the directory
example1.
README File
sumvector.grf File
sumvector.sequent Directory

STEP 2. Create the Files which record the Node Function Definitions

$cd ./sumvector.sequent The following files will be present in this directory.
Makefile
c2_globtype.h
c2_main.h
c2_main.c
main.c

$vi filename.c Record all node function definitions inthis file. Give it the same
 name as the object file to be linked. The text to be entered in this
 file is as shown below. This file "routines.c" can also be picked up
 from the directory,

 examples/tutorial1/sumvector.sequent.

 These will be present in the directory in which CODE2 has been
 installed.

print(i, j, k)
int i,j,k;
{
printf(“The first partial sum is %d\n”,i);
printf(“The second partial sum is %d\n”,j);

30

printf(“The total sum is %d\n”,k);
}

STEP 3. Create the executable and run it

These operations will depend on how your workstation is connected to the Sequent.
 Before giving the 'make' command, kindly ensure that you are logged in on the Sequent.
 Please refer to the Chapter on ‘Translating & Running Programs’ for the details. At Dept.
 of Computer Sc, Univ. of Texas, the following command should be given to login onto the
 Sequent.

$rlogin qt

 After having logged in on the Sequent, give the following commands,

$cc -c filename.c Compile the file specifying node function definitions.

$make This will create the executable 'sumvector'.

$./sumvector Run the executable. The output displayed should be that shown
 below,

The first partial sum is 1225
The second partial sum is 3725
The total sum is 4950

5.2 TUTORIAL EXAMPLE 2

The following aasumes that the user has completed Tutorial Example 1.

This example is an altered version of Example 1. There are now ten adder nodes instead of two
and each adder prints it’s number and the sum it has calculated when it completes. Replication is
used to produce the ten adders.

Contents of the Tutorial

I. Preliminaries
II. Entering Example 2

Step 1. Draw all the nodes and arcs in a graph.
Step 2.Use attribute forms to enter all information about the nodes, arcs, graphs and

programs.
III. Executing Example 2 on the Sequent.

Step 1. Save and compile the program.
Step 2. Create the files which record the node function definitions.
Step 3. Create the executable and run it.

I. Preliminaries

31

Get the X-Windows system running. Create a directory to hold the files associated with the pro-
gram and move to that directory. Before runnng CODE, ensure that it is present on your UNIX
path. Then enter

 code2 rsum.grf

at the UNIX prompt. This will run CODE and open a program called "rsum". A single window
will be opened and all activity will take place within it. Fig. 4.1 shows the CODE window.

II. Entering Example 2

Our goal is to draw the following graph:

Figure 5.2.1

You may enter and annotate the nodes and arcs of your program in any order, but we will adopt
the following sequence of operations:

Step 1. Draw all the nodes and arcs in a graph.
Step 2. Use attribute forms to enter all information about the nodes, arcs, graphs and

programs.

Before we start

Saving your work as you go:

With create cursor in the CODE window, click on the program button. A menu of program options
will pop up. Pick the save option by clicking on it. By doing this regularly you can avoid losing
your work in case of a system crash.

32

Correcting mistakes :
a. Finish, drawing the node or arc.

 b. Select the erase cursor from the tool window.
c. Place the erase cursor on the object to be deleted and click the left mouse button.
d. If you want to undo the deletion, click on the 'Undo' button in the upper part of the CODE

window.
e. Clicking on the 'Redo' button undoes the undo !

 f. If you make any syntax errors while entering, CODE will beep to let you know that you
 have made a mistake.

STEP 1. Draw all the Nodes and Ar cs in a Graph

A.

 Draw all the nodes.

1.Draw the UC node, INIT by

a. Position the create cursor in the CODE window, where the UC INIT is to be located.
b. Click with the left mouse button, to bring up the menu of node types.
c. Pick the Unit of Computation (UC) node by clicking on it.

2. Draw the UC's ADD[10] and PRINTSUM.
.

B.

 Draw all the arcs.

1. Draw the arc V_IN[10] by,

a. With the create cursor, click on the lower arrow of UC, INIT.
b. Also, click on the upper arrow of UC, ADD[10].

2. Draw the arc SUM_OUT[10].

At this point the graph looks like Fig. 5.2.2.

33

Fig. 5.2.2

STEP 2. Use Attribute Forms to enter all Information about Nodes, Ar cs
Graphs and Programs

A.

 Enter information about the nodes

1. Enter information about INIT

a. Select the open cursor from the tool window.

b. Click the open cursor on the UC INIT to open its attribute form. It looks like Fig.5.2.3

Fig. 5.2.3

34

c. Click on the node name field and a text box will appear. Enter the name 'INIT' in this
box. You can make the text box go away by clicking on the white space in the UC form
to return to it.

 d. The value in the UID field is automatically generated by CODE. It is a debugging aid
which you can ignore for now.

 e. The termination node and start node fields will have a default value of 'No'. Since INIT
 is a start node, update the Start node field to 'Yes'.

f. The Node Function Signatures and Node Function Definitions fields are to be left
 blank.

g. Click on the Node Specification field. A text box labelled 'Text of UC Specs' will
 appear. The code to be entered in this text box is as shown below. This code can also
 be entered via a window running the editor defined by your EDITOR environment
 variable. To bring up this window press ESC-e(the escape key followed by e).
 After entering the code, you can exit from the window, the way you would normally
 exit from your editor.

output_ports {
 Vect OV;
}

vars {
 Mat V[10][10]; int i; int j; int k;
}

comp {
 k=0;
 j=0;
 while (k<10)
 {
 i=k*10;
 while (j<10)
 {
 V[k][j]=i;
 j=j+1;
 i=i+1;
 }
 k=k+1;
 j=0;
 }
}

routing_rules {
 TRUE => { OV[i] <- V[i]; : (i 10) };
}

h. The documentation field is to be left blank.

i. To exit the UC INIT attribute form, click on the white space outside the form in the

35

 CODE window.

The name 'INIT' will be displayed next to the node, but you can move it with the Move
 cursor.

2. Enter information about ADD[10] as in 1.

The one difference is that ADD[10] is not a Start node. The code to be entered in the Node
 Specification field of ADD[10] is as shown below,

input_ports {
 Vect IV;
}

output_ports {
 int SUMS;
}

vars {
 Vect C[10]; int sum; int i;
}

firing_rules {
 IV -> C =>
}

comp {
 i=0;
 sum=0;
 while (i<10)
 {
 sum=sum+C[i];
 i=i+1;
 }
}

routing_rules {
 TRUE => SUMS <- sum;
}

3. Enter information about PRINTSUM as in 1.

The one difference is that PRINTSUM must be designated as a termination node. The
 code to be entered in the Node Specification field of PRINTSUM is as shown below,

input_ports {
 int I_SUM;
}

vars {
 Vect p_sum[10]; int i; int t_sum;
}

firing_rules {
 { I_SUM[i] -> p_sum[i] : (i 10) } =>

36

}

comp {
 routine1(p_sum);
}

B.

 Enter information about the arcs

1. Enter information about V_IN[10]

a. Click the open cursor on the arc V_IN[10] to open its attribute form. It looks like Fig.
 5.2.4.

b. Click on the name field and a text box will appear. Enter the name 'V_IN[10]' in this
 box. You can make the text box go away by clicking on the white space in the Value
 Passing Relation form to return to it

c. The value in the UID field is automatically generated by CODE.

d. Click on the Arc Topology Rule field and another text box will appear. The code to be
 entered in this text box is shown below,

.OV[i] => [i].IV

e. Exit from both the text box and the form by clicking on the white space outside the
 two in the CODE window.

Fig.5.2.4

The name 'V_IN[10]' will be displayed next to the arc, but you can move it with the Move
 cursor.

2. Enter information about SUM_OUT[10] as in 1.

The Arc Topology Rule field of SUM_OUT[10] is,

37

[i].SUMS => .I_SUM[i]

C.

Enter information about the program

a. Click the open cursor on the Program button in the CODE window, to open its
 attribute form. It looks like Fig. 5.2.5.

Fig. 5.2.5

b. The values in the program name and UID fields are automatically generated by
 CODE.

c. Click on the Global Types field and a text box will appear. The code to be entered in
 this text box is shown below,

type Vect is array of int;
type Mat is array of Vect;

d. Click on the Global Function Signatures field and another text box will appear. The
 code to be entered in this text box is shown below,

void routine1(Vect p_sum);

 e. The Global Function Definitions and Documentation fields are to be left blank.

 f. Click on the Translation Options field, to bring up it’s attribute form. Now, click on the
 ‘Object Files to Link’ field. A textbox will appear. Enter the name of the file in which
 node function definitions will be specified, in this textbox.

filename.o

g. Exit from the program form by clicking on the white space outside the form in the
 CODE window.

III. Executing Example2 on the Sequent

38

We will now compile and run the program in the following order:

Step 1. Save and compile the program.
Step 2. Create the files which record the node function definitions.
Step 3. Create the executable and run it.

STEP 1. Save and Compile the Program

a. Click the create cursor on the Program button and select the 'save' option.
b. Click the create cursor on the Translate button and select the 'Sequent' option.
c. If there are any errors, these are displayed in the window from where CODE was run.
d. Eliminate the errors, if any.
e. After the program has been successfully compiled and saved, exit the program by

 clicking on the Exit button. Select the 'save' option and quit.

At this stage, the following files and directories will be present under the directory
example1.
README File
rsum.grf File
rsum.sequent Directory

STEP 2. Create the Files which record the Node Function Definitions

$cd ./rsum.sequent The following files will be present in this directory.
Makefile
c2_globtype.h
c2_main.h
c2_main.c
main.c

$vi filename.c Record all node function definitions inthis file. Give it the same
 name as the object file to be linked.The text to be entered in this
 file is as shown below. This file "routines.c" can also be picked up
 from the directory,

 examples/tutorial2/rsum.sequent.

 These directories will be present under the directory in which
 CODE2 has been installed.

routine1(p_sum)
int p_sum[];
{
 int i,t_sum;

 i=0;
 t_sum=0;
 while (i<10)
 {
 printf(“Partial sum %d is %d\n”,i,p_sum[i]);
 t_sum=t_sum+p_sum[i];
 i=i+1;

39

 }
 printf(“Total sum is %d\n”,t_sum);
}

STEP 3. Create the executable and run it

These operations will depend on how your workstation is connected to the Sequent.
 Before giving the 'make' command, kindly ensure that you are logged in on the Sequent.
 Please refer to the Chapter on ‘Translating & Running Programs’ for the details. At Dept.
 of Computer Sc, Univ. of Texas, the following command should be given to login onto the
 Sequent.

$rlogin qt

 After having logged in on the Sequent, give the following commands,

$cc -c filename.c Compile the file specifying node function definitions.

$make This will create the executable 'rsum'.

$./rsum Run the executable. The output displayed should be that shown
 below,

Partial sum 0 is 45
Partial sum 1 is 145
Partial sum 2 is 245
Partial sum 3 is 345
Partial sum 4 is 445
Partial sum 5 is 545
Partial sum 6 is 645
Partial sum 7 is 745
Partial sum 8 is 845
Partial sum 9 is 945
Total sum is 4950

40

41

6.0 CODE Programming Checklist

This chapter summarizes the steps involved in creating a CODE program. You do not necessary
need to perform the steps in the order below, but it is an organized approach. Also, there is some-
times more than way to accomplish something. Alternatives are not mentioned here.

1. Draw all of the nodes and arcs in your program. Make exactly one UC node the Start node and
one UC node the Terminate node by making the appropriate menu pick in the UC attribute
forms.

2. Create all necessary type definitions. It is easiest to put them all into the Type field of the Pro-
gram attribute form. You will need a type definition for every array and structure type you
use in your program. Here are some examples.

type mat1 is array of real;
type mat2 is array of mat1; // This is how to make a 2D array.
type Point is struct {

real x;
real y;

};

3. Create function signatures (also called function prototypes) for all sequential functions you will
call directly from CODE. You can put all of these into the Function Signatures field of the
Program attribute form. You will need sequential functions to perform all I/O in addition
to any other use you have. Here are some examples.

void PrintTheAnswer(int i, real x); // void for procedures
int ReadInt();
void ReadReal(real *x); // * means call by reference
void PrintVect(mat1 v, int n);

4. Either enter function body definitons. If you put the signature for a function into the Program
form, you must either put its body into the Program attribute form’s Function Definition
field or put it into a separate file. In the latter case, you will need to supply the name of an
object (.o) file in the Translation Options field of the Program form. If you put the signa-
ture into a node or graph form, the body definition should go into the Function Definition
field of the same form.

5. Open the attribute form of every node and fill in its specification field. Here is an example UC
node specification to remind you of the syntax and order of the stanzas. If you have noth-
ing to put into a stanza, you may omit it.

 input_ports { // Name and type for incoming arc ports.
 Vect V1; Vect V2;
 }
 output_ports { // Name and type for outgoing arc ports.
 Vect OV1;
 }
 shared_vars { // Names for shared variables. See Name
 Mat2 m writer; // sharing relations.

42

 }
 vars { // Local variables.
 Vect v;
 }
 init_comp {
 initmat(m); // Computation done when node is created.
 }
 firing_rules { // Fire when there is data on either V1 or
 V1 -> v => || // V2. Store it in v.
 V2 -> v =>
 }
 comp { // Computation done when node fires.
 if (v[0] == 0) mycomp(v, m); // Call to sequential procedure
 }
 routing_rules { // If comp is 0, send v on OV1 else OV2.
 TRUE => OV1 <- v;
 }

6. Open the attribute form for every arc and fill it in. What you must enter varies according to the
kinds of nodes the arcs connect. Every arc except one that connects an Input Interface
node to an Output Interface node requires some form of annotation. See the section on arcs
in the Reference Manual appendix. Here is an example of an arc topology specification on
an arc that runs from one UC node to another.

.X => .Y // Binds port X to port Y

7. Save and translate your graph.

8. Some notes on names might be helpful. All objects (nodes, arcs, etc.) in CODE can have
names, but few require them. Only nodes that form the interface for a graph must be given
names. These nodes are Input Interface, Output Interface, and Creation Parameter nodes.
Their names must be valid CODE identifiers and must be unique within the graph.

43

7.0 Ar c Topology Specifications

This chapter discusses the annotation of arcs that run from one UC node to another. This is the
most important case. Other cases are discussed in the arcs section of the Reference Manual appen-
dix. See also the chapters on Call nodes and Name Sharing Relations.

Arcs that run from on UC to another are dataflow arcs. They represent the flow of data from the
computation of one UC to the computation of another. They are FIFO queues of data. The annota-
tion of such an arc is called an “arc topology specification.”

UC nodes use ports to reference these arcs. You can think of a port name as being a UC node’s
local name for an arc that is incident upon it. Hence, the primary job of an arc topology specifica-
tion is to bind an output port on one UC to an input port on another.

Suppose a UC node has an output port called Y and another UC node has an input port X. You can
draw an arc from the first UC to the second. You must then provide an arc topology specification
to state which ports the arc binds together. The specification

.Y => .X

binds port Y to port X. Note the dots-- they are required. The types of the ports bound together
must match.

There is another role that arc topology specifications play. To understand this you may want to
think of arcs as being rules that describe where data will go to, given where it come from. For
example, the rule above could be read as follows.

If data come from the “from” node’s port Y,
they must be sent to the “to” node’s port X.

Under this view, the addition of indices to arc topology specifications allows them to specify runt-
ime determined communication structures and greatly extends the representational power of
CODE.

An example is in order. Recall that any CODE node or arc can be instantiated any number of
times at runtime and that the instantiations are named by integer valued indices. Suppose one
wishes to create the structure shown in figure 7.1 in which values placed onto node A’s port Y[i]
are sent to the instance of node B with index [i], for i taking on values from 0 to N-1.

44

This structure can be created with the CODE program shown in figure 7.2. Consider node A’s
routing rule. The syntax { <thing> : (i N)} replicates <thing> for i taking on values from 0 to N-1.
Hence, A sends data out on the desired ports Y[i].

The arc topology specification may read as follows.

if data come from the “from” node’s port Y[i],
they must be sent to the “to” node with index [i]’s port X.

Hence, the value value of “i” in A’s routing rule determines the index of the receiving node. You
do not need to declare any bound on the number of receiving nodes. They are created as needed.
Also notice that port X on node B has no index. Each instance of B has its own port X so no index
is required.

For arcs running from UC nodes to UC nodes, the general form of an arc topology specification is
as follows.

[ident]•••[ident].FROMPORTNAME[ident]•••[ident] =>
[expr]•••[expr].TOPORTNAME[expr]•••[expr]

A

B[0] B[N-1]

Y[N-1]

X X

Y[0]

Figure 7.1 - Example Communication Structure

* * *

A

B

Y

X

routing_rules {
 TRUE => {Y[i] <- v[i]; : (i N)};
}

.Y[i] => [i].X // arc topo spec

firing_rules {
 X -> v =>
}

Figure 7.2 - CODE Program for Example

45

The indices on the left of the “=>” must be unique variable names. Their values are determined by
the indices of the node and port the arc comes from. The indices before the dot refer to the node.
Those after the port name refer to the port.

The indices on the right of the “=>” may be general integer valued expressions using the variable
names from left as well as creation parameters and function calls.

Consider an example specification.

[i][j].Y[k] => [i+k].X[j-1]

This is a strange but perfectly legal arc topology specification. It may be read as follows.

If data come from the “from” node with indices [i][j] and port Y with index [k],
they are sent to the “to” node with index [i+k] and port X with index [j-1].

The following figures show some other common cases.

CODE Program Structure Represented

[i].Y => .X[i]

[i].Y => [i].X

routing_rule {
 TRUE => Y <- v;
}

firing_rule {
 X -> v =>
}

routing_rule {
 TRUE => Y <- v;
}

firing_rule {
 {X[i] -> v[i] : (i N)} =>
}

46

8.0 Call Nodes and Hierarchical Structuring

No useful programming language can be without facilities for hierarchically structuring pro-
grams. Conventional programming languages such as C and Fortran use Call statements and pro-
cedures for this purpose. A program is made up of a number of procedures that interact via Call
statement. CODE has facilities that are entirely analogous. A CODE program is made up of a set
of graph instances that interact via Call nodes. Graphs are like procedures in that they are the
basic unit of hierarchical structuring. Call nodes are like Call statements.

8.1 Creating a Graph

When CODE is first run and given the name of a new graph (.grf) file, it creates the file and a
graph called “main” within it. It is intended (but not required) that your Start node be in this
graph. You can create another graph which can be called from “main” or any other graph that you
create. Graphs can even be recursive. To create a graph, click the create cursor on the Graph but-
ton and enter a name for the new graph. The name must be a legal CODE identifier.

Let us consider the elements of a CODE graph. Just as Fortran procedures have formal parameter
lists to define their interface, CODE graphs have Interface and Creation Parameters nodes to
define theirs. This is perhaps best explained by an example. Suppose we wish to create a graph
that could be called multiple times to multiply a series of vectors by a fixed matrix to produce a
vector result. Figure 8.1 shows such a graph.

Figure 8.1 - VectMult Graph

This graph has three input formal parameters and a single output formal parameter. All formal
parameters to graphs are either interface nodes or creation parameters. These nodes must be
named (with unique names that are legal CODE identifiers) since their names form the graph’s
interface.

47

Parameter Type Node Type

b_in Vector Input Inteface node
A Matrix Creation Parameter node
n int Creation Parameter node
b_out Vector Output Interface node

Let us first discuss the Interface nodes. They have only two attributes, a name and a type name.
These nodes exist because arcs in the calling graph must be bound to ports or shared variables in
the called graph, but one would not want such things to form a graph’s interface because they are
too “local”-- they are defined within nodes. Interface nodes serve as aliases for ports in UC nodes
or shared variables in Name Sharing Relation nodes.

For example, the UC node in our example graph has an input port called “b_in,” and we wish the
calling graph to send data to it. So, we create an interface node and give it a name. The example
uses name “b_in.” It is the same as the port name in this case, but need not be. Next, an arc is
drawn from the Input Interface node to the UC. Its attribute form contains a “Port to Connect to”
field. It’s value should be the name of the port the Interface node aliases, “b_in” in this example.
All of these annotations are shown in figure 8.1.

The Output Interface node works in the same way. It aliases a port in the UC that happens to be
called “b_out.”

Creation Parameter nodes represent a special kind of shared variable. They receive exactly one
value from the calling graph-- at the moment that the graph is created. This variable can then be
read from anywhere within the graph containing the Creation Parameter node.

Our example has a Creation Parameter called “A.” Its attribute form is shown in figure 8.1. It has
bound to it the matrix that will be used in all of the vector-matrix multiplications. Variable “A” is
of type Matrix and can be read from any point in the graph (including the UC node that does the
multiplication) just as though it were a local variable. It is illegal to write to “A” however. Also,
no arcs may be drawn to or from Creation Parameter nodes. There is no need in any case.

8.2 Calling a Graph

Call nodes are use to call one graph from another. Arcs that enter or leave a Call node are actual
parameters to the called graph. They are bound to formal parameters in the called graph by means
of their arc topology specifications. Figure 8.2 shows a graph with a Call node that calls the exam-
ple graph defined above.

48

Figure 8.2 - Main Graph

All arc topology specifications are shown. Notice that names of Interface and Creation Parameter
nodes appear as well as two dots instead of the usual one. The specification

.A_out => ..A

binds an output port in UC “Read Inputs” with name “A_out” to the Creation Parameter A in the
graph called. The specification

..b_out => .b_in

binds the Output Interface node called “b_out” in the called graph to port “A” in the UC with
name “Print Answer.” Recall that “b_out” was an alias for port “b_out” in the UC in the called
graph. Hence, that port is bound to port “b_in.”

The Call node’s attribute form contains a field for the name of the graph called. This form is
shown in figure 8.3.

One very important fact is that a different instance of a graph is associated with every different
instance of a Call node. Hence, if a program contains two Call nodes that are set to call the same
graph name, they will call different instances of the graph.

49

Figure 8.3 - Call Node Attribute Form

This is also true for graphs called from different instances of the same Call node. Call nodes can
be replicated like other nodes in CODE. Instances are named by integer-valued indices as always.
This, if fact, is the reason for using two dots instead of one on arc topology specification that go to
or from Call nodes. The general form for the topology specification of an arc that goes from a UC
to a Call node is as follows.

[ident]•••[ident].NAME[ident]•••[ident] =>
[expr]•••[expr].[expr]•••[expr].NAME[expr]•••[expr]

The left hand side has only one dot. The identifiers before it refer to the indices of the UC node
and identifiers after the port name refer to the indices of the port on the UC. The right hand side
has two dots. The first espression list refers to the indices of the Call node. The second refers to
the indices of the UC or Name Sharing Relation node within the graph called, and the expression
list after the port name refers to port indices.

The general form for an arc going from a Call node to a UC node is shown below. Notice that the
two dots are now on the left hand side. The first list of identifiers refers to the indices of the Call
node and so on.

[expr]•••[expr].[expr]•••[expr].NAME[expr]•••[expr] =>
[ident]•••[ident].NAME[ident]•••[ident]

As you might guess, the general form for an arc that goes from a Call node to a Call node has two
dots on both sides.

[expr]•••[expr].[expr]•••[expr].NAME[expr]•••[expr] =>
[expr]•••[expr].[expr]•••[expr].NAME[expr]•••[expr]

An example might be useful at this time. Figure 8.4 shows a CODE program and the communica-
tion structure defined by it. Remember that a separate graph instance is called from each call node
instance.

50

Figure 8.4 - Example Replicated Call

We assume that the called has an Input Interface node called “IN” and an Output Interface node
called “OUT.” The number of calls is determined by “N” in the top UC’s routing rules.

* * *

.Y[i] => [i]..IN

[i]..OUT => .X

routing_rules {
 TRUE => {Y[i] <- v[i]; : (i N)};
}

firing_rules {
 {X[i] -> x[i] : (i N)} =>
}

51

9.0 Name Sharing Relations

Name Sharing Relation nodes are a mechanism for declaring variables that will be shared among
a set of UC nodes. Theses nodes contain definitions and initializations of shared variables but do
not in themselves specify which UC nodes will access which variables and in which way. That is
done by shared variable declarations in UC nodes and by arcs that bind UC shared variables to
shared variables in a Name Sharing Relation node.

A Name Sharing Relation node’s attribute form contains a specification field in which stanzas
must be supplied in much the same manner as for a UC node. However, the Name Sharing Rela-
tion node’s specification is substantially simpler. Here is an example showing all of the possible
stanzas in the required order.

shared_vars {// These may be accessed by UCs.
int k;
Mat2 M;
Vector b[n]; // storage allocated-- n must be a creation parameter.
real x;

}
vars { // These are for use by the initialization computation.

int i; // vars section is exactly like a UC’s.
}
init_comp { // init_comp section is exactly like a UC’s.

i = 0;
while (i < n) {

b[i] = 0.0;
i = i + 1;

}
}

The vars and init_comp stanzas are exactly like a UC node’s. The initialization computation is run
when the Name Sharing node is created, before any of the shared variables can be access by UC
nodes.

The shared_vars stanza is not exactly like a UC’s. It is illegal to specify “reader” or “writer”, but
it is legal to allocate storage.

We have discussed how to create shared variables. Let us now discuss how to use them from UC
nodes. The first step is to declare one or more shared variables in a UC’s shared_vars stanza. Here
it is illegal to allocate storage. That was done in the Name Sharing Relation node. However, a use
specification, either “reader” or “writer” must be provided. This permits the CODE system to
automatically synchronize access to the shared variable. There are no explicit locking primitives.
Access control is automatic.

Once a shared variable has been declared in a UC, it must be bound to a shared variable in a Name
Sharing Relation node by means of an arc with an arc topology specification. The specification is
much like that for a dataflow arc, but no port indices are permitted.

One should notice that a UC shared variable is much like a port. It is a name that is to be bound to

52

something outside of the UC node itself. The arc topology specification provides this binding.

An example may be useful. Figure 9.1 shows the graph for a simple program. In it, nodes A and B
have firing rules and dataflow arcs that cause them to fire repeatedly. Each time they fire, they
increment a shared integer.

Figure 9.1 - Name Sharing Relation Example

After A and B fire the specified number of times, they send dummy values to C which cause it to
fire. It prints the value of the shared integer. A and B are writers of the integer. C is a reader. We
will ignore all aspects of this program but the use of the shared variable.

Node A’s specification is shown below. Notice that it uses name “K” for the shared variable and
declares itself to be a writer of it.

input_ports { int X; }
output_ports { int Y; int AGAIN; }
shared_vars {
 int K writer;
}
vars { int v; }
firing_rules {
 X -> v => v = v - 1;
}
comp {
 K = K + 1; // Increment shared int
}
routing_rules {
 v == 0 => Y <- v; &&
 v > 0 => AGAIN <- v;
}

53

Node B is the same except that it uses name L.

The specification of the Name Sharing Relation node follows.

shared_vars {
int L;

}
init_comp {

L = 0;
}

Node A’s shared variable name K is bound to shared variable L by means of the arc drawn from
UC node A to the Name Sharing Relation node. The arc topology specification is as shown below.

.K => .L

The general form for an arc connecting a UC node to a Name Sharing Relation node does not per-
mit port indices. See the Arcs section of the Reference Manual appendix for other cases involving
Name Sharing Relation nodes.

[ident]•••[ident].UCSHVARNAME => [expr]•••[expr].NSRELSHVARNAME

One always draws arcs to Name Sharing Relation nodes, even if the arc must “cross” Call bound-
aries.

There are some limitations on the use of shared variables within a UC node. They may be used
only within the UC’s comp and routing_rules stanzas, and it is of course illegal to write to a
shared variable that has been declared read-only.

In addition no two shared variables within one UC node may be bound to the same shared vari-
able in a Name Sharing Relation node-- even when different instances (meaning nodes with indi-
ces) of the Name Sharing Node are involved.

54

10.0 Translating, Running, and Measuring CODE Programs

Before a CODE program can be run, it must be translated into a form that can be compiled by
some native compiler on the parallel machine you wish to use. You do this translation by clicking
on the Translate button and selecting a target machine. The options and form of the results vary
from one selection to another. The basic step is to click on the Translate button and select an archi-
tecture. At this time, only “Sequent” is implemented.

If CODE detects either a syntactic or semantic error in your program, it will display an error mes-
sage and refuse to generate a parallel program. Error messages will appear as text in the xterm
window from which you ran code. The text will attempt to state the location of the error, giving
the name of the graph and node or arc provided you named them. It also gives an integer UID that
uniquely identifies the attribute form containing the error. If you look at a node or arc attribute
form, you will notice that its UID is shown.

Unfortunately, there is no feature in CODE to open the form associated with a given UID. You
have to find it yourself. Clearly, this is a weakness in CODE’s user interface that ought to be fixed.

Also, recall that CODE beeps whenever you close an attribute form in which you have made a
syntax (not semantic) error.

There are some attributes that control the translation process. In the Program attribute form, there
is a sub-form called Translation Options. This form has the following fields.

Summary Statistics: if set to “Yes” causes CODE to record execution times and count for all
nodes. (Not implemented).

Optimize: If set to “Yes” the program is optimized for execution speed by both the CODE system
and the native compiler.

Object Files To Link: Form in which you can enter the names of object (.o) files that you wish to
have linked with your CODE program. Separate the names with spaces. This option is
convenient if you wish to enter sequential functions into files outside of the CODE sys-
tem. You must place a function signature into the Program form for all such external func-
tions that are called directly from CODE. File names defined in this form are placed into
the Makefile that CODE generates.

Trace What Nodes: Menu that selects what nodes will be traced when the debugging environment
that supports them is complete. For now, if you pick “All Nodes”, a message will be writ-
ten whenever a node fires. “Selected Nodes” does nothing.

Buffer Even Traces: (Not implemented.)

There are also trace options mentions in Call and UC node attribute forms. These are not yet
implemented.

55

One of the choices in the Translate menu is “List.” This is not an architecture. Rather, List causes
a text representation for your program to be written to standard output, provided your program
contains no syntax errors. This facility is primarlily a debugging tool used by the CODE system’s
developers, but it may be useful to general users as well.

10.1 • Sequent Symmetry Translation

Suppose your program is called MyProg and hence is stored in file MyProg.grf. The Sequent
translation process creates a directory called MyProg.sequent that contains a C version of your
program. It uses routines from the FastThreads package from the University of Washington to cre-
ate and manipulate parallel structures.

To run your program, you must first transfer the contents of MyProg.sequent to a Sequent Sym-
metry. It is most convenient if you store your program on a disk that is mounted both on the work-
station on which you are running CODE and on the Sequent. It that case, you need only “cd” to
MyProg.sequent.

CODE automatically creates a Makefile to build the executable version of your program. Just type
“make” while in directory MyProg.sequent. Assuming no bugs in the CODE system, any compi-
lation errors will be caused by mistakes you made in the definitions of your sequential functions.
CODE does not parse these definitions so it cannot check them for you. If there is an error, you
must return to CODE and fix it. Use the native compiler’s messages (and look at CODE’s output
files) for clues.

If the make succeeds, the executable image will be stored in MyProg. Run it by entering

MyProg -n#

at the Sequent UNIX prompt. The # is an integer that determines how many processors (really
UNIX processes) will be allocated to running your program. For example, “MyProg -n6” will run
your program using 6 processes.

There are a few things you should keep in mind when translating for the Sequent. CODE over-
writes all of the files it created in MyProg.sequent whenever you translate. Hence, any changes
you make in the files CODE produces will be lost if you translate a second time. In general, there
is no reason to change files that CODE generates anyway.

Also, it is best if you run your parallel programs from a disk that is directly attached to the
Sequent rather than remoted mounted using NFS. The reason has to do with an interaction bew-
teen NFS and how the Sequent implements shared memory. If you run from a remote-mounted
disk, you will notice potentially long delays between the terminate node firing and the time you
get the UNIX prompt back.

56

11.0 Input/Output in CODE

CODE does not at this time include I/O in its model of computation. This is, of course, a serious
flaw since facilities for I/O vary greatly from one parallel machine to another. Until CODE
includes I/O capabilities, it is not possible to use it to write truly portable programs that do I/O.
For now, you must do I/O from your sequential functions. Whatever I/O you include must work
with the parallel structures CODE creates for a particular architecture.

Be aware that I/O to the same file or device from nodes running in parallel with each other can
cause unintended results. For example, if two nodes that run in parallel write to the same file,
there is no way to know which will write first. They may even interleave their writing. The behav-
ior in this regard can also be machine-dependent.

11.1 • Sequent Symmetry I/O

You may use standard UNIX I/O facilities from any node when your target is the Sequent Sym-
metry. For example, C library routines printf and scanf work. There does appear to be a possible
problem with scanf when you redirect stdin to come from a file or pipe. You may be better off
doing direct file I/O.

57

12.0 Common CODE Conceptual and Usage Errors

Port indices are not array indices.

Do not confuse port indices with indices of arrays that will be sent on the port. They are unrelated
concepts. They type of data that a port will carry is determined by the port’s type. For example,
suppose we have the following type and variable defintions.

type mat1 is array of real; // These go in the program form
type mat2 is array of mat1;

output_ports { mat2 Y; }
vars { mat2 M[10][5]; }

The following routing rule sends all of M out on port Y[i] for i in 0..N.

routing_rules {
 TRUE => { Y[i] <- M; : (i N) };
}

The binding “Y[i] <- M[i];” is illegal. It asks that a value of type mat1 be placed on a port of type
mat2. You would want to use a port of type mat1 in this case.

Arrays and structs are consumed when sent out on arcs.

Do not forget that arrays and structs are consumed when they are sent out on arcs. Storage for
them is lost in the sending node and must be reallocated if the node is to be fired again. You can
use the operator “new” to allocate storage.

Do not assume that rules or guards within rules are evaulated in any particular order.

Also, all binding are done after all conditions are checked. Hence the following rules are not very
likely to be what you intend.

firing_rules {
N -> n, { X[i] -> v[i] : (i n) } => || // n uses old value!
N -> n, Y -> v[n] => // Cannot depend on order!

}

You can assume that bindings (on the right of a =>) are done in order from left to right.

Do not mismatch index counts.

If a routing rule refers to a port with (for example) two indices such as X[i][j], the arc bound to
that port should have two indices associated with the port.

.X[i1][i2] => // port indices match routing rule in number (names can differ).

58

Make sure that function signatures match function defintions.

The CODE system has no way to perform any syntactic or semantic checks on function bodies. It
is up to you to get them right. Messages from the native compiler on the parallel system may help.
This is one good reason to keep your sequential routines in a file outside of the CODE system and
use the Object Files to Link field in the program’s attribute form’s Translation Option field.

In particular be sure that function signatures match function bodies. CODE will not flag a mis-
match as an error. For example, if you have this CODE function signature

void foo(int *n);

you must have a function body (assuming you are using traditional C) like the this.

void foo (n)
int *n;
{
 • • •
}

59

Appendix 1: Known Bugs and Limitations

• You may never use more than seven indices on anything.

• Click on the Save button to save you work. Do this often as insurance against crashes.

• Run code via “code2 filename.grf” not “code2 dirname/filename.grf”. In other words, run code
from the directory that contains your graph file.

• Use CODE’s Exit button to leave code. Using an X-Windows “close” or “quit” causes a crash.

• The Copy Graph function (click Copy Cursor on Graph buttons) causes strange error messages
to be displayed. Use it at your own risk!

• “What” online help is not implemented. “How” help is implemented.

• The Manual button displays the manual for a program that has nothing to do with CODE!

• Put all function signatures and type definitions in the Program form. Graph and UC scope is not
correctly implemented for these items.

• Error messages are often cryptic.

• It is often hard to find the graphical item an error message refers to.

• The CODE language does not contain string and character literals.

• Your graph file name should be somename.grf where “somename” is a legal CODE identifier.

60

Appendix 2: Language Reference

This appendix defines the CODE graphical parallel programming language. It is intended more as
a reference guide than as a tutorial. If you know nothing about CODE, this is not the place to
begin reading. Readers are assumed to be familiar with programming language concepts and ter-
minology commonly used in describing programming languages.

2.1 Overview

CODE programs consist of a set of graphs that users draw using a mouse. Each graph consist of
nodes and arcs. The user must annotate the nodes and arcs with extra information. This annotated
graph may then be automatically translated into a parallel program for a variety of target archite-
cures.

There are several types of nodes in graphs. The most important type is the Unit of Computation (
or UC) Node. UC nodes represent sequential computations. Users annotate UC nodes to define
their sequential computations, the conditions under which they are allowed to execute, and more.

Arcs represent the flow of data from one node to another.

Graphs in CODE 2 play the same role that subroutines play in sequential languages. They allow
programs to be hierarchically structured. One graph calls another by means of Call nodes. Arcs
incident on a Call node are actual parameters to the called graph.

Formal parameters are defined using special nodes in the called graph.

Name sharing relation nodes permit UC nodes to share variables in a controlled fashion. CODE is
not based upon a pure data flow model.

All CODE 2 objects (nodes, arcs, etc.) may be instantiated any number of times while the parallel
program is running. Different instantiations of the same object are distinguished by means of inte-
ger valued indices.

The purpose of this appendix is to define the graphical entities from which users build programs
and to specify all attributes users can or must supply.

The next few sections describe the graphical entities that make up a CODE 2 program. The speci-
fication of their attributes is of particular interest. The following notation is used.

 (O) - Optional attribute. It is possible to create a correct CODE 2 program without supplying a
value.

 (R) - Required attribute. You must supply a value.

2.2 Programs and their Attributes

Attributes of the entire program are set in the Program Attribute Form. Click the Open cursor on

61

the Program button to open this form.

 -- Program Attributes --

 • Global Types (O) -- Type definitions that apply to the entire program. See “Types”.

• Global Function Signatures (O) -- Functions signatures for functions or procedures that may be

called from anywhere in the CODE program. See “Functions & Function Calling”.

• Global Function Definitions (O) -- Bodies for functions whose signatures are in the Global
Function Signatures text box.

• Documentation (O) -- Text box for comments.

• Translation Options (O) -- Sub-form with the following fields.

Summary Statistics (O) -- if set to “Yes” causes CODE to record execution times and
count for all nodes. (Not implemented).

Optimize (O) -- If set to “Yes” the program is optimized for execution speed by both the
CODE system and the native compiler.

Object Files To Link (O) -- Form in which you can enter the names of object (.o) files that
you wish to have linked with your CODE program. Separate the names with spaces. File
names defined in this form are placed into the Makefile that CODE generates.

Trace What Nodes (O) -- Menu that selects what nodes will be traced when the debugging
environment that supports them is complete. For now, if you pick “All Nodes”, a message
will be written whenever a node fires. “Selected Nodes” does nothing.

Buffer Even Traces (O) -- (Not implemented.)

Every CODE 2 program must have a graph called “main”. It is created automatically when a
CODE graph file is created. Graph main must contain exactly one node that has its Start Node
attribute set. (See UC Nodes).

2.3 Graphs and their Attributes

Graphs are CODE’s equivalent of subroutines in conventional languages. They must have names,
and these names must be legal CODE 2 identifers (see Identifiers & Contants). No two graphs in a
program may have the same name. Graphs are created by applying the Create cursor to the Graph
banner button.

Formal parameters for a graph are defined by its Interface Nodes (both input and output) and its
Creation Parameter nodes. All of these nodes must have names that are legal CODE 2 Identifiers,
and they must be unique within the graph.

62

Open the currently displayed graph’s attribute from by clicking the Open cursor on the Graph but-
ton.

 -- Graph Attributes --

• Name (R) -- The graph’s name. It will be entered in Call nodes to identify the graph called. The
name must be a legal CODE identifier. Graph names must be unique within the program.

• Graph Types (O) -- Type definitions that apply to the graph. See “Types”.

• Graph Function Signatures (O) -- Functions signatures for functions or procedures that may be
called from anywhere within the graph. See “Functions & Function Calling”.

• Graph Function Definitions (O) -- Bodies for functions whose signatures are in the Graph Func-
tion Signatures text box.

• Documentation (O) -- Text box for comments.

2.4 Interface Nodes and their Attributes

Interface nodes (along with Creation Parameter nodes) define a graph’s interface. Interface and
Creation Parameter nodes represent formal parameters and so must be given names that are
unique within their graph. These names are used in formal/actual parameter binding as described
in Graphs and Graph Calling. They appear on arc topology specifications of arcs incident upon a
Call node that calls the graph in which the Interface nodes appear.

Only a single arc may be connected to an interface node. A separate node must be used for every
formal parameter in a graph.

 -- Interface Node Attributes --

• Name (R) -- The interfaces node’s name. It must be a legal CODE 2 identifier and unique among
the graph’s interface and creation parameter nodes. This name will be used on arc topol-
ogy specifications on arcs incident upon Call nodes that call this graph.

• Type (R) -- The name of the type (an identifier) of the data that will flow on the arc connected to
the interface node.

2.5 Creation Parameter Nodes and their Attributes

Creation Parameter nodes define a formal parameter to a graph that will have exactly one value
bound to it in the lifetime of a graph instance. (See Graphs and Graph Calling). The value will be
bound before the graph instance is created and becomes available as a constant throughout the
graph.

63

 -- Creation Parameter Node Attributes --

• Name (R) -- The Creation Parameter node’s name. It must be a legal CODE 2 identifier and
unique among the graph’s interface and creation parameter nodes. This name will be used
on an arc topology specifications on an arc incident upon a Call node that calls this graph.
The name is also used to access the value of the creation parameters as a constant any-
where within the graph.

• Type (R) -- The name of the type (an identifier) of the value that will be bound to the Creation
Parameter.

2.6 Call Nodes and their Attributes

Call nodes are used to call one graph from another. Exactly one graph instance is bound to each
instance of a Call node. Hence, if a graph contains two Call nodes, both of which call graph
SomeGraph, the two Calls refer to

different

 instances of SomeGraph. Arcs that are incident on a
Call node are actual parameters to the graph being called. Their topology specifications may bind
them to either an Interface node or a Creation Parameter node in the graph being called. See
Graphs and Graph Calling.

 -- Call Node Attribues --

• Name (O) -- The name of the Call node. A comment.

• Called Graph Name (R) -- The name of the graph to be called.

• Trace this Call (O) -- Not Implemented.

2.7 Unit of Computation (UC) Nodes and their Attributes

UC nodes are CODE 2’s basic computational unit. They extract information from incoming arcs,
perform a sequential computation upon it, and pass resulting information out on outgoing arcs.
This process is called “firing” and takes place under conditions specified by user-supplied firing
rules. Each UC has its own names for the arcs that are incident upon it. These names are called
“ports” for data flow arcs and “shared variables” for arcs that connect the UC to a name sharing
relation. Node’s may have local variables, and these variables retain their state from one firing to
the next.

 -- UC Node Attributes --

• Name (O) -- The name of the UC node. A comment.

• Terminate Node (R) -- A Boolean attribute. Should be “yes” if and only if the computation is to
terminate when this node fires. Only one UC node in the entire program may be a termi-
nate node.

64

• Start Node (R) -- A Boolean attribute. Should be “yes” if and only if this is the node that should
be instantiated to start the computation. Only one UC node in the entire program may be a
start node. The system will automatically create and fire (regardless of firing rules) the
instance of the start node node with no indices when the program begins.

• Node Function Signatures (O) -- Function signatures for functions or procedures that may be
called from anywhere within the node. See “Functions & Function Calling”.

• Node Function Definitions (O) -- Bodies for functions whose signatures are in the node’s Func-
tion Signatures text box.

• Node Specification (R) -- Text box that permits a number of node attributes to be defined using a
mostly declarative text language. All nodes in a non-trivial program will have definitions
for one or more of these attributes. The attributes appear in a sequence of stanzas. Each
stanza is optional, but any that are present must appear in a given order. See “UC Node
Specifications” for a complete explanation. Here, we give only an example that shows all
of the stanzas in the required order.

 input_ports { // Name and type for incoming arc ports.
 Vect V1; Vect V2;
 }
 output_ports { // Name and type for outgoing arc ports.
 Vect OV1; Vect OV2;
 }
 shared_vars { // Names for shared variables. See Name
 Mat2 m reader; // sharing relations.
 }
 vars { // Local variables.
 Vect v; int code;
 }
 init_comp {
 init(code); // Computation done when node is created.
 }
 firing_rules { // Fire when there is data on either V1 or
 V1 -> v => || // V2. Store it in v.
 V2 -> v =>
 }
 comp { // Computation done when node fires.
 mycomp(v, m, code);
 }
 routing_rules { // If comp is 0, send v on OV1 else OV2.
 code == 0 => OV1 <- v; &&
 code != 0 => OV2 <- v;
 }

• Documentation (O) -- Text box for comments.

• Event Trace Options (O) -- sub-form of options that have not been implemented.

2.8 Name Sharing Relation Nodes and their Attributes

Name sharing relations allow the controlled use of shared variables in CODE programs. Access to

65

them is specified declaratively. There are no locking primitives to be used within computations.

Shared variables are defined at Name Sharing Relation nodes. UC nodes that share the variable
must have an arc drawn from them to the Name Sharing Relation node. These arcs have a topol-
ogy rule that binds the shared variable name used in the UC node to the shared variable name used
in the Name Sharing Relation node.

 -- Name Sharing Node Attributes --

• Name (O) -- The name of the Name Sharing Relation node. A comment.

• Node Function Signatures (O) -- Functions signatures for functions or procedures that may be
called from anywhere within the node. See “Functions and Function Calling”.

• Node Function Definitions (O) -- Bodies for functions whose signatures are in the node’s Func-
tion Signatures text box.

• NSRel Specification (R) -- A text box that permits a number of attributes to be defined using a
mostly declarative text language. Like UC specifications, Name Sharing Node specifica-
tions consist of a sequence of stanzas, all of which are optional. However, non-trivial
nodes will always have a shared_vars stanza. Here is an example showing all stanzas. See
“Name Sharing Relation Specifications” for a complete syntax.

 shared_vars { // These variables are shared.
 Matrix1 m[10];
 int MyInt;
 }
 vars { // Local vars for use by init_comp.
 int i;
 }
 init_comp { // Run when node is created.
 i = 0;
 while (i < 10) {

m[i] = 2.5;
 i = i + 1;
 }
 }

• Documentation (O) -- Text box for comments.

2.9 Ar cs and their Attributes

Arcs in CODE bind nodes together. Their attributes depend upon the types of nodes they leave
and enter. Arcs that are incident upon an interface node are the simplest. In most cases, one simply
specifies the name of the port they are to bound to. See below.

Other arcs must be given arc topology specifications. The major purpose of these is to disambigu-
ate arc conections. For example, suppose a graph has a UC node called N1with output ports Y1
and Y2, a UC node called N2 with input port X, and a UC node called N3 with input port Z.

66

If an arc is drawn from N1 to N2 it will be unclear whether it should be bound to output port Y1 or
Y2. Arc topology specifications solve this problem. The specification

 .Y1 => .X

says that the arc goes from N1’s output port Y1 to N2’s input port X. Read the rule in this way: if
data come from node N1’s port Y1, then they must be sent to Node N2’s port X2. The node names
need not be mentioned in the rule since the CODE system knows what nodes are involved by
means of graphical context-- the user has already drawn the arc from one node to another.

Arc topology specifications may also involve indices. For example, suppose node N1 places data
on its output port Y1[i] where i takes values from 0 to 9. The rule

 .Y1[i] => [i].X

Says that data from N1’s port Y1[i] must be sent to node N2[i]’s port X.

Indices on the left of the “=>” are variable declarations. Hence, they must be unique and expres-
sions are not allowed for them. Indices on the right may be expressions and, of course, need not
be unique. For example, the following arc topology specifications are illegal.

 .Y1[i][i] => .X2 // i is not unique on the LHS.
 [i].Y1[i] => .X2 // i is still not unique on the LHS.
 [i+1].Y1 => .X2 // i+1 is an expression.

The following are legal, although unusual.

 [i].Y1[j] => [i % 2].X2[j+1]
 [i][j].Y1[k] => .X2[i+j+k]

In the following discussion, let <varlist> stand for a list of variables in brackets-- like [i] or
[ind1][j][k]. And let <exprlist> stand for a list of expressions in barckets-- like [i+4][j] or
[i-j*foo(k)][g][6].

Y1 Y2
N1

N2
N3

X

.Y1 => .X .Y2 => .Z

Z

67

The syntax for an arc topology specification varies somewhat according to the type of nodes its
arc connects. We will discuss this on a case-by-case basis, but there is a general rule. Use two dots
for a Call node, otherwise use one.

• UC node to UC node

<varlist>.IDENT<varlist> => <exprlist>.IDENT<exprlist>

• UC node to Call node

<varlist>.IDENT<varlist> => <exprlist>.<exprlist>.IDENT<exprlist>

On the right of the “=>”, the first <exprlist> refers to the indices of the Call node, the second to
the indices of the UC in the called graph, and the third refers to the indices of the port of the UC in
the graph called. If the arc is bound to a creation parameter, the final <exprlist> is not allowed.

• Call node to UC node

 <varlist>.<varlist>.IDENT<varlist> => .<exprlist>.IDENT<exprlist>

This time, the extra <varlist> is on the left. It refers to the index of the Call node.

• Call node to Call node

 <varlist>.<varlist>.IDENT<varlist> => <exprlist>.<exprlist>.IDENT<exprlist>

• UC node to Name Sharing Relation Node

<varlist>.IDENT => <exprlist>.IDENT

• Call node to Name Sharing Relation node

<varlist>.<varlist>.IDENT => <exprlist>.IDENT

Arcs that are incident on Interface nodes do not have topology specifications. Instead, the user
must supply the name of the entity the Interface node is connected to. One can think of the Inter-
face node as aliasing an entity. For example, an Input Interface node connected to a UC node is
bound to an input port in the UC. The Interface node serves as an alias for a particular port in the
a particular UC. Thus, UC port names do not “leak” into a graph’s interface.

• Input Interface node to UC node

 Name of input port in UC that node aliases.

• UC node to Output Interface node

 Name of output port in UC that node aliases.

68

• Input interface node to Call node

 Name of Input Interface Node in called graph that it aliased.

• Call node to output interface node

 Name of output interface node in called graph.

• Input interface node to Name Sharing Relation node

 Name of shared variable that is aliased.

• Input Interface node to Output Interface node

There is no arc specification. The nodes are aliases for each other.

2.10 Identifi ers and Constants

Identifiers in CODE 2 consist of a letter or underscore followed by a sequence of zero or more let-
ters, digits, and underscores. CODE is case sensitive so “k” and “K” are different identifiers.

Legal Illegal

 i d-1
 Abel 7Del
 Point_X hp:f
 a9_ 8U
 A_8_y 9_a

CODE supports constants of type integer and real. Integer constants are a sequence of one or more
digits. Real constants must include a decimal point. No scientific or exponential notation is
allowed.

Example real constants: 1.0, 17., 0.666, .75, 123.450, 00.2300.

2.11 Predeclared Identifiers

There are several identifiers that are predeclared in in CODE.

TRUE The integer value 1.
FALSE The integer value 0.
GraphIndex An integer array that contains graph index bounds. For example, if the current

graph index is [3][4], GraphIndex[0] has value 3 and GraphIndex[1] is 4.
NodeIndex An integer array that contains node index bounds.
copy A function that returns a copy of an array ot struct. See CODE Arrays.
asize A Function that returns the size of an array. See CODE Arrays.

69

2.12 Comments

Comments in CODE 2 are preceded by // and continue to the end of the line. Some examples fol-
low.

 comp {
 i = i + 1; // This is a comment.
 // So is this.
 }

2.13 Scope in CODE

CODE 2 is a statically scoped language. Scopes are nested so a declaration in an inner scope can
shadow a definition in an outer one. The major scopes in CODE 2 are as follows.

Program Scope - Declarations made in the program attribute form are usable anywhere in the pro-
gram unless shadowed by a declaration in an inner scope.

Graph Scope - Declarations made in a graph’s attribute form are usable anywhere in that graph
unless shadowed by a declaration in an inner scope.

UC Node Scope - Declarations made in a Unit of Computation node attribute form are usable any-
where in that node unless shadowed by a declaration in an inner scope.

NSRel Node Scope - Declarations made in a Name Sharing Relation node attribute form are
usable anywhere in that node unless shadowed by a declaration in an inner scope.

Index variables declared in replicators within rules or on the left hand side of an arc topology rule
may shadow declarations in outer scopes.

2.14 Types in CODE

CODE supports integers, reals, characters, structures (records), and arrays. All types must have a
name. Type names int, real, and char are predefined qnd may not be redefined.

Predefined Types

int
real
char

CODE does not have a Boolean type, but it does have Boolean operators and conditions. Like C,
it uses the integer value 0 to represent FALSE. Any other integer value represents TRUE.

Array and structure types must be given a name by means of a type definition before they can be
used. Type definitions may appear in the following places.

70

• Program attribute form - The type name is usable thoughout the entire program (program scope).
• Graph attribute form - The type name is usable thoughout the graph (graph scope).

The syntax of a type definition is as shown. NEWTYPE and OLDTYPE are identifiers. OLD-
TYPE must be declared in the form before the type definition or in an outer scope.

<typedef> := type NEWTYPE is OLDTYPE ; |
type NEWTYPE is <array_type_spec> ; |
type NEWTYPE is <struct_type_spec> ;

<array_type_spec> := array of OLDTYPE ;

<struct_type_spec> := struct { <member_list> } ;

<member_list> := OLDTYPE IDENT ; <member_list> |

OLDTYPE IDENT ;

Array type defintions in CODE 2 are unusual in that they do not include dimensions. This is
because CODE 2 arrays are dynamic. Array sizes are associated with variable instantiations. Here
are some examples of type definition. Note that we are not declaring variables. We are defining
types.

 Examples of Legal Type Definitions

type foo is int;
type bar is foo; // foo must already be defined to be a type.

type mat1 is array of real; // Vector of reals.
type mat2 is array of mat1; // Only way to declare a 2D array.

type Point is struct {

real x;
real y;

};

type PolyLine is array of Point;

type line is struct {
Point Start;
Point End;

};

CODE is a statically typed language and is type-safe with the exception of ellipses (...) in function
signatures. Despite the fact that all types must be named before that can be used, CODE uses type
structure (rather than name) to determine when types are equivalent. For example, if we define the
following types:

type mat1 is array of real;
type vect if array of real;
type diff is array of int;

Types mat1 and vect are equivalent. A variable of type mat1 may be used anywhere a variable of

71

type vect may be used. Type diff is not equivalent to either type mat1 or type vect.

Just to be negative, here are some examples of illegal type definitions that you might wonder
about.

Examples of Illegal Type Definitions

type bad is array of array of int; // Need to use 2 typedefs
type bad2 is int // Missing semicolon.
type bad3 is array of struct { // Need to use 2 typedefs

int i;
int j;

};

2.15 Expressions and Operators

Expressions in CODE may appear in UC Nodes, Name Sharing Relation Nodes, and Arcs. The
operators allowed in CODE 2 are shown below in precedence order.

Operator Associativity

[] . left to right
! -(unary) right to left
* / % left to right
+ - left to right
< <= > >= left to right
== != left to right
&& left to right
|| left to right.

The following table shows the meaning of the operators, the types they are allowed to operate on
and the types they return. Notice that there is no Boolen type. Integer constants 1 (for True) and 0
(for false) are used instead. Predeclared integer variables TRUE and FALSE have these values.
Some instructions accept operands of different types. One of the operands will be promoted to the
type of the other according to the following hierarchy.

char => int => real

The return type “mixed mode” means that the type of the operand whose type is highest in the
hierarchy is returned.

72

Function calls are also allowed in expression. Types of actual parameters must match types of for-
mal paramaters. See “Functions and Function Calling”.

The operator new may be used to allocate new arrays or new arrays within structs. Here is an
example.

new Mat2[10][10]

Mat2 is a type name. See “CODE Arrays”.

2.16 Statements

Statements may appear in initial computation (init_comp) and computation stanzas in UC Nodes
and Name Sharing Relation Nodes. The set of statements offered is limited. It is intended that sig-
nificant computations be performed by calls to externally defined functions.

Table 1: Operators and Types

Operator Meaning LHS RHS Returns

[] array index array int array base type

. struct select struct (na) member type

! boolean not (na) int int

- unary minus (na) int, real mixed mode

* mult int, real int, real mixed mode

/ division int, real int, real mixed mode

% mod int, real int, real mixed mode

+ addition int, real int, real mixed mode

- subtraction int, real int, real mixed mode

< less than int, real, char int, real, char int

<= lt or equal int, real, char int, real, char int

> greater than int, real, char int, real, char int

>= gt or equal int, real, char int, real, char int

== equal int, real, char int, real, char int

!= not equal int, real, char int, real, char int

&& boolean and int int int

|| boolean or int int int

73

The syntax of CODE statements is as follows.

<stmt> := <block_stmt> | <while_stmt> | <if_stmt> | <assign_stmt> |
<null_stmt> | <call_stmt>

<block_stmt> := { <stmt> ... <stmt> }

<while_stmt> := while (<expr>) <stmt>

<null_stmt> := ;

The condition expression in a while statement must be of type int with zero representing FALSE
and any other integer value representing TRUE.

<if_stmt> := if (<expr>) <stmt> |
if (<expr>) <stmt> else <stmt>

The condition expression in an if statement must be of type int as with the while statement.

<assign_stmt> := <lhs_expr> = <expr> ;

<lhs_expr> := <ident> |
<lhs_expr> . <ident> |
<lhs_expr> [<expr>]

In an assignment statement, the lhs_expr and the expr be of any type. When assigning arrays and
structs, types must match exactly. Types int, real, and char will be converted.

Call statements are much like void function calls in C. However, there is no need to use an address
operator (&) when passing by reference. (See Functions and Function Calling).

<call_stmt> := <ident> (<argument_list>) ;

Here are some example CODE statements.

InitMat(M);
i = 0;
while (i < 10) {

M[i] = p.x + i;
if (i % 2) {

i = i + 2;
M[i] = M[i] + 1;

} else
i = i + i;

}

2.17 Functions and Function Calling

Sequential functions (and procedures but we will often just use the word function) are very much
a part of CODE even though you cannot define them within it. Rather, they are written in a regular

74

sequential language, most often C. It is expected that most significant UC computations will be
specified using such external sequential functions. CODE supports their use in several ways.

1. You must provide function signatures (sometimes called function prototypes) so that CODE 2
can type check calls to your external functions.

2. CODE 2 provides function definition text boxes at program, graph, and node scope so that you
can enter function defintions (function bodies) for C functions. These function bodies are
not parsed by CODE 2. They are merely packaged for compiling by your system’s native
C compiler.

3. CODE 2 produces file c2_globtypes.h that contains C typedefs equivalent to all of the CODE 2
types defined by the user at the program scope level. This file may be included in C files
that are to be separately compiled and linked with the parallel code that CODE 2 produces.
Signatures for these externally defined functions must be provided at the program scope
level. Compiling and linking separate C files is a system-dependent process.

Sequential functions may be called anywhere expressions are allowed in CODE. Procedures may
be called in computation and initial computation sections by means of Call statements (see State-
ments).

A function signature must be provided before any function (or procedure) can be called. This per-
mits CODE 2 to type check arguments. CODE 2 function signatures are a subset of what is per-
mitted in ANSI C.

<func_sig> := <typename> <ident> (<formal_arg_list>) ;

Use typename “void” for procedures. The identifier is the function name.

Formal arguments have the following syntax.

<formal_arg_list := <formal_arg> , ..., <formal_arg> |
...

<formal_arg> := <typename> <ident> | <typename> * <ident>

The identifier is the argument name. The “*” indicates that the argument is to passed by reference.
Arrays and structs are always passed by reference. A “...” argument list for a function specifies
that CODE will not check arguments to the functions for correct type or number. Use this feature
with caution. Note that CODE does not support function signatures that mix regular arguments
with the “...” form.

foo(int i, ...); // This is illegal in CODE

Here are some example function signatures. Note the the formal parameter name is required in
CODE, unlike C.

int foo(int i); // takes an int by value, returns an int.

75

int foo(int *i); // takes an int by reference, returns an int.

void foo(); // procedure that takes no arguments.

real VectSum(Vect v1, Vect v2); // Takes two args of type Vect.

real foo(int i, int *j, int k); // 2nd arg by reference.

CODE’s argument type checking may be bypassed by means of ellipses.

int foo(...); // Don’t type check arguments.

If you supply ellipses, you may supply no other arguments.

Function signatures may be entered into Function Signature text boxes in the program, graph, and
node attribute forms.

Function calls in CODE are not quite like they are in ANSI C. If you pass an argument by refer-
ence you need not use an address operator. For example, assume there is a function foo with the
following signature and that k in an integer variable.

int foo(int *i); // foo’s signature

In CODE, a call to foo would take the form

foo(k)

rather than

foo(&k) // illegal! CODE has no & operator.

as would be required in C.

Also, if an argument is passed by reference, an expression may not be used as a formal parameter.
For example

foo(k+7) // Illegal to pass expression by reference.

is an illegal call.

2.18 UC Node Specifications

This section describes the text language that defines UC node specifications.

A UC specification consist of the following stanzas in the given order. Any stanza may be ommit-
ted in a node that does not require it.

 <input_ports> -- Local names and types for incoming arcs.

76

 <output_ports> -- Local names and types for outgoing arcs.

 <shared_vars> -- Local names and types for shared variable plus use rule.

 <vars> -- Local variables defintions.

 <init_comp> -- Executes when node is created at runtime.

 <firing rules> -- States when node can fire and how to get data from incoming arcs.

 <comp> -- Executes after a firing rule binding.

 <routing_rules> -- States what data are to go on what outgoing arcs.

The syntax and purpose of each stanza will be presented in turn, but first we will introduce the
syntax for replication. Guards, bindings, and rules in both firing rules and routing rules may be
replicated. The syntax of replication is

<replication> :=

{ <thing_to_be_replicated> : <repl_list> } |

{ <thing_to_be_replicated> : <repl_list> : <expr> } |

<repl_list> := (IDENT <expr>) ... (IDENT <expr>)

For example, { <thing> : (i N) (j M+1) } replicates <thing> for values of i from 0 to N-1 and j
from 0 to M. Here is another example.

{ m[i] = v[i]; : (i 2) } // same as m[0] = v[0]; m[1] = v[1];

The optional expression after the <repl_list> is a constraint. For example

{ <thing> : (i N) (j N) : i < j }

replicates <thing> for value of i and j from 0 to N-1 such that i < j. There may be at most one con-
straint expression. One could accoplish the same thing with

{ <thing> : (i N) (j i) }

We now present the stanzas that make up a UC node specification.

• Input Por ts Stanza

<input_ports> :=
input_ports { TYPENAME PORTNAME ; ... TYPENAME PORTNAME ; }

An input port is a node’s local name for an incoming dataflow arc. Input port names appear in arc
topology specifications to bind an arc to a particular input port. See Arcs and their Specification.

77

Example:

input_ports { int I; real x23; Matrix2d m; }

• Output Ports Stanza

<output_ports> :=
output_ports { TYPENAME PORTNAME ; ... TYPENAME PORTNAME ; }

An output port is a node’s local name for an outgoing dataflow arc. Output port names appear in
arc topology specifications to bind an arc to a particular output port. See Arcs and their Specifica-
tion. Example:

output_ports { int J_index; real Y; Matrix2d m; }

• Shared Variables Stanza

<shared_vars> :=
shared_vars { TYPENAME VARNAME <use> ; ... TYPENAME VARNAME <use> ; }

<use> := reader | writer

Variables declared in the shared variables stanza will be bound to shared variables that are
declared and instantiated in a Name Sharing Relation node by means of an arc be drawn from the
UC to the Name Sharing Relation node. The arc’s topology specification binds the UC’s shared
variable name to the Name Sharing Relation’s shared variable name. Hence, UC’s have local
names for the shared variables they use. Shared variables in UC nodes act somewhat like ports.
There is no ”variable” directly associated with them. Instead they are bound to variables declared
in Name Sharing Relation nodes. UC shared variables also have use rules that declare whether the
UC will read or write the shared variable. Example:

shared_vars {
Matrix2D m reader;
int Shared_counter writer;

}

Shared variable names may be used only in the comp stanza of a UC (and in the init_comp stanza
of the name sharing relation in which they are declared).

It is illegal to bind two shared variable names to two different instances of the same variable. For
example, suppose a UC declares shared variable names s1 and s2 and that there is a Name Sharing
Relation node that declared with shared variables x and y. A user could bind s1 to x and s2 to y be
drawing two arcs from the UC node to the Name Sharing Relation node and giving them the fol-
lowing topology specifications.

.s1 => .x

.s2 => .y

This is legal. But the following arc topology specifications are not legal since they bind two

78

shared variable name to two different instances of the same variable.

[i].s1 => [i].x
[i].s =>[i+1].x

• Variable Declaration Stanza

<vars> :=
vars { <vardecl> ; ... <vardecl> ; }

<vardecl> := TYPENAME VARNAME | TYPENAME VARNAME <size_spec>

<sizespec> := <array_sizes> | <member_sizes> |
<array_sizes> <member_sizes>

<array_sizes> := [<expr>] ... [<expr>]

<member_sizes> := { IDENT <sizespec> ; ... IDENT <sizespec> ; }

UC local variables are declared in the var section. These variables are used to store data extracted
from arcs and may appear in computation sections. Their values are retained from one node firing
to the next.

A <sizespec> is used to allocate arrays or arrays within structs. Recall that the size of an array is
not included in a CODE 2 type definition. Arrays must be instantiated at a particular size before
they can be used. A <sizespec> is one mechanism for doing that. See “CODE 2 Arrays”. Exam-
ples:

vars { int i; Mat2 m; }

Here we see a two dimensional array being allocated completely and another two dimensional
array being only partly allocated. Partial allocation makes sense if the array’s rows will arrive on
incoming arcs. See “CODE Arrays” for an example of this.

vars {
Mat2 m1[n][m+1];
Mat2 m2[n];

}

Suppose m is a two dimensional array that is a member of struct type mystruct. It may be allo-
cated as follows.

vars {
mystruct s { m[n][n]; };

}

• Initial Computation Stanza

<init_comp> :=
init_comp { <stmt> ... <stmt> } (See “Statements”)

79

The initial computation is performed when the node is created at runtime-- before any firing rules
are evaluated. Example:

init_comp {
i = 0;
foo(m);

}

• Firing Rules Stanza

<firing_rules> :=
firing_rules { <frule> || ... <frule> }

<frule> := <fguard> , ... <fguard> => <fbind> ... <fbind>

<fguard> := <expr> | PORTNAME <indices> -> <lhs_expr> (See “Statements”)

<fbind> := <assign_stmt> (See “Statements”)

Firing rules serve two purposes. They specify conditions under which the node is allowed to fire,
and they extract values from arcs and place them into local variables. In addition, they can set
local variables. Firing rules consist of guards and bindings as shown.

Guard1, Guard2, ... GuardK => Bind1; Bind2; ... BindM

There need not be any bindings, but there must be at least one guard. The rule evaluates to TRUE
and the node can fire when all of its guards evalaute to TRUE. You can read the commas as “and”.

There are two types of guards. Guards can be integer valued expressions. Such guards are FALSE
when they have value 0 and TRUE otherwise. Guards can also be arc inputs. Every rule must have
at least one arc input. The syntax is

PORT -> <lhs_exr> or PORT[<expr>]...[<expr>] -> <lhs_expr>

This type of guard is TRUE when there is a value on the arc named by the port. You may not
assume that guards are evaluated in any specific order. Hence, the following rule is not reasonable
since n need no be bound in time to be used in the replicator..

N -> n, { V[i] -> v[i] : (i n) } => // A rule that is not reasonable.

Bindings on the left of the => are assignment statements.

Entire rules as well as guards and bindings may be replicated.

If more than one rule is TRUE, one is chosen non-determinstically and its bindings are performed
and the node fires.

Here are some example firing rule stanzas.

firing_rules { // Fire when there is data on V.

80

V -> n => // Store it in n.
}

firing_rules { // Fire when there is data on V1 and V2.
V1 -> n1, V2 -> n2 => // Store it in n1 and n2.

}

firing_rules { // Fire when there is data on V1 or V2
V1 -> n => || // Store it in n.
V1 -> n =>

}

firing_rules { // Fire when there is data on V1 or V2
V1 -> n => s = 0; || // Store it in n and set s according to
V1 -> n => s = 1; // which rule fires.

}

firing_rules { // Fire when there is data on V and s has
s == 0, V -> n => // value 0. Store data in n.

}

firing_rules { // Fire when there is data on all
{ V[i] -> n[i] : (i N) } => // V[i] for i = 0 to N-1. Store

} // it in n[i]. (Arc input is replicated.)

firing_rules { // Fire when there is data on any
{ V[i] -> n => : (i N) } // V[i] for i = 0 to N-1. Store

} // is in n. (Entire rule is replicated.)

• Computation Stanza

<comp> :=
comp { <stmt> ... <stmt> } (See “Statements”)

The node’s computation fires afters a firing rule evaluates to TRUE, and its bindings are down.
After the computation terminates, routing rules are evaluated. Example:

comp {
i = 0;
while (i < N) {

foo(m);
i = i + 1;

}
}

• Routing Rules Stanza

<routing_rules> :=
routing_rules { <rrule> && ... <rrule> }

<rrule> := <rguard> , ... <rguard> => <rbind> ... <rbind>

<rguard> := <expr>

<rbind> := <assign_stmt> | PORTNAME <indices> <- <expr> ;

81

Routing rules place data onto outgoing arcs. In addition, they can set local variables. Routing
rules consist of guards and bindings as shown.

Guard1, Guard2, ... GuardK => Bind1; Bind2; ... BindM

There need not be any bindings, but there must be at least one guard. The rule evaluates to TRUE
and its bindings will be done when all of its guards evalaute to TRUE. You can read the commas
as “and”.

Guards must be integer valued expressions. They are FALSE when they have value 0 and are
TRUE otherwise.

Bindings are assignment statements or arc outputs. The syntax of arc outputs is

PORT <- <expr> ; or PORT[<expr>]...[<expr>] <- <expr> ;

Bindings are performed from left to right. When an array is sent on an arc output, it is consumed
and becomes null (See CODE Arrays). A null array has no storage associated with it. Hence, the
following routing rule will send a null array M on Y.

TRUE => X <- M; Y <- M;

This problem can be avoided by using the copy function on the first (not the second!) arc output.

TRUE => X <- copy(M); Y <- M;

Entire rules as well as guards and bindings may be replicated.

Binding sections for all rules with TRUE guards are performed.

Here are some example routing rules stanzas.

routing_rules { // Place n+1 onto V.
TRUE => V <- n+1;

}

routing_rules { // Place n1 onto V1. and
TRUE => V1 <- n1; && // n2 onto V2.
TRUE => V2 <- n2;

}

routing_rules { // Place n+1 onto V only if s > 0.
s > 0 => V <- n+1; && // otherwise place n onto V.
s <= 0 => V <- n;

}

routing_rules { // Place m[i] onto V[i]
TRUE => { V[i] <- m[i]; : (i N) }; // for i = 0 to N-1.

}

82

2.19 Name Sharing Relation Specifications

Name Sharing Relation nodes allow variables to be shared among a set of UC nodes. These
shared variables are declared in the node’s specification text box using a simple text based lan-
guage. The specification consists of three stanzas which must appear in the following order. All
are optional, but all non-trivial Name Sharing Relation nodes will have at least the shared_var
stanza.

<shared_vars> - Declares the name and type of all shared variables.

<vars> - Declares local variable which may be used in init_comp.

<init_comp> - A computation that is run when the node is created.

Each of the stanzas sytnax and purpose will be presented in turn.

• Shared Variables Stanza

<shared_vars> :=
shared_vars { <vardecl> ; ... <vardecl> }

<vardecl> := (See <vardecl> under “UC Node Specification”.)

This stanza declares the name and type of variables to be shared. It also permits arrays and arrays
within structs to be allocated at a particular size.

The variable name will appear on arc topology specifications that bind shared variables in the
Name Sharing Relation to shared variable names in a UC. Here is an example:

shared_vars {
int i;
Vector v;
Vector v[10];
Matrix Mat[n][n]; // n is a creation parameter.
Matrix Mat2[n]; // 2nd dimension unallocated.
MyStruct s { m[n]; } ;

}

The shared_vars stanza in a Name Sharing Relation differs from the shared_vars stanza in a UC.
In a Name Sharing Relation stanza, <sizespec>’s are allowed and use rules are not. The opposite
is true in the UC.

• Variable Declaration Stanza

<vars> := (See the <vars> stanza under “UC Node Specification”.)

The <vars> stanza contains local variable declarations. These variables may be used in the initial-
ization computation. The stanza is identical to the <vars> stanza in a UC node.

83

• Initial Computation Stanza

<init_comp> :=
init_comp { <stmt> ; ... <stmt> ; }

The initialization computation is peformed when the Name Sharing relation is created. You may
use it to give initial values to shared variables. UC nodes will not be granted access to the shared
variables until initialization is complete.

2.20 Graphs and Graph Calling

Graphs are CODE’s analogs to subroutines in conventional languages. They have parameters and
they interact via call constructs, Call nodes in the case of CODE. The user creates a CODE pro-
gram by drawing a set of graphs independently. Click the create cursor on the graph button
to create a new graph. Call nodes within the graphs allow them to communication with one
another.

Just as with conventional subroutines, there are formal and actual parameters to CODE graphs.
Arcs that are incident upon a call node are actual parameters in a call to a graph. Formal parame-
ters are defined within the called called graphs. Every interface node and creation parameter node
defines a formal parameter. There must be a actual parameter (arc in the calling graph) bound to
each formal parameter.

A separate instance of each graph is associated with every instance of a Call node. For example,
suppose a user draws two graphs, main and foo. Suppose further that main contains two Call
nodes, each calling foo. The two Call nodes refer to completely independent instantiations of foo.
There is no way in CODE to refer to the same graph instance from two different Call node insta
tiations.

Formal-actual parameter name binding involves the interaction of several annotations. Suppose
an arc runs from a UC node with port X to a Call node with an input interface node named IN. X
may be bound to IN by the following arc topology specification on the arc going from the UC to
the Call.

.X => ..IN

The binding is still not complete. Suppose there is an arc running from the Input Interface node to
a UC with a port Y in the called graph. This arc must be annotated with “Y”, the name of the port
the Interface node is to be bound to.

Topology specification on arcs incident upon Call node can be quite complex. Consider the right
hand side of a topology specification of an arc that enters a Call node. The general form is as
shown.

... => <call index list>.<port index list>.PORT<port index list>

Here are some examples.

84

 (ex. 1) ... => [i][j].[i+1].X[k]
 (ex. 2) ... => [i]..X[j]
 (ex. 3) ... => .[i].X[k]

The call indices (before the first dot) refer to the indices of the Call node the arc connects to.
Recall that there is a separate Graph instance associated with every instance of a Call node.
Hence, call indices are used to create a family of distinct graph instances. Consider example 2. If
index variable i takes on values from 0 to 9, 10 separate graphs will be created.

Node indices refer to the index of a UC in the called graph. In example 3, if i has the value 5, and
k the value 3, the arc is sending data to a UC with index 5 with a port with index 3. Port indices
refer to the index of a port in a UC in the called graph. It is illegal to use node or port indices on
arcs that are bound to creation parameters.

Arcs that leave Call nodes are similar to arcs that enter them, but this time the left hand side is of
interest. The general form is as shown.

 <call var list>.<port var list>.PORT<port var list> => ...

Here are some examples.

 (ex. 1) [i][j].[k].X[l] => ...
 (ex. 2) [i]..X[j] => ...
 (ex. 3) .[i].X[j] => ...

Just as with arcs going from UC to UC, only index variable are allowed on the left hand side, and
the variables must be unique. They are place holders containing the indices of the entity that sent
the data on the arc. The call index variables refer to the index of the Call node (and hence graph)
the data come from. The node index variables refer to the index of the UC in the called the data
come from, and the port index variables refer to the index of the port in that UC.

2.21 CODE Arrays

Arrays in CODE are somewhat unusual. They are not implemented using the customary contigu-
ous memory scheme used by most programming languages. This implementation cannot be hid-
den from the CODE user since the user must be able to write sequential routines what deal with
CODE arrays.

CODE arrays are implemented by means of pointers and vectors. A one dimensional real array is
a pointer to a vector of reals. A two dimensional real array is a pointer to a vector of pointers to
vectors of reals, and so on. There are several advantages to this scheme. It allows graphs and func-
tions to be written that operate on arbitrarily sized arrays. Only the number of dimensions need be
fixed. Also, it allows the efficient implementation of several important array partitioning opera-
tions on shared name space architectures. The performance and storage penalty is not great pr
vided arrays are “skinny”. The size of the last dimension should be made the largest, whenever
possible.

85

The following diagram show the layout of a two dimensional CODE array. The array has five
rows, but the size of the rows (number of columns) varies. CODE allows this. Also, there is no
implication that adjacent rows are in contiguous storage. Each row itself is, of course, in contigu-
ous storage. Call this array A.

CODE provides a mechanism to help users keep track of the sizes of arrays. The asize function
returns the length of an array. For example, asize(A) would return the value 4 since A is an array
of 4 vectors. The value of asize(A[1]) is 3 since A[1] is a vector of length 3. CODE arrays are 0
based. There is no way to specify a non-zero lower bound. This matches the C language.

CODE users need not be concerned that pointers are used in implementing arrays. Arrays are used
in a quite conventional way. For example, A[1][2] returns the value of the 3rd element in the 2nd
row of A.

CODE array type definitions are unusual in that bounds on dimensions cannot be specified as part
of the type. You define a “two dimensional” array, not an array type with fixed sizes like 5 x 10.
All two dimensional arrays of the same base type are the same type.

Two and higher dimensional array types must be defined in the following way. There is no method
for doing it directly.

type mat1 is array of real; // A 1-d array type.
type mat2 is array of mat1; // A 2-d array type.
type mat3 is array of mat2; // A 3-d array type.

Array types with more than 7 dimensions are not legal in code.

Since array sizes are not a part of the array type defintion, sizes must be allocated when an array is
declared. One does this using size specifications. Here are some legal array variable declarations.

mat1 v[10]; // v is a vector of length 10
mat2 m[10][5]; // m is a matrix of size 10 x 5.

It is even possible to partially declare the size of an array.

mat2 M[10]; // m has 10 rows, but no storage for them.

A

86

This might be useful in a firing rule that will gather 10 vectors from an incoming arc into a 2
dimensional array.

firing_rules {
PORT[i] -> m[i] =>

}

There is also an operator “new” that can assign storage. For example,

new mat2[10][3]

returns an array of size 10 x 3.

Function copy returns a copy of the array that is its argument.

Some comments on how to use CODE arrays from C might be useful. The situation is actually
quite simple. An N dimensional CODE array array M of a given base type is declared in C as

basetype *...*M;

where the are N *s. For example a 3 dimensional int array is declared thus.

int ***M;

Elements of this type of array may be accessed from C just as they are in CODE.

h = M[i][j][k];

Of course, storage must be allocated to the array before it can be used.

As an example, here is a C function for summing the elements of a CODE 3 dimensional integer
array. It could be called from CODE thus.

sum = SumArray(M, asize(M), asize(M[0]), asize(M[0][0]));

Assuming, of course that array is regularly sized.

int SumArray(M, i_size, j_size, k_size)
int ***M;
int i_size;
int j_size;
int k_size;

{
int i, j, k;
int *t1, **t2;
int sum=0;

for (i = 0; i < i_size; i++) {
t1 = M[i];

87

for (j = 0; j < j_size; j++) {
t2 = t1[j];
for (k = 0; k < k_size; k++) sum += t2[k];

}
}

return sum;
}

The use of temporary variable t1 and t2 can substantially decrease the execution time of such
functions.

