DISTRIBUTED EXECUTION ENVIRONMENTS
FOR THE CODE 2.0
PARALLEL PROGRAMMING SYSTEM

APPROVED BY
SUPERVISING COMMITTEE:

Copyright
by
Rajeev Mandayam Vokkarne

1995

To my parents

DISTRIBUTED EXECUTION ENVIRONMENTS
FOR THE CODE 2.0
PARALLEL PROGRAMMING SYSTEM

by

RAJEEV MANDAYAM VOKKARNE, B. E.

THESIS
Presented to the Faculty of the Graduate School of
The University of Exas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXASAT AUSTIN

May 1995

Acknowledgments

| would like to thank my advisor Professor J. C. Browne for his con-
stant encouragement and guidance. He was a great source of ideas as well as
inspiration.

Also, | would like to express my gratitude to Dr. Peter Newton who
helped me understand the CODE system and outlined a basic framework for
my thesisimplementation. He has also been of great help at every stage of my
thesiswork.

| would like to thank Dr. John Werth for histime and suggestions.

| would also like to thank Dr. Syed Irfan Hyder for valuable discus-
sions and suggestions.

Finally, | would like thank my parentsfor being very supportive of me.

DISTRIBUTED EXECUTION ENVIRONMENTS
FOR THE CODE 2.0
PARALLEL PROGRAMMING SYSTEM

Rajeev Mandayam Vokkarne, M.A.
The University of Texasat Austin, 1995

Supervisor: James C Browne

Writing parallel programs which are both efficient and portable has
been amajor barrier to effective utilization of parallel computer architectures.
One means of obtaining portable parallel programsisto express the parallel-
ism in adeclarative abstract manner. The conventional wisdom isthat the diffi-
culty of translation of abstract specifications to executable code leads to loss
of efficiency in execution. Thisthesis demonstrates that programs written in
the CODE 2.0 representation where parallel structureis defined in declarative
abstract forms can be straightforwardly compiled to give efficient execution
on the distributed execution environment defined by the Parallel Virtual Ma-
chine (PVM) system.

The CODE 2.0 model of programming casts parallel programs as dy-
namic hierarchical dependence graphs where the nodes are sequential compu-
tations and the arcs define the dependencies among the nodes. Both
partitioned and shared name spaces are supported. This abstract representation
of parallel structureisindependent of implementation architecture. The chal-
lengeisto compile this abstract parallel structure to an efficient executable
program. CODE 2.0 was originally implemented on the Sequent Symmetry

Vi

shared memory multiprocessor and was shown to give executable code which
was competitive with good hand coded programsin this environment.

Thisthesis demonstrates that CODE 2.0 programs can be compiled for
efficient execution on adistributed memory execution environment with a
modest amount of effort. The environment chosen for this demonstration was
PVM. PVM was chosen becauseit is available on avariety of distributed mem-
ory parallel computer architectures. Development of the translator from
CODE 2.0 to the PVM execution environment required only a modest amount
of effort. Translationsto other distributed execution environments can proba-
bly be accomplished with afew man-weeks of effort. The efficiency of the exe-
cutable is demonstrated by comparing the measured execution time of several
parallel programsto hand-coded versions of the same algorithms.

Vil

Table of Contents

List of Tables
List of Figures
Chapter 1. Introduction
11 CODE 2.0
1.2 PVM
13 Distributed Execution Environment
14 Experimental Results
15 Related Work
Chapter 2. Overview of CODE and PVYM
21 CODE

211 A Simple Example Program

212 CODE Elements Are Actually Templates

21.3 Other CODE Nodes

214 Trangdlating and Running CODE Programs
2.2 PVM

Chapter 3. Design

3.1 Overview

3.2 Distribution of Work

3.3 Address Tables

34 Name Resolution

35 Creation Parameter Nodes
3.6 Name Sharing Relations

3.6.1 Distribution of Name Sharing Relations

3.6.2 Distributed Access of Shared Variables

3.6.3 Deadlock Avoidance

3.64 Locking Mechanism for Shared Variables
3.7 Data flow and Messaging

371 Data transfer messages from UC to UC/Crep

3.7.2 Datatransfer on return from graphs

373 Request access to non-local shared variable

3.74 Access approval for non-local shared variable

3.75 Release access to non-local shared variable

3.7.6 Request to enqueue UC instance for firing

3.7.7 Request to terminate run

Chapter 4. Implementation

viii

x

x.

gagolr o0 AP OWDNDN -

4.1

4.2

4.3

4.4
441
4.4.2
4.4.3
444
445

4.5

4.6

4.7

4.8
48.1
4.8.2
4.8.3

4.9

4.10

Chapter 5.

5.1

5.2

5.3

5.4
54.1
54.2
5.4.3

5.5

Chapter 6.

6.1
6.2
6.3

Chapter 7.

Appendix A.
Bibliography

Vita

Abstract Syntax Tree
Structure of Output
Structured Files

Runtime Representation of CODE elements

Unit of Computation (UC)
Graph / Call Node
Name Sharing Relation (NSRel)
Creation Parameter Node (CreP)
Interface Nodes

Mapping Routine

PVM Scheduler

UC Computation

Data flow
Data flow from UC to UC
Data flow from UC to CreP
Data flow between UC and NSRel

Message Handling

Linking and Running

Experimental Results

Goal
Set Up
Execution Environment
Example Programs
The Block Triangular Solver
The Life program
The Barnes-Hut Algorithm
Synthetic Benchmark

Related Work

HeNCE
Linda
Others

Conclusion and Future Work
Relevant PVM Primitives

31
33

35
35
38
39
41
41
41
41
42
43
43
48
51
56
58

59

59
59
59
60
60
61
62
63

67

67
68
69

70
71
72
74

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.

List of Tables
Block Triangular Solver Timings.
Life Program Timings.
Barnes-Hut Algorithm Timings.

Varying Communication with fixed Computation.
Varying Computation with fixed Communication.

Synthetic Benchmark Timings.

60
61
62

65
66

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.

List of Figures
A CODE Program.
UC Node Attribute Form.
A Dynamic Computation Structure.
Another Integration Program.
All CODE Node Types.
VectMult Graph.
Name Sharing Relation Example.
Main Graph of Sample CODE Program.
Graph Fact of Sample CODE Program.
A ssimple CODE graph.
Runtime Mapping of CODE elements of Fig 3-3.
Abstract Syntax Tree.

AST nodes place text into output files ([New93d]).

Example Structured File.

Runtime Representation of UC, Graph & NSRel.
Example Data flow Send.

Files Linked for PVM.

Xi

13
14
15
16
19
24
24
26
27
32
33

35

58

Chapter 1. Introduction

New parallel computer architectures have the capability of performing
very high speed computation. Howey#trey usually der tools and primitives
which are architecture and implementation-specMVriting parallel pro-
grams which are both ®éient and portable is often a contradictory goal. It is
often the case that programs that run veficeintly under one parallel archi-
tecture are not portable to another architecture. Architectures for parallel com-
puters are still changing rapidlyloving to a new parallel architecture often
entails rewriting all existing programs. Thidsdts the bends of moving to a
newer and better architecture.

To help ease the burden of moving across architectures, the program-
ming of these machines must be decoupled from the underlying architecture.
Architecture-independent declarative abstractions are a means of achieving
this goal. Howeverin order to make it worthwhile to use them, these abstrac-
tions must provide a programming model which provides lé»aldility and
expressiveness of architecture-dependent primitives while not being biased to-
wards any particular architecture. The programming model must be easy to
use and should support the creation of ditieint executable for any reason-
able taget architecture. Also, the programming model must not be biased to-
wards either shared-memory machines or distributed-memory machines.
However it is a common belief that such generalized abstractions do not sup-
port creation of dicient runtime structures.

The CODE 2.0[New93a] abstract parallel programming system has
been shown to yield programs with executioficeééncy comparable to hand-
coding for shared-memory multiprocessors. This thesis extends these results
by demonstrating that programs witHiefency comparable to hand-coded
ones can be obtained for CODE 2.0 programs for a popular distributed memo-
ry programming environment, the Parallattdal Machine (PVM) [Gei94].

This compiler from CODE 2.0 to PVM was created by the individualref of
the author of this thesis in a few months of work.

1

1.1 CODE 2.0

CODE 2.0 (CODE) is a graphical retgatable parallel programming
system. It facilitates a compositional approach to programming. Sequential
units of computation are composed to form a parallel program where depen-
dencies are spe@fl by means of arcs. This abstract declarative language is in-
dependent of any architecture. It takes an integrated textual/visual approach to
parallel programming. The user writes parallel programs by drawing an graph
which represents the relationships between the various units of computation.
The structure of the graph captures major elements of the parallel structure of
the program. The graph serves as a template which is used as a framework for
creating dynamic structures at runtime.

CODE has been implemented using a object-oriented design. It uses a
class hierarchy to represent the abstract declarative structure. This is extreme-
ly helpful when writing translators for CODE. For eaclgtrarchitecture, a
translate method is added for every class in the hierafldhig means that ar-
chitecture speci€ optimizations may be made withoufedting code pro-
duced for other architecture. This is of utmost help when trying to produce
efficient code for diverse architectures. The translate methods at the root of the
abstract syntax tree invoke translate methods further down the hierérchy
this mannerthe entire tree is traversed and translated into executable code.

1.2 PVM

Parallel \irtual Machine (PVM) is a software system that permits a net-
work of heterogeneous network of parallel and serial computers to appear as a
single concurrent computational resource. PVM consists of two parts: a dae-
mon process that any user can install on a machine, and a user library that con-
tains routines for initiating processes on other machines for communicating
between processes and changing the configuration of machines.

PVM is supported by a Ige and diverse set of distributed memory ar-
chitectures. It is extensively used in academia and induBhgse were the
factors in selecting it as the ¢gat architecture in the current implementation.

Chapter 2 provides a more detailed overview of CODE and PVM.

A CODE translator already exists for the shared-memory architecture
of the Sequent Symmetrit has been shown to generate programs comparable
in efficiency to hand-coded programs on the Sequent [New93akhbaw that
CODE can also be used to produce ditieint executable for a distributed exe-
cution environment like PVM.

1.3 Distributed Execution Environment

This thesis deals with the problem of compiling CODE graphs into an
efficient executable for the PVM environment. CODE's abstract declarative
structure represents atomic actions as nodes and dependencies among actions
as arcs. This Graphical User Interface representation is internally represented
as an abstract syntax tree. The PVM translator works by traversing this tree
while producing source code.

CODE 2.0's PVM translator produces source code that runs on a set of
heterogeneous hosts networked using PVM. One PVM task executes on each
host. These tasks communicate using asynchronous communication primi-
tives.

Distributed computation usually involves some overheads due to the
use of messages. In this implementation, these overheads are minimized by us-
ing messages only when absolutely required. Each of the basic elementsin a
CODE graph is mapped to a unique PVM task. This mapping is available on
every PVM task. Messages are used only when data transfer occurs between
elements residing on dérent PVM tasks. In cases of local transtae local
data structures are manipulated to produce the sdpwt.ef

However it is possible that the hosts on which CODE's PVM tasks are
spawned are themselves heavily loaded. In such cases, no attempt is made at
dynamic load balancing between tasks. That will be tackled by a separate load-
balancer which works with PVM.

The translator produces a C program which uses PVM primitives
which must be compiled on the gt architecture to be run.

Chapter 3 outlines the design of the distributed execution environment
for CODE.

Chapter 4 describes the implementation of the distributed execution en-
vironment of CODE for PVM.

1.4 Experimental Results

The output of CODE's PVM translator compares favorably with hand-
coded programs in terms of speeds of execution. Chapter 5 details the results
of an extensive set of experiments.

15 Related Work

There have been many attempts at providing similar high-level abstrac-
tions for parallel programming. PVM itself is an attempt at presenting a homo-
geneous message-passing interface to a heterogeneous network of computers.
HeNCE[Beg91] is a graphical parallel programming tool which can be used to
create parallel programs on a set of networked machines. Linda[Sci92] is an-
other parallel programming language which tries to augment sequential pro-
gramming through the use of primitives which are architecture-independent.

Chapter 6 explains in greater detail some of the related work in this
area.

Chapter 7 presents the conclusions and indicates possible future work.

Chapter 2. Overview of CODE and PVM

This chapter will provide an overview of the CODE programming envi-
ronment and of PVM.

21 CODE

The following is an extract from the CODE 2.0 Users Manuall-
New93b].

CODE is a graphical parallel programming language. The fundamental
idea is that users can create parallel programs with it by drawing and annotat-
ing graphs. A graph is a type of diagram that consists of nodes (represented by
icons in CODE) and arcs that interconnect the nodes. Such a diagram shows a
computations communication structure. Nodes represent computations (or
shared variables) and arcs representlthe 6f data from one computation to
anotherParallel programs are created by composing nodes into graphs by di-
rect construction. Users draw the nodes and then interconnect them with arcs.

There are several steps in creating a program with CODE. First, the
user draws the graph that shows the parallel prograorhmunication struc-
ture. Then he or she annotates this graphlbgd in a set of forms that de-
scribe properties of the nodes, arcs, etc. in the graph. For example, the user
must specify which sequential computation a node performs. Fjnladyiser
selects a tayet machine from a list of machine types for which translators
have been prepared, and CODE translates the annotated graph into a program
that can be compiled and run on the chosegetanachine.

211 A Simple Example Program

When a userifst runs CODE, an empty window appears. He or She
then draws a graph in this window using a mouse. CODE graphs can contain
several diferent node types which haveféifent meanings and uses. Each dif-
ferent node type is represented by detdnt icon. The most important type of
node is the Unit of Computation (UC) node. These represent sequential com-

putations that can be composed into parallel programs by drawing arcs that
show datalbw among them. Figure 2-1 shows a complete CODE program that
has been created using only UC nodes and data flow arcs.

This program integrates a function over an interval by dividing the in-
terval in half and integrating over each piece separaféig results are
summed to form tharfal answerThe program consists of four UC nodes. The
arcs represent data that is created by one UC and is needed before another UC
can begin its sequential computation. When the program ruirst éxecutes
(or fires) the UC called “Split Interval” which divides the interval in half and
sends the endpoints of the sub-intervals to both of the “Integ Half” nodes.

CODE 2.0 Scru:ulll Lagout

Pru:-g'ram: Graph:
Integrate a function
in parallel by splitting . Split Interwal
the interval and
integrating the pieces.

(-) Integ Half () Inteq Half

(-) sum & Print

Figure2-1. A CODE Program.

These nodes integrate, using a sequential procedursedaftinction
over the interval sent to them. They can run in parallel with each other since
there is no arc from one to the othBiode “Sum & Print” waits for results
from the two integrations and then adds them together and prints this sum. The
arcs represent unbounded FIFO queues of data that are sent from one UC node
to anotherNodes send and receive data on ports that aneediedvithin them.
Arcs bind ports togethefhese bindings are shown next to the arcs in Figure 2-

1. For example, node “Split Interval” sends data out on port “I1” that is re-
ceived by the “Integ Half” node on the left on port “I.”

Drawing the graph is only the$t part of creating a CODE program.
Users also have to annotate it to complete its sigatibn. These annotations
define many aspects of the program-- what sequential computation a UC node
will perform, under what conditions it caind, what data types are defd for
the program, etc. Annotations are performediltipng out attribute forms asso-
ciated with the entity being dakd. Figure 2-2 shows the attribute form asso-
ciated with a UC node.

Notice the felds for “Terminate node?” and “Start node?”. The pro-
grammer must designate exactly one UC node in the program to be the Start
Node and exactly one node to be tlgrifinate node. When a CODE program
is run, the systemrkt executes the Start Node to get the computation started.
The firing of the Terminate Node signals the end of the computation to the
CODE system. The system will not end the computation until greninate
Node fires.

Node Nane : [vin:
Termination node?: “

start node?: [N

Node Function Signatures: _
Naode Function Definitions: _
Node Specification: _
Documentation: [N

Event Trace Options:

Figure2-2. UC Node Attribute Form.

Recall that a UC node represents a sequential computation. These com-
putations are spe#fd by the user in the “Node Specétion” field of the UC
attribute form. This speddation also includes the mapping between the data
on the incoming and outgoing arcs and the local data used by tecti@pu-
tation, and it also dafes the conditions under which the UC node is allowed
to fire.

The node speddation is text-based and mostly declarative. It is divid-
ed into units called “stanzas” each of which has tedgint function. Stanzas
consist of a name followed by some text enclosed in curly braces {}. The spec-
ification for the UC node named “Split Interval” is shown below

[***** Node Split Interval ***x**xx%xx
output _ports { Integlnfo I1; Integinfo 12; }
vars { real a; real b; int n; Integlnfo il, Integinfo i2; }
conp {

ReadReal () ;

ReadReal () ;

Readl nt () ;

a,

(b - a)/2.0;

n/ 2;

il b;

b;

n- iln;

——— -5 oo
I

NN PP
SowSo®

}

routing_rules {
TRUE => 11 <- i1; 12 <- i2;
}

The frst stanza is the “output_ports” stanza. Output ports are names
that are bound to arcs that leave the node, and input ports are names that are
bound to arcs that enter nodes. This binding is sieglcéfs an arc attribute and
will be discussed lateFor now it is enough to realize that two arcs that it re-
fers to by names 11 and |12 leave Split Interval. The type name of the data that
will be placed on these arcs is Integinfo, a structure that contains the endpoints
of an interval and the number of points to use in the integration.

The “vars” stanza of a node deds local variables that are dedd in-
side the node and are used by its sequential computation.

The “comp” stanza déafes the sequential computation the node per-
forms when itires. Split Interval defies two intervals which it stores in struc-
ture variables 11 and 12.

The language used in the comp stanza resembles a subset of C, but is
not C. Itis in fact, rather limited. It is expected that all substantial sequential
computations will be encapsulated in ordinary sequential functions (usually
written in C) that are dafed outside of CODE (although CODE has facilities
to help the user in managing, placing, and compiling them). Notice the calls to
ReadInt and ReadReal. These are C functions, written separately

UC nodes are the fundamental building blocks in CODE. UC nodes run
in parallel with UC nodes. Hence, CODE programs express parallelism at a
coarse level of granularityoughly at the level of a subroutine call, since UC
nodes are expected to perform fairly sigraht computations, often involving
calls to external C functions.

Since Split Interval is the Start Node, its computation will be run imme-
diately when the program is executed. After its sequential computation is com-
plete, its routing rules are evaluated. Routing rules determine what values will
be placed on what outgoing arcs and have the general form shown below

GQuard, Guard, ..., Quard => Binding; Binding; ...; Binding;

Guards are Boolean expressions and Bindings are “Arc Outputs” that
use a “<-" operator to place a value onto an arc. Other forms of bindings are al-
lowed and will be discussed elsewhere. All bindings are performed from left to
right on all routing rules whose guards all evaluate to TRUE. Node Split Inter-
val places struct i1 onto arc I1 and struct i2 onto arc 12. Theseedék inter-
vals that the Integ Half nodes will integrate.

10

Both of the Integ Half nodes have identical spieaifions, hence only
one of them must be discussed, and the only new stanza is the Firing Rules
Stanza.

[[*=*=*=%x* Bath Node Integ Half are identical **x******
input_ports { Integinfo I; }

output_ports {real S; }

vars { Integinfo i; real val; }

firing_rules {

| ->i=>
}
comp {
val = simp(i.a, i.b, i.n); /I Integrate using Simpson’s

/I rule.

}

routing_rules {
TRUE => S <-val;

}

Firing rules serve two purposes. Theyidefthe conditions under
which a UC node is allowed toé, and they describe what arcs have values re-
moved from them and placed into local variables for use by the \edguen-
tial computation. Firing rules have the form shown below

Guard, Guard, ..., Guard =>

Guards represent “Arc Inputs” that extract information from arcs using
the “->" operator

Actually, firing rules can be somewhat more complicated than this. As-
signment statements can appear on the right of the “=>" and guards can also be
Boolean expressions. Firing rules in the general case have a very rich syntax
and can express quite elaboratm§ conditions and bindings. This will be dis-
cussed elsewhere since such elabordtegyfrules are needed only occasional-
ly.

Arc inputs represent both a condition and a binding. The notation “I ->
i” represents the condition or guard “there is a value on arc I” and the binding
“remove a value from arc | and place it into variable i.” A UC node may exe-

11

cute whenever all of the guards on any ofiried rules are TRUE. Such a rule

is said to be “satigfd”. When the nodearkes, the bindings associated with the
satisfed rule are performed. Hence, Integ Half mag tvhenever there is a
value on arc I. It extracts a value from | and places it into local variable i for
use by the nods’computation.

It is possible for a node to have mamynfg rules. As indicated above,
the node mayife when any of them are satesd. If more than one rule is satis-
fied, the CODE system chooses one of the satistiles arbitrarily and per-
forms its bindings before firing the node.

So, the nodes Integ Half wait for a value on arc I, perform an integra-
tion described by the interval received, and then pass the result out on arc S.

Node Sum & Print has &ing rule that requires it to wait for values on
both arcs S1 and S2 before it cae.fWhen it ires, it prints the sum of the val-
ues received and, since it is therfhinate Node, signals the end of the compu-
tation.

// kkkkk k%) '\bde Sum& Pr|nt kkkkkkkhkhk*k
i nput_ports { real Sl1; real S2; }
vars { real sl1; real s2; }
firing_rules {

S1 ->sl1, S2 -> s2 =>
}

conp {
Print Real (s1+s2);
}

The last issue in the Integration program is the annotation of arcs. Each
arc’s annotation is shown in Figure 2-1. (Such display is not automatic. The an-
notations have been written as comments on the graph.)

Arc annotations are called “arc topology speeifions”. They serve to
bind names between nodes. As mentioned above, nodes use ports as local
names for arcs. Arc topology spec#tions bind port names togethEor ex-
ample, the specification

12

A1 =>

indicates that output port 11 (declared in UC node Split Interval) is to
be bound to input port | (declared in node Integ Half on the left). When you
draw an arc between UC nodes, you must specify what pair of ports the arc
binds.

It is reasonable to think of UC nodes as being analogous to integrated
circuits. The port names of the UC serve the same purpose as the pin names on
the IC. You place UCs into a graph in any way you like and connect them with
arcs rather than wires. The arc topology speatfon describes what “pins”
have been connected.

2.1.2 CODE Elements Are Actually Templates

It is time to confess that the description of CODE spdhhough com-
pletely correct, has been oversim@d. The notations as they have been de-
scribed are inadequate as the basis for a programming system because they are
static. As described so fahe graph drawn represents a completiekyd com-
putation and communication structure. Many real-world algorithms datnot f
into this view Aspects of their structure depend on runtime information. As a
simple case, one may wish to prepare a program that will utilize as many pro-
cessors as happen to be available at a particular moment to perform a certain
task. Perhaps the desired structure is as shown in Figure 2-3 where there are N
replicated nodes in the centerhere N is a runtime determined value. Struc-
tures that are dictated by runtime parameters are called “dynamic”.

13

Figure2-3. A Dynamic Computation Structure.

CODE directly supports the spdcHtion of dynamic structures. Rather
than being static, every node or arc users draw in CODE can be instantiated
any number of times at runtime. The instantiations are named by integer val-
ued indices. Hence, it is more accurate to say that you are crea¢mpglate
for a node rather than a node itself when you draw and annotate a UC node.

The simplest way to use the template is to use a single instantiation of
it that has no indices. This is what was done in the Integration program.

The Integration program is limited to two-way parallelism. There are
only two Integ Half nodes to run in parallel. An N-way parallel program can
easily be envisioned that would use N “Integ” nodes each of which integrates a
fraction of the interval of size (b - a)/N. A CODE program that implements
this scheme is shown in Figure 2-4. The node Integ is instantiated N times us-
ing the same communication structure shown in Figure 2-3.

14

CODE 2.0

Program:

.COUNT => . COUNT é Split Interval

Integrate a function
in parallel by hawving]]
¥ nodes integrate JIM] =x [1]I
part of the interwal.

C Inteqg [*]

[i].§ =» .5

Gather| -

. SUM
Printans

Figure2-4. Another Integration Program.
The “[*]” by the name is a comment reminding the viewer that the node
is instantiated multiple times. In fact, UC node names serve only as comments
and, hence, are optional attributes. Actually of the text that appears in Fig-
ure 2-4 is either an optional name or a comment drawn on the graph. Such text
increases the readability of the graph.

The multiple instantiation is spe®@fl by annotations that will be de-
scribed in later chapters. The important idea to remember now is that all
CODE elements (nodes, arcs, etc.) you draw are in reality templates that may
be instantiated many times. The graph depicts static aspects of the program.
Annotations capture dynamic aspects.

2.1.3 Other CODE Nodes

There are other node types than UC nodes in CODE. Many of these
serve to hierarchically structure programs, exactly as subprograms and Call
statements do in conventional languages such as C or Fortran. Figure 2-5
shows all of CODES node types.

15

CODE graphs play the role of subprograms. In general, CODE pro-
grams consist of many graphs that interact by means of Call nodes. The Inte-

gration program is simply a single graph program.

conE 2.0 e Scroll @ Layout W Undo @Redo Save
P]_'ljg']:am: |:1']:E|_1:Ih_: main Manual? fWhat? leljl:

@ —-— UC node, = sequentizl computation.

m -- €all node, a call from one CODE graph to another.

(‘? —-- Input Interface node, incoming dataflow parameter.
(% -- Dutput Interface node, an oubgoing dataflow parameter.
[0 -- Creation parsmeter node., read-only shared parameter.

3 EE * -- Name Sharing Relation node, a shared wariable.

Figure2-5. All CODE Node ypes.

Just as with subprograms in conventional languages, CODE graphs
have formal parameters. They are speditby Interface nodes and Creation
Parameter nodes. A graghinterface and Creation Parameter nodes form its
interface. Actual parameters are arcs that enter or leave Call nodes. These arcs
are bound (by means of arc topology speaifions) to Interface or Creation
Parameter nodes within the graph that is called.

Call Nodes and Hierarchical Structuring

No useful programming language can be without facilities for hierarchi-
cally structuring programs. Conventional programming languages such as C and
Fortran use Call statements and procedures for this purpose. A program is made
up of a number of procedures that interact via Call statement. CODE has facilities
that are entirely analogous. A CODE program is made up of a set of graph

16

instances that interact via Call nodes. Graphs are like procedures in that they are
the basic unit of hierarchical structuring. Call nodes are like Call statements.

Creating a Graph

When CODE is first run and given the name of a new graph (.grf) file, it
creates the file and a graph called “main” within it. It is intended (but not
required) that your Start node be in this grapbu ¥an create another graph
which can be called from “main” or any other graph that you create. Graphs can
even be recursive.olcreate a graph, click the create cursor on the Graph button
and enter a name for the new graph. The name must be a legal CODE identifier

Let us consider the elements of a CODE graph. Just as Fortran procedures
have formal parameter lists to define their interface, CODE graphs have Interface
and Creation Parameters nodes to define theirs. This is perhaps best explained by
an example. Suppose we wish to create a graph that could be called multiple times
to multiply a series of vectors by a fixed matrix to produce a vector result. Figure
2-6 shows such a graph.

Larout
VectMult

) h_in O a O n

b_out

) bh_out

Figure2-6. \ectMult Graph.

17

This graph has three input formal parameters and a single output formal
parameterAll formal parameters to graphs are either interface nodes or creation
parameters. These nodesistbe named (with unique names that are legal CODE
identifiers) since their names form the graphterface.

Parameter Type Node Type

b_in Vector Input Interface node

A Matrix Creation Parameter node
n int Creation Parameter node
b_out Vector Output Interface node

Let us first discuss the Interface nodes. They have only two attributes, a
name and a type name. These nodes exist because arcs in the calling graph must
be bound to ports or shared variables in the called graph, but one would not want
such things to form a graphinterface because they are too “local’-- they are
defined within nodes. Interface nodes serve as aliases for ports in UC nodes or
shared variables in Name Sharing Relation nodes.

For example, the UC node in our example graph has an input port called
“b_in,” and we wish the calling graph to send data to it. So, we create an interface
node and give it a name. The example uses name “b_in.” It is the same as the port
name in this case, but need not be. Next, an arc is drawn from the Input Interface
node to the UC. Its attribute form contains a “Port to Connect to” fiesdvdtue
should be the name of the port the Interface node aliases, “b_in" in this example.
All of these annotations are shown in figure 2-6.

The Output Interface node works in the same. Wagliases a port in the
UC that happens to be called “b_out.”

Creation Parameter nodes represent a special kind of shared variable. They
receive exactly one value from the calling graph-- at the moment that the graph is

18

created. This variable can then be read from anywhere within the graph contain-
ing the Creation Parameter node.

Our example has a Creation Parameter called “A.” Its attribute form is
shown in figure 8.1. It has bound to it the matrix that will be used in all of the vec-
tor-matrix multiplications. ¥riable “A” is of type Matrix and can be read from
any point in the graph (including the UC node that does the multiplication) just as
though it were a local variable. It is illegal to write to “A” howew&liso, no arcs
may be drawn to or from Creation Parameter nodes. There is no need in any case.

Name Sharing Relations

Name Sharing Relation nodes are a mechanism for declaring variables that
will be shared among a set of UC nodes. Theses nodes contain definitions and ini-
tialization of shared variables but do not in themselves specify which UC nodes
will access which variables and in which wayat is done by shared variable
declarations in UC nodes and by arcs that bind UC shared variables to shared vari-
ables in a Name Sharing Relation ndd€ nodes that access them must declare
themselves to be either readers or writers of the variable

Once a shared variable has been declared in a UC, it must be bound to a
shared variable in a Name Sharing Relation node by means of an arc with an arc
topology specification. The specification is much like that for a data flow arc, but
no port indices are permitted.

One should notice that a UC shared variable is much like a port. It is a
name that is to be bound to something outside of the UC node itself. The arc
topology specification provides this binding.

An example may be useful. Figure 2-7shows the graph for a simple pro-
gram. In it, nodes A and B have firing rules and data flow arcs that cause them to
fire repeatedlyEach time they fire, they increment a shared integer

19

(N Fope BTranslate @Scroll @ Layout @ Undo BRedo
ogram: SharedInt I:1']_‘E|_1:|]:1: main Marmal? f What? Tl:ll:l]_:

Figure2-7. Name Sharing Relation Example.

After A and B fire the specified number of times, they send dummy values
to C which cause it to fire. It prints the value of the shared intAgand B are
writers of the integerC is a readeiVe will ignore all aspects of this program but
the use of the shared variable.

Node As specification is shown belowotice that it uses name “K” for
the shared variable and declares itself to be a writer of it.

i nput_ports { int X }

output _ports { int Y; int AGAIN, }

shared_vars {
int Kwiter;

}

vars { int v; }

firing_rules {
X->v=>v=yv- 1;

{
K+ 1; // Increnent shared int

routing rules {

20

v=0=Y< v, &&
v >0 => AGAIN <- v;

}
Node B is the same except that it uses name L.

The specification of the Name Sharing Relation node follows.

shared_vars {
int L;
}
init_conp {
L =0;
}
Node As shared variable name K is bound to shared variable L by means
of the arc drawn from UC node A to the Name Sharing Relation node. The arc

topology specification is as shown below
K= L

One always draws ar¢s Name Sharing Relation nodes, even if the arc
must “cross” Call boundaries.

There are some limitations on the use of shared variables within a UC
node. They may be used only within the ¥§€bmp and routing_rules stanzas,
and it is of course illegal to write to a shared variable that has been declared read-
only.

In addition no two shared variables within one UC node may be bound to
the same shared variable in a Name Sharing Relation node-- even Waemndif
instances (meaning nodes with indices) of the Name Sharing Node are involved.

2.1.4 Translating and Running CODE Programs

Once a CODE program has been drawn and annotated, the CODE sys-
tem can translate it into a program that can be compiled and run on a parallel
machine. This process will be described in a later chapter but the general idea
is that the user clicks on the translate button at the top of the CODE window
and picks a tayet machine type, such as the Sequent Symmetry or a cluster ar-
chitecture like PVM. CODE will produce a program in C that realizes the com-

21

putation and communications structures expressed by the graph. The user may
then compile and run this program on the parallel machine.

Users are déred choices on how CODE will optimize and instrument
the program. For example, one can ask CODE to automatically have the pro-
gram be instrumented to measure how long each UC takes tmfl how of-
ten it fires.

That concludes the extract from the CODE 2.0 User manual.

2.2 PVM

This section will provide a brief overview of the Paralléit\al Ma-
chine (PVM) as relevant to this thesis. It contains material taken from the
PVM 3 Usets Guide and Reference Manual[Gei94].

PVM 3 is a software system that permits a network of heterogeneous
UNIX computers to be used as a singleg@parallel computein other
words, a user defed collection of serial, parallel and vector computers appear
as one lage distributed-memory computérhis logical distributed-memory
computer is termed a virtual machine. The list of computers supported include
SUN Sparcstations, IBM /RS6000 among aglanumber of other architec-
tures.

PVM supplies primitives to start up tasks on the virtual machine and al-
lows the tasks to communicate and synchronize with each. éthask is de-
fined as a unit of computation in PVM analogous to a UNIX process. By
sending and receiving messages multiple tasks can co-operate to solve a prob-
lem in parallel. PVM handles all data conversion that may be required if two
computers use dérent foating points representations. Also, PVM allows the
virtual machine to be interconnected by a variety ded&nt networks.

Appendix A describes PVM primitives which are used in the imple-
mentation of this thesis.

Chapter 3. Design

This chapter will provide an overview of the distributed execution envi-
ronment along with a discussion of the key issues involved in its design.

3.1 Overview

UC'’s are the actual computational elements of CODE. The dynamic
parallel execution environment of CODE is due to individual UC instances ex-
ecuting concurrentlyTherebyin the execution environment, UC instances are
distributed across the PVM cluster architecture. The granularity of da2s
not warrant that one process be spawned per UC instance. Instead, more than
one UC instance is executed by a single process.

Since processes execute serially on a uniproceissgeneral there is
no gain in running more than one process on each uniprocdsugs, only
one process runs on each machine in the PVMigordtion. These processes
will be referred to as PVM tasks. Each PVM task runs its own scheduler which
maintains a queue of UEWwaiting to execute. The dérent PVM tasks run
asynchronouslyEach PVM task continually polls its queue and keeps execut-
ing UC’s until program termination. All interactions (dal@aw) in the distrib-
uted environment have two modes - local and non-local. The distributed
environment exploits its knowledge in cases where the interaction is local
thereby minimizing the number of messages generated.

3.2 Distribution of Work

CODE supports a dynamic execution environment in which there is
lazy creation of instances of CODE elements at runtiroaigtribute work, a
mapping routine is used to dynamically assign these instances to PVM tasks at
the time of their creation. The mapping depends on the number of PVM tasks
and the number of instances created during a particular run. A UC instance cre-
ated by the execution of a PVM task may be assigned tdaaeht PVM task,
even a PVM task on a dérent host system.

22

23

3.3 Address Tables

The CODE model of programming envisions the user drawing/writing
a CODE program which is translated into a set of templates, one for each
CODE computational element used in the program. This set of templates is
used as the framework for creating instances of computational elements in the
dynamic runtime environment.

At compile time, it is not known how many instances of a template will
actually be created. While it is possible, in theory to statically assign unique
IDs to all instances of a template, the list of IDs would biitd. Instead, a
mapping function is used to encode this mapping. An address table which
stores addresses of all runtime instances is used for name resolution. In a dis-
tributed environment, the options are to have a central address table which
contains the addresses of all instances present across the entire runtime envi-
ronment or to maintain a distributed address table. The former would involve
centralized address lookups which would lead to the address table being a bot-
tleneck for the entire system. Hence, a distributed address table will be used.
This means that each PVM task will only have the addresses of all the instanc-
es of CODE elements that have been created on itself.

34 Name Resolution

Integration of all the distributed address tables would provide a com-
plete tree representing the chain of creation of instances. Such a tree will be
called a dynamic instance tree. In a dynamic instance tree, instances higher up
in the hierarchy invoke ones further down. The tree also represents the various
levels of scoping in the runtime environment. A complete tree is not available
at runtime to the PVM tasks since the address table is distributed across all
PVM tasks.

Name resolution in CODE’distributed environments can be explained
by means of the following CODE program which consists of two graphs. Con-
sider Figures 3-1 and 3-2. Suppose at runtime there are two instances G[1] and
G[2] of the graph G. This implies that there are two instances of X - G[1]/X

24

and G[2]/X as well as two instances oiG{1]/Y and G[2]/Y. Now, suppose

that G[1]/X and G[2]/X are mapped to PVM task M and G[1]&{2]/Y are
mapped to PVM task N. Once instance G[1]/X completes execution, it sends
data to G[1]/Y Now, two instances of Y - G[1]/Y and G[2]/Y reside on PVM
task N. Therefore, in order to uniquely identify G[1]&]1]/X must the send

the entire string “G[1]/Y” to task N along with the data.

Figure3-2. Graph Fact of Sample CODE Program.

g Trovel Jreit]

This is a sample program to demonstrate the
necessity of path ids

&

[E:[l G Call Fact

o

Figure3-1. Main Graph of Sample CODE Program.

25

Extending this to more levels, we must specify all the parent graphs of
a instance in order to uniquely identify it. The value of this string is the full
path of the instance from the root in the dynamic instance tree. This string will
be referred to as “Path ID” or more simply “Path” and will be used to uniquely
identify instances in CODE’distributed environment.

35 Creation Parameter Nodes

Creation Parameter nodes are akin to global constants within the scope
of a CODE graph. These nodes are initialized once at the time of creation of
the graph and remain constant after that. CODE graphs are instantiated on all
PVM tasks where at least one of their children (UC, NSRel or graph) needs to
be instantiated. The distributed execution environment makesfod &f
keep track of all PVM tasks on which a particular CODE graph has been in-
stantiated. Instead, whenever a Creation Parameter node has to be instantiated,
the graph to which it belongs is instantiated on all PVM tasks and is initialized
on all of them.

3.6 Name Sharing Relations

The issues involved in the implementation of Name Sharing Relations
are as follows.

3.6.1 Distribution of Name Sharing Relations

While Name Sharing Relations are not actual computational units, they
are a resource shared by many ElXccessing shared variables in NSRat-
volves some overhead. Therefore, Name Sharing Relations are also distributed
across PVM tasks using the same mapping routine used for other CODE ele-
ments. Again, the NSRel to PVM task mapping is available to all PVM tasks
locally.

3.6.2 Distributed Access of Shared Variables

Shared variables in NSRels are accessed by various UC instances. In
order to ensure the integrity of each access, some form of locking mechanism

26

must be set in place. The locking mechanism must work irrespective of wheth-
er the NSRel involved is local or remote.

3.6.3 Deadlock Avoidance

The other issue is the fundamental problem of deadlock avoidance.
This is solved in the following manndtach UC has a list of shared variables
that it must lock, before it starts computation. Locks in the list are always ac-
quired in a particular ordeThis order is based on a unique id which is used by
each shared variable. Since all d@cquire locks in the same ord#rere is
no possibility of a deadlock developing due to a circular wait for locks.

3.6.4 Locking Mechanism for Shared Variables

The locking mechanism followed for shared variables is best explained
by means of an example. Consider the CODE graph in Figure 3-3.

gl rstestl iR

Figure3-3. A simple CODE graph.

Suppose the runtime mapping of WGind NSRek for the CODE
graph in Figure 3-3 is as shown in Figure 3-4.

27

PVM Task X PVM Task Y

Figure3-4. Runtime Mapping of CODE elements of Fig 3-3.

Further suppose that there is a shared variable | within NSRel N and
that both UCs B and C have shared variables which are writers of I.

Consider the case when UC B accesses shared variable I in NSRel N.
Before B fres, it must acquire a lock on shared variable I. It invokes the map-
ping routine and discovers that | is on deliént PVM task, namely.Yhere-
by, B sends a PVM message to PVM task Y requesting a lock on shared
variable I.

Now, PVM task Y checks to see if shared variable | is already locked
by some UC or not. If not, it locks | and sends a PVM message to task X which
indicates that UC B has been allowed write access to shared variable I. It also
sends the current state(value) of the shared variable I. UC B upon receiving
this message updates its local version of the shared variable I. Then it pro-
ceeds with its computation. At the end of the computation, UC B sends a PVM
message todsk Y requesting the release of the lock on shared variable | along
with the updated state of shared variablealsK'Y receives this message, up-
dates the shared variable | and then releases its lock.

However if | has already been locked by some other UC, theskT¥
places UC B on a queue of WGkhich are waiting to get a lock on shared vari-

28

able I. When, the UC which currently has a lock on | releases it, all theibC’

the queue are executed again so that they may try to get a lock on, Isdioev

of the UC5 in the queue might be from a fdifent PVM task. In that case, a
PVM message is sent to those PVM tasks which ensures that the respective
UC'’s are executed again.

Now, consider the case when UC C accesses shared variable I on
NSRel N. It must acquire an access lock on | before its starts computation. It
invokes its mapping routine and discovers that | is on the same PVM task as it
is. It then checks the structure representing | to see if it has already been
locked. If so, it gets on the queue of tasks waiting for access to I. Otherwise, it
sets allg in I's structure indicating that it is locked for write access and pro-
ceeds with its computation. After completion it unlocks | and enqueues the list
of UC’s waiting for access to | for execution.

3.7 Data flow and Messaging

All runtime interactions in CODE involve some form of ddtaw Lo-
cal interactions (communication between CODE elements on the same PVM
task) take place through data structure manipulation. While this may involve
access to shared structures, there is no need for the use of explicit synchroniza-
tion primitives. This is so because, according to the CODE model of program-
ming UC'’s execute atomicallfeach PVM task has its own scheduler which
runs only one UC at a time.

All non-local interactions in CODE'distributed environment involve
some form of PVM messages. The availability of the mapping routine on ev-
ery PVM task eliminates the need for “store and forward” type of messages.
All messages in the runtime environment make only one hop.

Also, most interactions in CODE such as those between tws OC’
between a UC and a CreP involve one-way communication. Howieverac-
tions with NSRels involve two-way communication.

29

The various forms of PVM messages in COBHistributed environ-
ment may be classified as follows.

3.7.1 Data transfer messages from UC to UC/Crep

These messages are used for dda farcs in CODE. When a UC
sends data to another UC which is on &edént PVM task, this message is the
means of data transfefhis message contains information that is needed to
uniquely identify the destination UC and the data being transferred which can
be an int, real, chaarray or struct. In case of complex data types, a copy of
the entire structure is transferred.

3.7.2 Data transfer on return from graphs

These messages are very similar to the previous data transfer messages
in functionality However they are invoked on returns from CODE graphs.

3.7.3 Request accessto non-local shared variable

This type of message is used to request a lock on a non-local shared
variable. It contains information that would uniquely identify the sending UC
and the shared variable involved. Also, it contains the type of lock - Reader or
Writer.

3.7.4 Accessapproval for non-local shared variable

This message is sent by an NSRel when it locks one of its shared vari-
ables. This message contains the unique identity of the UC that requested a
lock along with a snapshot of the current state (value) of the shared variable
being locked.

3.75 Release access to non-local shared variable

This message is sent by a UC after it has completed its computation,
when it wants to release all locks that it holds. This message contains the
unique identity of the NSRel containing the shared variable being released and

30

also a snapshot of the updated shared variable. This message is received by the
NSRel which then updates its shared variable.

3.7.6 Request to enqueue UC instance for firing

This message is used to enqueue $)&hich were queued up for ac-
cess to shared variables fairig. When a UC sends a request for access to a
shared variable, if the variable is already locked by some other UC, then this
UC is put on a queue. When the shared variable is unlocked, then alituC’
the queue are enqueued foinfg so that they can again try to get access to the
shared variable.

3.7.7 Request to terminate run

This message is sent by the UC which runs the terminate node. Upon re-
ceiving this message all PVM tasks terminate execution and end their run.

That concludes the discussion of the design issues for the distributed
execution environment.

Chapter 4. Implementation

This chapter describes in detail the implementation of the distributed
execution environment for CODE.

The CODE model of programming has been designed to support multi-
ple taget architectures. When a user enters a CODE program, it is stored in
Graphical User Interface data structures. Since, one of the objectives of CODE
has been to decouple the GUI from the translators, an intermediate form of rep-
resentation is used. This form of representation is called the Abstract Syntax
Tree (AST).

Translation of CODE programs for adat architecture is avie-stage
process consisting of translation from the GUI representation to the ASIT
decoration, AST optimization,r@inslation and Linking with the runtime li-
brary. The frst two stages are architecture-independent and are not discussed
here [New93a]. Also, no AST optimizations have been made as part of this the-
sis. The discussion here will pertain to translation and linking only

Translating involves running the translation methods of all nodes in the
AST for the PVM architecture. This produces a set of C programs which use
PVM primitives. These programs must be compiled on thgetaarchitecture.
Runtime library routines are discussed along with translation methods.

The last phase deals with the creation of an executable for the PVM ar-
chitecture. It involves linking thelés produced by the PVM translators with
the CODE runtime library for PVM and finally the PVM library itself.

4.1 Abstract Syntax Tree

The Abstract Syntaxrge is an hierarchy of classes used to represent
the userdefined parallel program in an architecture-independent manimisr
representation is the starting point for the translators of CODE which will con-
vert this abstract parallel structure into architecture-sjpeexiecutable code.

In order to facilitate architecture-spdcibptimizations, each of these classes

31

32

contain a translate method for eaclgetrarchitecture of CODE. These meth-
ods emit architecture-specific code. Figure 4-1 shows the AST template.

At the root of the AST is the class Program. It represents the entire
CODE program. The class Graph is among its children. A graph represents
one complete screen of a CODE program. A CODE program consists of one or
more graphs. Each CODE graph consists of Units of Computation(UC), Name
Sharing Relations (NSRel), Arcs, Creation Parameter Nodes (CreP) among
other CODE elements. All these are sub-classes of class Graph.

cGraph ...]
cTypeDef .|
l FuncName
Name Returnype
cAbsTree *Type cFuncAgSpec |.. cTypeDef .|..
cNSRel }.
;’ypﬁName cCallNode |.. /\
rgName
cIntNode |..
Ref? —
cFuncSig .}
cArc ...
. Name Shared¥r ..
CrepNode| Type Name
lorO calledGraph
Name
Type
NSPortSpecf|... FromUd ToPort
cvarDecl .. FromPor ToUid
*FuncDefs

*Comp |cVarDecI..H cVarDecI...l |c VarDecI...l |cExpr. |

*Ini i Node list Port list i Node list) (Port list
InitComp (Call list) () () (Calllisty (Node list) ()

Firing rule Routing rule

/

cArcOutput .|.

*ReplCond [-panispec|.*ReplCond |cReplSpec[RepiCond [cranispec *ReplCond
- cReplSpec |.
e AN e oo
/\ *ValueExpr

CExpr *LHS CExpr *RHS

Figure4-1. Abstract Syntaxrge.

33

When a CODE program is translated, the translate method for that ar-
chitecture in the class Program is invoked which in turn invokes appropriate
translate methods in its sub-classes in a dejpst+hannerThese translate
methods ultimately generate calls to PVM and the CODE runtime library prim-
itives.

The translate methods produce a set of C sousewhich along with
a runtime library and the PVM library form the distributed execution environ-
ment of CODE.

4.2 Structure of Output
The output of the PVM translator is a set of C files. They are as follows
* A Makefile to allow the user to compile the parallel program that CODE
produces using the UNIX “make” facility (Makefile).

» Afile of translated global type definitions that users can include in
separate files of sequential routines. (_c2_globtype.h)

* AC (and a “.h”) file that implements the main driver routines for the
parallel program, the message handling routines, as well as node and graph
creation routines.(_c2_main.c & _c2_main.h)

» one Cfile for each graph (main.c etc.).

AST Output Files
Program
3 @t
UCNode
UCNode :

Figure4-2. AST nodes place text into output files ([New93a]’

34

The PVM translation methods for the AST nodes write into thibse f
as shown in Figure 4-2.

4.3 Structured Files

Structuredifes are an hierarchical abstraction used to represent the par-
allel PVM program produced by the PVM translatys can be seen from Fig-
ure 4-3 the translate methods of various members of the AST write to the
various outputifes. This introduces a coordination problem in which these
translate methods must interleave code generation among themselves. This
problem is explained in detail in Chapter 7 of [New93a]. Structutes &re
used to solve this problem. Structurdedd are also explained in detail in Chap-
ter 7 of [New93a]. The following brief explanation of structunéeksfis from
that chapter

A structuredite defnes in template form the structure of a set of UNIX
files that will contain the code that make up the translated CODE 2.0 program.
As a simple example, a program produced by CQDREnslators might hypo-
thetically consist of a set of global variable declarations which must be placed
at the front of theife and a set of function deitions which must follow the
variables. Each function consists of a header part and a body part. A structured
file to represent this situation would have the form shown in Figure 4-3. No-
tice that the various parts of thiefare named. The “[*]” indicates that the
FuncPart is replicated. Each replication must be supplied with a unique identi-
fier.

VarPart
FuncPart[ld1
VarPart Replicated Header]
FuncPart*] pyncpart —— Body
Header | Expands into FuncPart[ld2]
Body Header
Body

Figure4-3. Example Structured File.

35

After all of the translation methods have written to the structuledtf
is dumped to a plain UNIX text file to serve as input to a native compiler

4.4 Runtime Representation of CODE elements

In this section, the runtime representation of the various CODE ele-
ments will be described in detail. The CODE elements UC, Graph and Name
Sharing Relation are represented as two C structures allocated on the heap.
These structures represenxed type information and variable type informa-
tion respectivelyThe fxed type information is hard-wired in the runtime li-
brary, while, the variable type information is generated at translate time.

type informatio

—

Struct of variabls
type information

Struct of fixed 4\

A\1%4

Figure4-4. Runtime Representation of UC, Graph & NSI

44.1 Unit of Computation (UC)

Each UC has axed information structure which is represented as a C
struct. This structure is defined as follows.

struct _c2_ sNodeBase {
i nt QueueSt at us;
i nt NSSt at e;
_c2_lLockSet *HeadLock; /* List of NS |ocks needed */
_c2_lLockSet *NextLock; /* Next NS Lock needed */

int UD
char Path[Path_ID Length];/* The Path ID */
int Crepped; /* Creation parans bound */

_c2_GraphBase *MyGraph; /* Containing graph */
c2 I ndex | ndex;

void (*InitProc)();
voi d (*ConpProc)();

36

voi d *Local Dat a; /* Node specific information */

b

In the above structure, threelfls provide varying degrees of identity
to each UC. They andID, Index andPath. EachUID uniquely identifes a UC
template from all other UG. Howeverthe CODE runtime environment is dy-
namic and there maybe multiple instances of a UC template. In such a situa-
tion, theUID along with thelndex provides for unique identity of a UC
instance. UC instances may be created with up to seven dimensions. Still, the
UID and thendex are unique only within the context of a CODE graph/sub-
graph. Howeveras explained in Chapter 3, there is a need in the PVM back-
end to have a unique identity for each UC instance across the entire runtime
environment (for instance, to uniquely identifyfdiient UC instances of a UC
template within multiple instances of the parent graph). Such a unique identity
is provided byPath which is the Path ID as described earlier [Section 3.4].

Also, the structure contains a pointer to its parent graph. This among
other things helps provide access to creation parameterslagt& épped in-
dicates UC node dependency on creation parameters and is set to true when
creation parameters are bound. The structure also contains two function point-
ers. One of themnitProc, is executed tharkt time a UC instance executes.

The othey CompProc, is run each time the UC instanceiietl. The feld
QueueStatusis used in conjunction with COD&runtime scheduler

The last feld in the structurel.ocalData is a pointer to the variable
type information present in each UC. This mostly contains user sgaeldtal
variables of the UC and data flow queues for incoming ports.

There are also threeefds of the structure which contain information
pertaining to name sharing relations. TheyM&State, HeadLock andNext-
Lock. NSState reflects the current state of the UC with regard to acquiring
name-sharing relation lockdeadLock is a pointer to a list of name-sharing re-
lation locks that a UC instance must acquire befoiieais fNextLock is a point-

37

er to the next name-sharing relation lock that the UC must acquire. Both of
them point to structures of the following type.

struct _c2_slLockSet {

int IsRemote;/*Shared Variable’'s NSRel local or remote?*/

int NSRelUID; /* UID of Shared Variable’s NSRel */

char *NSRelGraphPath;/* PathID of Shared Variable’s

NSRel's Parent Graph */
_c2_Index NSRellndex;/* Indices of Shared Variable's NSRel
*/
int RequestSent; /* Flag to indicate if a remote lock
request has already been made */

_c2_NSRelBase *NSRelAddr;/* NSRel address */

int *RCount; /* number of current readers */

_c2_NSLink *RQ; /* Queue of UC Nodes needing read locks
to shared variable */

int *WCount; /* number of current writers */

_€c2_NSLink *WQ); /* Queue of UC Nodes needing write locks

to shared variable *

int ReqType; /* Reader or Writer */

void *SharedAddr;/* Address of Shared Variable in NSRel */

void *LocalAddr; /* Local Address of Shared Variable */

enum _c2_ ValueType TypeTag;/* Shared Variable Type */

struct _c2_slLockSet *Next;/* Pointer to Next Lock */

int UID; [* UID of shared variable */

} _c2 LockSet;

The above structure represents the information maintained by each UC
for every shared variable that it uses. Tingt field, ISRemote, identifies if the
name sharing relation which contains this shared variable is oricaeht
PVM task or on the local one. The rest of tledds are used to maintain vari-
ous information that is required while obtaining and releasing locks.idlds f
NSRelUID, NSRel GraphPath, NSRellndex andRequestSent are useful only if
the relevant name-sharing relation is on &edént PVM task.

Field NSState is also used in this process. It can take on one of the fol-
lowing values at any time.

* _C2_NOTINIT - UC Nodes list of required locks has not been created.

* _c2_NOBIND - The list has been created, but no locks have been acquired.

38

* c2_INPROG - At least one lock has been acquired, but more are needed.

An example of a structure of variable-type information follows. The
fields of type _c2_SeqVarQ are datalbw queues for data sent on incoming
arcs. There is one queue for each input port. Teles with names that do not
begin with “_c2” are all local variables.Thielid _c2_Dummy is used to pre-
vent a situation in which a C structure containing no fields is created.

struct _c2 nv3 { /* UC = ADD2 */

char _c2_Dumy;
_C2_SegVarQ Y2,
Vect V2
int i;
int sun®;
b

442 Graph/Call Node

Graphs provide a level of name scoping in CODE environment. Graphs
are invoked by using Call Nodes. They consist of two C structures allocated
on the heap. Therkt structure representixéd type information and the sec-
ond represents variable type information. Tinstfcontains a pointer to the
second. The structure containing fixed-type information is as follows.

.struct _c2_sG aphBase {

int U D,

_c2 I ndex | ndex;
char Pat h[PATH_I D LENGTH]; /* The Path 1D */

_c2_GaphBase *Parent; /* Pointer to calling Gaph */
int CrepsToCo; /* Count of unbound Creation Parans */
_c2_Addr Map *Map; /* Address Table */

void *Local Data; /* Pointer to struct of creation parans */
b
The frst three feldsUID, Index andPath provide identity to each
graph in a manner very similar to correspondiiegdfs of UCs. Each graph
contains a pointer to the structure representing its paPanent. Also, each
graph contains a pointer to an address riviegn. Each address map is a linked

39

list of pointers to CODE elements (on the heap) instantiated within the scope
of the enclosing graph. These CODE elements may includs,Wame Shar-

ing Relations and other Graphs. Thus, in CODE the addresses of instances are
determined by traversing an hierarchy of address tabtagefsal is possible

due to the pointer each graph has to its parent. i€heGrepsToGo is a inte-

ger representing the number of Creation Parameters that are as yet unbound.
All creation parameter nodes in a graph must be bound before any of the UC’
in the graph arerfed. This is required in order to ensure that §@ithin a

graph which make use of a creation parameter nodes aregatbéfore the
creation parameter nodes are bound.

The lastield of the structure points to the variable-type information of
each graph. An example of the variable-type information follows.

struct _c2 gvl4 { /* G aph = DoBarnes */
char _c2_Dumy;

i nt NUMPART;

i nt _c2_ NUMPART;

int NUMT,;

int _c2 NUMT,

1

In the above structure, eadblfl withouta “_c2_" prak is a creation
parameterFor each creation parametezlél there is anotheidld with the
same name alongwith a“_c2_” ppefThese ields indicate whether the corre-
sponding creation parameter is bound or not.

443 Name Sharing Relation (NSRel)

Name sharing relations are represented in a similar mahherfxed
type information is as follows.

struct _c2_ sNSRel Base {
int UD
c2 I ndex | ndex;
char Pat h[PATH_I D LENGTH]; /* The Path 1D */
i nt Crepped;
_c2_GraphBase *MyGr aph;

40

void (*InitProc)();

void *LocalData; /* Pointer to local variables struct */
3

Again UID, Index and Path provideidentity to the Name Sharing Rela-
tion. Thefield Crepped indicates whether creation parameters used by this
NSRel have been bound or not. MyGraph is a pointer to the structure repre-
senting the enclosing Graph. Function pointer InitProc pointsto afunction
which initializes shared variables within the NSRel. It is executed only once at
the time of NSRel creation. LocalData pointsto the variable type information
which contains all the shared variables of thisNSRel. An example of the vari-
able typeinformation follows.

struct _c2_nv5 {/* NSRel = x1 */

char _c2_Dummy;

int x1; /* shared variable */

int_c2 x1 RCount;/* No of current readers */

int_c2 x1 WCount;/* No of current writers */

€2 _NSLink*_c2_x1 WQ;/*list of UC's that want write access

locks */
_Cc2_NSLink*_c2_x1 RQ;/* list of UC’s that want read access

locks */
int_c2 x1_UID; /* UID of shared variable */

2

In the above structure, the only shared variableis x1. All the others are
statusfields. Thefield _c2_x1_RCount represents the number of UC nodes
which have currently been provided read accessto x1. Field _c2_x1_WCount
represents the number of UC nodes which have currently been provided write
accessto x1. This may take values O or 1 only. i.e. there may be many concur-
rent readers or one exclusive writer for each shared variable. Writers are pro-
vided non-preemptive priority over readers. The fields _c2_x1_WQ and
_c2_x1_RQ are pointersto lists of UC nodes queued up to obtain write and
read access |locksto x1.

41

444 Creation Parameter Node (CreP)

As already mentioned Creation Parameter Nodes are part of the data
structure of Graphs.

445 Interface Nodes

There are two types of interface nodes - input and output. These are
used to map other CODE elements such as UCs, NSRels and Creation Parame-
ter nodes. They are used at translate time. Howexneuntime, they are not
represented. The other CODE elements are directly mapped.

4.5 Mapping Routine

The routine used to map CODE elements to PVM tasks is actually a
hashing algorithm. It takes as input the PathID of each CODE element and
hashes it to a PVM task. The hash formula is (Sum of Numbers in PathID)
modulo (Number of PVM tasks). For example, if the PathlD were to be
“0/2/4[10][1]/3", then the individual numbers in the Pathld are summed up
(0+2+4+10+1+3) = 20. Then, the hash value would be (20 modulo (Number of
PVM tasks)).

4.6 PVM Scheduler

The PVM runtime environment has its own non-preemptive scheduler
a version of which runs on each of the PVM tasks. Each PVM task maintains a
ready queue of UC Nodes that must be run. The PVM task removes the UC
node which is at the head of the list and run<impProc. UC Nodes are
placed on and takenfdahis queue depending on their state. Their state is main-
tained in a variable calleQueueStatus. UCs may be in any one of the follow-
ing four states.

* _c2_IDLE - Node is not on ready queue and is not running
* _c2_ONQUEUE - Node is on ready queue, waiting to be run

* c2_RUNNING - Node is currently running, not on ready queue

42

_c2_NEEDSRUN - Node is not on ready queue and is running but its state
has changed in such a way that it needs to be evaluated again when the
current evaluation is complete.

QueueStatus takes on one of the above values at any point in time.

UC Computation

TheCompProc of each UC follows the structure outlined below

/* Check to see if Name Sharing Lock List is created */

If (NSState == NONINIT)
create list of required locks
NSState = NOBIND;
Endif
If (NSState == INPROG) goto GetLocks;

/* Check f iring rules */

If FiringRule 1 is not satisf ied, goto EndFRul
Perform bindings for FiringRule 1
Goto StartComp;

EndFRule q:
If FiringRule 2 is not satisf ied, goto EndFRul
Perform bindings for FiringRule 2
Goto StartComp;

EndFRule 5:

Return without doing any computation;
GetlLocks:

/* Get All Name Sharing Relation Locks */
/* and then Run node’s sequential computation */

StartComp:
If GetAllLocks is TRUE NSState = NOBIND
Else
NSState = INPROG
Return without doing any computation
Endif

Perform node’s sequential computation;

/* Evaluate routing rules */

€4;

€s;

43

If RoutingRule 1 is not satisf ied, goto EndRRul ey;
Perform bindings for RoutingRule 1

EndRRule :
If RoutingRule 2 is not satisf ied, goto EndRRul ey;
Perform bindings for RoutingRule 2

EndRRule 5:

Release All Shared Variable Locks

4.8 Data flow

Data fow in CODE (from an implementation stand-point) takes three
forms.

4.8.1 Data flow from UC to UC

Due to the dynamic nature of the CODE model, data from one UC
instance to another involves a runtime mapping of the output port of the send-
ing UC instance to the input port of the receiving UC instance. Also, due to the
lazy creation feature of CODE, receiving WGire instantiated the$t time
they receive data.

The receiving nodeg’indices are determined by the arc topology speci-
fication applied to the sending nodendices (graph, node, and port in the gen-
eral case). For example, suppose the sending node (node A with index [4]) has
the following routing rule.

TRUE => Y[3] <- n;

44

So, the sending nodehode index is [4] and its port index is [3]. See Figure 4-

5.
routing_rules {
TRUE => Y[3] <- n; }
Y

[1.YO] => [i+]].X[i-]]
X

e

Figure4-5. Example Data flow Send.

The arc topology specdation determines that the receiving node is
node B with index [7] sincg = 4+3. The receiving port is X[1] since
1=4-3.

Once the mapping is done, the receiving UC must be instantiated if it
has not already been instantiated. Then, the actual data transfer must take
place.

However before a UC can be instantiated, it must be determined
whether the instantiation will be local (same PVM task) or non-local (remote
PVM task). A mapping routine is called to determine on which PVM task the
receiving UC instance must be created. If it is local, then it is instantiated and
data is transferred into the dataw queue of the receiving U€data struc-
ture. Ifitis non-local, then a PVM message is prepared by packing informa-
tion needed to uniquely identify the UC instance alongwith a copy of the
entire data that must be transferred. This PVM message is sent to the PVM
task whose id is returned by the mapping routine. The remote PVM task re-
ceives the message and correspondingly instantiates (if necessary) the receiv-
ing UC instance and transfers the data into its data flow queue.

The arc topology spectfation deines a mapping that relates the send
nodes graph, node, and port indices to the receiving rogedph, node, and
port indices. A cache is used to avoid recomputing the mapping for every

45

send. \riable “addr” is the address of the structure that implements the receiv-
ing node and “taskid” is the id of the PVM task the receiving UC must be in-
stantiated on. The entire algorithm follows.

/1 1nput is sending node graph, node, and port indices.

if (input indices are not in cache) then
Apply arc topol ogy mapping to get receiving node indices.
taskid = MapToPvnTask(receiving node path id info)

el se
taskid = val ue from cache

endi f

if (myid !'= taskid) then
pack receiving node path id info into pvm nessage
pack data into pvm nessage
send pvm nessage to taskid
el se
if (addr not in cache) then
addr = Get Addr (receiving node I D, receiving node indices)
Pl ace (input indices, addr, taskid) tuple in cache.
el se
addr = value from cache
endi f
endi f

Add data to the receiving queue.
Pl ace receiving node on ready queue for firing rule test.

In case the UC has to be instantiated on feckht PVM task, a PVM

message is sent to that task. The function that unpacks messages from other
PVM tasks and takes appropriate action is called Message_HaAdl@mple
function which implements the above algorithm follows.

void _c2_g25(_c2_NodeBase * c2 na, _c2 Index *_c2 pi, int
_c2_value) /* Port P*/

{
int task id;

struct _c2_gv0 *_c2_g;
_c2_GraphBase *_c2_gr;
_c2_NodeBase *_c2_TnpNode;
_c2_Index _c2_origpi
_c2_Index _c2 gi;
_c2_Index _c2 ni;

int c2 AddToCache = 0;

_c2_gr
_C2_ni

_c2_na->MyGraph;
_C€2_na- >l ndex;

_c2_origpi = *_c2_pi;
_€2_g = (struct _c2 gv0 *) (_c2_gr->Local Data);

/*

Check Cache */

if (!_c2_FindCache(& ((struct _c2_nv3 *)(_c2_na-

>Local Data))->_c2 _g25Cache), & c2 origpi,

& c2 _gi, & c2_ni, & c2_TnpNode, &task_id))

{

_c2 _AddToCache = 1;
[* perform mapping */

{
_€2_gi.Num nd 0;

_€2_ni.Num nd 0;
(*_c2_pi).Numnd = 0;
}

/* Map receiving UC to PVMtask */

task_id = _c2_MapToPvniTask(_c2_gr,
4);
}
if (task_id !'= _c2 ne)
{

}

& c2_gi,

_C2_pi,

& c2 ni,

/* prepare PVM nessage for renote instantiation*/

pvm_ i ni t send (PVVDATATYPE);

pvm pkstr (_c2_gr->Path); /* Parent graph Path ID */
/* Graph Indices */
1);
Node | ndices */
1);

pvm pkint (& c2_gi.Numnd, 1, 1);
pvm pkint (& c2_gi.Ind[0], _c2_gi.
pvm pkint (& c2_ni.Numnd, 1, 1);
pvm pkint (& c2_ni.Ind[0], _c2_ni

/*
. Nuni nd,

Nuni nd,

pvm pkint (& c2_pi->Numnd, 1, 1);/* Port

j = 25

pvmpkint (&, 1, 1); /* g routine no.25 */

pvm pkint (& c2 value, 1, 1); /* data */

pvm send (_c2_tids[task_id], 1);

el se

I ndi ces */
pvm pkint (& c2_pi->Ind[0], _c2_pi->Numnl nd,

1);

41

46

47

/* Local Instantiation */

_c2_g25 local(_c2 gr, &c2 gi, &c2 ni, _c2 pi, &c2_Tnmp-
Node, _c2_AddToCache, _c2_val ue);

if (_c2_AddToCache) /* Add to Cache */
_c2_EnCache(&(((struct _c2 _nv3 *)(_c2_na->Local Data)) -
> c2_g25Cache), & c2 origpi, _c2 pi, &c2 gi, &c2 ni,
_c2_TnpNode, task_id);

}

The function _c2_g25_local contains code that instantiates the receiv-
ing UC and transfers data into its data flow queue. It follows.

void c2 g25 |local (_c2 GraphBase * c2 gr, _c2_ |ndex

* ¢2 gi, _c2 Index * c2 ni, _c2 Index * c2 pi, _c2 NodeBase
** ¢c2 NodeAddr, int _c2 AddToCache, int _c2 val ue)

{

_€2_SeqgVar **_c2_Qvar;

_c2_NodeBase *_c2_TnpNode;

_c2_Value _c2_TnpVal ue;

if (_c2_AddToCache)
/* Instantiate if necessary */

_c2_TnpNode = (_c2 NodeBase *) _c2 GetAddr(_c2 gr,
4, ¢c2 ni);

el se

€2 _TnpNode = *_c2_ NodeAddr;

~c2_QVar = ((struct _c2 nv4 *)(_c2_ TnpNode->Local Data)) -
>Q2;

/* Insert data into data fl ow queue */

_c2_TnpVal ue.type = c2_IsAnint;
_c2 _TnpValue.u.i = _c2 val ue;
~c2 Insert(_c2 Qvar, _c2 pi, & c2 TnpVal ue);

/* enqueue receiving UC for firing rule test */

_c2_EnQueue(_c2_TnpNode);

if (_c2_AddToCache)

* c2_NodeAddr = _c2_ TnpNode;
}

48

Function GetAddr invoked above is responsible for returning the ad-
dress on the heap where the structures representing instancespfag&hs
and Name-Sharing Relations reside. As a sideeg¢fit instantiates them if
they have not already been instantiated. In order to achieve this, it makes use
of the address map which is part of each grahata structure. While the func-
tion GetAddr itself is not CODE-spedif(it is part of the runtime library and
does not vary from program to program), it calls a function MakeObj which is
CODE speciic. This function MakeObj creates runtime instances of4)C’
Graphs and NSRes. It uses the template type ID (UID) to determine which
template to instantiate. It uses helper functions MakeGraph, MakeNode and
MakeNSRel, to initialize the fixed type information.

4.8.2 Data flow from UC to CreP

Creation Parameter Nodes complicate matters in a distributed environ-
ment. This is due to the fact that they must be initialized on every PVM task
which carries an instance of their enclosing graph. An instance of a graph will
be present on a PVM task if any of its children is (or will be). Therkloy not
possible to determine apriori if a particular PVM task will carry that graph in-
stance or not. Thus, whenever a creation parameter node is created, it is broad-
cast to all PVM tasks and initialized on all of them.

The algorithm followed to achieve this is very similar to that of data
flow from UC to UC. The only diérence being that creation parameter nodes
are not mapped, but instantiated on all PVM tasks. A sample routine which
does this is given belaw

void c2 gl111 (_c2 NodeBase * c2 na, _c2 Index * c2 pi, int
_c2 value) /* Port NUWMPROC */

{
int task_id;

struct _c2 gv0 * _c2 _g;
_c2 _GraphBase *_c2 gr;
€2 _NodeBase *_c2_ TnpNode;
~c2 Index _c2 origpi;
€2 Index _c2 gi;

49

_c2_Index _c2 ni;
int _c2_ AddToCache = O0;

_c2_gr _c2_na->MyG aph;

_C2_ni _C€2_na- >l ndex;

_c2_origpi = *_c2_pi;

_€2_g = (struct _c2_gv0 *) (_c2_gr->Local Data);

/* Check Cache */

if (!_c2_FindCache (& ((struct _c2_nvl *) (_c2_na->Local -
Data))-> c2 glilCache), & c2 origpi, _c2 pi, & c2 gi,
& ¢2_ni, & c2_TnpNode, &t ask_id))
{
_c2 _AddToCache = 1;

[* Perform mapping */

{
€2 _gi.Numnd = 0;
_€2_ni.Numnd = 0;
(*_c2_pi).Numnd = 0;

}

/* Dont add to Cache. This function executed only once */

_c2_AddToCache = 0;

/* Prepare PVM nmessage to broadcast CreP */

int j, k;

pvm i ni t send (PVVDATATYPE);

pvm pkstr (_c2_gr->Path); /* Parent G aph Path Id */
pvm pkint (& c2 gi.Nunmnd, 1, 1);/* Gaph Indices */
pvm pkint (& c2_gi.Ind[0], _c2_gi.Num nd, 1);

pvm pkint (& c2 ni.Numnd, 1, 1);/* Node Indices */
pvm pkint (& c2_ni.Ind[0], _c2_ni.Num nd, 1);

pvm pkint (& c2_pi->Numnd, 1, 1);/* Port |ndices */
pvm pkint (& c2_pi->Ind[0], _c2_pi->Numnd, 1);

j = 111;

pvmpkint (&, 1, 1);/* _c2_g routine no. 111 */
pvm pkint (& c2 value, 1, 1); /* CreP Value */

/* SEND PVM MESSACE TO ALL PVM TASKS OTHER THAN | TSELF */

for (k = 0; k < _c2_nhost; k++)

50

if (k!=_c2_me)
pvm_send (_c2_tids[k], 1);
}

/* Initialize local instance of creation parameter node */

_€2_g111 local (_c2_gr,& c2 gi, & c2_ni,_c2_pi,& c2_Tmp-
Node, c¢2_AddToCache, _c2_value);

/* Will not be added to Cache */

if (_c2_AddToCache)

_c2_EnCache (&(((struct _c2_nv1 *) (_c2_na->LocalData))-
> ¢2_g111Cache), & c2_origpi, _c2_pi, & c2_gi, & c2_ni,
_c2_TmpNode, task_id);
}

Thefunction _c2_g111 local which performsthe actual initialization
isgiven below.

void_c2 g111 local (_c2_GraphBase * c2_gr, _c2_Index

* ¢2_gi, _c2 Index* c2 ni, c2 Index* c2 pi, c2_NodeBase
* ¢2_NodeAddr, int _c2_AddToCache, int _c2_value)

{

_c2_SeqVar **_c2_QVar,;

_c2_NodeBase *_c2_TmpNode;

_C€2_Value _c2_TmpValue;

/* Get addr of Parent Graph (create if necessary) */

_c2 _gr=(_c2_GraphBase *) c2 GetAddr (_c2 _gr, 8, _c2 gi);
if (((struct _c2_gv14*) (_c2_gr->LocalData))->_c2_ NUMPROC

==1)
{
/* Error !! Initialized Twice 1!*/
_c2_KillComp (_c2 CREPTWICE);
}
else

/* Set CreP Flag to true */
((struct _c2_gv14 *) (_c2_gr->LocalData))->_c2_ NUMPROC=1;
/* Initialize CreP */

((struct _c2_gvi14 *) (_c2_gr->LocalData))->NUMPROC =
(int)_c2_value;

/* Enqueue waiting UC's for f iring */

51

_c2_InitWaitingNodes (_c2_gr);

if (_c2_AddToCache) /* Dont Add to Cache */
* c2_NodeAddr = _c2_TmpNode;

}

Two routines from CODE PVM runtime library are used in the above
function. InitWaitingNodes is a function that checks if all creation parameter
nodes of the graph have been bound. If so, it will enqueue all thelddéd@ng-
ing to that graph that were waiting for the creation parameter nodes to be
bound, for iring. The function KillComp is invoked on the error condition in
which a creation parameter node is initialized twice.

4.8.3 Data flow between UC and NSRel

Before any form of datddw occurs between UG’and NSRe§, a list
of locks which the UC should acquire must be created. In the runtime environ-
ment, one C function is generated to create each lock that must be acquired by
a UC. Each UC invokes these routines tingt time it runs. Of course, these
routines are created only if the UC uses shared variables. A sample routine is
given below

void _c2_g80 (_c2_NodeBase * ¢2_na, c2_Index * _c2_pi)
{. .

inti;

struct _c2_gvl4 * c2_g;

_c2_GraphBase *_c2_gr;

_c2_NSRelBase *_c2_TmpNSRel,

_c2_Index _c2_gi;

_c2_Index _c2_ni;

void *_c2_LocalAddr;

int _c2_LocalReqType;

_c2_LockSet* c2_NewLock = (_c2_LockSet *) c2_shmalloc(-
sizeof (_c2_LockSet));

_c2_gr=_c2_na->MyGraph,;
_C2_ni=_c2_na->Index;
_€2_g = (struct _c2_gvl4 *) (_c2_gr->LocalData);

/* Initialize pointer to Local Address of Shared Variable.
This is the address of the UC’s own copy of the shared vari-
able */

52

_c2_lLocal Addr = (void *) &((struct _c2 _nv25 *) (_c2_na-
>Local Data)) - >Tr ee;

/* This UCis a READER of this Shared Variable */
_c2_lLocal ReqType = _c2_ READER,

/* Perform Mappi ng */
{

_€2_gi.Num nd 0;

_€2_ni.Num nd 0;
(*_c2_pi).Num nd = O;

/* This block of code maps the NSRel contai ning
this shared variable to a PVYMtask */

int tempsum
int j;

tenpsum = _c2_PvnPat hSum (_c2_gr->Pat h);

for (j =0; j < _c2_ni.Numnd; j++)
tenpsum += _c2_ni.Ind[j];

tenpsum += 23;

i = tenmpsum % _c2_nhost;

}

/* I's the NSRel containing this shared Variable |ocal ? */

if (i == _c2_ne)
{ I'* Yes, Instantiate it */

_c2_TnpNSRel = (_c2_NSRel Base *) _c2_GetAddr (_c2_gr, 23,
& c2_ni);

/* Initialize support fields */

_c2_NewLock->NSRel Addr = _c2_TnpNSRel ;

_c2_NewLock->RCount = &((struct _c2 _nv23 *) (_c2_TmpN
SRel - >Local Data))> c2_Tree_RCount;

_c2_NewLock->WCount = &((struct _c2 _nv23 *) (_c2_TmpN
SRel - >Local Data)) > c2_Tree_Wount;

_c2_NewLock->RQ = &((struct _c2_nv23 *) (_c2_TnpNSRel -
>Local Data))> c2_Tree_RQ

_c2_NewLock->WQ = &((struct _c2_nv23 *) (_c2_TnpNSRel -

53

>l ocalData))>_c2_Tree_WQ;

_c2_NewLock->SharedAddr = (void *) &((struct _c2_nv23 *)
(_c2_TmpNSRel->LocalData))->Tree;

_c2_NewLock->UID = ((struct _c2_nv23 *) (_c2_TmpNSRel-
>l ocalData))>_c2_Tree_UID;

/* NSRel is local */

_c2_NewLock->IsRemote = 0;
}
else
{/* No, wait until lock is requested to instantiate */

_c2_NewlLock->IsRemote = 1;
_c2_NewlLock->RequestSent = 0;
}
_c2_NewlLock->ReqType = _c2_LocalReqType;
_c2_NewlLock->LocalAddr = _c2_LocalAddr;
_c2_NewLock->NSRelUID = 23;
_c2_NewlLock->NSRelGraphPath = _c2_gr->Path;
_c2_NewLock->NSRellndex = _¢2_ni;
_c2_NewlLock->UID = _c2_23_Tree_SharVarUID ();
_c2_NewlLock->TypeTag = _c2_IsAStructPtr;
_c2_InsertLock (&_c2_na->HeadLock, c2_NewLock);

}

After thelist of locksiscreated, the UC begins acquiring these locksin
aspecific order as described in Section 3.6.3 in order to avoid deadlock. In or-
der to acquire locks the UC invokes a CODE runtime library function called
GetAllLocks. Thisfunction isgiven below.

[* Acquire all locks in list from NextLock to end. If fall
to get a lock, leave NextLock pointing at it to try again
next time.Return 1 if end of list reached (all locks
acquired), return 0 if fail to get one-- hence more locks
needed */

int_c2_ GetAllLocks(_c2_NodeBase * ¢c2_na, c2_LockSet
**NextLock)

{

_C2_LockSet *cur;

* Get all locks in node’s list */

cur = *NextLock;

while (cur 1= 0) {
/* Is the NSRel on the same pvm task?*/

if (lcur->IsRemote)
{/* NSRel is local, try to acquire lock */

if (_c2_GetLock(cur->NSRelAddr, cur->RCount, cur-
>RQ,cur->WCount, cur->WQ, cur->ReqType, _c2_na))
{
/* Got lock. Map Addr of Shared Variable to Local UC'’s
Data Structure */

switch (cur->TypeTag) {
case _c2_IsAnint:
*((int *)(cur->LocalAddr)) = *((int *)(cur->Share-
dAddr));
break;
case _c2_IsADouble:
*((double *)(cur->LocalAddr)) = *((double *)(cur-
>SharedAddr));
break;
case _c2_IsAnArrayPtr:
case _c2_IsAStructPtr:
*((void **)(cur->LocalAddr)) = *((void **)(cur-
>SharedAddr));
break;
case c2_IsAChar:
*((char *)(cur->LocalAddr)) = *((char *)(cur->Share-

dAddr));
break;
}
}
else
{
*NextLock = cur;
return O; [* Failed to get this lock */
}
cur = cur->Next;
}
else /* or on a different Pvm task ? */
{

/* Send a PVM message to different PVM task requesting
a lock on this shared variable */

if (cur->RequestSent == 0)

{

55

int tempsum
int i;
i nt Taskl D;

/* Map NSRel to PVMtask */

tenpsum = _c2_PvnPat hSum(cur - >NSRel G- aphPat h) ;

for (i = 0; i < cur->NSRel I ndex. Num nd; i ++)
tempsum += cur->NSRel | ndex. I nd[i];

tempsum += cur->NSRel Ul D;

Taskl D = tenpsum % _c2_nhost;

/* Prepare PVM Message */

pvm i ni t send(PVYMDATATYPE) ;
/* NSRel ParentGaph Path ID */
pvm pkstr (cur - >NSRel G aphPat h) ;
pvm pki nt (&ur->NSRel U D, 1, 1);/* NSRel U D */
pvm pki nt (&cur - >NSRel | ndex. Num nd, 1, 1);/* Indices*/
pvm pki nt (&cur - >NSRel | ndex. I nd[0], cur->NSRel | ndex. -
Num nd, 1);

pvm pkstr(_c2 na->Path);/* Path ID of UC */
pvm pki nt (&cur - >ReqType, 1, 1);/* Reader or Witer */
pvm pkint (&ur->UD, 1, 1);/* U D of Shared Vari abl e*/
pvm pkint (& c2_nme, 1, 1);/* My PVM Task ID */
pvm send(_c2_tids[Taskl D, 3);
*Next Lock = cur;
cur - >Request Sent = 1;

}

return O;

}
}

return 1;

}

Asthe above function shows, thisroutinetriesto acquire all locks until
it runsinto alock that has already been acquired by some other UC or alock
on ashared variable which ison adifferent PVM task. In the latter case, the
function sends a PV M message containing the identity of the shared variable
and the UC requesting the lock. In both cases, the function returns fal se indi-
cating that all locks have not been acquired. The other PV M task receivesthis
message through its Message Handler function and returns an approval mes-
sageif that shared variable is not locked. That message isreceived by the local

56

Message_Handler which again enqueues the UC for execution. Hqwfever

the other PVM taskifids the shared variable already locked, then it puts the
UC on the queue and sends the local PVM task a message when the shared
variable is unlocked. In that case, the UC starts all over again and sends a
PVM message requesting the lock.

Once the execution of the UC completes, all locks must be released.
Routine RelAllLocks from the runtime library performs this function. It releas-
es all the locks in the same order as the one in which they were acquired. If a
shared variable is local, it updates its value and releases the lock. If it is non-lo-
cal, a PVM message is sent to that PVM task which contains the identity of the
shared variable and its new value.The other PVM task updates the shared vari-
able and unlocks it.

4.9 M essage Handling

The function Message_Handler is responsible for handling all the
PVM messages in COD&distributed environment. It is program-speecand
is generated at compile time. Its structure is outlined helow

Perform a non-bl ocki ng recei ve

If (any nessage has arrived)

{
Swi tch(Message Tag)

{
case 1:
/* Data transfer nmessage froma UC to a UC Crep

Unpack Message

Instantiate receiving UC if necessary

Transfer Data to Data fl ow queue of receiving UC
Enqueue UC for firing rule test

br eak;

case 2:
/* Data transfer nessage on return from CODE graph */

Unpack nessage
Instantiate receiving UC if necessary

Transfer Data to Data f low queue of receiving UC
Enqueue UC for f iring rule test
break;

case 3:

/* Request for lock on shared variable */

Unpack Identity of NSRel containing Shared Variable
Instantiate NSRel if necessary
Unpack Identity of UC requesting lock and type of lock
Try to acquire lock
If (successful)
pack identity of UC requesting lock
pack the current value of shared variable
send PVM message(type 4)to PVM task on which the
UC resides
Endif
break;

case 4:
/* Approval of request for lock on shared variable */

unpack the identity of the UC.

get addr of UC

update its list of locks to ref lect that the
last requested lock has been acquired

update UC'’s structure to take the shared variable’s new
value

enqueue UC for execution (or to acquire further locks)
break;

case 5:
/* Request to release lock on shared variable */

unpack identity of shared variable

get addr of shared variable

update the shared variable with new value

enqueue for execution all UC’s queued for access to
shared variable

break;

case 6:
/* Request to enqueue UC for execution */

unpack identity of UC
get addr of UC

57

enqueue UC for execution

br eak;

case 99:

/* termnate run */

stop execution and end run

br eak

}

check if a nessage has arrived

}

4.10 Linking and Running

Suppose the userprogram is called “prog.grf”. COD&EPVM transla-
tor creates a directory called “prog.pvm” and places within it all program text
that must be compiled for PVM. It also creates a Ma&eavhich permits the
user to use the UNIX “make” facility to automatically compile theles fand

create an executable parallel program.

The Makeile contains instructions to link in all necessary runtime li-
braries, including the CODE Runtime Library and the PVM libr&iyeir

structure is as outlined in Figure 4-6.

CODE Dir

code/c2libg.o or

— Linking

PVM Dir

Users Dir

/

prog.grf prog.pvm

code/c2libo.0 jin/spyv ARCH/Ilbpva a

— Dir Structure\\‘

prog (executable)

various .o Makefile

Figure4-6. Files Linked for PVM.

That concludes the detailed description of the implementation of the

distributed execution environment of CODE for PVM.

Chapter 5. Experimental Results

In this chapterresults of an extensive set of experiments which were
conducted to evaluate the distributed execution environment will be presented.

51 Goal

The goal of these experiments is to evaluate tfexg¥eness of the dis-
tributed execution environment and to compare its performance with those of
hand-coded native programs that run on the same execution environment. Per-
formance is measured by comparing the execution times of CODE generated
PVM programs with those of well-structured hand-coded PVM programs. The
focus is on the relative performance of CODE generated versus hand-coded
PVM programs rather than absolute performance measures.

5.2 Set Up

A set of standard programs were chosen to serve as benchmarks for our
distributed execution environment. These include the Blo@ngular Solver
[Don86],the Life [Gar70] program and the Barnes Hut [Bar86, Cha92] algo-
rithm.These programs use f@ifent patterns of communication.

We also used a synthetic benchmark in order to evaluate the following
features of our system.

» efficiency of communication
» effectiveness of placement

The synthetic benchmark system varies the ratio of computation and
data transfer

5.3 Execution Environment

The execution environment for these experiments is a network of
RS6000 workstations coupled by a FDDI network. This is a fairly commonly
used execution environment for PVM and is thus a representative host for
these experiments.

59

60

5.4 Example Programs
54.1 TheBlock Triangular Solver

This program solves a set of simultaneous linear equations Ax = B for a
known lower triangular matrix. It uses a parallel algorithm devel oped by Jack
Dongarraand Danny Sorenson[Don86].

Values obtained by running CODE generated programs as well as hand-
coded programs on matrices of size 1200x1200 are asfollows.

Table 5-1. Block Triangular Solver Timings.

Processors CODE pgm HP?/nl(\j/;C;;rid
(secs) (sece)
1 0.23 144
2 1.39 3.32
3 3.18 2.79
4 2.15 2.57
5 2.34 2.37
6 255 2.30
8 2.71 2.20
10 2.57 2.09

In these experiments the number of blocksis set to the number of pro-
cessors, so that the granularity of computations decreases as the number of
processorsincrease. Thisis one reason why speedups do not follow the expect-
ed log N behavior. Another reason isthat the amount of communicationisin-
creasing. Thisis because every time that part of the system which has been
solved by a processor must be broadcast to all the other processors.

As may be observed, the timings of both CODE and hand-coded pro-
grams are comparable. In the case of one processor, the CODE program isfast-

61

er than the corresponding hand-coded program. This is because the hand-
coded program has been written in a generalized fashion for any number of
processors. Thus, it does not take advantage of the fact that on a single proces-
sor, there is no need for explicit message-passing. In the case of two proces-
sors, again the CODE program is faster than the hand-coded program. This is
due to good placement of units of computation which ensures that some of the
data do not have to be explicitly transmitted between processors.

54.2 ThelLifeprogram

The life program is based on the Game of Life [Gar70]. The Game of
Life consists of a rectangular grid of cells, each surrounded by eight neigh-
bors. Each cell can be on(“alive”) orftlead”) during each iteration (“gener-
ation”) of the program. The three rules which govern the next generation of
cells in the grid are as follows.

e survivals - each living cell with two or three living neighbors survives.

» deaths - each living cell with four or more living neighbors dies from
overpopulation. Each cell with fewer than two live neighbors dies of
isolation.

» births - each dead cell with exactly three living neighbors will produce a
living cell.

Table5-2. Life Program imings.

Number of | CODE pgm Hand-coded
PVM pgm

processors (secs) (secs)

1 12.62 13.18

2 8.63 8.69

3 6.38 6.89

4 5.59 5.65

5 5.06 4.98

62

Table 5-2. Life Program Timings.

Number of | CODE pgm HF;s:/n &coded
pgm
processors (secs) (sece)
6 4.67 4.49
8 4.24 3.95
10 4.08 3.73
12 3.88 343

Table 5-2 was generated by running CODE and hand-coded PVM pro-
grams on 1200x1200 matrices for 10 generations. As can be observed from the
abovetable, not only do CODE and hand-coded programs execute in compara-
ble timings, they also show very similar patterns of speedup. Again, note that
the granularity of the computations decreases as the number of processorsin-
crease.

54.3 TheBarnes-Hut Algorithm

The Barnes-Hut algorithm [Bar86, Cha92] computes the gravitational
interactions among N particles and also computes their positions over time. Its
order of executionisO(N log N).

Values obtained by running CODE generated programs as well as hand-
coded programs on 80 particlesfor 40 iterations are asfollows.

Table 5-3. Barnes-Hut Algorithm Timings.

Hand-coded
Processors CODE pgm PVM pgm
(secs) (sece)
1 2.74 3.48
2 19.18 2.68
3 6.65 2.48

63

Table5-3. Barnes-Hut Algorithmiimings.

Hand-coded
Processors CODE pgm PVM pgm
(secs)
(secs)
4 21.14 2.93
5 21.09 3.63
6 20.45 3.85
8 22.42 4.44
10 24.21 5.07

This is an example where the CODE generated program performs poor-
ly compared to the hand-coded one. There are a couple of reasons for this. One
reason is that the CODE program uses a shared variable. The shared variable
implementation by the PVM translator involves a lot of overhead especially
when the shared variable and the UC manipulating it are not placed on the
same PVM task. In this case, every time a UC using the shared tree executes it
has to get a fresh copy of the tree from the remote PVM task on which the tree
resides.Thus, it may be observed for the cases when the number of processors
is2,4,5, 6, 8, 10 that the CODE program is very stéawever for three pro-
cessors, while not comparable to hand-coded programs, the timing is far better
compared to the others. This is partly due to good placement of the UC of in-
terest and the shared tree. Another reason is that the CODE program and the
corresponding hand-coded program usédént data structures, which in this
case results in the amount of communication increasing by three times in the
CODE program compared to the hand-coded one. One of the reasons for using
different data structures is that CODE does not provide explicit support for
pointers.

55 Synthetic Benchmark

To create a synthetic benchmark, a CODE program consisting of two
layers of UCS was written. Thefst layer of UCS perform some computation

64

and then send messages tdatént UC5 in the second layeFhe second layer
UC’s send messages back to corresponding the first layer

The factors under consideration were computation and communica-
tion. The frst set of runs was conducted by keeping the computatied at
1,200,000Ibating-point additions and varying the amount of communication
(message size). The number of iterations was fixed at 100.

Table5-4. \arying Communication with fixed Computation.

Communical Communical] Communica
Number of tion size tion Size tion Size
12000 120000 1200000
Processors
bytes bytes bytes
(secs) (secs) (secs)
1 10.82 10.84 10.84
2 11.09 11.10 11.10
3 6.09 9.84 55.60
4 5.63 9.20 37.92
5 4.32 7.07 27.85
6 4.00 6.05 23.23
8 3.25 4.66 17.86
10 2.81 3.61 14.40
12 2.32 3.26 14.61

From the above table, itis observed that when the computation is two
orders of magnitude higher than communication, the speedup is much higher
than when computation is one order of magnitude higher than communication.
When the two are of the same magnitude there is no speedup at all.

65

The second set of runs were made by keeping the communication size
fixed at 120000 bytes and varying the amount of computation. The number of
iterations were again fixed at 100.

Table5-5. \arying Computation with fixed Communication.

Computation| Computation| Computation
Numberof | 600000 add | 1200000 add| 2400000 add
Processorg statements | statements | statements
(secs) (secs) (secs)
1 5.47 10.84 21.56
2 5.79 11.10 21.81
3 6.85 9.84 15.06
4 6.57 9.20 14.30
5 5.16 7.07 10.97
6 4.49 6.05 9.66
8 3.34 4.66 7.27
10 2.76 3.61 5.97
12 2.52 3.26 5.05

Again, it is observed that higher speedups are obtained by increasing
computation over communication and vice-versa.

Further a comparison between CODBEynthetic program and the cor-
responding hand-coded program is provided for one set of values - where com-

66

putation is 1200000 floating-point additions, communication size is 1200000
bytes and the number of iterationsis 100.

Table 5-6. Synthetic Benchmark Timings.

Hand-
Number of | CODE pgm coded
Processors (secs) PVM pgm
(secs)
1 10.84 25.58
2 11.10 48.00
3 55.60 35.79
4 37.92 27.67
5 27.85 23.28
6 23.23 19.55
8 17.86 15.20
10 14.40 13.14
12 14.61 11.86

The average execution time of the benchmark is similar in pattern to
the previous cases. The CODE and hand-coded programs have similar execu-
tion times except for very small number of processors.

We can conclude that the performance of CODE-generated PVM pro-
gram is comparable to hand-coded PV M program except where placement is-
sues are not treated in a comparable manner. Placement is a separate issue
which will be discussed in later work.

Chapter 6. Related Work

There have been many attempts to abstract parallel and distributed
computing. Some have used graphical approaches while others have used the
idea of enhancing existing languages by providing new primitives. In this
chapter an example of each will be examined, HeNCE[Beg91] and Linda[S-
ci92] respectivelyNewton[New93a] gives a through survey of related work.
Since, this recent survey is available, we give only a brief sketch of the two
systems.

6.1 HeNCE

HeNCE is a graphical parallel programming environment. It is very
similar to CODE in terms of goal, function, philosophy as well as the look and
feel. The two have similarities and dissimilarities, which are outlined below
Much of what is outlined below is from [Bro94].

Both CODE and HeNCE support graphical/textual interfaces. Both al-
low calls to external sequential routines, enforce type checking and perform
automatic storage management.

CODE provides a complete and very expressive sdtiofgfrules.
While this is an asset for an experienced CODE programtmaay be daunt-
ing to a new useHHoweverin HeNCE fring rules areiked and implicit.
Nodes are permitted to fire when all their predecessors have fired.

HeNCE does not allow hierarchical structuring of programs. i.e.,
HeNCE graphs cannot call other HeNCE graphs. This restricts the expressive-
ness of the programming model. CODE graphs can invoke other CODE
graphs.

HeNCE graphs must be acyclic while CODE graphs may be cyclic.
Also, nodes in HeNCE are not decoupled from arcs. All data i implicit.
But, in CODE each node is decoupled from arcs leaving it andldatasfex-

67

68

plicit. All this ensures that CODE can represent more complex dynamic com-
munication patterns than HeNCE.

Most importantly HeNCE produces parallel code only for the PVM
system. But, CODE is a retgetable language. It produces code for PVM as
well as other tagets such as the Sequent Symmetry shared memory system.
The design of CODE is such that its translators operate much closer to the
hardware of the tget system. This enables them to produce mdieieft
code. Also, architecture sperfoptimizations may be made in CODE.
HeNCE depends on PVM to make architecture specgtimizations. No di-
cient implementation of HeNCE was ever attempted. It starts a UNIX process
every time it runs a node. This does not mean thatfanesft implementation
is impossible. Howevemperformance comparisons between CODE and
HeNCE would not be valid.

The HeNCE system allows the programmer tamef cost matrix.
This helps it to make intelligent choices about running the program. The
CODE system has no equivalent feature.

One can summarize the @ifences between CODE and HeNCE by saying
that CODE is more capable and at least Asieht. But HeNCE is more concise
and simpler for beginning programmers.

6.2 Linda

Linda centers on a logical model of memory closely related to relation-
al data bases. While a conventional mem®sgbrage unit is the physical byte,
Linda memorys storage unit is the logical tuple, where a tuple is an ordered
set of values. While elements of a conventional memory are accessed by ad-
dresses, elements in Linda are accessed by logical name, where anapie’
is any selection of its values.

Linda supports the notion of a globally shared associative memory
space referred to as tuple space. In regbitytions on this memory space will
reside on diferent processors, but will appear as one global memory space to

69

all component Linda processes. Messages in Linda are never exchanged be-
tween two processes explicitly. Instead, a process with datato communicate
addsto the tuple space and a process that needs data seeksit, likewise, in tuple
space. There are six operations defined over tuple space - out(), in(), inp(),
rd(), rdp() and eval(). out() places atuple in the tuple space, in() removes atu-
ple from the tuple space, inp() isanon-blocking form of in(), rd() reads the val-
ue of thetuple but leavesit in place, rdp() is anon-blocking form of rd() and
eval () creates anew tuple.

Thus, it may be observed that the Linda model of programming is sub-
stantially different from that of CODE. However, it has been shown that Linda
isinefficient over distributed memory architectures. Thisis because Linda]S-
ci92] basically is ashared memory model. The runtime execution model re-
mains the same over all the architectures on which it runs.

6.3 Others

There are avariety of other systemsfor parallel programming. They in-
clude Paralex[Bab92], PPSE[L ew90] and P4[But92]. They are discussed in de-
tail in theliterature.

Chapter 7. Conclusion and Future Work

In this thesis, the design and implementation of a distributed execution
environment in PVM for the CODE 2.0 graphical parallel programming sys-
tem has been presented. This demonstrates fibetieEness of the CODE sys-
tem in supporting multiple tgets. Also, the fact that the CODE system works
equally well with both shared and distributed memory architectures is demon-
strated. Furtheiit makes the CODE system portable tgkaset of diverse ar-
chitectures.

The efectiveness of the distributed execution environment has been
demonstrated by the execution of several standard benchmarks. The CODE
generated programs have been shown to run with competitive speed to hand-
coded native programs in the same environment.

While the algorithm for distribution of work is reasonable in the cur-
rent implementation, it does not take into account the amount of data transfer
between nodes. An extension to this thesis would be to study placement of
units of computation(UG) such that UG that communicate with the maxi-
mum amount of data are placed on the same PVM task. This wouldcagif
ly reduce communication overheads for the PVM implementation of CODE
programs.

An interesting extension would be to explore the possibility of collaps-
ing portions of the graph intofedient serial code (for mapping to other archi-
tectures).

Also, it would be interesting to determine if the cost of abstraction is
dependent on the nature of thegetrarchitecture.

70

Appendix A. Relevant PVM Primitives

A brief explanation of the PVM primitives used in the implementation
of this thesis is given below

* pvm_bufinfo () - returns information about the requested messafgr buf

e pvm_catchout () - catch output from child tasks

* pvm_config) - returns information about the virtual machine configuration
* pvm_exit () - tells the local pvmd that this process is leaving PVM

* pvm_initsend () - clear default Hef and specify message encoding

* pvm_mcast () - multicast the data in the active messadertiafa set of
tasks

e pvm_mytid () - returns the tid of the process
* pvm_nrecv () - non-blocking receive

* pvm_parent () - returns the tid of the process that spawned the calling
process

* pvm_pk* () - pack the active messagefleufvith arrays of prescribed data
type

* pvm_recv ()- blocking receive

* pvm_send () - sends the data in the active messafg buf

* pvm_spawn () - starts new PVM processes

* pvm_upk* () - unpack the active messageféuivith arrays of prescribed
data type

More detailed descriptions of these primitives may be found in the
PVM3 Users Manual[Gei94].

71

Bibliography

[Bab92] O. Babaoglu, “Paralex: An Environment for Parallel Programming
in Distributed Systems,” Proc. ACM Int. Conf. on Supercomput-
ing, July 1992.

[Bar86] J.Barnes and.Put, “A Hierarchical O(N log N) Force-Calcula-
tion Algorithm”, Nature, vol. 324, p. 446, 1986.

[Beg91] A. Beguelin, et al., “Graphical Developmeradls for Network
Based Concurrent Supercomputing”, Proc. Supercomuting ‘91, Al-
buquerque, NM, pp. 435-444, 1991.

[Bro94] James C. Browne, Jack Dongarra, Syed I. Hyldeith Moore, and
Peter Newton, “Ysual Programming and Parallel Computing”,
University of Tennesseeélch Report CS-94-229, April 1994.

[But92] R. Butler and E. Lusk, Usex Guide to the P4 Programming Sys-
tem”, Tech. Report ANL-92/17, Ayonne National Laboratory
1992.

[Don86] J.J. Dongarra and D.C. Sorenson, “* SCHEDUL®&oITF for Devel-
oping and Analyzing Parallel Fortran Programs gémne Nation-
al Laboratory MCSD &chnical Memorandum No. 86, Nd\986.

[Cha92] K.M. Chandy and S.daylor, “An Introduction to Parallel Program-
ming”, pp. 145-157, Jones and Bartlett, Boston, 1992.

[Gar70] M. Gardney“Mathematical Recreations”, Scientific American,
vol. 223, no. 4, pp. 120-123, 1970.

[Gei94] A. Geist, etal., “PVM 3 Usés Guide an d Reference Manual”,
Oak Ridge National Laborataryennessee, 1994.

12

73

[Lew90] T.G. Lewis and WRudd,*Architecture of the Parallel Program-
ming Support EnvironmentProc. CompCon’90, San Francisco,
CA, Feb. 26 - Mar 2., 1990.

[New92] P. Newton and J.C. Brown&The CODE 2.0 Graphical Parallel
Programming Language”, &. ACM Int. Conf. on Supercomput-
ing, July 1992.

[New93a] P. Newton, “A Graphical Retgetable Parallel Programming Envi-
ronment and its Etient Implementation”, Ph.D. thesis, Universi-
ty of Texas at Austin, Dept. of Comp. Sci., 1993.

[New93b] P. Newton and S. KhedekaODE 2.0 User Manual, 1993.
[New93c] P. Newton,CODE 2.0 Language Refererence, 1993.

[Sci92] Scientific Computing Associates, Inc., C-Linda Reference Manu-
al, New Haven, CT1992.

[Str91] B. Stroustrup, “The C++ Programming Language”, Reading, Addi-
son Wesley 1991.

[Sun91] V.S. Sunderam, “PVM: A Framework for Parallel Distributed
Computing,” Concurrency: Practice and Experience, 2(4):315-
339, Dec., 1990.

Vita

Rajeev Mandayam Vokkarne was born in Bangalore, Indiaon May 10,
1970, the son of Govindarajan and Rajalakshmi Vokkarne . After graduating
from Saradavilas Collegein Mysore, Indiain 1987, he enrolled at the Universi-
ty of Mysore where he received the degree of Bachelor of Engineeringin
1991. His major areas of study were computer science and engineering. He en-
tered the Graduate School of the University of Texas at Austin in January
1993.

Permanent address: 216 12th Main, Saraswathipuram, Mysore India570009.

Thisdissertation was typed by the author.

