A UNIFIED MODEL FOR CONCURRENT DEBUGGING T

S. I. Hyder J. F Werth and J. C. Brene*
The University of Texas at Austin
Austin, Texas 78712

Abstract: Events a@ occurence instances of
actions. The thesis of this paper is that the use of
“actions”, instead of gents, geatly simplifies the pb-
lem of concurent delogging. Occurence instances of
actions povide a debgger with a unique identifier for
ead event. These identifier help the dalmpger in
recoding the gent oderings. The ecoded oderings
indicate mub moe than a mer tempoal order The
indicate the dependences that “cause” the actions to
execute A delugger can, then, collect the dependence
information fom the oderings of difierent instances of
the same action, and deduce the conditions thegrmo
the execution of the action. This quides a fameavork
for representing and leking the &pected behavior
Unlike eisting appoades, we ceer all parts of the
dehugging cycle Our unified model, thefore, allows a
single delgger to support ditrent deligging facilities
like execution eplay race detection, assertion/model
cheding, execution history displays, and animation.

Keywords: Pomset, concurrent degging, eecu-
tion replay race detection, animation, model chersk

1.0 INTRODUCTION

Parallel programs typicallyx@ress concurregcby
adding synchronization constructs to the usual sequen-
tial text. This produces a complentanglement of the
concurrent considerations with the sequential consider-
ations. A programmethen, has to delg the synchro-
nizations and communications in the presence of the
already compte problem of debgging the flav of data
and the flav of control of the sequential Xe This
makes the delbigging of concurrent programs an
extremely complg problem.

During delngging, a programmer forms some
expectations about thexecution behaor of the pro-
gram. This gpected behdor is, then, represented by
an assertion/model. Checking of the actuadceation
against this assertion/model, veals ay unepected
behaior. Mapping of this behaor to the program,
brings the programmer closer to thegbA sequence of
these interactions between the specified Wiehaf the
program Pmodel of the gpected behaor M, and the
obsened ecution behaor E constitutes a delgging
cycle. This gcle will be illustrated asB M- E - P

T This work is supported in part by the research initia-
tion grant program of IBM, Corp., to support inter-
desciplinary computer science research.

T Department of Computer Sciences.

E-mail: {hyder | jwerth | brene}@cs.utgas.edu.

[1-58

Concurrent delgging becomes so compléecause
of the ambiguities that obscure the interactions between
P. M and E in the dalgging gcle. These ambiguities
arise from the entanglement of the concurrent and
sequential considerations in the representations used for
P, M and E. As these ambiguities obscure the interac-
tions, each part of the defpging gcle becomes a sepa-
rate problem area. Existing dedging fcilities that
tamget separate parts of the dghing gcle, then,
appear incompatible angen orthogonal. Incompatibil-
ity of these écilities forces the programmer to either use
different fcilities for diferent parts of theycle or
delug without them. On the other hand, it compels the
deluggers to either constrain the range of béaira that
can be chea@d|[9], [7]; or to tolerate the ambiguities in
the obsergd behwior [8], [16]; or to demand»dra pro-
gramming efort [4], [12], [6], [1].

Def. 1: A computation actioris a piece of program
text that starts and/or ends with a synchronization
statement.

Although concurrent delggers define x@cution
events to be the occurrence instances of program
actions, thg often leae the actions implicit. The thesis
of this paper is that the comglty of concurrent delg-
ging greatly simplifies when the set of actions, instead
of events, is used to define tharious behaors used in
delugging. Our unified model of concurrent dglging
delugs the concurrent beliar using the relations on
the set of computation actions; specified in the program,
modeled in the x@ected behaor and obsered in the
execution behwor.

We use the abstraction of computation actions and
the “causality” of their dependence relations to disen-
tangle the concurrent considerations from the sequen-
tial. This decomposes the concurrent uwgling
problem into tvo almost disjoint problems that can be
delhugged at dierent levels. A programmer deigs the
concurrent state (8.3) at the upper lel, where the
only important concerns are the relations on the set of
computation actions. Internal states of a computation
action are not important at this/éd. They only become
important when the programmer wes to the lwer
level, inside the action.

The set of computation actions sesvas a basis for
instrumenting the program. The dejger identifies the
events as occurrence instances of actions. As an action
can occur “multiple” number of times, the identity of
the action and its instance number act together as a

International Conference oraRillel Processing - 1993

International Conference orarallel Processing - 1993

unique identifier (logical clock) for eaclvent. Using
these identifiers, our dabger records a partial order
that we call the causal orderings3§). In this order-

ing, the immediate predecessors and successors of a
given ezent map to the dependences of the action corre-
sponding to thewent (83.2).

A programmes e&pectations consist of a set of
events and an orderings on theserds. An &ecution
is erroneous if the xpected eents do not occuror
occur in some unxpected order The programmer
therefore, describes thepected behaor with actions
and the dependences that order the occurrences of those
actions as\ents (84.1). If the obserd ordering rela-
tions do not match the conditions represented in the
expected behdor, then a deligger has detected some
unexpected behaor and raises thexeeption (84.2).

Our approach diérs from the risting ones in that it
uses actions, instead ofemts. It is program oriented,
instead of recution oriented. It records the causal
orderings, instead of approximating them. It unifies all
the parts of the delgging gcle. This @ercomes the
incompatibility of eisting facilities, and allers one
delugger to support diérent delbigging fcilities like
execution replayrace detection, assertion/model check-
ing, execution history displays, and animation.

1.1 Problemsin Various Parts of the Cycle

Compleity of concurrent deligging has receed
much attention in recent years. A 1989 bibliogsaph
cited over 370 references [21]. Existing approaches
complicate the problem by only wering a subpart of
the delgging gcle; P - M - E - P This males
them incompatible, and compels the user taudethe
remaining parts of theycle with separate delgging
facilities. This often imolves etra programming ébrt.

Execution emironments typically praide processes
or threads asxecutable units to run the progranxtte
There is often a comptemultiplexing of the program
text among process/thread structure due to resource
limitations, scheduler policies, and other constraints.
Delugging support must res@\the timing ambiguities
arising from such multipldngs. Anexecution history
display[12], [4], [20], [14] helps in resolving some of
these ambiguities. It, ever, only provides a time-
process graph representation of E.akimationfacility
[20], [6] is, then, needed to prde an instantaneous
view of the E-. P mapping. A tetual representation of
P is inadequate for supporting this mapping. Hence,
extra user dbrt is needed to delop a graphical struc-
ture that can support animation.

Moreover, another deligger is needed to reselthe
ambiguities arising from the inability to record the
causal orderingth P - E part of the cycle [8][18].

[1-59

1 P o Process 3
2 P ev g : I* sequential - */
3 ev > (a) ||: /* control flow; S */
X Ttw W while (...) {
post (ev) wait (ev);
f . [* sequential - */
post (ev) » (0| -/*control-flow; T/
}
wait (ev) (b)

FIGURE 1. (a) A time-process graph (b) Program

text segment for process 3 (c) Event traces.
Such a detigger only helps in modeling the race beha
iors [18], and in automatingace detectionAn asser-
tion/model beder [1] is, then, needed to help in
modeling the ¥pected behaor, and in automating its
checking. Havever, a tectual representation of P mesk
it difficult for the user to represent thepected beha
ior in P — M part of the gcle. The t&t does not allw
the user to represent conditions about the concurrent
state that imolve event orderings. Hencexecution and
problemoriented approaches [7] are used. yT Hew-
ever, demand era user dbrt [1]. Furthermore, their
use of gents, instead of actions, creates additional
problems in recognizing thexgected behaor in M -
E part of the gcle.

Finally, an eecution replay dcility is needed to
male cyclical delugging possible [10].

Mapping Ambiguities. In E —» P part of theycle, a
delugger has to map theents defined in the conteof
processes/threads of thgeeution emironment on to
the program te. However, ambiguities arise in map-
ping intra-process arcs of a time-process graph to their
corresponding sequentialxtein the program. &t in-
stance, in Figl(a) there is an ambiguity about the in-
tra-process arg of Process 3x can either map to the
sequential tet S or to the sequentialeT of Fig. 1(b).
Eventw that immediately follws x, and maps to the
synchronization statementait (ev) is not of much
help.wait (ev) is neither associated with S nor with T
The synchronizationvent simply sits at the boundary
where a piece of ¥ ends and another one starts.

Instead of letting a synchronization statement sit
ambiguously on the border of imsequential t& sey-
ments, we propose an abstraction that permanently
associates the synchronization statements of a program
with its sequential t¢ segments. The abstractions
resulting from this association is that of@mputation
action (Appendix). It disentangles the sequential con-
trol-flow considerations from the synchronization con-
siderations.

Animation facilities[14], [20] often demand extra

A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

user effort to develop an alternate structure for support-
ing their visualizations of theé - P mapping. A tetual
representation of P can not support this visualization
because it conceals the synchronization dependences on
which interprocess arcs of a time-process graph map
to. These dependences are concealed in the semantics
of the synchronization constructsorfe.g., the depen-
dences that order andw in Fig.1(a), are concealed in

the semantics ofvait (ev) in Fig.1(b) that shais the

text of process 3.

We, therefore, use a graphical representation of P
[15] whose nodes are the computation actions and
whose arcs are their dependence®.(8. Occurrence
instances of computation actions are partially ordered.
They provide a “pomset” representation of E that
allows us to automatically generate the animation struc-
ture (83.0).

Ordering Ambiguities: In P » E part of theycle, a
delugger should record thevents and their orderings.

Distributed systems often record theeet orderings by
exploiting the data dependences introduced by the send/
receve of messages with the help of unique time-
stamps (or identifierd)L3]. Shared memory daggers

that detect racefl6], [8], however, ignore the data
dependences introduced by the accesses to the shared
synchronization variables. They, also, ignore the impor-
tance of unique identifiers or time-stamps for each
event. heir recorded eent traces, therefore, contain
ambiguities about the int@rocess orderings as st

in Fig. 1(c). There is ambiguity as to whether thait

(ev) of process 3 was fulfilled by thepost (ev) of pro-

cess 1 or 2. This necessitates the use of approximations
[8], and leads to intractability [17]. Inability to record
the order of accesses to shared objects further compli-
cates the detection afces (simultaneous access to
shared objects with at least one write), arfdca$ the
accurag of detected racq46], [18].

Note, havever, that if an gent that write-accesses a
shared object, appends its unique identifier to the
object, then a latenvent access to that object can iden-
tify its “causal” predecessor @&1). This obsemtion
allows us to supportxecution replayand to support
race detection without grextra overhead (%.0).

Modeling Problems: A dbx delugger is user -
friendly. It allows the user to associatepected condi-
tions with a program actionoFinstance, in dbx com-
mand like “when at stmt if condition”, the user
associates a condition about the sequential state with a
statement of interest. Latethe delbgger allavs the
user to interactely follow the conditional progress of
the ecution that has been restricted to the interesting
actions. Such g@rogram oriented approach[7] is not
possible with a “tetual” representation of the concur-

[1-60

rent program. Unlik dbx conditions, conditions about
the concurrent statevalve e/ent orderings whose cor-
responding dependences are not visible in tReuaé
representation. df instance, went orderings in an
expected behaor like “(w 0 p) precedew” for
Fig.1(a), correspond to the dependences that are not
visible in the t&tual representation of Fig(b). Hence,
assertion/model cheeks[7], [14] adopt gecution ori-
ented approaches that use models tiémporal logic,
interleaving, partial order or automatgg]. In P - M
part of the gcle, therefore, a user has tred etra
effort to learn a ne language, program theected
behaior and, then, dely it foruser errors[1].

Filtering Ambiquities: In M — E part of the ycle,
assignment andresolution problems[1] are typical of
the ambiguities that arise during filtering and recogni-
tion of the expected behavidks eisting checkrs are
execution oriented, theuse gents in their representa-
tion of the epected behador, and lese the actions
implicit. This conceals the information that (Yemts
are actually multiple occurrences of actions, and (ii) the
obsered eent orderings are the unrolling of the com-
munication/synchronization structure of the program
actions. r instance, a behwr like “p precedesv’
gives no information to the defger about the actions
that correspond toventsp andw. Ambiguities can,
then, arise whewer more than one obsex behsaior
fits the epected behaor. In Fig.1(a), ‘p precedew”
can fit sgeral behsiors; p of process 2 precedes the
first w of process 1p of process 1 precedes the second
w of process 2, qo of process 2 precedes the secand
of process 3. Such ambiguities restrict the range of
checkable behgors. This, in turn, restricts the range of
behaiors that can be represented in9], [1].

The information about the actions dikheir state-
ment line number or process id, couldvéaesoled
these ambiguities. ¥/ therefore, use such information
about the actions to simplify the filtering and recogni-
tion of the &pected behaor (§ 4.2).

1.2 Example: Events as Occurrences of Actions

Fig. 2(b) graphically shes the actionsv, p, andq,
and their dependences that we denote by the ordered
pairs(w, w), (p, w), and(g, w). This is formalized later
i-th occurrence instances of the actiongegis gent
identifiersw;, p;, andg;. Our delngger records thevent
orderings by appending the identifiers to the shared
state of the dependences3(8). The obserd order-
ings, therefore, indicate those dependences of actions
that “caused” thewents to be ordered. Sojemt order-
ings of Fig.2(a) indicate that thewere caused by the
dependences of Fig(b): Orderingp; <ws was caused
by the dependendg, w), orderingg; <w, was caused
by the dependendg, w), andw; < w, andw, <ws were

A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

(p, w) LI (w, w)
(g, w) O(w, w)

N

w

P1
1 } >
D\ @
2 { >
3"« \. \. - b
Wi ow, W (b)

FIGURE 2. Occurrencesof actions; p,q& w.p& gare
post (ev) of process1 & 2. wiswait (ev) of process 3.

caused byhe dependendgy, w).

Furthermore, the dependence information obtained
from various instances of an action alkour debgger
to infer the conditions that gern the actiors execu-
tion. For exkample, the dependence information frasm
andws of Fig.2(a) allavs the debigger to infer that the
condition {(p, w) D(W, w)) D((q, w) D(W, w))” gov-
erns the gecution ofw. The immediate predecessors of
ws indicate that the condition(f, w) U (w, w)” must
have initiated the third instance of Similarly, imme-
diate predecessors w4 indicate that the conditior(d,
w) L] (w, w)” must hae initiated the second instance of
w. The ‘[operator appears because either of the tw
conditions can initiate thexecution ofw. Now suppose
thatp, g andw represented the synchronization primi-
tivespost (ev) andwait (ev). Then, the condition brings
out the information implicit in the semantics of the
primitives.

Therefore, a user can represent M as conditions on
the dependences of actions. Then, represemir@ p)
precedew simply requires that we select the actions
corresponding tp andw, connect them with the appro-
priate dependences, and specifanondition. This is
shavn belav by the[lcondition on the dependences of

post(&) andwait(ev). ﬂ% ot (&)
07 wait (ev)
2.0 THE SPECIFIED BEHAVIOR

Our model decomposes the problem ofudgling a
concurrent program into twlevels. A programmer
dehugs the concurrent state at the uppeellevhere the
only important concerns are the relations on the set of
computation actions; specified in the program, modeled
in the expected behaor and obsergd in the gecution
behaior. As eecution occurrences of computation
actions are atomic, internal states of a computation
action are not important at this/&. These states only
become important when the programmenasoto the
lower level, inside the computation action, to dghts
internal sequential k.

actions, then:

Def. 2: Data-flow dependenceseFp 0 3p x 3p

For instance, the dependence of a receipt of a mes-
sage on its send, the dependence of a P of a semaphore
on its \, or the dependence of aivof a synchroniza-
tion event on its post, represent such datarftepen-
dences. The write-read dependence on a shared synch-
ronization \ariable, or on a message, forces the actions
to execute in a particular ordebur motvation for rep-
resenting the synchronization dependences as data-flo
dependences comes from the language independence
and machine independence goals of the CODE graphi-
cal programming edironment [2],[15]. The data flo
characterization of the synchronization and control-
flow dependences in CODE allathe erironment to
support shared memaqrgs well as, distrilted systems.

The set of ordered paifs gives a graphical repre-
sentation Xp, Fp) whose nodes are the set of computa-
tion actions and whose arcs are the data-flo
dependences. See Fifa). Intuitively, a computation
action acts lik a procedure whose input parameters are
the input dependences and output parameters are the
output dependences. Itdgirs &ecution by obtaining a
set of \alues from its input dependences. Then, it per-
forms a sequential computation on this data. It ends its
execution by putting a set oflues on its output depen-
dences.

Input dependences of an actiarare given by the
incoming arcsjn(a) = {(x, a) | (x, a) 0 Fp}. And, out-
put dependences arevgn by the out-going arceut(a)
= {(a, x) | (&, ¥ O Fp}. Conditions specified on the
input dependences determine when to initiate e e
cution of a computation action, and conditions specified
on the output dependences determine whatvisllds
execution. The pre-condition that initiates theeution
of a computation action is called &put firing-rule
and the post condition that folls its eecution is
called theoutput firing-rule[15].

Def. 3: An input firing rulelp(a) is a set of subsets of
input dependencese. Ip(a) 0 2"@. An output fir-
ing rules Q(a) is a set of subsets of output depen-
dences; i.eOp(a) O 2°Ut(®)

An input firing rulelp(a) is a condition in the dis-
junctive normal form (sum of products). Each element
of Ip(a) represents a disjunct, and igagi by a subset of
in(a), input dependences af The state of a data-flo
dependence (x, a) can be represented by a strirgg-of v
ues denoted by [x, a]. A computation actismeady for
executionif the state of all the dependences of an ele-

We represent the data dependences that force the menti O I(a) are non-empty strings i.€l (x, @) 1 ::

computation actions taxecute in a particular order by
ordered pairs. IfZp denotes the set of computation

11-61

[x,a] # €. Then, input to a computati@nis a set of suf-
fix values detached from the state of dependences in

A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

On completing its computation,will catenate a set of
output \alues as prefes to the state of all the depen-
dences gien in someelemento 0 O(a).

3.0 THE OBSERVED BEHAVIOR

We trace the xecution occurrences of computation
actions and their orderings inP E part of the dalp-
ging o/cle. Fig.4(b) shavs this information.

Def. 4: A computation event is an &ecution occurrence
of somecomputation action.

The set of computatiorvents is denoted by.\WNot
all the computation actions of a program may occur in
an ecution. A subset of computation actions that do
occur are, then, collected n Thus,~ 0 2p

An actioncan occur multiple number of times. Sub-
scripts in Fig4(b) denote the multiple occurrences of
actions. SeV of events is, thus, a set of multiple occur-
rences of actionsor a “multiset” of occurrences of
actions. The functiop: V - Z maps eachwent of V to
that action ofZ, of which it is an occurrence.

We support this mapping by associating an instance
counteru.i with eachaction u O Xp The id-instance
pair; u and u.i, provide a unique identifier for each
event. \e, therefore, denote thieth occurrence of
actionsu, v, w ... as gentsu;, Vi, W,

3.1 Causality of Data Flow Dependences

In order to record the orderings enforcedHgy the
delugger appends the unique identifier with the data
shared through the dataslodependences. Wherex
an actionu puts some data on its output dependéngce
v) 0 Fpin itsi-th instance, it appends the identifieto
the data. Similarlywhen&er an actioru begins itsi-th
execution by remaeing some data from its input depen-
dence(v, u) O Fp, it detaches the identifier appended to
the data, and puts the detached identifier in a predeces-
sor list denoted bw.i.P. The list contains such pairs for
all the predecessowvents that hee “caused” thd-th
instance ofu. The traces contain records of theseu-
tion instances of eachvent. The trace record of an
eventy; contains the action id, instance numbeu.i,
andthe predecessor listi.P. Also, see @ble 1.

Def. 5: The orderings enforced Wy are &= {(u;, v)
lu, v OV Ly, 0 v;.P}.
The transitie closure of E results in an irrefidve
partial ordering that constitutes tbausal orderings <C.

The orderings & simply reflect the “causality” of data-
flow dependences.

Lemmal y<FyO (uv)OFp
Consequentlyif u; <F vj, then there is some data
shared between; andv;, namely the state of the data-

11-62

flow dependencéu, v) O Fp The representation of the
state of a data-fle dependence in 8.0 by a string of
values (or an infinite FIFOuffer) takes into account
this dependence. Moreer, it allows us to model the
general cases of the send and rexaf messages in
distributed systems, and the datasfldependences of
the graphical/visual languagesdiCODE [2][15]. But,

the representation may create problems in modeling the
synchronization primities of shared memory systems.
However, as seen in 8.3, concurrent state does not
depend upon the internal representation of the states of
the data-flav dependences. It only depends upon the
event orderings. Thus, we can represent the state of a
synchronization dependence, with a string (outfeb)

of length one. It will denote the data dependence due to
the shared synchronizatioranable (whose only per-
mitted \alues are set or reset). The dgder records the
causal orderings by appending and detaching the identi-
fier to the shared synchronizatioariable.

3.2 Execution History Pomsets

As seen abee, actions can occur multiple number of
times as eents, i.e. the set V olvents is related to the
setX of actions through the functigw V - Z. This
effectively turns the posety(<% into a pomse(Z, V,
<% 1) [19]. A POMSET is a &rtially Ordered Multi-
SET of occurrences @fctions, in much the same ay
as astring is aTOMSET, a Totally Ordered MultiSET
of occurrences dlphabets. The pomsetY, V, <®, p) is
called a causal pomset becagSaare the causal order-
ings. It is instrumental in unifying our model because
its expression of the concurrenproperties is indepen-
dent of the vay time or gents are modeled in a system

[5].

A pictorial representation of the causal pomset is an
execution history display. We can nwr explain why exe-
cution history displays are so helpful in dglging.
They display the causal orderings o¥emts. These
orderings allov a programmer to determine the condi-
tions that initiated and folleed eachxecution instance
of an action. From Lemma 1, an immediate predecessor
of u; must map to an input dependenceupéind from
Def. 3, an element of the input firing rulewfs a sub-
set of input dependences. Hence, immediate predeces-
sors of an eentu; inform the programmer about that
element of the input firing-rule that initiated th¢h
instanceof u. Similarly, immediate successors of an
eventu; inform the programmer about that element of
the output firing-rule that determined the condition fol-
lowing thei-th execution instancef u. If *u; = {(v, u) |
v <Futandu” ={(u V) |y <F v}, then:

Def. 6: A causal pomsefZ, V, <%, W) is compatible
with the firing rules if Ou; OV :: "y, O 1p(u) Ou,” O
O(u).

A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

This shavs the compatibility of the immediate order-
ings of a gien event with the firing rules specified on
the immediate dependences of its corresponding action.
In 84.0, we @tend this compatibility of immediate
orderings with the immediate dependences to the com-
patibility of transitve orderings with the transig
dependences. This plides a frameork for represent-
ing and checking thexpected behaor.

3.3 Concurrent Execution State

There is non-determinism associated with the
choices of the elementsvgn in the input and output
firing rules. An action can non-deterministically select
different elements of a firing rule. In F&.the second
instance of actiorw can non-deterministically select
ary element from it$nput firing rule During execution
replay a record of the causal orderinggorms our
delugger to select the right element of the firing rules
for each gecution instance of an action. Thus, it recon-
structs the states of the pi@us execution. Using &
and folloving [13], we find a notion of concurrent state:

Def. 7: A concurent stateof an execution(Z, V, <¢, p)
is a consistent cut-set of the posét<C). A setC [
Vis a consistent cut-sef & [0C Oe'<® el e’ C.

This definition is independent of the local state of an
action. It is, also, independent of the contents of the
messages xehanged by the actions. It only depends
upon the order ofwents. Hence, distritied systems
often reduce their roll-back and reeoy oerhead by
only recording theent orderings, and not the content
of messages or the checkpoints of the local states.
Therefore, our »xecution replay dcility exploits this
definition to reduce the recordingeshead (%.1).

3.4 Animation

Animation praides an instantaneous wieof the
execution historylt is simply the process of displaying
Def. 6 on an animation structure whilevieasing the
execution pomset. Aranimation structug shavs the
assignment of actions to thexegutable units (pro-
cesses/threads) of thgegution emironment. It can be
considered as an elaborated form of the program struc-
ture. Fig.3(c) shavs such an animation structure where
actionw of Fig. 3(a) replicates (or elaborates) into three
actions;w!, w?, andw? running on diferent processes.
We represent the run-time assignment of actino
the executable units by the s&t0 Zp x N; where,w!,
wl 0 T implies thatw is assigned to dérent eecutable
units whose logical ids afeandj. The actual identity of
an &ecutable unit is not important. The superscripjts
are only for distinguishing between the multiple copies.

During animation, the deigger traerses thexecu-
tion pomset. On encountering thth event instance of

11-63

G
FIGURE 3. (a) Program structure, (b) pomset
execution, and (c) elabor ated animation structure.
an actionu®, it highlights in the animation structure
those input dependences of the actioat correspond
to the immediate predecessors ofiite event instance.
It, then, highlights the actionX. Then, it highlights
those output dependences of the action that correspond
to the immediate successors ofiith event instance.

We can automatically generate an animation struc-
ture from the gecution pomset. Note that the structure
shawvn in Fig.3(c) is obtained by folding all the subse-
guent instances of actions in F&{b) to their first
occurrencesThis fulfills the requirement of a strong
coupling between animation ankkeution history14].

4.0 THE EXPECTED BEHAVIOR

In the P— M part of the gcle, a user represents the
expected behdor by selecting some‘interesting”
actionsX), from Zp and, then, representing thepecta-
tions as conditionk,, Oy on their dependencésy;.

4.1 Representing Expected Behavior

A dbxdehugger is closely coupled with the program
because it compels the programmer to use only those
objects that alreadyxist in the program; e.g. it uld
not allov a user to specify a nomdstent print ariable.
Taking cue fromdbx, we closely couple our chesk
with the program and only allothe user to wrk with
those objects that alreadyigt in the program. This is
in contrast to thexasting checlkrs that can noterify if
a user has supplied a noxistent order of eents in the
expected behaor.

Note that if a usergects that eentsu; andyv; will
be ordered in thexecution, then their actionsandy,
must ehibit a (transitve) data-flov dependence in the
program. That isy; <© v O (u, v)U Fp*, where p* is
a transitve closure of F This also follevs from
Lemma 1. Br instancem; <© ¢; in Fig.4(b) corre-
sponds to théransitive data-flow dependendeetween
m andc of Fig.4(a); both are shen by dotted lines.
Thus, ag pattern that isy@pected in anxacution, must
be the unrolling of a pattern already present in the pro-
gram structure.

Thus, a user starts specifyingpected behaor by
selecting a subséfy, of interesting actions from the
program;Zy, O Zp Fig.4(c) shaevs a selection of such
actions. The user can then specify a dependence

A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

Cl n2 (Z! \/1 <1 “)
fy
m, p, mg (b)
(Zms Fwm) (Z,V, <, W/ Iy
m n ¢, o
S <2C f,
O (| © O (d)

FIGURE 4. (a) Program Structure. (b) Execution.

(c) Expected Behagior. (d) Restricted execution.
between the selected actions only if it corresponds to
some dependence off Some of such selected depen-
dences are shm as Fy in Fig. 4(c).

Def. 8: Fy are the selected dependences from the tran-
sitive data-flow dependencesgTrestricted to inter-
esting actions i.exy, O Fp* / £y, whereXy, O 2p

An obsered ordering lile (my, ?) in Fig.4(d), that
can not be mapped to a datasfldependence frorfy,
is, therefore, symptomatic of aidp

In Fig. 4(c), the structuredilt on 2, is the specifica-
tion of the &pected behaor. Akin to the conditions in
adbxcommand lile “when at stmtif condition” a user
can, then, prade firing rulesl,, and Oy to further
restrict the instances of “interesting” actioNste that
firing rules are conditions about the concurrent state,
whereasdbx conditions are about the sequential state.
Suppose the user specifies afi butput firing rulefor
actionm in Fig.4(c). Then, the cheek can filter out
instancesn; andmg because thesubscribe to the[™
rule. But, will raise an>eeption form, as it does not
subscribe to thelT rule.

4.2 Recognizing the Expected Beliar

In dbx a directve like “when atstmt. . . ”_informs
the deligger to mak& necessary preparations for the
specified statement. It also informs it to ignore the rest
of statements. Similarlythe selection ok, from >p
informs the debgger to specially prepare for “interest-
ing” actionsX,,, and to safely ignore the “uninterest-
ing” actions>p -). Then, the dalgger can filter out
the uninterestingwents and can restrict theezution to
instances ok,,.

The restricted pomseE(V, <€, W)/ , of Fig.4(d)
only contains the interestingrents and their mutual
orderings. The delyger establishes the orderings
among interesting vents by &ploiting the fct that
instances of interesting actions can only be ordered if
there aists a mutual (transite) dependence. In
Fig. 4(d), eentsm, andc, are only ordered because of
the transitre dependence thatists between actionn
and c. Note in Fig4(a) that the dependence goes
through an interening uninteresting actiop. Our
delugger therefore, establishes the orderings between
instances ofm andc, by asking the uninteresting action
p to relay the causality information that aed from its
predecessors, foard to its successors.

Unlike interesting actions, uninteresting actions do
not trace their xecution instances. Instead of sending
the identifier of their current instance to their succes-
sors, thg simply relay forvard their predecessor lists.
See Bble 1. These listsglep getting relayed foavd by
the intenening uninterestingvents until thg land in
the predecessor lists of the interestingrgs. Only then
they are traced. Predecessor lists of interestirents,
therefore, only contain the identifiers of their causally
preceding interestingvents. Excution is thus filtered
to(Z,V, < W)/ Zy.

Table 1: Monitoring and tracing of actions.

Monitored

Occurrences u >y

Interesting Actions

Uninteresting Actions
ulZp-Zy

usendstov appendmsg: u, uj;

urecevesmsg u.i.P Odetachimsg;

u executed

trace (u, u.i, u.i.P)

append (msg: u.i.P;
u.i.P 0 detachimsg;

u.i=u.i+1;

ui=ui+1;

The structural information of M and thact that the

sponds to some successaf the actioru in the depen-

causal pomset is restricted to interesting actions, greatly denceds~y,. Additionally, the debigger checks whether

simplifies recognition of thexpected behaor. The
delugger traerses the partial ordeand tries to check if
Lemma land Def. 6 also hold for M. It checks whether
each immediate successgrof a gven eenty; corre-

11-64

the immediate predecessors and successors ofeah e

u; satisfy the input and output firing rullgs andO,, for

u. If an orderingy, <" v. fails to correspond to some

dependencéu, v) [Fy,, or the immediate predecessors

A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

‘u; or successong” fail to meet thexpected conditions
Ipm(u) or Oy (u), then an error has been recognized. This
happens for the urpected orderings af, in Fig. 4(d).

Def. 9: Eventuy; is inerror if u” OOy(u) O°y; O Ty (u).
Thus, concurrent debugging is the process of fol-

lowing the unexpected orderings given by the erro- FIGURE 5. (a) Dependences. (b) Orderings.
neous events, in the direction of causality. andv of a shared data dependencegeha \alid serial-
ization if for every instancey; of a write-access and
5.0 SHARED DATA DEPENDENCES every instancev; of another access, either occurs

Unlike dependence®s that force an ordering on the ~ Peforey;, ory; occurs beforey

impose ag particular orderings. ¥ therefore, model a record the orderings, we use our simpler mechanism for
shared data object by the set of actions that share it. The recording the order®of accesses to a shared objct

set of those objects is denoted by S. 0 S Each shared object has the identifier of the last
Def. 10: The set ofshared data dependences is S [J instance of its write-access appended to it. Wreman
2%¢ A shared data dependence is a seD of compu- action accesses a shared object, it reads the identifier
tation actions, D 0 Zp (orD 0 S). appended to the object, and places the identifier in the

predecessor slot reseq/ for that object in its trace
event record. A writerin addition to the abe, replaces
the identifier appended to the object with the identifier
of its present instance.

The actions that participate in a shared data depen-
denceD are classified into disjoint sets i#aders and
writers. Readers of D are p.D and writers are wD;
wherep.D O wD =D, pD n wD = ¢. In Fig.5(a),

shared data dependeride= {a, r, w}. For example, we In addition to the predecessor ligtP for the data-
may hae the set ofeaders, p.D = {r} and set of writ- flow dependences @1), the trace record for each
ers,wD ={a, w}. event nav requires another predecessor lisS for
. shared data dependences. The list has a;s$b] for
5.1 Execution Replay each shared data dependebd@ which a given action
The goal of an>ecution replay dcility is to record participates. Then, the identifier in the slot bin the
enough information about the non-deterministic predecessor list of anvent record, determines the
choices made by thevents of an xecution. During causal orderingsfk There is, thus, an ordering relation
replay the eents can, then, be forced to reake pre- <P for eachD [S generated lie <. The debgger
vious choices. A record of causal orderirgsis sufi- then, ensures the replay by forcing thverds to occur

cient to wercome the non-determinism associated with in the pre-recorded order
the choices of elements in a firing rule. But, there is

another source of non-determinism. This is associated
with shared data dependences that do not force the
actions to recute in ap particular orderAs accesses

to shared objects can w@place in ayporder the dehg- 5.2 Race Detection
ger must record the non-deterministic order of accesses
to shared objects so that during replay the accesses can
be forced to occur in the prieusly recorded order

To simplify the follwing discussion, we assume that
there is “one” shared data dependebcE S. We nav
consider the strict partial orders due f@rd L.

Simultaneous accesses (with at least one write) to a
shared object can race with each other and can corrupt
the shared data with unpredictable resulte détect

We record the order of accesses to shared objects races by identifying those pairs ofvemts whose
with the same mechanism that we use in recording the accesses to a shared object included at least one write
<Forderings (8.1). But before we can do that, we need and whose orderings were only due to theudelers
a protocol to ensure ahd serialization on the accesses enforcement of the serialization protocodrfe.g., dot-
to shared objects Ik the CREW (concurrent read ted arcs of Fig5(b) shev the &L orderings for eents
exclusive write) protocol[10]. The protocol disallws wy andry (andw; andr,) that were forced by the
simultaneous write-access to a shared object with other deluggers serialization protocol. Thevents are other-
accesses. The defiger ensures a deterministic replay ~ wise unordered undef<Without the debggers proto-
by implementing the protocol. iout the implementa- col, these £ orderings may nobést. Thenw; andr;
tion, simultaneous accesses to a shared object can (or wy, ry) can &ecute simultaneously with unpredict-
hinder a deterministic replay by corrupting the object ~able results. Thus, al®<orderings obserd under the
and gving unpredictable results. Note that memhers serialization protocol, should be supported byas, for
instance, the ordering betweapandw;.

11-65 A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

Although this technique detects the possibility of
race for gentsw; andr, (and for @entsw; andr,) of
Fig.5(b), it does not detect the possibility of race
between eentsw, andr,. To detect such races, we note
that these \ents are unordered by bo#tP and <F.
Thus, our debgger will also signal the races for all
those pairs of\@nts that are unordered by and<F,
and that access a shared object with at least one write.

Implementing a serialization protocol, and recording

sentation concerns. It is not specific to a particular lan-
guage, or
abstraction o€Eomputation actionso fulfill the need for

a lower limit for the granularity of data collection (A.
Tilberg). Such an abstraction is usuallyadable in a
graphical ewironment likk CODE[2], [15]. However,

as &plained in the Appendix, some static analysis may

a particular system. It proposes the

be necessary to obtain themputation actionérom a

textual representation of a concurrent program.

the <~ orderings of accesses to a shared object, may Refer ences

seem unnecessary for detecting races. It may appear

simpler to report races for pairs ofeats that are unor-
dered undex". However, as aplained in[16], this can

result in reports of spurious races that are infeasible and

could nerer occur Our delnggers implementation of
the serialization protocol is instrumental in eliminating
the spurious artifcts that can result from the use of

shared objects that were corrupted by an earlier race. [3]

Furthermore, the record &f® helps in impreing the
accurag of detected races by identifying other spurious

[1] P. Bates, “Debugging heterogeneous distributed
systems using event-based models of behavi@M
SIGPLAN Notices24(1), (Jan ‘89), pp. 11-22.

[2] J. C. Browne, M. Azam, and S. Sobek, “A Unified
Approach to Parallel ProgrammingEEE Software,
(Jul ‘89).

D. Callahan and J. Subhlok, “Static Analysis of

Low-Level Synchronizations,” ACM SIGPLAN

Notices 24(1), (Jan ‘89)

races. Note that race detection in our model does not [4] R.J. Fowler, T. J. LeBlanc and J. M. Mellor-

require ay extra overhead. The record of’<and <
already eists for supporting>ecution replay

6.0 CONCLUSIONS

The unified model of concurrent dedging pre-
sented in this paper eers all the parts of the detpging
cycle. This wercomes the incompatibility ofxisting
facilities, and allas our debhgger to support diérent
delugging fcilities like execution eplay race detec-
tion, assertion/model eking, execution history dis-
plays andanimation We, thus, she that the benefits
of modeling the wholeycle are greater than a simple
sum of its parts.

Our model uses the set of computation actions and

the “causality” of their dependences to simplify the
compleity of concurrent delgging. Vi shav that it is
easier for a delgger to record the orderings when

events are considered to be the occurrence instances of

actions. W, also, she that the debgger can obtain
much more information by recognizing the underlying
dependences of the obsedvorderings.

Our use of a program oriented approach for checking
the model of gpected behaor saves the usengra pro-
gramming ert. It, also, simplifies for the delgger
filtering and recognition of thexpected behaor.

Our model proposes a solution for the foling
needs highlighted in the panel discussiong1df. It
provides a theoretical frammrk for defining arerror
and eplaining the process of concurrent dgbing (J.
Wilden)l. The framevork explains precisely when and
why a particular &cility is needed (PBates).It eases
implementation by separating the monitoring and pre-

11-66

Crummy, “An Integrated Approach to Parallel
Program Debugging and Performance Analysis,”
ACM SIGPLAN Notice4(1), (Jan ‘89), pp. 163-73.

[5] H. Gaifman, “Modeling Concurrency by Partial
Orders and Nonlinear Transition Systemkgcture
Notes on Comp. Scien#854 (May ‘88), pp. 467—88.

[6] A. A. Hough and JE. Cuny, “Perspective views: A
Technique for Enhancing Parallel Program
Visualization,”ICPP, (Aug ‘90), pp. 11.124-11.132.

[7] W. Hseush and Ge. Kaiser, “Modeling Concurr-
ency in Parallel DebuggingRCM Symp. on Princples
& Practice of Parallel Prog.(March ‘90), pp. 11-20.

[8] D.P. Helmbold, CE. McDowell, and J. Wang,
“Analyzing traces with anonymous synchronization,”
ICPP, (Aug. ‘90), pp. 11.70-I11.77.

[9] A. A. Hough, “Debugging Parallel programs Using
Abstract Visualizations,” TR 91:53, CS Department,
University of Massachusetts at Amherst, (Sep ‘91).

[10] T.J.LeBlanc and M. Mellor-Crummey, “Debug-
ging Parallel Programs with Instant ReplayEEE
Trans. on Computer€£36 # 4, (Apr ‘87), pp. 471-81.

[11] T.J. Leblanc and BR. Miller, Ed.s, “Workshop
Summary; What we have learned and where we go
from here?”ACM SIGPLAN Notices, 24(1(Jan, 89),
pp. iX—xxii.

[12] T.J. LeBlanc, J. Mellor-Crummey & R. Fowler,
“Analyzing Parallel Executions with Multiple Views,”
J. of Paral. & Dist. Comp#9, (Jun ‘90), pp. 203-17.

1. Parenthesized names indicate the person who high-
lighted the need in the panel discussiofldf]

A Unified Model for Concurrent Detgging

International Conference orarallel Processing - 1993

[13] F. Mattern, “Virtual Time and Global States of
Distributed Systems,” Parallel and Distributed
Algorithms (1989), pp. 215-26.

[14] C.E. McDowell, D.P. Helmbold, “Debugging of
Concurrent Programs,’ACM Computing Surveys
21(4), (Dec ‘89), pp. 593-622.

[15] P. Newton and J. C. Browne, “The Code 2.0
Graphical Programming Environment,”Super-
computing'92 (Jul '92).

[16] R. H.Netzer and BP. Miller, “Improving
Accuracy of Data Race detectiprACM SIGPLAN
Notices 26(7)(Jul ‘91), pp. 133-44.

[17]R. H.B. Netzer and BP. Miller, “On the
Complexity of Event Ordering for Shared Memory
Programs,1ICPP, (Aug ‘90), pp. 11.93-11.97.

[18] R. H.Netzer and BP. Miller, “What are Race
Conditions? Some Issues and Formalism,” TR91-
1014, CS Dept. Univ. of Wisconsin (Mar ‘91).

[19] V. Pratt, “Modeling Concurrency with Partial
Orders,” Internaltional Journal of Parallel
Programming 15(1), (1986), pp. 33—71.

[20] C. M. Pancake and S. Utter, “Models for Visual-
ization in Parallel DebuggersSupercomputing ‘89
(Nov ‘89) pp. 627-36.

[21] S. Utter and CM. Pancake, “A Bibliography of
Parallel Debugging ToolsACM SIGPLAN Notices
24(10), (1989), pp. 24-42.

Appendix: Computation Actionsin a Textual

Representation of a Program

A textual program contains three types of state-
ments; blocking synchronizatipisignal synchroniza-
tion and non-synchronization statemerffeom such a
text, static analysisroutinely etracts a synchroniza-
tion-control-flov graph that contains three types of
nodes and tw types of arc$14], [3]. Nodes represent
blocking synchronization, signal synchronization, and
control decision statements. While arcs representinter

main () { * main
[* workers = n */ A~
* counter ct =n */ (a)
post (ev; : i = 1..n); NS/
while (1){ H
c_wait (ct); ¢

. [* how much/

. [*work done */

if (work_done)
exit ();

t
t
RGN
-...exd
_ (qDev)
post (ev; : i =1..n); ex

H (a) (b)evi:i=l..n eviii=1.n (9

FIGURE 6. (a) main starts n workers, and waitson a
counter ct. On completion, each worker reports by
incrementing ct. When count reaches n, main wakes
up. If thereisneed for more work then, it signalsthe
workers again, else it exits. (b) Syndironization-
control-flow graph. (c) Actionsa and f.

worker i () {
while (1){ _
wait (ev));
I* d(; somet/ / _(m(E S’&?
/* work */ !
c_set (ct): ‘mOct
H (@) ©

FIGURE 7. (a) Text. (b) Graph; m, r are control
dependences; ct and ey are synchronization depen-
dences. (c) Action w ; (m Oey) O (r Oey) isinput-rule,
m O ctisthe output-rule, and wisthe sequential text.

(ct) is associated with thextef that follows it. Also,

signal synchronizations_set(ct) is associated with the

text w that precedes it, and signal synchronizapost

(ev; 1 i = 1..n) is associated with xés a andf that pre-

cede it.

Def. 11: A computation actioris a block of a fl
graph that:

process synchronization dependences and intra-process 1 may contain internal control floprovided the inter-

control-flov dependences.

Fig. 6(a), (b), and Fig7(a), (b) shw the synchroni-
zation control flav graphs obtained from axteal pro-
gram of a PPL lik extension of C. Intra-process control
arcs labeled by, w andf correspond to the sequential
text containing non-synchronization statements. The
abstraction oEomputation actions, sivm by the dotted

ovals, permanently associates the synchronization state-

ments with the sequentialxts. It permanently associ-
ates a blocking synchronization with the sequentil te
that follows it, and associates a signal synchronization
with the sequential & that precedes it. Thus, blocking
synchronizationsvait (ev;) is associated with thexiew
that follows it, and blocking synchronization wait

11-67

nal control structures (loop, if-then-else, etc.) do not
contain ag synchronization statement;

2. it may bein with ablodking synchronization, that
must be the first statement of the block; and

3. it may end with aignalsynchronization, that must
be the last statement of the block.

4. it may contain more than ofsodking (signal)syn-
chronization preided all are together at the start
(end) of the block with no other inteming state-
ment.

After the synchronization statementv@®een asso-
ciated with their bordering sequentiakte we are left
with the control flav decision nodes. The abstraction of
firing rules subsumes these decision nodes asrsho

A Unified Model for Concurrent Detgging

