
1

The CODE 2.0 Graphical Parallel Programming Language*

Peter Newton
James C. Browne

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

ABSTRACT

CODE 2.0 is a graphical parallel programming system that
targets the three goals of ease of use, portability, and
production of efficient parallel code. Ease of use is provided by
an integrated graphical/textual interface, a powerful dynamic
model of parallel computation, and an integrated concept of
program component reuse. Portability is approached by the
declarative expression of synchronization and communication
operators at a high level of abstraction in a manner which
cleanly separates overall computation structure from the
primitive sequential computations that make up a program.
Execution efficiency is approached through a systematic class
hierarchy that supports hierarchical translation refinement
including special case recognition. This paper reports results
obtained through experimental use of a prototype
implementation of the CODE 2.0 system.

CODE 2.0 represents a major conceptual advance over its
predecessor systems (CODE 1.0 and CODE 1.2) in terms of the
expressive power of the model of computation which is
implemented and in potential for attaining efficiency across a
wide spectrum of parallel architectures through the use of class
hierarchies as a means of mapping from logical to executable
program representations.

 *This research is supported by a DARPA/NASA Research
Assistantship in Parallel Processing administered by the
Institute for Advanced Computer Studies, University of
Maryland, by IBM Corp. through grant 61653, and by the State
of Texas through TATP Project 003658-237.

1. INTRODUCTION

Common use of architectures that support macro-level
coarse-grain parallel computation has been hindered by the
difficulty of programming such machines. Effective parallel
programming systems for these architectures must satisfy three
practical goals. They must be easy to use, they must provide a
portable representation basis for algorithms, and they must
produce efficient executable parallel structures.

Several approaches to parallel programming are currently

--

This paper will appear in Proc. ACM Int. Conf. on
Supercomputing, July, 1992.

in use. Most, if not all, fail to satisfy one or more of these
requirements to a major degree.

• Augment sequential languages with architecture-specific
procedural primitives.

This approach permits the creation of efficient parallel
programs, but the primitives supplied tend to be at such a low
level of abstraction that they may be awkward to use for a wide
variety of algorithms. Program development with them tends
to be slow and error prone. In addition, parallel architectures
are quite diverse, and their programming models are equally
diverse. For this reason parallel programs written using
architecturally specific extensions to sequential languages tend
to be quite non-portable.

• Have compilers automatically detect parallelism in
sequential language programs.

This approach clearly provides application portability. It
is the case, however, that current parallel compilers often miss
significant parallelism due to the difficulties engendered by
name ambiguity in programs written in today’s sequential
programming languages [EIG91].

• Extend sequential languages to allow data partitionings to
be specified.

One emerging trend is to include declarative partitioning
of data structures in the sequential program formulation and to
ask the compiler to utilize this parallel structure [HIR91]. This
promising method is as yet immature.

The CODE Approach

The approach to medium and coarse grain parallel
structuring in the CODE series of programming environments
[BRO89,WER91], has been to have the programmer express
the parallelism directly and declaratively at a high level of
abstraction by composing macro-level units of computation
into parallel structures in the form of generalized dependence
graphs [BRO85]. These graphs are then automatically
translated into architecture specific code. The syntax of the
"programming language" of CODE is essentially a multigraph,
with the semantics of the nodes and arcs mostly specified
declaratively.

Versions of CODE prior to 2.0 demonstrated considerable
success in ease of use, component reuse [LEE89] and efficiency
of the resulting programs [JAI91], however they implemented
only a rather static version of a unified model of parallel
computation [SOB90]. There were many useful algorithms
which were cumbersome to express in these earlier versions of

2

CODE. CODE 2.0 addresses the expressiveness limitations of
the earlier versions of CODE with what appears on the basis of
limited experimentation to be improved efficiency.

There is, of course, no free lunch in parallel programming.
The goals of expressive power, ease of use and portability on
one hand and efficiency of execution on the other are difficult
to satisfy at the same time. The CODE 2.0 approach exploits
several key technologies and a compromise in order to satisfy
all three. The key technologies and their benefits relative to
CODE 2.0's goals are shown in figure 1.1.

Ease of
Use

PortabilityExecution
Efficiency

Expressive

Integrated
Graphical/
Textual
Interface
Declarative,
Abstract,
Dynamic
Model

Program
Component
Reuse

Hierarchical
Class-based
Model
Basis
Lazy
Creation,
State
Retention
Integration
of Function
and Data
Parallelism

CODE 2.0 Goal

Technol.

Figure 1.1 - CODE 2.0 Goals and Key Technologies

CODE 2.0 is easy to use because it rests upon an
expressive declarative abstract model of parallel computation
and because it has a graphical interface. Users create parallel
programs by drawing a picture showing communication
structure (a graph) and annotating it. There are no complex
parallel programming primitives to learn. This approach also
enhances portability since CODE’s abstract program
representation basis is not tied to any particular architecture.

Execution efficiency is approached by the use of a class
hierarchy to represent the abstract model and by the software
engineering structure of the CODE 2.0 translators. By means
of class refinement, new heuristic translation optimizations
may be added (in general) without rewriting old ones. The
CODE 2.0 translation scheme may be thought of as a grab-bag
of optimizations. This is further explained in section 6.

Also, the CODE 2.0 model is the result of a delicately
balanced compromise between expressiveness and efficiency.
A model that is abstract and powerful, especially in the area of

runtime determined communication structure and data types,
may be easy to use, but is difficult to implement efficiently.
Yet, the model must be abstract and powerful enough to permit
a wide class of algorithms to be conveniently expressed. Much
of the CODE 2.0 design effort has gone into finding the correct
level of abstraction and expressive power to achieve all of the
system’s goals. The attributes of the programming model at
this balance point include the following.

1. User specified parallelism. The system does not have to
automatically discover parallelism. It does have to
automatically exploit it.

2. Declarative expression of algorithm communication and
synchronization structure.

3 . Runtime instantiation of a dynamic set of instances from a
set of types that is fixed at runtime.

4 . Lazy creation of instances. This refers to the fact that no
CODE 2.0 object (node, graph, etc.) is instantiated at
runtime until it is needed. A node is needed when a value
is first placed onto an incoming arc. A side effect of this
is that CODE 2.0 graphs may be recursive.

5 . State retention. Once an instance is created, it is retained
for possible future use and may be used many times. The
cost of using a dynamic set of instances is essentially
equal to the cost of using a static set, once the set is
created.

The dynamic nature of the dependence graphs is
fundamental to the CODE 2.0 model of parallel computation.
Each node and each arc is a member of a type family of nodes
and arcs. An instance of any type known to the system can be
instantiated at any time. Instances are distinguished by integer
valued indices.

A brief discussion of the interaction of dynamic parallel
structuring and efficient execution may help to illustrate these
trade-offs. Very often, parallel algorithms are most readily
expressed as graphs whose structure is input-driven. Hence, the
complete structure is not known until runtime. The structural
parameters which may need to be resolved at runtime may be
the number of occurrences of some unit of computation at a
level of the dependence graph, a choice of what unit of
computation to instantiate, or the pattern of connectivity
among a family of object instances. CODE 1.0 and CODE 1.2
could express only the first type of dynamic structure. One
simple illustration of these circumstances is a block-oriented
parallel algorithm for the solution of a triangular set of linear
equations. The desirable runtime parameters include the total
size of the matrix and the size of the blocks into which it is to
be decomposed. These two parameters together determine the
number of logical units of computation and the connectivity
among the units of computation. CODE 1.2 cannot readily
express the general case of this algorithm. A single CODE 2.0
program easily captures the full dynamic structure of the
algorithm for all cases. The result, however, is that the number
of processes to be created is not known until runtime. A CODE
program that solves this problem is presented in section 7.2.

Processes could be created at the beginning of the
computation by the commonly used early binding strategy, but
this would result in a tremendous waste of space and time. At
the same time, if objects which are likely to be reused, as in
loops in a dependence graph are not saved from iteration to
iteration, the cost of creation becomes very high. The CODE
2.0 strategies of lazy creation and state retention minimize
these overheads. At the same time the declarative graph

3

structure of the program sometimes allows the runtime system
to determine when a point of the graph will definitely not be
revisited so that unneeded node instances can be discarded.

2. CODE 2.0 PROJECT STATUS

The model of parallel computation which is to be
implemented by CODE 2.0 has been defined. A prototype
implementation which utilizes all of the key technologies of
the CODE 2.0 model has been developed and used to test the
effectiveness of the model of computation on several modest
scale programming projects. It translates graphs into parallel
Ada, which is executed on a Sequent Symmetry. The major
omission from the model of parallel computation in the
prototype is a mechanism for sharing names and bound values
among a set of computational elements. The results are
serving as a guide for design and implementation of the next
version of CODE 2.0 implementing the full model of parallel
computation. This version will be available for public
distribution and will be used in classes at The University of
Texas at Austin. The releasable version of CODE 2.0 will be C
(rather than Ada) oriented and will run under X-Windows on Sun
and IBM RS6000 workstations. It will eventually produce
parallel programs for several environments including both
partitioned and shared memory machines.

3. CODE 2.0 USER INTERFACE

The CODE 2.0 user interface will not be discussed in detail
in this paper, although much information about it can be
inferred from the examples in the next section. The interface is
a what you see is what you get graph editor in which nodes and
arcs can be drawn and then annotated by means of filling out
forms.

4. THE CODE 2.0 MODEL

In this section, we present an overview of CODE 2.0's
basic model of computation, mostly by means of a simple
example program. However, some preliminaries are needed.
CODE 2.0 programs consist of a set of graph instances that
interact by means of Call nodes. Graph instances in CODE 2.0
play the role of subroutines in conventional programming
languages. The number and type of the instances is determined
at runtime, but each graph is instantiated from one of a fixed set
of graph templates. When the user draws a graph in the
programming model, he is creating a template, not an instance.
Instances are created at runtime when they are referenced from a
Call node. This concept of dynamic instantiation from fixed
templates is ubiquitous in CODE 2.0. Almost all model objects
work in this way. It is helpful to view the objects the user
creates with the graphical interface as templates for instances
rather than single instances.

Graphs consist of nodes and arcs. Arcs represent channels
for the flow of data from one node to another. They serve as
unbounded (subject to system memory constraints) FIFO
buffers. There are several types of nodes. They are shown in
figure 4.1. As alluded to before, Call nodes specify arc
connections to other graph instances. Interface nodes specify
points at which a called graph can connect to another graph.
Unit of computation nodes (UCs) represent basic sequential
computations. Hence, they are the fundamental elements from
which parallel programs are assembled. They consume data
from incoming arcs, perform a computation, and place data
onto outgoing arcs for other nodes to consume.

Figure 4.1 - CODE 2.0 Node Types

UC nodes have a large number of attributes. For example,
the node’s computation is expressed as a call to a subroutine in
a conventional sequential language, and input rules specify
conditions under which this computation is allowed to execute.
UC nodes also have input and output ports for the
communication of data to and from the node. Arcs are bound to
specific ports. Hence, multiple arcs may enter or leave a node
without ambiguity. Figure 4.2 shows an example.

.

X

Y

input_rules {
 avail(X) => v = val(X)}
comp {
 Invert(v);}
output_rules {
 TRUE => Y = v;}

Figure 4.2 - Example UC Node

This example node has input port X and output port Y. The
node may execute when there is a value available on the
incoming arc bound to X. The value is placed into variable v
and inverted by the node's computation, which is a call to a
user-supplied sequential routine. Finally, the value is placed
onto the outgoing arc bound to Y. UC nodes are further
explained in section 4.3.

Multiple arcs may connect two nodes. Hence, CODE
graphs are actually multigraphs. An extended example follows.

4.1 AN EXAMPLE PROGRAM: SGRID

Due to space considerations, the complete CODE 2.0
model of computation will not be presented [NEW91]. Instead,
a simple example program will be used to demonstrate the most
important aspects of the model. These include

1 . Graph-based declarative model structure.
2 . Hierarchical structuring via distinct graph instances

interacting through Call nodes.
3 . User-specified execution conditions for UC nodes.
4 . Methods for specifying runtime determined communication

patterns.

4

The example program is based loosely on a program in
chapter two of [LUS87]. It computes values on a grid
(represented as a 2-dimensional array) that satisfy Laplace’s
equation given fixed values on the boundaries of the grid. The
algorithm is shown in figure 4.3.

Repeat Goal times:
 For each interior cell, set
 cell value to the mean of
 neighboring cell values.

Fixed value on
boundary.

Interior cell.

Figure 4.3 - Example Algorithm

This computation is readily parallelized by partitioning the
rows to be updated during each iteration among the processors
available.

4.2 HIERARCHICAL STRUCTURING

The CODE 2.0 program consists of two graphs, main and
Laplace (see figure 4.4). Graph main reads input values and
calls Laplace via Call node CallLaplace to compute the
grid, which it then prints. Node ReadInputs is the first to
execute. It reads from the user’s terminal the size of the grid,
the number of iterations, and the number of processors and
places this information onto arcs S, Goal, and NProcs.
These arcs are actual input parameters to graph Laplace. The
arc leaving CallLaplace (arcs need not have names) is an
actual output parameter.

A separate graph instance is associated with each Call
node. Hence, there can be many instances of a graph in a
program. For example, there could be two Call nodes in main,
both calling Laplace. Then, there would be two instances of
graph Laplace created. In fact, the number of graph instances
need not be determined until runtime. This is because Call
nodes may be replicated at runtime and because graphs may be
recursive.

Actual parameters from main are bound to formal
parameters in Laplace. There are two varieties of formal
parameters in the CODE 2.0 model, creation parameters which
are not displayed graphically and interface nodes which are
represented by small circles. Interface nodes simply represent
the binding of arcs. For example, actual parameter arc Goal in
main is bound to interface node Goal in Laplace. This
means that the goal number of iterations is passed from
ReadInputs in main to InitMat in Laplace.

Graph Laplace (figure 4.5) has two creation parameters,
S (the size of the grid) and NProcs (the number of processors
to use for the main part of the computation). Creation
parameters are given values exactly once when the graph
instance that contains them is created at runtime. Hence, a
graph cannot be created until values are placed on all actual
parameter arcs that are bound to its creation parameters. When

Figure 4.4 - Graph main

a graph is created, its creation parameters become constants in
the scope of all nodes in the graph. This provides a convenient
mechanism to broadcast values to all of the nodes in a graph
upon their creation. Creation parameters are often used to
create a graph instance at runtime to solve a problem of runtime
determined size.

Figure 4.5 - Graph Laplace

Computation nodes in CODE 2.0 have user-supplied input
firing conditions that determine the states in which node
execution is permitted. Node InitMat’s rule permits it to fire
whenever a value is present on its incoming arc. When it fires,
it allocates storage for the grid and partitions it by rows into
NProcs pieces. Node LoopControl has input and output
rules that cause it to act as a “for” node. It causes node family
Comp to execute NProcs times, after which it passes the grid
out of the graph. In the production version of CODE 2.0, the
programming model will provide loop control nodes as
primitive model elements.

5

There are NProcs copies of node Comp instantiated at
runtime. The “[*]” by node Comp is a comment indicating
that the node is instantiated more than once. These nodes
perform the main computation, each acting on a piece of the
grid extending from StartRow to EndRow. Of course,
separate values of StartRow and EndRow are sent to each
instance of Comp.

4.3 COMPUTATION NODES AND FIRING RULES

Let us now concentrate on the definition of a unit of
computation node and the rules that define its execution
conditions. Although node execution is to be considered as an
atomic transition of the node and its incident arcs into a new
state, node definitions consist of three principal parts, a set of
input rules, a computation, and a set of output rules. A node’s
firing conditions are determined by its input and output rules,
both of which consist of sets of Guard => Binding pairs. Figure
4.6 shows an example computation node with two input ports
X1 and X2 and one output port Y . Variable v is local to the
node.

X1
X2

Y

input_rules {
 avail(X1) => v = val(X1);
 avail(X2) => v = val(X2); }
comp {
 AddOne(v); }
output_rules {
 v > 0 => Y = v; }

.

Figure 4.6 - Computation Node

A computation node becomes eligible to fire when one or more
of its input rule guards become TRUE and the corresponding
rule(s) become enabled. At that point one of the enabled rules
is selected nondeterministically, and its binding section
executes. Function avail returns TRUE if and only if the its
argument port contains a value. Function val returns that
value and removes it from the arc as a side effect.

Rule guards are not limited to single terms, but their
syntax differs from general Boolean expressions. The property
that is required is that a guard must remain TRUE once it
becomes TRUE, at least until its node fires. We call this
property “monotonicity.” Hence a guard like “the incoming
arc is empty” cannot be allowed. Our experience shows that
extremely complex guards are almost never required in practice
so guard syntax in the CODE 2.0 prototype is further
constrained. The rule syntax is

E1, E2, ..., En

where “,” should be read as AND. The E’s are either general
Boolean expressions in the node’s local variables, or in the
case of input guards they may be calls to the avail function.
In addition, there is a mechanism for specifying indexed
replications of rules and rule terms. An example of this is
given in section 4.4.

After input binding is complete, the node’s computation
begins. Computations are expressed as subroutines in
conventional languages such as C. When the computation
returns, the output rule guards are evaluated. Binding sections
for all enabled rules are executed. The notation “Y = v” means
place the value bound to v onto the arc denoted by Y.

4.4 RUNTIME DETERMINED STRUCTURES

Very often, parallel algorithms are most readily expressed
as graphs whose structure is input-driven. Hence, the structure
is not known until runtime. Graph Laplace provides a simple
example and will be discussed below. The block triangular
solver program of section 7.2 provides a somewhat more
complex example.

 Graph Laplace’s communication structure is not known
until runtime because the number of Comp nodes is determined
by an input parameter (NProcs) to the graph. The structure
created at runtime is shown in figure 4.7. For simplicity, we
will ignore all incoming arcs to Comp except that which
carries the current iteration count. Call this arc GoalIn ,
according to the name of the port in Comp to which it is
connected.

LoopControl

Sync

Comp[0] Comp[1] Comp[NProcs-1]

GoalOut

GoalIn

...

Figure 4.7 - Structure of Comp Family in Laplace

Comp is a family of nodes, and the “arcs” incident upon it
represent a family of arcs. Such dynamic structures are
specified in CODE 2.0 by an interaction of input rules, output
rules, and arc topology specifications associated with arcs.

First, consider the LoopControl output rule that passes
the current iteration count to the Comp nodes.

Goal > 0 => {GoalOut[i] = Goal : (i NProcs)}

GoalOut is LoopControl ’s name for the port bound to the
arc going to Comp, and Goal is the iteration count. The
expression “(i NProcs)” is a replicator that causes the binding
to be done for values of “i” from 0 to NProcs-1.

Arc topology specifications determine where data should
be sent when placed onto an arc, given where it originates. The
arc between LoopControl and Comp has the following
specification. (Actually the node name is supplied by
graphical context.)

LoopControl.GoalOut[i] => Comp[i].GoalIn

Hence, if a value is placed onto the port with name
LoopControl.GoalOut[7] , then that value will be passed
to port G o a l I n of node C o m p [7] . This causes node
Comp[7] to be created if it is not already instantiated. In this
manner, arbitrary communication topologies can be built at
runtime.

5. PROGRAM COMPONENT REUSE

CODE graphs form a natural unit for program fragment
reuse because they have clean and complete interface
specifications. This has been explored with the ROPE system

6

[LEE89], which is coupled to earlier versions of CODE. We
plan to incorporate an updated ROPE system into CODE 2.0
that will take advantage of its ability to package types with
graphs.

6. FRAMEWORK FOR EFFECTIVE TRANSLATION

Abstract models of parallel computation are not useful
unless they can be translated into efficient executable
structures, preferably on multiple target architectures. CODE
2.0’s implementation addresses this issue by raising the level
of abstraction at which translators are defined. In particular,
the CODE 2.0 model of computation is defined and
implemented as a class hierarchy. Translators are defined as
methods bound to the various classes in the hierarchy. The key
aspect of this is that the translators associated with the various
classes in the hierarchy are relatively decoupled. Thus, it is
possible to alter a translator without drastic modifications to
other translators. The classes are used more for their
information hiding properties than for inheritance. Figure 6.1
shows the top few layers in the class hierarchy.

Program

Graph

Collection

Node

Collection

Node Node

¥¥¥

Figure 6.1 - CODE 2.0 Class Hierarchy

A program consists of a set of graphs, a graph is a set of
collections, and so on.

The translation process uses the class hierarchy in a
manner that is roughly analogous to code improvers for
traditional languages like Fortran. The objective is to
recognize and produce special optimized code for special case
programming constructs. CODE 2.0’s implementation permits
classes to be defined for each special case. Optimized
translation methods are then bound to the new classes. The
process of adding classes to the hierarchy and defining new
translation methods for them is called translation refinement.
It involves preparing a new class and a new translation method
and recompiling the CODE 2.0 system.

Of course, one needs to determine which special case
constructs should be given optimized translation methods. Our
experience with previous versions of CODE suggests that
CODE programming is quite idiomatic, at least within the
scientific problem domains we have studied chiefly. Hence,
interesting special constructs are easy to find. Many of the
most important are subgraphs (node collection classes). Figure
6.2 shows two examples.

Sequences of nodes for which pipeline parallelism is
impossible or undesirable should be translated into a sequence

Sequence translates to
Call A(...); Call B(...);

Translate using barrier
constructs.

A

B

¥ ¥ ¥

Figure 6.2 - Special Node Collections

of calls to their sequential computations. No intertask
communication should be done. The common pattern of
splitting data, computing, and joining can often be
implemented with tailor-made barrier primitives.

Other special cases are more local in nature since they
involve only a single node or arc. Some examples are listed
below.

• Nodes with special firing rules-- especially pure dataflow
rules in which values on all input arcs are needed for firing.

• Situations such as program SGRID in which values need not
be copied on shared memory machines when passed from
node to node.

• Situations in which no more than one value may appear on
an arc so that buffering is not needed.

The buffering optimization is partially implemented in the
prototype. We can examine its effect on the simple graph
fragment shown in figure 6.3. Actual Ada code is given in
Appendix A. A single arc is bound to port X of a single node.
The node is enabled when there is a value on the arc.

X .

Figure 6.3 - A Simple Graph Fragment

If the buffering optimization is not applied, the CODE 2.0
prototype produces the Ada code shown by the pseudocode in
figure 6.4. There is an Ada task associated with the node and
the incoming arc. This task must do a rendezvous to accept an
incoming value on

Node Task:

select
 accept X do
 enqueue value;
 end;
 check input rules;
or when rule is true =>
 accept StartComp;
or accept EndComp;
 *
 *
end;

StartComp;
Call SeqComp;
EndComp;

Compute Task:

Figure 6.4 - Unoptimized Ada Pseudocode for Fragment

the arc. It must then locally enqueue the value, and accept two
rendezvous from a second task that performs the sequential
computation. In total, the following resources are required.

7

• Two tasks.
• Node internal queueing.
• Three rendezvous.

However, if the system can assume that no more than one
value will reside on the arc, much better code can be generated.
This case is quite common because it is caused by loop
recurrences. Figure 6.5 shows the Ada code that is produced.

Node Task:
select
 accept X
 Call SeqComp;
 *
 *
end;

Figure 6.5 - Optimized Ada Pseudocode for Fragment

Now, we use one task instead of two, have no internal queuing,
and do one rendezvous instead of three. Since we have found
that the rendezvous count is the most significant overhead on
our system, this simple optimization has cut the node’s
overhead by a factor of three. Measurements showing the
effectiveness of this are presented in the next section.

In general, experiment and measurement as well as our
intuition will be used to identify candidates for optimization.
CODE 2.0 translators will be able to insert instrumentation
into the code they produce in order to measure its performance
and find bottlenecks. It is expected that this instrumentation
applied to a benchmark suite of programs will supply valuable
insights.

7. EXAMPLES AND PERFORMANCE RESULTS

The process of finding optimizations begins with
measuring and modeling (or in some way understanding the
performance) of benchmark programs and evaluating the
performance of the executable structures that CODE 2.0
generates. In order to do this, we develop three versions of
each algorithm under study.

1 . A sequential program (using a straightforward but high
quality algorithm).

2 . A hand-coded parallel program tailored to the target
architecture.

3 . A CODE 2.0 program.

Using these three programs, we can compute speedups
relative to the sequential program and compare the CODE 2.0
program with a hand-coded parallel program. This latter
comparison yields the overhead of the CODE 2.0 abstractions.
We have performed such experiments on several small
programs using the CODE 2.0 prototype. The results are
distinctly encouraging, although it must be admitted that the
benchmark problems are simple and that Ada is a reasonably
easy target due to the high execution time cost of the
rendezvous primitive. One noteworthy result of the prototype
is that it produces code that is at least as efficient as that
produced by earlier versions of CODE despite a much more
dynamic model. The production version of CODE 2.0 will be C
oriented, will utilize many more optimizations, and will be
used for larger experiments.

7.1 SGRID (LAPLACE PROGRAM)

Performance results have been obtained for the Laplace
grid example described in section 4.1. Since the CODE 2.0
prototype produces Ada, both the sequential grid program and
the hand-coded parallel version were also written in Ada. All
programs were run on a Sequent Symmetry shared memory
MIMD machine and timed with the UNIX “time” facility. The
grid size is 100 x 100. Initial results for NProcs = 7 showed
that the hand-coded parallel version has a speed up of 5.2 as
compared with 4.5 for CODE 2.0, a 16% difference.
Measurement indicated that rendezvous on the Symmetry are
quite expensive and that performance could be dramatically
improved by reducing the rendezvous count. Applying the
buffering optimization accomplishes this, so translation
methods for it were implemented. The optimized CODE 2.0
program ran with a speed up of 5.1, a 2% percent difference.
Speed ups for the three programs are shown in figure 7.1.

86420
0

2

4

6

8

Hand Coded
CODE Opt
CODE Unopt

Ideal

Grid example speedups
relative to sequential
program

Value of NProc

S
p

e
e

d
u

p
 (

fr
o

m
 t

im
e

)

Figure 7.1 - Grid Program Performance

Remaining performance bottlenecks for both the hand-coded
and CODE versions include the high cost of the rendezvous
operation and some I/O done by our particular Ada
implementation at program termination time. If this latter
factor is discounted, 7 processor speedups are

Hand-Coded: 5.8
CODE 2.0 Optimized: 5.60
CODE 2.0 Unoptimized: 4.9

7.2 BLOCK TRIANGULAR SOLVER

This section contains an example program that solves the
Ax = b linear algebra problem for a known lower triangular
matrix A and vector b. The parallel algorithm is quite simple
and is due to Jack Dongarra and Danny Sorenson. It involves
dividing the matrix into blocks as shown in figure 7.2. The
inputs to the algorithm are A, b, the size of the system, and the
size of the block system used to partition it. In figure 7.2, the
S’s represent lower triangular submatrices that are solved
sequentially, and the M’s represent submatrices that must be
multiplied by a vector. The arcs represent the dependences
between these operations. Let the block system be of size sb x
sb and note that the vector multiplications for all M’s within a
column may be done in parallel. This parallelism yields an
ideal speedup of sb/3, for large values of sb.

8

S1

S2

S3

M11

M12 M22

• Lower triangular matrix partitioned into a
 3 x 3 block system.
• S's are small lower triangular systems that are
 solved sequentially.
• M's are blocks that must be multiplied by a
 vector.
• Arrows show flow of the CODE 2.0 program.
 Note that M11 and M22 multiplications may be
 performed in parallel.

Figure 7.2 - Parallel Block Triangular Solver

The CODE 2.0 program for this example consists of three
graphs, the main graph, a graph that defines A and b, and a
graph that solves the system. We will concentrate solely on
the latter. A, b, and x are passed to the graph as creation
parameters. (It would be better to use a name sharing relation,
at least for A, but they are not implemented in the CODE 2.0
prototype.) Figure 7.3 shows the graph.

Figure 7.3 - Block Triangular Solver Graph

In this graph, a single instance of node solve performs all of
the S operations, one after another, and sb - 1 instances of node
blkmult perform the M’s. Hence, the arc control implies an
iteration. First S1 is done and then M1,j for j = 1..sb-1. Then
S2 is done followed by M1,j for j = 2..sb-1, and so on. Since
the block system size is an input to the program, the number of
blkmult nodes to create is not determined until runtime. In
addition, sb determines the number of times each node fires so
this is also not known until runtime.

Figure 7.4 shows the ideal speedup and the speedups of the
CODE 2.0 and hand-coded parallel program for a matrix of size
420 x 420.

86420
0

1

2

3

Hand Coded

CODE Opt

Ideal

Block Triangular Solver
Matrix Size 420 x 420
Time less I/O

Block System Size
S

pe
ed

up
 F

ro
m

 C
al

en
da

r
Figure 7.4 - Block Solver Speedups

The CODE 2.0 program is actually faster than the hand-coded
program which was done by a graduate student (unrelated to the
CODE 2.0 project) at the University of Texas at Austin.
Timings used to compute these speedups include only the
solving of the system, not I/O. (Due to the slow speed of naive
I/O in Ada on our system, this problem is I/O bound.) The
programs were run on a Sequent Symmetry.

The relatively slow speed of the hand parallelized program
may be surprising. Of course, it is the case that this program is
not optimally written, at least not as far as performance is
concerned. It is a subjective point, but the hand written
program is elegant and stylistically natural given the Ada
model. Perhaps abstract parallel programming can sometimes
produce faster code than low-level parallel programming just as
sequential programs written in high-level languages sometimes
run faster than assembly language programs-- because they are
better structured at a high level.

8. CODE PROJECT HISTORY

The CODE project has been underway at the University of
Texas at Austin for several years, and CODE 2.0 is based on
lessons learned from much previous work-- in particular the
CODE 1.2 system [WER90]. The fundamental intellectual basis
of CODE 2.0, the use of a declarative graph-based abstract
model of computation, is directly inherited from previous
CODE systems as is the concept of graphical component reuse
[LEE89].

However, CODE 2.0 expands on previous CODE systems
in many ways. It’s model has been completely rethought to
place greater emphasis on runtime determined structures,
program modularity, and a wide set of data types. This
significantly expands the class of algorithms that can be
effectively and efficiently expressed under the CODE model. In
addition, CODE 2.0 has been implemented from scratch using
more modern tools such as the GUIDE user interface toolkit.
Also, the CODE 2.0 project places greater emphasis on
execution efficiency. Key features of the new CODE 2.0 model
include the following.

9

• Runtime determination of structure via template instant-
iation.

• User supplied Input and Output rules.
• Hierarchical structuring via Call nodes and runtime instant-

iated graphs.
• Clean name scoping and improved type system.

9. RELATED PROJECTS

There are several other graphical parallel programming
systems in various stages of development. Each of these
systems tends to have its own particular strengths and goals.
We mention a few that are relatively closely related to CODE
2.0. CODE 2.0’s particular strengths include a powerful node
firing condition syntax, support for graphs with runtime
determined structure, and a framework for the creation of
optimized parallel code generators.

One of the more interesting and current systems is HeNCE
[BEG91a]. This system permits programs represented as
graphs to be run intelligently on a heterogeneous network of
computers using the PVM system [SUN90]. HeNCE has an
integrated tool for tracing and analyzing a program’s
execution. However, CODE 2.0’s node firing conditions are
more flexible and it is able to realize more complex graphs
with runtime determined structure-- arbitrary cyclic and
recursive graphs with fixed node types. In addition, CODE 2.0
supports hierarchical structuring by means of the graph Call
node.

Phred [BEG91b] is related to HeNCE but stresses
determinacy and makes use of separate control and dataflow
graphs to define a computation. The Paralex system [BAB92]
is less expressive than CODE 2.0 or HeNCE but stresses fault
tolerance and dynamic load balancing. The PPSE system
[LEW90] places emphasis on providing full lifecycle support
for parallel program development. Its definition includes tools
for parallelizing sequential Fortran programs, graph editing,
program scheduling, code generation, performance analysis,
and debugging. The GILT system by Roberts and Samwell of
City University, London, U.K. is oriented towards Occam
programming, and GRAPE [LAU90] has a digital signal
processing orientation (while still useful for general purpose
programming) and is the target of a debugger effort. The
ParaGraph system [BAI91] uses graph grammars to specify
graphs that have runtime determined structure. The emphasis is
on massively parallel systems.

 In addition, W. Mayne [MAY92] is exploring a system with a
more expressive mechanism for describing node firing
conditions than that used by CODE 2.0. This system permits
guard priorities, for example. The system is also designed to
facilitate proofs of determinacy. There is no implementation at
this time.

10. CONCLUSIONS AND FUTURE WORK

The CODE 2.0 parallel programming system has three
goals: ease of use, portability, and production of efficient
executable structures. A number of technologies are exploited
in order to achieve these goals. A graphical/textual user
interface with hypertext online help and integrated support for
program component reuse promote ease of use. Portability is
approached by means of an abstract model of parallel
computation that cleanly isolates program communication and

synchronization structure from primitive sequential
computations. In addition, the high level of abstraction is
appropriate to the programming process and, hence, supports
ease of use.

Execution efficiency is approached through a hierarchical
object-based model representation basis that supports the
concept of translation refinement. Ubiquitous special case
programming structures with significant performance
implications may be singled out and given custom translation
methods. An experimental approach is used to identify such
special cases. The use of object semantics and translation
method inheritance assists in the software engineering of
modules that translate instances in the abstract model into
executable structures.

A Prototype of CODE 2.0 is running and has produced
encouraging results for a relatively easy (from a performance
point of view) target architecture, Ada on a shared memory
MIMD machine. Future plans include the creation of a
production version of CODE 2.0 that will support multiple
MIMD shared and partitioned memory target architectures. In
addition the ROPE graph reusability system will be coupled
with CODE 2.0. It is expected that the flexibility of the CODE
2.0 model will promote graph reuse.

APPENDIX A - ADA CODE FOR EXAMPLE

--- Ada Code without the buffer optimzation

 task body MAIN2 is -- UC
 *
 *
 *
 procedure CHECKFIRERULES is
 YYEMPTY : BOOLEAN;
 begin
 RULETRUE := FALSE;
 YYEMPTY := TRUE;
 if not (X_ILIST.SAT(
 NM(0, 0, 0, 0, 0, 0, 0, 0))) then

goto BEGRULE9;
 end if;
 YYEMPTY := FALSE;
 if YYEMPTY then

goto BEGRULE9;
 end if;
 RULETRUE := TRUE;
 VARSLOCKED := TRUE;
 V := X_ILIST.VAL(
 NM(0, 0, 0, 0, 0, 0, 0, 0));
 return;

 <<BEGRULE9>>
 null;
 return;
 end CHECKFIRERULES;

 -- NOTE: This is a Task
 task body COMPUTE is
 *
 *
 *
 begin
 accept INIT; -- Sync non-locals
 loop

1 0

MYADDR.STARTFIRE(KILLED); -- Extra Rend.
exit when KILLED;
null;
MAININST.KILL;
MYADDR.ENDFIRE; -- Extra Rend.

 end loop;
 end COMPUTE;

 begin
 accept INIT(THEINDS : in SNAME;

THEADDR : in MAIN2_PTR;
THESERVADDR : in GENERIC_PTR) do

 NODE := THEINDS;
 MYADDR := THEADDR;
 MYADDRSERVER := THESERVADDR;
 end INIT;
 loop
 if not VARSLOCKED then

CHECKFIRERULES;
 end if;
 select

terminate;
 or

accept KILL;
KILLED := TRUE; -- tell it to compute

 or
when RULETRUE or KILLED =>
 accept STARTFIRE(KVAL : out BOOLEAN)

 do
 KVAL := KILLED;
 end STARTFIRE;

 or
accept ENDFIRE;
VARSLOCKED := FALSE;

 or
accept CREPARAMS do
 null;
end CREPARAMS;
null;
COMPUTE.INIT;
VARSLOCKED := FALSE;

 or
accept X(VAL : in INTEGER;

 THENAME : in SNAME) do
 X_ILIST.INSERT(THENAME, VAL);
end X;

 end select;
 end loop;
 end MAIN2;

 -- Ada Code with the buffer optimization

 task body MAIN2 is -- UC
 *
 *
 *
 procedure CHECKFIRERULES is
 YYEMPTY : BOOLEAN;
 begin
 RULETRUE := FALSE;
 YYEMPTY := TRUE;
 if not (X_ILIST.SAT(
 NM(0, 0, 0, 0, 0, 0, 0, 0))) then

goto BEGRULE0;
 end if;
 YYEMPTY := FALSE;

 if YYEMPTY then
goto BEGRULE0;

 end if;
 RULETRUE := TRUE;
 VARSLOCKED := TRUE;
 V := X_ILIST.VAL(
 NM(0, 0, 0, 0, 0, 0, 0, 0));
 return;

 <<BEGRULE0>>
 null;
 return;
 end CHECKFIRERULES;

 -- NOTE: This is not a task.
 procedure COMPUTE is
 *
 *
 *
 begin
 null;
 MAININST.KILL;
 return;
 end COMPUTE;

 begin
 accept INIT(THEINDS : in SNAME;

THEADDR : in MAIN2_PTR;
THESERVADDR : in GENERIC_PTR) do

 NODE := THEINDS;
 MYADDR := THEADDR;
 MYADDRSERVER := THESERVADDR;
 end INIT;
 loop
 if not VARSLOCKED then

CHECKFIRERULES;
 end if;
 if VARSLOCKED and RULETRUE then

COMPUTE;
VARSLOCKED := FALSE;

 end if;
 select

terminate;
 or

accept KILL;
KILLED := TRUE; -- tell it to compute

 or
accept CREPARAMS do
 null;
end CREPARAMS;
null;

 VARSLOCKED := FALSE;
 or

accept X(VAL : in INTEGER;
 THENAME : in SNAME) do

 X_ILIST.INSERT(THENAME, VAL);
end X;

 end select;
 end loop;
 end MAIN2;

1 1

REFERENCES

[BAB92] Ö. Babaoglu, Paralex: An Environment for Parallel
Programming in Distributed Systems, to appear in
Proc. ACM Int. Conf. on Supercomputing, July,
1992.

[BAI91] D.A. Bailey, et al., ParaGraph: Graph Editor
Support for Parallel Programming Environments,
International Journal of Parallel Programming,
Apr., 1991.

[BEG91a] A. Beguelin, et al., Graphical Development Tools
for Network-Based Concurremt Supercomputing,
Proc. Supercomputing ‘91, Albuquerque, NM, pp.
435-444, 1991.

[BEG91b] A. Beguelin and G. Nutt, Collected Papers on Phred,
Dept. of Computer Science, Univ. of Colorado, CU-
CS-511-91, Jan., 1991.

[BRO85] J.C. Browne, Formulation and Programming of
Parallel Computers: a Unified Approach, Proc.
Intl. Conf. Par. Proc., 1985, pp. 624-631.

[BRO89] J.C. Browne, M. Azam, and S. Sobek, CODE: A
Unified Approach to Parallel Programming, IEEE
Software, July, 1989, p. 11.

[BRO90] J.C. Browne, J. Werth, and T.J. Lee, Experimental
Evaluation of a Reusability Oriented Parallel
Programming Environment, IEEE Trans. Soft.
Engin., Vol. 16, No. 2, 1990.

[EIG91] R. Eigenmann, and W. Blume, An Effectiveness
Study of Parallelizing Compiler Techniques, Proc.
Intl. Conf. Par. Proc., 1991, pp. II 17-25.

[HIR91] S. Hiranandani, K. Kennedy, and C.-W. Tseng,
Compiler Support for Machine-Independent
Parallel Programming in Fortran D, Rice
University, CRPC-TR91132, 1991.

[JAI91] R. Jain, J. Werth, and J.C. Browne, A n
Experimental Study of the Effectiveness of High
Level Parallel Programming, Proc. 5th SIAM Conf.
Par. Processing, 1991.

[LAU90] R. Lauwereins, et al., GRAPE: A CASE Tool for
Digitial Signal Parallel Processing, IEEE ASSP
Magazine, Apr. 1990.

[LEE89] T.J. Lee, Software Reuse in Parallel Programming
Environments, PhD thesis, University of Texas at
Austin, Dept. of Comp. Sci., 1989.

[LEW90] T.G. Lewis and W. Rudd, Architecture of the Parallel
Programming Support Environment, Proc.
CompCon’90, San Francisco, CA, Feb. 26 - Mar.
2, 1990.

[LUS87] E. Lusk, R. Overbeek, et al., Portable Programs for
Parallel Processors, Holt, Rinehart, and Winston,
New York, 1987.

[MAY92] W. Mayne, Florida State University, personal
communication, Apr. 1992.

[NEW91] P. Newton, CODE 2.0 Prototype, unpublished
internal documentation, University of Texas at
Austin, July 16, 1991.

[SOB90] S. Sobek, A Constructive Unified Model of Parallel
Computation, PhD thesis, University of Texas at
Austin, Dept. of Comp. Sci., 1990.

[SUN91] V.S. Sunderam, PVM: A Framework for Parallel
Distributed Computing, Concurrency: Practice and
Experience, 2(4):315-339, Dec., 1990.

[WER90] J. Werth, et al., CODE 1.2 User Manual and
Tutorials, Tech. Report TR-90-35, Univ. of Texas
at Austin, Dept. of Comp. Sci., Nov., 1990.

[WER91] J. Werth, et al., The Interaction of the Formal and
Practical in Parallel Programming Environment
Development: CODE, Tech. Report TR-91-09,
Univ. of Texas at Austin, Dept. of Comp. Sci.,
1991.

