
II-58 International Conference on Parallel Processing - 1993

A UNIFIED MODEL FOR CONCURRENT DEBUGGING †

S. I. Hyder, J. F. Werth and J. C. Browne‡

The University of Texas at Austin
Austin, Texas 78712

Abstract: Events are occurrence instances of
actions. The thesis of this paper is that the use of
“actions”, instead of events, greatly simplifies the prob-
lem of concurrent debugging. Occurrence instances of
actions provide a debugger with a unique identifier for
each event. These identifiers help the debugger in
recording the event orderings. The recorded orderings
indicate much more than a mere temporal order. They
indicate the dependences that “cause” the actions to
execute. A debugger can, then, collect the dependence
information from the orderings of different instances of
the same action, and deduce the conditions that govern
the execution of the action. This provides a framework
for representing and checking the expected behavior.
Unlike existing approaches, we cover all parts of the
debugging cycle. Our unified model, therefore, allows a
single debugger to support different debugging facilities
like execution replay, race detection, assertion/model
checking, execution history displays, and animation.

Keywords: Pomset, concurrent debugging, execu-
tion replay, race detection, animation, model checkers.

1.0 INTRODUCTION
Parallel programs typically express concurrency by

adding synchronization constructs to the usual sequen-
tial text. This produces a complex entanglement of the
concurrent considerations with the sequential consider-
ations. A programmer, then, has to debug the synchro-
nizations and communications in the presence of the
already complex problem of debugging the flow of data
and the flow of control of the sequential text. This
makes the debugging of concurrent programs an
extremely complex problem.

During debugging, a programmer forms some
expectations about the execution behavior of the pro-
gram. This expected behavior is, then, represented by
an assertion/model. Checking of the actual execution
against this assertion/model, reveals any unexpected
behavior. Mapping of this behavior to the program,
brings the programmer closer to the bug. A sequence of
these interactions between the specified behavior of the
program P, model of the expected behavior M, and the
observed execution behavior E constitutes a debugging
cycle. This cycle will be illustrated as P→ M→Ε → P.

Concurrent debugging becomes so complex because
of the ambiguities that obscure the interactions between
P, M and E in the debugging cycle. These ambiguities
arise from the entanglement of the concurrent and
sequential considerations in the representations used for
P, M and E. As these ambiguities obscure the interac-
tions, each part of the debugging cycle becomes a sepa-
rate problem area. Existing debugging facilities that
target separate parts of the debugging cycle, then,
appear incompatible and even orthogonal. Incompatibil-
ity of these facilities forces the programmer to either use
different facilities for different parts of the cycle or
debug without them. On the other hand, it compels the
debuggers to either constrain the range of behaviors that
can be checked[9], [7]; or to tolerate the ambiguities in
the observed behavior [8], [16]; or to demand extra pro-
gramming effort [4], [12], [6], [1].

 Def. 1: A computation action is a piece of program
text that starts and/or ends with a synchronization
statement.

Although concurrent debuggers define execution
events to be the occurrence instances of program
actions, they often leave the actions implicit. The thesis
of this paper is that the complexity of concurrent debug-
ging greatly simplifies when the set of actions, instead
of events, is used to define the various behaviors used in
debugging. Our unified model of concurrent debugging
debugs the concurrent behavior using the relations on
the set of computation actions; specified in the program,
modeled in the expected behavior and observed in the
execution behavior.

We use the abstraction of computation actions and
the “causality” of their dependence relations to disen-
tangle the concurrent considerations from the sequen-
tial. This decomposes the concurrent debugging
problem into two almost disjoint problems that can be
debugged at different levels. A programmer debugs the
concurrent state (§3.3) at the upper level, where the
only important concerns are the relations on the set of
computation actions. Internal states of a computation
action are not important at this level. They only become
important when the programmer moves to the lower
level, inside the action.

The set of computation actions serves as a basis for
instrumenting the program. The debugger identifies the
events as occurrence instances of actions. As an action
can occur “multiple” number of times, the identity of
the action and its instance number act together as a

† This work is supported in part by the research initia-
tion grant program of IBM, Corp., to support inter-
desciplinary computer science research.

‡ Department of Computer Sciences.
E-mail: {hyder | jwerth | browne}@cs.utexas.edu.

II-59 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

unique identifier (logical clock) for each event. Using
these identifiers, our debugger records a partial order
that we call the causal orderings (§3.1). In this order-
ing, the immediate predecessors and successors of a
given event map to the dependences of the action corre-
sponding to the event (§3.2).

A programmer’s expectations consist of a set of
events and an orderings on these events. An execution
is erroneous if the expected events do not occur, or
occur in some un-expected order. The programmer,
therefore, describes the expected behavior with actions
and the dependences that order the occurrences of those
actions as events (§4.1). If the observed ordering rela-
tions do not match the conditions represented in the
expected behavior, then a debugger has detected some
unexpected behavior and raises the exception (§4.2).

Our approach differs from the existing ones in that it
uses actions, instead of events. It is program oriented,
instead of execution oriented. It records the causal
orderings, instead of approximating them. It unifies all
the parts of the debugging cycle. This overcomes the
incompatibility of existing facilities, and allows one
debugger to support different debugging facilities like
execution replay, race detection, assertion/model check-
ing, execution history displays, and animation.

1.1 Problems in Various Parts of the Cycle

Complexity of concurrent debugging has received
much attention in recent years. A 1989 bibliography
cited over 370 references [21]. Existing approaches
complicate the problem by only covering a subpart of
the debugging cycle; P → M → Ε → P. This makes
them incompatible, and compels the user to debug the
remaining parts of the cycle with separate debugging
facilities. This often involves extra programming effort.

Execution environments typically provide processes
or threads as executable units to run the program text.
There is often a complex multiplexing of the program
text among process/thread structure due to resource
limitations, scheduler policies, and other constraints.
Debugging support must resolve the timing ambiguities
arising from such multiplexings. An execution history
display [12], [4], [20], [14] helps in resolving some of
these ambiguities. It, however, only provides a time-
process graph representation of E. An animationfacility
[20], [6] is, then, needed to provide an instantaneous
view of the E→ P mapping. A textual representation of
P is inadequate for supporting this mapping. Hence,
extra user effort is needed to develop a graphical struc-
ture that can support animation.

Moreover, another debugger is needed to resolve the
ambiguities arising from the inability to record the
causal orderingsin P → E part of the cycle [8], [18].

Such a debugger only helps in modeling the race behav-
iors [18], and in automatingrace detection. An asser-
tion/model checker [1] is, then, needed to help in
modeling the expected behavior, and in automating its
checking. However, a textual representation of P makes
it difficult for the user to represent the expected behav-
ior in P→ M part of the cycle. The text does not allow
the user to represent conditions about the concurrent
state that involve event orderings. Hence, execution and
problem oriented approaches [7] are used. They, how-
ever, demand extra user effort [1]. Furthermore, their
use of events, instead of actions, creates additional
problems in recognizing the expected behavior in M →
E part of the cycle.

Finally, an execution replay facility is needed to
makecyclicaldebugging possible [10].

Mapping Ambiguities: In E→ P part of the cycle, a
debugger has to map the events defined in the context of
processes/threads of the execution environment on to
the program text. However, ambiguities arise in map-
ping intra-process arcs of a time-process graph to their
corresponding sequential text in the program. For in-
stance, in Fig.1(a) there is an ambiguity about the in-
tra-process arcx of Process 3.x can either map to the
sequential text S or to the sequential text T of Fig.1(b).
Event w that immediately follows x, and maps to the
synchronization statementwait (ev) is not of much
help.wait (ev) is neither associated with S nor with T.
The synchronization event simply sits at the boundary
where a piece of text ends and another one starts.

Instead of letting a synchronization statement sit
ambiguously on the border of two sequential text seg-
ments, we propose an abstraction that permanently
associates the synchronization statements of a program
with its sequential text segments. The abstractions
resulting from this association is that of acomputation
action (Appendix). It disentangles the sequential con-
trol-flow considerations from the synchronization con-
siderations.

Animation facilities[14], [20] often demand extra

Process 3
: /* sequential - */
: /* control flow; S */
while (...) {

wait (ev);
: /* sequential - */
: /* control-flow; T */
}

post (ev)

post (ev)

wait (ev)

1

2

3
(b)

x
(a)

FIGURE 1. (a) A time-process graph (b) Program
text segment for process 3 (c) Event traces.

p
p

w

1

2
3

w

(c)

ev

ev

II-60 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

user effort to develop an alternate structure for support-
ing their visualizations of theE → P mapping. A textual
representation of P can not support this visualization
because it conceals the synchronization dependences on
which inter-process arcs of a time-process graph map
to. These dependences are concealed in the semantics
of the synchronization constructs. For e.g., the depen-
dences that orderp andw in Fig.1(a), are concealed in
the semantics ofwait (ev) in Fig.1(b) that shows the
text of process 3.

We, therefore, use a graphical representation of P
[15] whose nodes are the computation actions and
whose arcs are their dependences (§2.0). Occurrence
instances of computation actions are partially ordered.
They provide a “pomset” representation of E that
allows us to automatically generate the animation struc-
ture (§3.0).

Ordering Ambiguities: In P→ E part of the cycle, a
debugger should record the events and their orderings.
Distributed systems often record the event orderings by
exploiting the data dependences introduced by the send/
receive of messages with the help of unique time-
stamps (or identifiers)[13]. Shared memory debuggers
that detect races[16], [8], however, ignore the data
dependences introduced by the accesses to the shared
synchronization variables. They, also, ignore the impor-
tance of unique identifiers or time-stamps for each
event. Their recorded event traces, therefore, contain
ambiguities about the inter-process orderings as shown
in Fig. 1(c). There is ambiguity as to whether thewait
(ev) of process 3 was fulfilled by thepost (ev) of pro-
cess 1 or 2. This necessitates the use of approximations
[8], and leads to intractability [17]. Inability to record
the order of accesses to shared objects further compli-
cates the detection ofraces (simultaneous access to
shared objects with at least one write), and affects the
accuracy of detected races[16], [18].

Note, however, that if an event that write-accesses a
shared object, appends its unique identifier to the
object, then a later event access to that object can iden-
tify its “causal” predecessor (§3.1). This observation
allows us to support execution replay, and to support
race detection without any extra overhead (§5.0).

Modeling Problems: A dbx debugger is user -
friendly. It allows the user to associate expected condi-
tions with a program action. For instance, in adbx com-
mand like “when at stmt if condition”, the user
associates a condition about the sequential state with a
statement of interest. Later, the debugger allows the
user to interactively follow the conditional progress of
the execution that has been restricted to the interesting
actions. Such aprogram oriented approach[7] is not
possible with a “textual” representation of the concur-

rent program. Unlike dbx conditions, conditions about
the concurrent state involve event orderings whose cor-
responding dependences are not visible in the textual
representation. For instance, event orderings in an
expected behavior like “(w ∧ p) precede w” for
Fig. 1(a), correspond to the dependences that are not
visible in the textual representation of Fig.1(b). Hence,
assertion/model checkers[7], [14] adopt execution ori-
ented approaches that use models like temporal logic,
interleaving, partial order or automatas[9]. In P → M
part of the cycle, therefore, a user has to exert extra
effort to learn a new language, program the expected
behavior and, then, debug it for user errors [1].

Filtering Ambiguities: In M → E part of the cycle,
assignment and resolution problems[1] are typical of
the ambiguities that arise during filtering and recogni-
tion of the expected behavior. As existing checkers are
execution oriented, they use events in their representa-
tion of the expected behavior, and leave the actions
implicit. This conceals the information that (i) events
are actually multiple occurrences of actions, and (ii) the
observed event orderings are the unrolling of the com-
munication/synchronization structure of the program
actions. For instance, a behavior like “p precedesw”
gives no information to the debugger about the actions
that correspond to events p and w. Ambiguities can,
then, arise whenever more than one observed behavior
fits the expected behavior. In Fig.1(a), “p precedesw”
can fit several behaviors; p of process 2 precedes the
first w of process 1,p of process 1 precedes the second
w of process 2, orp of process 2 precedes the secondw
of process 3. Such ambiguities restrict the range of
checkable behaviors. This, in turn, restricts the range of
behaviors that can be represented in M[9], [1].

The information about the actions like their state-
ment line number or process id, could have resolved
these ambiguities. We, therefore, use such information
about the actions to simplify the filtering and recogni-
tion of the expected behavior (§ 4.2).

1.2 Example: Events as Occurrences of Actions

Fig. 2(b) graphically shows the actionsw, p, andq,
and their dependences that we denote by the ordered
pairs(w, w), (p, w), and(q, w). This is formalized later.
i-th occurrence instances of the actions give us event
identifiers wi, pi, andqi. Our debugger records the event
orderings by appending the identifiers to the shared
state of the dependences (§3.1). The observed order-
ings, therefore, indicate those dependences of actions
that “caused” the events to be ordered. So, event order-
ings of Fig.2(a) indicate that they were caused by the
dependences of Fig.2(b): Orderingp1 < w3 was caused
by the dependence(p, w), ordering q1 < w2 was caused
by the dependence(q, w), andw1 < w2 andw2 < w3 were

II-61 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

caused bythe dependence(w, w).

Furthermore, the dependence information obtained
from various instances of an action allows our debugger
to infer the conditions that govern the action’s execu-
tion. For example, the dependence information fromw2
andw3 of Fig.2(a) allows the debugger to infer that the
condition “((p, w) ∧ (w, w)) ∨ ((q, w) ∧ (w, w))” gov-
erns the execution ofw. The immediate predecessors of
w3 indicate that the condition “(p, w) ∧ (w, w)” must
have initiated the third instance ofw. Similarly, imme-
diate predecessors ofw2 indicate that the condition “(q,
w) ∧ (w, w)” must have initiated the second instance of
w. The “∨” operator appears because either of the two
conditions can initiate the execution ofw. Now suppose
that p, q andw represented the synchronization primi-
tivespost (ev) andwait (ev). Then, the condition brings
out the information implicit in the semantics of the
primitives.

Therefore, a user can represent M as conditions on
the dependences of actions. Then, representing (w ∧ p)
precedew simply requires that we select the actions
corresponding to p andw, connect them with the appro-
priate dependences, and specify an∧ condition. This is
shown below by the∧ condition on the dependences of
post(ev) andwait(ev).

2.0 THE SPECIFIED BEHAVIOR
Our model decomposes the problem of debugging a

concurrent program into two levels. A programmer
debugs the concurrent state at the upper level, where the
only important concerns are the relations on the set of
computation actions; specified in the program, modeled
in the expected behavior and observed in the execution
behavior. As execution occurrences of computation
actions are atomic, internal states of a computation
action are not important at this level. These states only
become important when the programmer moves to the
lower level, inside the computation action, to debug its
internal sequential text.

We represent the data dependences that force the
computation actions to execute in a particular order by
ordered pairs. IfΣP denotes the set of computation

actions, then:

Def. 2: Data-flow dependences areFP ⊆ ΣP × ΣP.

For instance, the dependence of a receipt of a mes-
sage on its send, the dependence of a P of a semaphore
on its V, or the dependence of a wait of a synchroniza-
tion event on its post, represent such data-flow depen-
dences. The write-read dependence on a shared synch-
ronization variable, or on a message, forces the actions
to execute in a particular order. Our motivation for rep-
resenting the synchronization dependences as data-flow
dependences comes from the language independence
and machine independence goals of the CODE graphi-
cal programming environment [2],[15]. The data flow
characterization of the synchronization and control-
flow dependences in CODE allow the environment to
support shared memory, as well as, distributed systems.

The set of ordered pairsFP gives a graphical repre-
sentation (ΣP, FP) whose nodes are the set of computa-
tion actions and whose arcs are the data-flow
dependences. See Fig.4(a). Intuitively, a computation
action acts like a procedure whose input parameters are
the input dependences and output parameters are the
output dependences. It begins execution by obtaining a
set of values from its input dependences. Then, it per-
forms a sequential computation on this data. It ends its
execution by putting a set of values on its output depen-
dences.

Input dependences of an actiona are given by the
incoming arcs;in(a) ≡ { (x, a) | (x, a)∈ FP}. And, out-
put dependences are given by the out-going arcs;out(a)
≡ { (a, x) | (a, x) ∈ FP}. Conditions specified on the
input dependences determine when to initiate the exe-
cution of a computation action, and conditions specified
on the output dependences determine what follows its
execution. The pre-condition that initiates the execution
of a computation action is called aninput firing-rule,
and the post condition that follows its execution is
called theoutput firing-rule [15].

Def. 3: An input firing ruleIP(a) is a set of subsets of
input dependences, i.e. IP(a) ⊆ 2in(a). An output fir-
ing rules OP(a) is a set of subsets of output depen-
dences; i.e.OP(a) ⊆ 2out(a).

An input firing rule IP(a) is a condition in the dis-
junctive normal form (sum of products). Each element
of IP(a) represents a disjunct, and is given by a subset of
in(a), input dependences ofa. The state of a data-flow
dependence (x, a) can be represented by a string of val-
ues denoted by [x, a]. A computation actionis ready for
executionif the state of all the dependences of an ele-
mentι ∈ I(a) are non-empty strings i.e.∀ (x, a) ∈ ι ::
[x,a] ≠ ε. Then, input to a computationa is a set of suf-
fix values detached from the state of dependences inι.

w2

1

2

3
w3

q1

p1

w1

p

w

q
(p, w) ∧ (w, w) ∨

FIGURE 2. Occurrences of actions; p, q & w. p & q are
post (ev) of process 1 & 2. w is wait (ev) of process 3.

(a)

(b)

(q, w) ∧ (w, w)

wait (ev)

post (ev)∧

II-62 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

On completing its computation,a will catenate a set of
output values as prefixes to the state of all the depen-
dences given in someelementο ∈ O(a).

3.0 THE OBSERVED BEHAVIOR
We trace the execution occurrences of computation

actions and their orderings in P→ E part of the debug-
ging cycle. Fig.4(b) shows this information.

Def. 4: A computation event is an execution occurrence
of somecomputation action.

The set of computation events is denoted by V. Not
all the computation actions of a program may occur in
an execution. A subset of computation actions that do
occur are, then, collected inΣ. Thus,Σ ⊆ ΣP.

An actioncan occur multiple number of times. Sub-
scripts in Fig.4(b) denote the multiple occurrences of
actions. SetV of events is, thus, a set of multiple occur-
rences of actions, or a “multiset” of occurrences of
actions. The functionµ: V → Σ maps each event of V to
that action ofΣ, of which it is an occurrence.

We support this mapping by associating an instance
counteru.i with eachaction u ∈ ΣP. The id-instance
pair; u and u.i, provide a unique identifier for each
event. We, therefore, denote the i-th occurrence of
actionsu, v, w ... as eventsui, vi, wi,

3.1 Causality of Data Flow Dependences

In order to record the orderings enforced byFP, the
debugger appends the unique identifier with the data
shared through the data-flow dependences. Whenever
an actionu puts some data on its output dependence(u,
v) ∈ FP in its i-th instance, it appends the identifierui to
the data. Similarly, whenever an actionu begins itsi-th
execution by removing some data from its input depen-
dence(v, u) ∈ FP, it detaches the identifier appended to
the data, and puts the detached identifier in a predeces-
sor list denoted byu.i.P. The list contains such pairs for
all the predecessor events that have “caused” thei-th
instance ofu. The traces contain records of the execu-
tion instances of each event. The trace record of an
event ui contains the action idu, instance numberu.i,
andthe predecessor listu.i.P. Also, see Table 1.

Def. 5: The orderings enforced byFP are <F ≡ {(ui, vj)
| ui, vj ∈ V ∧ ui ∈ vj.P}.

The transitive closure of <F results in an irreflexive
partial ordering that constitutes thecausal orderings <c.
The orderings <F simply reflect the “causality” of data-
flow dependences.

Lemma 1: ui <
F vj ⇒ (u, v) ∈ FP.

Consequently, if ui <F vj, then there is some data
shared betweenui andvj, namely, the state of the data-

flow dependence(u, v) ∈ FP. The representation of the
state of a data-flow dependence in §2.0 by a string of
values (or an infinite FIFO buffer) takes into account
this dependence. Moreover, it allows us to model the
general cases of the send and receive of messages in
distributed systems, and the data-flow dependences of
the graphical/visual languages like CODE [2],[15]. But,
the representation may create problems in modeling the
synchronization primitives of shared memory systems.
However, as seen in §3.3, concurrent state does not
depend upon the internal representation of the states of
the data-flow dependences. It only depends upon the
event orderings. Thus, we can represent the state of a
synchronization dependence, with a string (or a buffer)
of length one. It will denote the data dependence due to
the shared synchronization variable (whose only per-
mitted values are set or reset). The debugger records the
causal orderings by appending and detaching the identi-
fier to the shared synchronization variable.

3.2 Execution History Pomsets

As seen above, actions can occur multiple number of
times as events, i.e. the set V of events is related to the
set Σ of actions through the functionµ: V → Σ. This
effectively turns the poset (V, <c) into a pomset(Σ, V,
<c, µ) [19]. A POMSET is a Partially Ordered Multi-
SET of occurrences ofactions, in much the same way
as astring is aTOMSET; a Totally Ordered MultiSET
of occurrences ofalphabets. The pomset (Σ, V, <c, µ) is
called a causal pomset because<c are the causal order-
ings. It is instrumental in unifying our model because
its expression of the concurrency properties is indepen-
dent of the way time or events are modeled in a system
[5].

A pictorial representation of the causal pomset is an
execution history display. We can now explain why exe-
cution history displays are so helpful in debugging.
They display the causal orderings of events. These
orderings allow a programmer to determine the condi-
tions that initiated and followed each execution instance
of an action. From Lemma 1, an immediate predecessor
of ui must map to an input dependence ofu; and from
Def. 3, an element of the input firing rule ofu is a sub-
set of input dependences. Hence, immediate predeces-
sors of an event ui inform the programmer about that
element of the input firing-rule that initiated thei-th
instanceof u. Similarly, immediate successors of an
event ui inform the programmer about that element of
the output firing-rule that determined the condition fol-
lowing thei-th execution instanceof u. If •ui ≡ { (v, u) |
vj <

F ui} and ui
• ≡ { (u, v) | ui <F vj }, then:

Def. 6: A causal pomset(Σ, V, <c, µ) is compatible
with the firing rules iff ∀ui ∈V :: •ui ∈ IP(u) ∧ ui

• ∈
O(u).

II-63 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

This shows the compatibility of the immediate order-
ings of a given event with the firing rules specified on
the immediate dependences of its corresponding action.
In § 4.0, we extend this compatibility of immediate
orderings with the immediate dependences to the com-
patibility of transitive orderings with the transitive
dependences. This provides a framework for represent-
ing and checking the expected behavior.

3.3 Concurrent Execution State

There is non-determinism associated with the
choices of the elements given in the input and output
firing rules. An action can non-deterministically select
different elements of a firing rule. In Fig.2, the second
instance of actionw can non-deterministically select
any element from its input firing rule. During execution
replay, a record of the causal orderingsinforms our
debugger to select the right element of the firing rules
for each execution instance of an action. Thus, it recon-
structs the states of the previous execution. Using <c

and following [13], we find a notion of concurrent state:

Def. 7: A concurrent state of an execution(Σ, V, <c, µ)
is a consistent cut-set of the poset (V, <c). A setC ⊆
V is a consistent cut-set iff e ∈C ∧ e’<c e⇒ e’∈ C.

This definition is independent of the local state of an
action. It is, also, independent of the contents of the
messages exchanged by the actions. It only depends
upon the order of events. Hence, distributed systems
often reduce their roll-back and recovery overhead by
only recording the event orderings, and not the content
of messages or the checkpoints of the local states.
Therefore, our execution replay facility exploits this
definition to reduce the recording overhead (§5.1).

3.4 Animation

Animation provides an instantaneous view of the
execution history. It is simply the process of displaying
Def. 6 on an animation structure while traversing the
execution pomset. Ananimation structure shows the
assignment of actions to the executable units (pro-
cesses/threads) of the execution environment. It can be
considered as an elaborated form of the program struc-
ture. Fig.3(c) shows such an animation structure where
actionw of Fig.3(a) replicates (or elaborates) into three
actions;w1, w2, andw3 running on different processes.
We represent the run-time assignment of actionsΣP to
the executable units by the setΣ ⊆ ΣP × N; where,wi,
wj ∈ Σ implies thatw is assigned to different executable
units whose logical ids arei andj. The actual identity of
an executable unit is not important. The superscriptsi, j
are only for distinguishing between the multiple copies.

During animation, the debugger traverses the execu-
tion pomset. On encountering thei-th event instance of

an actionuk, it highlights in the animation structure
those input dependences of the actionthat correspond
to the immediate predecessors of itsi-th event instance.
It, then, highlights the actionuk. Then, it highlights
those output dependences of the action that correspond
to the immediate successors of itsi-th event instance.

We can automatically generate an animation struc-
ture from the execution pomset. Note that the structure
shown in Fig.3(c) is obtained by folding all the subse-
quent instances of actions in Fig.3(b) to their first
occurrences. This fulfills the requirement of a strong
coupling between animation and execution history[14].

4.0 THE EXPECTED BEHAVIOR
In the P→ M part of the cycle, a user represents the

expected behavior by selecting some“interesting”
actionsΣM from ΣP and, then, representing the expecta-
tions as conditionsIM, OM on their dependencesFM.

4.1 Representing Expected Behavior

A dbx debugger is closely coupled with the program
because it compels the programmer to use only those
objects that already exist in the program; e.g. it would
not allow a user to specify a non-existent print variable.
Taking cue fromdbx, we closely couple our checker
with the program and only allow the user to work with
those objects that already exist in the program. This is
in contrast to the existing checkers that can not verify if
a user has supplied a non-existent order of events in the
expected behavior.

Note that if a user expects that eventsui andvj will
be ordered in the execution, then their actionsu andv,
must exhibit a (transitive) data-flow dependence in the
program. That is,ui <

c vj ⇒ (u, v)∈ FP*, where FP* is
a transitive closure of FP. This also follows from
Lemma 1. For instance,m1 <c c1 in Fig.4(b) corre-
sponds to thetransitive data-flow dependence between
m andc of Fig.4(a); both are shown by dotted lines.
Thus, any pattern that is expected in an execution, must
be the unrolling of a pattern already present in the pro-
gram structure.

Thus, a user starts specifying expected behavior by
selecting a subsetΣM of interesting actions from the
program;ΣM ⊆ ΣP. Fig.4(c) shows a selection of such
actions. The user can then specify a dependence

f (b)

a
w w1

2

w1
1 w2

1

w1
3

w2
2

w2
3

f 1a1 w
1

f
1

w
2

a
1

w
3

(a) (c)

f 2

FIGURE 3. (a) Program structure, (b) pomset
execution, and (c) elaborated animation structure.

II-64 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

between the selected actions only if it corresponds to
some dependence of FP*. Some of such selected depen-
dences are shown as FM in Fig.4(c).

Def. 8: FM are the selected dependences from the tran-
sitive data-flow dependences FP* restricted to inter-
esting actions i.e.FM ⊆ FP* / ΣM, whereΣM ⊆ ΣP.

An observed ordering like (m2, ?) in Fig.4(d), that
can not be mapped to a data-flow dependence fromFM
is, therefore, symptomatic of a bug!

In Fig.4(c), the structure built on ΣM is the specifica-
tion of the expected behavior. Akin to the conditions in
adbx command like “when at stmt if condition,” a user
can, then, provide firing rulesIM and OM to further
restrict the instances of “interesting” actions.Note that
firing rules are conditions about the concurrent state,
whereasdbx conditions are about the sequential state.
Suppose the user specifies an “∨” output firing rule for
action m in Fig.4(c). Then, the checker can filter out
instancesm1 andm3 because they subscribe to the “∨”
rule. But, will raise an exception form2 as it does not
subscribe to the “∨” rule.

4.2 Recognizing the Expected Behavior

In dbx, a directive like “when at stmt” informs
the debugger to make necessary preparations for the
specified statement. It also informs it to ignore the rest
of statements. Similarly, the selection ofΣM from ΣP
informs the debugger to specially prepare for “interest-
ing” actionsΣM, and to safely ignore the “uninterest-
ing” actionsΣP - ΣM. Then, the debugger can filter out
the uninteresting events and can restrict the execution to
instances ofΣM.

The restricted pomset (Σ, V, <c, µ)/ ΣM of Fig.4(d)
only contains the interesting events and their mutual
orderings. The debugger establishes the orderings
among interesting events by exploiting the fact that
instances of interesting actions can only be ordered if
there exists a mutual (transitive) dependence. In
Fig. 4(d), eventsm1 andc1 are only ordered because of
the transitive dependence that exists between actionsm
and c. Note in Fig.4(a) that the dependence goes
through an intervening uninteresting actionp. Our
debugger, therefore, establishes the orderings between
instances ofm andc, by asking the uninteresting action
p to relay the causality information that arrived from its
predecessors, forward to its successors.

Unlike interesting actions, uninteresting actions do
not trace their execution instances. Instead of sending
the identifier of their current instance to their succes-
sors, they simply relay forward their predecessor lists.
See Table 1. These lists keep getting relayed forward by
the intervening uninteresting events until they land in
the predecessor lists of the interesting events. Only then
they are traced. Predecessor lists of interesting events,
therefore, only contain the identifiers of their causally
preceding interesting events. Execution is thus filtered
to (Σ, V, <c, µ) / ΣM.

The structural information of M and the fact that the
causal pomset is restricted to interesting actions, greatly
simplifies recognition of the expected behavior. The
debugger traverses the partial order, and tries to check if
Lemma 1and Def. 6 also hold for M. It checks whether
each immediate successorvj of a given event ui corre-

sponds to some successorv of the actionu in the depen-
dencesFM. Additionally, the debugger checks whether
the immediate predecessors and successors of an event
ui satisfy the input and output firing rulesIM andOM for
u. If an orderingui <

F vj fails to correspond to some
dependence(u, v)∈ FM, or the immediate predecessors

(ΣP, FP)

n

cp

m

a

f

a1

n1 c1 n2

m1 p1 m2 p2 m3

f1

(a)

FIGURE 4. (a) Program Structure. (b) Execution.
(c) Expected Behavior. (d) Restricted execution.

c1 n2

m1 m2

f1
n

c

m

f
m3

(Σ, V, <, µ)

∨ ?

?

(b)

(ΣM, FM) (Σ, V, <, µ)/ ΣM

(c) (d)

 Table 1: Monitoring and tracing of actions.

Monitored
Occurrences

Interesting Actions
u ∈ ΣM

Uninteresting Actions
u ∈ ΣP − ΣM

u sends to v append(msg: u, u.i); append (msg: u.i.P);

u receives msg u.i.P ∪detach(msg); u.i.P ∪ detach(msg);

u executed trace (u, u.i, u.i.P);
u.i := u.i + 1;

u.i := u.i + 1;

II-65 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

•ui or successorsui
• fail to meet the expected conditions

IM(u) or OM(u), then an error has been recognized. This
happens for the unexpected orderings ofm2 in Fig.4(d).

Def. 9: Event ui is in error if ui
• ∉OM(u) ∨ •ui ∉ IM(u).

Thus, concurrent debugging is the process of fol-
lowing the unexpected orderings given by the erro-
neous events, in the direction of causality.

5.0 SHARED DATA DEPENDENCES
Unlike dependencesFP that force an ordering on the

execution of actions, shared data dependences do not
impose any particular orderings. We, therefore, model a
shared data object by the set of actions that share it. The
set of those objects is denoted by S.

Def. 10: The set of shared data dependences is S ⊆
2ΣP. A shared data dependence is a setD of compu-
tation actions, D ⊆ ΣP (or D ∈ S).

The actions that participate in a shared data depen-
denceD are classified into disjoint sets ofreaders and
writers. Readers of D are ρ.D and writers are ω.D;
whereρ.D ∪ ω.D ≡ D, ρ.D ∩ ω.D ≡ φ. In Fig.5(a),
shared data dependenceD = {a, r, w}. For example, we
may have the set ofreaders, ρ.D = {r} and set of writ-
ers,ω.D = {a, w}.

5.1 Execution Replay

The goal of an execution replay facility is to record
enough information about the non-deterministic
choices made by the events of an execution. During
replay, the events can, then, be forced to make the pre-
vious choices. A record of causal orderings<F is suffi-
cient to overcome the non-determinism associated with
the choices of elements in a firing rule. But, there is
another source of non-determinism. This is associated
with shared data dependences that do not force the
actions to execute in any particular order. As accesses
to shared objects can take place in any order, the debug-
ger must record the non-deterministic order of accesses
to shared objects so that during replay the accesses can
be forced to occur in the previously recorded order.

We record the order of accesses to shared objects
with the same mechanism that we use in recording the
<Forderings (§3.1). But before we can do that, we need
a protocol to ensure a valid serialization on the accesses
to shared objects like the CREW (concurrent read
exclusive write) protocol[10]. The protocol disallows
simultaneous write-access to a shared object with other
accesses. The debugger ensures a deterministic replay
by implementing the protocol. Without the implementa-
tion, simultaneous accesses to a shared object can
hinder a deterministic replay by corrupting the object
and giving unpredictable results. Note that membersu

andv of a shared data dependence have a valid serial-
ization if for every instanceui of a write-access and
every instancevj of another access, eitherui occurs
beforevj, or vj occurs beforeui

Unlike [10] that uses versions of shared objects to
record the orderings, we use our simpler mechanism for
recording the order <D of accesses to a shared objectD
∈ S. Each shared object has the identifier of the last
instance of its write-access appended to it. Whenever an
action accesses a shared object, it reads the identifier
appended to the object, and places the identifier in the
predecessor slot reserved for that object in its trace
event record. A writer, in addition to the above, replaces
the identifier appended to the object with the identifier
of its present instance.

In addition to the predecessor listui.P for the data-
flow dependences (§3.1), the trace record for each
event now requires another predecessor listui.S for
shared data dependences. The list has a slotui.S[D] for
each shared data dependenceD in which a given action
participates. Then, the identifier in the slot forD in the
predecessor list of an event record, determines the
causal orderings <D. There is, thus, an ordering relation
<D for eachD ∈ S generated like <F. The debugger,
then, ensures the replay by forcing the events to occur
in the pre-recorded order.

To simplify the following discussion, we assume that
there is “one” shared data dependenceD ∈ S. We now
consider the strict partial orders due to <Fand <D.

5.2 Race Detection

Simultaneous accesses (with at least one write) to a
shared object can race with each other and can corrupt
the shared data with unpredictable results. We detect
races by identifying those pairs of events whose
accesses to a shared object included at least one write
and whose orderings were only due to the debugger’s
enforcement of the serialization protocol. For e.g., dot-
ted arcs of Fig.5(b) show the <D orderings for events
w1 and r1 (and w1 and r2) that were forced by the
debugger’s serialization protocol. The events are other-
wise unordered under <F. Without the debugger’s proto-
col, these <D orderings may not exist. Then,w1 andr1
(or w1, r2) can execute simultaneously with unpredict-
able results. Thus, all <D orderings observed under the
serialization protocol, should be supported by <F as, for
instance, the ordering betweena1 andw1.

FIGURE 5. (a) Dependences. (b) Orderings.

n

w
r

m
a

f

a1

n1 w1 n2

m1 r1 m2 r2

f1

w2

(a) (b)

<c

<D

FP

D

II-66 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

Although this technique detects the possibility of
race for eventsw1 andr1 (and for eventsw1 andr2) of
Fig. 5(b), it does not detect the possibility of race
between eventsw2 andr2. To detect such races, we note
that these events are unordered by both<D and <F.
Thus, our debugger will also signal the races for all
those pairs of events that are unordered by<D and<F,
and that access a shared object with at least one write.

Implementing a serialization protocol, and recording
the <D orderings of accesses to a shared object, may
seem unnecessary for detecting races. It may appear
simpler to report races for pairs of events that are unor-
dered under<F. However, as explained in[16], this can
result in reports of spurious races that are infeasible and
could never occur. Our debugger’s implementation of
the serialization protocol is instrumental in eliminating
the spurious artifacts that can result from the use of
shared objects that were corrupted by an earlier race.
Furthermore, the record of<D helps in improving the
accuracy of detected races by identifying other spurious
races. Note that race detection in our model does not
require any extra overhead. The record of <D and <F

already exists for supporting execution replay.

6.0 CONCLUSIONS
The unified model of concurrent debugging pre-

sented in this paper covers all the parts of the debugging
cycle. This overcomes the incompatibility of existing
facilities, and allows our debugger to support different
debugging facilities like execution replay, race detec-
tion, assertion/model checking, execution history dis-
plays, and animation. We, thus, show that the benefits
of modeling the whole cycle are greater than a simple
sum of its parts.

Our model uses the set of computation actions and
the “causality” of their dependences to simplify the
complexity of concurrent debugging. We show that it is
easier for a debugger to record the orderings when
events are considered to be the occurrence instances of
actions. We, also, show that the debugger can obtain
much more information by recognizing the underlying
dependences of the observed orderings.

Our use of a program oriented approach for checking
the model of expected behavior saves the user extra pro-
gramming effort. It, also, simplifies for the debugger,
filtering and recognition of the expected behavior.

Our model proposes a solution for the following
needs highlighted in the panel discussions of[11]. It
provides a theoretical framework for defining anerror
and explaining the process of concurrent debugging (J.
Wilden)1. The framework explains precisely when and
why a particular facility is needed (P. Bates).It eases
implementation by separating the monitoring and pre-

sentation concerns. It is not specific to a particular lan-
guage, or a particular system. It proposes the
abstraction ofcomputation actions to fulfill the need for
a lower limit for the granularity of data collection (A.
Tilberg). Such an abstraction is usually available in a
graphical environment like CODE[2], [15]. However,
as explained in the Appendix, some static analysis may
be necessary to obtain thecomputation actions from a
textual representation of a concurrent program.

References
 [1] P. Bates, “Debugging heterogeneous distributed

systems using event-based models of behavior,” ACM
SIGPLAN Notices, 24(1), (Jan ‘89), pp. 11-22.

[2] J. C. Browne, M. Azam, and S. Sobek, “A Unified
Approach to Parallel Programming”,IEEE Software,
(Jul ‘89).

[3] D. Callahan and J. Subhlok, “Static Analysis of
Low-Level Synchronizations,” ACM SIGPLAN
Notices, 24(1), (Jan ‘89)

[4] R. J. Fowler, T. J. LeBlanc and J. M. Mellor-
Crummy, “An Integrated Approach to Parallel
Program Debugging and Performance Analysis,”
ACM SIGPLAN Notices, 24(1), (Jan ‘89), pp. 163-73.

[5] H. Gaifman, “Modeling Concurrency by Partial
Orders and Nonlinear Transition Systems,” Lecture
Notes on Comp. Science#354, (May ‘88), pp. 467–88.

[6] A. A. Hough and J.E. Cuny, “Perspective views: A
Technique for Enhancing Parallel Program
Visualization,”ICPP, (Aug ‘90), pp. II.124–II.132.

[7] W. Hseush and G.E. Kaiser, “Modeling Concurr-
ency in Parallel Debugging,” ACM Symp. on Princples
& Practice of Parallel Prog., (March ‘90), pp. 11–20.

[8] D. P. Helmbold, C.E. McDowell, and J. Wang,
“Analyzing traces with anonymous synchronization,”
ICPP, (Aug. ‘90), pp. II.70–II.77.

[9] A. A. Hough, “Debugging Parallel programs Using
Abstract Visualizations,” TR 91:53, CS Department,
University of Massachusetts at Amherst, (Sep ‘91).

[10] T. J. LeBlanc and J.M. Mellor-Crummey, “Debug-
ging Parallel Programs with Instant Replay,”IEEE
Trans. on Computers, C36 # 4, (Apr ‘87), pp. 471-81.

[11] T. J. Leblanc and B.P. Miller, Ed.s, “Workshop
Summary; What we have learned and where we go
from here?” ACM SIGPLAN Notices, 24(1), (Jan, 89),
pp. ix–xxii.

[12] T. J. LeBlanc, J. Mellor-Crummey & R.J. Fowler,
“Analyzing Parallel Executions with Multiple Views,”
J. of Paral. & Dist. Comp. #9, (Jun ‘90), pp. 203-17.

1. Parenthesized names indicate the person who high-
lighted the need in the panel discussion of[11]

II-67 A Unified Model for Concurrent Debugging

International Conference on Parallel Processing - 1993

[13] F. Mattern, “Virtual Time and Global States of
Distributed Systems,” Parallel and Distributed
Algorithms, (1989), pp. 215–26.

[14] C. E. McDowell, D.P. Helmbold, “Debugging of
Concurrent Programs,” ACM Computing Surveys,
21(4), (Dec ‘89), pp. 593–622.

[15] P. Newton and J. C. Browne, “The Code 2.0
Graphical Programming Environment,”Super-
computing ‘92 (Jul ‘92).

[16] R. H.Netzer and B.P. Miller, “Improving
Accuracy of Data Race detection,” ACM SIGPLAN
Notices 26(7), (Jul ‘91), pp. 133-44.

[17] R. H.B. Netzer and B.P. Miller, “On the
Complexity of Event Ordering for Shared Memory
Programs,”ICPP, (Aug ‘90), pp. II.93–II.97.

[18] R. H.Netzer and B.P. Miller, “What are Race
Conditions? Some Issues and Formalism,” TR91-
1014, CS Dept. Univ. of Wisconsin (Mar ‘91).

[19] V. Pratt, “Modeling Concurrency with Partial
Orders,” Internaltional Journal of Parallel
Programming, 15(1), (1986), pp. 33–71.

[20] C. M. Pancake and S. Utter, “Models for Visual-
ization in Parallel Debuggers,” Supercomputing ‘89,
(Nov ‘89) pp. 627–36.

[21] S. Utter and C.M. Pancake, “A Bibliography of
Parallel Debugging Tools,”ACM SIGPLAN Notices,
24(10), (1989), pp. 24-42.

 Appendix: Computation Actions in a Textual
Representation of a Program

A textual program contains three types of state-
ments; blocking synchronization, signal synchroniza-
tion and non-synchronization statements.From such a
text, static analysis routinely extracts a synchroniza-
tion-control-flow graph that contains three types of
nodes and two types of arcs[14], [3]. Nodes represent
blocking synchronization, signal synchronization, and
control decision statements. While arcs represent inter-
process synchronization dependences and intra-process
control-flow dependences.

Fig. 6(a), (b), and Fig.7(a), (b) show the synchroni-
zation control flow graphs obtained from a textual pro-
gram of a PPL like extension of C. Intra-process control
arcs labeled bya, w andf correspond to the sequential
text containing non-synchronization statements. The
abstraction ofcomputation actions, shown by the dotted
ovals, permanently associates the synchronization state-
ments with the sequential texts. It permanently associ-
ates a blocking synchronization with the sequential text
that follows it, and associates a signal synchronization
with the sequential text that precedes it. Thus, blocking
synchronizationswait (evi) is associated with the text w
that follows it, and blocking synchronizationc_wait

(ct) is associated with the text f that follows it. Also,
signal synchronizationsc_set(ct) is associated with the
text w that precedes it, and signal synchronizationpost
(evi : i = 1..n) is associated with texts a andf that pre-
cede it.

Def. 11: A computation action is a block of a flow
graph that:

1. may contain internal control flow provided the inter-
nal control structures (loop, if-then-else, etc.) do not
contain any synchronization statement;

2. it may begin with ablockingsynchronization, that
must be the first statement of the block; and

3. it may end with asignalsynchronization, that must
be the last statement of the block.

4. it may contain more than oneblocking (signal) syn-
chronization provided all are together at the start
(end) of the block with no other intervening state-
ment.

After the synchronization statements have been asso-
ciated with their bordering sequential texts, we are left
with the control flow decision nodes. The abstraction of
firing rules subsumes these decision nodes as shown in

main () {
: /* workers = n */
: /* counter ct = n */
post (evi : i = 1..n);
while (1) {

c_wait (ct);
: /* how much*/
: /* work done */
if (work_done)

exit ();
post (evi : i = 1..n);

} }

f

ct

ex

evi: i=1..n

q

f

q

ct

ex

evi: i=1..n

ex ∨

(p ∧ ct) ∨

evi

main

evi

main

p
∧

(a) (b)
(c)

a
a

p

(q ∧ ct)

(q ∧ evi)

FIGURE 6. (a) main starts n workers, and waits on a
counter ct. On completion, each worker reports by
incrementing ct. When count reaches n, main wakes
up. If there is need for more work then, it signals the
workers again, else it exits. (b) Synchronization-
control-flow graph. (c) Actions a and f.

worker i () {
while (1) {

wait (evi);
: /* do some */
: /* work */
c_set (ct);
} }

w

ct

evi

worker i
m r

w

m ∧ ct
ct

evi

worker i

m
r

(m ∧ evi

(a) (b) (c)

) ∨
(r ∧ evi)

FIGURE 7. (a) Text. (b) Graph; m, r are control
dependences; ct and evi are synchronization depen-
dences. (c) Action w ; (m ∧ evi) ∨ (r ∧ evi) is input-rule,
m ∧ ct is the output-rule, and w is the sequential text.

