CODE 2.0 Userand Reference Manual

March 24, 1993

Peter Newton

SeemayY. Khedekar

1.0 Intr oduction

CODE is a graphical parallel programming environmeé&he idea behind it is that users can cre-
ate parallel programs by drawing and then annotating a pictuisepicture is then automatically
translated by the CODE system into a parallel program that can be compiled and rumgen a tar
parallel machine such as the Sequent Symmetry

CODE programs are graphs (of the nodes and arcs variety). Graphs are an excellent vehicle for
parallel programming because they directly display both parallel operations and communications
structure. Nodes represent operations and arcs represent relationships among them, primarily
showing datafiw. The next chapter provides an overview of CODE.

1.1 CODE's Goals

Wide acceptance of parallel architectures has been hindered by the ldektbfeefools for pro-
gramming them. CODE represents an attempt to ameliorate this problem. Parallel programming
environments must satisfy three practical goals in order toféetigé. They must be easy to use

so that non-specialists can write prografiteey must permit a wide variety of programs to be
expressed in a reasonably portable notation so that programs are not bound to a single architec-
ture, and they must producdieient executable structuréihe purpose of parallel computing is
speed, after all. CODE integrates many technologies and ideas in order to satisfy these goals.

* Ease of Use

CODE simplifes parallel programming by giving users a graphical interface in which they can
express programs using a very abstract computational model. Programming is reduced to drawing
pictures and then declaratively annotating th€here are no low-level primitives to learn, only
declarative annotation§he CODE programming model combines aspects of both alatafid
shared-memory programming styles so algorithms that are biased towards either can be expressed
directly. The model is also designed to support reuse of program components at all levels.

* Portability

The CODE model is the result of compromise. It is as expressive as its designers could make it
while containing no features that preclude implementation on either shared or partitioned memory
address space architecurése model is designed to be implementable on all common MIMD
machines. Of course, there is no magic bullet to solve the portability problem. Some algorithms
are inherently biased towards a particular architecture. CODE reduces this problem by allowing
programs to be expressed in an abstract notation that is not closely bound to any one architecture.

« Efficiency

The CODE computational model is designed to be as expressive as possible withoutfoeing dif
cult to compile Traditional sequential compilers have utilized optimization technology for

decades. CODE attempts to use similar technologies but applies them at a higher level of abstrac-
tion. CODE is implemented using object-oriented programming techniques that allow optimiza-

tions to be added easilgODE’ designers hope that performance-critical segments will be
idiomatic. Optimizations can be added over time to cover common programming paradigms.

1.2 Overview of this Manual

This document consists of two major pieces, the User Manual chapters and a Reference Manual
that is included as a substantial appenthe User Manual sections are intended to be introduc-
tory. They attempt to present the most important aspects of CODE clearly and with many exam-
ples.There is no attempt to be complete-- only the most important points are cavezed.

Reference Manual degs the complete language. It is intended for those who already grasp the
essential elements of CODE.

Those who wish to learn the CODE system may do well to adopt the following plan.

1. Read chapters 1 and 2 and to get an overall view of how CODE Wheksread appendix 1.
(Do not skip this appendix!)

2. Sit down at a workstation and actually run CODE while reading chapténeh a user inter
face feature is mentioned, try Tthe goal in chapter 4 is not to create programs, it is to
manipulate the user interface and draw pictuMsen you can draw graphs, and open and
fill out attribute forms with random text and menu choices, you are ready to move on to
the next step.

3. Remain at your computer and work through the tutorial examples in chaptess.will guide
you through every step in creating and running CODE progrémoswill want to exit
CODE and restart it when you begin chapter 5.

4. Skim through the rest of the User Manual chapters.

5. Start programming for real, refering to the Reference Manual sections in the appendix when
you get stuck.

1.3 CODE Distribution and Support

At this time, there are naxed mechanisms or policies for the distribution and support of CODE.
You may try sending email (in preference order) to:

code@pompadownsres.utexas.edu
newton@cs.utexas.edu (Peter Newton)
bwest@cs.utexas.edu (Brisvest)
browne@cs.utexas.edu (James C. Browne)

2.0 Overview of the CODE Language

CODE is a graphical parallel programming langud@eL create parallel programs with it by
drawing and annotating pictura¥hen you fist run CODE, an empty window will appear on
your workstation screeiYou draw pictures into this window using a mouse.

2.1 An Example Program

A graph is a type of diagram that consists of nodes (represented by icons in CODE) and arcs that
interconnect the nodes. CODE pictures are graphs in which there are several node types with dif-
ferent meanings and uses. Eaclfiedént node type is represented by &dént icon.The most
important type of node is the Unit of Computation (UC) nddiese represent sequential compu-
tations that can be composed into parallel programs by drawing arcs that shawdatashg

them. Figure 2.1 shows a complete CODE program that has been created using only UC nodes
and datafhw arcs.

CODE 2.0 m Scroll f Layout W Undo fRedo
I static inteq JGEWM nain Manual? fWhat? Tool: IEEH

Integrate a function
in parallel by splitting . Split Interval
the interval and

integrating the pieces.

I

. Integ Half . Inteq Half

(-) sum & Print

Figure 2.1A CODE Program

The program integrates a function over an interval by dividing the interval in half and integrating
over each piece separatélne results are summed to form theafianswerThis program con-

sists of four UC nodeJhe arcs represent information that is created by one UC and is needed
before another UC can begin its sequential computatitren the program runs, it$t executes

(or fires) the UC called “Split Interval” which divides the interval in half and sends the endpoints
of the sub-intervals to the “Integ Half” noddfese do the integration and can run in parallel
since there is no arc from one to the atherde “Sum & Print” waits for results from the parallel
integrations and then adds them together and prints thisTéunarcs represent unbounded FIFO
queues of data.

Drawing the graph is only one part of creating a CODE programalso have to annotate it.

These annotations deé many aspects of the program-- what sequential computation a UC node
will perform, under what conditions it camefj what data types are dedd for the program, etc.
Annotatations are performed bilifig out attribute forms associated with the object being

defined. Figure 2.2 shows the attribute form associated with a UC node.

UC Form

Node Nene : [N S vin:

Termination node?: No

Start node?:

Node Function Signatures: _
Node Function Definitions: _
Node Specification: _
Documentation: [NNINEIEGEEEEEEE

Figure 2.2: UC Nod@ttribute Form

Notice the felds for “Terminate node?” and “Start nodePhe programmer must designate
exactly one UC node in the program to be the Start Node and exactly one node foelbmithe
nate nodeWhen a CODE program is run the systerstfexecutes the Start Node to get the com-
putation startedlhe fring of theTerminate Node signals the end of the computation to the CODE
system.

Most of the attributes of a UC node are suppliedlbgdiin stanzas of text in the Node Spexafi

tion field of the attribute forniThese stanzas are written in a small mostly declarative textual pro-
gramming langaugd.he annotations of the four nodes in the integration program are described
below

1 Node Split Interval *erreix
output_ports { Integinfo I1; Integinfo 12; }
vars { real g; real b; int n; Integinfo i1; Integinfo i2; }
comp{

a =ReadReal();

b = ReadReal();

n = ReadInt();

ila=a;

il.b=(b-a)2.0;

il.n=n/2;

i2a=il.b;

i2b=b;

i2n=n-il.n;
}

routing_rules {

TRUE => 11 <-i1; 12 <-i2;
}

Consider Split Intervad’ annotations. Output ports are a negeivate names for arcs that leave

it. Input ports are a nodeprivate names for arcs that enter it. More on this. |atarnow it is

enough to realize that two arcs that it calls I1 and 12 leave Split Int&€hetype name of the data

that will be placed on these arcs is Integinfo, a structure that contains the endpoints of an interval
and the number of points to use in the integration.

TheVars stanza of a node deds local variables that are inside the node and are used by its
sequential computation.

The Comp stanza daés the sequential compuation. Note the calls to functions ReadReal and
ReadInt.These functions are ordinary sequential functions written in C. It is expected that all sub-
stantial sequential computations will be encapsulated in such ordinary functions thatne defi
outside of CODE (although CODE has facilities to help in managing, placing, and compiling
them).

Since Split Interval is the Start Node, its computation will be run immediately when the program
is executedAfter it is complete, the routing rules are evaluated. Routing rules determine what
values will be placed on what outgoing arcs and have the form shown.

Guard, Guard, ..., Guard => Binding; Binding; ...; Binding;

Guards are Boolean expressions and Bindings are either assignment statements or “Arc Outputs”
that use a “<-" operator to place a value onto anAdrbindings are performed from left to right

on all routing rules whose guards all evaluat€eR&JE. Node Split Interval places struct i1 onto

arc 11 and struct i2 onto arc [BPhese defie the intervals that the Integ Half nodes will integrate.

Both of the Integ Half nodes have identical attribute sets. Only one of them must be discussed,
and the only new stanza is the Firing Rules Stanza.

[=== Both Node Integ Half are identical #+wrix
input_ports { Integinfo [; }
output_ports {real S; }
vars { IntegInfo i; real val; }
firing_rules {

I->i=>
}
comp {

val = simp(i.a, i.b, i.n);
}
routing_rules {

TRUE => S <-val;
}

Firing rules serve two purpos@hey defne the conditions under which a UC node is allowed to
fire, and they describe what arcs have values removed from them and placed into local variables
for use by the nodg’sequential computation. Firing rules have the same general form as routing

rules.
Guard, Guard, ..., Guard => assign_stmt; assign_stmt; ...assign_stmt; ;

However guards represent either Boolean expressions or “Arc Inputs” that extract information
from arcs using the “->” operatddnly assignment statements appear on the left hand side.

Arc inputs represent both a condition and a bindiing notation “I -> i” represents the condition

or guard “there is a value on arc I” and the binding “remove a value from arc | and place it into
variable i”.A UC node may execute whenever all of the guards on any afritg fiules are

TRUE. Such a rules is said to be “sa#idfi When the nodes, the bindings and assignment
statements associatedwith the sadfiule are performed. Hence, Integ Half meg Whenever

there is a value on arc I. It extracts a value from | and places it into variable i for use by the nodes’
computation.

It is possible for a node to have mamnfy rules As indicated above, the node ma fivhen any
of them are satigd. If more than one rule is satisifed, the CODE system chooses one of the satis-
fied rules arbitrarily and performs its bindings befaiadithe node.

So, the nodes Integ Half wait for a value on arc I, perform an integration described by the interval
received, and then pass the result out on arc S.

Node Sum & Print has aifng rule that requires it to wait for values on both arcs S1 and S2 before
it can fre.When it fres, it prints the sum of the values received and, since it ieth@nate
Node, signals the end of the computation.

[] ek Node Sum & Print reeieiok
input_ports { real S1; real S2; }
vars { real s1; real s2; }
firing_rules {
S1->s1,S2->s2=>
}

comp{
PrintReal(s1+s2);
}

The last issue in the Integration program is the annotation offdresannotations are shown in
figure 2.1 and are called “arc topology speatibns”. They serve to bind names between nodes.
As mentioned above, nodes use ports as local names foAaréspology specitiations bind

port names togethefor example, the spedaéition

A1=>1

indicates that output port 11 is to be bound to input paktHen you draw an arc between UC
nodes, you must specify what pair of ports the arc binds.

It is reasonable to think of UC nodes as being analagous to integrated cliteglipgrt names of
the UC serve the same purpose as the pin names on ¥mul@lace UCs into a graph in any way

you like and connect them with arcs rather than wirks.arc topology spectfation describes
what “pins” have been connected.

2.2 CODE ObjectsAreActually Templates

It is time to confess that the description of CODE spditinough completely correct, has been
oversimplifed. The notations as they have been described are inadequate as the basis for a pro-
gramming system because they are statie. graph drawn represents a completedgdicompu-

tation and communication structure. Many real-world algorithms dotnotdithis viewAspects

of their structure depend on runtime informatidg.a simple case, one may wish to prepare a
program that will utilize as many processors as happen to be available at a particular moment to
perform a certain task. Perhaps the desired structure is as shoguren2fi3 where there are N

Figure 2.3A Dynamic Computation Structure

replicated nodes in the centathere N is a runtime determined value. Structures that are dictated
by runtime parameters are called “dynamic”.

CODE directly supports the specdtion of dynamic structures. Rather than being static, every

node or arc users draw in CODE can be instantiated any number of times at rlnénmestanti-

ations are named by integer valued indices. Hence, it is more accurate to sat that you are creating
atemplate for a node rather than a node itself when you draw and annotate a UC node as
described above.

The simplest way to use the template is to use the instantiation of it that has no Trd&ess.
what was done in the Integration program.

The Integration program is limited to two-way paralleliSinere are only two Integ Half nodes to
run in parallelAn N-way parallel program can easily be envisioned that would use N “Integ”
nodes each of which integrates a fraction of the interval of size (b AalZRDE program that
implements this scheme is shown gufie 2.4 The node Integ is instantiated N times using the
structure shown indure 2.3.

The “[*]” by the name is a comment reminding the viewer that the node is instianted multiple
times. In fact, all parts of UC node name serve only as comments and are optional attributes.

CODE 2.0 Translate Scrol].l Layout @ Undo Return [l Save

Program: Graph: i ? BHow? JGTON Open |

_COUNT => .COUNT 6 Split Interval

Integrate a function
in parallel by having) _
N nodes integrate 1] = [1]0I
part of the interwal.

d (Inteqg [*]

[1].5 => .S

Gather

. SUM =>
Printans

Figure 2.4Another Integration Program

The multiple instantiation is spe@tl by annotations that will be described in later chapées.
important idea to remember now is that all CODE objects you draw are in reality templates that
may be instantiated many times, with thdatiént instantiations named by zero to seven integer
valued indicesThe graph depicts static aspects of the progfamotations capture dynamic
aspects.

2.3 Other CODE Nodes

There are other node types than UC nodes in CODE. Many of these serve to heirarchically struc-
ture programs, exactly as subprograms and Call statements do in conventional languages such as
C or Fortran. Figure 2.5 shows all of COBEode types.

CODE graphs play the role of subprograms. In general, CODE programs consist of many graphs
that interact by means of Call nod&ke Integration program is simply a single graph program.

Just as with subprograms in conventional languages, CODE graphs have formal parameters.
There are detfied by Interface nodes and Creation Parameter nadiesl parameters are arcs

that enter or leave Call noddhese arcs are bound (by means of arc topology sgsimfis) to
Interface or Creation Parameter nodes within the called graph. Graph calling and parameter bind-
ing will be fully described in a later chapter

Name Sharing Relation nodes introduce shared variables. UC nodes that access them must declare
themselves to be either readers or writers of the variabig too will be described later

conE 2.0 B Scroll Layout Undo i Redo
Prl'lq'l':l_]'ll delme Gr dl_lh, mnain anual? @ What? 00]_:

@ -- UC node, a sequential computation.

ﬂ:[l -- Gall node, a call from one CODE graph to another.

(? -- Input Interface node, incoming dataflow parameter.
é') -- Output Interface node, an outgoing dataflow parameter.
[0 -- Creation parameter node, read-only shared parameter.

> 4 ¢ -- Name Sharing Relation node, a shared variable.

Figure 2.5All CODE NodeTypes

2.4 Translating and Running CODE Programs

Once a CODE program has been drawn and annotated, the CODE system can translate it into a
program that can be compiled and run on a parallel macHangeprocess will be described in a

later chapter but the general idea is that the user clicks on the translate button at the top of the
CODE window and picks a @&t machine type, such as the Sequent Symn@®PE will pro-

duce a program in C that realizes the computation and communications structures expressed by
the graphThe user may then compile and run this program on the parallel machine.

Users are déred choices on how CODE will optimize and instrument the program. For example,

one can ask CODE to automatically have the program be instrumented to measure how long each
UC takes to fie and how often itrfes.

10

3.0 Hardware Requirements

CODE runs on Sun 4 (Sparc) workstations, either color or monochrome. It requires approxi-
mately 3 MB of disk spac&.ou must have X-windows installed since CODE runs und¥oii.
may use any window management system including Opedois and Motif.

At this time, CODE has a translator only for the Sequent Symmetry parallel pro¢tssoe,
you will need access to such a machine to run any CODE programs you create.

It is most convenient if you can store your programs on a disk that is mounted on both the parallel
machine and the Sun workstation. In this case, you can simply switch to a window on the work-
station in which you have logged into the parallel machine and type “make” to compile the paral-
lel program generated by CODE. It is better but not necessary to have the disk physically
connected to the parallel machine rather than the Sun workstatigrconfguration maximizes

I/O performance for running parallel programs.

\?\/%r;k- Sequent (Remote mount on Sun)
station Symmetry Disk space for
CODE program

and parallel cod
generated from
them.

Ethernet

Figure 3.1 - Ideal Hardware Cogiiration

Installation instructions are distributed with the CODE software.

11

4.0 The CODE Userlnterface

This chapter describes how to use COPgraphical interface. It explains how to perform the

tasks you must know how to do in order to program in CODE. For example, you must be able to
draw nodes and arcs anlil dut attribute forms. Perhaps the best way to learn is to run CODE and
try the operations described below as you read about #feeran CODE, enter

code2 progname.grf

at the UNIX promptThis will run CODE and open a program called “progname”, creating it if
necessaryOf course, code2 must be on your UNIX patlso, it is possible that you will need a
configuration fie called “.coderc” in your home directory in order to set a path variable that
CODE requires. See the code2 UNIX man page and installation instru¥iansust be running
some form of X-windows to use COD®/e have run it under XR4, X11R5, and OpenWi-
dows.

When CODE starts, it opens a single windalvactivity will take place within it.The window is
divided into two parts, a black banner line full of buttons and labels at the top, and an area of
empty space in which you will draw graphs. Figure 4.1 shows the CODE wiSgweral of the
buttons and the banner line have been labglikdperations involve clicking (press the mouse
button and release without moving the mouse) on some part of the widdbmna single mouse
button is needed. Use the left button on multiple button rAg@. note to Macintosh users,
CODE does not use double clicking or dragging.

CODE'’s user interface can be considered as two separate compdhengsare facilities for
drawing graphs and facilities for annotating graphsIbgdiout forms.They will be discussed
separately

CODE 2.0 Translate Scrolll Layout W Undo BV e

Progran: [N Graph: How? [Nl Create |

Banner Graph
Line button Exit

Program Save
buas button Tool button

button

Figure 4.1 - CODBVNindow

12

4.1 Drawing Graphs

CODE provides a numbers of “tools” for drawing graghere is a tool for creating nodes and
arcs, a tool for moving them, a tool for deleting them, etc. Each tool has a cursor associated with
it. Figure 4.2 shows the CODE cursorbeir names and uses are as follows.

* Create Creates objects such as nodes, arcs, and graphs.

* Open Opens attribute forms of objects.

» Copy Permits nodes, arcs, and graphs to be copied.

* Travel Permits display of diérent graphs and programs.

* Move Moves nodes, arcs, etc. on the screen.

* Erase Deletes objects. Use the Undo button to bring them back.

» Square Changes arcs to run only vertically and horizont&lyck on an arc to square it.

The default cursor is the Create cur$hen you fist run CODE, this cursor will be active. It is
shaped like a pencil and is used to create (meaning draw) things.

Travel Move
&f
Erase sguare

Figure 4.2 - CODE Cursdmols

You change from one cursor to another by clicking (left button) omdblebutton in the banner
line. A menu of tools will appeaYou click once to make the menu appear and then click again to
make a choice from it.

There is also an optional shortcut for changing tools. Click the right mouse Bugaphical
menu of tools will appearhis is the only use CODE makes of the right butfdre middle but-
ton is never used.

You draw a node by clicking on empty space with the Create cArsmnu of node types will
pop up. Pick one by clicking on A. node will appear where youdt clicked. Remeber to click
with the left mouse button.

Draw an arc by clicking the create cursor on the tip of an outgoing arrow on a node. Click again
on the end of an incoming arrow to complete the arc. See “DrawiAgcaim section 4.3.

Click the Move cursor on an object to move it. Click the Erase cursor on an object to delete it, and
SO on.

13

CODE programs actually consist of a set of graphs, not jusi¥onedraw and work on them one

at a time.When you fist run it, CODE creates a graph with the default name “m#ou’can

create a new graph by clicking the Create cursor on the Graph button and entering a name for the
new graphYou can view a diérent graph in the set of graphs you have created by clicking the
Travel cursor on the Graph butténmenu (with scroll bars in case you have many graphs) will
appear

When you click the Open cursor on an object, its attribute form appémse are discussed in

the next section. For ngwote that attributes that apply to the entire program are (logically
enough) in the Program attribute form. Open it by clicking the Open cursor on the Program but-
ton. Open the current graghattribute form by clicking the Open cursor on the Graph button.

Notice that the tools have a faintly object-orienteddk They do the right thing when you click
them on diferent parts of the screefhe program button represents the entire prob¥am.open

the prograns attribute form by clicking the Open cursor on the Program button. Make a form go
away by clicking on empty space outside oYdu can travel to (load) another CODE program by
clicking theTravel cursor on the Program buttdine Graph button represents the currently dis-
played graph. Click the Open cursor on it to open the gsagttribute form. Click the travel cur

sor on it to display a dérent graph. Click the Create cursor on it to make a new graph, and so on.

4.2 Annotating Graphs Via Forms

Once you have drawn a graph, you must annotas ttas been mentioned, you click the Open
cursor on an object to open its attribute fofinis works for nodes, arcs, the Program button, and
the Graph button. Figure 4.3 show a UC nedstribute form.

Hu)oa NIl Fope ll Translate Scrolll Layout W Undo
Program: delme Graph: How? AWM Open |

UC Form

T —
Ternination node?:

Start node?: No

Node Function Signatures: _
Node Function Definitions: [GTNNNEEEE
Node Specification: _
Docunentation: |

Figure 4.3 - UC NodAttribute Form

14

Forms are hierarchicalhey contain flds that are references to other things called entry meth-
ods.These include forms, menus, scrolling tables, and text editor boxes. For example, the Node
Name feld is a small text editor box. Click on it, and a text box will appémar can enter a name

for the node in this boXhe name will be displayed next to the node, but you can move it with the
Move cursorYou make forms, menus, text boxes, etc. go away by clicking on something else.
You go to what you clicked oAfter you finish entering a node name, click on white space in the
UC form to return to it. Click on empty space outside the form to exit it altogether

Figure 4.4 shows a Ige text box open on top of a forlfou may move an entry method by click-

ing in its title bar and dragginghis is useful in case you need to slide something out of the way
CODE'’s text editor boxes use emacs key bindings, although only a small subset are supported.
For lage editing tasks, press ESC-e (the escape key followed by e) to bring up a window running
the editor defied by your EDIOR environment variabl&ou may also detfie this editor in your
“.coderc” fie using the “editor” variable.

conE 2.0 B Scroll § Layout W Undo @Redo
Progran: [EIEDEEEENE c:=ph [EEEED Manual? §What? Tool:

Text of Type Definitions

type matl is array of real;
type mat2 is array of matl;

type Point is struct {
real x;
real y;

i

Figure 4.4 A Text Box

Here is a summary of some of the important key bindings used in text editor Dogeymbol
“N means to hold down the control key “region” is the text between the mark and the current
location of the cursor

N Forward charactébBackwards character

n Next linep Previous line

na Beginning of linéeEnd of line

Y Next pag&SC-WPrevious page

Nz Scroll forward one linESC-Acroll back one Ine
d Delete charact®ELDelete character to the left.

15

K Delete to end of ling@Set mark at cursor
W Delete to region to yank bigfESC-wCopy region to yank bidr
Ny Paste at cursor

Click the left mouse button to position the cursor
Click outside the form to exit it.

4.3 Specifc Operations

These section describes many of the important operations you will have to be able to do in order
to use CODE. It also summarizes some of the information above.

Leaving CODE

To leave CODE, click any cursor on the Exit buttéou will be asked if you wish to save
changes.

Saving ChangedVithout Leaving CODE

Click the Create cursor on the Program buttomenu will appear that has save as an option. Do
this often as protection against crashes.

Drawing a Node

Click the Create cursor on empty space. Pick a node type from the menu that will Bjgpear
X.X shows the dfierent node types. Figure 4.5 shows the menu.

Pick a Node
i e

N2
5 >—\+7/—< O

Figure 4.5 - Node Menu

Drawing an Arc

To create an arc, begin by clicking (press and release!) the Create cursor on the tip of an arrow
leaving a nodeYou are now in arc drawing mode. Click on empty space to create intermediate
points (elbows). Click on the beginning on an incoming arrow on a node to complete the arc.
Click on the point at which you started the arc to cancel drawing it, or youngsimifiand then

delete it with the Erase cursdiris necessary to aim the mouse with some care when you are

16

drawing arcs, but it is easy after a little practice. Figure 4.6 show points on a node at with an arc
can be started andhished.

\1/% Click at the beginning of an in-arrow to complete an arc.

\1’% Click at the end of an out-arrow to start an arc.

Figure 4.6 Arc Drawing Points

Creating a New Graph

Click the Create cursor on the Graph button. Select “create” from the menu and enter a name for
the graph.

Creating a New Pogram
Exit CODE and start it again using the program name as the command)lingeat.

Opening anAttribute Form
Click the Open cursor on the object-- node, arc, Program button, or Graph Wittemclicking
on an arc, avoid clicking on its intermediate points. Click outside of the form to clokerie
will be a beep when you close a the form if you have made a syntax error within it. Semantic
errors are not caught until you translate your program.

Changing Cursor Tools
Click any Cursor on th&ool button or click the right mouse button.

Scrolling the Graph View Area
What do you do if your graph is too ¢gr for the CODE windowPhe best advice is to use more
graphs and Call nodes to hierarchically structure your progfamcan also use your X window
manager to resize the CODE windaw you can scroll by clicking any cursor on the Scroll but-
ton. A scroll window will appearUse its scroll bars to scroll the graph view one node at a time.
The scroll window itself shows a zoomed-out view of the CODE graph. Every node is represented

by a single pixel. Click in this area to jump to a particular part of the graph. Figure 4.7 shows the
scroll window

17

Click in this whitespace to move to pa
of graph shown.

CIic_k on vertical scroll ba_r to scroll
vertically one node at a time.

Click on horizontal scroll bar to
scroll horizontally one node at a
time.

Figure 4.7 -The ScrollwWindow

Viewing a Different Graph

CODE programs consist of a set of graphs that are drawn independbatky is no way to view
more than one graph at a tinfe. view a particular graph, click tA@avel cursor on the graph
button.A scrolling menu of graphs will appe#lick to pick one. Figure 4.8 shows this scrolling
menu.

Once a Call node has been annotated with the name of the graph that it calls, you can travel to that
graph by clicking the travel cursor on the Call node. Click on the Return button to return to the
Calling graph.

Click on a name to select it.

Click on the box to select a name by
typing it.

Click on a scroll bar to scroll.

Figure 4.8 - Scrolling Menu of Graphs

Translating a Program for Execution

Once you drawn and properly annotated a CODE program, you can translate it into parallel C
source code for a particular architecture by clicking any cursor ofrdnslate button and select-

ing an architecture. Error messages will be written onto the terminal window from which you ran
CODE. See the chapter on translation in this mariin.“List” menu pick dumps a text-form of
your program to the terminal windoWw is primarily a debugging tool for us.

18

Deleting Things

Delete a node arc, etc. by clicking on it with the Erase cusao undoes this. Redo undoes the
undo!

Moving Things on the Sceen

Clink on a node, label, arc intermediate point, etc. with the Move ciMise the mouse to the
desired location and click again.

Writing on the Graph

You can write comments right on the graph by clicking the Open cursor on empty/Asteade.
box will appearEnter your comment into it and click outside it to make it go aWag comment
can be moved with the Move cursedited with the Open curs@nd deleted with the Erase cur
sor.

Copying Things

Use the Copy cursor to copy things, along with their attributes. For example, to copy a node, click
on it with the Copy cursoClick again on empty space, and the copy will appear at that point.

4.4 Online Help

CODE has an elaborate online help system that uses hypertext. Click any cursor on the Manual
button to bring up the online manu@heWhat and How buttons enable two kinds of context-
sensitive helpThe How button describes how to use the user interface. For example, if you click
on it while a UC attribute form it open, it will tell you how to manipulate forimeWhat button

tells you what you are supposed to do with the user interface at a given point. If you click on it
while a UC attribute form it open, it will describe the purpose and meaning of the vagldasrfi

the form. Figure 4.9 shows the help box that would appear if you clicked on the How button while
a text editor box is active. Click on the underlined (or highlighted on color monitors) text for more
help on that subject.

19

corE 2.0 B Scroll Layout Undo liRedo
P,Li‘lq‘rﬁ_]‘u le]_NOdBS ‘;‘1 ual'? at'? Tl_ll_ll n

Program Form

Program Name:

B ;. SIF text box provides a window into which

text may be typed using a built in editor.
The text editor provides a limited but

Global Function Definitions| useful set of operations which includes
cursor movement, text insertion and del-
Documentation: || I ction. tvo-way scrolling, and cut and
paste. You can also drag a text box to
some other portion of the screen and close
it.

Figure 4.9 A Help Box

Figure 4.10 shows the form that would appear if you clicked on “drag” in the help box. Click on
the hooked arrow icon to return to the previous help box. Click on the house icon to return to the
home (or root) help box. Click on the little square icon at the upper left of the help box to turn
help mode df

To move a SIF method to some other portion of
the screen, press the left mouse button while
pointing to the title or some other non-
active part of the method. When this is done,
an outline of the method appears which you
may drag by moving the mouse. When the
outline 1s at the desired location, release
the mouse button and the method will re-
appear.

Figure 4.10 - Help Box Icons

20

5.0 Tutorial Example

The following tutorials assume that the user has read Chapters 1,2 and 4 of this manual and has a
basic familiarity with graphical interfaces which employ mice and menus to communicate with
users, with X windows, and with UNIX commands and edifbingse tutorials will guide you,

step by step, through the process of creating and running CODE programs.

5.1 TUTORIAL : EXAMPLE 1

In this example we will be creating a CODE program that sums the elements of a 100 element
vector We first initialize two vectors of 50 elements eactd then add the two vectors seperately
in parallel.The resulting partial sums are then added to producenthlestim.

Contents of theTutorial

I. Preliminaries
II. Entering Example 1
Step 1. Draw all the nodes and arcs in a graph.
Step 2Use attribute forms to enter all information about the nodes, arcs, graphs and
programs.
[ll. Executing Example 1 on the Sequent.
Step 1. Save and compile the program.
Step 2. Create thdds which record the node function daétions.
Step 3. Create the executable and run it.

I. Preliminaries

Get the X-Whdows system running. Create a directory to hold the fissociated with the pro-
gram anccd to that directoryBefore runnng CODE, ensure that it is present on your UNIX path
(or be prepared to type a complete path naiffen enter

code2 sumvector.grf

at the UNIX promptThis will run CODE and create a program called “sumvecfosingle win-
dow will be opened and all activity will take place within it. Figure 4.1 shows the CODE window

[I. Entering Example 1

Our goal is to draw the following graph:

21

Hu)oE NIl Fope ll Translate Scrolll Layout @ Undo Return il Save

Pngram: Graph: ! ? @ How? Tc.c.l:

Figure 5.1.1

You may enter and annotate the nodes and arcs of your program in anpurder will adopt
the following sequence of operations:

Step 1. Draw all the nodes and arcs in a graph.
Step 2. Use attribute forms to enter all information about the nodes, arcs, graphs and
programs.

Before we start, it is important to point out that you should save your work periodidadly, in
the (unlikely of course!) event that the CODE system crashes, your work will not be lost.

To saving your work as you go:

With create cursor in the CODE windpglick on the program buttoA.menu of program options
will pop up. Pick the save option by clicking on it. By doing this regularly you can avoid losing
your work in case of a system crash.

Correcting mistakes :

a. Finish, drawing the node or arc.

b. Select the erase cursor from the tool window

c. Place the erase cursor on the object to be deleted and click the left mouse button.

d. If you want to undo the deletion, click on the 'Undo’ button in the upper part of the CODE
window.

e. Clicking on the 'Redo’ button undoes the undo !

f. If you make any syntax errors while entering, CODE will beep to let you know that you
have made a mistake.

STEP 1. Draw all the Nodes andArcs in a Graph

A. Draw all the nodes.

22

1.Draw the UC node, INIDy

a. Position the create cursor in the CODE windeterethe UC INITis to be located.
b. Click with the left mouse button, to bring up the maxfunode types.
c. Pick the Unit of Computation (UC) node by clicking on it.

2. Draw the UC'&\DD1, ADD2, and PRINTSUM.

B. Draw all the arcs.
1. Draw the ar®/1 by,

a.With the create curspclick on the lower arrow of UC, INIT
b.Also, click on the upper arrow of UBDD1.

2. Draw the arc¥2, SUM1 and SUM2.

At this point the graph looks like Fig. 5.1.2.

Hyn Il Rope @l Translate Scrolll Layout @ Undo Return l Save

Progran: [EDAGS=Ta Graph: How? JUVIIM Open |

Fig. 5.1.2

STEP2. UseAttribute Forms to enter all Information about NodesArcs
Graphs and Programs

A. Enter information about the nodes
1. Enter information about INIT

a. Select the open cursor from the tool window

23

b. Click the open cursor on the UC INt® open its attribute form. It looks like Fig.5.1.3

c. Click on the node nameefd and a text box will appedtnter the name 'INIT" in this
box.You can make the text box go away by clicking on the white space in the UC form
to return to it.

d. The value in the UID &ld is automatically generated by CODE. It is a debugging aid
which you can ignore famow.

e. The termination node and start nodgds will have a default value of 'No'. Since INIT
is a start node, update the Start noelel fio "Yes'.

f. The Node Function Signatures and Node Functiomidieins fields are to be left
blank.

UC Form

Node Name: INIT UID:
Ternination node?:
Start node?: VCE

Node Function Signatures: [N

Node Function Definitions: [
Node Specification:
Docunentation: |

Event Trace Options:

Fig. 5.1.3

g. Click on the Node Speatifation feld.A text box labelled ‘@xt of UC Specs' will
appearFig. 5.1.4 shows the code to be entered in this textldo.code can also be
entered via a window running the editor defl by your EDIDR environment
variable.To bring up this window press ESC-e(the escape key followed by e).
After entering the code, you can exit from the wingdtve way you would normally
exit from your editar

24

Butput ports {

Vect X1; Vect X2;
h

vars {
int i; Vect V1[50]; Vect ¥2[50];
}

comp {
1=0;
while (1<50) {
V1[i]=1;
V2[1]=50+1;

i=1+1;
¥
routing rules {

TRUE => X1 <- V1; &%
TRUE => X2 <- VZ2;

Fig.5.1.4
h. The documentationdld is to be left blank.

i. To exit the UC INITattribute form, click on the white space outside the form in the
CODE window

The name 'INIT" will be displayed next to the node, but you can move it with the Move
cursor

Enter information abowtDD1 as in 1.

The one diference is thaADDL1 is not a Start noddhe code to be entered in the Node
Specifcation feld ofADD1 is as shown below

input_ports {
Vect Y1;
}

output_ports {
int P1;
}

vars {
Vect V1[50]; inti; int sum1,;
}

firing_rules {
Y1->V1=>
}

25

comp{

i=0;

sum1=0;

while (i<50) {
suml=sum1+V1[i;
i=i+1;

}

}

routing_rules {
TRUE => P1 <- sumi,
}

Enter information abotDD2 as in 1.

The one diference is thaADDL1 is not a Start noddhe code to be entered in the Node
Specifcation feld ofADD2 is as shown below

input_ports {
Vect Y2;
}

output_ports {
int P2;
}

vars {
Vect V2[50]; inti; int sum2;
}

firing_rules {
Y2->V2=>
}

comp{

i=0;

sum2=0;

while (i<50) {
sum2=sum2+V2[iJ;
i=i+1;

}

}

routing_rules {
TRUE => P2 <- sum2;
}

Enter information about PRINTSUM as in 1.

The one diference is that PRINTSUM must be designated as a terminationTiozle.
code to be entered in the Node Speation feld of PRINTSUM is as shown belpw

input_ports {

int QL; int Q2;
}

26

vars {
int sum1; int sumz2; int sum;

}

firing_rules {
Q1->sumil, Q2 ->sum2 =>

}

comp{
sum=suml+sumz;
print(suml,sumz2,sum);

}

Enter information about the arcs
Enter information aboi{1

a. Click the open cursor on the aré to open its attribute form. It looks like Fig. 5.1.5.

CODE 2.0 D Scrolll Layout

Progran: [IEDRGSSSTa Graph: How? JUGEIN Open |

ADD2

PRINTSUM

Fig.5.1.5

b. Click on the namedid and a text box will appedtnter the name 'V1' in this bovou
can make the text box go away by clicking on the white space Vathe Passing
Relation form to return to it

c. The value in the UID éld is automatically generated by CODE.
d. Click on theArc Topology Rule &ld and another text box will appe@he code to be
entered in this text box is shown bejJow

X1=>.Y1l

e. Exit from both the text box and the form by clicking on the white space outside the
two in the CODE window

The name 'V1' will be displayed next to the arc, but you can move it with the Move cursor

Enter information abo2, SUM1 and SUM2 as in 1.

27

TheArc Topology Rule #ld of V2 is,
X2=>.Y2

TheArc Topology Rule for SUML1 is,
P1=>.Q1

TheArc Topology Rule for SUM2 is,
P2=>.Q2

Enter information about the program

a. Click the open cursor on the Program button in the CODE wintdoapen its
attribute form. It looks like Fig. 5.1.6.

Program Form

Program Name: sumvector

Global Types:

Global Function Signatures: KEERENSEvilAetolE TN Ce - Pt

6lobal Function Definitions: [
Docunentation: [

Translation Options:

Fig.5.1.6

b. The values in the program name and U are automatically generated by
CODE.

c. Click on the Globalypes feld and a text box will appedrhe code to be entered in

this text box is shown below
type Vect is array of int;

d. Click on the Global Function Signaturesldi and another text box will appe@he
code to be entered in this text box is shown below

void print(inti, int j, int k);

e. The Global Function Defitions and Documentatiofields are to be left blank.

f. Click on theTranslation Optionsdid, to bring up i attribute form. Nowclick on the
‘Object Files to Linkfield.A textbox will appearEnter the name of thddiin which
node function defiitions will be specigd, in this textbox.

28

flename.o

g. Exit from the program form by clicking on the white space outside the form in the
CODE window

lll. Executing Examplel on the Sequent
We will now compile and run the program in the following order:

Step 1. Save and compile the program.
Step 2. Create thdds which record the node function daétions.
Step 3. Create the executable and run it.

STEP 1. Save and Compile the Rigram

Click the create cursor on the Program button and select the 'save’ option.

Click the create cursor on theanslate button and select the 'Sequent’ option.

If there are any errors, these are displayed in the window from where CODE was run.
Eliminate the errors, if any

After the program has been successfully compiled and saved, exit the program by
clicking on the Exit button. Select the 'save' option and quit.

"0 TR

At this stage, the followinglés and directories will be present under the directory

examplel.
README File
sumvectogrf File

sumvectaisequent Directory
STEP 2. Create the Files which ecord the Node Function Defiitions

$cd ./sumvectasequent The following fles will be present in this directory
Makefile
c2_globtype.h
c2_main.h
c2_main.c
main.c

$vi filename.c Record all node function datftions inthis fie. Give it the same
name as thebject fle to be linkedThe text to be entered in this
file is as shown belawhis file "routines.c" can also be picked up
from the directory
examples/tutoriall/sumvector.sequent.
These will be present in the directory in which CODE2 has been
installed.

print(i, j, K)

intijK;

printf(“The first partial sum is %d\n”,i);

printf(“The second partial sum is %d\n” j);

29

5.2

printf(“The total sum is %d\n” K);
}

STEP 3. Create the executable and run it

These operations will depend on how your workstation is connected to the Sequent.
Before giving the 'make' command, kindly ensure that you are logged in on the Sequent.
Please refer to the Chapter omdiiislating & Running Programfgr the detailsAt Dept.
of Computer Sc, Uniwof Texas, the following command should be given to login onto the
Sequent.

$rlogin qt
After having logged in on the Sequent, give the following commands,

$cc -c flename.c Compile the fe specifying node function deftions.

$make This will create the executable 'sumvector'.
$./sumvector Run the executabl&@he output displayedhould be that shown
below

The first partial sum is 1225
The second partial sum is 3725
The total sum is 4950

TUTORIAL EXAMPLE 2

The following aasumes that the user has complatéarial Example 1.

This example is an altered version of Exampl€hkere are now ten adder nodes instead of two
and each adder printssthumber and the sum it has calculated when it completes. Replication is
used to produce the ten adders.

Contents of theTutorial

Preliminaries
. Entering Example 2
Step 1. Draw all the nodes and arcs in a graph.
Step 2Use attribute forms to enter all information about the nodes, arcs, graphs and

programs.

Executing Example 2 on the Sequent.

Step 1. Save and compile the program.

Step 2. Create thdds which record the node function aétions.
Step 3. Create the executable and run it.

I. Preliminaries

30

Get the X-Whdows system running. Create a directory to hold tee fissociated with the pro-
gram and move to that directoBefore runnng CODE, ensure that it is present on your UNIX
path.Then enter

code2 rsum.grf

at the UNIX promptThis will run CODE and open a program called "rsufnSingle window
will be opened and all activity will take place within it. Fig. 4.1 shows the CODE window

[I. Entering Example 2

Our goal is to draw the following graph:

HoE Ml Fope @ Translate Scrolll Layout @ Undo Return [l Save

Progran: [IFENEEE craph: How? BRI Create |

é INIT

v_IN[10]

() ano[10]

SUM_OUT[10]

@ PRINTSUM

Figure 5.2.1

You may enter and annotate the nodes and arcs of your program in anpurder will adopt
the following sequence of operations:

Step 1. Draw all the nodes and arcs in a graph.
Step 2. Use attribute forms to enter all information about the nodes, arcs, graphs and
programs.

Before we start
Saving your work as you go:

With create cursor in the CODE windpglick on the program buttoA.menu of program options
will pop up. Pick the save option by clicking on it. By doing this regularly you can avoid losing
your work in case of a system crash.

31

Correcting mistakes :

a.
b. Select the erase cursor from the tool window

C.

d. If you want to undo the deletion, click on the 'Undo’ button in the upper part of the CODE

e.
f

Finish, drawing the node or arc.
Place the erase cursor on the object to be deleted and click the left mouse button.

window.

Clicking on the 'Redo’ button undoes the undo !

If you make any syntax errors while entering, CODE will beep to let you know that you
have made a mistake.

STEP 1. Draw all the Nodes andArcs in a Graph
Draw all the nodes.
1.Draw the UC node, INIDy

a. Position the create cursor in the CODE windoterethe UC INITis to be located.
b. Click with the left mouse button, to bring up the mafunode types.
c. Pick the Unit of Computation (UC) node by clicking on it.

2. Draw the UC'&DD[10] and PRINTSUM.

Draw all the arcs.
1. Draw the ar®/_IN[10] by,

a.With the create curspclick on the lower arrow of UC, INIT
b.Also, click on the upper arrow of UBDD[10].

2. Draw the arc SUM_OUTJ10].

At this point the graph looks like Fig. 5.2.2.

32

HynoE NIl Rope ll Translate Scrolll Layout @ Undo

Program : [IEEESEEE Graph:

@

Fig. 5.2.2

STEP2. UseAttribute Forms to enter all Information about NodesArcs
Graphs and Programs

Enter information about the nodes
Enter information about INIT

a. Select the open cursor from the tool window

b. Click the open cursor on the UC INt® open its attribute form. It looks like Fig.5.2.3

CODE |
Pro qr:

UC Form

Node Name: INIT

Ternination node?:

Start node?:

Node Function Signatures: [N

Node Function Definitions: [N

Node Specification:

Docunentation: [N

Event Trace Options:

Fig. 5.2.3

33

C.

Click on the node nameefd and a text box will appedtnter the name 'INIT" in this
box.You can make the text box go away by clicking on the white space in the UC form
to return to it.

The value in the UID éld is automatically generated by CODE. It is a debugging aid
which you can ignore famow.

e. The termination node and start noagds will have a default value of 'No'. Since INIT
is a start node, update the Start noelel fio "Yes'.

f. The Node Function Signatures and Node Functiomidieins fields are to be left
blank.

g. Click on the Node Speatifation feld.A text box labelled ‘@xt of UC Specs' will
appearThe code to be entered in this text box is as shown b&lug/code can also
be entered via a window running the editorrdi by your EDIDR environment
variable.To bring up this window press ESC-e(the escape key followed by e).
After entering the code, you can exit from the wingdtve way you would normally
exit from your editar

output_ports {

Vect OV,

}

vars {

Mat V[10][10]; int i; int j; int k;

comp{

k=0;

=0;

while (k<10)

{

i=k*10;

while (j<10)

{

VIKI[I=i;

AL

i=i+1;

}

k=k+1;

=0;

}
}

routing_rules {
TRUE =>{OVJ[i]<- V[i];: (110) };

}
h.

The documentationdld is to be left blank.

To exit the UC INITattribute form, click on the white space outside the form in the

34

CODE window

The name 'INIT" will be displayed next to the node, but you can move it with the Move
cursor

Enter information abolADD[10] as in 1.

The one diference is thaADD[10] is not a Start nodd.he code to be entered in the Node
Specifcation feld ofADD[10] is as shown below

input_ports {
Vect IV;
}

output_ports {
int SUMS;

}

vars {
Vect C[10]; int sum; inti;
}

firing_rules {
IV->C=>
}

comp{

i=0;

sum=0;

while (i<10)

{
sum=sum-+CfiJ;
i=i+1;

}

}

routing_rules {
TRUE => SUMS <- sum;
}

Enter information about PRINTSUM as in 1.

The one diference is that PRINTSUM must be designated as a terminationTiozle.
code to be entered in the Node Speation feld of PRINTSUM is as shown belpw

input_ports {
int|_SUM;
}

vars {
Vect p_sum[10]; inti; intt_sum;

}

firing_rules {
{I_SUM[i] -> p_sum(i] : (i 10) } =>

35

}

comp{
routinel(p_sum);

}

B. Enter information about the arcs
1. Enter information about_IN[10]

a. Click the open cursor on the afcIN[10] to open its attribute form. It looks like Fig.
5.2.4.

b. Click on the namedid and a text box will appedtnter the name 'V_IN[10]' in this
box.You can make the text box go away by clicking on the white space Waline
Passing Relation form to return to it

c. The value in the UID éld is automatically generated by CODE.
d. Click on theArc Topology Rule &ld and another text box will appe@he code to be
entered in this text box is shown bejJow

OV[il => [V

e. Exit from both the text box and the form by clicking on the white space outside the
two in the CODE window

Hyno Il Rope ll Translate Scrolll Layout @ Undo
Program: Graph: main Manual?

Value Passing Relation

How? JUTVR] 0pen |

Name : V_IN[10] UID:

arc Topology Rule: EEAEYIEENEIEY]

SUM_OUT[10]

(-) PRINTSUN

Fig.5.2.4
The name 'V_IN[10]" will be displayed next to the arc, but you can move it with the Move
cursor
2. Enter information about SUM_OUT[10] as in 1.

TheArc Topology Rule #ld of SUM_OUT[10] is,

36

[il.SUMS => .|_SUM([]
Enter information about the program

a. Click the open cursor on the Program button in the CODE wintdoapen its
attribute form. It looks like Fig. 5.2.5.

Program Form

progran Nane : [N RS vio:

Global Types: type Vect 1s array of int;

Global Function Signatures: vold routinel (Vect p_sum);
Global Function Definitions: [
Documentation: [

Translation Options:

Fig. 5.2.5

b. The values in the program name and U are automatically generated by
CODE.

c. Click on the Globalypes feld and a text box will appedrhe code to be entered in

this text box is shown below
type Vect is array of int;
type Mat is array of Vect;

d. Click on the Global Function Signaturesldi and another text box will appe@he

code to be entered in this text box is shown bglow
void routinel(Vect p_sum);

e. The Global Function Defitions and Documentatiofields are to be left blank.

f. Click on theTranslation Optionsdid, to bring up i attribute form. Nowclick on the
‘Object Files to Linkfield.A textbox will appearEnter the name of thddiin which

node function defiitions will be speciéd, in this textbox.
filename.o

g. Exit from the program form by clicking on the white space outside the form in the
CODE window

lll. Executing Example2 on the Sequent

37

We will now compile and run the program in the following order:

Step 1. Save and compile the program.
Step 2. Create thdds which record the node function aétions.
Step 3. Create the executable and run it.

STEP 1. Save and Compile the Rigram

Click the create cursor on the Program button and select the 'save’ option.

Click the create cursor on theanslate button and select the 'Sequent’ option.

If there are any errors, these are displayed in the window from where CODE was run.
Eliminate the errors, if any

After the program has been successfully compiled and saved, exit the program by
clicking on the Exit button. Select the 'save' option and quit.

"o O TY

At this stage, the followinglés and directories will be present under the directory

examplel.

README File
rsum.grf File
rsum.sequent Directory

STEP 2. Create the Files which ecord the Node Function Defiitions

$cd ./rsum.sequent The following fies will be present in this directory
Makefile
c2_globtype.h
c2_main.h
c2_main.c
main.c

$vi filename.c Record all node function daftions inthis fie. Give it the same
name as thebject fle to be linked.The text to be entered in this
file is as shown belawhis file "routines.c" can also be picked up
from the directory
examples/tutorial2/rsum.sequent.
These directories will be present under the directory in which
CODEZ2 has been installed.

routinel(p_sum)
int p_sum(];
{

inti,t_sum;

i=0;

t_sum=0;

while (i<10)

{

printf(“Partial sum %d is %d\n”,i,p_sumli]);
t_sum=t_sum-+p_sum(i];

i=i+1;

38

printf(“Total sum is %d\n”,t_sum);

}

STEP 3. Create the executable and run it

These operations will depend on how your workstation is connected to the Sequent.
Before giving the 'make' command, kindly ensure that you are logged in on the Sequent.
Please refer to the Chapter omdiiislating & Running Programfgir the detailsAt Dept.
of Computer Sc, Uniwof Texas, the following command should be given to login onto the
Sequent.

$rlogin qt
After having logged in on the Sequent, give the following commands,

$cc -c flename.c Compile the fe specifying node function deftions.

$make This will create the executable 'rsum'.
$./rsum Run the executabl&@he output displayedhould be that shown
below

Partial sum O is 45

Partial sum 1 is 145
Partial sum 2 is 245
Partial sum 3 is 345
Partial sum 4 is 445
Partial sum 5 is 545
Partial sum 6 is 645
Partial sum 7 is 745
Partial sum 8 is 845
Partial sum 9 is 945
Total sum is 4950

39

40

6.0 CODE Programming Checklist

This chapter summarizes the steps involved in creating a CODE progpardo not necessary
need to perform the steps in the order belaw it is an aganized approacllso, there is some-
times more than way to accomplish somethiiternatives are not mentioned here.

1. Draw all of the nodes and arcs in your program. Make exactly one UC node the Start node and
one UC node th&erminate node by making the appropriate menu pick in the UC attribute
forms.

2. Create all necessary type défons. It is easiest to put them all into thgoe field of the Pro-
gram attribute formYou will need a type defition for every array and structure type you
use in your program. Here are some examples.

type matl is array of real;
type mat2 is array of matl; / This is how to make a 2D array.
type Point is struct {

real x;

real y;

J3

3. Create function signatures (also called function prototypes) for all sequential functions you will
call directly from CODE.You can put all of these into the Function Signatueds dif the
Program attribute form¥ou will need sequential functions to perform all I/O in addition
to any other use you have. Here are some examples.

void PrintTheAnswer(int i, real x); // void for procedures
int ReadInt();

void ReadReal(real *x); // * means call by reference
void PrintVect(matl v, int n);

4. Either enter function body deitons. If you put the signature for a function into the Program
form, you must either put its body into the Program attribute ®Fuahction Defiition
field or put it into a separatdefi In the latter case, you will need to supply the name of an
object (.0) fie in theTranslation Optionsdid of the Program form. If you put the signa-
ture into a node or graph form, the body ni¢fin should go into the Function Deition
field of the same form.

5. Open the attribute form of every node atidrfiits specifcation feld. Here is an example UC
node specif@iation to remind you of the syntax and order of the stanzas. If you have noth-
ing to put into a stanza, you may omit it.

input_ports { // Name and type for incoming arc ports.
Vect V1, Vect V2,

}
output_ports { // Name and type for outgoing arc ports.

Vect OV1;

shared_vars { // Names for shared variables. See Name
Mat2 m writer; // sharing relations.

41

vars { // Local variables.
Vectv,

}
init_comp {
initmat(m); // Computation done when node is created.

}

firing_rules { // Fire when there is data on either V1 or
V1->v=>|//V2. Storeitinv.
V2->v=>

}

comp { // Computation done when node fires.
if (v[0] == 0) mycomp(v, m); // Call to sequential procedure
}
routing_rules {// If comp is 0, send v on OV1 else OV2.
TRUE =>0V1<-v,
}

6. Open the attribute form for every arc adidtfin. What you must enter varies according to the
kinds of nodes the arcs connect. Every arc except one that connects an Input Interface
node to an Output Interface node requires some form of annotation. See the section on arcs
in the Reference Manual appendix. Here is an example of an arc topologyapenifin
an arc that runs from one UC node to another

X=>.Y // Binds port X to port Y

7. Save and translate your graph.

8. Some notes on names might be helglilobjects (nodes, arcs, etc.) in CODE can have
names, but few require them. Only nodes that form the interface for amguegpbe given
namesThese nodes are Input Interface, Output Interface, and Creation Parameter nodes.
Their names must be valid CODE iderti§ and must be unique within the graph.

42

7.0 ArcTopology Speciftations

This chapter discusses the annotation of arcs that run from one UC node ta ah&hethe
most important case. Other cases are discussed in the arcs section of the Reference Manual apper
dix. See also the chapters on Call nodes and Name Sharing Relations.

Arcs that run from on UC to another are datafhrcs.They represent theoflv of data from the
computation of one UC to the computation of anoffieey are FIFO queues of dafdne annota-
tion of such an arc is called an “arc topology speation.”

UC nodes use ports to reference these dmscan think of a port name as being a UC rode’
local name for an arc that is incident upon it. Hence, the primary job of an arc topologgapecifi
tion is to bind an output port on one UC to an input port on another

Suppose a UC node has an output port caladd another UC node has an input pofYou can
draw an arc from thert UC to the secon®¥ou must then provide an arc topology speatibn
to state which ports the arc binds togetfee speciftation

Y=>X

binds portY to port X. Note the dots-- they are requir€de types of the ports bound together
must match.

There is another role that arc topology speatfons playTo understand this you may want to
think of arcs as being rules that describe where data will go to, given where it come from. For
example, the rule above could be read as follows.

If data come from the “from” node’portY,
they must be sent to the “to” nodgdort X.

Under this viewthe addition of indices to arc topology speeifions allows them to specify runt-
ime determined communication structures and greatly extends the representational power of
CODE.

An example is in ordeRecall that any CODE node or arc can be instantiated any number of
times at runtime and that the instantiations are named by integer valued indices. Suppose one
wishes to create the structure shownguifé 7.1 in which values placed onto néde portY][i]

are sent to the instance of node B with index [i], for i taking on values from O to N-1.

43

A

Y[0] Y[N-1]

X X

G o il

Figure 7.1 - Example Communication Structure

This structure can be created with the CODE program showguirefv.2. Consider nodes
routing rule.The syntax { <thing> : (i N)} replicates <thing> for i taking on values from 0 to N-1.
HenceA sends data out on the desired p¥ftk

routing_rules {
A }TRUE => {Y[i] <- V[i]; : (i N)};

Y

Y[i =>[i].X Il arc topo spec

X
Q firing_rules {
B } X->v=>

Figure 7.2 - CODE Program for Example

The arc topology speatfation may read as follows.

if data come from the “from” node’portYT[i],
they must be sent to the “to” node with indexg[ifjort X.

Hence, the value value of “i” iN's routing rule determines the index of the receiving néde.

do not need to declare any bound on the number of receiving Adegsare created as needed.

Also notice that port X on node B has no index. Each instance of B has its own port X so no index
is required.

For arcs running from UC nodes to UC nodes, the general form of an arc topologyg aieciis
as follows.

[ident]eee[ident]. FROMPORTNAME][ident]ess[ident] =>
[expr]ess[expr]. TOPORTNAME][expr]ess[expr]

44

The indices on the left of the “=>" must be unique variable nantesr values are determined by
the indices of the node and port the arc comes fitra.indices before the dot refer to the node.
Those after the port name refer to the port.

The indices on the right of the “=>" may be general integer valued expressions using the variable
names from left as well as creation parameters and function calls.

Consider an example specition.
(illil- YIK] => [i+K].Xj-1]
This is a strange but perfectly legal arc topology smedi@in. It may be read as follows.

If data come from the “from” node with indices [i][j] and p¥trivith index [K],
they are sent to the “to” node with index [i+k] and port X with index [j-1].

The following fgures show some other common cases.

CODE Program Structure Represented

routing_rule {
TRUE =>Y <-v;
}

.Y => Xi]

firing_rule {
\ XIT=> viil : (i N)} => O

TRUE =>Y <-v;,
}

.Y => [i].X

O
O

;ir)i(n_g;(/uli{ O Q

45

8.0 Call Nodes and Hierarchical Structuring

No useful programming language can be without facilities for hierarchically structuring pro-

grams. Conventional programming languages such as C and Fortran use Call statements and pro-
cedures for this purpos&.program is made up of a number of procedures that interact via Call
statement. CODE has facilities that are entirely analogoG€ODE program is made up of a set

of graph instances that interact via Call nodes. Graphs are like procedures in that they are the
basic unit of hierarchical structuring. Call nodes are like Call statements.

8.1 Creating a Graph

When CODE is fist run and given the name of a new graph (.dd) iti creates thel& and a

graph called “main” within it. It is intended (but not required) that your Start node be in this
graph.You can create another graph which can be called from “main” or any other graph that you
create. Graphs can even be recursieecreate a graph, click the create cursor on the Graph but-
ton and enter a name for the new grapie name must be a legal CODE ideaiifi

Let us consider the elements of a CODE graph. Just as Fortran procedures have formal parameter
lists to define their interface, CODE graphs have Interface and Creation Parameters nodes to
define theirsThis is perhaps best explained by an example. Suppose we wish to create a graph
that could be called multiple times to multiply a series of vectors xed fatrix to produce a

vector result. Figure 8.1 shows such a graph.

CODE 2.0 Scrolll Layout @ Undo

It vectnult NEWME VectMult How? Iyl Open |
o b_in O a O n
b_in

Creation Parameter Form

b_out

() b_out

Figure 8.1 VectMult Graph

This graph has three input formal parameters and a single output formal paralnietenal
parameters to graphs are either interface nodes or creation paraitetsesnodesiustbe
named (with unique names that are legal CODE idergjfisince their names form the graph’
interface.

46

Parameter Type NodeType

b_in Vector Input Inteface node

A Matrix Creation Parameter node
n int Creation Parameter node
b_out Vector Output Interface node

Let us frst discuss the Interface nod&bkey have only two attributes, a name and a type name.
These nodes exist because arcs in the calling graph must be bound to ports or shared variables in
the called graph, but one would not want such things to form a grapérface because they are

too “local’-- they are deffied within nodes. Interface nodes serve as aliases for ports in UC nodes
or shared variables in Name Sharing Relation nodes.

For example, the UC node in our example graph has an input port called “b_in,” and we wish the
calling graph to send data to it. So, we create an interface node and give it amaeample

uses name “b_in.” It is the same as the port name in this case, but need not be. Next, an arc is
drawn from the Input Interface node to the UC. Its attribute form contains a “Port to Connect to”
field. It's value should be the name of the port the Interface node aliases, “b_in” in this example.
All of these annotations are shown iguiie 8.1.

The Output Interface node works in the same. Wagliases a port in the UC that happens to be
called “b_out.”

Creation Parameter nodes represent a special kind of shared vatyleeceive exactly one
value from the calling graph-- at the moment that the graph is cr@aisd:ariable can then be
read from anywhere within the graph containing the Creation Parameter node.

Our example has a Creation Parameter called “A.” Its attribute form is showurie 8.1. It has
bound to it the matrix that will be used in all of the vecet@trix multiplicationsVariable “A” is

of type Matrix and can be read from any point in the graph (including the UC node that does the
multiplication) just as though it were a local variable. It is illegal to write to “A” how&lso,

no arcs may be drawn to or from Creation Parameter nddege is no need in any case.

8.2 Calling a Graph
Call nodes are use to call one graph from anofties that enter or leave a Call node are actual
parameters to the called graphey are bound to formal parameters in the called graph by means

of their arc topology specifations. Figure 8.2 shows a graph with a Call node that calls the exam-
ple graph defied above.

a7

HunoE I Nope @lranslate ScroLLl Layout @Undo Return il Save
a.

i vectnult ISR How? JUERIN Open |

Progra

-- Do vector matrix
-- multiplication.

Read Inputs
A out => . A é .n_out => ..n

.b_out => . .b_in

[I::I] Call VectMult

..b_out => .b_in

@ Print Answer

Figure 8.2 - Main Graph

All arc topology specitiations are shown. Notice that names of Interface and Creation Parameter
nodes appear as well as two dots instead of the usualtumepeciftation

A out=>_A

binds an output port in UC “Read Inputs” with name “A_out” to the Creation Parafigt¢he
graph calledThe speciftation

.b_out=>b in

binds the Output Interface node called “b_out” in the called graph to port “A” in the UC with
name “PrinfAnswer” Recall that “b_out” was an alias for port “b_out” in the UC in the called
graph. Hence, that port is bound to port “b_in.”

The Call nodes attribute form contains &fd for the name of the graph call@dhis form is
shown in fgure 8.3.

One very important fact is that afeifent instance of a graph is associated with evefgrdiit

instance of a Call node. Hence, if a program contains two Call nodes that are set to call the same
graph name, they will call ddrent instances of the graph.

48

Call Node Form

Call VectMult UID:

Called Graph Name: VectMult
Trace this Call:

Figure 8.3 - Call NodAttribute Form

This is also true for graphs called fromfelient instances of the same Call node. Call nodes can
be replicated like other nodes in CODE. Instances are named by inébged indices as always.
This, if fact, is the reason for using two dots instead of one on arc topologycgierifthat go to

or from Call nodesThe general form for the topology spewdiiion of an arc that goes from a UC
to a Call node is as follows.

[ident]ee[ident]. NAME[ident]ee<[ident] =>
[expr]ess[expr].[expr]e=s[expr]. NAME[expr]ess[expr]

The left hand side has only one dbite identifers before it refer to the indices of the UC node

and identifers after the port name refer to the indices of the port on th& l&ight hand side

has two dotsThe frst espression list refers to the indices of the Call nDae second refers to

the indices of the UC or Name Sharing Relation node within the graph called, and the expression
list after the port name refers to port indices.

The general form for an arc going from a Call node to a UC node is shown bieltige that the
two dots are now on the left hand sidibe first list of identifers refers to the indices of the Call
node and so on.

[expr]ees[expr].[expr]ees[expr]. NAME[expr]ess[expr] =>
[ident]ee[ident]. NAME[ident]ee<[ident]

As you might guess, the general form for an arc that goes from a Call node to a Call node has two
dots on both sides.

[expr]ess[expr].[expr]ees[expr]. NAME[expr]ess[expr] =>
[expr]ees[expr].[expr]e=s[expr]. NAME[expr]ess[expr]

An example might be useful at this time. Figure 8.4 shows a CODE program and the communica-
tion structure defied by it. Remember that a separate graph instance is called from each call node
instance.

49

routing_rules {
Q }TRUE => {Y[i] <- V[iJ; : (i N)};

Y[i] => [i]..IN
\]

* * %

[i..OUT => .X
Y firing_rules { \ /

@ }{X[i] > x[i] : (i N)} =>

Figure 8.4 - Example Replicated Call

We assume that the called has an Input Interface node called “IN” and an Output Interface node
called “OUT” The number of calls is determined by “N” in the top §@uting rules.

50

9.0 Name Sharing Relations

Name Sharing Relation nodes are a mechanism for declaring variables that will be shared among
a set of UC node3.heses nodes contain defions and initializations of shared variables but do

not in themselves specify which UC nodes will access which variables and in whichhabig

done by shared variable declarations in UC nodes and by arcs that bind UC shared variables to
shared variables in a Name Sharing Relation node.

A Name Sharing Relation nodettribute form contains a specétion feld in which stanzas
must be supplied in much the same manner as for a UC node. Hpthieldame Sharing Rela-
tion node$ speciftation is substantially simpladere is an example showing all of the possible
stanzas in the required order

shared_vars {// These may be accessed by UCs.
intk;
Mat2 M;
Vector b[n]; // storage allocated-- n must be a creation parameter.
real x;

vars { // These are for use by the initialization computation.
inti; // vars section is exactly like a UC's.

}

init_comp {// init_comp section is exactly like a UC'’s.
i=0;
while (i<n){
b[i] = 0.0;
i=i+1;

}

The vars and init_comp stanzas are exactly like a UC sdde initialization computation is run
when the Name Sharing node is created, before any of the shared variables can be access by UC
nodes.

The shared_vars stanzanigt exactly like a UGs. It is illegal to specify “reader” or “writer”, but
it is legal to allocate storage.

We have discussed how to create shared variables. Let us now discuss how to use them from UC
nodesThe frst step is to declare one or more shared variables insadb@ted_vars stanza. Here

it is illegal to allocate storag@&hat was done in the Name Sharing Relation node. Howewese
specifcation, either “reader” or “writer” must be providddis permits the CODE system to
automatically synchronize access to the shared variBiidge are no explicit locking primitives.
Access control is automatic.

Once a shared variable has been declared in a UC, it must be bound to a shared variable in a Name
Sharing Relation node by means of an arc with an arc topology spgeiiiThe speciftation is
much like that for a datailv arc, but no port indices are permitted.

One should notice that a UC shared variable is much like a port. It is a name that is to be bound to

51

something outside of the UC node itsélhe arc topology speatiation provides this binding.

An example may be useful. Figure 9.1 shows the graph for a simple program. In i\ rowkB
have fring rules and dataflv arcs that cause them teefrepeatedlyEach time they ffe, they
increment a shared integer

HoE Ml Rope @ Translate Scrolll Layout W Undo Return [l Save

Program: [N ItA Graph: How? [N Create |

Figure 9.1 - Name Sharing Relation Example

After A and B fre the speci@d number of times, they send dummy values to C which cause it to
fire. It prints the value of the shared integeand B are writers of the integ€ is a readekVe
will ignore all aspects of this program but the use of the shared variable.

NodeA'’s speciftation is shown belovNotice that it uses name “K” for the shared variable and
declares itself to be a writer of it.

input_ports {int X; }
output_ports {intY; int AGAIN; }
shared_vars {

int K writer;

}

vars {intv; }

firing_rules {

X->v=>v=v-1;

}

comp {

K=K+ 1; // Increment shared int
}

routing_rules {

v=0=Y<-vV, &&
v>0=>AGAIN <-v;

}

52

Node B is the same except that it uses name L.

The speciftation of the Name Sharing Relation node follows.

shared_vars {
intL;

}

init_comp {
L=0;

}

NodeA'’s shared variable name K is bound to shared variablerheans of the arc drawn from
UC nodeA to the Name Sharing Relation nodiae arc topology specifation is as shown below

K=>L

The general form for an arc connecting a UC node to a Name Sharing Relation node does not per
mit port indices. See thrcs section of the Reference Manual appendix for other cases involving
Name Sharing Relation nodes.

[ident]eee[ident]. UCSHVARNAME => [expr]ess[expr]. NSRELSHVARNAME

One always draws ar¢és Name Sharing Relation nodes, even if the arc must “cross” Call bound-
aries.

There are some limitations on the use of shared variables within a UCTheganay be used
only within the UCS comp and routing_rules stanzas, and it is of course illegal to write to a
shared variable that has been declared read-only

In addition no two shared variables within one UC node may be bound to the same shared vari-

able in a Name Sharing Relation node-- even whderdiit instances (meaning nodes with indi-
ces) of the Name Sharing Node are involved.

53

10.0 Translating, Running, and Measuring CODE Pograms

Before a CODE program can be run, it must be translated into a form that can be compiled by
some native compiler on the parallel machine you wish tovieeedo this translation by clicking

on theTranslate button and selecting agetrmachineThe options and form of the results vary
from one selection to anoth&ihe basic step is to click on tleanslate button and select an archi-
tecture At this time, only “Sequent” is implemented.

If CODE detects either a syntactic or semantic error in your program, it will display an error mes-
sage and refuse to generate a parallel program. Error messages will appear as text in the xterm
window from which you ran cod@he text will attempt to state the location of the ergoring

the name of the graph and node or arc provided you named them. It also gives an integer UID that
uniquely identifes the attribute form containing the eridbryou look at a node or arc attribute

form, you will notice that its UID is shown.

Unfortunately there is no feature in CODE to open the form associated with a giveryalD.
have to find it yourself. Clearlythis is a weakness in COBHIser interface that ought to beefil.

Also, recall that CODE beeps whenever you close an attribute form in which you have made a
syntax (not semantic) error

There are some attributes that control the translation process. In the Program attribute form, there
is a sub-form calledranslation OptionsThis form has the following éids.

Summary Statistics: if set to 88” causes CODE to record execution times and count for all
nodes. (Not implemented).

Optimize: If set to “¥s” the program is optimized for execution speed by both the CODE system
and the native compiler

Object FilesTo Link: Form in which you can enter the names of object (&9 fhat you wish to
have linked with your CODE program. Separate the names with spacesption is
convenient if you wish to enter sequential functions inés foutside of the CODE sys-
tem.You must place a function signature into the Program form for all such external func-
tions that are calledirectly from CODE. File names defd in this form are placed into
the Makefie that CODE generates.

TraceWhat Nodes: Menu that selects what nodes will be traced when the debugging environment
that supports them is complete. For ndwou pick “All Nodes”, a message will be writ-
ten whenever a nodeds. “Selected Nodes” does nothing.

Buffer EvenTraces: (Not implemented.)

There are also trace options mentions in Call and UC node attribute Tdrese are not yet
implemented.

54

One of the choices in thiganslate menu is “List.This is not an architecture. Rathkist causes

a text representation for your program to be written to standard output, provided your program
contains no syntax errorbhis facility is primarlily a debugging tool used by the CODE syssem’
developers, but it may be useful to general users as well.

10.1 < Sequent Symmety Translation

Suppose your program is called MyProg and hence is stordéel MyfiProg.grf.The Sequent
translation process creates a directory called MyProg.sequent that contains a C version of your
program. It uses routines from the FastThreads package from the UniveWagluhgton to cre-

ate and manipulate parallel structures.

To run your program, you mustst transfer the contents of MyProg.sequent to a Sequent Sym-
metry It is most convenient if you store your program on a disk that is mounted both on the work-
station on which you are running CODE and on the Sequent. It that case, you need only “cd” to
MyProg.sequent.

CODE automatically creates a Maketio build the executable version of your program. Just type
“make” while in directory MyProg.sequertssuming no bugs in the CODE system, any compi-
lation errors will be caused by mistakes you made in thaitiefis of your sequential functions.
CODE does not parse these ditbns so it cannot check them for you. If there is an gyor

must return to CODE andkfit. Use the native compiler messages (and look at COBBuUtput
files) for clues.

If the make succeeds, the executable image will be stored in MyProg. Run it by entering
MyProg -n#

at the Sequent UNIX prompEhe # is an integer that determines how many processors (really
UNIX processes) will be allocated to running your program. For example, “MyProg -n6” will run
your program using 6 processes.

There are a few things you should keep in mind when translating for the Sequent. CODE over
writes all of the fes it created in MyProg.sequent whenever you translate. Hence, any changes
you make in the lies CODE produces will be lost if you translate a second time. In general, there
is no reason to changées that CODE generates anyway

Also, it is best if you run your parallel programs from a disk that is directly attached to the
Sequent rather than remoted mounted using NTR& reason has to do with an interaction bew-
teen NFS and how the Sequent implements shared melfngoy run from a remote-mounted
disk, you will notice potentially long delays between the terminate nodeg &nd the time you
get the UNIX prompt back.

55

11.0 Input/Output in CODE

CODE does not at this time include I/O in its model of computalibis. is, of course, a serious
flaw since facilities for I/O vary greatly from one parallel machine to andtimsit CODE

includes 1/O capabilities, it is not possible to use it to write truly portable programs that do 1/O.
For now you must do I/0O from your sequential functionthatever 1/0 you include must work
with the parallel structures CODE creates for a particular architecture.

Be aware that 1/0O to the samkefor device from nodes running in parallel with each other can
cause unintended results. For example, if two nodes that run in parallel write to thdesame fi
there is no way to know which will writeréit. They may even interleave their writinthe behav-
ior in this regard can also be machine-dependent.

11.1 e« Sequent Symmety 1/O
You may use standard UNIX /O facilities from any node when yogetas the Sequent Sym-
metry For example, C library routines printf and scanf waitkere does appear to be a possible

problem with scanf when you redirect stdin to come fronteaofi pipe.You may be better bf
doing direct fie I/0.

56

12.0 Common CODE Conceptual and Usage Eors
Port indices are not array indices.

Do not confuse port indices with indices of arrays that will be sent on th@ pewtare unrelated
conceptsThey type of data that a port will carry is determined by thegtpe. For example,
suppose we have the following type and variablentlefis.

type matl is array of real; // These go in the program form
type mat2 is array of matl;

output_ports { mat2 Y; }
vars { mat2 M[10][5]; }

The following routing rule sends all of M out on p¥fti] for i in 0..N.

routing_rules {
TRUE=>{Y[i]<-M;:(iN)};
}

The binding “Y[i] <- M[i];” is illegal. It asks that a value of type matl be placed on a port of type
mat2.You would want to use a port of type matl in this case.

Arrays and structs are consumed when sent out on es.
Do not foget that arrays and structs are consumed when they are sent out on arcs. Storage for

them is lost in the sending node and must be reallocated if the node isréal @@ éinYou can
use the operator “new” to allocate storage.

Do not assume that rules oguards within rules are evaulated in any paticular order.

Also, all binding are done after all conditions are checked. Hence the following rules are not very
likely to be what you intend.

firing_rules {
N->n, { X[i]->V[i] : (in) }=>|| // n uses old value!
N ->n, Y ->v[n] => // Cannot depend on order!

}

You canassume that bindings (on the right of a =>) are done in order from left to right.
Do not mismatch index counts.

If a routing rule refers to a port with (for example) two indices such as X][i][j], the arc bound to
that port should have two indices associated with the port.

X[i1][i2] => // port indices match routing rule in number (names can differ).

57

Make sure that function signatures match function defitions.

The CODE system has no way to perform any syntactic or semantic checks on function bodies. It
is up to you to get them right. Messages from the native compiler on the parallel system may help.
This is one good reason to keep your sequential routinedéncaufside of the CODE system and

use the Object Files to Linkeld in the prograns’ attribute forms Translation Option éld.

In particular be sure that function signatures match function bodies. CODE withgat fihis-
match as an erroFor example, if you have this CODE function signature

void foo(int *n);
you must have a function body (assuming you are using traditional C) like the this.
void foo (n)

int *n;

{

}

58

Appendix 1. Known Bugs and Limitations

* You may never use more than seven indices on anything.
* Click on the Save button to save you work. Do this often as insurance against crashes.

* Run code via “code2l&name.grf” not “code2 dirnamdédname.grf”. In other words, run code
from the directory that contains your gragb.fi

» Use CODES Exit button to leave code. Using an XAdows “close” or “quit” causes a crash.

» The Copy Graph function (click Copy Cursor on Graph buttons) causes strange error messages
to be displayed. Use it at your own risk!

* “What” online help is not implemented. “How” help is implemented.
» The Manual button displays the manual for a program that has nothing to do with CODE!

« Put all function signatures and type d#fons in the Program form. Graph and UC scope is not
correctly implemented for these items.

» Error messages are often cryptic.
« It is often hard to fid the graphical item an error message refers to.
» The CODE language does not contain string and character literals.

* Your graph fie name should be somename.grf where “somename” is a legal CODEedentifi

59

Appendix 2. Language Refeence

This appendix defies the CODE graphical parallel programming language. It is intended more as
a reference guide than as a tutorial. If you know nothing about CODE, this is not the place to
begin reading. Readers are assumed to be familiar with programming language concepts and ter
minology commonly used in describing programming languages.

2.1 Overview

CODE programs consist of a set of graphs that users draw using a mouse. Each graph consist of
nodes and arc¥he user must annotate the nodes and arcs with extra informiatisrannotated

graph may then be automatically translated into a parallel program for a varietyedtahite-

cures.

There are several types of nodes in graphs.most important type is the Unit of Computation (
or UC) Node. UC nodes represent sequential computations. Users annotate UC nodes to defi
their sequential computations, the conditions under which they are allowed to execute, and more.

Arcs represent thediv of data from one node to another

Graphs in CODE 2 play the same role that subroutines play in sequential langhagesiow
programs to be hierarchically structured. One graph calls another by means of CalArexles.
incident on a Call node are actual parameters to the called graph.

Formal parameters are defd using special nodes in the called graph.

Name sharing relation nodes permit UC nodes to share variables in a controlled fashion. CODE is
not based upon a pure da@aiflmodel.

All CODE 2 objects (nodes, arcs, etc.) may be instantiated any number of times while the parallel
program is running. Diérent instantiations of the same object are distinguished by means of inte-
ger valued indices.

The purpose of this appendix is to defthe graphical entities from which users build programs
and to specify all attributes users can or must supply

The next few sections describe the graphical entities that make up a CODE 2 piidgr &peci-
fication of their attributes is of particular interddte following notation is used.

(O) - Optional attribute. It is possible to create a correct CODE 2 program without supplying a
value.
(R) - Required attributéZou must supply a value.

2.2 Programs and theirAttributes

Attributes of the entire program are set in the Progkétnbute Form. Click the Open cursor on

60

the Program button to open this form.
-- ProgramAttributes --
* GlobalTypes (O) --Type defnitions that apply to the entire program. Segp&s”.

* Global Function Signatures (O) -- Functions signatures for functions or procedures that may be
called from anywhere in the CODE program. See “Functions & Function Calling”.

* Global Function Defiitions (O) -- Bodies for functions whose signatures are in the Global
Function Signatures text box.

» Documentation (O) -Fext box for comments.
* Translation Options (O) -- Sub-form with the followingléls.

Summary Statistics (O) -- if set to %" causes CODE to record execution times and
count forall nodes. (Not implemented).

Optimize (O) -- If set to “¥s” the program is optimized for execution speed by both the
CODE system and the native compiler

Object FilesTo Link (O) -- Form in which you can enter the names of object (e3) that
you wish to have linked with your CODE program. Separate the names with spaces. File
names defied in this form are placed into the Maleethat CODE generates.

TraceWhat Nodes (O) -- Menu that selects what nodes will be traced when the debugging
environment that supports them is complete. For, ifoyu pick “All Nodes”, a message
will be written whenever a nodeds. “Selected Nodes” does nothing.

Buffer EvenTraces (O) -- (Not implemented.)

Every CODE 2 program must have a graph called “main”. It is created automatically when a
CODE graph fe is created. Graph main must contain exactly one node that has its Start Node
attribute set. (See UC Nodes).

2.3 Graphs and their Attributes

Graphs are CODE’equivalent of subroutines in conventional languabesy must have names,

and these names must be legal CODE 2 identifers (see lelenfifContants). No two graphs in a
program may have the same name. Graphs are created by applying the Create cursor to the Graph
banner button.

Formal parameters for a graph are madi by its Interface Nodes (both input and output) and its

Creation Parameter nodd@dl of these nodes must have names that are legal CODE 2 ldestifi
and they must be unique within the graph.

61

Open the currently displayed graplattribute from by clicking the Open cursor on the Graph but-
ton.

-- GraphAttributes --

* Name (R) --The grapts name. It will be entered in Call nodes to identify the graph cdlhes.
name must be a legal CODE idemtifiGraph names must be unique within the program.

» GraphTypes (O) --Type definitions that apply to the graph. Seg/pEs”.

» Graph Function Signatures (O) -- Functions signatures for functions or procedures that may be
called from anywhere within the graph. See “Functions & Function Calling”.

» Graph Function Ddiditions (O) -- Bodies for functions whose signatures are in the Graph Func-
tion Signatures text box.

» Documentation (O) -Fext box for comments.

2.4 Interface Nodes and theirAttributes

Interface nodes (along with Creation Parameter nodesledefjrapls interface. Interface and
Creation Parameter nodes represent formal parameters and so must be given names that are
unique within their graphlThese names are used in formal/actual parameter binding as described
in Graphs and Graph Callinhey appear on arc topology spemtions of arcs incident upon a

Call node that calls the graph in which the Interface nodes appear

Only a single arc may be connected to an interface Aoseparate node must be used for every
formal parameter in a graph.

-- Interface Nodéttributes --

* Name (R) -The interfaces nodehame. It must be a legal CODE 2 ideeatiind unique among
the graphs interface and creation parameter nodiass name will be used on arc topol-
ogy speciftations on arcs incident upon Call nodes that call this graph.

* Type (R) --The name of the type (an idergifj of the data that willéw on the arc connected to
the interface node.

2.5 Creation ParameterNodes and theirAttributes

Creation Parameter nodes defa formal parameter to a graph that will have exactly one value
bound to it in the lifetime of a graph instance. (See Graphs and Graph Calfiaglalue will be

bound before the graph instance is created and becomes available as a constant throughout the
graph.

62

-- Creation Parameter Nodétributes --

* Name (R) --The Creation Parameter nosi@ame. It must be a legal CODE 2 ideetifind
unique among the graghinterface and creation parameter nodegs name will be used
on an arc topology speda#tions on an arc incident upon a Call node that calls this graph.
The name is also used to access the value of the creation parameters as a constant any-
where within the graph.

* Type (R) --The name of the type (an idergifj of the value that will be bound to the Creation
Parameter

2.6 Call Nodes and theirAttributes

Call nodes are used to call one graph from anokhexctly one graph instance is bound to each
instance of a Call node. Hence, if a graph contains two Call nodes, both of which call graph
SomeGraph, the two Calls referdidferent instances of SomeGraphrcs that are incident on a
Call node are actual parameters to the graph being caéled.topology specifations may bind
them to either an Interface node or a Creation Parameter node in the graph being called. See
Graphs and Graph Calling.

-- Call NodeAttribues --

* Name (O) --The name of the Call nod&.comment.

* Called Graph Name (R) The name of the graph to be called.
* Trace this Call (O) -- Not Implemented.

2.7 Unit of Computation (UC) Nodes and theirAttributes

UC nodes are CODE 2basic computational unikhey extract information from incoming arcs,
perform a sequential computation upon it, and pass resulting information out on outgoing arcs.
This process is called fing” and takes place under conditions spedity usesupplied fiing

rules. Each UC has its own names for the arcs that are incident upoesé names are called
“ports” for data fbw arcs and “shared variables” for arcs that connect the UC to a name sharing
relation. Nodes may have local variables, and these variables retain their state fromnon fi

the next.

-- UC NodeAttributes --
* Name (O) --The name of the UC nod&.comment.
» Terminate Node (R) A Boolean attribute. Should be “yes” if and only if the computation is to

terminate when this nodeds. Only one UC node in the entire program may be a termi-
nate node.

63

« Start Node (R) -A Boolean attribute. Should be “yes” if and only if this is the node that should
be instantiated to start the computation. Only one UC node in the entire program may be a
start nodeThe system will automatically create ane firegardless ofring rules) the
instance of the start node node with no indices when the program begins.

* Node Function Signatures (O) -- Function signatures for functions or procedures that may be
called from anywhere within the node. See “Functions & Function Calling”.

* Node Function Defiitions (O) -- Bodies for functions whose signatures are in the sédec-
tion Signatures text box.

* Node Specitiation (R) --Text box that permits a number of node attributes to beatktising a
mostly declarative text languagél nodes in a non-trivial program will have dations
for one or more of these attributd$ie attributes appear in a sequence of stanzas. Each
stanza is optional, but any that are present must appear in a giverSeelddC Node

Speciftations” for a complete explanation. Here, we give only an example that shows all
of the stanzas in the required order

input_ports { // Name and type for incoming arc ports.
Vect V1, Vect V2,
}

output_ports { // Name and type for outgoing arc ports.
Vect OV1; Vect OV2;
}

shared_vars { // Names for shared variables. See Name
Mat2 m reader; // sharing relations.
}

vars { // Local variables.
Vectv; int code;
}

init_comp {
init(code); // Computation done when node is created.
}
firing_rules { // Fire when there is data on either V1 or
V1->v=>|//V2. Storeitinv.
V2->v=>

comp { // Computation done when node fires.
mycomp(v, m, code);

routing_rules {// If comp is 0, send v on OV1 else OV2.
code==0=>0V1<-v; &&
code!=0=>0V2<-v;

}

* Documentation (O) -Fext box for comments.
» EventTrace Options (O) -- sub-form of options that have not been implemented.
2.8 Name Sharing Relation Nodes and theiAttributes

Name sharing relations allow the controlled use of shared variables in CODE prdgreess. to

64

them is speciéid declarativelyThere are no locking primitives to be used within computations.

Shared variables are defd at Name Sharing Relation nodes. UC nodes that share the variable
must have an arc drawn from them to the Name Sharing RelationTiede arcs have a topol-

ogy rule that binds the shared variable name used in the UC node to the shared variable name used
in the Name Sharing Relation node.

-- Name Sharing Nodattributes --
* Name (O) --The name of the Name Sharing Relation nédeomment.

* Node Function Signatures (O) -- Functions signatures for functions or procedures that may be
called from anywhere within the node. See “Functions and Function Calling”.

* Node Function Defiitions (O) -- Bodies for functions whose signatures are in the sédeic-
tion Signatures text box.

* NSRel Specifiation (R) --A text box that permits a number of attributes to benddfusing a
mostly declarative text language. Like UC speaifions, Name Sharing Node speaxfi
tions consist of a sequence of stanzas, all of which are optional. Howererivial
nodes will always have a shared_vars stanza. Here is an example showing all stanzas. See
“Name Sharing Relation Spedaéitions” for a complete syntax.

shared_vars {// These variables are shared.
Matrix1 m[10];
int Mylnt;

vars { // Local vars for use by init_comp.
inti;

init_comp {// Run when node is created.
i=0;
while (i < 10) {

m[i]=2.5;
i=i+1;

}

* Documentation (O) -Fext box for comments.
2.9 Arcs and theirAttributes
Arcs in CODE bind nodes togeth&heir attributes depend upon the types of nodes they leave

and enterArcs that are incident upon an interface node are the simplest. In most cases, one simply
specifes the name of the port they are to bound to. See below

Other arcs must be given arc topology speaifons.The major purpose of these is to disambigu-

ate arc conections. For example, suppose a graph has a UC node called N1with outplit ports
andY2, a UC node called N2 with input port X, and a UC node called N3 with input port Z.

65

N2

N3

If an arc is drawn from N1 to N2 it will be unclear whether it should be bound to outpitlpart
Y2. Arc topology specifiations solve this problenihe speciftation

Y1=>X

says that the arc goes from B Butput porYl to N2’s input port X. Read the rule in this way: if
data come from node NslportY1, then they must be sent to Node §lgort X2.The node names
need not be mentioned in the rule since the CODE system knows what nodes are involved by
means of graphical context-- the user has already drawn the arc from one node to another

Arc topology specifiations may also involve indices. For example, suppose node N1 places data
on its output por¥1[i] where i takes values from O to Bhe rule

Y1[] => [i].X
Says that data from N4 portY1[i] must be sent to node N2[g|’port X.

Indices on the left of the “=>" are variable declarations. Hence, they must be unique and expres-
sions are not allowed for them. Indices on the right may be expressions and, of course, need not
be unique. For example, the following arc topology speatifins are illegal.

Y1[i[[i] => .X2 /l iis not unique on the LHS.
[i.Y1[i] => .X2 // i is still not unique on the LHS.
[[*+1].Y1 => X2 // i+1 is an expression.

The following are legal, although unusual.

[i.Y1[] => [| % 2].X2[+1]
(0] Y1[K] => . X2[i+j+K]

In the following discussion, let <varlist> stand for a list of variables in brackets-- like [i] or
[ind1][j][k]. And let <exprlist> stand for a list of expressions in barckets-- like [i+4][j] or

[i-j*foo(k)][g][6].

66

The syntax for an arc topology specdfiion varies somewhat according to the type of nodes its
arc connect3NVe will discuss this on a case-by-case basis, but there is a general rule. Use two dots
for a Call node, otherwise use one.

* UC node to UC node

<varlist>.IDENT<varlist> => <exprlist>.IDENT<exprlist>

* UC node to Call node

<varlist>.IDENT<varlist> => <exprlist>.<exprlist>.IDENT<exprlist>

On the right of the “=>", the fst <exprlist> refers to the indices of the Call node, the second to
the indices of the UC in the called graph, and the third refers to the indices of the port of the UC in
the graph called. If the arc is bound to a creation parantie¢einal <exprlist> is not allowed.

* Call node to UC node

<varlist>.<varlist>. IDENT<varlist> => .<exprlist>.IDENT<exprlist>
This time, the extra <varlist> is on the left. It refers to the index of the Call node.

* Call node to Call node

<varlist>.<varlist>. IDENT<varlist> => <exprlist>.<exprlist>.IDENT<exprlist>

* UC node to Name Sharing Relation Node

<varlist>.IDENT => <exprlist>.IDENT

« Call node to Name Sharing Relation node

<varlist>.<varlist>.IDENT => <exprlist>.IDENT

Arcs that are incident on Interface nodes do not have topology sp#oiis. Instead, the user

must supply the name of the entity the Interface node is connected to. One can think of-the Inter
face node as aliasing an entipr example, an Input Interface node connected to a UC node is
bound to an input port in the UThe Interface node serves as an alias for a particular port in the
a particular UCThus, UC port names do not “leak” into a grapinterface.

* Input Interface node to UC node

Name of input port in UC that node aliases.

» UC node to Output Interface node

Name of output port in UC that node aliases.

67

* Input interface node to Call node

Name of Input Interface Node in called graph that it aliased.
« Call node to output interface node

Name of output interface node in called graph.

* Input interface node to Name Sharing Relation node

Name of shared variable that is aliased.

* Input Interface node to Output Interface node
There is no arc specification. The nodes are aliases for each other.
2.10 Identifiers and Constants

Identifiers in CODE 2 consist of a letter or underscore followed by a sequence of zero or more let-
ters, digits, and underscores. CODE is case sensitive so “k” and “K” sreedifidentifers.

Legal lllegal
[d-1
Abel 7Del
Point_X hp:f
a9 _ 8U
A8y 9 a

CODE supports constants of type integer and real. Integer constants are a sequence of one or more
digits. Real constants must include a decimal point. No sceeatigxponential notation is
allowed.

Example real constants: 1.0, 17., 0.666, .75, 123.450, 00.2300.

2.11 Predeclaed ldentifiers

There are several idenéfs that are predeclared in in CODE.

TRUE The integer value 1.

FALSE The integer value 0.

Graphlndex An integer array that contains graph index bounds. For example, if the current
graph index is [3][4], GraphIindex[0] has value 3 and Graphindex[1] is 4.

Nodelndex An integer array that contains node index bounds.

copy A function that returns a copy of an array ot struct. See CRHys.

asize A Function that returns the size of an arisge CODEArrays.

68

2.12 Comments

Comments in CODE 2 are preceded by // and continue to the end of the line. Some examples fol-
low.

comp{
i=i+1;// This is a comment.
/I Sois this.

}
2.13 Scope in CODE

CODE 2 is a statically scoped language. Scopes are nested so a declaration in an inner scope can
shadow a deifiition in an outer onéllhe major scopes in CODE 2 are as follows.

Program Scope - Declarations made in the program attribute form are usable anywhere in the pro-
gram unless shadowed by a declaration in an inner scope.

Graph Scope - Declarations made in a gapltribute form are usable anywhere in that graph
unless shadowed by a declaration in an inner scope.

UC Node Scope - Declarations made in a Unit of Computation node attribute form are usable any-
where in that node unless shadowed by a declaration in an inner scope.

NSRel Node Scope - Declarations made in a Name Sharing Relation node attribute form are
usable anywhere in that node unless shadowed by a declaration in an inner scope.

Index variables declared in replicators within rules or on the left hand side of an arc topology rule
may shadow declarations in outer scopes.

2.14 Types in CODE

CODE supports integers, reals, characters, structures (records), andAdirtgges must have a
name.Type names int, real, and char are presefignd may not be rededid.

PredefinedTypes

int
real
char

CODE does not have a Boolean type, but it does have Boolean operators and conditions. Like C,
it uses the integer value 0 to represekit$E. Any other integer value represeiiRUE.

Array and structure types must be given a name by means of a typgatefiefore they can be
used.Type definitions may appear in the following places.

69

* Program attribute formFhe type name is usable thoughout the entire program (program scope).
» Graph attribute formFhe type name is usable thoughout the graph (graph scope).

The syntax of a type deition is as shown. NEWTYPE and OLDTYPE are ideetffi OLD-
TYPE must be declared in the form before the typendiin or in an outer scope.

<typedef> := type NEWTYPE is OLDTYPE ; |
type NEWTYPE is <array_type_spec>; |
type NEWTYPE is <struct_type_spec>;

<array_type_spec> := array of OLDTYPE;
<struct_type_spec> := struct { <member _list>};

<member_list> := OLDTYPE IDENT ; <member_list> |
OLDTYPE IDENT ;

Array type defitions in CODE 2 are unusual in that they do not include dimendibissis
because CODE 2 arrays are dynarficay sizes are associated with variable instantiations. Here
are some examples of type aéion. Note that we are not declaring variabl&e. are defiing

types.

Examples of Legalype Defhitions

type foo is int;
type bar is foo; // foo must already be defined to be a type.

type matl is array of real; // Vector of reals.
type mat2 is array of matl; // Only way to declare a 2D array.

type Point is struct {
real x;
real y;

h
type PolyLine is array of Paint;

type line is struct {
Point Start;
Point End;

J3

CODE is a statically typed language and is type-safe with the exception of ellipses (...) in function
signatures. Despite the fact that all types must be named before that can be used, CODE uses type
structure (rather than name) to determine when types are equivalent. For example, iievthelefi
following types:

type matl is array of real;
type vect if array of real;
type diff is array of int;

Types matl and vect are equivaléntariable of type matl may be used anywhere a variable of

70

type vect may be usedlype diff is not equivalent to either type matl or type vect.

Just to be negative, here are some examples of illegal typéide$ that you might wonder
about.

Examples of lllegalype Defhitions

type bad is array of array of int; // Need to use 2 typedefs
type bad2 is int // Missing semicolon.
type bad3 is array of struct { / Need to use 2 typedefs
inti;
intj;

g
2.15 Expressions and Operators

Expressions in CODE may appear in UC Nodes, Name Sharing Relation Nodés;saite
operators allowed in CODE 2 are shown below in precedence order

OperatorAssociativity

. left to right
I -(unary) right to left
*[% left to right
+ - left to right
<<=>>= left to right
==I= left to right
&& left to right
I left to right.

The following table shows the meaning of the operators, the types they are allowed to operate on
and the types they return. Notice that there is no Boolen type. Integer constanigdeffand O

(for false) are used instead. Predeclared integer varigBlg& and RLSE have these values.

Some instructions accept operands diedént types. One of the operands will be promoted to the
type of the other according to the following hierarchy

char => int => real

The return type “mixed mode” means that the type of the operand whose type is highest in the
hierarchy is returned.

71

Table 1. Operators andTypes

Operator| Meaning LHS RHS Returns

0 array index | array int array base type
struct select| struct (na) member type

! boolean not| (na) int int

- unary minus| (na) int, real mixed mode

* mult int, real int, real mixed mode

/ division int, real int, real mixed mode

% mod int, real int, real mixed mode

+ addition int, real int, real mixed mode

- subtraction | int, real int, real mixed mode

< less than int, real, char int, real, chan int

<= It or equal | int, real, char int, real, charn int

> greater than| int, real, char int, real, chan int

>= gt or equal | int, real, char int, real, chan int

== equal int, real, chan int, real, char int

I= not equal int, real, chan int, real, char int

&& boolean and int int int

I boolean or | int int int

Function calls are also allowed in expressiypes of actual parameters must match types of for
mal paramaters. See “Functions and Function Calling”.

The operator new may be used to allocate new arrays or new arrays within structs. Here is an
example.

new Mat2[10][10]
Mat2 is a type name. See “CODBEays”.
2.16 Statements
Statements may appear in initial computation (init_comp) and computation stanzas in UC Nodes

and Name Sharing Relation Nod&he set of statementsfefed is limited. It is intended that sig-
nificant computations be performed by calls to externallyeéfiunctions.

72

The syntax of CODE statements is as follows.

<stmt>:= <block_stmt> | <while_stmt> | <if_stmt> | <assign_stmt> |
<null_stmt> | <call_stmt>

<block_stmt> := { <stmt> ... <stmt>}
<while_stmt> := while (<expr>) <stmt>

<null_stmt>:=;

The condition expression in a while statement must be of type int with zero repres@ni8if) F
and any other integer value represenfiRiJE.

<if_stmt>:= if (<expr>) <stmt> |
if (<expr>) <stmt> else <stmt>

The condition expression in an if statement must be of type int as with the while statement.

<assign_stmt> := <lhs_expr> = <expr>;
<lhs_expr>:= <ident> |

<lhs_expr>. <ident> |
<lhs_expr> [<expr>]

In an assignment statement, the Ihs_expr and the expr be of anwtygeassigning arrays and
structs, types must match exacilypes int, real, and char will be converted.

Call statements are much like void function calls in C. Howekere is no need to use an address
operator (&) when passing by reference. (See Functions and Function Calling).

<call_stmt> := <ident> (<argument_list>) ;

Here are some example CODE statements.

InitMat(M);
i=0;
while (i < 10) {
M[i] = p.x +i;
if (1% 2) {
i=i+2;
MI[i] = M[i] + 1;
}else

i=i+i

2.17 Functions and Function Calling

Sequential functions (and procedures but we will often just use the word function) are very much
a part of CODE even though you cannotmethem within it. Rathethey are written in a regular

73

sequential language, most often C. It is expected that mostcgnilC computations will be
specifed using such external sequential functions. CODE supports their use in several ways.

1. You must provide function signatures (sometimes called function prototypes) so that CODE 2
can type check calls to your external functions.

2. CODE 2 provides function defiion text boxes at program, graph, and node scope so that you
can enter function defiions (function bodies) for C functionBhese function bodies are
not parsed by CODE Zhey are merely packaged for compiling by your sysiemtive
C compiler

3. CODE 2 producedldi c2_globtypes.h that contains C typedefs equivalent to all of the CODE 2
types defied by the user at the program scope |éMak file may be included in Clés
that are to be separately compiled and linked with the parallel code that CODE 2 produces.
Signatures for these externally ahefil functions must be provided at the program scope
level. Compiling and linking separate &#§ is a system-dependent process.

Sequential functions may be called anywhere expressions are allowed in CODE. Procedures may
be called in computation and initial computation sections by means of Call statements (see State-
ments).

A function signature must be provided before any function (or procedure) can beTdalqukr
mits CODE 2 to type checkguments. CODE 2 function signatures are a subset of what is per
mitted inANSI C.

<func_sig> := <typename> <ident> (<formal_arg_list>) ;
Use typename “void” for proceduréhe identifer is the function name.

Formal aguments have the following syntax.

<formal_arg_list := <formal_arg>, ..., <formal_arg> |

<formal_arg> := <typename> <ident> | <typename> * <ident>

The identifer is the agument namelhe “*” indicates that the gument is to passed by reference.
Arrays and structs are always passed by referénte’ argument list for a function spe@f

that CODE will not check guments to the functions for correct type or numbee this feature
with caution. Note that CODE does not support function signatures that mix reguilisreaits
with the “...” form.

foo(int i, ...); // This is illegal in CODE

Here are some example function signatures. Note the the formal parameter name is required in
CODE, unlike C.

int foo(int i); // takes an int by value, returns an int.

74

int foo(int *i); // takes an int by reference, returns an int.
void foo(); // procedure that takes no arguments.
real VectSum(Vect v1, Vect v2); // Takes two args of type Vect.

real foo(int i, int %, int kK); // 2nd arg by reference.

CODE’s agument type checking may be bypassed by means of ellipses.
int foo(...); // Don't type check arguments.

If you supply ellipses, you may supply no othejuanents.

Function signatures may be entered into Function Signature text boxes in the program, graph, and
node attribute forms.

Function calls in CODE are not quite like they areNSSI C. If you pass an gument by refer
ence you need not use an address opefatoexample, assume there is a function foo with the
following signature and that k in an integer variable.

int foo(int *i); // foo’s signature

In CODE, a call to foo would take the form
foo(k)

rather than
foo(&kK) // illegal! CODE has no & operator.

as would be required in C.

Also, if an agument is passed by reference, an expression may not be used as a formal parameter
For example

foo(k+7) // lllegal to pass expression by reference.
is an illegal call.

2.18 UC Node Speciftations

This section describes the text language thaheeiJC node speaifations.

A UC speciftation consist of the following stanzas in the given oley stanza may be ommit-
ted in a node that does not require it.

<input_ports> -- Local names and types for incoming arcs.

75

<output_ports> -- Local names and types for outgoing arcs.

<shared_vars> -- Local names and types for shared variable plus use rule.
<vars> -- Local variables dafions.

<init_comp> -- Executes when node is created at runtime.

<firing rules> -- States when node cae fatnd how to get data from incoming arcs.
<comp> -- Executes after aifig rule binding.

<routing_rules> -- States what data are to go on what outgoing arcs.

The syntax and purpose of each stanza will be presented in turmsbwefwill introduce the
syntax for replication. Guards, bindings, and rules in batigfrules and routing rules may be
replicated.The syntax of replication is

<replication> :=
{<thing_to_be_replicated> : <repl_list>} |
{<thing_to_be_replicated> : <repl_list>: <expr>}|

<repl_list> := (IDENT <expr>) ... (IDENT <expr>)

For example, { <thing>: (i N) (j M+1) } replicates <thing> for values of i from 0 to N-1 and |
from O to M. Here is another example.

{m[i] = V[i]; : (i 2) } // same as m[0] = v{0]; m[1] = v{1];
The optional expression after the <repl_list> is a constraint. For example
{<thing>: (iN) GN):i<j}

replicates <thing> for value of i and j from 0 to N-1 such that iTfi¢re may be at most one con-
straint expression. One could accoplish the same thing with

{<thing>: (iN) (i)}
We now present the stanzas that make up a UC node caiaifi

* Input Ports Stanza

<input_ports> :=
input_ports { TYPENAME PORTNAME ; ... TYPENAME PORTNAME ; }

An input port is a node’local name for an incoming datafl arc. Input port names appear in arc
topology specifiations to bind an arc to a particular input port. &es and their Specdation.

76

Example:
input_ports {int I; real x23; Matrix2d m; }

* Output Ports Stanza

<output_ports> :=
output_ports { TYPENAME PORTNAME ; ... TYPENAME PORTNAME ; }

An output port is a nodg’local name for an outgoing datafl arc. Output port names appear in
arc topology speciations to bind an arc to a particular output port.Aes and their Specda-
tion. Example:

output_ports { int J_index; real Y; Matrix2d m; }

* Shared Variables Stanza

<shared vars> =
shared_vars { TYPENAME VARNAME <use> ; ... TYPENAME VARNAME <use> ; }

<use> := reader | writer

Variables declared in the shared variables stanza will be bound to shared variables that are
declared and instantiated in a Name Sharing Relation node by means of an arc be drawn from the
UC to the Name Sharing Relation nodibe arcs topology speciiation binds the UG’shared

variable name to the Name Sharing Relati@iared variable name. Hence, §/Gave local

names for the shared variables they use. Shared variables in UC nodes act somewhat like ports.
There is no "variable” directly associated with them. Instead they are bound to variables declared
in Name Sharing Relation nodes. UC shared variables also have use rules that declare whether the
UC will read or write the shared variable. Example:

shared_vars {
Matrix2D m reader;
int Shared_counter writer;

}

Shared variable names may be used only in the comp stanza of a UC (and in the init_comp stanza
of the name sharing relation in which they are declared).

Itis illegal to bind two shared variable names to twéed#nt instances of the same variable. For
example, suppose a UC declares shared variable names s1 and s2 and that there is a Name Sharin
Relation node that declared with shared variables x ahdiser could bind s1 to x and s2 to y be
drawing two arcs from the UC node to the Name Sharing Relation node and giving them the fol-
lowing topology specifiations.

.Ss1 => .x
S2=>y

This is legal. But the following arc topology spegdtfiions are not legal since they bind two

77

shared variable name to twofdifent instances of the same variable.

[i].s1 => [i].x
[i].s =>[i+1].x

* Variable Declaration Stanza

<vars> =
vars { <vardecl>; ... <vardecl>; }

<vardecl> := TYPENAME VARNAME | TYPENAME VARNAME <size_spec>

<sizespec> = <array_sizes> | <member_sizes> |
<array_sizes><member_sizes>

<array_sizes>:=[<expr>]...[<expr>]

<member_sizes> ;= { IDENT <sizespec>; ... IDENT <sizespec>; }

UC local variables are declared in the var seciitvese variables are used to store data extracted
from arcs and may appear in computation sectibmsir values are retained from one noded
to the next.

A <sizespec> is used to allocate arrays or arrays within structs. Recall that the size of an array is
not included in a CODE 2 type deifion. Arrays must be instantiated at a particular size before
they can be used <sizespec> is one mechanism for doing that. See “COBEags”. Exam-

ples:

vars {inti; Mat2 m; }

Here we see a two dimensional array being allocated completely and another two dimensional
array being only partly allocated. Partial allocation makes sense if thesawasg will arrive on
incoming arcs. See “CODArrays” for an example of this.

vars {
Mat2 m1[n][m+1];
Mat2 m2[n];

}

Suppose m is a two dimensional array that is a member of struct type mystruct. It may be allo-
cated as follows.

vars {
mystruct s { m[n][n]; };

}

« Initial Computation Stanza

<init_comp> :=
init_comp { <stmt> ... <stmt> } (See “Statements”)

78

The initial computation is performed when the node is created at runtime-- befoneraysufes
are evaluated. Example:
init_comp {
i=0;
foo(m);

}

* Firing Rules Stanza

<firing_rules> :=
firing_rules { <frule> || ... <frule>}

<frule> := <fguard>, ... <fguard> => <fbind> ... <fbind>
<fguard> := <expr> | PORTNAME <indices> -> <lhs_expr> (See “Statements”)

<fbind> := <assign_stmt> (See “Statements”)

Firing rules serve two purposé@hey specify conditions under which the node is allowed¢o fi
and they extract values from arcs and place them into local variables. In addition, they can set
local variables. Firing rules consist of guards and bindings as shown.

Guardl, Guard2, ... GuardK => Bind1; Bind2; ... BindM

There need not be any bindings, but there must be at least oneldueardle evaluates fBRUE
and the node carrd when all of its guards evalautellBUE. You can read the commas as “and”.

There are two types of guards. Guards can be integer valued expressions. Such guar&fare F

when they have value 0 am&UE otherwise. Guards can also be arc inputs. Every rule must have
at least one arc inputhe syntax is

PORT -> <lhs_exr> or PORT[<expr>]...[<expr>] -> <lhs_expr>
This type of guard i$RUE when there is a value on the arc named by themrtmay not

assume that guards are evaluated in any specder Hence, the following rule is not reasonable
since n need no be bound in time to be used in the replicator

N->n,{V[i]->V[i]:(in)}=> /I A rule that is not reasonable.
Bindings on the left of the => are assignment statements.
Entire rules as well as guards and bindings may be replicated.

If more than one rule iIERUE, one is chosen non-determinstically and its bindings are performed
and the noderes.

Here are some exampleifig rule stanzas.

firing_rules { /I Fire when there is data on V.

79

V ->n=>//Storeitinn.

}

firing_rules { /I Fire when there is data on V1 and V2.
V1->nl,V2->n2=>//Storeitinnland n2.

}

firing_rules { /I Fire when there is data on V1 or V2
V1->n=>||// Storeitinn.
Vi->n=>

}

firing_rules { /I Fire when there is data on V1 or V2
V1->n=>s=0;||/ Store itin n and set s according to
V1l->n=>s=1; /I which rule fires.

}

firing_rules { /I Fire when there is data on V and s has
s==0, V->n=>//value 0. Store data in n.

}

firing_rules { /I Fire when there is data on all
{VI[i] ->n[i] : (iN) }=>// V[i] fori = 0 to N-1. Store

} /'ttin n[i]. (Arc input is replicated.)

firing_rules { /I Fire when there is data on any
{V[i]-=>n=>:(iN)}// V[i] fori = 0 to N-1. Store

} llisin n. (Entire rule is replicated.)

» Computation Stanza

<comp> =
comp { <stmt> ... <stmt> } (See “Statements”)

The nodes computation fes afters affing rule evaluates toRUE, and its bindings are down.
After the computation terminates, routing rules are evaluated. Example:

comp{
i=0;
while (i < N) {
foo(m);
i=i+1;
}
* Routing Rules Stanza

<routing_rules> :=
routing_rules { <rrule> && ... <rrule>}

<rrule> := <rguard>, ... <rguard> => <rbind> ... <rbind>
<rguard> := <expr>

<rbind> := <assign_stmt> | PORTNAME <indices> <- <expr>;

80

Routing rules place data onto outgoing arcs. In addition, they can set local variables. Routing
rules consist of guards and bindings as shown.

Guardl, Guard2, ... GuardK => Bind1; Bind2; ... BindM

There need not be any bindings, but there must be at least oneldeardle evaluates fBRUE
and its bindings will be done when all of its guards evalaut®tdE. You can read the commas
as “and”.

Guards must be integer valued expressidbhsy are RLSE when they have value 0 and are
TRUE otherwise.

Bindings are assignment statements or arc outph&ssyntax of arc outputs is
PORT <- <expr> ; or PORT[<expr>]...[<expr>] <- <expr>;

Bindings are performed from left to right/hen an array is sent on an arc output, it is consumed
and becomes null (See COBIEays).A null array has no storage associated with it. Hence, the
following routing rule will send a null array M oh

TRUE => X <-M; Y <- M;

This problem can be avoided by using the copy function onridribt the second!) arc output.
TRUE => X <- copy(M); Y <-M;

Entire rules as well as guards and bindings may be replicated.

Binding sections for all rules withRUE guards are performed.

Here are some example routing rules stanzas.

routing_rules {// Place n+1 onto V.
TRUE =>V <-n+1,
}

routing_rules { I Place n1 onto V1. and
TRUE =>V1 <-nl; && // n2 onto V2.
TRUE =>V2 <-n2;

}

routing_rules { /I Place n+1 onto V only if s > 0.
s>0=>V <-n+l; && // otherwise place n onto V.
s<=0=>V<-n;

}

routing_rules { /I Place m(i] onto V[i]
TRUE =>{V[i] <-m[i];: (iN) }; //fori=0to N-1.
}

81

2.19 Name Sharing Relation Specifiations

Name Sharing Relation nodes allow variables to be shared among a set of UT hesles.

shared variables are declared in the nodpékciftation text box using a simple text based lan-
guage.The speciftation consists of three stanzas which must appear in the followingAlider

are optional, but all non-trivial Name Sharing Relation nodes will have at least the shared_var
stanza.

<shared_vars> - Declares the name and type of all shared variables.
<vars> - Declares local variable which may be used in init_comp.
<init_comp> -A computation that is run when the node is created.
Each of the stanzas sytnax and purpose will be presented in turn.

* Shared Variables Stanza

<shared vars> =
shared_vars { <vardecl> ; ... <vardecl>}

<vardecl> := (See <vardecl> under “UC Node Specification”.)

This stanza declares the name and type of variables to be shared. It also permits arrays and arrays
within structs to be allocated at a particular size.

The variable name will appear on arc topology spmtifins that bind shared variables in the
Name Sharing Relation to shared variable names in a UC. Here is an example:

shared_vars {
inti;
Vector v,
Vector v[10];
Matrix Mat[n][n]; // n is a creation parameter.
Matrix Mat2[n]; // 2nd dimension unallocated.
MyStruct s {m[n]; };

}

The shared_vars stanza in a Name Sharing Relatif@nsdifom the shared_vars stanza in a UC.
In a Name Sharing Relation stanza, <sizespeare allowed and use rules are iitie opposite
is true in the UC.

* Variable Declaration Stanza

<vars> = (See the <vars> stanza under “UC Node Specification”.)

The <vars> stanza contains local variable declaratidrese variables may be used in the initial-
ization computationThe stanza is identical to the <vars> stanza in a UC node.

82

« Initial Computation Stanza

<init_comp> :=
init_comp { <stmt>; ... <stmt>; }

The initialization computation is peformed when the Name Sharing relation is ci¢atetay
use it to give initial values to shared variables. UC nodes will not be granted access to the shared
variables until initialization is complete.

2.20 Graphs and Graph Calling

Graphs are CODE’analogs to subroutines in conventional langudgesy have parameters and
they interact via call constructs, Call nodes in the case of COdcuser creates a CODE pro-

gram by drawing a set of graphs independeflick the create cursor on the graph button

to create a new graph. Call nodes within the graphs allow them to communication with one
another

Just as with conventional subroutines, there are formal and actual parameters to CODE graphs.
Arcs that are incident upon a call node are actual parameters in a call to a graph. Formal parame-
ters are defied within the called called graphs. Every interface node and creation parameter node
defines a formal parametd@here must be a actual parameter (arc in the calling graph) bound to
each formal parameter

A separate instance of each graph is associated with every instance of a Call node. For example,
suppose a user draws two graphs, main and foo. Suppose further that main contains two Call
nodes, each calling fodhe two Call nodes refer to completely independent instantiations of foo.
There is no way in CODE to refer to the same graph instance from feredifCall node insta
tiations.

Formal-actual parameter name binding involves the interaction of several annotations. Suppose
an arc runs from a UC node with port X to a Call node with an input interface node named IN. X
may be bound to IN by the following arc topology speaiion on the arc going from the UC to

the Call.

X=>.IN

The binding is still not complete. Suppose there is an arc running from the Input Interface node to
a UC with a porY in the called graphlhis arc must be annotated with “Y”, the name of the port
the Interface node is to be bound to.

Topology specifiation on arcs incident upon Call node can be quite complex. Consider the right

hand side of a topology specdtion of an arc that enters a Call notiee general form is as
shown.

... => <call index list>.<port index list>.PORT<port index list>

Here are some examples.

83

(ex. 1) ... => [i]fi]-[i+1].X[K]
(ex. 2) ... => [Xl
(ex. 3) ... = [I.XK]

The call indices (before thedgt dot) refer to the indices of the Call node the arc connects to.

Recall that there is a separate Graph instance associated with every instance of a Call node.
Hence, call indices are used to create a family of distinct graph instances. Consider example 2. If
index variable i takes on values from 0 to 9, 10 separate graphs will be created.

Node indices refer to the index of a UC in the called graph. In example 3, if i has the value 5, and
k the value 3, the arc is sending data to a UC with index 5 with a port with index 3. Port indices
refer to the index of a port in a UC in the called graph. It is illegal to use node or port indices on
arcs that are bound to creation parameters.

Arcs that leave Call nodes are similar to arcs that enter them, but this time the left hand side is of
interest.The general form is as shown.

<call var list>.<port var list>.PORT<port var list> => ...
Here are some examples.

(ex. 1) [0l [K]- XM => ...
(ex. 2) . X[] => ..
(ex. 3) X[=> ..

Just as with arcs going from UC to UC, only index variable are allowed on the left hand side, and
the variables must be uniquihey are place holders containing the indices of the entity that sent
the data on the arg¢he call index variables refer to the index of the Call node (and hence graph)
the data come fronThe node index variables refer to the index of the UC in the called the data
come from, and the port index variables refer to the index of the port in that UC.

2.21 CODE Arrays

Arrays in CODE are somewhat unusudiey are not implemented using the customary contigu-
ous memory scheme used by most programming languBlgiesmplementation cannot be hid-

den from the CODE user since the user must be able to write sequential routines what deal with
CODE arrays.

CODE arrays are implemented by means of pointers and vektong dimensional real array is

a pointer to a vector of reals.two dimensional real array is a pointer to a vector of pointers to
vectors of reals, and so dfhere are several advantages to this scheme. It allows graphs and func-
tions to be written that operate on arbitrarily sized arrays. Only the number of dimensions need be
fixed.Also, it allows the dfcient implementation of several important array partitioning opera-
tions on shared name space architectlres.performance and storage penalty is not great pr

vided arrays are “skinnyThe size of the last dimension should be made tigedgrwhenever
possible.

84

The following diagram show the layout of a two dimensional CODE .arfeyarray hasve

rows, but the size of the rows (number of columns) varies. CODE allowAldosthere is no
implication that adjacent rows are in contiguous storage. Each row itself is, of course, in contigu-
ous storage. Call this arrdy

A

\/

CODE provides a mechanism to help users keep track of the sizes of Bneagsize function
returns the length of an arrdyor example, asize(A) would return the value 4 skcean array
of 4 vectorsThe value of asize(A[1]) is 3 siné¢1] is a vector of length 3. CODE arrays are 0
basedThere is no way to specify a non-zero lower bodids matches the C language.

CODE users need not be concerned that pointers are used in implementind\enaggsre used
in a quite conventional wayor exampleA[1][2] returns the value of the 3rd element in the 2nd
row of A.

CODE array type defitions are unusual in that bounds on dimensions cannot be sgesfpart
of the typeYou defne a “two dimensional” arrayot an array type withxed sizes like 5 x 10.
All two dimensional arrays of the same base type are the same type.

Two and higher dimensional array types must benddfin the following wayThere is no method
for doing it directly

type matl is array of real; // A 1-d array type.
type mat2 is array of matl; // A 2-d array type.
type mat3 is array of mat2; // A 3-d array type.

Array types with more than 7 dimensions are not legal in code.

Since array sizes are not a part of the array typetaefj sizes must be allocated when an array is
declared. One does this using size speadifons. Here are some legal array variable declarations.

matl v[10]; // v is a vector of length 10
mat2 m[10][5]; / m is a matrix of size 10 x 5.

It is even possible to partially declare the size of an array

mat2 M[10]; // m has 10 rows, but no storage for them.

85

This might be useful in arfing rule that will gather 10 vectors from an incoming arc into a 2
dimensional array

firing_rules {
PORT]i] -> m[i] =>
}

There is also an operator “new” that can assign storage. For example,
new mat2[10][3]

returns an array of size 10 x 3.

Function copy returns a copy of the array that is gs@ent.

Some comments on how to use CODE arrays from C might be uBedéusituation is actually
quite simpleAn N dimensional CODE array array M of a given base type is declared in C as

basetype *...*M;

where the are N *s. For example a 3 dimensional int array is declared thus.
int **M;

Elements of this type of array may be accessed from C just as they are in CODE.
b= MGIK];

Of course, storage must be allocated to the array before it can be used.

As an example, here is a C function for summing the elements of a CODE 3 dimensional integer
array It could be called from CODE thus.

sum = SumArray(M, asize(M), asize(M[0]), asize(M[0][0]));
Assuming, of course that array is regularly sized.

int SumArray(M, i_size, j_size, k_size)
int *#**M;
inti_size;
intj_size;
intk_size;
inti, j, k;
int *t1, *t2;
int sum=0;

for (i=0;i<i_size; i++){
t1 = MIi;

86

for = 0;j<]_size; j++) {
2 =t1[f;
for (k = 0; k < k_size; k++) sum +=t2[K];

}

return sum;

}

The use of temporary variable t1 and t2 can substantially decrease the execution time of such
functions.

87

