
A HIGH LEVEL LANGUAGE FOR SPECIFYING

GRAPH-BASED LANGUAGES AND THEIR

PROGRAMMING ENVIRONMENTS

APPROVED BY
DISSERTATION COMMITTEE:

Copyright

by

Michiel Florian Eugene Kleyn

1995

To Dominique

with Love.

A HIGH LEVEL LANGUAGE FOR SPECIFYING

GRAPH-BASED LANGUAGES AND THEIR

PROGRAMMING ENVIRONMENTS

by

MICHIEL FLORIAN EUGENE KLEYN, B.Sc., M.Sc.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 1995

v

Acknowledgments

I would like to thank my committee chairman, my parents, friends, and

colleagues for making this dissertation possible. Without their invaluable sup-

port it would have taken even longer than it did.

I would also express my sincere appreciation to all of the organizations

that financially supported by work.

Bij het beëindigen van mijn academische studie maak ik garne van deze

gelegenheid gebruik om mijn dank te betuigen aan allen, die to mijn weten-

schappelijke vorming hebben bijgedragen, in het bijzonder aan mijn hoogge-

schatte Promotor.

vi

A HIGH LEVEL LANGUAGE FOR SPECIFYING

GRAPH-BASED LANGUAGES AND THEIR

PROGRAMMING ENVIRONMENTS

Publication No. ______________

Michiel Florian Eugene Kleyn, Ph.D.

The University of Texas at Austin, 1995

Supervisor: James C. Browne

vii

Abstract

This dissertation addresses the problem of creating interactive graphical

programming environments for visual programming languages that are based on

directed graph models of computation. Such programming environments are es-

sential to using these languages but their complexity makes them difficult and time

consuming to construct. The dissertation describes a high level specification lan-

guage, Glide, for defining integrated graphical/textual programming environments

for such languages. It also describes the design of a translation system, Glider,

which generates an executable representation from specifications in the Glide lan-

guage. Glider is a programming environment generator; it automates the task of

creating the programming environments used for developing programs in graph-

based visual languages. The capabilities supported by the synthesized program-

ming environments include both program capture and animation of executing pro-

grams.

The significant concepts developed for this work and embodied in the ab-

stractions provided by the Glide language are: an approach to treating programs as

structured data in a way that allows an integrated representation of graph and text

structure; a means to navigate through the structure to identify program compo-

nents; a query language to concisely identify collections of components in the

structure so that selective views of program components can be specified; a unified

means of representing changes to the structure so that editing, execution, and ani-

mation semantics associated with the language can all be captured in a uniform

way; and a means to associate the graphical capabilities of user interface libraries

with displaying components of the language.

The data modeling approach embodied in the Glide specification language

is a powerful new way of representing graph-based visual languages. The ap-

proach extends the traditional restricted mechanisms for specifying composition

of text language structure. The extensions allow programming in visual languages

to be expressed as a seamless extension of programming in text-based languages.

A data model of a graph-based visual language specified in Glide forms the basis

for specifying the program editing, language execution semantics, and program an-

imation in a concise and abstract way.

viii

Table of Contents

List of Figures xiii

Chapter 1 Introduction ...1
1.1 Problem ...1
1.2 Approach ...2
1.3 Results ...4
1.4 Contents of Dissertation ..6

Chapter 2 Motivation ..8
2.1 Visual Languages and their Programming Environments8

 Graph-based Visual Languages...................................10
 The Interconnection Paradigm13

2.2 Graph Models ..14
2.2.1 Graph Grammars ..17

2.3 Summary ...18

Chapter 3 Related Work..19
3.1 Programming Environment Generators19
3.2 Programming Environments for Visual Languages22
3.3 Programming Environment Generators for Visual Languages22
3.4 Summary ...23

Chapter 4 Glide Model of Graph Based Visual Languages.......................24
 Main Ideas ...25
 Graph Types ..25

4.1 The Glide Grammar ..26
 A simple production ..27
 Tagging..28
 Aggregation ...30
 Alternation...31
 Operator precedence and expressing commonality32
 Sharing...33
 Cycles ..34
 Repetition: Sets and Lists ..35
 Terminals ...36

4.1.1 Complex GBVL structures ...36
4.1.2 Example Glide Grammar Specification..............................38
4.1.3 Summary...40

 Glide Grammar Syntax..41

ix

4.2 Glide Path Expressions ...42
 Path Expressions and Alternation................................44
 Uppath ...45

4.2.1 Glide Path Expression Syntax ..46
4.3 Glide Query Definitions ..47

4.3.1 Tree path expressions ...47
4.3.2 Simple Queries ...50

 Merging trees...50
4.3.3 More Complex Queries ..51

 Multiple trees...52
 Filtering trees...53
 Recursion in tree path expressions53
 Graph displays ...55

4.3.4 Glide Query Syntax ..56
4.4 Glide Action Definitions ...58

4.4.1 Editing Actions...59
 Basic action expressions..59
 Example - connecting objects......................................60
 Semantics of action expressions..................................61
 Editing vs. structure...61
 User input actions ..62
 Disconnection actions..63
 Deletion actions ...64
 Conditional action expressions....................................64

4.4.2 Execution Semantics ..65
 Example - Transition node state update66
 Example - value update ...68
 Example - data flow...69
 Execution firing regimes ...70

4.4.3 Glide Action Syntax ...70
 Common ..70
 Editing specific ..71

4.5 Glide Shape Predicates ..72
 Examples ...73
 Design variations - bipartite vs. input-output.76

4.5.1 Glide Shape Predicates Syntax...79
4.6 Glide Graphical Attribute Definitions80

 Default display...82
 Simple example ...83

4.6.1 List Graphical Attributes ..83

x

4.6.2 Glide Graphical Attributes Syntax85
4.7 Glide Animation Definitions ...86

 Simple example ...87
 More complex example ...87
 Transition animation..87
 Animation procedures ...88

4.8 Summary ...89

Chapter 5 Graph Types for Graph Based Visual Languages......................90
5.1 Data Types in Imperative Languages with Pointers90

 Basic composite data type ...91
 Recursive types I: lists...91
 Recursive types II: trees ..92
 Recursive types III: grammars.....................................93
 Shared Structures...94
 Cyclic shared structures...95
 GBVLs and shared/cyclic types96

5.2 Functional Languages ...97
 ML ...98
 Miranda..100

5.3 Abstract Data Types ..101
 Graph Types ..102

5.4 Database Models ...104
5.4.1 Model of Network Data Bases ...104
5.4.2 Object-Oriented Data Models...104

5.5 Other Areas Addressing Cyclic and Shared Types105
5.5.1 Parallelizing Compilers and Pointer Structures................105
5.5.2 Galois..106
5.5.3 Graph Grammars ..106

5.6 Dynamic Structures, Anonymity, and Connections106
5.7 Summary ...107

Chapter 6 Glider Design and Implementation ..109
6.1 Overview of Glider ...110

 Programming Environment Generation110
 Programming Environment Use111
 Internal or External Execution...................................112

6.2 Design of Programming Environments and Compiler114
6.2.1 Programming Environment Design..................................114
6.2.2 Compiler Design...115

xi

6.3 Target Run-time Environment ..117
 Implementation Language ...117
 GUI Libraries...117

6.4 Glider Run-time Library ...119
6.4.1 Level-0: Access and Alteration of Objects.......................119
6.4.2 Level-1: Access and Alteration to the PIN.......................121
6.4.3 Level-2: Path Expressions ..125

 Path Expression Algorithm..126
 Tree Path Expression Algorithm126

6.4.4 Run-time Library Components...128
 Display Trees Interpreter ...128
 Main Frame ...130
 Selection Manager ...130
 Object-Widget Mapping Manager.............................131
 Execution and Animation Manager...........................131

6.5 Glider Compiler Components ...133
6.5.1 Class Generator ..133

 Class Generation Algorithm......................................134
 Class Generation Example ..134

6.5.2 Graph Language Queries Translation...............................137
 Queries Compilation Algorithm................................137
 Query Compilation Example.....................................138

6.5.3 Actions Translation ..140
 Editing Actions Translation.......................................140
 Editing Action Translation Example141
 Editing Actions Translation Algorithm.....................141
 Execution Actions Translation142
 Execution Actions Translation Algorithm.................145
 Shape Predicates..145
 Shape Predicates Translation Example146
 Shape Predicate Translation Algorithm.....................146
 Action Compiler Translation Algorithm148

6.6 Summary ...149

Chapter 7 Examples ...150
7.1 Simple Boolean Circuit ...150

7.1.1 Glide Grammar for Boolean Circuit.................................151
7.1.2 Editing Semantics for Boolean Circuit.............................152
7.1.3 Execution Semantics for Boolean Circuit152
7.1.4 Graphical Attributes for Boolean Circuit154
7.1.5 Queries for Boolean Circuit..154

xii

7.1.6 Animation of Boolean Circuit ..156
7.1.7 Shape Predicates for Boolean Circuit...............................156

7.2 Complex Petri Nets - PCM ...157
7.2.1 Glide Grammar for PCM..157
7.2.2 View Queries for PCM...159
7.2.3 Execution Semantics for PCM ...161
7.2.4 Animations for PCM ..162

7.3 The LabVIEW GBVL ...163
7.3.1 Glide Grammar for LabVIEW..164
7.3.2 Queries for LabVIEW ..166
7.3.3 Execution Semantics for LabVIEW167

7.4 Summary of Results ..169

Chapter 8 Conclusions and Further Work ...170
172

Appendix 173
References 181
Vita 193

xiii

List of Figures

Figure 1-1 High Level Meta Language...3

Figure 4-1 Displayed Petri Net ...38

Figure 4-2 Implementation of a Petri Net ...39

Figure 4-3 PIN of the Petri Net...40

Figure 4-4 Incorrect Instance Network ...73

Figure 5-1 Pointer implementation of a list ..92

Figure 5-2 Two views of a recursive type ...92

Figure 5-3 Implementation of a Binary Tree ..93

Figure 5-4 Implementation of a General Tree ..93

Figure 5-5 Implementation of a Shared Structure94

Figure 5-6 Implementation of a Cyclic Structure95

Figure 6-1 Generation of a Programming Environment vs. its Use110

Figure 6-2 Detailed view of Glider Compilation......................................115

Figure 6-3 Object-Oriented Compiler Design ..116

Figure 6-4 Level-0 - Object Access and Alteration Procedures120

Figure 6-5 Level-1 - PIN Acces and Alteration Procedures122

Figure 6-6 Example Program Instance Network (PIN)124

Figure 6-7 Recursive Path Expression Evaluator126

Figure 6-8 Recursive Tree Expression Evaluator127

Figure 6-9 Mapping between screen widgets and PIN instances131

Figure 6-10 Generated Query Procedure ..139

1

Chapter 1

Introduction

Interactive graphical software systems for supporting users in solving

complex problems are now in widespread use. They are used in document pub-

lishing, computer aided design, and in many other synthesis problem domains.

Such systems enhance a designer’s effectiveness. They make it possible for the

designer to explore design options by facilitating tasks such as construction, re-

finement, manipulation, modification, viewing, simulation, and analysis of

models of the artifact that is to be created. One problem domain of significant

and ever increasing complexity is that of specifying and developing programs.

Interactive graphical systems are used, for the same reasons, in the domain of

software specification and programming - to support software developers in

similar tasks on programs (the artifact itself) or models of software artifacts.

Within the domain of developing specifications and programs, there is a long

history of research into the use of exploiting graphical techniques. Interest in

so-called graphical languages or visual languages began almost as soon as pro-

gramming languages themselves were developed. The use of visual languages

is growing, driven by the increasing availability of the hardware and software

execution environments that can support their implementation. This disserta-

tion addresses the problem of creating interactive graphical programming envi-

ronments for the predominant form of visual languages: graph-based visual

languages.

1.1 Problem

Visual programming environments,i.e., systems with graphical user in-

terfaces which support a user in developing programs in visual languages, suf-

fer from a problem which is common to all large complex software systems;

2

they are difficult and time consuming to develop. Every time a new visual lan-

guage is designed, there remains the large task of creating the interactive envi-

ronment that will support the development process for the new language.

Development of the interactive graphical interface is often the largest single

task in developing a programming system. The design of a visual language is

aided by the ability to rapidly create a programming environment for it so that

it can be easily evaluated and refined. Visual languages are difficult to use

without the support of an interactive tool and so the creation of a new visual

language requires the considerable time and effort for the implementation of

the tool, above and beyond the design of the language itself and the implemen-

tation of its compiler. There is thus a frequent need for creating interactive

graphical environments. Current support of the creation of these environments

is inadequate because existing graphical tools and libraries are generic and do

not support the abstractions that are specific to visual language programming

environments.

1.2 Approach

The approach of this research was to design, implement, and experi-

ment with a high level language which can be used to describe graph-based vi-

sual programming languages. A high level language is a means of simplifying

the creation of programs in a particular problem domain by providing the ab-

stractions necessary for solving problems in the domain as language con-

structs, so that solution programs can be formulated in a more concise and

direct way. This description is analyzed by a high level language compiler in

order to generate a program in a target language at a lower level of abstraction.

The target may be in the form of a directly executable binary file or in the form

of source code of a lower level language which can be further compiled. In or-

der to reach the higher level of abstraction high level languages are mostly de-

clarative. The compilation process transforms the declarative description into

the procedural form required in the target language.

3

Glide, the high level language described in this thesis is a means

through which the creation of programming environments for visual program-

ming languages based on directed graph models of computation is automated.

As such it is ameta language. The objects that can be described with it are lan-

guages. The compiler for Glide is a generator which analyses the high level

specification of a particular visual language and emits a program which is the

programming environment for that visual language.This environment is then

used by a user wishing to develop programs in the visual language. The dia-

gram in Figure 1-1 illustrates these relationships.

Glide itself is not a visual language but a conventional textual language.

Within the context of using a high-level language, the approach devel-

oped in this dissertation is focused in two significant ways:

Graph-Based Visual Languages: First, the model of visual languages is

restricted. No attempt is made to address all forms of visual programming lan-

guages. Taken as a whole there are very wide variations in the appearance, syn-

tax, and semantics of visual languages and some lack of consensus on how to

characterize them. Instead, the work in this dissertation focuses on the particu-

lar form of visual languages which is predominant. This form of visual lan-

guages can be termed “graph-based visual languages” since their common

High Level Specification Meta Language

Visual
Language A

Visual
Language B

Visual
Language C

Program 1
in Language A

Program 2
in Language A

Figure 1-1 High Level Meta Language

Language

Program

Creation

Creation

4

feature is that creating complex annotated graph structures is a central part of

“writing” a program. There are two immediate advantages that accrue from fo-

cussing only these kinds of visual languages: (i) the notion of what a visual

programming language is becomes clearer; and (ii) since graph-based struc-

tures and graph-based models are found in almost all areas of computer sci-

ence computer and computer engineering, and many of these models have

some form of execution semantics associated with them, the concepts devel-

oped in this dissertation are applicable to developing interfaces for them and

the system developed in this dissertation can be used to generate interactive

graphical programming interfaces for them.

Data-model Oriented: Second, within the context of generating a user

interface from a specification, the approach that “the data model is the inter-

face” is taken,i.e., that a very effective way to design the graphical user inter-

face for an application is to understand the structure of the model that is being

manipulated by the application and being viewed through the interface. A sim-

ple example of this is a word processor; a good word processor must have a

clear and consistent model of a document. The user can quickly understand the

capabilities and limits of the word processing tool by understanding this mod-

el. With this model-oriented approach to visual language interfaces, the de-

scription of the structure of the language becomes the central means by which

the interface itself is structured. The user’s perception of the interface is one

“through” which a data object (the program) is manipulated and viewed.For

this reason it is possible to generate an interface for a visual language simply

by creating a specification which is based in large measure on a description of

the structure of the language itself. This approach, that the interface should not

“get in the way” of the user, has repeatedly been advocated in the of user inter-

face research community [AYC88, Sze93, Fol93, ShuFol].

1.3 Results

The results of this work are a set of concepts for characterizing graph-

based visual languages and a set of abstractions embodied in the Glide specifi-

5

cation language for specifying them and their programming environments. The

concepts allow a unified view of the graphical/textual aspects of such languag-

es and also a unified view of all the activity associated with them at the user in-

terface: edit ing them, their on-screen execution/simulation and their

animation. Secondly the abstractions and the design of the Glide language

have been validated by an implemented compiler that has been used to create

programming environments for several graph-based visual languages.

More concretely, the results of the work described in this dissertation

are as follows:

• Glide: a high level language for specifying graph-based visual languages
and their programming environments. Glide consists of several
components:

- A type composition component. The high level language described in
this dissertation provides a means of modeling a visual language as a
special form of composition of types. This specification of types is the
basis for generating the interface.

- A query language component. This query language provides a concise
way of identifying a collection of components of a graph-based visual
language program. Queries are used to specify the contents of views of
programs.

- An action language component. Actions are used to specify changes
to parts of the structure that represents the program. It is used for
specifying both editing operations and an abstract execution semantics
of the language.

- A graphical attributes component. This component is used to relate
parts of the structure that represents the program to graphical properties
of graphical objects that represent these parts on the screen.

- A means to combine the action language and the graphical attributes
to specify how animation of execution should occur.

• Glider: A functioning prototype generator. The generator is an
implementation which validates the design of the Glide specification
language. The Glider prototype consists of two parts: a generator which
converts the high level specification into an executable program in a target

6

language, and a run-time library which, when linked with the generated
program forms the complete visual programming environment for a
specific graph-based visual language.

• Examples Existing graph-based languages are specified in the Glide
notation and it is demonstrated that Glider is can automatically produce the
programming environment for the language. Though these interfaces are
not as elegant and aesthetic as hand-crafted ones, they are effective and
usable.

• Extensibility: It is shown that because of theway in which the Glide model
uniformly integrates linear (text) and non-linear (graph) aspects of a graph-
based language, a new framework for creating complex structures for
representing computations is provided.

The system developed and described in this thesis is not a compiler for

graph-based visual languages. The system does, however, allow the user to

specify the execution of programs in an abstract way so that execution can be

simulated for animation on the screen. If the language designer who provides

the compiler for the graph-based visual language can instrument compiled pro-

grams to report changes when they execute, then the compiled programs can

be coupled to the interface to drive animation from actual programs.

1.4 Contents of Dissertation

This thesis is divided into six major chapters. The next chapter, Motiva-

tion, justifies the need for a tool for automating the creation of programming

environments for graph-based visual languages by showing that these visual

languages are in widespread use. It also shows that many graph-based models

of computation and specification exist, and that these benefit from the ability

of a generator tool to quickly produce interactive programming interfaces for

them, making experimentation and evaluation of models much easier. The fol-

lowing chapter, Related Work, identifies previous research that has addressed

the problem of automatically creating programming environments and previ-

ous work in developing programming environments for graph-based visual lan-

guages. It shows that these interface generating tools are inadequate for

creating programming environments for graph-based visual languages. Chap-

7

ter 4, The Glide Model, provides a detailed exposition of the way in which

graph-based visual languages are modeled with the Glide language. The expo-

sition is a progressive one; Glide is described by introducing successive com-

ponents of the language and relating them to familiar notations and languages.

In Chapter 5, Graph Types, a data structure issue that needs to be addressed in

representing graph-based languages is described and it is shown that this prob-

lem is fundamental in that it appears in the context of many other research ar-

eas. The way this problem is addressed in Glide is presented in the context of

related work. This is followed by the chapter Glider Design and Implementa-

tion, which describes the design and implementation of the Glider generator

and how the different components of a Glide specification are translated into a

lower level of executable code by the generator. Finally in, Examples, three de-

tailed examples are described to show how they are can be encoded in Glide

and the resulting interfaces that were created are shown.

8

Chapter 2

Motivation

This chapter motivates the work of this dissertation by surveying and

analyzing the widespread use of graph-based systems. The first section

(Section 2.1), on visual languages, describes the basic ideas behind visual pro-

gramming languages and then substantiates the claim that graph-based visual

languages are the predominant form for visual languages. The next section

(Section 2.2) surveys graph-based models. It is intended to give an apprecia-

tion for the large variety of ways in which graphs (as mathematical abstrac-

tions) have been used as vehicles for specifying, modeling, and understanding

computational systems. The section makes the distinction between those graph

models that exist to be seen and edited by a user vs. those that are internal

graph-based structures that are never directly seen or manipulated by a user. It

also makes the distinction between those directed graph models that represent

some form of flow of execution vs. those that are not directly associated with

execution. Those graph models which are intended to be edited by a user and

also have an execution semantics fit the notion of graph-based visual language

developed in this dissertation and are thus candidates for programming envi-

ronments generated via the Glider generator. This chapter illustrates the range

of graph-based languages and models for which a generator is intended to be

able to create programming environments.

2.1 Visual Languages and their Programming Environments

In the broadest sense of the term, a visual language is any form of com-

munication that is mediated through graphical means. Research into visual lan-

guages is aimed at finding ways of exploiting graphical displays to efficiently

mediate communication. This involves making use of two or three spatial di-

9

mensions, color, icons, animation, and any other “meaningful graphic repre-

sentations” [ShuVLdef] for which the human visual system has a natural

affinity. Research into visualprogramming languages, however, is more specif-

ically aimed at finding graphical means other than the conventional linear se-

quence of ASCII symbols to encode and display programs and specifications.

The goal is to match this visual appeal with a “spatial” parser which can recog-

nize the picture that is interactively created (i.e., sketched, drawn, manipulat-

ed) by a user, so that a semantic interpretation can be derived from the

recognized structure. An early example of this is the tabular specification inter-

faces of Query-by-Example database interfaces [ShuQBE]. This form of visual

language makes use of vertical and horizontal alignment to convey common re-

lationships between objects. At the time these interfaces were created they

were considered visual language interfaces, but by current standards they

would no longer be considered very graphical. Some visual languages go be-

yond exploiting the ability of users to perceive graphical relationships. They

further exploit a human user’s familiarity with objects in the physical world by

giving the illusion of direct manipulation of physical objects by means of

graphical objects on the screen. Examples of this are the programming by dem-

onstration visual programming systems such as Programming by Rehearsal

[ShuPBH], KidSim [Kidsim94], and the Alternative Reality Kit [AltReal88].

All visual languages share the need for a programming environment -

an interactive graphical user interface which is used to create and manipulate

visual language programs. Early visual language systems required extensive

custom graphics software to be realized. Now many of these graphics capabili-

ties are becoming more accessible with the more widespread use and standard-

ization of higher level GUI (Graphical User Interface) libraries. Nonetheless,

creating such an interface still requires considerable effort. This is because

these libraries provide generic support for user interfaces of all kinds and do

not provide the specific abstractions needed to support developing programs in

visual languages.

10

A common feature of many visual language programming environ-

ments is the use of animation. Animation is the use of dynamic graphics to con-

vey the execution behavior of a program. An example of a visual language in

which programs are animated to illustrate execution is PICT [ShuPICT]. All vi-

sual languages share the need for graphics primitives to support the implemen-

tation of their programming environments, so it has been natural to further

exploit the primitives to support animation. The programming environments

allow the visual language to be executed in situ and the execution behavior is

reflected as animations on the diagram (the visual language program) that the

user created. This “immediate visual feedback” is a powerful aid to program

comprehension [Bur94]. Visual language environments that provide animation

are a specialized form of the more general concept of program visualization.

Most program visualization systems have been developed for producing ani-

mations of algorithms and are independent of any particular programming lan-

guage. Examples of such systems are BALSA [Bro88] and XTANGO

[XTANGO]. These systems are used to illustrate and help explain programs

and algorithms using a wide variety of graphical techniques.

Graph-based Visual Languages

Despite the very broad characterization usually given to visual pro-

gramming languages, it becomes evident from surveying the many examples

of visual programming languages that have been created, that those that are

based on creating diagrams in which graphical objects are connected together

into a graph structure are by far the most widespread. A simple tally of papers

in the Proceedings of IEEE Visual Language Workshops [VLWks] reflects

this. It shows the following approximate ratios of graph-based visual languag-

es as a f ract ion of the tota l number v isual languages: VL’84=7/11,

VL’86=9/11, VL’88=16/25, and in the book on visual programming by Shu

[Shu]=20/32. The recognition that graph-based visual programming is one of

the most significant forms of visual programming is not new:

11

“..I think our paradigm is based on representing programs as graphs...”

(from “Is Visual Programming a New Programming Paradigm?” [CHVL 91])

There are too many examples to provide a complete list, but the follow-

ing are three prominent examples of graph-based visual programming lan-

guage environments: the network editor in AVS® [Sta91], the CODE2 parallel

visual programming environment [Bro85,NB92,New94], and the graphical

programming component of the LabVIEW® system [Nat87,Dye89]:

• AVS: The data visualization tool AVS contains a “network editor”
subsystem. The network editor simplifies the creation of visualizations of
data, allowing a user to compose a visualization program from predefined
modules which process large numeric data sets. These modules are
represented by nodes which are connected to each other with typed data
flow links. The visualization programs can be immediately executed,
evaluated and modified in the editor. The network editor allows rapid
prototyping and reuse of modules. Animation in the form of highlighting of
links and nodes gives the user an indication of the progress of the
execution, the time spent in each module, and the order in which they were
executed.

• CODE2: CODE2 is an interactive visual programming system for creating
parallel programs at a high level of abstraction. The interface allows the
user to specify a parallel program by interconnecting node icons with data
dependency links. A node can represent a sequential computation or
another parallel computation subgraph. Attributes associated with the
nodes and the links are used to define the topology of data flow between
nodes and the conditions under which nodes fire. The system is an
integrated text/visual language system: the sequential code within a node is
in a standard programming language (e.g. C) and can be edited with a text
editor. The CODE2 system is the implementation of a directed graph-based
model of computation (described in the next section).

• LabVIEW: LabVIEW is a system for processing data from and controlling
data-acquisition instruments. It contains an embedded general purpose
graph-based visual programming language called “G”. G provides a range
of general purpose programming constructs such as the typical forms of
control structure (while and for loops), and complex data types (arrays) in

12

the form of complex nodes. The LabVIEW visual programming language
is based on a data flow model of computation.

Many visual languages are based on the composition of objects into a

graph but then also make use of 2D graphical features in order convey further

semantics. Typical of these are the various object-oriented design notations

such as Rumbaugh’s Object Modelling Technique [OMT91], the Booch nota-

tion [Boo94], and the Shlaer/Mellor design language [ShM88]. These nota-

tions are all collections of graph-based visual languages which are overlaid

with text and graphical features (e.g. iconic shapes). These features may have

a particular meaning and their 2D spatial placement can be significant.

Some graph-based visual language are not intended to specify execu-

tion; syntax charts (“railroad diagrams”) is an example. These charts do not

specify the execution of a program but are intended for users of a text language

who wish to understand the syntax of the language or to verify the syntax of

programs in the language. A syntax chart is a visual language for communica-

tion between a language designer and its users.

Graph-based languages are used at all levels of design abstraction. For

example, boolean circuit diagrams are a means to describe a computation at a

very low level abstraction, since they can be directly implemented in hard-

ware. The object-oriented design notations just mentioned, specify computa-

tion at a very high level of abstraction, since they record the initial design

specifications for systems whose detailed components will be completed at a

later stage.

There are only a few attempts to create general purpose graph-based

languages which are analogous to the general purpose textual ones (C, Pascal)

- LabVIEW and Prograph® [CGP89] come closest. Most are “little languages”

which have specialized semantics for a particular domain. They are also often

embedded as part of a larger system (AVS is a good example). In these systems

a graph-based approach is used because the graph structure of the program is

13

central to its design or the because the problem domain is not a naturally linear

one (e.g., parallel programming).

The Interconnection Paradigm

Underlying the large variation in visual appearance of graph-based vi-

sual languages is the same basic concept. In all these kinds of graph languages,

it is an “interconnection paradigm” which is being exploited. Making textual

programs by composing elements into a sequence is a very different program-

creating mindset from making visual programs by composing elements into a

graph. The key difference is that whereas in textual programs the tokens (char-

acters or lexical elements) areconcatenated or inserted into a linear sequence,

in a graph-based program they areinterconnected. It is often stated that the ba-

sic difference between textual languages and visual languages is that the

former are “one-dimensional” while the latter are “two-dimensional”. In the

case of these graph-based visual languages however, it is more accurate to

characterize the difference as “one-dimensional” vs. “many-dimensional”,

since in graph-based languages any graphical element can potentially be con-

nected to (become adjacent to) any number of neighboring elements - not just

one left neighbor andone right neighbor. This distinction is at the level of

graphical elements that are manipulated on the screen; a user connects a “link”

graphical element to a “node” graphical element in order to make the link and

the node adjacent. A graphical element can even be transitively adjacent to it-

self through a cycle of adjacent graphical elements - this simply cannot happen

in a text language. Even though the graph is graphically depicted as a two-di-

mensional geometric object, for most graph-based languages the particular

physical location of connected elements is not meaningful. The graph has the

same meaning no matter where the nodes and links are placed - it is only their

interconnection that matters. However, just as in text languages with no for-

matting1, it is difficult to read a poorly laid out graph2.

1 See Lamport [Lam90] for an illustration of the importance of formatting in
text languages - theintroduction discusses about how important formatting (i.e.
layout) is in programs vs. in mathematical expressions.

14

The objects that are connected into a graph also often have further struc-

ture in the form of attributes or components. These are either displayed as

graphical or textual annotations of the node or link, or they are made are acces-

sible by opening a new window which displays these details. It is possible to

implement an interface in which the objects can have their structure displayed

and can be individually edited within the graph display itself, but it is only re-

cently that this functionality has become available at the GUI level of abstrac-

tion and has not required detailed low level graphics coding to implement the

visual language’s programming environment.

The interconnection paradigm is a key concept that runs through this

dissertation and it is reflected in the design of the Glide Language.

2.2 Graph Models

This section examines the use of directed graphs as abstractions which

are the basis for models of computation. These models exist independently of

whether or not they are created by a user with a graphical programming envi-

ronment, but many do have an associated environment - in which case they can

also be considered graph-based visual languages. Almost all the models of

computation aredirected graph models; the edges have an orientation. The

edges are oriented in order to specify the direction of flow of data or tokens, or

to indicate the direction of dependencies. Animation of programs of graph-

based visual languages can be driven from the model of computation of the lan-

guage; there is a flow of activity through the structure along the edges which

can be graphically highlighted.

A great many of models and associated environments have been devel-

oped. There are too many to enumerate here, but the following list is a small

representative sample of the main classes of graph-based models of computa-

2 Providing efficient algorithms that produce readable graph layouts for
applications such as graph-based visual programming environments is a
difficult problem and an active area of research [ET89].

15

tion. It illustrates how widespread the use of a graph abstraction is in models of

software systems.

• Petri Nets: A well known simple example of a graph-based model is Petri
Nets [Pet81]. The Petri Net model is a parallel model of computation which
is used to model the coordinated behavior of devices.

Petri Nets are bipartite graphs; there are two kinds of nodes, transition
nodes and place nodes, and there is one kind of directed link. A Petri Net
executes as follows: Each place node may have zero or more tokens. If all
the place nodes that are connected to links which are directed into a
transition node have at least one token, then that transition node is enabled.
One enabled transition node is chosen non-deterministically and fired
atomically.This removes one token from each of the input place nodes and
adds a token to the output place nodes (ones which are connected by links
that are directed out of the transition node).

There a great many variations of this basic theme that have been
developed. For example, Colored Petri Nets is a model which adds
structured typed tokens and more complex firing rules [CPN90], and PCM
is an augmentation in which nets can be hierarchical, have time delays, and
include parameters which specify replication of nodes at run time [BA88].
Others variations and many visual programing tools which provide
simulation and animation are described in the proceedings for Petri Net
workshops [F86].

• State Transition Systems: A graph-based way of representing finite state
automata is through transition network diagrams. In these diagrams, every
state of a system is represented by a separate node and edges between
nodes are labeled with input symbols representing transitions that can
occur between states. In this model the current state is represented by one
node and not distributed over many nodes.

More complex variations of this basic model have been developed. For
example the system described in [ShuJLin,Jac85] is a transition network
diagram model for specifying interaction in user interfaces. In this model
there are several types of links which represent different types of
transitions (e.g., user input, interface output, function invocation). Another
example is modelling communications protocols. Peers in communications
protocols can be modeled as communicating finite state machines. The

16

Prospec system is an example of a visual programming tool developed for
this kind of modeling [CL88].Hygraphs is a model of computation based
on hypergraphs. It is the model underlying the Statecharts visual language
[Har87,Har88]. The model is based on state transition model and is
intended to model so-called reactive systems. Reactive systems are
systems which must respond to external events. Many variations of this
model have been developed including, for example, Modecharts for
modeling real time systems [JM88].

• Data Flow: The data flow model of computation is a graph-based model of
computation which is intended to expose the maximum available
parallelism. In this model of computation values flow along the arcs and
are consumed by nodes which compute new values (e.g. simple arithmetic
operations), and the new values are passed on out of the node . Again many
more complex variations of this basic model have been developed [DF82].

• Control Flow: Control flow graphs are used to model the flow of execution
in a program. Flowcharts is an early form of graph-based language for
specifying program structure based on control flow.

Some graph models are intended to specify purely static relationships.

For example, the data modelling language Entity Relationship Diagrams is the

visual language for the Entity Relationship (ER) Model. A diagram is not di-

rectly associated with any execution model since it does not specify a computa-

tion to be performed. Instead it specifies static entities; the abstract structuring

of data.

An example of a graph model which is not intended to be either seen or

edited by a user is the global data flow graph that is used by an optimizing com-

piler to perform analysis of the use of variables [CCom88]. The flow analysis

is based on graphs composed of nodes which represent basic blocks of instruc-

tions and edges which indicate possible succeeding blocks after branch points.

These graphs are used compute how instructions which create, read, or write

variables create dependencies between different blocks. The results are record-

ed as chains (paths) in the graph. The chains are then used decide if blocks are

independent and can thus be executed out of order or in parallel. Despite the

fact that a system that performs these kinds of analysis is not normally built to

17

be graphical interactive system, a tool such as the one described in this disser-

tation, which could generate the interactive tool from a description of the data

flow model could be very useful for understanding and experimenting which

such graphs.

A graph model in which the editing operations are non-trivial is Binary

Decision Diagrams [BDD92]. These diagrams are a means for encoding bool-

ean functions in the form of a binary DAG (each node has two edges pointing

out and any number pointing in). The nodes in the graph represent boolean

variables and two edges represent the choice of assigning the value 0 or 1 to

the variable. This representation sometimes has advantages over other repre-

sentations such as truth tables for analyzing boolean functions. Graph manipu-

lation operations exist which simplify the graph without changing the function

it computes. This is a non-trivial task that requires skill and experience akin to

being able to simplify algebraic expressions. These graphs can also be an inter-

nal representations manipulated by algorithms which preserve the function

(e.g. merging).

Hypertext systems are systems which the structure of a document is a

non-linear graph of interconnected pages instead of a conventional linear docu-

ment. By themselves hypertext documents are static objects with no associated

execution semantics. However the interaction of a user with a hypertext sys-

tem or the process of traversing the system in order to retrieve information is

dynamic, and models this activity, based on the graph structure of hypertext

have been developed in the Trellis and PFG systems [Sto88,Sto90].

2.2.1 Graph Grammars

A more radical form of using graphs to model computational systems is

to make the topology (the interconnection state) of the graph part of the execu-

tion model. Inthese graph grammar models,links and nodes can be created,

deleted, connected, and disconnected during execution. The specification of

these changes is in the form of graph rewrite rules. These rules contain a set of

conditions on the attributes (“labels”) and connections of nodes or edges, and a

18

set of changes to the attributes and connections that are to be applied if the con-

ditions are satisfied. Execution of graph grammar programs means that the in-

terconnection of the graph changes - the graph is dynamic. Graph grammars

have been applied to model a great variety of activities, from database design

to biological growth patterns [CER78,Ehr87,Ehr90]. A notion of dynamic

graphs is sometimes also found in systems which are not directly thought of as

graph grammars systems. For example, the CODE2 systems has a notion of

replication and elaboration of graphs structure as part of its model of execution.

Though most the work in this area has dealt with classifying and find-

ing properties of different classes of graph grammars, practical systems have

also been built. The GraphEd system [Him89] is an interactive visual environ-

ment within which collections of graph rewriting rules of different classes can

be defined and applied to sample graphs. The IPSEN system is a complete soft-

ware development system (CASE tool) based on the graph rewriting concept

[IPSEN92]. The Delta system is a model of parallel computation in which par-

allel programs can be defined with graph grammars [Delta91]. The ParaGraph

system is an example of using graph grammars to concisely specify regular

communications patterns used in parallel algorithms [BCL90].

Many of these models are visual languages since the rewrite rules and

there effects are specified directly as graph diagrams, and not textually.

2.3 Summary

This chapter has given an overview of graph-based visual languages

and the use of directed graph models of computation. When these languages or

models are to be directly created and manipulated by a user, a graphical pro-

gramming environment is needed to support this activity and to visualize the

execution of the resulting program. The next chapter examines the extent to

which previous work has addressed the problem of generating programming

environments from descriptions of languages.

19

Chapter 3

Related Work

This chapter reviews previous work that is related to the system de-

scribed in this thesis. It first describes previous research work performed in the

area of programming environment generators. These are systems which allow

the graphical user interfaces for developing programs in a language to be auto-

matically generated from a specification of the language. It then examines

some work that has indirectly addressed the problem of creating programming

environments for graph-based visual languages. It finally presents work that

has directly addressed the problem of creating programming environments for

graph-based languages and discusses the different approaches taken. This

chapter has a second important purpose. It also highlights the concepts devel-

oped in these areas of related work so that the design of Glide and Glider, de-

scribed in the next chapters, can be seen as an extension of these concepts.

3.1 Programming Environment Generators

A significant amount of research work in the late seventies and early

eighties was aimed at the automatic generation of language specific program-

ming environments. These efforts ranged from the comprehensive approach of

creating a complete set of language tools (editors, compilers, debuggers, profil-

ers, etc.) to efforts targeted specifically at creating interactive editors tailored

to a particular programming language. Some large systems were developed in-

cluding Gandalf [ea85] and the Cornell Program Synthesizer (CPS) [ref

TR81], and more recently Centaur [Klint93], and Pan [Grahm]. These systems

are text language-based systems. Generation of the programming environment

is based upon a specification of the syntax and semantics of the language in

some meta language (the meta-syntactic formalism in the case of CPS and the

20

language description language in the case of Pan). The use of a meta language

embodies the idea that the language tools that had previously been created

manually for each new language, could be synthesized from a language inde-

pendent generator and a specification of the specific language.

These systems create editors that are based on the syntax of the lan-

guage. These kinds of editors are known asstructure-oriented or syntax-direct-

ed editors. It is possible to generate such an editor by providing a specification

for the syntax of the language in the meta specification language (usually some

variation or extension of BNF). The editors are interactive systems in which

the user creates programs via editing actions which change a data structure

which is the abstract syntax tree of a (partially completed) program. The edit-

ing actions are a specific set of tree editing operations. The tree may be dis-

played graphically as a tree or as text in a text editor which allows only tree

editing operations. The motivation for using structure oriented editors is stated

by Teitelbaum and Reps:

“ Programs are not text: they are hierarchical compositions

of computational structures and should be edited, executed,

and debugged in an environment that consistently acknowl-

edges and reinforces this viewpoint...[TR81]

No parsing is needed in such systems since the syntax tree is created directly.

Because of this, there is more freedom in choosing the particular grammar to

define the language syntax. Syntax directed editors have the advantage of mak-

ing new users directly aware of the syntax of the language, but they have been

criticized for making some kinds of program alterations more difficult. This is

because any change to a program can only go through steps which leave the

program in a syntactically correct state.

A more subtle effect of these editors is that they convey a feeling of

composition and direct manipulation to creating programs.Instances of the

non-terminals of the language are accessible by the user as templates which

are partially instantiated when the program is being created. The non-terminal

21

instances are first class editable objects which can be created and moved

around in the tree in the same way as terminals: Terminals are placed into non-

terminal instance templates; these can in turn be placed inside other non-termi-

nal instance templates. This is different from using a plain text editor in which

the user only manipulates arbitrary (semantics-free) character strings. In

[Min92] it is argued that this kind of direct manipulation(of instances of termi-

nals and non-terminals) is the correct approach to designing structure-based

language editors and that reinforcing this approach in the view of the user

(e.g., by not insisting on a top-down or bottom-up order of editing operations)

can overcome some of the awkwardness of using syntax directed editors.

The GRASE visual programming system is really a syntax-directed edi-

tor for a textual language (Pascal) which is graphically presented through vari-

ants of “Nassi-Schneiderman” diagrams [ShuGRASE]. Nassi-Schneiderman

diagrams are recursive diagrams which divide a 2D rectangular space into tri-

angular or rectangular parts. Each part represents a different syntactic compo-

nent of a production of the syntax of a textual language. Each part can be

recursively subdivided to represent the expansion of a production into compo-

nents. GRASE is a top-down structure editor which makes the component ori-

ented approach of syntax directed editing visually apparent.

The component based look and feel of structure editors is similar to the

interconnection look and feel conveyed by using nodes or links in graph-based

visual language programming environments - this resemblance is exploited

and made concrete in the design of the syntax specification part of Glide and

described in the next chapter.

The generators mentioned above were developed for text languages

only. The underlying data model for the structure that represents programs is a

tree, and it is only possible to specify editing actions in terms of manipulating

nodes and branches in a tree. There is nodirect way of representing the struc-

ture of graph-based languages within the meta-language models of languages

used in these programming environment generators.

22

3.2 Programming Environments for Visual Languages

Though until very recently there have been no direct attempts to gener-

ate programming environments for graph-based languages, there has been

some indirect work in this direction; some programming environments for spe-

cific graph-based languages have made their underlying execution engine ac-

cessible so that it becomes possible, in a limited way, to customize the

structure of the graph language and the underlying model of computation (the

graph language interpreter or compiler).

One example of this is the PFG (Parallel Flow Graphs) model for hyper-

text oriented systems mentioned in the previous chapter. The PFG system has

an underlying Petri Net based model of computation. The primitives of the ker-

nel computation engine have been made available to allow the creation higher

level constructs to implement “higher-level” visual languages for particular ap-

plications of the system [Sto88]. Another example of this is the Olympus sys-

tem [Nut91] . This system was or ig ina l ly a graphica l programming

environment for a specific graph-based model of computation: bilogic prece-

dence graphs. The system was then made extensible to allow the model of exe-

cution to be customized while reusing the programming environment.

The existence of these systems further substantiates the argument that

there is a need for a programming environment generator for graph-based lan-

guages.

3.3 Programming Environment Generators for Visual
Languages

The recently developed Escalante system is a system that was devel-

oped as an off-shoot of Olympus. It is a system for generating visual languages

that are based on graph models, and is thus the intention is similar to Glide.

The Escalante system uses a different approach to defining the structure of a

graph-based language. In Escalante, graphs are used as a representation medi-

um for objects (nodes) and their relationships (edges). The underlying means

23

for representing objects is then associated with graphical objects to describe

appearances. Visual languages can be created which do not have a graph ap-

pearance but are represented by an underlying graph. Escalante uses classes to

represent the graph objects (node and edges) and the graphical objects so that

creating a new visual language is achieved by specializing these classes.

In [Got89,Got92] Gottler advocates the use of graph grammars as a ba-

sis for visual programming systems. He distinguishes between the user inter-

face level diagram of a visual language and the underlying graph that

represents it. The PAGG (programmed graph grammars) system that imple-

ments this approach is a graph grammar system in which the productions oper-

ate on attributed graphs. The productions are defined by directly drawing

annotated graphs.

3.4 Summary

This chapter as described three threads of research towards the automa-

tion of creating programming environments for graph-based visual languages.

No previous work has attempted to integrate the description of the textual

structure and the graph structure of graph-based visual languages into a single

uniform representation. This is unique to the Glide model and described in the

next chapter. The next chapter will also show that the notion of a underlying

graph representation to represent graph-based languages also exists in Glide.

24

Chapter 4

Glide Model of Graph Based Visual Languages

This chapter provides a complete description of the Glide approach to

modeling Graph Based Visual Languages (GBVLs). The approach is presented

by describing the design of the Glide high level specification language.

A user creates a programming environment for his/her GBVL by speci-

fying a model of the language in Glide. This process involves first describing a

data structure, and then describing sets of permissible changes to the data struc-

ture and associating graphical attributes with the data structure. Glide can be

divided into six major components which play different roles in this process of

modeling a GBVL. The components are:

• TheGlide Grammar. This is the key underlying component of Glide. The
Glide Grammar is a notation that provides the means to describe the
syntactic structure of a graph based visual language as a set of types.

• TheGlide Path Expressions. Glide path expressions are the basic
mechanism for identifying and accessing parts of GBVL programs.

• TheGlide Queries. This is a query language which provides a concise way
of specifying the selection of parts of a program for display. Glide queries
are used to specify the contents of views (windows) of programs.

• TheGlide Actions. This component is used to specify changes of any kind -
generally editing, execution, and animation.

• TheGlide Shape Predicates. Shape predicates are used to further constrain
the admissable instances of a data structure - they are used to specify the
static semantics of a GBVL.

• TheGlide Graphical Attributes. Graphical attributes provide information
for the graphical rendering of the GBVL program on the display.

25

• TheGlide Animation component. This is the means to tie changes as a
result of execution to changes to the values of graphical attributes in order
to reflect execution activity.

The following figure informally illustrates how these query, action and anima-

tion specifications are built up from the lower level components of the lan-

guage.

Each component is described in turn in sections 4.1 through 4.7. Examples that

illustrate how these components are used are provided in each section.

Main Ideas

The main ideas embodied in the design of the Glide language is that

programs are view as data objects. Using this a starting point, Glide allows the

structure of text parts of the language and its graph parts to be represented in a

uniform way. In order to navigate and identify pieces of a program in the data

structure path expressions are used. Queries, actions and animations are can

then be expressed as accessing and altering the data in the data structure in

terms of path expressions.

Graph Types

In Computer Science, it is often the case that a research issue or prob-

lem appears while investigating a particular area is found to be similar to prob-

lems encountered in other areas, because the problems are reflections of a

more fundamental underlying issue. Part of this work on developing a model

Glide

Path Expressions

 Queries

Actions

Editing Execution Animation

Graphical
Grammar Attributes

26

for GBVLs was an example of this phenomenon. In order to properly model

the structure of such languages, the ability to represent “mutually defined” ob-

jects is needed. Such objects are also termed infinite structures, cyclic struc-

tures, shared structures, graph types, or multilinked types, depending on the

area in which they are described. A full discussion of the issues surrounding

the use of such objects in Glide is provided in the next chapter (Chapter 5,

Graph Types). This chapter focuses on describing the design of Glide and how

it is used, and shows how the issue of “mutually defined” objects arises in the

context of representing graph based visual languages.

4.1 The Glide Grammar

This section describes the key underlying component of Glide, the

Glide Grammar notation. The notation is used to describe the syntactic struc-

ture of a GBVL. It embodies the Glide approach of viewing the structure of a

language in a way that unifies the description of the graph aspects of its struc-

ture and the text aspects of its structure.

A Glide Grammar specification consists of a set of productions. Such a

set of productions is similar in appearance to both a set of BNF productions

(which are used for describing of the syntax of text languages) and to a set of

“user defined type” definitions of standard programming languages such as

“struct” definitions in C, “class” definitions in C++ or “record” definitions in

Pascal (which are used for describing the structure of data used in a program).

These similarities are intentional. The BNF-like aspect of the Glide Grammar

notation allows a Glide user to describe the structure of the textual parts of a

GBVL in the usual way (as a CFG),and to view the description of the graph

structure of the language as an extension and generalization of the way BNF

captures text structure. The type definition-like aspect of Glide Grammar nota-

tion allows the user to view a GBVL as defining the structure of data (i.e. pro-

grams) and the construction of a program as the creation, composition and

connection of instances of data types. The productions that make up a Glide

27

grammar will be mostly referred to here as “productions”, though on some oc-

casions the term “type” will be used to emphasize the latter point of view.

TheMetanot notation was developed by Meyer in [Mey90] in order to

specify language syntax and semantics. In Metanot, a text language is de-

scribed by modelling a language as a collection of complex structured types.

This forms the basis for defining their semantics. This is a data-oriented view

of programs and is thus suited as the basis for representing language specific

editing interfaces. The notation adds “tags” to identify particular pieces of the

structure and it adds the notion of comoposing without order. The syntax of

Glide itself was derived and inspired by Metanot.

Since Glide grammar notation is an extension and generalization of

BNF, the notation is presented here by beginning with an example of the tradi-

tional way of describing the syntax of a component of a text language and then

incrementally introducing examples which use the additional Glide Grammar

constructs which increase the expressiveness of Glide over BNF. The relation-

ship between these additions and BNF productions and C struct definitions is

carefully discussed at each step. (Any standard imperative language with the

ability to define user defined types could have been used; C was chosen be-

cause it is widespread and familiar.)

A simple production

A simple BNF production defining the abstract syntax of an “if-state-

ment” might be:

 <If-Statement>::= <BooleanExpr> <Statement> <Statement>

This same definition can be made in Glide, but the syntax of Glide Grammar

notation is slightly different. The equivalent production in Glide Grammar no-

tation uses “==” instead of “::=” to separate the production name (LHS) from

the components (RHS) of the production. The angle brackets (“< >”) used in

BNF to identify non-terminals are omitted in Glide Grammar notation. Termi-

nals in Glide are distinguished by being completely in uppercase. A semi-co-

28

lon is used to terminate each production. Hence the equivalent definition of the

if statement in Glide is thus simply:

 If-Statement == BooleanExpr
Statement
Statement ;

Each component is usually written on a separate line for readability, but this is

not a requirement.

Tagging

In order to identify each component of the production, Glide provides

the option of prepending each component with atag.

 If-Statement == Cond :BooleanExpr
ThenPart :Statement
ElsePart :Statement ;

Each component on the RHS of a Glide production then consists of a pair of

identifiers separated by a colon. The tag is on the left of each colon, and a

name of a production is on the right of each colon. Tags are needed because

they are used in subsequent parts of the Glide language (queries, actions, path

expressions) to specify accessing components of instances of productions.

A production definition with tags resembles the definition of a user de-

fined type. The small syntactic differences between a Glide production and a C

struct definition are: In Glide a semicolon (“;”) terminates the list of compo-

nents in a production while in C/C++ curly braces (“{}”) enclose the “mem-

bers” on the RHS of a definition; In Glide the components in the RHS are

separated by whitespace while in C/C++ they are separated by semicolons (and

whitespace); In each component of a Glide production, the name of a produc-

tion follows the tag name (separated by a colon) while in C the syntax is re-

versed - the name of the member follows the type of the member (separated by

whitespace). Standard BNF does not have tags, but descriptions of language se-

mantics associated with a BNF grammar often make use of left-to-right integer

indices to refer to each component of a production.

29

There is a subtle but very important semantic difference in the way in

which this kind of a definition is interpreted in Glide as compared to C or BNF:

C - In C a struct can be instantiated, and when it is the values of the members

of the instance that is created must either be initialized or have unpredictable

values. The creation, destruction and existence of an instance of a struct isin-

separable from the creation, destruction, existence of values for the members

it contains.

BNF - In the case of BNF, a production is a statement about an object that can

be recognized in parsing a sentence. In the process of parsing, a sequence of

terminals and non-terminals isreplaced by the non-terminal whose production

is matched. In most uses of BNF there is usually no need to distinguish be-

tween an instance of the use of the production and the symbols that it matched.

If a parse tree is created by a parser then the ‘instance’ of a production corre-

sponds to the non-leaf node of the tree that is created by a particular match

with that production (a reduction).

Glide - In interpreting a Glide Grammar production, the ability to distinguish

between an instance and what the instance contains is critical. A Glide produc-

tion is viewed as naming and defining a newcontainer type. The contents of

the type is defined in terms of other container types and primitive types. In con-

trast to C and BNF it is possible to create an instance of the containerwithout

creating instances of the types that the container instance contains; the contain-

er instance can exist independently of the instances it contains. This interpreta-

tion stems in part from the structure-oriented view of programs (discussed in

the previous chapter). In structure-oriented editors, container instances (also

calledtemplate instances) for different language constructs can be created and

can be filled with container instances of other constructs or with terminals.

In C, one means to make the existence of values of members of an instance in-

dependent of the instance itself is to usepointer membersrather than actual

values. In this case the instantiation of the type creates pointers which have to

be initialized (or have unpredictable values), but the instances they point to

30

need not be created at the same time. They could have been created before, or

could be created later. This notion of a composite type whose instances are

temporally independent of the instances they contain is analyzed in further

depth in next chapter.

Aggregation

A dif ference between a BNF production and a C struct definition is that

theorder of the components in a production defines the order of the sequence

of terminals that should match each component, while the semantics of a struct

is not affected by reordering of the members in its definition1. A Glide produc-

tion such as the one above, in which components are separated by whitespace

also indicates that the order of the components is significant and should be as

stated (as in BNF). The Glide Grammar notation provides a third combining

operator, aggregation, to model a set of components in some part of the struc-

ture of a GBVL that have no intrinsic relative order (as in a struct definition).

Combination by aggregation is denoted by a dot (“.”). The following Glide pro-

duction is an example:

 Node == Nm :Name .

St :State ;

The aggregation operator is thus commutative; the following production is

equivalent to the previous one:

 Node == St: State .

Nm: Name ;

The aggregation operator is used to combine components when their order is

not significant, in contrast combination with whitespace (termedconcatena-

tion). TheNode production is expressing the fact that a node instanceconsists

of a State and aName and there is no intrinsic ordering between the two

1 In some languages theimplementation of the struct might be assumed to
allocate memory for each member in the order given but it is bad practice to
rely on this ordering directly; the values they hold should only be accessed
through their member names.

31

(State doesn’t “follow” Name). BNF has no direct way of expressing this form

of combination.

TheNode production also illustrates how the container/component in-

terpretation of a production just discussed allows expressing the fact that a

node is an object which contains other objects.In Glide, a parallel is drawn be-

tween the component oriented view of structured text in structure-oriented edi-

tors and the fact that objects such as nodes in a GBVL often have further

structure. The Glide approach is to view entities associated with a node not as

attributes of the node but ascomponents which together make up the node.

This approach is a significant departure from other graph structure specifica-

tion languages which usually view information associated with nodes or links

as attributes or “labels”.

Alternation

In Glide, as in BNF, it is possible to express the fact that a production

consists of one or more alternative components (or concatenations of compo-

nents) using thealternation operator (“|”). Hence the usual way to define the

fact that a text language construct is of two possible kinds is also available in

Glide:

Statement == if:If-Statement |

wh:While-Statement ;

Alternation has a more general use in Glide. In Glide alternation is also the

means to express the fact that a node in a GBVL can be of two different kinds:

Node == Cn:ControlNode |

Dn:DataNode ;

Glide also has a containment/component interpretation of such an alternation

production. Rather than viewing this production as stating that a nodeis either

a control node or a data node, it is viewed as stating that a node container in-

stancecontains either a control node instance or a data node instance. The rea-

son for this view is uniformity; the same operator (“|”) is used to express

32

alternatives in both the text structure and the graph structure parts of a GBVL.

A tag can be used to identify the component, whichever type it may be:

Node == NodeType: (Cn:ControlNode | Dn:DataNode);

Operator precedence and expressing commonality

In BNF there are just two operators for combining components: concat-

enation and alternation. A space between components is used to denote concat-

enation and vertical bar is used to denote alternation. In Glide, as in BNF,

alternation has lower precedence than concatenation. Hence the following pro-

duction:

Statement == IfCond:BooleanExpr

ThenPart:Statement

ElsePart:Statement |

WhCond:BooleanExpr

Body:StatementList ;

is equivalent to:

Statement == (IfCond:BooleanExpr

ThenPart:Statement

ElsePart:Statement)|

(WhCond:BooleanExpr

Body:StatementList) ;

However, unlike the concatenation operator (whitespace), the aggregation op-

erator (dot) has lower precedence than alternation (vertical bar). Hence the

Glide production:

Node == Cn:ControlNode | Dn:DataNode .

Name:STRING .

Stmt:Statement ;

is equivalent to:

Node == NodeType:(Cn:ControlNode | Dn:DataNode) .

Name:STRING .

33

Stmt:Statement ;

Thus an instance of thisNode production has three components, taggedNode-

Type, Name, andStmt. The component taggedNodeType can be either an in-

stance of aControlNode or an instance of aDataNode. In Glide this is the

means for expressingcommonality between objects. This form of combination

doesn’t exist in BNF. It is syntactically similar to the use of a “union” in a C

struct - a member which can contain a value of different types at different

times. However, a union is intended for economizing on memory space rather

than for expressiveness. In this example a node, be it a control node or a data

node, always has a name and a statement and so these properties are defined in

theNode production, while the properties that are specific to control and data

aspects are put in their respective productions.

It is useful to compare the Glide approach to capturing commonality to

the approach used in object-oriented languages. Unlike most object-oriented

languages, in Glide there is notaxonomic form of expressing commonality. In-

stead this combination of alternation and aggregation is the way in which com-

monality between types is expressed in Glide. Commonality is expressed

through a composition hierarchy instead of through a taxonomic hierarchy.

The containing type,Node, consists of all the common properties plus an alter-

nation of all its “subtypes” (sub as in subcomponent rather than subclass). The

reason for using this approach is simplicity: the same notion of containment de-

scribed earlier (which comes from the BNF notations being essentially compo-

sition formalisms) is, in conjunction with operator “|”, adequate. This “has-a”

rather than “is-a” approach is similar to some variants of object-oriented pro-

gramming models; these are sometimes called “component” or “composition” -

based object-oriented programming.

Sharing

In addition to the differences between BNF, C structs, and Glide that

have just been described, there is another very significant difference in the in-

terpretation of a Glide production. The instances of Glide productions can con-

34

tain instances which are shared . For example, i f the fol lowing three

productions:

Aaaa == B:Bbbbb ;

Cccc == B:Bbbbb ;

Bbbbb == D:Ddddd ;

were defined, then the semantics of Glide allows the creation of a single in-

stance of type Bbbbb which is contained in both an instance of Aaaa and an in-

stance of Cccc. This is often referred to as allowing sharing in data structures.

Sharing is exploited in Glide as a means to express aspects of the structure of a

GBVL. In order to allow sharing, the creation of components independently of

their containers is a pre-requisite. The use of sharing is often hazardous and

must be controlled carefully. Glide Shape Predicates (described in Section

4.5) are a means of specifying static semantics and are used to control the use

of sharing. The issues surrounding the use of sharing is explored in the next

chapter.

Cycles

In addition to the simple sharing just illustrated, Glide also makes use

of a more subtle form of sharing: cyclic sharing. Cyclic sharing is a special

form of sharing in which the sharing and shared objects are the same object.

Cyclic sharing is used in Glide as a means to express the interconnection of

GBVL objects. For example, the following two productions:

Node == NodeName:STRING .

Input:Link .

Output:Link ;

Link == LinkLabel:STRING .

HeadNode:Node .

TailNode:Node ;

when combined with admitting cyclic sharing, makes it possible to express the

fact that node objects and link objects can be connected (attached) to each oth-

er. When an instance of the type Node contains an instance of the type Link and

35

simultaneously the instance ofLink contains the instance of theNode produc-

tion, this represents the fact that they are connected. This is a cyclic structure.

Not only are the objects associated with a node or link represented as “compo-

nents” in Glide, but also the objects to which they are connected. The concept

of “component” has thus been generalized to the concept “is a component or is

attached to”. The apparent mutual containment is only possible by decoupling

the existence of the container object from the objects it contains. In the case of

a C struct, the same effect can be achieved by using pointers to contained ob-

jects instead of the objects themselves (and this is effectively how the underly-

ing implementation, that the Glider generator creates, operates). When

instances mutually contain each other, this represents the fact that they are con-

nected and so can be displayed touching each other in a typical “graph” display.

This approach to modeling connected structure has a number of advan-

tages in the context of specifying GBVLs. It is a uniform integrated approach

in which all objects: nodes, links, expressions, terminals, non-terminals, val-

ues are, from the point of view of the interface, peers.

Repetition: Sets and Lists

As do many extensions of BNF, Glide provides annotations to indicate

that a component of a production consists of multiple instances of a type.

There are two annotations: a single star (“*”) annotation is used to denote alist

of elements of a given type (i.e. ordered); and a double star (“**”) annotation

is used to denote aset of elements of a type (i.e. unordered). For example, the

following Glide production states that a dataflow network consists of a set of

nodes and a set of links:

DataFlowNet == N :Node** .

L :Link** ;

The default case, no stars, means a single object of a given type. Another exam-

ple: the simpleNode production above specified that exactly twoLinks are at-

tached to a node; a more general form allows an arbitrary number of input link

and output links, i.e.:

36

Node == NodeName:STRING .

Input: Link** .

Output: Link** ;

Note that ** is used to specify that there is no particular ordering amongst the

links. A node which requires at least two links, but may have more can be cap-

tured as follows.

Node == NodeName:STRING .

L1:Link .

L2:Link .

LMore: Link** ;

Terminals

Terminals are identified in Glide productions by being in all upper-

case. Glide provides the primitive types BOOLEAN, INTEGER, REAL, STRING.

Any other identifiers in all uppercase define constant terminal symbols. Hence

an enumeration can simply be expressed as the alternation of constant types.

For example:

State == choice: (e:ENABLED | d:DISABLED | f:FIRING)

where ENABLED, DISABLED and FIRING are constant terminal symbols. Con-

stant terminals can also be specified by being enclosed in single quotes to al-

low them to be in mixed case:

Aterm === :’if’ :BoolExpr :’then’ :ThenPart

Note that because Glide admits cyclic structures, it is possible to define a lan-

guage without using any terminals.

4.1.1 Complex GBVL structures

This Glide grammar-based approach to describing connected graph

structure is very flexible, allowing more complex forms of GBVL structure

such as ports, hierarchy, and hyperedges to be represented very naturally:

37

Ports - The Glide approach allows the notion of nodes with “ports” to be cap-

tured in a natural way; Nodes have ports as part of their components and it is

these ports that are connected to links.

Node == NodeName:STRING .

InputPort:Port .

OutputPort:Port ;

Port == Label:STRING .

L:Link** ;

Link == Head:Port .

Tail:Port ;

HyperEdges - Edges or links which have multiple ends can be represented.

For example, the following specifies a link which connects three nodes

Link == N1: Node .

N2: Node .

N3: Node ;

and a link attached to an arbitrary number of nodes can be specified by

Link == N: Node** ;

Hierarchy - Hierarchy, the ability to structure a complex object into many lev-

els, is a feature provided by an increasing number of GBVLs. It can be repre-

sented quite naturally in Glide by including recursion through a production. In

the simple example below, the type Graph is included as a component of the

Node production to indicate the fact that nodes can themselves contain a com-

pleteGraph and this recursion can continue to and arbitrary depth. This is con-

ceptually no different from the use of recursive productions in a BNF grammar.

Graph == N:Node**

L:Link** ;

Node == NodeName:STRING .

InputPort:Link** .

OutputPort:Link** .

SubGraph:Graph;

38

4.1.2 Example Glide Grammar Specification

The following is a complete example of a Glide Grammar that defines

the structure of a simple form of Petri Nets:

Petrinet == Nodes : Node**.

Links : Link**;

Node == NT: (Pn:Placenode | Tn:Transnode) .

Inputs: Pnlink** .

Outputs: Pnlink** ;

Placenode == PLabel : STRING .

NumTokens: INTEGER ;

Transnode == TLabel : STRING .

State : State;

Pnlink == LLabel: STRING .

LinkHd : Node .

LinkTl: Node;

State == ch:(e:ENABLED | d:DISABLED | f:FIRING)

A typical instance of this type, containing 3 nodes and 3 links might be dis-

played to a user in an interactive graphical programming interface as the box

shown here:

The Link instances b, d, and f are graphical elements in the same way

as the nodes a, c and e. The interconnection of components is represented

a

b
c

d

e

f

Link : b, d, f

Transnode: c

Placenode: a, e

Figure 4-1 Displayed Petri Net

39

through cycles between instances of Node and Pnlink. The enclosing box rep-

resents the instance ofPetriNet and contains a set of Links and a set of

Nodes. A pointer implementation of the interconnection of the components is

shown in this diagram:

This diagram would not be displayed to a user of the system. It is

shown to illustrate how the “interconnectedness”of graphical elements is rep-

resented through cyclic references. The following diagram illustrates the com-

a

b

c

d

e

f

1 2

3 4

5 6

7 8

10

9

Figure 4-2 Implementation of a Petri Net

40

plete PIN for the Petri Net (with a box for each type instance) Note that the

curved arcs are logically no different from the straight edged ones.

This specification of Petri Nets can easily be extended to accommodate,

say, a textual condition attribute by simply adding the BNF definition of the

condition syntax to the current specification:

Transnode == TLabel : String .

State : State .

Condition :Condexpr ;

Condexpr == Var1: STRING

RO: Relop

Var2: STRING ;

Relop == r : (eq:‘=’ | gt:‘>’ | lt:‘<‘ | leq:‘=<‘ | geq:‘>=’) ;

4.1.3 Summary

The Glide Grammar is a means of capturing the structure of a GBVL,

i.e. how component objects of a GBVL are composed and connected. This

b

c

d

a e

Petrinet >

Node** >

Placenode >

PnLink** >

Pnlink >

Transnode >

Link** >

f

1

23

4 5

6

98

7

10

Figure 4-3 PIN of the Petri Net

41

structure then forms the basis upon which other aspects such as editing ac-

tions, execution semantics, and graphical appearance are specified. The Glide

Grammar abstracts out the logical structure of a GBVL, separating it from is-

sues of graphical appearance.

The key reason for wishing to represent the structure of GBVLs by ex-

tensions and generalizations of the way the text language structure is represent-

ed, is that is then possible to smoothly integrate the representation of graph

syntax and text syntax into one uniform formalism, and hence to view graph

based visual languages as a generalized form of text based languages. The way

in which semantics, execution and animation is specified, as will be shown in

the rest of this chapter, can then also be achieved through a uniform notation.

The grammar also allows more complex forms GBVL structures such as ports,

hyperedges and hierarchy to be captured.

Glide Grammar Syntax

A simplified description of the syntax of the Glide Grammar is listed

below. The notation used to specify the syntax of the Glide Grammar itself is

EBNF ({} means zero or more, [] means optional) This description is abstract-

ed to bring out the essential simplicity of the structure of Glide grammar speci-

fications.

<glidegrammar> ::= <productionlist>

<productionlist> ::= <production> “;” { <production> “;” }

<production> ::= <aggregationlist>

<aggregationlist> ::= <aggelement> { “.” <aggelement> }

<aggelement> ::= [<tagname>] “:” <alternationlist>

<alternationlist> ::= <altelement> { “|” <altelement> }

<altelement> ::= [<tagname>] “:” <sequencelist>

<sequencelist> ::= [<tagname>] “:” <seqelement> { “ ” <seqelement> }

<tagname> ::= <identifier>

<seqelement> ::= <identifier> |<identifier>“*” | <identifier>“**”

<identifier> is any alphanumeric string not beginning with a number.

42

4.2 Glide Path Expressions

This section describes the syntax and semantics of Glide Path Expres-

sions. Glide Path Expressions are similar to the expressions used in standard

programming languages to access components of instances of user defined

types, such as those in C that specify accessing members of structs and/or fol-

lowing pointers to structs (e.g.,a.b , a->b.c.f , etc.). However, since the Glide

Grammar allows definition of data models in a way that is more expressive

than C structs, Glide Path Expressions are commensurately more expressive

and their evaluation is more complicated.

Glide Productions can be viewed as type definitions. When a program

in a GBVL is created (through the invocation of editing operations which will

be described in Section4.4), many instances of these types are created and in-

terconnected to each other to form a network that represents the program. This

network is termed aProgram Instance Network (PIN). Glide path expressions

are used to identify different parts of the PIN and to navigate through it. Path

expressions are set-valued expressions that are used within Glide queries, ac-

tions, and shape predicates (described in the sections that follow: 4.4, 4.3, and

4.5). Since they are common to these components of Glide they are described

here first.

For the purpose of simplifying the explanation of path expressions, this

section uses identifiers for the instances that are created in a PIN (e.g.

“ Node001 ”). Path expressions in Glide queries and actions in fact never direct-

ly refer to such identifiers; they use variables which are bound to instances and

so the actual identifiers of instances are never visible to either the Glide user or

the GBVL user. They are exposed with identifiers here to facilitate explaining

path expressions.

The syntax of Glide Path Expressions is simple. A path expressions

consists of an instance followed by sequence of tags connected by a dots,e.g.

“ Node001.b.c.g”. (The dot used is of course a different kind of dot from the

aggregation dot used in productions).Path expressions are used to identify in-

43

stances and components of the instances from the PIN. Consider the following

simple Glide production:

 If-Statement == Cond:STRING

ThenPart:STRING

ElsePart:STRING ;

If an instance of such a production, sayIf001 has a condition component

“ a<3 ”, a then part “x:=2 ”, and an else part “x:=3 ”; then each piece can be ex-

tracted using a path expression:

The path expressionIf001.Cond identifies “a<3 ”

The path expressionIf001.ThenPart identifies “x:=2 ”

The path expressionIf001.ElsePart identifies “x:=3 ”

The term “identifies” is used here because, depending on context, a

path expression may indicate returning the value found at a location in the PIN

or identify it for alteration. However, for brevity an “=” is used in subsequent

examples. The dot notation can be (and is often) used to arbitrary depth. If

If001 was the component tagged IfS of, say, Node002 then

Node002.IfS.ElsePart = “x:=3”

If an instance of a production:

DataFlowNet == N :Node** .

L :Link** ;

say, DataFlowNet002, has a set of 3 nodes (N003 N004 N005) and a set of 2

links (LO06 L007) then the relevant path expression identifies a list of instanc-

es:

DataFlowNet002.N = (N003 N004 N005)

DataFlowNet002.L = (L006 L007)

44

In a deeper path expression the evaluation is continued through each member

of a set or list. Hence the three nodes have the names “alpha”, “beta”, and

“gamma”, then

DataFlowNet002.N.Name = (“alpha” “beta” “gamma”)

Since the tagN identifies a set of instances of typeNode, the semantics of path

expression evaluation is that it iterates over each one to reach and the name of

eachNode instance.

Path Expressions and Alternation

In the case of a production with alternation as in:

Node == NodeType: (Cn:ControlNode | Dn:DataNode) .

Name: STRING .

IfS: IfStatement .

Input: Link .

Output: Link;

there are 3 tags that could be used to identify the first component (NodeType ,

Cn, or Dn). They are used as follows: using a tag inside the alternation will re-

turn the instance, if that instance is of the type associated with the tag, other-

wise it will returnNULL; a tag that identifies the whole alternation (e.g.

NodeType) returns whatever instance is present. For example,

N001.Cn = ControlNode008

N001.Dn = NULL

N001.NodeType = ControlNode008

An path expression containing a tag that identifies a set or list component will

haveNULL elements removed, returning only the instances of the selected type:

DataFlowNet002.N.Cn = (ControlNode008 ControlNode010)

DataFlowNet002.N.Dn = (DataNode009)

DataFlowNet002.N.NodeType = (ControlNode008

DataNode009

ControlNode010)

45

Note that the result of the last path expression is not a homogenous list

since it contains instances of more than one type.

Uppath

A single dot (“.”) is the “downpath” operator, indicating that the evalua-

tion of the path expression “moves down” in a PIN into the component of an in-

stance identified by the tag that follows the dot. It is also possible to the go the

other way, “moving up” into the parent instance that contains a given instance.

This is expressed with a “double dot” followed by a tag, for example:

 Node002..N = DataFlowNet001

A double dot (“..”) is used as symbol for the “uppath” operator. It is reminis-

cent of “cd ..” in a file system command (UNIX/DOS/VMS). However, since a

PIN is a graph and not a tree - some instances may have more than one “con-

taining parent”, a tag name is used to identify which parent is desired. In some

cases there may be more than one parent that refers to (i.e. has as a component)

a given instance through the same tag. In this case, all these parents are re-

turned by an uppath.

In the case of using the uppath operator when an instance is on an alter-

nation, the tag identifying the whole alternation or the tag identifying one of

the alternatives can be used. For example

ControlNode008..Cn = Node001

ControlNode008..NodeType = Node001

ControlNode008..Dn = NULL

Glide Path expressions provide a simple but powerful way of extracting

information from Program Instance Networks as these examples illustrate:

DataFlowNet001.N.Stmt = all the statements of all the nodes

DataFlowNet001.N.Input = all links that are input to some node

DataFlowNet001.L.HeadNode = all nodes at the head of any link

IfStatement015..IfS = the node which containsIfStatement015

46

Because of sharing, two different path expressions may identify two different

paths that end up in the same place in a PIN. The different paths represent dif-

ferent roles that the identified object has; one path may express the fact that a

node is part of some graph, the other that it is connected to some link. The up-

path operator also has a loose correspondence to inheritance; it can be used as

way of accesing the common propetries held in the containing object.

The result returned by a path expression is always a set instances (flat,

and no duplicates). Unlike C there is no explicit notion of references or point-

ers in these path expressions; the component referred to by a tag is always iden-

tifies another object (or objects), never a pointer to it (or them).

4.2.1 Glide Path Expression Syntax

The simple syntax of path expressions is shown here. Extensions to this

basic form of path expression are used within the other components of the

Glide language (queries and actions) and are discussed in the relevant section.

<glidepathexpression> ::= <instance> <dotexpression>

<dotexpression> ::=
| “.” <tagname> <dotexpression>
| “..” <tagname> <dotexpression>

<tagname> ::= <identif ier>
<instance> ::= <identif ier>

47

4.3 Glide Query Definitions

This section describes the query definitions component of Glide. This

component allows the Glide user (the GBVL designer) to specify a set of que-

ries which each determine the contents of a view of programs that he/she wants

the GBVL user to have. Views are simply windows which display a part or

parts of a program. Typical views that a Glide user might wish to provide are,

for example: a top level view of the major structural components of the pro-

gram, a top level view of the nodes and links as icons, a more detailed view of

the nodes and links labeled with their more important attributes, detailed views

of the contents of selected nodes and links with all their attributes, views of

specific annotations of nodes or links, views of the entire program, etc. Views

allow the GBVL user to inspect and edit programs. The query definition associ-

ated with a view is the means by which the contents of views is specified. Que-

ry definitions are used to identify the particular components of the program

that are to be displayed in views, but they are not used to specify the graphical

appearance of these components. The latter is determined by the specification

of the graphical attributes of the productions and will described in Section4.6.

Glide query definitions are based on Glide path expressions but they

provide a higher level of expressiveness for specifying extracting information

from a Program Instance Network than do simple path expressions. Query defi-

nitions also make use of a more complex form of path expression,tree path ex-

pressions. This section first describes tree path expressions. It then describes

the syntax and semantics of query definitions by beginning with a simple ex-

ample and progressing through to more complex forms of queries.

4.3.1 Tree path expressions

Glide query expressions use path expressions and an extended form of

path expressions calledtree path expressions. A tree path expression has the

same syntax as a path expression, except that a star (“*”) may be used instead

of a tag. For example

Node001.A.B.*.*

48

A star just denotes “all tags” of the production identified by the preceding por-

tion of the path expression. The “tree” in tree path expressions refers to the

fact that instead of specifying and returning a set of instances, tree path expres-

sions specify and return a single tree that is made up of instances. The nodes of

the tree correspond to all the nodes in the PIN that were encountered while tra-

versing the PIN in order to evaluate the tree path expression. Such a tree struc-

ture is thus a subtree of the PIN graph. For example, if a GBVL specification

contains the Glide productions:

Node == Name:STRING .

IfS:IfStatement ;

IfStatement == Cond :STRING

ThenPart:STRING

ElsePart:STRING ;

and there exists an instanceNode001 , then the tree path expression

Node001.*

returns a one-level tree of the form:2

A tree path expression with two stars such as

Node001.*.*

2 In these tree figures, the tag labels the branch that leads to the value or
instance corresponding to that tag in a particular instance.

Node001

“Start” IfS001

Name IfS

49

returns a tree that is two levels deep:

The expression

Node001.IfS.*

returns a tree that is also two levels deep, but theName branch is pruned:

Each of these resulting trees is a tree which is derived from the PIN, which it-

self is a graph. A tree path expression is simply a way of stating which of the

many possible trees in the graph should be extracted.

The tree path expression notation is reminiscent of “file globbing” ex-

pressions for identifying files in shell command languages (of UNIX, DOS,

VMS, etc.),e.g., “ ls */*/bin/* ”. Both Glide tree path expressions and glob-

bing expressions are used to specify extracting objects from a structure. In

globbing expressions, alist of file pathnames is returned. This list is simply an

uncompacted representation of the pruned tree that the expression specifies. In

Glide the more compact representation of a single tree is used, and the tree is

extracted out of a graph (the PIN) rather than out of a tree (the directory tree).

Node001

”Start”

“a<3” “b:=3” “b:=2”

Name IfS

Cond
ThenPart

ElsePart

Node001

“a<3” “b:=3” “b:=2”

IfS

Cond
ThenPart

ElsePart

50

4.3.2 Simple Queries

The simplest form of a Glide query definition is one that just relates an

input parameter to a tree path expression:

ShowNode2Deep(n:Node) == { n.*.* }

The LHS of a query contains a “query name” followed by a list of typed “input

parameters”. In this example there is only one input parameter. The symbol on

the left of the colon is the name of the input parameter and the symbol on the

right is its type (i.e., one of the productions previously defined in the GBVL’s

Glide grammar)3. On the RHS of this definition is areturn clause which, in

this simple case, consists of only one tree path expression. This query expres-

sion just returns the tree corresponding to the tree path expression evaluated

for whichever instance of a node the parametern is bound to.

The query is compiled into a procedure and its name is added to a menu

of commands in the interface generated by Glider so that the user of the GBVL

can invoke it and bring up a new view. The user invokes the command in con-

cert with selecting one or more objects in existing views. These selections ef-

fect the binding of values to the input parameters of a query invocation.

Invoking the command brings up a window displaying the specified contents

of the node instance (in this query, all its components, two levels deep). The

display window is created by the “Glider View Renderer” - a run-time module

which takes the results of queries (one or more trees) as input.

Merging trees

There can be more than one tree path expression in a query expression,

for example:

ShowNodeCondition(n:Node) == { n.*, n.IfS.Cond }

3 Note the colon in the input argument list is different from the colon in the
Glide Grammar notation; here we are separating a variable from the name of
its type.

51

This is a way of expanding specific branches of a tree - here only theIfS

branch of the tree is extended down another level.

The procedure generated by the Glider queries compiler merges the two trees

specified by the two tree path expressions because the trees overlap in the PIN

graph - they have a common “stem” (illustrated in the figure with the heavy

line).

4.3.3 More Complex Queries

The shape of the trees produced by the return clause of the queries can

be controlled by using the more complex queries. These queries use the two

other clauses available in Glide queries: thesuchthat-clause for quantification

and thewhere-clause for restrictions.

The following Glide grammar will be used to illustrate these more com-

plex queries. The grammar is a simplified description of the Petri Net based

GBVL “PCM” [Adi88]. PCM has nodes with structured text attributes and is

hierarchical - a transition node can contain a further complete PCM net.

PCMStructure == PN: PCMNet;

PCMNet == N: Node** .

L: Link** ;

Node == (P: PlaceNode | T: TransNode) .

I: Link** .

O: Link** ;

PlaceNode == NmTk: INTEGER .

Node001

”Start”

“a<3”

Name IfS

Cond

52

Rp: RepParameter ;

TransNode == Name: STRING .

Ta: TransAttibutes .

SubNet: PCMNet;

TransAttributes == Pi : Pexpr .

TSte: State ;

State== Ste:(:ENABLED | :FIRING | :DISABLED | :ACTIVE)

Link== Head :Node .

Tail :Node ;

Multiple trees

The simple queries return only one tree, but a query can also return a set

of trees. For example, the query

ShowNode2Nodes(n1:Node,n2:Node) == { n1.*, n1.T.*, n2.* }

specifies displaying two objects, each one represented by its own tree. The

trees generated by the first two tree path expressions have a common stem so

they are merged into one, but the third tree specified by the third tree path ex-

pression does not overlap in the PIN with the previous one and so is not

merged.

The set of trees specified by a query can also be dynamically generated

by using a where-clause in a query definition. A where-clause allows the speci-

fication of one or more quantifications over sets or lists in a PIN. For example,

the following query displays all the transition nodes labeled with their names.

ShowEnabledTokens(ps:PCMStructure) == {

x, x.Name

where x member-of ps.PN.N.T }

The query returns a set of trees, one for each value of x that was specified by

the quantification in the where-clause. The path expression used in a where-

clause is a standard path expression, not a tree path expression.

53

Filtering trees

Queries can be further extended to include a logical expression in a suchthat-

clause which filters the trees based on the value of the logical expression for

each value of a quantified variable. In the evaluation of the query

 ShowEnabledTokens(ps:PCMStructure) == {

x, x.Name

where x member-of ps.PN.N.T

suchthat x.Ta.TSte.Ste = ENABLED }

the branches of the tree which have enabled transition nodes only are kept, the

others are omitted. The path expressionps.PN.N.T has already selected only

those nodes which are transition nodes. The test in the suchthat -clause is used

to keep the transition nodes which have aState attribute which has the value

ENABLED. The logical expressions in the suchthat-clause are standard logical

expressions except that the operands that can be variables (quantified or input)

or path expressions which use these variables, or constants of the base or enu-

merated types. In this example the value of the enumerated typeState of each

transition nodex is tested. The operators available in standard programming

languages for the base types (integer, real, boolean, string) are also available in

Glide.

Recursion in tree path expressions

A tree path expression can include a recursive expression to denote the

fact that a tree within the PIN should be traversed to its full depth. The annota-

tion in a tree path expression for recursion is an “@” followed in parentheses by

the path expression that links the levels of the recursion. For example, with the

PCMStructure grammar listed above, the following query can be used to speci-

fy a single view which shows node and links at all the levels of the hierarchical

PCM net.

ShowAll(ps:PCMStructure) == { ps.PN@(.N.T.SubNet).* }

The value preceding the recursion expression, in this caseps.N, is of typePCM-

Net, and so are the objects found by fo l lowing the path expression

54

(. N . T . S u b N e t) t h r e e l e v e l s d o w n . H e n c e t h e o b j e c t s p s . P N . * ,

ps.PN.N.T.SubNet.* , ps.PN.N.T.SubNet.N.T.SubNet.* , etc. are returned

(in a single tree) as a result of this query:

Again, the way the resulting trees are eventually depicted is left to the graphi-

cal attributes and the view renderer. The query is only concerned with identify-

ing components.

Recursion is also useful to specify that a complete piece of text should

be displayed. For example, the PCM transition nodes have associated predi-

cate expressions. The Glide style BNF syntax of PCM predicate expressions,

is shown here (tags are omitted for clarity):

Pexpr == Pterm | Pexpr ’OR’ Pterm ;

Pterm == Pfactor | Pterm ’AND’ Pfactor ;

Pfactor == ’(’ Pexpr ’)’ | Patom | ’true’ | ’false’ |

L006 L007N003N004N005

T006

N L

PCMStructure003

PN

L018 L027N083N034 L175

T016

N L

SubNet

SubNet

55

’NOT’ Pfactor;

Patom == Aexpr ’=’ Aexpr | Aexpr ’ ≠’ Aexpr |

Aexpr ’ ≤’ Aexpr | Aexpr ’ ≥’ Aexpr |

Aexpr ’ >’ Aexpr | Aexpr ’ <’ Aexpr ;

Aexpr == Aterm | Aexpr ’+’ Aterm | Aexpr ’-’ Aterm ;

Aterm == AFactor | Aterm ’MOD’ Afactor |

Aterm ’/’ Afactor | Aterm ’*’ Afactor ;

Afactor == ’(’ Aexpr ’)’ | VAR | NUM | ’ +’ NUM | ’ -’ NUM ;

In order to specify that a PCM predicate expression should be completely dis-

played, the following query can be used:

ShowTransNodePredicate(n:Node) = { n.T.Pi@(.*) }.

This query specifies recursing down and returning the entire syntax tree of the

current PCM predicate expression (Pi) of the noden. The systems generated

by Glider always represents such expressions by a syntax tree which is part of

the PIN, but the Glide user has the option of specifying whether the GBVL (in

this case, PCM) user should edit this tree with a structure editing interaction or

allow the GBVL user to edit the expression as a piece of text which is parsed

when the user has finished editing it.

Graph displays

A query can return a tree which, because of the cycles in the graph, con-

tains replication of some instances. For example, the query

ShowGraph(ps:PCMStructure) == { ps.PN.*.* }

This specifies a tree, in which node replication implicitly describes a graph

(part of the original PIN graph). The following diagram illustrates part of this

tree, showing identifiers of some of the instances involved.

56

In this example the cycles exist because the node and link instances refer to

each other. When this kind of a tree is passed to the view renderer, the implicit

graph is recognized and it can be displayed as a connected graph; one in which

PCM links and nodes are shown touching each other.

4.3.4 Glide Query Syntax

The following is a simplified abstract syntax of Glide queries which describes

their essential structure. The path expression syntax,<dotexpression>, has al-

ready been defined in Section4.2.1.<const> is an integer, real, boolean, or

string. String and list equality can also be tested in suchthat -clauses.

<glidequery> ::= <querylhs> “==” “{“ <queryrhs> “}”

<querylhs> ::= <queryname> “(” { <queryinputparams> } “)”

<queryname> ::= <identifier>

<queryinputparams> ::= <variable> “:” <typename>

<variable> ::= <identifier>

<typename> ::= <identifier>

<queryrhs> ::= <returnclause> [<suchthatclause>]

<returnclause> ::= <variableexpr> { “,”<variableexpr> }

<variableexpr> ::= <variable> <treepathexpr>

<treepathexpr> ::= | “.” <stagname> <treepathexpr>

L006 L007N003N004N005

N005 N003

L006 L007

N L

PCMStructure003

PN

I
TailHead

57

| “.” <stagname> “@(“ <dotexpression> ”)” <treepathexpr>

<stagname> ::= <identifier>

| “*”

<suchthatclause> ::= “suchthat” <quantifications> [<whereclause>]

<quantifications> ::= <quantification> { “,” <quantifications }

<quantification> ::= <variable> “member_of” <variable> <dotexpression>

| <variable> “=” <variable> <dotexpression>

<whereclause> ::= “where” <logicalexpr>

<logicalexpr> ::= <pexpr>

| <pexpr> <logop> <pexpr>

<logop> ::= “||” | “&&”

<pexpr> ::= “(” <pexpr> “)”

| “~” <pexpr>

| “true”

| “false”

| <patom>

<patom> ::= <expr> <relop> <expr>

| <stringexpr> <stringrelop> <stringexpr>

| <listexpr> <listrelop> <listexpr>

<expr> ::= “(” <expr> “)”

| <expr> <arithop> <expr>

| <eatom>

<arithop> ::= “+” | “-” | “/” | “*”

<eatom> ::= <variable> <dotexpression>

| <const>

<relop> ::= “=” | “≠” | “≤” | “≥” | “>” | “<”

<stringexpr> ::= <eatom>

<stringrelop> ::= “=” | “≠”

<listexpr> ::= <variable> <dotexpression>

| “(“ { <const> } “)”)

<listrelop> ::= “=” | “≠”

58

4.4 Glide Action Definitions

This section describes Glide action definitions. Just as query definitions

are used to specify extraction of information out of a PIN, action definitions

are used to specify updates to a PIN. Action definitions are used to capture dif-

ferent categories of activity, i.e. semantics, associated with a GBVL. The three

main categories of activity are editing, execution, and animation, and a com-

plete Glide specification of a GBVL contains a set of action definitions for

each category.

A basic idea that influenced the design of Glide was the desire to pro-

vide a uniform way of specifying these different activities. This was achieved

by incorporating data related to each one into a single structure and using a sin-

gle notation for defining changes to data values. The Glide Grammar is thus

used to specify a data structure which is based on the GBVL, but it is not only

the language; it also contains other components. The syntax of the GBVL pro-

vides the organizing framework for extra components related to execution and

animation. The different kinds of activity are characterized through action defi-

nitions which specify possible changes to instances of this structure (the PIN).

The different categories of update usually (but not always) affect separate sets

of components of the structure. Editing activity is the category of actions in

which the user changes the PIN during program creation and modification. Ex-

ecution and animation activity are the categories of actions which change the

PIN at run-time. An action definition specifies an atomic set of changes to the

PIN. The action definitions for the three categories share a single uniform nota-

tion, but each has a few additional constructs. The Glide model provides an in-

tegrated approach, in which all these activities are regarded as updates to one

data structure. This not only simplifies the specification language but it also

promotes the view that these activities are all interleaved and part of the over-

all activity of a user using a GBVL interface in order to develop programs.

This section introduces action definitions with examples of specifying

editing actions (Section 4.4.1) and then shows how similar definitions are used

59

to specify execution actions (Section 4.4.2). The description of how animation

actions are specified is left until after the description graphical attributes

(Section 4.6), since these are used to specify how changes to the values of

graphical attributes are coupled to those changes in the PIN associated with ex-

ecution.

4.4.1 Editing Actions

An action definition consists of an action name and zero or more typed

input parameters on the LHS (same as queries) and a RHS that consists of a

conjunctive set of action expressions. Like queries, action definitions make

use of path expressions to navigate through the PIN and identify instances in

it. An editing action definition relates the states of the PIN before and after an

occurrence of the action (an action event).

Basic action expressions

A simple action expression is:

n.P.NmTk’ = 3

It specifies that the value of the number of tokens of a given node (n) which is a

place node, is 3 after the occurrence of an action which contains this expres-

sion. In general, these simple action expressions have of the following syntax:

<actionexpression> ::= <pathexpression> “’ ” “=” <newvalue>

<newvalue> ::= <constant>

| “new” “(“ <type> “)”

| <pathexpression>

| <pathexpression> “∪” <pathexpression>

| “lins” “(“ <pathexpression> “,” <pathexpression> “,” <index> “)”

As before, a path expression can be either just a variable (a trivial path expres-

sion) or a variable followed by a dotted sequence of tags (a variable followed

by a dot expression). In an action expression, a path expression is annotated

with a prime (’) to indicate its value in the next time step, i.e. after the event.

The first form simply associates a constant value (integer, real, string or enu-

60

merate) with the place in the PIN specified by a path expression. In the second

form thenew function specifies the creation of a new instance of the specified

type. In the third form the∪ operator is the usual set union operator used to de-

fine a result which is the union of two existing sets or elements. Thelins func-

tion specifies list insertion; it defines the result of an element or list inserted

within another list after a specified index position.

Example - connecting objects

The following example editing action definition uses these simple ac-

tion expressions to specify an update to the PIN in which a node and a link are

created and are connected together.

AddNodeAndLink(dfw:DataFlowNetwork) == {

n1 = new(Node) ∧

l1 = new(Link) ∧

n1.Input’ = l1 ∧

l1.HeadNode’ = n1 ∧

dfw.N’ = dfw.N ∪ n1 ∧

dfw.L’ = dfw.L ∪ l1 }

The definition consists of a conjunction of six action expressions. The first and

second specify the creation of instances of the typesNode andLink in thenew

statements. The two local variablesn1 andl1 are used to identify the new in-

stances within the scope of the definition so they can be used in other action ex-

pressions. The fact that the two objects that are created are to be attached to

each other is specified by the third and fourth expressions. Finally, the last two

expressions specify that the new objects are to be attached to the existing PIN

structure by adding them to the set of nodes (N) and links (L) of the dataflow

network. The input variabledfw simply provides a starting point in the PIN for

the path expressions such asdfw.N anddfw.L to identify places in the PIN that

are to be changed. Note that the operation hasgrown the PIN, by both adding

new instances and increasing the number of connections within it.

61

Semantics of action expressions

The semantics ofprime-equals (’ =) in an action expression superficial-

ly resembles that of assignment, but the two are very different. First, action ex-

pressions are not procedurally ordered; they are not imperative operations

performed in sequence. Instead, the action definition is as a whole a declara-

tive, atomic statement of the relationship between the state of the PIN before

and after an event (an invocation of an editing action). Second, a prime-equals

action expression represents a more general concept than assignment in that it

specifies a connection operationin the PIN. It indicates how the references

(pointers) between instances in the underlying PIN network are to be added, re-

moved, or altered. A connection operation at the level of the PIN may be part

of a visible action at the GBVL level dsiplayed in the user interface (e.g., at-

taching a node to a link, editing text tree structure, or setting a value). The as-

signment of a value is just a special case of such a connection operation. In

other words, though the state of a PIN can be viewed as being in two parts: (i)

the values of components which are terminal types (integers, strings, enumerat-

ed values, etc.) and (ii) the connection of component instances of non-termi-

nals to each other (the topology of the PIN graph), the syntax of action

expressions is such that it allows these two forms of change to be expressed in

a uniform way.

The semantics of glide action definitions are thus close to the various

graph grammar4 languages for specifying graph rewriting (i.e. changes to a

graph based on its current state). There are both textual and graphical graph

grammar notations; Glide actions definitions is one in which the changes are

expressed textually.

Editing vs. structure

Glide editing actions provide adecoupling of the creation of structure

from its Glide grammar description; it is up to theGlide user to choose which

4 The word “actions” was used instead of “grammar” so as not to confuse it
with its use in “Glide Grammar”.

62

actions are provided for his/her particular GBVL. For example, an editing ac-

tion may create instances of several types and connect them together appropri-

ately because he/she wishes this to be an atomic editing action for the GBVL

user. It is quite possible to add nodes or links without connecting them to any

other existing ones. For example, a single editing action could consist of add-

ing n1 as component of dfw.N , but not connecting it to any of the links in

dfw.L . The action definition below is a further example which illustrates how

to specify an editing operation that connects both ends of an existing uncon-

nected link to two existing nodes:

ConnectLink(n1:Node,n2:Node,l1:Link) == {

n1.Input’ = l1 ∧

l1.Head’ = n1 ∧

n2.Output’ = l1 ∧

l1.Tail’ = n2 }

It is the decoupling that enables the needed flexibility to provide editing opera-

tions which are based on, but separate from, the basic structure of the GBVL

embodied in its Glide grammar.

The Glider generator processes editing definitions in the same way as it

does queries; the definitions are compiled into procedures and their names are

added to a menu of editing commands in the interface generated by Glider, so

that the user of the GBVL can access them to invoke the operation. The input

arguments are bound by the user selecting the appropriate objects in existing

views and then selecting the editing action from a command menu.

User input actions

There are two actions which prompt the user for information which is

needed to complete the action, newchoose and newparse .

n.NT’ = newchoose(Node.NT)

The newchoose function denotes the fact that the user must choose which one

of a set of alternate types is to be instantiated, or must provide the value of a

63

terminal type. In this case the NT tag identifies an alternation in the Glide pro-

duction of Node, an alternation which can contain either a Placenode or a

Transnode. Typically, the prompt by the interface to the user would be

through a dialog menu of all the possible types for the given alternation, and in

the case of a primitive type (string, integer), a text dialog box to enter in a val-

ue for the primitive type with the keyboard.

An expression using the newparse function also denotes an interaction.

It provides a means to instantiate a complete parse tree part of a PIN by

prompting a user for a string which will then be parsed in accordance with the

subset of the glide grammar types (productions) which specify a text tree. For

example, the action expression,

n.Test’ = newparse(BoolExpr)

might be used to prompt a user for a boolean expression to be associated with

the component tagged Test of a node n.

Disconnection actions

The following action expressions are examples of disconnection ac-

tions:

p.T.Ta’ = NULL

pn.L’ = ps.L - l1

The first expression specifies that the instance that used to be at the place indi-

cated by the primed path expression is no longer reachable in the PIN by fol-

lowing that path expression. The second expression is used to specify that an

instance or set of instances is removed from a set or list. These expressions do

not specify destroying the instance or instances found at the place identified by

the path expression, only their disconnection. The syntax of these actions ex-

pressions is:

<actionexpression> ::= <pathexpression> “’ ” “=” <newvalue>

<newvalue> ::= “NULL”

| <pathexpr> “-” <pathexpr>

64

| “lrem” “(“ <pathexpression> “,” <index> “)”

Deletion actions

A separate deletion operation is needed for destroying instances, i.e.,

for specifying that they no longer exist in a PIN after an action event. This op-

eration is old , it removes one or more instances from the PIN, and is the in-

verse of the new operation.

old(p.Ta)

This operation destroys the instance found at p.Ta . The object that was at this

position no longer exists in the time step after an action event that includes this

expression. At the PIN level, all references to a deleted instance are removed,

so that at the GBVL level a shared object disappears from the many places it

used to be. The old operation can take a path expression or a tree path expres-

sion as argument, to specify the deletion of many instances at once.

Conditional action expressions

Actions expressions can be made conditional with a boolean expression

which acts as a guard.

<ConditionalActionExpression >

::= “(“ <BoolExpression> ”)” “⇒” “(“ <ActionExpressionsConjunction> ”)”

The syntax and semantics of these boolean expressions is the same as that for

the suchthat-clause of Glide queries. The following example illustrates its use

in specifying an action that only completes if the node is a place node.

(n.P.NmTk = 3) => (n.P.NmTk’ = 4)

Conditional expressions can be used to differentiate between the types of com-

ponents that could be present, in a tag which identifies an alternation. For ex-

ample:

(n.NT = n.P) => (n1.P.NmTk’ = 4)

(n.NT = n.T) => (n1.T.Ste’ = ENABLED)

65

This completes the description of editing action definitions. The follow-

ing section describes the use of action definitions for modeling execution.

4.4.2 Execution Semantics

The purpose of an execution semantics specification in Glide is to repre-

sent, at some level of abstraction, a description of the execution behavior of a

GBVL. This description captures the dynamic relationships that exist during

execution between components specified in a Glide grammar. As was men-

tioned at the beginning of this section, a key idea embodied in the Glide model

is that the values associated with the execution or evaluation of components of

a program (e.g. arithmetic expressions, logical expressions, rule firings, flows

of data, etc.) are represented by adding further components to the structure of a

Glide grammar. All actions specify changes to the PIN. The original structure

of the language provides the framework within which to add components

whose values represent the execution state of the system. Astructure-oriented

organization for specifying execution semantics is thus used in the Glide ap-

proach.

Execution action definitions are intended to provide a way to describe

anabstracted execution semantics. This is a description of the changes that oc-

cur during execution at a level chosen by the GBVL designer. By adding more

detail to a Glide grammar specification, a finer grained and lower level of de-

scription of the execution semantics can be made. For example, three succes-

sive levels of description in GBVL might be: (i) the binding of values of

variables inside rules associated with nodes, (ii) whether or not the rule condi-

tions are satisfied, (i) whether or not a node was executed. The abstract execu-

tion can either be driven by the interface itself, to give the user (animated)

views of the execution of programs, or it can be coupled to the execution of an

actual program that was generated by extracting a description of the program

from the PIN and passing it to a compiler for the particular GBVL. This com-

piler is provided by the GBVL designer (it is not part of Glider) and must be

able to instrument the program so that it can report and confirm expected state

66

changes back to the interface. Though it might be possible to describe a com-

plete execution semantics of simple GBVLs in Glide, in general this is not the

case - many GBVLs have very complex semantics, which often include the in-

vocation of routines written in existing standard languages such as C or For-

tran.

As mentioned in Chapter 2, in some GBVLs the program graph is al-

tered only during the development (editing) of the program and it is static dur-

ing execution. Execution of the static graph involves the movement of data or

state through the nodes and links. This form of execution is modeled by execu-

tion action definitions which only change terminal values in the PIN. Other

GBVLs however are dynamic; their graph topologies change at run-time. Such

GBVLs can be captured in a simple way with Glide because of the uniform ap-

proach in Glide to specifying (i) editing and execution and (ii) value and topol-

ogy change. In some cases the same change can be both part of execution

actions and part of user editing actions - such as the setting of the number of to-

kens in Petri Net place nodes.

Execution action definitions are similar to editing actions except that

they are in the form of condition⇒action rules which can be quantified over

sets or lists of components in the PIN. These rules test the state of a PIN and

then change it if their condition is satisfied. The set of rules are compiled into a

set of corresponding procedures. These procedures are invoked by an underly-

ing run-time execution engine which chooses satisfied rules to fire according

to one of several policies specified by the user, called regimes. Execution ac-

tion expressions include all the expressions used for editing except those that

specify user input (newchoose, newparse).

Example - Transition node state update

In the following simple Petri Net grammar:

PetriNet == N: Node** .

L: Link** ;

Node == (P: PlaceNode | T: TransNode) .

67

I: Link** .

O: Link** ;

PlaceNode == NmTk: INTEGER ;

TransNode == Name: STRING .

St: State ;

State == Ste:(:ENABLED | :FIRING | :DISABLED | :ACTIVE);

Link == Lp:PlaceNode .

Lt:PlaceNode ;

The following action definition is part of the execution semantics of Petri Nets.

Enable(pn:PetriNet) == {

∀t:pn.N.T (∀p:t..NT.I.Lp (p.NmTk > 0) ⇒ t.Ste’ = ENABLED)

}

It states that all the transition nodes of the net (pn) that have at least one token

in all the place nodes which are input-linked to them (..NT.I.Lp) should

change their state toENABLED. The “∀t:pn.N.T ” expresses quantifying over

the set of transition nodes within the PIN and “∀p:t..NT.I.Lp ” expresses

quantifying over all the place nodes which are inputs to a given transition node

(t). Since execution rules are invoked by the interface itself (rather than the us-

er), execution action definitions have a single input parameter which is bound

to the whole PIN.

The rule for firing a transition node is:

Fire(pn:PetriNet) == {

∃t:pn.N.T (t.Ste = ENABLED ⇒

t.Ste’ = FIRING ∧

∀ p:t..NT.O.Lp (p.NmTk’ = p.NmTk + 1)

)

}

This action definition states that one of the transition nodes that is in the state

FIRING be chosen and that the number of tokens in all of the place nodes that

are output-linked to it (∀ p:t..NT.O.Lp) should have their number of tokens

68

incremented. The restricted existential quantifier denotes the non-determinis-

tic choice of at which satisfies the condition.

Example - value update

Execution action definitions can be used to specify the computing of values as-

sociated with expressions. For example, in the following simple productions of

a GBVL which contains nodes that compute an integer value:

Node == NodeLabel:String .

NodeValue:Aexpr ;

Aexpr == Val:INTEGER .

Exp:(Var ’+’ Var) ;

Var == Val:INTEGER .

Name:STRING ;

the grammar represents both the expression (Aexpr.Exp) and its value (Aex-

pr.Val), as two parts of a component. The following unconditional execution

action rule captures the execution semantics of evaluating the expression by

updating the values of all these expressions:

ComputeAexprVal(dfw:DataFlow) == {

∀a:dfw.N.Aexpr (a.Val’ = a.Exp.0.Val + a.Exp.2.Val)

}

dfw.N.Aexpr specifies all arithmetic expressions of all the nodes. Index tags 0

and 2 are used for identifying items in a sequence. The grammar holdsboth the

expressionand the value it computes. From the interface point of view these

are both displayable objects. The expression is accessible during editing, and

its value is accessible for inspection during execution (and possibly also for

the user to modify during execution). This approach is different from repre-

senting values of expressions asattributes, as exists, for example, inattribute

grammar representations for specifying language semantics. The reason for

this integrated approach is because, in this application of generating program-

69

ming interfaces, it is necessary to make the state of the program visible and ac-

cessible in the interface in the same way as the program itself.

Example - data flow

The following simple example illustrates how the semantics of data flow type

GBVLs can characterized with action definitions that specify the movement of

data values along nodes and links. For a grammar:

DataFlowNet == N:Node** .

A:Arc** ;

Node == Name:INTEGER .

Val:INTEGER .

Operation:Expr .

I:Arc .

O:Arc ;

Arc == I:Node .

O:Node .

TransVal:INTEGER ;

the following action definition expresses the movement of the value into the

arc and out of it:

MoveValIn(dfw:DataFlow) == {

∀n:dfw.N (n.O.Val’ = n.Val ∧ n.Val’ = 0)

}

MoveValOut(dfw:DataFlow) == {

∀n:dfw.N (n.Val’ = n.I.Val ∧ n.I.Val’ = 0)

}

Here 0 is being as used to record the absence of a value. If needed, an alterna-

tion construct could be used so that the value in theVal slot could contain ei-

ther an integer or “ABSENT”. More complex forms of flow, with a list of values

in the link and/or node can be used to represent queues, LIFOs, etc.

70

Execution firing regimes

Execution action definitions are similar to editing action definitions,

but their invocation is not driven by the user, it is either driven internally by

Glider’s rule execution engine or is triggered by the execution of the external

compiled, instrumented program. In the former case, the collection of condi-

tion-action rules is run under some regime suitable for the particular model of

computation of the GBVL. The basic firing regimes provided are the following:

• round_robin - Of the all the action rules matched, fire each in turn in the
order they were originally declared (in the Glide specification), repeat.

• first_and_restart - Of the all the action rules matched, fire the first one
of the order they were originally declared, repeat.

• random_and_restart - Of the all the action rules matched, pick one at
random to fire, repeat.

These regimes are similar to different firing strategies in “rule-based

systems” (e.g., [OPS5-85]). They provide a simple and transparent underlying

control for execution that ensures that the step-by-step logic of execution re-

mains easy to follow for the user. The firing rules themselves provide the

GBVL designer the means by which to implement more complex control logic

for his/her particular GBVL.

This completes the description of the use of actions for editing and exe-

cution. Similar actions which also access graphical attributes,animation ac-

tions, will be described in Section4.7.

4.4.3 Glide Action Syntax

The following abstract syntax captures the essential elements of the

syntax of Glide actions. Definitions of non-terminals previously defined in the

query syntax (Section4.3.4) are omitted, for example, the conditions in condi-

tional action execution rules are the same as that for queries.

Common

<actiondefinition> ::= <actionlhs> “==” “{“ <actionrhs> “}”

71

<actionlhs> ::= <actionname> “(” { <actioninputparams> } “)”

<actioninputparams> ::= <variable> “:” <typename>

<actionname> ::= <identifier>

<actionrhs> ::= [<rquantifiers> “(“] <conjunctiveexpr> [“)”]

<conjunctiveexpr> ::= <conjunctexpr> { ”∧” <conjunctexpr> }

<conjunctexpr> ::= [<rquantifiers> “(“] <compactionexpr> [“)”]

<compactionexpr> ::= <simpleactionexpr>

| <condaction>

<condaction > ::= [<rquantifiers>] “(“ <logicalexpr> ”)” “⇒” “(“ <conjunctiveexpr> ”)”

<actionexpr> ::= <newvalexpr>

| <destructionexpr>

<creationexpr> ::= <pathexpr> “’ ” “=” <newvalue>

<newvalue ::= <addnewvalue>

| <remnewvalue>

| <ednewvalue>

<addnewvalue> ::= <constant>

| “new” “(“ <type> “)”

| <pathexpr>

| <pathexpr> “∪” <pathexpression>

| “lins” “(“ <pathexpr> “,” <pathexpr> “,” <index> “)”

<remnewvalue> ::= “NULL”

| <pathexpr> “-” <pathexpr>

| “lrem” “(“ <pathexpr> “,” <index> “)”

<destructionexpr> ::= “old “(“ <pathexpr> “) “

| “old “(“ <treepathexpr> “) “

Editing specific

<ednewvalue> ::= “newchoose” “(“ <typename> “)’”

| “newparse” “(“ <typename> “‘)”

72

4.5 Glide Shape Predicates

This section describes Glideshape predicates. Shape predicates pro-

vide a means of specifying those invariant structural properties of the PINs of

a given GBVL which cannot be captured syntactically with the glide grammar.

Foremost among these static semantics are restrictions on sharing and cycles

that can exist in a PIN. Shape predicates are used to express these restrictions

and cause updates to the PIN to ensure that the invariant properties are main-

tained. This section provides examples of shape predicates to show how they

are expressed and used. The next chapter discusses this Glide approach to han-

dling sharing and cycles in greater depth and compares the approach to other

existing techniques addressing the same issue in the context of other problem

domains.

As discussed earlier in Section4.1, the Glide grammar type specifica-

tions are unconventional in that shared structures and cyclic structures such as

instances which “contain” themselves are permitted. This latitude provides an

elegant, concise, and uniform way of describing the interrelationship of ob-

jects in a GBVL, but there is a price to paid for this elegance. Though the type

specification does identify the desired PINs, it also admits instance networks

that do not correspond to a program (either partial or complete). For example,

73

the following diagram illustrates a Petri Net as a collection of type instances

and the references between them (as small arrows,).

Though this PIN does not violate any of the type compositions prescribed by

the glide grammar productions, it should clearly be excluded because referenc-

es 3 and 4 are not correctly “paired”. It is thus necessary to provide an external

means to characterize the particular sharing and cycles that are admissable and

separate them from those which are not. Shape predicates are the means to ex-

press these constraints in Glide. Shape predicates make use of path expres-

sions to identify the desired cases of cycles and sharing and distinguish them

from the undesired ones.

Examples

The following three examples illustrate how shape predicates can be

used to characterize patterns of cycles and sharing in PINs.

Graphical illustrations of parts of PINs are used to illustrate each pat-

tern. In these illustrations, a full circle () represents some instance of a type

(hence its out-degree, corresponding to the number of tagged components of

the type, is fixed). The labelled arrows emanating from full circles represent

the tagged references of instances to each other. An arrow pointing to a hollow

circle () represents a set or list component of a type (hence the circle’s out-

a

b

c

d

e

f
43

Figure 4-4 Incorrect Instance Network

74

degree is not fixed). Elements of a list or set are labelled by the quantified vari-

able used in the shape predicate, and so are subscripted with integers to differ-

entiate each value.

(i) Simple Fixed - A simple pattern of cycles occurs when instances two types al-

ways point to each other:

Shape Predicate: SimpleCycle(x:X) == {∀y:x.l (y.m.n = y) }

The shape predicate is captures the restriction that only the simple cycles in

which the instance of a Z that is referred to by a Y, refers back to that instance

of Z. Hence an instance network such as the one above except that y1 referred

to z2 and z1 to referred y2 would be inadmissable. Note that this invariant

holds only for the instances of types Y and Z referred to by X. It may well be

that types Y and Z elsewhere in the PIN do not have this constraint.

(ii) Single Collection - In this example instances of a set of one type refer to the

same instance of another type:

Shape Predicate: SameSink(x:X) == {∀y:x.l (x.m = y.n)}

In this example the shape predicate is not describing a cycle. This part of the

PIN is only a DAG.

lx
m

n

py1

m

n

p
y2

z1

z2

X == l:Y** ;

Y == m:Z ;

Z == n:Y .

p:W ;

l

x

m

n

n

n
y3

y2

y1

X == l:Y** .

m:Z ;

Y == n:Z ;

75

(ii) Triple Collection - This example is a simplified case of the one needed for the

Glide Grammar descriptions Petri Nets used in previous sections.

Shape Predicate:

Paired(p:P)=={∀n:p.nodes,l:p.links(l∈n.inputs ⇔ n=l.head)}

The predicate involves 3 sets: nodes of a net, links of a net, and input links of a

node. It captures the pairing pattern mentioned in the introduction. It is also

similar to example (i) except that part of the cyclic path goes through a list and

hence there is a membership test in the predicate. For clarity, the diagram is

not complete, only cycles involving just node n2 with links l2 (inputs) and l3
(outputs) are shown. A similar predicate is needed to capture the cycles going

through outputs.

The syntax and semantics of shape predicates are similar to actions.

They are also compiled into procedures. Operationally, shape predicates can

be used in many ways: They may be provided as interface commands and ap-

plied at the users discretion to verify that the invariant holds. They may also be

triggered after each editing operation to flag an incorrect state of the PIN, or

correct it automatically. It is possible to simplify the specification of many of

the editing operations by using shape predicates to complete the references be-

nodes

p

links

n1

inputs

outputs

head

tail

n2

n3

l1 l2
l3

P == nodes:N** .

links:L** ;

N == inputs:L** .

outputs:L** ;

L == tail:N .

head:N ;

76

tween instances. Shape predicates can also be used to specify simple semantic

checks for the GBVL.

The predicates shown in these examples are simple, but GBVLs with

more complex forms of interconnection structure, such as ones with nodes

which have many ports, or ones with hyperlinks may require more complex

shape predicates. The path expression-based scheme of these predicates allows

these shapes to be specified in a straightforward and concise way.

Design variations - bipartite vs. input-output.

The grammar and the shape predicates together specify the set of allow-

able PIN graphs for a given GBVL. As is often the case in specifying languag-

es, there is a design choice as to which aspect of a GBVL structure to capture

directly in the grammar and which to capture as static semantics of a shape

predicate. The following two variations of representing Petri Nets illustrate

this issue. A Petri Net is both a directed graph and a bipartite graph; all links

connect either a place node to a transition node or a transition node to a place

node. This can be directly encoded in the grammar by representing links as ob-

jects which are connected to one place node and one transition node,as shown

below.

PetriNet == N:Node** .

L:Link** ;

Node == NT:(P:PlaceNode | T:TransNode) .

I:Link** .

O:Link** ;

Link == Lp:PlaceNode .

Lt:TransNode ;

77

A graphical illustration of three instances conforming to this grammar is the

following:

In this grammar, the bipartite property of the net is captured directly in the rep-

resentation of the link, but direction of the link is not represented in the link it-

self. Given a link, its direction can only be deduced indirectly, from the

information in the nodes the link is attached to.

An alternative representation is to capture the input-output relationship

directly in the link and let the bipartite nature of the net be implicit, by chang-

ing the definition ofLink in the grammar to:

Link == Head:Node .

Tail:Node;

The difference is illustrated graphically:

The bipartite property of the net can then be captured by using a shape predi-

cate to state the that a link always has one node that is a place and one node

that is a transition:

l2In

Out Lt

Lp

l2

In

Outl2
p3

t1

n1

t1NT p3NT

n2

l2In

Out Tail

Head

l2

In

Outl2
n2

n1

n1

t1NT p3NT

n2

78

Bipart(pn:PetriNet) == {

∀l:pn.L ((l.Head.NT = l.Head.P ⇔ l.Tail.NT = l.Tail.T)

⊕ (l.Head.NT = l.Head.T ⇔ l.Tail.NT = l.Tail.P)

}

(⊕ - exclusive or) These predicates use the Glide idiom of comparing the

equality of path expressions values (.NT and.P) to identify the type in alterna-

tion (as was already illustrated earlier in this chapter).

Both representations can be used; it is up to the designer as to how parti-

tion representing properties of the language between the grammar and the pred-

icates. The effect of the of this partitioning choice on editing interaction is one

aspect that needs to be taken into account. By moving the “bipartitedness” out

of the grammar and into a shape predicate, editing operations can be provided

in which the user is free to put a link between two place nodes. Though this

may create an incorrect structure (which will subsequently be flagged by the

verification with theBipart shape predicate) it is often the case that this “loos-

er” form of interaction is preferred by some classes of user. The key advantage

of the Glide model is that it provides the flexibility of being able supportmany

choices of design. Indeed, in Glide it is quite possible to have both properties

aspects represented explicitly,

Link == Head:Node .

Tail:Node .

Lp:PlaceNode .

Lt:TransNode ;

and use shape predicates to enforce consistency. The design principles should

be the ease and clarity with which the semantics can be expressed and the form

of editing interaction that is desired. It is often the case that the more that is

captured in the grammar, the easier it is to express semantics, but the complex

shape predicates may also be needed.

79

4.5.1 Glide Shape Predicates Syntax

Shape predicate syntax is the same as that for action specification ex-

cept that that bi-directional implication (iff) can be used.

80

4.6 Glide Graphical Attribute Definitions

This section describes thegraphical attributes component of Glide. Up

to this point the description of Glide has dealt with: (i) the grammar and the ac-

tions, which provide a complete but abstract logical description of the struc-

ture and semantics of GBVLs; and (ii) the queries, which allow the designer to

specifywhich parts of a structure to display in a particular view. The purpose

of the graphical attributes component of Glide is to specify the graphical ap-

pearance of these parts as they are displayed in views. The next section (4.7)

will describe how animation specifications can couple changes in the values of

these graphical attributes with execution.

The main design concepts behind the way graphical attributes are speci-

fied and used in Glide are the following:

(i) There is close correspondence between what appears on the screen

and the underlying data structure specified with the Glide grammar. The inter-

face directly exposes the data model for reasons that were already discussed in

the introduction chapter. Because of this approach, graphical attributes are sim-

ply attributes of the types and tags specified in the Glide grammar. Each type

or tag can have one or more graphical attributes which indicate how instances

of a given type are to appear on the screen or how the tag labelling an instance

should appear.

(ii) The Glide graphical attributes arehierarchical. The syntax of

graphical attributes is recursive. Attributes have a name and a list of values,

and a value can itself be an attribute name and a list of values. Thus specific

graphical attributes may contain arbitrary levels of further specification detail.

(iii) The use of graphical attributes can beprogressive. As graphical at-

tributes are added, or more levels of specification are added to a given at-

tr ibute, the views produced by the run-t ime rendering system wil l be

progressively more distinctive in graphical appearance. Indeed, ifno graphical

attributes are provided in a Glide specification, the rendering system will still

81

be able to produce a default generic display, based solely on the structural de-

scription in the grammar. As attributes are added, more of this default appear-

ance will be superseded with the specified graphical appearance.

(iv) Many of the graphical attributes are taken directly from the graphi-

cal capabilities of the GUI library that supports the interface. There are still

quite a few GUI libraries (ortoolkits) in existence and the capabilities of these

libraries are still evolving. Rather than providing a static generic set of at-

tributes which would reduce the possible displays to the lowest common de-

nominator of these libraries, and fail to make available their particular

capabilities, the attributes reflect the capabilities of a GUI directly. An advan-

tage of this approach is that graphical attributes are “open”, allowing more at-

t r ibutes to be added when underly ing faci l t ies GUI support them. A

disadvantage of this approach is that if a new underlying GUI is targeted to

support the Glider generated interfaces, parts of this component of a Glide

specification would need to change to match the new GUI. However the chang-

es are limited to just this component of a Glide specification and in practice

there is a large overlap in the kinds of graphical primitives provided the vari-

ous GUIs. In this chapter specific attributes of a particular toolkit are used5.

This approach also means that graphical attributes are more concrete than the

those of the preceding sections; specific names of shapes, colors, widths and

patterns of links, etc. are typical.

(v) The Glide model uses a composition-oriented approach to capturing

commonality between types. Hence, as has been discussed earlier, aNode type

can consist of a collections of types, one of which is an alternation oftransi-

tion or place. In order to accommodate this composition-oriented approach,

graphical attributes can contain path expressions which provide a means to re-

flect the graphical properties of the subobject (in this case,transition or

place) in the superobject (in this caseNode).

5 In this case the widget properties of the Tk API of the Tcl/Tk GUI toolkit
[Oust94].

82

Operationally, the values of graphical attributes are combined with the

result of a query (query trees) and passed as more complex data structure (the

glider display tree) to the run-time rendering module. The latter interprets this

information and performs the appropriate invocations of GUI library calls to

produce the view on the screen. This process is analogous to the use of “dis-

play lists” (which are really trees) in classical graphical rendering models (e.g.

PHIGS). This process will be described in detail in the Chapter 6 on the Imple-

mentation of Glider.

Default display

If no graphical attributes are provided, the renderer will produce a de-

fault display of a PIN based only on its type structure specified in the grammar.

There are in fact two forms of default display, textual andgraphical:

In the case of the textual display (when no GUI whatsoever is avail-

able), the program will be displayed as a large list of records structured accord-

ing to the individual grammar productions and will contain the internal system-

generated identifiers for all the instances in the PIN. These identifiers are also

then used for all the references between instances. This display is in effect a

textual display of the PIN. The very large number of identifiers used to encode

references makes this form of display difficult read and understand, and it is

the fact that graphical approaches display these relationships by graphical adja-

cency and nesting that can make them so much more concise and effective.

The default graphical mode usesnesting of boxes according to the

structure of the grammar to show the same information. Each box is labelled

with the type name of the instance and the relevant tag. Shared objects will ap-

pear repeated at the multiple places they are shared. As graphical attributes are

added to the Glide specification these boxes for instances of different types

will instead have their own specific shapes, colors, and icons, and sharing will

be displayed as objects adjacent to each other (e.g. node and links touching

each other).

83

Simple example

Graphical Attributes are specified as hierarchically nested lists with the

keyword “Appearance”. For example:

Appearance(PetriNet) == {Box {BackgroundColor Red}

{Border

{Size 3}

{Color Blue}

}

}

This is a simple example of hierarchical specification. It states that instances

of the typePetriNet should be displayed as a red box with 3 pixel blue border.

SeveralAppearance(PetriNet)== ... definitions might appear in a single

Glide specification, each would simply be added to the list of graphical at-

tributes for the typePetriNet. Tag graphical attributes are specified by includ-

ing a tag name after the type, e.g.:

Appearance(PetriNet.Name) = {Text {Font Helvetica)}

4.6.1 List Graphical Attributes

The following is the list of the graphical attributes and their meanings.

An attribute without choice of values simply indicates it is boolean set to true.

Graphical attributes listed here can be nested when appropriate (e.g.color in-

sidetext)

• Terminal - Used to indicate the leaf of a display tree - default to a box with
the name of the type unless further attributes are provdided.

• Text - Used to indicate that a terminal should appear as editable text.

• Texttree - Used to indicate that portion of a PIN is a parse tree which
should be displayed as a string of text obtained by putting all the leaf
values of the tree into a single text string

• GRAPH - Used to indicate that compoents of this type can be displayed
connected together (e.g., Node** andLink** as components ofPetriNet)
This graphical attribute requires additional information which is basically

84

the same as that which is embedded in the shape predicate, i.e. the paths by
which the objects are shared.

• Port Indicate that this component is a port of a node and should be
displayed at the on the edge of a node or inside the node and links can be
show connected to the port. Nested attributes:(IN ON) to indicate whether
the ports are displayed inside the perimeter of the node or outside touching.

• Shape Indicates shape of object

Nested attributes: Arc, Bitmap, Line, Oval, Polygon, Rectangle

• ForegroundColor Color

• BackgroundColor Color

• Border Properties of shape borders

Nested attributes: Width, Color

• Icon - If no futher detail is being shown, the bitmap is used, iconically
indicating the type of the object (e.g. firing rule, dataflownode, token, etc.).
If more detail is being shown, the bitmap is used as a title of the box.

• Line

Nested attributes:(Straight Manhattan SplineCurved, Direct-

ed) Width, Color

• Arrow

Nested attributes: Shape, Size, Color

• Shading

• Labelling (Inside, Beside, Above, Below)

• Font

Nested attributes: Size, Color, Family, Style)

Note that theSIZE attribute is only ever used for fonts. This is because of the

nested display approach to displaying objects. As more detail is presented the

size of the enclosing object will grow, and hence it is not necessary to assign

specific sizes.

85

4.6.2 Glide Graphical Attributes Syntax

<graphicalttributedef> ::=

 “Appearnce” “(“ <type name> “)” “=” “{“ <graphicalattribute> “}”

| “Appearnce” “(“ <type name>”.”<tagname> “)” “=” “{“ <graphicalattribute> “}”

<graphicalattribute> ::= <graphicalattributename> <graphicalattributevalue>

<graphicalattributename> ::= <gattributeidentifier>

<graphicalattributevalue> ::= <identifier>

| <constant>

| “{“ <graphicalattribute> “}”

86

4.7 Glide Animation Definitions

The final component of a Glide specification is a set of animation defini-

tions. The purpose of animations is to provide the GBVL user with useful dy-

namic graphics. These dynamic graphics can be used to convey the flow and

control activity of an executing program, highlighting where and when chang-

es are taking place so that a user can more quickly comprehend (i) the execu-

tion semantics of the language and (ii) whether or not the program that the user

has created is matching the users specific expectations about its execution. An-

imations can be a very effective means of diagnosing problems because anoma-

lous behaviour can be made instantly apparent with the right animation.

The basic means by which animations are specified with Glide is by

rules which are similar in form to execution actions. The only difference is that

they relate particular tests on the state of the PIN structure to changing the val-

ues of graphical attributes. In other words they specify invariant relationships

between PIN components and the values of graphical attributes. In this way

graphical features just described, such as the color, border size, font, shape,

will change in response to changing PIN state. The same test syntax as execu-

tion rules is used, so that graphical changes can be made to occur only when

very specific conditions on the state of the PIN occur. In addition, animation

conditions can also trigger on specific changes of state of the PIN between ad-

jacent steps in the execution. Finally, it is also possible for animation, to trig-

ger active graphical attributes. These are simply graphical attributes which are

in fact procedures which execute in a given state in order to create a dynamic

animation of a given state (e.g. the cyclic movement of a value along an arc, to

illustrate that the system has reached the state where the value has arrived) .

87

Simple example

Simple examples of animation are the following:

EnableGreen(pn:PetriNet) ==

{ ∀t:pn.N.T (t.Ste = ENABLED) ⇒ (t..NT<Color> = Green)}

FiringRed(pn:PetriNet) ==

{ ∀t:pn.N.T (t.Ste = FIRING) ⇒ (t..NT<Color> = Red)}

The graphical attributes are accessed via a special form of path expres-

sion terminating with angle brackets enclosing the particular graphical at-

tribute. The enclosed expression may itself be a dot expression to indicate

accessing a nested graphical attribute.

More complex example

The conditons in the invariants can be made as complex as desired, so

that very specific animation can be used to detect and indicate and a very spe-

cific condition. Though at the moment these animation invariants are designed

to only be created and specified by the designer, opening such facilities to the

user is quite straightforward.

{ ∀t:pn.N.T (t.Ste = FIRING ∧ t.input.Lp.NmTk < 2) ⇒

(t..NT<Color> = Red)

}

This animation definition specifies that transition nodes should trun red when

they are in the state FIRING and all their input place nodes have less than two

tokens.

Transition animation

In addition to producing graphical reflections of the state of the PIN, It

is also possible to create animations of change of state in the PIN.

{ ∀t:pn.N.T (t.Ste = FIRING) ∧ (t.Ste’ = DISABLED)

⇒ (t..NT<Color>’ = Red)}

88

This animation will cause transition nodes which have fired and become dis-

abled to turn red.

Animation procedures

In addition to the tying a graphical attribute to the value in the PIN (or,

more generally, the state of the the PIN), it is also possible to register attributes

which are procedures. This is similar to the path transition paradigm of

[XTANGO]. Such animation provides no more information that simply having

a color valuereflect the state, but the activity is does provide a more noticeable

effect which can be used to make some animations more obvious than others.

{ ∀t:pn.N.T (t.Ste = FIRING) ⇒ (t..NT<Flash>)}

This example invokes the graphical attribute which is a routine which flashes

the node momentarily. The semantics of these active animations are blocking

ones; the execution of the program itself stops, the animation procedures runs

to completion before the next step of program execution.

89

4.8 Summary

This chapter has described the Glide model. It has described how it is

based on an extended notion of composition of types which accepts and ex-

ploits cycles and sharing to encode a concise and rich description of the com-

ponents graph-based visual language and their inter-relationship. Building on

this underlying data structure specification component and path expressions to

navigate through such structures, Glide provides queries for extraction, actions

for capturing semantics, graphical attributes for specifying graphical rendering

of the structure, and animation definitions for visualizing execution.

The Glide query language is a query language which provides a suc-

cinct and simple way to extract parts of a program from the PIN that represents

the whole program. The queries allow the Glide user to specify both what ob-

jects should be displayed in a view and at what level of detail those objects

should be shown. The query language is one that is adapted to the Glide data

model for graph-based visual languages.

The various forms of Glide action definitions provide a unified notation

for describing changes associated with the language. Simple forms of action

just test and change terminal values associated with objects (e.g. firing state,

number of tokens, etc.). More complex forms change the configuration of the

graph structure of the PIN itself, gluing or ungluing objects. Execution seman-

tics are encoded as rules that access and test the PIN and then alter it.

The appearance is derived by a generic display generator in conjunc-

tion with attributes which can progressively refine the graphical apperance of

instances of given types.

The next chapter provides a more detailed analysis of the issues sur-

rounding the use of shared and cyclic types. Chapter 6 describes the implemen-

tation of the Glider compilation process and how it translates a complete Glide

specification in order to generate and interface for a GBVL.

90

Chapter 5

Graph Types for Graph Based Visual Languages

This chapter provides a deeper analysis of the Glide data model by re-

lating it to work in a diverse range of other research areas within each of which

the issue of recursive and cyclic data types has also been addressed. The areas

are: functional languages, abstract data types, data base models, object-orient-

ed data models, formalization of pointers, compiler data structure dependency

analysis, and graph grammars. The need to address the issue arises for a vari-

ety of reasons in each of these areas. In the case of Glide the need arises from

wishing to support the “interconnection paradigm” of GBVLs.

This chapter first examines and reviews the use of these special data

types at the lower level of abstraction ofimperative languages and pointers

(Section5.1) (this has already been partially discussed in Section4.1, the

Glide Grammar). It then examines the higher level approaches to characteriz-

ing these types that are found in theformal and declarative languages used in

the areas mentioned (Sections 5.2 through 5.5), so that they can be compared

to Glide. Finally, in Section 5.6, an illustration of why this issue is so closely

related to the connection-based paradigm of GBVLs is provided.

5.1 Data Types in Imperative Languages with Pointers

This section presents a series of examples of definitions of complex

data types and illustrates the implementation of instances of these types with

pointers in imperative languages. Each successive definition represents a class

of data type which is more expressive. The purpose of this series is to show

how the final examples correspond to the types found in Glide.

91

Basic composite data type

The simplest form of composite data type is one in which primitive

types are composed and can be manipulated and as a unit. For example, the co-

ordinates of objects in 2D-space might be represented through the following

composite type definition (using Glide-style notation).

COORDINATE == X-coordinate: INTEGER

Y-coordinate: INTEGER

Label: STRING ;

Such a type can be instantiated for all combinations of values of each of its

component primitive types. Thus the set of values (instances) of the typeCOOR-

DINATE is the set of values of the cartesian product of the domains of each com-

ponent (INTEGER x INTEGER x STRING). All modern programming languages

provide at least this level of type definition facility.

Recursive types I: lists

A next higher level of expressiveness in composite types is to allow

type definitions to berecursive. In this case the definition of a new type in-

cludes the type being defined. The simplest example of a recursive type is a

list. For example, the type definition

LIST == Label: STRING

Tail: LIST ;

is a composite type in which one of the fields contains a value also of type

LIST. Instances of this type are lists whose elements are strings.

In an imperative language it is possible to make use ofpointers to repre-

sent instances of this type. A pointer is a memory location which contains a

value which identifies another memory location. Instead of assigning the value

of a primitive type to the component field Tail, a pointer which is the address

92

in memory of the first element of the tail of the list is assigned to the field. A

picture of such a list instance might be the following

This informal graphical depiction illustrates the concrete pointer-based imple-

mentation of an example list. Adereferencing operation must be used to access

the tail. Imperative languages such as C or Pascal require the use of a special

annotation in the type definition (e.g., *LIST) to indicate the presence of a

pointer to a given type. The dereferencing operator and this annotation bring to

the surface an aspect of the implementation which would ideally be hidden

[Hoare75]. A recursive type does not restrict the size (length) of the instances.

This introduces the issue of dynamic structures whose size is only known at

run-time and may vary during the course of program execution. A list defined

in this way can be viewed either as a linked list or as a recursive containment

as illustrated by the two diagrams in the figure below (taken from [BL86] p.

83).

Recursive types II: trees

A simple generalization of the list type is the tree type. Trees can also

be conveniently represented using recursive type definitions. For example, the

following defines a binary tree type.

a b c

Figure 5-1 Pointer implementation of a list

a b c

Figure 5-2 Two views of a recursive type : linked list or
containment (from Guttag and Liskov p. 83)

a b c

(i)

(ii)

93

BTREE == Label: STRING

Lbranch: BTREE

Rbranch: BTREE ;

Instances of such a type can be similarly implemented with pointers, as is illus-

trated here.

These definitions can be naturally extended to trees with other branching fac-

tors. So called general trees in which the branching factor varies can also be

handled in a pointer-based implementation by using (dynamic) lists of point-

ers, e.g.:

(A represents some implementation of a list.)

Recursive types III: grammars

A different extension of expressiveness is to allow a composite type to

contain different combinations of types. These are sometimes termed variants

or constructors:

EXPR == Fexpr :(Flt1:FLOAT Op:OPERATOR Flt2:EXPR)

a
b g

f

d e

c

Figure 5-3 Implementation of a Binary Tree

a
b g

f

d e

c

g

Figure 5-4 Implementation of a General

94

|Iexpr :(Int1:INTEGER Op:OPERATOR Int2:EXPR);

In this example an instance of typeEXPR can be either the combination of a

FLOAT, anEXPR, and anOPERATOR or anINTEGER, anEXPR, and anOPERATOR.

The variants are distinguished here by the tagsFexpr andIexpr. This exten-

sion provides a type definition language with the same level of expressiveness

as context free grammars, the notation being equivalent to BNF. A type defini-

tion corresponds to a production and each direct or mutual recursion between

type definitions corresponds to a recursive use of productions in a grammar. A

data type of this class can be used to specify a set of instances which corre-

spond to the parse trees of sentences of a given language. A program in the lan-

guage thus corresponds to a tree instance of such a type. Hence, the

specification meta-languages for automatic programming environment genera-

tors discussed earlier (Chapter 3) allow the user to specify a language as a data

type from this class.

Shared Structures

A dif ferent form of generalization is to allow instances of recursive

types in which parts of the instance structure areshared. It is possible to take a

type definition that is of the same form as the previous one for binary trees,

BDAG == Label: STRING

Branch1: BDAG

Branch2: BDAG;

but create an instance for the type which is not a tree but an acyclicgraph. The

diagram below illustrates an example (again, at the level of implementation

with pointers).

a

e

c d

b

Figure 5-5 Implementation of a Shared

95

Admitting such structures to be legal instances of the type introduces the first

problem for the formal specification of changes to such instances. If the value

(in the sense of the previous examples) of the DAG rooted ata is modified by

modifying c it has theside effect of modifying the value of the DAG rooted at

b. The component labelledc is shared by both the instance rooted ata and the

one rooted atb. Admitting side-effects violates the requirement of referential

transparency of a declarative formal description. Instances implemented as

DAGs encounter the problem of side effects through structure sharing. This

problem of structure sharing occurs whenever a component object has more

than one “parent”.

Cyclic shared structures

A further step in increasing expressiveness is to allowcyclic structures.

Using the same form of type definition:

BDG == Label: STRING

Branch1: BDG

Branch2: BDG ;

the following instance could be admitted:

In order to admit the structure that isimplemented with pointers as illustrated,

it is necessary to remove a further restriction. In the previous categories only

the typedefinition was recursive. In the case illustrated above theinstance of a

typecan also “contain” itself as a component. This is recursion in the instance

rather than in the type - a recursive instance, though the termscyclic structure

or circular structure are more commonly used. Circularity can be thought of as

a b

f

d e

g

Figure 5-6 Implementation of a Cyclic

96

a special case of sharing in which the shared item and sharing item are the

same [Lev78]. The cycles in such structures cause further problems for declar-

ative formal descriptions of structure manipulation. This is essentially because

such descriptions rely on the ability to traverse a well-founded data structure,

which a cyclic graph is not. A naive structural equality test of two cyclic in-

stances, for example, would not terminate because it will get caught in a loop.

Note that cyclic structures can only occur as instances of a set of types

that are recursive, but it is not necessary that a set of types be recursive for sim-

ple, non-cyclic sharing to occur.

GBVLs and shared/cyclic types

The use of structures with sharing and cycles are surprisingly common,

especially in interactive systems which need a way to represent the intercon-

nection of objects. For example, hypertext systems allow links between com-

ponents of a document without restriction, so that the structure of the

document as a whole can be an arbitrary directed graph. CAD/CAM modelling

packages contain data structures for 2-D and 3-D geometric modeling. These

models have cyclic pointers to represent the topological properties such as the

interconnection between volumes, faces, edges, vertices. Graphical user inter-

face toolkits allow an interactive graphical interface to be created by compos-

ing small interactive objects (“widgets”) into a complete interface for given

application. The neighboring relationships between such objects are often cap-

tured with inter-object references which may be cyclic [ET++89].

The area of concern for Glide, interfaces for GBVLs, is another applica-

tion area in which these kinds of structures are needed, as the description of

Glide in the previous chapter has already illustrated. Classical notations for de-

fining the structure of programming languages are essentially describing tree-

based structures. The program is viewed as a hierarchical decomposition of the

text string. The Glide view of GBVLs is, however, that components are not

only parts of other components, but they may also be connected to each other.

This adjacency is defined mutually: If two objects A and B are connected, this

97

can be represented by the fact that A has a property identifying its connected

neighbor as B and B has a property identifying A. When properly exploited,

this mutual definition approach provides very compact, direct, versatile, and el-

egant way of capturing the logical structure of connected and composite ob-

jects of a GBVL. Such cyclic definitions must be considered with care because

they can cause problems, as has already been alluded to and will be shown in

more detail in the next sections.

The complete Glide Grammar type system is an extension of the exam-

ples that have just been described. The notion of variants is added with the al-

ternation operator (|); the distinction between ordered and undordered

combination is added with the aggregation operator (.); a means of expressing

commonality is added by combination of alternation and aggregation; and fi-

nally the postfix annotations (* and **) are added to express lists and sets di-

rectly.

Having described how these kinds of data types can be captured at the

lower level of abstraction of imperative languages, the different ways they

have been characterized in formal declarative languages is now examined.

This essentially involves avoiding the explicit use of pointers, as is done in

Glide and is advocated in [Hoare75]. Section 5.2 examines functional languag-

es, Section 5.3 abstract data types, Section 5.4 data base models, and

Section 5.5 notes a few other areas in which this issue has also been addressed.

5.2 Functional Languages

Functional languages (such as ML, Miranda, Pure Lisp, etc.) allow a

more abstract view of data types than the pointer implementations just illustrat-

ed. Functions accessing and manipulating instances of the types (values) can

be defined abstractly and in a way independent of their implementation. Two

functional languages are used here as illustrative examples, first ML [Paul]

and then Miranda [BW88].

98

ML

As its name suggests (Meta Language), one of the primary purposes of

ML is to describe languages, and thus it is well-suited to applications centered

on representing language structure. The data type definition constructs of ML

can be used to describe sets of trees which correspond to programs of a lan-

guage.

If ML were used to capture the structure of the nodes and links of Petri

Nets in the same fashion as Glide, the following set of ML recursive data type

definitions might be appropriate:

datatype
Node = NODE of NodeName

* I
* O and

 I = INPUTS of Edge list and

 O = OUTPUTS of Edge list and

 Edge = EDGE of Node
* Node ;

In ML, the keyworddatatype introduces a data type definition and the key-

word and is required in ML when defining a set of types which are recursive.

For simplicity this definition has omitted the use of variants, but ML does pro-

vide them (they are known as typeconstructors) to allow creation of a given

type out of different combinations of other types.

The set of type definitions above is accepted by the ML compiler and

there is no need for any visible use of pointers for the user of ML, either in the

definition of the type itself or for functions using the types. The problem with

this composite type definition is that instances that are cyclic cannot be creat-

ed; only instances which correspond to trees can be instantiated. In order to

preserve referential transparency as required in ML, an instance of a type can

be created but cannot be changed. A small change to part of an instance can

only be modeled by constructing a completely new copy of the structure with

the small change. The problem of side effects in shared structures does not

arise since update-in-place is not available, but the consumption of time and

99

space due to copying structure for every change soon becomes prohibitive. A

further consequence of this requirement for referential transparency is that it is

not possible to create cyclic structures: one of the components of a cyclic in-

stance is the instance itself which, by definition, hasn’t been created yet. These

problems can also be viewed as a consequence of thestrict functional seman-

tics of ML.

It is because cyclic structures are so useful in real programming prob-

lems, however, that ML does include an imperative extension,reference types,

which are similar to pointers. Theref keyword is used to specify a reference

type. The following changes to the previous definition is how the Petri Net

type could also be defined in ML.

datatype
Node = NODE of NodeName

* I
* O and

 I = INPUTS of ref Edge list and

 O = OUTPUTS of ref Edge list and

 Edge = EDGE of Node
* Node ;

The only difference between this definition and the previous one is the addi-

tion of theref qualifiers in the definitions of theINTPUTS, OUTPUTS, andEDGE

types. The reference type extension to ML can be used in conjunction with de-

structive assignment (:=) to create cyclic structures. This requires a notion of

change of state and thus lies outside the functional model. In ML, support for

imperative programming is closely associated with the use of reference types.

It is not possible to create cyclic instances of recursive types without using

ref. The solution to the need for cyclic structures is in ML to stop being declar-

ative.

100

Miranda

Miranda is a lazy functional language with an elegant minimalist syn-

tax. The analogous definition of nodes and links in Miranda is shown here:

node ::= Makenode nodename
inputs
outputs

inputs ::= Makeinputs [edge]

outputs ::= Makeoutputs [edge]

edge ::= Makeedge node
node

nodename ::= Makenodename [char]

In Miranda square brackets ([]) are used to indicate a list of elements of a giv-

en type.

In contrast to ML, cyclic instances of this typecan be created in Miran-

da, without requiring an imperative extension. There are two ways to explain

why this works in Miranda. At the abstract level, Miranda is a lazy functional

language, so a value can be used before it is created, and hence it is possible to

create an object out of itself (the cyclic case). At the underlying implementa-

tion level, all values in Miranda are accessed by always dereferencing from a

pointer. Thus the pointer to an object can be created and used before the object

itself is created. Structures which are implemented as cycles in Miranda are

viewed asinfinite structures, because at the functional level of abstraction they

can be regarded as such - the underlying pointer structure is not visible and not

accessible. Traversal operations (such as printing of an infinite structure) do

not terminate. A problem with this approach is that a cyclic list composed of

two elements (containing the same value) cannot be distinguished from a cy-

clic list of one element (containing the same value). Both have the same value

of being an infinite list of the value.

101

In contrast to ML, Miranda does not “break symmetry”. When theref

construct is used in ML, the definition of INPUTS andOUTPUTS is different from

the other type definitions. In Miranda and Glide this does not happen.

The issues of sharing and cyclic structures are well known problems of

functional languages and various solutions have been proposed. One proposed

solution that avoids “recreating the entire data structure” after any change to a

data structure is described by Burton and Yang on the use of multilinked data

structures in functional languages [BY90]. This solution “hides” the change of

state as auxiliary heap data structure which must then be passed as an extra ar-

gument between functioninvocations. It is possible to reduce the amount of

copying by carefully sharing structure between the successive heaps associat-

ed with each function invocation. Though this approach does permit cyclic

types, it is still far from and ideal solution since it simply defers the problem of

structure re-creation to this auxiliary structure which in effect represents the

state of the system. The problem of dealing with state and functional languages

continues to receive attention in research on functional languages [FLS93].

5.3 Abstract Data Types

Work on the formal specification of abstract data types is similar to the

work in functional languages in that both strive for concise declarative abstract

descriptions of data types and functions operating on them.In the same spirit

as functional descriptions, thealgebraic approach to specifying abstract data

types (ADTs) allows the semantics of such types to be defined via algebraic

equations interrelating the functions [Gut78]. The intent behind the algebraic

specification of abstract data types is to characterize the behavior of a data

type without needing to appeal to any particular implementation (pointer-

based or otherwise)1. The problems of dealing with shared and cyclic struc-

tures have also been investigated here:

1 This ideal is in some sense at odds with visual programming and program editing in
general, since the data type instance (the program) is intended to bevisible for
direct manipulation by the user, not hidden.

102

The thesis of M.R. Levy has directly addressed the problem of extend-

ing the ideas of algebraic specification of abstract data types to incorporate

shared and circular structures [Lev78]. Two solutions are proposed to provid-

ing an abstract description: (i) providing an explicit algebraic characterization

of the use of references and assignment by relating references to a special no-

tion of congruence and (ii) by relating circular structures to infinite objects in

continuous algebras. Sets of equations are used to characterize sharing in in-

stances of a type. These sets of equations play a similar role to that of the shape

predicates of Glide in characterizing the loops.

Moller [Mol85] also addresses the problem of shared and cyclic struc-

tures from an abstract mathematical perspective on algebraic specification. He

proposes a solution to the inability of algebraic formalisms to describe graph

structures in which a graph is characterized as a repeating pattern in an infinite

tree. This resembles the Miranda view of cyclic structures as infinite struc-

tures. The repeating pattern is similar to the notion of congruences of Levy. So-

lutions of Moller and Levy require a high degree of comfort with abstract

algebraic techniques.

Graph Types

More recent work by Klarlund and Schwarzbach [K&S93] also exam-

ines the problem of capturing cyclic structures as a data type (which they term

graph types). The authors provide a simpler yet effective way of formalizing at

least a subset of graph structures as abstract data types. The key ideas are to

first identify an underlying spanning tree of a graph structure and then to use a

simple language based on regular expressions to define the remaining links

which span the tree. These regular expressions are termed routing expressions

and are similar to Glide path expressions. The authors demonstrate that this

technique makes it possible to describe a wide class graph structures including

doubly linked lists, threaded trees, and binary trees with the leaves linked to

the root. They also note however that some structures are not amenable to this

form of description. The graphs defined by their routing expressions are func-

103

tions of the underlying tree,i.e., for a given set of routing expressions and a

given tree it is not possible to have more than one graph. A further disadvan-

tage that this technique shares with ML references is that symmetry is broken

since the one path to a node on the spanning tree is distinguished from the oth-

ers described by routing expressions. The contribution of this work is that it is

possible to identify subclasses of general graphs which, because of some

unique property, can be characterized in a simple way - in this case through

regular expressions on paths in a tree.

It is instructive to compare the syntax and semantics of lexical compo-

nents of K&S routing expressions with those of Glide path expressions. The

rough correspondence between them is shown in the following table:

Though the syntax of K&S routing expressions is richer, the Glide data model

is more abstract than the data model of K&S. Glide incorporates representing

sets and lists directly in the type, hence the extra routing expression constructs

are not needed in Glide path expressions.

K&S Glide Meaning

↓x .x access component tagged x

↑ ..x access parent (identified through x)

^ test if node is root

$ test if node is leaf

T test if parent of type T

T:v x.w = x.v test if component is of type T variant v

(expr)* @(expr) repeat zero or more times

() regular expression composition

+ regular expression alternation

104

5.4 Database Models

The issue of shared and cyclic structures also arises in work on develop-

ing models of data bases, especially when the goal is to find more expressive

data models than the relational one.

5.4.1 Model of Network Data Bases

Network model data bases have faced similar issues; these data bases

represent an early case of attempting to deal with references/pointers. The

work by Gangopadhyay [DG83] provides a formal model of network data

bases (“DML”). In this model the same problem of shared mutable data struc-

tures is explicitly considered. Here, the solution used is to distinguish between

the concept ofidentity of a data item as distinct from itsvalue. The identity of

a shared component of a data structure does not change, only the value associ-

ated with it. An auxiliary look-up data structure (the “type-state”) is used to as-

sociate identities with values. This auxiliary structure is described using a state

transition model. This solution is thus similar to the Barton’s solution in func-

tional programming.

5.4.2 Object-Oriented Data Models

Object-oriented data models are useful for representing data that has a

more complex structure than can be naturally represented by the more rigid re-

lational model. Object-oriented programming languages have been described

as languages which provide extensive support for dealing with and controlling

the use of pointers. The following comments by Stroustrup [ARM91] also al-

lude to the issue under consideration:

“One of the most powerful intellectual tools for managing complexity is
hierarchy, that is, organizing related concepts into a tree
structure......Naturally, this organization has its limits. Sometimes even a
directed acyclic graph seems insufficient for organizing concepts of a
program; some concepts seem to be inherently mutually dependent. If a set
of mutually dependent classes is so small that it is easy to understand, then
cyclic dependencies need not be a problem.“

105

K&S also note the close relationship between their formal specification of

graph types and work on formal models of object-oriented programming, be-

cause of the need to deal with mutual reference between objects in the latter.

5.5 Other Areas Addressing Cyclic and Shared Types

This section notes a few other areas in which the issue of sharing a cy-

cles in data structures also appears.

5.5.1 Parallelizing Compilers and Pointer Structures

The issue of sharing is also of concern to designers of parallelizing

compilers. These compilers attempt to identify various forms of dependencies

in programs. If the compiler can identify the type or the absence of dependen-

cies it may then be possible to partition a program into independent pieces

which can be executed separately. Most of this work has focused on array de-

pendencies but Hummel, Hendern and Nicolau [HH&N92] have examined the

problem in the context of arbitrary (pointer-based) C data structures. In these

structures, dependencies due to sharing (the term used here is aliasing) can pre-

clude parallelization.

The scheme used by HH&N is in effect the dual of Glide shape predi-

cates. HH&N define a language (orginally ADDS and subsequently ASAP)

which allow the definition of predicates (called aliasing axioms). They are

used to specify where sharing that does not occur. The reason for this is that in

the task of parallelizing programs the goal is to identify those parts of a struc-

ture which are not shared, do not carry dependencies, and therefore the pro-

gram statements accessing might be safely executed in parallel. These

references may be named, in which case dependency detection is quite easy, or

they may be anonymous in which case dependency detection is more difficult.

The languages based on aliasing axioms are used as by the programmer to de-

scribe his/her data structures so that the compiler can exploit the information

contained in them to produce parallel code which will not violate the depen-

106

dencies. The aliasing axioms of ADDS and ASAP use path expression which

are also based on regular expressions of names of members of C structs.

The aliasing axioms fulfill a similar role to Glide shape predicates in

that they provide the extra higher level description of the structures that is

needed to characterize them more accurately.

5.5.2 Galois

Recent work by Turpin combines the use of pointer-based data struc-

tures with a declarative logic-based language. Though the approaches are very

different, this is similar in intent to the references of ML in that they both make

pointers first-class objects in the language and then attempt provides a formal

semantic characterization of these objects as part of the language.

5.5.3 Graph Grammars

The work in this area takes a somewhat different approach to character-

izing graph structures. Classes of graphs are described by collections of graph

rewriting rules. A graph grammar is a collection of rules to change graphs by

first matching and then altering parts of the graph structure. These rules are of-

ten graphically depicted. Graph grammars sidestep the issue of cyclic types, by

avoiding representing data structures in a linear text form. The problem of cir-

cular structures is hidden by dealing with pictures of graphs directly. The diffi-

culties encountered in attempting to find a concise standard textual notation

for graph rewriting is an indication of the underlying problem of cyclic struc-

tures [Ehr90].

5.6 Dynamic Structures, Anonymity, and Connections

This survey of the different approaches to describing shared and cyclic

structures shows that there is an underlying issue of whether or not to associate

explicit names (a pointer is a kind of name) with objects so that these names

can be used to refer to the objects in the graph. The desire to avoid using names

can best be illustrated by the following diagram showing a simple manipula-

tion in a simple graph - the exchange of two nodes in it.

107

Consider the node swapping operation indicate by the . In the

top diagram (i) it is evident that the before and after graphs are isomorphic;

without labels; no discernible change has occurred. However, if the objects are

given identifiers then a changehas occurred (ii). Any linear text representation

(iii) of graphs requires some form of identifiers, and then it is not immediately

obvious that the graph has not changed. In the graphical case (i) the abstract

“identity” of the objects comespurely from their mutual attachment to other

objects. The intent behind the pointerless, nameless approach of Glide to cy-

clic structures is to preserve this abstract quality. It is by assigning identifiers

the anonymous quality of objects in the graph diagrams is lost.

5.7 Summary

This chapter has put the Glide data type model into context by relating

it to work on other declarative models of data types. These models either do

not admit sharing and cycles, do allow them with special annotations, or do al-

low them with auxiliary means of specifying where cycles and sharing are per-

mitted. Glide is of the latter form. The Glide grammar is used to specify the

V = (a, b, c, d, e)

E = ((a,b), (b,c),(a,c), (d,e))

V = (a, b, c, d, e)

E = ((a,e), (b,e), (a,e), (d,c))

a b

c e

d a b

ce

d

(i)

(ii)

(iii)

108

basic compositional structure of types and then shape predicates are used to de-

fine and constrain the use of cycles and sharing. The uses of various forms of

path expressions for expressing paths through the structure on which the char-

acterization of cycles is based was also described. The chapter has also demon-

strated that the issue of managing cycles and sharing in data structures arises in

a wide variety of application areas. The reason the issue arises in Glide is that

the components of graph-based visual languages that are manipulated by a user

in the interface are inherently mutually defining; each gets its identity from the

other components it is attached to. Simple predicates based on path expres-

sions (as others have found as well) allow a concise characterization of many

shapes of sharing and cycles.

109

Chapter 6

Glider Design and Implementation

This chapter describes the design and implementation of Glider, the sys-

tem that generates interactive graphical programming environments for GBV-

Ls from their Glide specifications. Such a programming environment allows

the user to edit, view, execute, and animate programs “written” in a GBVL.

Glider consists of two main parts, acompiler which translates the various parts

of a Glide specification into programs, and arun-time library (RTL) which pro-

vides a set of procedural abstractions which are used by the programs.

Section6.1 provides an overview of how the Glider system is used.

Section6.2 describes the high level design of the Glider compiler and of the

programming environments (composed of the programs generated by the com-

piler and the RTL they are linked to). Section6.3 discusses the choice of target

language and GUI library used. Sections 6.4 and 6.5 present the Glider imple-

mentation in detail: Section6.4 describes the procedural abstractions and a col-

lection of run-time components, each handling specific tasks, that form the

Glider RTL; and Section6.5 describes the program generator components that

form the Glider compiler. The structure of Section6.5 follows that of Chapter

4 since there are separate compilation algorithms used for each part of the

Glide specification language.

Overall, the last three sections provide abottom-up description of Glid-

er: they start with the languages and libraries needed to support the RTL, then

progress up through the levels of abstraction within the RTL, and finish by

showing how the Glide high level specifications are compiled into procedures

which make calls to the procedural abstractions provided by the RTL (its API).

110

6.1 Overview of Glider

It is important to clearly distinguish the two phases of activity associat-

ed with Glide:generating the programming environment for a given GBVL

andusing the end product that is generated - the user interface for developing

programs in the GBVL. The left and right halves of Figure6-1 below illustrate

the relationship between these two activities.

Programming Environment Generation

In the generation phase, the Glider compiler is invoked in order to com-

pile a specification, written in Glide, that a language designer has developed to

Figure 6-1 Generation of a Programming Environment vs. its Use

Glide Specification

Glider

Petri PE

Petri

instrumented

Compiler

Petri PE

Animation

 of Petri PE

Petri
Compiler

Programming Environment Generation Programming Environment Use

1

5

6
3

2

7

8

Petri executable

Petri Program

9

Glider RTL

Compiler

PL and GUI Library

 Glider
RTL

4

Petri language
Designer

Petri
Programmer

PL = Programming Language
PE = Programming Environment
GUI = Graphical User Interface
RTL = Run-time Library

111

specify the programming environment for his/her particular GBVL. In the dia-

gram above the example GBVL is called “Petri” . Executing Glider gener-

ates an executable program. This program is the programming environment

for Petri. The program, the output of Glider, is in the form of source code in a

standard programming language which can subsequently be compiled and

linked to the Glider RTL in order to create the complete executable. Parts of

the RTL access routines of a standard programming language library and GUI

library .

Glider does not itself compile programs of a given GBVL, it only gener-

ates a programming environment for developing them. It is the separate respon-

sibility of the language designer to write the compiler for the language itself

. In order to allow programs to be animated, they must be appropriately in-

strumented by the compiler with functions that report changes relevant to the

abstracted execution of the GBVL (that the designer provided in Glide specifi-

cation), so that the changes in the executing program are communicated back

to the interface. (However, abstract execution of programs, based on only the

GBVL Glide execution semantics, is possible, and is described below).

Programming Environment Use

In order for a user to program in the GBVL (Petri, in this case), the

Glider-generated programming environment is executed, causing an interac-

tive graphical user interface to appear on the screen ready for user interaction

. The user can then create and manipulate Petri language programs through

the editing commands that the designer specified. These commands update the

underlying Program Instance Network (PIN) that represents the program. The

different parts of the program are visible through views of parts of the PIN that

the designer specified as Glide queries. When the user has completed editing a

Petri program , a representation of the program appropriate for the Petri

compiler is extracted from the PIN and is passed to the compiler to generate an

executable of the program . This executable is run, having been instrument-

ed with reporting functions. These functions are invoked as the program exe-

1

2

4

3

5

6

7

112

cutes so as to relay changes of program state back to the PIN. The changes

trigger animations which illustrate the behavior of the executing program to

the programmer . The programming environment thus provides a “closed

loop” which allows the programmer to interactively develop programs and

modify them after viewing their behavior in animations.

Internal or External Execution

The execution within the PIN is driven by a combination of the abstract

execution specification and changes to the PIN that represent the state of exe-

cuting program. The reporting functions invoked during program execution

maintain a consistent “mirroring” of the state of the executing program and the

PIN. Procedures derived from the Glide actions that specify the abstracted exe-

cution semantics are executed in response to changes in the mirrored state.

These ensure that the executing program and the program as represented in the

interface stay in step. The figure below illustrates this basic idea of maintain-

ing consistency between the state of execution as modeled in the PIN and the

state of execution in the real program:

The actual program may undergo many low level state transitions while

the PIN only undergoes one “high level” transition (since it has an abstract

model of the program execution). Each change in the PIN is triggered by state

changes relayed by the reporting functions.

The abstract execution specification can be used in two ways, internally

or externally:

(i) Internal Simulation - It is possible to specify the execution seman-

tics of a language completely within Glide. In this case the language designer

8

9

executing program changes ->

PIN changes ->

functions reporting changes ->

time

113

is effectively specifying a (slow) interpretive simulator and no separate lan-

guage compiler (or instrumented executable) is required. The Glide execution

semantics condition-action rules specification is compiled into a set of proce-

dures that access and alter the PIN data. If the conditions on values in the data

of a particular rule are met, the rule can fire and operations are invoked to up-

date values in the PIN data structure.

(ii) Tracking External Execution - If the execution semantics of the lan-

guage are not fully specified within Glide, the abstract execution specification

is used to track and to verify the execution of the actual program. After each

h igh l eve l t r an s i t i on , t he i n t e r f ace wa i t s un t i l t h e r epo r t ed s t a t e

variables change as expected. If the abstract specification is non-deterministic

- at some points during execution one of several possible transitions may occur

- then the reporting functions are used to indicate which particular transition

actually occurred in the real program (e.g.: the actual node that fired out of the

several enabled nodes, or which branch of a condition was taken).

114

6.2 Design of Programming Environments and Compiler

From a functional point of view, a complete programming environment

system program consists of (i) the routines generated by the Glider compiler,

(ii) the routines in the RTL, and (iii) the routines provided by the libraries of

the target language and the GUI system. This section first describes this archi-

tecture, i.e., the contents of (i), (ii), and (iii) and the interfaces between them.

It then describes the design of the compiler itself, which generates (i).

6.2.1 Programming Environment Design

From a data structures point of view, a complete programming environ-

ment system consists of (i) sets of user interface widgets which are on-screen

visual representations of instances in the PIN (representing parts of, say, a Pet-

ri program), and (ii) the PIN itself. Front-end user events (e.g., mouse and key-

board) are translated into widget-specific events by the GUI. These events then

invoke commands whose actions were defined in the Glide specification. The

actions are implemented as (generated) procedures which, descending through

several layers of abstraction, perform updates to the PIN. The PIN updates are

then reflected back on the screen by passing updated information back to the

widgets (creation, deletion, modification of values of their properties). Back-

end execution events from a running program also cause PIN updates:

Various components of the RTL maintain the consistency between in-

stance creation/deletion and value changes in the PIN, and the widgets and

widget property values that represent them. Changes occur first to the PIN and

then to the user interface widgets. The widgets are thus functionally dependent

on the PIN; they always reflect the current state of the PIN. The interface wid-

gets themselves are supported by a data structure which is internally managed

by the GUI library. The management of the PIN is achieved through a set of

User Interface

widget updates

PIN

PIN updates

visual changes

user events

execution reporting events

Program

115

layered components in the RTL. There are effectively three layers of abstrac-

tion in the RTL. Each will be described in turn in Section6.4.

6.2.2 Compiler Design

The Glider compiler consists of several sub-compilers, one dedicated

to translating each part of a Glide specification, as is illustrated in Figure6-2,

an expanded view of the lower left of Figure6-1 . Each sub-compiler trans-

lates its particular part of a specification by creating an abstract syntax tree

(AST) for it and then generating code from the AST.

2

Figure 6-2 Detailed view
of Glider Compilation

Class

Execution
Procedures

Glide Grammar

Glider Compiler

A Glide Specification

2. Queries
Sub-compiler

3. Actions
Sub-compiler

View
Editing

Animation

Query

Procedures

Procedures

Action Specifications

Procedures

Standard Language Compiler

1.Class Generator
Sub-compiler

Linker

Executable

Specifications

Shape
Predicates

Glider
RTL

Shape

Procedures
Definitions

Verification

116

The most significant part of the sub-compilers are their code genera-

tors. All the code generators share a common object-oriented design. Each

AST is composed of a set of AST nodes which are objects created from class

definitions which encapsulate the semantics of Glide language constructs.

These AST node class definitions contain methods for computing variable

bindings, semantic checks, symbol table manipulation and access, and pro-

gram templates used in the generation of source code associated with the par-

ticular Glide language construct (Figure 6-3). Depending on the particular sub-

compiler, the AST may be traversed (passed) one or more times, invoking spe-

cific methods from the classes during each pass. Each AST node class contains

methods which may be invoked for the particular pass.

Using an object-oriented design for a compiler is becoming more common

with the widespread availability of object-oriented programming languages

(OOPLs) such as C++ (e.g., [New94]). This modular design has several bene-

fits. The standard benefit of programs written in an object-oriented manner,

that they are more easily modified and extended, makes changing and extend-

ing the Glide language simpler. The design also allows the generator to be

more easily retargetable. It makes it possible to create executables which are

written in new languages and/or use new GUI libraries, by just modifying the

code templates stored in the AST node class definitions, and porting the RTL

to the new language.

Figure 6-3 Object-Oriented Compiler Design

AST node class A

CodeTemplate: “for <V1> in ...”

BindMethod:procedure bindV1()

AST node class B

CodeTemplate: ”while <V3> ...”

BindMethod:procedure bindV3()

Root

CodeTemplate:
BindMethod:

117

6.3 Target Run-time Environment

In the demonstration system that was built, the Glider compiler gener-

ates programs in the interpreted language Tcl and the Glider RTL consists of

programs implemented in a combination of C and Tcl and they use the GUI Li-

brary Tk [Oust94]. Though the demonstration system has been implemented to

target this particular substrate, the compiler is designed, as has just been de-

scribed, to allow easy retargeting to other substrates (e.g., C/C++/Motif). It is

possible to target both compiled and interpreted languages. In the former case,

source code that is generated is further compiled and linked as is illustrated at

the bottom of Figure 6-2. The latter case is more simple since no secondary

compilation is needed; the source code generated by the Glider compiler is

simply concatenated with the RTL source and fed to the interpreter at run-time.

The example segments of generated code and the algorithms listed in follow-

ing sections are given in a simple pseudo-code, reflecting the fact that almost

any standard language/GUI library could be targeted by simple modifications

to the code generators.

Implementation Language

Tcl is an interpreted language which, in combination with its GUI wid-

get library Tk, provides a high level target for the generator and the RTL. Tcl is

a simple high level language that provides built-in support for string and list

manipulation. Tcl also provides a tight and elegant interface to its associated

GUI library Tk. This substrate allows the generated programs to be small and

fairly simple. Tcl also has various object-oriented extensions, one of which,

itcl, was used as the implementation language for PINs in the demonstration

system [ITCL94]. The Tcl/Tk target environment was chosen for speed and

ease of development of the demonstration system.

GUI Libraries

GUI libraries are still undergoing rapid change, but a number of stan-

dard libraries that are in widespread use have emerged over the last few years.

These standard libraries, such as (Motif [Mot93], Microsoft Windows[MSWin],

118

andMacintosh System 7.x) have a great deal in common. They provide similar

forms of user interaction widgets such as command menus, pop-up menus,

check boxes, type-in dialog boxes, etc.

Newer GUI libraries that are currently being developed seek to extend

the breadth of forms of interaction with new widgets, and raise the level of ab-

straction provided for programming or specifying a complete interface. The Tk

system provides a core of the common forms of widgets but it also and allows

extensions to be easily incorporated. A number of GUIs developed and de-

scribed in the research literature have included a “graph widget” extension

[PT90,RDM+87,GNV88,Him89,daV93,Dea92]. The Appendix provides a short

summary of these extension packages. These widgets support the display of

connected objects (nodes and links). Efficient layout algorithms for graphs,

which are needed for these displays have also been the subject of extensive re-

search [GDr93,DH89,ET89]. A basic requirement for supporting the intercon-

nection paradigm for GBVL programming environments is good support for

such graph displays. Good support includes the ability to perform fast automat-

ic layout of nodes and links of arbitrary sizes, the display of ports, the labeling

of nodes, links and ports, support for hierarchical graphs, multiple links be-

tween the same nodes, etc. After an evaluation of available graph widgets, the

dot/dag graph display libraries were integrated into Tk for the demonstration

system [GNV88].

The Tk library has good support for dynamically creating and modify-

ing nested widgets through the use of “frame” widgets for composing widgets

together and treating them as a unit. These nested widgets are exploited to di-

rectly reflect the recursive structure of GBVL specifications in the Glide Gram-

mar.

119

6.4 Glider Run-time Library

The Glider RTL consists of a set of components and it has a three-level

layered set of procedural abstractions for implementing these components and

supporting the compiler-generated programs. This section first describes each

level (Sections 6.4.1-6.4.3) and then the components that are built using them

(Section6.4.4). In addition to providing a clean structuring of the RTL, these

levels of abstraction also define interfaces for portability - the RTL can be

moved to a new run-time environment by re-implementing it at the level most

suitable for the new target environment.

6.4.1 Level-0: Access and Alteration of Objects

Viewed at the lowest level of abstraction, a PIN is implemented as a set

of objects defined by classes. The class definitions are generated from the

Glide Grammar specification; there are one or more classes for every Glide

production (type). The objects contain the following data:

• PIN Data: The classes contain data members corresponding to tags of the
Glider production. These members can contain either the value of a
primitive type (integer, real, etc.), a reference (id, name, pointer) to another
object, or a list of references to other objects.

• Meta-Data: The classes contain data members which storemeta-data about
the PIN data. This meta-data includes the names and types of the PIN data
members, whether the member represents a single item (SINGLETON), a
collection (SET or LIST), whether the member is from a Glide alternation
(CHOICE) or part of an ordered sequence (SEQUENCE), and the number
of alternation choices and their tags. The including of meta-data in classes
is a very common practice in object-oriented systems. Some object-
oriented languages provide direct support for it (e.g., Smalltalk), while in
others, such as C++, it must be implemented by the programmer. In the
case of Glide this information is simply a re-representation of some of the
symbol table data that was created when parsing the Glide productions. It
is included in the classes so that it is available to the next higher level
routines which make use of it.

120

• Back Pointers: The objects also contain back pointers. Back pointers
implement an inverse mapping from an object to each of the objects that
refers to the given object (contains a pointer to it). Each back pointer has
associated with it the name of the tag through which an object references
the given object. Note that more than one back pointer may have the same
tag. These back pointers are used, for example, in implementing the double
dot “uppath” Glide path expression operator. Back pointers are
automatically maintained by the RTL as objects and references are created
and destroyed.

• Widget Pointers: These are back pointers to widgets. Each object contains
a list of all the widgets currently displayed on the screen that represent the
object (in one or more windows). This list is used, for example, to
implement highlighting of all the widgets that represent an object when
one of the widgets representing it is selected, or for animating all the
widgets when the object is updated during execution. There is a one-to-
many mapping of objects to widgets.

• Graphical Attributes: The graphical attributes provided in a Glide
specification are simply implemented as additional members of the classes.
The graphical attributes can be associated with a Glide production or with
specific tags in the production.

Since all the information used is “flattened” out into data members of

the classes at this level, the following small core of procedures is all that is

needed to manipulate and access the objects1:

create: class → objectid

Creates an object a given class, returns anidentifier for the object.

destroy: objectid →
Deletes the object associated with the object identifier.

set: objectid, member, {pos-in-list}, (objectid|val|NULL) →
Sets the value of a member to be an object identifier, the value of a primitve
type, or NULL. If the member contains a list, the insertion position in the list
can be specified (pos-in-list).

get: objectid,member → (objectid|objectid-list|val|val-list|NULL)

Returns the value associated with the member.

Figure 6-4 Level-0 - Object Access and Alteration

121

At this level-0 the object pointers (objectid) are visible in the sense discussed

in Chapter 5. This interface is imperative; the procedures have the side effect

of assigning values to members or of creating or deleting objects.2

The class hierarchy is in essence flat. Though there is a “root” class

from which all the generated classes are derived, it only serves to simplify im-

plementation. The reason theis-a inheritance structuring of OOPLs is not used

is because the Glide language uses an aggregation approach to expressing com-

monality (see Section4.1) rather than a taxonomic one. The target object-ori-

ented language is being exploited simply as a high level implementation

language providing encapsulation, polymorphism, and managing inter-object

referencing, not for inheritance.

6.4.2 Level-1: Access and Alteration to the PIN

At the next level up from the basic procedures just described is a larger

collection of more specific procedures for accessing and altering the data struc-

ture at the higher PIN level of abstraction. Theclasses andobjects of level-0

1 “{}” indicates optional arguments and “(|)” indicates alternative types of
arguments.

2 Depending on the implementation OOPL, the objectids may be typed (e.g., pointers
in C++). In this case the four procedures should viewed as being polymorphic, and
instantiated for each combination of input and output object types.

122

are used to implement thetypes andinstances at level-1 respectively. The pro-

cedures that define level-1 are:

Set (1) are used to access tag information about a given instance. Set

(2) are used to access information about instances themselves - such as which

type they are an instance of. Set (3) are used to alter the PIN by creating or de-

leting an instance of a type, or by associating (connecting) an instance with the

tag in another instance. The procedures (4) provide information on how in-

stances are interconnected. This includes thegConnectedBy procedure which

returns the list of instances that have the given instance has as a component -

this procedure is implemented via the back pointers of level-0. The two proce-

dures (5) are used to implement the automatic maintenance of the “back point-

ers” when instances get connected and disconnected. Procedures (6) return and

(1)
gCollectionType:instance tag→ CHOICE | SINGLETON |

SET | LIST | SEQUENCE

gTagChoices:instance tag→ tag-list

gTagChoice:instance tag→ tag

gTagsAll:instance→ tag-list
(2)
gGetType:instance→ type

gIsOfType:instance type→ boolean

gIsInstance:instance→ boolean

gIsSameInstance:instance instance→ boolean
(3)
gMake: type → instance

gDestroy:instance→ instance

gConnect:instance tag instance {pos}→ PIN

gDisconnect:instance tag instance→ PIN
(4)
gConnectedTo:instance tag→ instance | instance-list

gConnectedBy:instance tag→ instance-list

gIsConnectedTo:instance tag instance→ boolean
(5)
gAddConnectedBy:instance tag instance→ PIN

gRemConnectedBy:instance tag instance→ PIN
(6)
gGAGetValue:instance {tag} ga→ ga-value

gGASetValue:instance {tag} ga ga-value→ PIN

Figure 6-5 Level-1 - PIN Acces and Alteration Procedures

123

change the values of graphical attributes. These attributes may be associated

with an instance or more specifically with a tag in an instance.

Theset procedure of level-0 is used to implement the “connect/discon-

nect” semantics of altering the PIN. Associating a value of a primitive type

with a tag is viewed, at this level, asconnecting it rather thanassigning it. The

only difference between instances of composite types and of primitive types is

that after completely disconnecting an instance of a composite type, it can sub-

sequently destroyed, but a primitive value is only connected inone place and

cannot be shared, making the need to “destroy” it superfluous. Procedures of

this level which change the PIN can be viewed as functions which map

PIN→PIN; a modification to any single instance is a change to the value of the

PIN as a whole. The functions in effect define an abstract data type specifica-

tion for the semantics of a set of PINs as a graph type.

The following diagram of a typical instance of a typical PIN, similar to

the figures used in earlier chapters, illustrates the level-0 vs. level-1 view.

124

This is part of an example of the PIN of a PCM program; one which contains 5

Nodes (three place and two transition nodes) and 3 links at the top level, and a

subgraph of the (bottom right) with 3 nodes and 2 links. The instances (empty

circles) are labelled with their objectids or their values (if they are of a primi-

tive type), links are labeled with the relevant tags (bold). Full circles are used

to indicate tags which contains sets or lists. The two dangling trees (top right

PcmSt001

PcmNet002

Pn

Sv

O

I

N
N075

“3”

Rp020

O

I

N
N076

“0”

Rp021

O

I

N

N077

“2”

Rp022

O

I

NN078

O

I

N
N079

Lt
Lp Lt

Lp

Lt
Lp Lt

Lp Lt
Lp

Sv003“Svar1”
“TRUE”

Sv004“Svar2”
“FALSE”

Sv005“Svar3”
“33.5”

Sv006“Svar4”
“38.2”

TT

Ta

TT

Ta

N

L

PiV

Pi

Proc

Ste

“alpha”Nm

PmTN024

“FALSE”

Pexpr085
Pexpr-A026
Pterm-086
Pterm-A030
Pfactor-087
Pfactor-B032
Patom-088

Patom-A034

“Svar3” “32.5”

“=”

P007

P008

P009

T010

T011

PiV
Pi

Proc

Ste

“FALSE”

Pn

O
I

NN080 “3”
Rp023

O
I

NN081

O
I
NN082

P019

T049

T050

Lt

Lp Lt

Lp

It

Tt

NmTk

NmTk

NmTk

Rp

Rp

Rp

Ta025

N

L

TT

Ta

Ta

TT

NmTk

Rp

“gamma”
Nm

“mu”
Nm

PmTN073

PmTN073

L012

L013

L014

L015
L016

L017

L018

“ENABLED”

SbtTN040 PcmNet051

Ta052

“beta”Nm

Figure 6-6 Example Program Instance Network (PIN)

125

and bottom right) are the syntax trees of node attributes. At level-1 the objec-

tids neither are not visible or accessible, and altering the PIN is equivalent to

creating and deleting edges and filled circles in the diagram.

The set of procedures of level-1 also represent an interface of portabili-

ty; if an OOPL is expressive enough to directly support the implementation of

these procedures (e.g., an OOPL that provides meta-data automatically) then

this would obviate the need for implementing level-0. In the Glider RTL of the

demonstration system all these routines were implemented as calls to the level-

0 primitives with parameters bound appropriately.

6.4.3 Level-2: Path Expressions

Finally, the next higher level of abstraction is one providing the path ex-

pression evaluation functions:

EvalPathExpr: instance pathexpr → (instance|instance-list)

EvalStarPathExpr: instance starpathexpr → PINTree

These are implemented using the procedures of level-1.EvalPathExpr is used

to in both queries and actions,EvalStarPathExpr is used in queries. Path ex-

pressions are the expressions of the formx.A.B.C, wherex is a variable whose

value is an instance of some type, andA, B, C are, names of tags of successive

complex types. Star path expressions are the similar forms of expression which

can also include stars (“*”) to indicate all tags of the corresponding type.Eval-

PathExpr returns a single instance or a flat list of instances.EvalStarPathExpr

returns a tree (PINTree) corresponding to all the instances encountered in tra-

versing the PIN graph when evaluating the expression. Algorithms for these

two functions are shown below. The pseudo-code description below is meant

to show the essential simple recursive structure of the algorithms. The actual

implemented algorithms are somewhat more complicated - they include the

checks for avoiding looping in the graph and include the ability to evaluate re-

cursion in path expressions (“@(...)”).

126

Path Expression Algorithm

Level-1 and Level-2 procedures are in bold, the functions append cre-

ates a list composed of its inputs.

Tree Path Expression Algorithm

The algorithm to evaluate tree path expressions is similar, but instead

of returning a list of instances, a tree structure (PINTree) composed of instanc-

es is returned. The recursive construction of the tree expands into branches if

Figure 6-7 Recursive Path Expression Evaluator

procedure EvalPathExpr (instance pathexpr) {

 dottype := DotType(pathexpr)

 headtag := PathExprHeadTag(pathexpr)

 tailexpr := PathExprTail(pathexpr)

 returnlist := empty

if (headtag is empty) then // termination: end of path expr, just return value itself

 returnlist := instance

else

 case dottype in

 DOUBLEDOT // go up, iterate and collect over each parent

 { foreach elem in gConnectedBy(instance,headtag)

 returnlist := append(returnlist,(EvalPathExpr(elem,tailexpr)))

endfor }

 SINGLEDOT // go down

 { case gCollectionType(instance,headtag) in

 SINGLETON // a single element, return the element

 { returnlist := EvalPathExpr(gConnectedBy(instance,headtag),tailexpr)}

 LIST, SET, or SEQUENCE // iterate and collect over list

 { foreach elem in gConnectedTo(instance,headtag)

 returnlist := append(returnlist,(EvalPathExpr(elem,tailexpr)))

 endfor }

 CHOICE // head tag is a single element, return the element

 { choice := gTagChoice(instance,headtag)

 returnlist := EvalPathExpr(gConnectedTo(instance,choice),tailexpr)}

 endcase

 endcase

endif

 return returnlist }

127

either (i) a tag containing a set or list is encountered, or (ii) a “* ” is encoun-

tered in descending the star path expression. The functionmknode creates a tree

node composed of its inputs.

This completes the description of the three levels of abstraction of pro-

cedures for accessing and manipulating the PIN. The functions provided by the

last two levels are used both in implementing the RTL components, which will

Figure 6-8 Recursive Tree Expression Evaluator

procedure EvalStarExprTree (instance,pathexpr) {

 headtag := PathExprHeadTag(pathexpr)

 tailexpr := PathExprTail(pathexpr)

 returnnode := empty

if (gIsInstance(instance) is true and pathexpr is not empty) then

if (headtag is a “*”) then // star => expand path into tree and follow each branch

 foreach val in gTagsAll(instance)

 nodelist := append(nodelist, EvalStarExprTree(instance,tailexpr))

 endfor

 returnnode := mknode(instance,nodelist)

else // no star => keep going down the path

 tagval := gConnectedTo(instance,headtag)

case gCollectionType(instance,headtag) in

 SINGLETON // head tag is a single element, return the element

 { returnnode := mknode(instance, gEvalStarExprTree(tagval,tailexpr))) }

 LIST, SET, or SEQUENCE // head tag contains a list, collect results

 { foreach val in tagval

 nodelist := append(nodelist, EvalStarExprTree(instance,tailexpr))

 endfor

 returnnode := mknode(instance,nodelist)) }

 CHOICE // head tag is a single element, return the element

 { choice := gTagChoice(instance,headtag)

 returnnode := mknode(instance,

 (EvalStarExprTree(gConnectedTo(instance,choice),tailexpr))}

 endcase

endif

 else // termination: end of the path expr,just return the instance or value itself

 {returnnode := mknode(instance)}

endif

return returnnode }

128

be described in the following Section6.4.4, and they are also used in the pro-

grams created by the Glider sub-compilers, described in Section6.5.

6.4.4 Run-time Library Components

This section describes RTL components that perform specific run-time

tasks. They are: thedisplay trees interpreter, themain frame, theselection

manager, theobject-widget mapping manager and execution and animation man-

ager components.All are built on the PIN access and alteration procedures just

described.

Display Trees Interpreter

Glide queries evaluate to a set of sub-trees of the PIN (e.g., sub-trees of

the PCM PIN of Figure6-6). After a query is evaluated, the resulting trees are

augmented to incorporate graphical attribute information in order to create a

more complex tree data structure called a Glider display tree. These display

trees are passed to a Glider RTL component, thedisplay tree interpreter. This

component traverses a display tree and invokes the appropriate GUI library

widget creation calls, with the appropriate bindings of graphical properties, in

order to render a set of widgets on the screen. Such a process is similar to the

use of a “display list” data structure in some 3D graphics systems such as

PHIGS.

A display node of a display tree is a complex nested data structure con-

taining bothwhat is to be displayed andhow (graphically) it is to be displayed.

The following diagram shows the structure of a node that represents an in-

stance which contains a set of component instances:

TAG N

TYPE Node

COLLTYPE SET

VALUE DDTV COMPOS/GA DDTV SIMPLE/GA DDTV COMPOS/GA

OBJECTID P001 OBJECTID P002 OBJECTID P003

COMPS C2 C3 COMPS COMPS C4 C5 C6

129

In this example the instance contains a set of three component instances (P001,
P002, P003); in other cases there may be only a single instance (in which case,COL-

LTYPE = SINGLETON). Each component instance may itself be composite (next level

down in the tree) or simple (a leaf). The display directive (DDTV) field indi-

cates whether each component is composite or simple, and it also contains

graphical attributes and values (which may themselves be nested). The values

C1.....C6 are nodes and the next level down in the display tree - they have the

same structure as the whole diagram.

At the top level, the task of the display tree interpreter is to recursively

traverse down the display tree containing such these complex nodes, examine

the display directives embedded in the nodes and then perform adispatch,

based on the directives, to routines specialized to display according to the par-

ticular directives, passing to it the branch of the tree at that level. For example,

if a tree contains the syntax tree of, say, an arithmetic expression, the display

tree interpreter will invoke a dispatch routine, DisplayTextTree, which

will collect all the leaves of the expression syntax tree and display them as a

string of text in a text dialog box widget. This design for creating views makes

the display tree interpreter extensible - new specialized dispatch routines can

be added. The dispatch routines implemented in the demonstration system are:

• DisplayConnected - Provides a classical “graph” display of nodes and
links.

• DisplayList - Displays the instances as a horizontal row.

• DisplayText - Displays a value of a primitive type in a text dialog box

• DisplayTextTree - “Unparses” a syntax tree and displays it as a string
of text. This allows the string to be edited as piece of text.

The routines may recursively invoke the display tree interpreter again - for ex-

ample theDisplayList routine might display a row of objects, each of

which is a graph.

130

Main Frame

When a new interface is started, a simple menu bar which provides ac-

cess to commands appears. Some of these commands are generic to all interfac-

es (e.g., loading and saving program files, controlling speed of animation, etc.)

and the others - those generated from their Glide specification - are specific to

the particular GBVL. The Glider RTL component main frame contains all the

procedures for the generic commands - since they do not need to be generated.

The main frame window has the following appearance.

A logo bitmap identifying the particular GBVL is displayed on the left of the

main frame.

Selection Manager

The Glider RTL selection manager component handles maintaining the

set of instances selected by the user and their consumption by commands in-

voked by the user. This module also handles the highlighting of widgets to indi-

cate which instances have been selected. The selection manager implements a

stack of instances that records which instances the user has selected by click-

ing on the widgets that represent them. Commands (viewing or editing) can

then consume (pop) one or more items and use them as arguments when they

are invoked:

gPushOnSelectionStack: instance → stack

Pushes instance on stack.

gPopOffSelectionStack: instance → stack, instance

Pops instance off the stack.

gFetchOutOfSelectionStack: type → stack, instance

Extracts instance of given type out of the stack.

131

Object-Widget Mapping Manager

A separate Glider component maintains the one-many mapping be-

tween instances and widgets (the widget back pointers). The mapping is updat-

ed as instances are created or deleted and widgets representing them are

created or deleted from the screen. Entries are generally added during the exe-

cution of the display tree interpreter, as widgets representing instances in the

display trees appear on the screen, and are generally deleted when the user

closes and destroys a window full of widgets:

Execution and Animation Manager

The RTL execution and animation manager component controls the ex-

ecution of programs and the animations they cause. The component contains

the procedures to select and invoke the execution actions, to read in PIN up-

date events from the reporting functions, and to invoke the animation proce-

dures which update the graphical appearance in response to changes in the PIN.

This component allows the user, through the menu in the main frame

window, to select which of the animations provided by the designer are to be

enabled.

The speed with which a program is executed and animated can be con-

trolled by the user. The speed control is in two parts: The user can choose the

Figure 6-9 Mapping between screen widgets and PIN instances

Screen Program Instance Network

ViewA ViewB

ViewC

WidgetA1

WidgetB2

WidgetC6

132

time delay between the application of successive abstract execution actions

and can also choose how fast the animation themselves run. Animation con-

sists of values of graphical attributes being updated to reflect updates in execu-

tion state, and of animation functions which execute when the execution is

(stopped) in a particular state. The animation functions have their own speed

of running (e.g,. rate of a flashing animation function) which is independent of

the speed of the execution of the program itself (be it internal or tracking exter-

nal).

133

6.5 Glider Compiler Components

This section describes how the Glide specifications are translated into

programs. The generated programs make use of the RTL procedures of level-1

and level-2 and they are invoked through the RTL manager components just

described. The Glide productions are translated into classes which define the

PIN. The queries, actions (editing, execution, and animation), and the shape

predicates are translated into procedures which access and alter the PIN.

Though parts of a Glide specification are compiled by separate sub-compilers

(as was illustrated in Figure6-2) the sub-compilers do share information

through using a single symbol table. The graphical attributes part of a Glide

specification does not need to be compiled. The attributes and their values are

simply placed into the appropriate class definitions. During execution they are

read from the objects into the display trees and passed into the display system

for interpretation.

Since the Glider compiler produces code in a high level language and

the Glider RTL provides and even higher level API, the “amount” of transla-

tion required to get from the Glide specification to procedural code is relative-

ly small. For this reason, the compilation algorithms are relatively simple and

straightforward. This section provides an outline of the algorithm used in each

of the three sub-compilers, theclass generator, thequeries compiler, theac-

tions compiler, and examples of small sample translations.

6.5.1 Class Generator

The Glide grammar part of a specification is translated into class defini-

tions for the objects that implement the PIN data structure. Theclass genera-

tor sub-compiler parses a grammar specification and creates an AST which is

then traversed to create class definitions in the OOPL. In the demonstration

system, the object-oriented extension of tcl, itcl, was used as target OOPL, but

an example of generated C++ code is also shown in this section, for compari-

son. The class generator component also generates a symbol table of the names

134

of all the productions and tags - this is subsequently used for variable type

checking in the query and action sub-compilers.

Class Generation Algorithm

Class generation consists of the following steps:

1. Since providing tag names for components in a Glide grammar specification
is optional, any missing tags are first filled in with unique names. They are
generated by the compiler and added into the AST. This is so that names for
all tags are present for the following generation steps.

2. One class definition is created for each production in the Glide grammar.
Data members are defined for each component of the production.

3. Members for the additional properties described earlier (meta-data, back
pointers, widget pointers, graphical attributes) of each member are added to
the class definition.

4. For productions containing sequences (component combined with
whitespace “ ”) inside alternations, additional class definitions are created;
one for each sequence. Each of these extra classes contains a PIN data
member for each component in the sequence.

5. A predefined class “Root ” of which all the generated class are subclasses is
added to complete the class definitions file.

Class Generation Example

The following shows a simple example. Three productions from the

Glide Grammar of the PCM GBVL are:

PCMStructure ==
PN:PCMNet .
SV:StateVariable** ;

PCMNet ==
N:Node** .
L:Link** ;

Node ==
NT:(P:PlaceNode | T:TransNode) .
I:Link** .
O:Link** ;

Pexpr ==
Pe:(:Pterm | :(Pexpr ‘or’ Pterm));

135

These productions are translated into the following six classes in itcl:

The class and member names with numbers (S0, C1, etc.) are the system-gener-

ated names. The protected members are the meta-data, and the public members

are the PIN and graphical attribute data. By using different templates and dif-

ferent AST traversals, the compiler can create equivalent C++ class defini-

tions. The equivalent C++ class definitions for this example are:

itcl_class PCMStructure {
inherit Root
constructor {conf ig} {}
protected Tags-List {PN SV}
protected PN-type “SINGLETON PCMNet”
protected SV-type “SET StateVariable”
public PN
public SV

}

itcl_class PCMNet {
inherit Root
constructor {conf ig} {}
protected Tags-List {N L}
protected N-type “SET Node”
protected L-type “SET Link”
public N
public L

}

itcl_class Node {
inherit Root
constructor {conf ig} {}
protected Tags-List {NT I O}
protected NT-type “CHOICE P T”
protected P-type “SINGLETON PlaceNode”
protected T-type “SINGLETON TransNode”
protected I-type “SET Link”
protected O-type “SET Link”
public NT-choice
public P

public T
public I
public O

}

itcl_class Pexpr {
inherit Root
constructor {conf ig} {}
protected Tags-List Pe
protected Pe-type “CHOICE C0 C1”

protected C0-type “SINGLETON
Pterm”
protected C1-type Pexpr-C1
public Pe-choice
public C0

public C1
}

itcl_class Pexpr-C1 {
inherit Root
constructor {conf ig} {}
protected Tags-List {S0 S1 S2}
protected S0-type “SINGLETON Pexpr”
protected S1-type “SINGLETON OR”
protected S2-type “SINGLETON Pterm”
public S0
public S1 “or”
public S2

}

itcl_class Root {
constructor {conf ig} {}
public GraphicAttribs

}

136

Here the private members (prefixed with m_) store the meta-data. The

itcl classes are a little more concise than the C++ ones because itcl, being an in-

class PCMStructure : public Root {
private:
enum mTags {PN, SV};
const int m_NumTags = 2;
TagSort m_PN_Sort = SINGLETON ;
TagClass m_PN_type = PCMNet;
TagSort m_SV_type = SET;
TagClass m_SV_type = StateVariable;

public:
PetriNet* PN;
StateVariable** SV;

};

class PCMNet : public Root {
private:
enum mTags {N, L} ;
const int m_NumTags = 2 ;
TagSort m_N_Sort = SET ;
TagClass m_N_type = Node ;
TagSort m_L_Sort = SET;
TagClass m_L_type = StateVariable;

public:
Node** N ; // ptr to list of ptrs
Link** L ;

};

class Node : public Root {
private:
enum mTags {NT, I, O};
const int m_NumTags = 3 ;
TagSort m_NT_Sort = CHOICE ;
mTags m_NT_Choices[2] = {P, T};
mTags m_NT_Choice;
TagClass m_P_type = PlaceNode;
TagSort m_P_Sort = SINGLETON;
TagClass m_T_type = TransNode ;
TagSort m_T_Sort = SINGLETON;
TagSort m_I_Sort = SET;
TagClass m_I_type = Link;
TagSort m_O_Sort = SET;
TagClass m_O_type = Link;

public:
PlaceNode* P;
TransNode* T;
Link* I;
Link* O;
GraphicAttribsPtr GA;

};

class Pexpr : public Root {
private :
enum mTags {Pe C0 C1} ;
const int m_NumTags = 1;
TagSort m_Pe_Sort = CHOICE ;
mTags m_Pe_Choices[2] = {C0, C1};
mTags m_Pe_Choice;
TagClass m_C0_type = Pterm;
TagSort m_C0_Sort = SINGLETON;
TagClass m_C1_type = Pexpr-C1;
TagSort m_C1_Sort = SEQUENCE;

public :
Pterm* C0;

Pexpr-C1* C1;
};

class Pexpr-C1 : public Root {
private :
enum mTags {S0 S1 S2};
const int m_NumTags = 3;

TagClass m_S0_type = Pexpr;
TagSort m_S0_Sort = SINGLETON;

TagClass m_S1_type = String;
TagSort m_S1_Sort = SINGLETON;

TagClass m_S2_type = Pterm;
TagSort m_S2_Sort = SINGLETON;

public :
Pexpr* S0;
char* S1 = “or”;
Pterm* S2;

};

class Root {
public :

GraphicAttribsPtr GA;
};

enum TagClass { PCMStructure PCMNet
 Node Pexpr Pexpr-C1 };

enum TagSort { SINGLETON LIST
 SET CHOICE SEQUENCE};

typedef struct
 GraphicalAttribTree *GraphicAttribsPtr ;
typedef struct GraphicalAttribTree {

char* Attribute;
GraphicAttribsPtr value_composite;
char* value_primitive;
GraphicAttribsPtr next;

} GraphicalAttribs;

137

terpreted language, allows some meta-data to be derived. Hence they do not

have to be explicitly defined in separate members (e.g., the number of choices

associated with aCHOICE tag can be computed from the length of the tcl list).

Also, itcl is a weakly-typed language so that typing declarations for members

and the auxiliary enums and structs are not needed.

6.5.2 Graph Language Queries Translation

Thequeries sub-compiler analyzes the queries in the specification and

produces a parameterized procedure for each one that computes the specified

collection of PIN trees. The basic query evaluation algorithm is to evaluate the

tree expressions in a query in the context of all the desired combinations of in-

put parameter values and quantified variable values in the query. The queries

sub-compiler generates a procedure for each query; the body of the procedure

implements this evaluation.

Queries Compilation Algorithm

The queries compilation algorithm consists of the following steps:

1. Create a procedure header with a new name for the query procedure. Open a
new procedure definition.

2. Insert statements for consuming from the selection stack, and binding to
local variables, values for the input parameters of the query.

3. If there is awhere clause in the query then insert, for each quantification
expression, statements for evaluating the quantification and for collecting
all the results in a list of lists of values.

4. Insert a statement computingall combinations of values of the input vari-
ables of step 2 and quantified variables of step 3.

5. If there is asuch-that clause in the query then insert a for-loop that filters
the list of combinations of values computed in 4 with the test expression in
the such-that clause. This loop removes all elements (combinations of val-
ues) for which the test does not hold.

138

6. Insert a sequence of statements for each tree path expression in the query
return-clause. Each sequence contains a for-loop over the combinations in
the filtered list. Insert statements in the body of the for-loop that:

- Evaluate the tree path expression for the particular combination of
values.

- Call a function that collects into the list of trees (forest) collected so
far the new PIN tree, merging the tree if it overlaps (has a common
stem).

7. Insert code to return the forest and close procedure definition.

In addition to the basic algorithm code, additional bookkeeping state-

ments are added as well (e.g., to register the fact that when the procedure is in-

voked with a particular set of input values that the corresponding view exists

on the screen). The forest returned by the query procedure is subsequently aug-

mented with graphical attribute values and display directive information and

passed to the display tree interpreter. The execution of the display tree inter-

preter produces the view on the screen.

Query Compilation Example

The following example illustrates this translation with a simple query

for the PCM GBVL. The input query:
ShowBusyPlaces(ps:PCMStructure)== { x.NmTk, x.Name

where x member-of ps.PN.N.P

suchthat x.NmTk > 3 }

139

is translated into the following procedure:

append composes its arguments into a list. The routines gMergeTF , gCrossProd-

uct , and gBindAndEval are support functions provided by the RTL. gBindAndE-

val takes as input a list of variables, a list of value bindings for the variables,

and a boolean expression; it returns the value of the expression with the vari-

ables bound to the values. The function gMergeTF creates the collection of trees

(PINForest) by merging in new trees.

Figure 6-10 Generated Query Procedure

procedure queryproc_ShowBusy () {

 PINForest := empty // local variable in which PIN trees are collected

 // (1) get input instances from the selection stack

 ps_inst := gFetchOutOfSelectionStack(“ PCMStructure”)

 local_vars := append(local_vars,”ps”)

 local_vars_values := append(local_vars_values,ps_inst)

// (2) generate sets of values from where-clause quantification expressions

 x_qvalset := gEvalPathExpr (ps_inst,”.PN.N.P”)

 local_vars := append(local_vars,”x”)

 local_vars_values := append(local_vars_values,x_qvalset)

 // (3) compute a list of all the combinations of local variable values

 combinations_list := gCrossProduct (local_vars_values)

// (4) remove all combinations that fail the restriction test

foreach comb in combinations_list

 testexprval := gBindAndEval (local_vars,comb,”gEvalPathExpr(x,\”.NmTk\”) > 3”)

if (testexprval) then

f iltered_combinations := append(f iltered_combinations,combination}

 endif

endfor

 combinations_list := f iltered_combinations

// (5) collect and merge tree expression evaluation in return list

foreach comb in combinations_list

 idx := search(local_vars,”x”)

 PINForest := gMergeTF (PINForest, gGetStarExprTree (index(comb,idx),”.NmTk”))

endfor

foreach comb in combinations_list

 idx := search(local_vars,”x”)

 PINForest := gMergeTF (PINForest, gGetStarExprTree (index(comb,idx),”.Name”))

endfor

 return PINForest}

140

6.5.3 Actions Translation

This section describes the actions sub-compiler. This compiler is used

for the remaining parts of a Glide specification: the editing and execution ac-

tions, the shape predicates, and the animations. These parts all contain action

expressions that are translated into sequences of statements that update the

PIN. An action expression is either simple or a conditional action expression.

The latter is composed of a boolean test expression and action expressions

guarded by the test. The boolean expression can contain access expressions

which access values in the PIN (same as such-that clause in a query).

All expressions are translated to appropriate calls of level-1 procedures

and of the path expression evaluation procedure of level-2. After actions are in-

voked (either by the user or the system itself), the changes to the PIN caused

by the actions are immediately propagated to any dependent views on the

screen (i.e., ones that contain widgets representing the relevant parts of the

PIN). The basic process of translating the different categories (editing, execu-

tion, shape predicates, and animations) is the same, with some variation for

each particular category. In this section, examples of translation in each catego-

ry are shown, followed by a description of the specific variation of the general

algorithm.

Editing Actions Translation

The editing actions specify the set of interactive operations available to

the user to create and modify programs. Input parameter bindings are obtained

via the selection stack in the same ways as with queries. Editing actions are

usually just a conjunction of action expressions, though conditional actions

can, and are, sometimes used.

141

Editing Action Translation Example

The following editing action specification is one which just adds a tran-

sition node to a PCM PIN, unconnected to other nodes and links:

It is translated into the following procedure:

Though the source and target forms are superficially similar, their se-

mantic interpretations are quite different. As has already been discussed in

Section4.4.1, the Glide specification is a declarative statement relating the

PIN before and after the editing event - hence the ordering of the conjoined ex-

pressions has no significance. On the other hand, the target code consists of or-

dered sequent ia l imperat ive statements. The compi ler re-orders the

conjunction to satisfy the data dependencies implied by the action expressions

before generating the sequential code. Through this analysis the compiler also

catches semantic errors, such as associating a prime-equals expression with

the same PIN place (e.g., n1.T’ = t1 ∧ n1.T’ = t2).

Editing Actions Translation Algorithm

1. In the AST, perform dependency re-ordering of action expressions.

2. Open a new editing procedure definition.

AddTransNode(pm:PCMNet) == {

t1 = new(TransNode) ∧

n1 = new(Node) ∧

n1.T’ = t1 ∧

pm.N’ = pm.N ∪ n1 }

procedure editingaction_AddTransNode {} {

 // get input arguments from the selection stack

 pm_inst := gFetchOutOfSelectionStack(”PCMNet”)

 // perform actions

 t1_inst := gMake(”TransNode”);

 n1_inst := gMake(”Node”);

 gConnect(n1_inst,”T”, gEvalPathExpr(t1_inst,”.”)

 gConnect(pm_inst,”N”,n1_inst)

gUpdateViews()

}

142

3. Insert code to bind input parameters to values on the selection stack. (same
as queries).

4. [Recursive step] For each action expression:

- If the action expression is simple, insert appropriate level-2 connect
statements.

- If the action expression is a conditional expression, insert an
evaluation of the boolean expression in the condition-part of an if-
statement and open the then-part of the statement. Repeat this step on
actions inside conditional action expression, inserting the results. Close
the then-part of the statement.

5. Insert call to a procedure to update views and then close procedure defini-
tion.

The boolean expressions are evaluated in the same way as the tests insuch-

that clauses in queries.

Execution Actions Translation

Execution actions are similar to editing actions, but there are the follow-

ing differences:

• The execution actions do not take user-originated input parameter
bindings. Instead, they are provided with the value of the top level type of
the GBVL (e.g., PCMStructure, or PetriNet) through which any part of the
whole PIN can be addressed via the appropriate path expression.

• Conditional actions can be existentially quantified over sets or lists in the
PIN. In this case the code generated attempts to find a value in the set or list
that satisfies the boolean expression and, if it succeeds, executes the
guarded actions for the given value.

• Conditional actions can be universally quantified over sets or lists in the
PIN. In this case the actions are executed for those values that satisfy the
boolean expression.

• Simple action expressions can be universally quantified over sets or lists in
the PIN. In this case the action expressions are executed for all values of
quantified variables.

143

The quantifications are evaluated by introducing for-loops over the values of

the variables and recording the boolean value of the quantified expression.

Execution Action Translation Example

The following two execution actions for Petri nets:
Enable(pn:PetriNet) == {

∀t:pn.N.T (∀p:t..NT.I.Lp (p.NmTk > 0) ⇒ t.Ste’ = ENABLED)}

Fire(pn:PetriNet) == {

∃t:pn.N.T (t.Ste = ENABLED ⇒

t.Ste’ = FIRING ∧

∀ p:t..NT.O.Lp (p.NmTk’ = p.NmTk + 1))}

144

are translated into the following two procedures:

It is these procedures that are selectively invoked by the execution and

animation manager according to the one of the firing regimes described in

Section 4.4.2 (for internal simulation) or according to the reporting functions

(for tracking an external execution). An existential quantification is translated

into invoking the function gPickOne , which picks at random one of the values

procedure exec_action_petri_enable {

 pn_inst := gGetInstance(“PetriNet”)

// iterate over set of forall quantification

foreach t_inst in gEvalPathExpr(pn_inst,”.N.T”)

// evaluate and iterate over existential quantification

 FAFlag := TRUE

foreach p_inst in gEvalPathExpr(t_inst,”..NT.I.Lp”)

if (gBindAndEval(p,p_inst,”gEvalPathExpr(p,\”.NmTk\”) > 0”)) then

 FAFlag := FALSE

endif

endfor

if (FAFlag) then

gConnect(gEvalPathExpr(t_inst,”.”),”Ste”,ENABLED)

 endif

 endfor

}

procedure exec_action_petri_f ire {

 pn_inst := gGetInstance(”PetriNet”)

// evaluate there exists quantification

 TEFlag := FALSE

foreach t_inst in gEvalPathExpr(pn_inst,”.N.T”)

if (gli_EvalPathExpr(t_inst,”.Ste”)==ENABLED) then

 candidates := append(candidates,t_inst)

 TEFlag := TRUE

endif

 endfor

if (TEFlag) then

 chosen_t_inst := gPickOne(candidates)

 gConnect(gEvalPathExpr(chosen_t_inst,”.”),”Ste”,FIRING)

 foreach p_inst in gEvalPathExpr(chosen_t_inst,”..NT.O.Lp”)

gConnect(gEvalPathExpr(p_inst,”.”),”NmTk”,(gEvalPathExpr(p_inst,”NmTk”)+1)

 endfor

endif

}

145

that made the test true, or, if the execution is tracking, follows the choice re-

ported by the executing program.

Execution Actions Translation Algorithm

1. In AST, perform dependency re-ordering on actions, check for violations.

2. Open new execution procedure definition.

3. Insert code to bind input parameter to top level instance.

4. [Begin recursive steps]

5. If there are universal quantifiers, open a for-loop for each one. For each
action expression, insert appropriate level-2 connect statements. If the
action expression is a conditional expression, insert an evaluation of the
boolean expression in the condition-part of an if-statement and repeat this
steps from 4 on actions inside conditional action expression, inserting the
results in the then-part. Close loops.

6. If there are existential quantifiers, open a for-loop for each one. These loops
try all values in the range, collecting those that satisfies the condition. Insert
code to chose one combination satisfying condition and repeat steps from 4
on actions inside conditional action expression, inserting the results in the
then-part. Close loops.

7. Insert call to function to update views and close procedure definition.

Shape Predicates

Shape predicates are used to verify consistency of the structure and

they are translated into procedures which check and maintain the shape of the

PIN. The time at which the procedures are applied can be set to be (i) immedi-

ately after any editing interaction with the programmer, or (ii) deferred to

when requested by the programmer. The main use of shape predicates is to ensur-

ing cyclic and shared references are up to date and consistent, but they can be used

to express other static semantic constraints as well. Shape predicates state invari-

ants. Shape predicates consist of action expressions without any primed variables

and they do not use existential quantifications.

146

Shape Predicates Translation Example

In this example (from Chapter 4) instances of a set of one type must point to the

same instance of another type:

It is translated into the following procedure that maintains the shape in-

variant:

Shape predicates are bi-directional - both connect ways to re-establish

the invariant are attempted by the procedure. Note however that this proce-

dures makes the assumption that either thex is pointing to az or they ’s are.

Shape Predicate Translation Algorithm

1. Open new shape procedure definition

2. Insert code to input parameter to top level instance.

3. If there are universal quantifiers open for-loops for each one.

l

x

m

n

n

n

y3

y2

y1

X == l:Y** .

m:Z ;

Y == n:Z ;

SameSink(x:X) == { ∀y:x.l (x.m = y.n)}
z

procedure Same_Sink (x_inst) {

foreach y_inst gEvalPathExpr(x_inst,”.l”)

 x_m := gEvalPathExpr(x_inst,”.m”)

 y_n := gEvalPathExpr(y_inst,”.n”)

if ((x_m!=NULL)||(y_n!=NULL)) then

if (x_m==NULL) then

 gConnect(gEvalPathExpr(x_inst,”.m”),”m”, gEvalPathExpr(y,”.n”))

elseif (y_n==NULL) then

 gConnect(gEvalPathExpr(y_inst,”.n”),”n”, gEvalPathExpr(x_inst,”.m”))

endif

else error()

endif

 endfor

}

147

4. Insert connect code to maintain equality, membership, or implication, in
both directions. Close loops.

5. Close procedure definition.

Animation Compilation

 Animation procedures in the programming environment are triggered

in response to changes in the abstracted, mirrored, execution state. The anima-

tions are specified as constraints which relate one or more PIN instances

and/or values to one or more graphical attribute values, so that any change to

the causes changes to the graphical attributes. The animation specifications are

compiled into procedures which are invoked when the relevant parts of the

PIN are changed.

An ima t i ons can no t on l y spec i f y changes t o t he va lues o f

graphicalattributes, but can also specify the execution of animations functions

- these usually cycle through a set of values for a graphical attribute. The com-

pilation of animations is similar to that for shape predicates, since both ensure

that the invariant properties they state are maintained. However, since the

graphics are always dependent properties, it is not necessary to attempt the bi-

directional updates.

Animation Compilation Example

The animation invariant:

EnableGreen(pn:PetriNet) ==

{ ∀t:pn.N.T (t.Ste = ENABLED) ⇒ (t<Color> = Green)}

148

is translated to:

ThegGraphicalUpdateViews call causes invocation of calls to the GUI so

that views that contain widgets representing the instance that has the attribute,

is updated. Note that the user must also supply further animation invariants the

color again.

Action Compiler Translation Algorithm

1. Open new shape procedure definition

2. Insert code to input parameter to top level instance.

3. If there are universal quantifier open for-loops for each one.

4. Insert connect code to maintain truth of invariant by modifying the graphi-
cal equality specified. Close loops.

5. Insert call to propagategraphical attribute updates to views and close pro-
cedure definition and close procedure definition.

procedure EnableGreen {pn_inst) {

foreach t_inst gEvalPathExpr(pn_inst,”.N.T”)

if (gEvalPathExpr(t_inst,”.Ste”)==ENABLED) then

 gSetGA(gEvalPathExpr(t_inst,”.NT”),”Color”,GREEN)

endif

 endfor

 gGraphicalUpdateViews()

}

149

6.6 Summary

This chapter has described the design and implementation of the Glider

system. The system consists of a run-time library and a compiler. The RTL pro-

vides the interface to the GUI library and supports the programs generated by

the compiler with the operations for manipulating PIN data structures. The

compiler translates Glide type definitions that characterize the syntax of a

GBVL into classes of an OOPL and it then generates procedures for accessing

and altering the objects of the classes from Glide the query and action defini-

tions. The graphical attributes of the GBVL are stored in the classes and

passed to the run-time component which creates views. Animation is accom-

plished by routines which reflect the execution state of the program represent-

ed in the PIN in the values of graphical attributes. RTL manager components

invoke the compiled-generated procedures and maintain consistency between

the GUI interface, the PIN and the executing program being animated.

The next chapter shows results: it provides three examples of specify-

ing typical GBVLs and resulting displays.

150

Chapter 7

Examples

This chapter presents three detailed examples which demonstrate the

use of Glide in specifying programming interfaces for GBVLs. The three ex-

amples are:

• Boolean Circuits,

• PCM - a variant of Petri Nets for modeling parallel systems performance,
and

• LabVIEW - a part of an early version of this commercial GBVL for
expressing computations associated with data acquisition instruments.

The three examples were chosen to illustrate both the breadth of structures and

of models of execution that can be captured in Glide, and to illustrate a progres-

sive increase in complexity of structure and semantics with each example.

Each section presents an example, discusses variations on ways in which the

GBVL can be represented and notes those aspects of the semantics of the

GBVL which are easy or difficult to capture in Glide.

7.1 Simple Boolean Circuit

This section shows one way in which simple combinational boolean cir-

cuits can be described in Glide as a GBVL. This particular Glide specification

includes a complete execution semantics - the values that a boolean circuit

computes - as well as all the intermediate computed values on the wires.

151

7.1.1 Glide Grammar for Boolean Circuit

This Glide grammar represents boolean circuits:

Though this grammar is small and simple, there are already significant design

choices and some semantics of boolean circuits reflected in it:

• There are two kinds of ports on the gates,InPort and OutPort. The
distinction captures the fact that a gate’s output can be attached to many
wires, but a gate’s input to only one.

• All ports are associated with a gate. It would be possible to change the
grammar so as to include the set of all ports in the top levelCircuit

production. This is useful for representing ports which are attached to ends
of wires without being associated with any gate. Ports “at the edge of
circuit board” could then be included, allowing the user to set input values
to the “board”.

• It is possible to have a more compact specification. For example, it is
possible to use aggregation (.) and an intermediate production to “factor”
out the fact that gates are either one-input or two-input. In a language as
simple as this one it is not really needed, but as a GBVL becomes more
complex such factoring is becomes useful.

Circuit == G:Gate** . W:Wire** ;

Gate == GT:(Or:OrGate | And:AndGate | Inv:Inverter) .

Lbl:TEXT ;

AndGate == In1:InPort .

In2:InPort .

Out:OutPort ;

OrGate == In1:InPort .

In2:InPort .

Out:OutPort ;

Inverter == In1:InPort .

Out:OutPort ;

InPort == Vol:BOOLEAN .

W:Wire ; // an input port can have only one wire

OutPort == Vol:BOOLEAN .

W:Wire** ; // an output port can have many wires

Wire == Sr:OutPort . // wire links source and sink

Si:InPort ;

152

7.1.2 Editing Semantics for Boolean Circuit

The following list of edit operations provide a simple set of actions for

creating and deleting gates and wires and for connecting them together.

The first four commands just create individual circuit objects and add them to

a circuit. These single-object creation edit operations are the kinds of opera-

tions that can be associated with a “palette” from which circuit objects drag-

and-drop into a view showing the circuit. The disconnect operation detaches a

selected wire from a selected gate. The wire itself is not deleted, since it is still

attached to its other gate. The disconnect operation is complex because it en-

sures the that mutual references between ports and wires are properly main-

tained (removed). An alternative means of maintaining them is through shape

predicates. The last command allows the user to set input voltage values.

7.1.3 Execution Semantics for Boolean Circuit

In this simple system, the complete execution semantics of the lan-

guage of boolean circuits can be captured within Glide. Four execution action

AddAnd(c:Circuit) == { g = new(Gate.And.*) ∧ c.G’ = c.G ∪ g }

AddOr(c:Circuit) == { g = new(Gate.Or.*) ∧ c.G’ = c.G ∪ g }

AddInv(c:Circuit) == { g = new(Gate.In.*) ∧ c.G’ = c.G ∪ g }

AddWire(c:Circuit) == { w = new(Wire) ∧ c.W’ = c.W ∪ w }

Connect(i:InPort,o:OutPort) == { w = new(Wire) ∧
i.W’ = w ∧ o.W’ = o.W ∪ w ∧

 o..Out..GT..W’ = o..Out..GT..W’ ∪ w }

Disconnect(w:Wire,g:Gate) == {

(w = g.GT.In.W ⇒ g.GT.In.W’ = NULL ∧ w.Si’ = NULL) ∧
(w = g.GT.In1.W ⇒ g.GT.In1.W’ = NULL ∧ w.Si’ = NULL) ∧
(w = g.GT.In2.W ⇒ g.GT.In2.W’ = NULL ∧ w.Si’ = NULL) ∧
(w ∈ g.GT.Out.W ⇒ g.GT.Out.W’ = g.GT.Out.W - w ∧ w.Sr’ = NULL)}

DeleteWire(w:Wire) == { old(w) }

DeleteGate(g:Gate) == { old(g) }

SetVoltage(i:InPort, v:BOOLEAN) == { i.Vol’ = v}

153

rules, one for each type of gate and one to propagate the signal along the wire

are sufficient.

Selecting the action firing regimeround_robin allows all the gates to

compute their outputs (one atomic execution step for each type of gate). These

are followed at the end by an execution step in which the values at the output

ports are propagated along the wires to the input ports. Alternative forms of ex-

ecution control are possible:

• The first three actions could be combined into a conjunction in order to
have all the gate output values produced in one atomic execution step.

• “Clocked” execution of the gates could added by introducing a boolean
component to represent the clock in the Glide grammar - one which is
shared by all the gates, so that all the gates only compute their outputs
when the clock value is true.

• A data-driven execution semantics would require a more extended
representation of state of execution - one in which additional variables
associated with each gate were added to the grammar and used to record
the arrival of data.

EvalAnd(c:Circuit) == ∀a:c.G.And(a.Out.Vol’ = a.In1.Vol && a.In2.Vol)

EvalOr(c:Circuit) == ∀o:c.G.Or(o.Out.Vol’ = o.In1.Vol || o.In2.Vol)

EvalInvert(c:Circuit) == ∀i:c.G.Inv(i.Out.Vol’ = !(i.In.Vol))

Propagate(c:Circuit) == ∀w:c.G.W (w.Si.Vol’ = w.Sr.Vol)

154

7.1.4 Graphical Attributes for Boolean Circuit

The graphical attributes below specify that in a graph display the wires

should be shown as lines, the gates as boxes and they identify icon images for

the different types of gate.

Note that an icon for a generic gate is associated with the type Gate. Addition-

al attributes specify how to create the graph display. The path expressions in

the ConnectedThrough attribute indicate to the graph display renderer how

the widgets representing gates and wires are to be displayed interconnected -

the path expressions are derived from the relevant shape predicates (see 7.1.7).

7.1.5 Queries for Boolean Circuit

The following four queries provide progressive levels of detail in dis-

playing Boolean Circuit GBVL programs.

Circuit == {{GRAPH {N W}}}

Gate == {{INGRAPH {SHAPE Box}

 {ConnectedThrough {.GT.Out.W .GT.In1.W

.GT.In2.W .GT.In.W}}

 {ICON gate.xbm}}

AndGate == {{ICON and.xbm}}

OrGate == {{ICON or.xbm }}

Inverter == {{ICON inv.xbm }}

Wire == {{INGRAPH {SHAPE Line}

{ConnectedThrough {.Sr .Si}}}}

ShowTop(c:Circuit)== { c.*}

ShowWhole(c:Circuit)== { c.*.*}

ShowValues(c:Circuit)== { c.*.*.*.*}

ShowOneGate(g:Gate)== { g.*.*.*}

155

With only these simple queries and the small number of graphical at-

tributes - all other graphical features of the views being left to defaults of the

display renderer - the three queries produce the following views on a circuit.

The ShowValues view allows direct user access to changing the voltage logic

values of the ports (of the gates). The fourth query can be used in conjunction

with selecting a single node out of ShowTop or ShowWhole views in order to

display it to the level of detail of the ShowValues view (rightmost in figure),

but in its own separate widow.

156

7.1.6 Animation of Boolean Circuit

The following two simple animation actions specify that the voltage

logic value at the output (sink) end of the wires should be reflected on the

wires by coloring the wires.

fill is an attribute of the (Tk) widget for specifying its color. The sink value

is chosen so that the wire color indicates that a value has propagated. The ani-

mations take place in all view windows in which wires appear.

7.1.7 Shape Predicates for Boolean Circuit

The following list of shape predicates describe the cyclic structure of

mutual references between gates, ports, and wires.

The set of editing actions shown earlier do not allow the structure to become

inconsistent so these shape predicates serve to chracterise the legal structures

but are not needed for creating the system.

TrueRed(c:Circuit) == {∀w:c.W {w.Si.Vol = 0 ⇒ (w<fill> = red)}

FalseGreen(c:Circuit)== {∀w:c.W {w.Si.Vol = 1 ⇒ (w<fill> = green)}

OutAttached(c:Circuit) ==

∀w:c.W,∀o:c.GT.Out{w.Sr = o ⇔ w ∈ o.W}

InAttached(c:Circuit) ==

∀w:c.W,∀i:c.GT.In{w.Si = i ⇔ w = i.W}

In1Attached(c:Circuit) ==

∀w:c.W,∀i:c.GT.In1{w.Si = i ⇔ w.Si = i}

In2Attached(c:Circuit) ==

∀w:c.W,∀i:c.GT.In2{w.Si = i ⇔ w.Si = i}

157

7.2 Complex Petri Nets - PCM

The second example consists of a Glide specification of an extension of

basic Petri Nets, “PCM” (Parallel Computations Model). PCM is a directed

graph based language intended for performance modeling of parallel computa-

tions [BA88] [Adi88]. PCM is one of a very large number of variations on the

basic Petri Net model that have been developed over the years. The major ex-

tensions provided by PCM over Petri Nets and shown here are the use of hierar-

chy and the use of additional (textually specified) attributes. The textual

attributes are used to specify the semantics of PCM program nodes and give

PCM more expressive power than simple Petri Nets for describing parallel sys-

tems. In PCM, hierarchy is through the transition nodes,i.e., a PCM transition

node may either be a primitive transition node or a composite transition node

which contains a lower level PCM subnet.

7.2.1 Glide Grammar for PCM

The Glide Grammar for PCM consists of the specification of the differ-

ent types of nodes and links, and their textual attributes. The top level produc-

tions capture the basic PCM graph structure:
PCMStructure == PN:PCMNet .

SV:StateVariable* ;

PCMNet == N:Node** .

L:Link** ;

Node == NT:(P:PlaceNode|T:TransNode) .

I:Link** .

O:Link** ;

PlaceNode == NmTk:INTEGER .

Rp:INTEGER ;

TransNode == TT:(Prt:PrimitiveTransNode|Sbt:SubnetTransNode).

Nm:TEXT . // Name for labelling node

Ta:TransAttributes ;

PrimitiveTransNode== ;

SubnetTransNode == It:TransNode .

Tt:TransNode .

PN:PCMNet .

Rp:INTEGER ; // replication parameter

Link == Lt:TransNode .

Lp:PlaceNode ;

158

The recursion of PCMNet type through SubnetTransNode is the way in which

the hierarchical nature of the PCM language is represented. The Rp compo-

nents are parameters which specify run-time replication of nodes.

The following lower level productions capture the syntax of the textual-

ly specified parts of PCM programs. These are mostly attributes associated

with the transition nodes. Transition nodes have: a predicate expression (Pi)

on state variables which must be true for the node to fire; a sequence of proce-

dures (Proc) which are executed when the node fires to assign new values to

the state variables, and a delay (Tau) - a fixed amount of time before the node

fires. The Glide syntax of the text expressions were trivially derived from their

BNF [BA88].

The execution state of a node during execution is represented by the

values of the enumerated type State . This includes the ACTIVE state which

TransAttributes == Pi:Pexpr .

PiVal:PexprVal . // Predicate result value

Phi:Proc .

PhiVal:REAL // Procedure result valuel

Tau:REAL . // Time delay

Ste:State ;

State == St:(:ENABLED | :DISABLED | :ACTIVE)

Pexpr == Pe:(:Pterm | :(Pexpr ‘||’ Pterm))

Pterm == Pt:(:Pfactor | :(Pterm ‘&&’ Pfactor))

Pfactor == Pf:(:Pexpr | :Patom | :TRUE |:FALSE |:(‘!’ Pfactor))

Patom == Pa:(:(Aexpr ‘=’ Aexpr) | :(Aexpr ‘!=’ Aexpr) |

 :(Aexpr ‘>=’ Aexpr) | :(Aexpr ‘=<’ Aexpr) |

 :(Aexpr ‘>’ Aexpr)|:(Aexpr ‘<‘ Aexpr))

Aexpr == Ae:(:Aterm | :(Aexpr ‘+’ Aterm) | :(Aexpr ‘-’ Aterm))

Aterm == At:(:AFactor |

 :(Aterm ‘MOD’ Afactor) |

 :(Aterm ‘/’ Afactor) |

 :(Aterm ‘*’ Afactor))

Afactor == Af:(:(‘(’ Aexpr ‘)’) |:StateVariable |

:REAL |:(‘-’ REAL)

Proc == Pr:(:Assnmt | :(Proc ‘;’ Assnmt))

Assmt == As:(StateVariable ‘:=’ Aexpr)

StateVariable == VarName:STRING .

 VarVal:REAL

159

does not exist in standard Petri Nets. It is used to indicate that execution is cur-

rently active within the node’s subnet .

The admissibility of sharing in Glide is being exploited in this specifica-

tion in two ways, beyond its use in representing interconnection of nodes and

links:

• In the SubnetTransNode production, the components taggedIt, and Tt

specify the distinguished nodes in the subnetPN that are the “initiating”
transition and the “terminating” transition nodes respectively. These two
nodes are shared components with the nodes in the subnetPN.

• The top levelSV component refers to a global list of PCM “state variables”.
These variables are present in the expressions associated with transition
nodes. Glide sharing is used in order to represent the fact that state
variables arePCM shared variables accessible by all expressions in
transition nodes. This means that the text expressions are no longer strictly
pure BNF text expressions since (i) one of expression components uses the
aggregation operator (.) and (ii) they contain composite components which
are shared (with other expressions and the list of all the state variables, in
SV:StateVariable*).

The extra uses of sharing is a style of use of Glide in which more of the seman-

tics of a GBVL is reflected in the specification of its structure. Use of sharing

is at the discretion of the Glide user. Its disdavantage is that it makes the Glide

grammar more dense, less hierarchical and thus more difficult understand. It’s

advantage is that the specification of structure and semantics of a GBVL can

become very compact.

7.2.2 View Queries for PCM

The following is a set of queries, which, like those used for boolean cir-

cuits, provide progressively more detailed views of PCM programs.
ProgramTop (p:PCMStructure) == { p.*, p.PN.*}

ProgramNodeTypes(p:PCMStructure) == { p.*, p.PN.*.*}

ProgramNodesDetail(p:PCMStructure)== {p.PN.*.*.*}

ProgramSubNets(p:PCMStructure)=={p.PN.*.*.*, p.PN.T.Sbt.PN.*.*}

160

The first three queries provide the views shown below. Note the list of

icons along the bottom, one for each PCM state variable (SV).

The fourth query produces the views shown below. The hierachical na-

ture of PCM can be seen directly, with one of the transition nodes being a sub-

net transition node containing a net of three nodes. The two nodes in the

entries It and Tt at the top of that transition node are the initiating and termi-

nating transition nodes which are also in the subnet. This is made directly evi-

dent to the interface user; selecting either one will highlight the node in both

places, because it is the same object.

161

7.2.3 Execution Semantics for PCM

The following rules capture an abstract description of the PCM execu-

tion semantics. The execution model is abstract in that the full semantics of

PCM predicate and procedure evaluation is not included, only the completion

of the their evaluation is represented. The semantics of PCM also incorporates

time - a delay time is associated with each transition node. This is outside the

Glide model. These lower level details can be provided by an external real

162

PCM program if it is available. In the abstract execution semantics below the

fact that a predicate is true is represented in a separate component (PiV) .

These execution rules reflect the more complex execution model for PCM as

compared to standard Petri Nets. The values of predicates associated with

Transition nodes must be true for a node to fire or become active. A primitive

transition node fires immediately; tokens are removed from input place nodes

and added to output place nodes in one event. In the case of a subnet transi-

tions, the net within the node is run to completion in between removing and

add ing tokens . Note the use o f the express ion s t . I t . Ta .S te and

st.Tt.Ta.Ste to express accessing the initiating and terminating transition

nodes of a subnet.

7.2.4 Animations for PCM

The following list shows a collection of four simple animations. The

first two reflect the state of the nodes by their color. The second two animation

actions color and change the width of links according to whether the place

nodes they orignate from have any tokens and thus whether the links are con-

Enable(pn:PCMNet) ==

{ ∀t:pn.T (∀p:t..NT.I.Lp (p.NmTk > 0)) ∧ t.Ta.PiV = TRUE

⇒ t.Ta.Ste’ = ENABLED }

Disable(pn:PCMNet) ==

{ ∀t:pn.T(∃p:t..NT.I.Lp(p.NmTk = 0) ∨ t.Ta.PiV = FALSE)

⇒ t.Ta.Ste’= DISABLED }

PrimitiveFire(pn:PCMNet) ==

{ ∃pr:pn.T.Prt(pr..TT.Ta.Ste = ENABLED)

⇒ pr..TT.Ta.Ste’= DISABLED ∧
∀p:pr..TT..NT.I.Lp(p.NmTk’ = p.NmTk + 1) ∧
∀p:pr..TT..NT.I.Lp(p.NmTk’ = p.NmTk - 1) }

SubNetActivate(pn:PCMNet) ==

 { ∃st:pn.T.Sbt { st..TT.Ta.Ste = ENABLED

⇒ st..TT.Ta.Ste ′ = ACTIVE ∧
∀p:st..TT..NT.I.Lp(p.NmTk’ = p.NmTk - 1) ∧
st.It.Ta.Ste = ENABLED} // start the subnet

SubNetComplete(pn:PCMNet)==

{ ∃st:pn.T.Sbt { st..TT.Ta.Ste = ACTIVE ∧ st.Tt.Ta.Ste = ENABLED

⇒ st..TT.Ta.Ste ′ = DISABLED ∧
st.Tt.Ta.Ste ′ = DISABLED ∧
∀p:st..TT..NT.I.Lp(p.NmTk’ = p.NmTk + 1)}

163

tributing to enabling or preventing the transition node they are connected to

from firing.

7.3 The LabVIEW GBVL

This section provides a final example, that of the LabVIEW graphical

programming language. More specifically, the Glide specification presented in

this section was derived from [Dye89], which provides an informal english de-

scription of the syntax, semantics, and graphical appearance of an early ver-

sion of LabVIEW. The commercial system has evolved, but the compact and

self-contained Dye description provides an ideal source from which to derive a

Glide specification and compare it.

In essence LabVIEW is a hierarchical dataflow language, but it also in-

tegrates typical sequential programming control constructs. It also provides

support for composing and decomposing collections of data values through

nodes specific for that purpose. LabVIEW is a more complex language and has

a large Glide specification that reflects this. The overall structure of LabVIEW

as represented with Glide grammar productions is presented here. Only some

salient aspects of the specification are shown here, with a more complete speci-

fication is provided in the Appendix. Some of the important Grammar produc-

tions are shown here, and some representative definitions of the semantics as a

representative example of LabVIEW node execution.

EnabledGreen(pn:PCMNet) ==

{ ∀t:pn.N.T(t.Ta.Ste = ENABLED⇒ t<background> = green)}

DisabledRed(pn:PCMNet) ==

 { ∀t:pn.N.T(t.Ta.Ste = DISABLED⇒ t<background> = red)}

ToksForLink(pn:PCMNet) ==

{ ∀l:pn.N.P..NT.O
(l.Lp.NmTk > 0 ⇒ l<width> = 3∧ l<fill> = green) }

NoToksForLink(pn:PCMNet) ==

{ ∀l:pn.N.P..NT.O
(l.Lp.NmTk = 0 ⇒ l<width> = 1 ∧ l<fill> = red }

164

7.3.1 Glide Grammar for LabVIEW

The following top level productions identify the major types of inde-

pendent components in LabVIEW. These are: “Terminals” the LabVIEW term

for ports, “Signals” the LabVIEW term for links through which data flows. Ter-

minals have values and connect signals to Nodes. Nodes perform computa-

tions on the values. The values passed have user defined numeric-based data

types (scalar, array) .

Diagrams can contain five major types of nodes. Of these, theStruc-

tureNode node type which provides different kinds of control flow and hierar-

chy. These nodes are one of four kinds: for loop, while loop, select (similar to a

BlockDiagram ==
S:Signal** .
N:Node** .
T:Terminal** . /* only the ‘independent’ terminals */

 TL:TextLabel** ; /* set of comments */

Node ==
MT:(IUN:InstrumentUseageNode | /* attached to virtual instrument */
 SN:StructureNode |
 AMN:ArrayManipulationNode |
 BN:BundleNode) . /* gather and split values */

 Enable:BOOLEAN . /* for execution semantics */
 Cmmnt:STRING; /* to add a comment */

165

switch/case type statement), sequence (for executing a fully ordered sequence

of computation in order).

Terminals in LabVIEW are more complex than ports for a simpler lan-

guage such as Boolean Circuits. They are used in LabVIEW for binding sig-

nals to different parts of the computation nodes. The grammar reflects the

different types of terminal which depend on their role in the computation. Sig-

nals connect terminals.

The next level of detail of the grammar describes the structure of the ar-

ray manipulation nodes, the bundling nodes and the structure node. The array

ForLoopNode ==
 LLT:LoopLimitTerminal . /* Loop Limit Terminal */
ItCnt:IterationCountTerminal . /* Iteration Count */
 InTn:TunnelTerminal** . /* Inputs */
OutTn:TunnelTerminal** . /* Outputs */

 Enable:BOOLEAN . /* For execution semantics */
 SbD:BlockDiagram ; /* Sub Diagram, body of loop */

ForLoopLimitTerminal ==
 Val:INTEGER . /* Loop Limit Value */
 Name:STRING ;
WhileLoopNode

== ItCnt:IterationCountTerminal .
LCond:LoopCondition .
ShftR:ShiftRegsiter** .
ItCnt:INTEGER ;

WhileLoopConditionTerminal
 == Val:BOOLEAN .
 Name:STRING ;

/* auxilliary productions used in both loop productions */
IterationCountTerminal /* also used in while loop */
 == Val:INTEGER .
 Name:STRING ;
ShiftRegister ==

 Val:Value /* records previous value */

Terminal ==
 TT:(FPCT:FrontPanelControlTerminal |

 BDC :BlockDiagramConstants) .
 Val :Value
 Cmmnt:STRING ; /* comment for describing terminal */
FrontPanelControlTerminal ==
 FPC:FrontPanelControl . /* Input from the User Interface */
 DT: DataType ; /* adapts to front panel */
BlockDiagramConstants

== PT:(Pi:3.141 | e:2.71 | TRUE:0 | FALSE:1) ;

166

manipulation nodes are used to extract values from arrays or to compose them

back into arrays.

The Bundler nodes are used to pack and unpack values.

7.3.2 Queries for LabVIEW

These pictures are graphically much more primitive than the actual Lab-

VIEW User Interface, but the Glider generated version is quite useable and its

specification much more compact.

// gather and split values

ArrayManipulationNode==

:ArrayElementReplacement |

:ArrayIndexerNode |

:ArrayBuilding

ArrayElementReplacement==

:ArrayInputTerminal .

:ScalarValueTerminal .

:NumericIndex** .

:ArrayOutputTerminal ;

// slicing data out of multidimensional array

ArrayIndexerNode== :ArrayInputTerminal .

:Index** .

:ArrayOutputTerminal ;

ArrayBuilderNode== :ArrayOutputTerminal .

:ArrayInputTerminal* ;

BundleNode == :BundlerNode |

:UnBundlerNode ;

BundlerNode == :InputTerminals** .

:OutputTerminal .

:DataType ;

UnBundlerNode== :OutputTerminals** .

:InputTerminal .

:DataType ;

ProgramLevel_1 (bd: BlocDiagram) == { bd.*.*.*}

ProgramLevel_2 (bd: BlocDiagram) == { bd.*.*.*}

ProgramLevel_3 (bd: BlocDiagram) == { bd.*.*.*.*}

167

The queries produce various levels of detail in views:

7.3.3 Execution Semantics for LabVIEW

The execution semantics of LabVIEW is quite large and complex. This

section just focuses on the execution semantics of loop node types as represen-

tative examples. The execution actions shown here are again derived from

their description in the Dye thesis.

168

The execution action that specifies its behavior is the following.

This execution action rule checks if the loop has been enabled (by a an-

other rule which sets theEnable attribute of the enclosing structure node to

TRUE). If so, theEnable attribute is set to true and three possible actions can oc-

cur: initializing the loop, performing an iteration, or terminating the loop. The

enabling of the node is controlled by other execution action rules which enable

a node if values have arrived on all inputs. The incremented iteration count

(ItCnt) is available as input (more specifically as an input terminal) to the

block diagram enclosed by the for loop.

The while control loop has a similar execution semantics specification.

In this case the loop termination condition is a boolean terminal that takes its a

boolean value.

The semantics of bundle and array index nodes are examples of seman-

tics which difficult to represent in Glide. This is simply because the primitive

ExecForLoop(bd:BlockDiagram) == {
 -TE-:f l:bd@(.N.SN.CT).N.SN.FLN {
 (f l..CT.Enable = TRUE)

=> (f l.Enable = FALSE // loop start
=> f l.Enable’ = TRUE &&
 f l.ItCnt’ = 0)

 (f l.Enable = TRUE && f l.ItCnt < f l.LLT.Val /* during loop */
=> f l.ItCnt’ = f l.ItCnt + 1 &&
 f l.SbD.Enable’ = TRUE)

 (f l.Enable = TRUE && f l.LLT.Val = f l.ItCnt /* loop termination */
=> f l.Enable’ = FALSE &&

 f l..Sn.Enable’ = FALSE)
}

}

ExecWhileLoop(bd:BlockDiagram) == {
 -TE-:wl:bd@(.N.SN.CT).N.SN.WLN {
 (wl..CT.Enable = TRUE)

=> (wl.Enable = TRUE && f l.LCond = 1 /* during loop
=> f l.Active’ = TRUE)

 (wl.Enable = TRUE && f l.LCond = 0 /* end loop
=> wl.Enable’ = FALSE &&
wl..Sn.Enable’ = FALSE)

}
}

169

types provided by the Glide language itself does not include arrays. There are

two remedies: (i) use Glide lists to simulate arrays so that arrays exist as exten-

sions of the PIN structure; or (ii) expose array manipulation primitves if they

are provided by the implementation langauge (C or Tcl in the case of the proto-

type).

7.4 Summary of Results

This chapter has given examples which demonstrate how the Glide Lan-

guage concepts described in earlier chapters allow the specifier to achieve di-

rect compact and integrated descriptions of GBVL language syntax and

semantics and associated interface editing and animation, and that this can be

done in a broad range of GBVLs. This is possible because of the unified ap-

proach integrating text and graph structure, and because of the unified ap-

proach to specifying execution and editing semantics.

170

Chapter 8

Conclusions and Further Work

This final chapter summarizes the contributions of the work described

in this dissertation and suggests avenues of further research which can now be

pursued based on it.

This dissertation has described a high level language for specifying

graph-based visual languages and their programming environments. The essen-

tial idea developed in this dissertation is that of a model for representing the

graph-based visual languages. The structure of GBVLs, in which programs

consist of a combination of text and graph structure, is modeled with a small

but powerful set extensions over BNF, so that the combination of graph and

text structure is captured in a seamless way. The model then also allows the ba-

sic definition of the structure of the language to be augmented with additional

semantic components and with graphical attributes. The data model provides

the foundation upon which specification of access and alteration to data is

built. These are constructs for identifying pieces of data (the path expressions,

the tree path expressions, and the queries) and constructs to express change to

pieces of data (the editing, execution, and animation actions). The constructs

allow the specification of views of programs, and editing, execution, and ani-

mation semantics to be captured so that a structure-oriented graphical program-

ming environment for the GBVL can be generated automatically.

The way of characterizing GBVLs has been validated by creating a

working compiler that implements the translation algorithms for each part of

the specifications, and by creating a run-time library to support the generated

code. Several existing graph-based visual languages have been modeled and

programming environments for them produced.

171

The work on Glide and Glider also represents solving a problem by

drawing on concepts and solutions to problems from different areas of re-

search. The design of the Glide language and the Glider generator has drawn

on a wide variety of areas including: graphical user interface design, language

specific programming environments, programming environment generators,

specification of the semantics of programming languages, specification of com-

plex data types, graph grammars, data models and query languages, and func-

tional languages. In this respect it represents a synthesis of the ideas taken

from these areas.

The Glide language and Glider systems now open several new avenues

for further exploration. These can be divided into two main categories: (i) rela-

tively straightforward enhancements and variations to the current implementa-

tion of the Glider system and (ii) pursuing the ideas embodied in Glide and

Glider further:

(i) For the short-term:

• An obvious immediate extension to Glide would be to allow the user to
formulate his/her own view queries, so that views were not only tailored to
a particular language but could also be created add-hoc. For example, the
user could define highly diagnostic views by specifying particular
conditions to be met by the executing program for components to appear in
the view - an advanced form of animation. These would be expressed as
suchthat-clause boolean expressions on the execution semantics
components. There is very little that stands in the way of this since the
compilation of queries is fairly simple - performing their compilation at
run-time would not be too difficult.

• Glide in Glide: A programming environment for Glide could be created by
specifying Glide in Glide. A graph-based view of the Glide grammar is
fairly straightforward - along the lines of the way railroad diagrams are
related to BNF. The way in which queries and actions could be recast as
GBVLs is less clear but worthy of investigation. Such a system would then
allow visual programming environments to be created with a visual
programming environment.

172

• More experiments:Glide offers up a new framework within which to
experiment with new graphical languages.The examples of the previous
chapter show that Glide and Glider form a “workbench” that provides the
opportunity to better, more quickly and more frequently explore the utility
of a GBVL as a means for solving problems. Previously, the time and
expense of such an endeavour would too often have been deemed too
costly. Glide is intentionally open-ended so that completely new variations
of GBVL structure which have not been used very much can be explored,
e.g., Graph languages with subgraphs associated with edges, edges with
more than two end points, even graphs as one component in a text
sequence.

(ii) For longer term investigation, there are several extensions to the syntax

and semantics of Glide that could be explored:

• GBVLs with user defined data types. Glide is weak in the ability express
GBVLs in which new data types can be defined. Examining how easy it
would be to add this to Glide merits further study.

• There are several ways in which the path expressions could be made more
expressive,e.g., limits on depth of recursion.

• Glide is a general purpose programming language. The data modeling
available in Glide is very expressive it may well be a useful model for
specifying graph-based computations independent of whether a graphical
user interface for it.

In conclusion, the work on Glide and Glider represents an advance on

formalizing a significant segment of visual forms of specification. By focus-

sing on the graph-based visual forms that are so frequently used in communi-

cating about computing systems designs it has been possible to put them on a

more sound and formal footing.

173

Appendix

LabView in Glide

The following is a LabVIEW specification in Glide, derived from Rob

Dye’s original thesis, pages 38-59. Comments are enclosed in /*...*/ and itali-

cised.

/* LabView Syntax represented in Glide Grammar */
BEGIN_GLI_GRAMMAR
/* ---- TOP LEVEL ------------------------------ */
/* Root of block diagram hierarchy. States that a Labview program consists of
Nodes, Terminals, and Signals. The user can add text labels for documentation
comments. Only self-standing, “independent”, terminals are listed in TL, there
are other “dependent” terminals which are components of nodes since they only ex-
ist with the nodes */

BlockDiagram ==
S:Signal** .
N:Node** .
T:Terminal** . /* only the ‘independent’ terminals */

 TL:TextLabel** ; /* set of comments */

TextLabel == /* used for adding comments to the diagram */
 Txt:STRING ;

/* ---- Level1: MAJOR NODE TYPES ------------------------------ */
/* This level 1 identif ies the major kinds of nodes that exist in a labview pro-
gram. Of these, the structure node is a type of Node that can be one of a further
four types of control f low node. */

Node ==
MT:(IUN:InstrumentUseageNode | /* attached to virtual instrument */
 SN:StructureNode |
 AMN:ArrayManipulationNode |
 BN:BundleNode) . /* gather and split values */

 Enable:BOOLEAN . /* for execution semantics */
 Cmmnt:STRING; /* to add a comment */
InstrumentUseageNode==

InstIdent:INTEGER . /* Instrument Identif ier */
 InstType:STRING ;

/* -- Level2: CONTROL STRUCTURE NODES ------------------------------ */

174

/* Structure nodes have tunnels - these are points at which signals cross bound-
aries into nodes. Hence if they are inputs viewed from outside the node they are
outputs viewed from inside the node, and vice-versa.*/

StructureNode ==
 CT:(FLN:ForLoopNode | WLN:WhileLoopNode |

SLN:SelectionNode | SQN:SequenceNode) .
 Tns:Tunnel** ;

TunnelTerminal ==
 TnTm:(InpT:InputTunnel | OutT:OutputTunnel) ;

InputTunnel == /* An input tunnel is an entry port for a gate*/
 AIF:AutomaticIdexingFlg .
 Sins:Signal** . /* signal inside fan out */
 Souts:Signal ; /* signal outside */

OutputTunnel == /* An output tunnel is an exit port for a gate */
 Sins:Signal . /* signal inside node */
 Souts:Signal** ; /* signal outside node fan out */

/* ---- Level 3: 4 Types of Control Flow ------------------------------ */
/* Two types of loop control flow */
/* ---- For Loop ------*/
/* The for loop enables repeated execution of the sub block diagram it contains.
The Terminals are not listed under the top level list of terminals since they
only exist as part of the for loop */

ForLoopNode ==
 LLT:LoopLimitTerminal . /* Loop Limit Terminal */
ItCnt:IterationCountTerminal . /* Iteration Count */
 InTn:TunnelTerminal** . /* Inputs */
OutTn:TunnelTerminal** . /* Outputs */

 Enable:BOOLEAN . /* For execution semantics */
 SbD:BlockDiagram ; /* Sub Diagram, body of loop */

ForLoopLimitTerminal ==
 Val:INTEGER . /* Loop Limit Value */
 Name:STRING ;

/* ---- While Loop ------ */
/* Contains Iteration Count, test expression evaluated after executing loop ,
zero or more shift registers, While loop also has Iteration Count terminal? */

WhileLoopNode
== ItCnt:IterationCountTerminal .

LCond:LoopCondition .
ShftR:ShiftRegsiter** .
ItCnt:INTEGER ;

WhileLoopConditionTerminal
 == Val:BOOLEAN .
 Name:STRING ;

/* auxilliary productions used in both loop productions */
IterationCountTerminal /* also used in while loop */
 == Val:INTEGER .
 Name:STRING ;
ShiftRegister ==

 Val:Value /* records previous value */

175

/* ---- Select ------*/
SelectNode ==

:CaseSelectorTerminal .
:SelectNodeDiagram** ;

SelectNodeDiagram ==
:DiagramNumber .
:BlockDiagram ;

/* ---- Sequence ------*/
/* The sequence local terminals are for getting values between diagrams in se-
quence */

SequenceNode ==
SND:SequenceNodeDiagram** .
 BD:BlockDiagram .
SLT:SequenceLocalTerminal ;

/* ---- TERMINALS ------------------------------ */
/* Terminals are the labview version of ports. Tunnels are terminals which have
an inside and an outside. The distinction between fixed and adaptive terminals is
omitted */

Terminal ==
 TT:(FPCT:FrontPanelControlTerminal |

 BDC :BlockDiagramConstants) .
 Val :Value
 Cmmnt:STRING ; /* comment for describing terminal */
FrontPanelControlTerminal ==
 FPC:FrontPanelControl . /* Input from the User Interface */
 DT: DataType ; /* adapts to front panel */
BlockDiagramMathFunctions

== PT:(Add:’+’|Times:’*’ |Div:’/’ | Sub:’-’) ;
BlockDiagramConstants

== PT:(:Pi | :e :TRUE :FALSE) ;

/* ---- SIGNALS ------------------------------ */
/* Signals are the labview version of wires */

Signal ==
DSr:Terminal . /* data source terminal */
DSi:Terminal** . /* data sink terminal arbitrary fanout */
Dim:INTEGER . /* indicates number of dimensions */
Val:Value ;

Value ==
 V:(:INTEGER |:REAL) . /* Actual value */
DT:DataType ; /* Data type of the value */

/* ---- ARRAY HANDLING ------------------------------ */
/* Labview provides support for flow and manipulation of arrays of values */

ArrayManipulationNode
== :(:ArrayElementReplacement |

 :ArrayIndexerNode |
 :ArrayBuilding) ;

ArrayElementReplacement ==
:ArrayInputTerminal .
:ScalarValueTerminal . /* thing that replaces */

176

:NumericIndex** . /* can replace at many places */
:ArrayOutputTerminal ;

ArrayIndexerNode ==
:ArrayInputTerminal . /* slicing data out of multidim data */
:Index** .
:ArrayOutputTerminal; /*output is of lesser rank by # of indices /

ArrayBuilderNode
== :ArrayOutputTerminal . /* of dimension n */

:ArrayInputTerminal* ; /* of dimension n or n-l */

/* ---- BUNDLE HANDLING ------------------------------ */
/* Labview provides support for f low and manipulation of arrays of values */

BundleNode ==
:BundlerNode | :UnBundlerNode ;

BundlerNode ==
:InputTerminals** . /* invariant # of wires in = array size */
:DataType . /* adapts to wire */
:OutputTerminal; /* only one */

UnBundlerNode ==
:OutputTerminals** . /* invariant # of wires out = array size */
:DataType . /* adapts to wire */
:InputTerminal ; /* only one */

END_GLI_GRAMMAR

BEGIN_GLI_QUERIES
Levels1(b:BlockDiagram) == {b.*}
Levels2(b:BlockDiagram) == {b.*.*}
Levels3(b:BlockDiagram) == {b.*.*.*}
END_GLI_QUERIES

/*
6.2 LabView Execution Semantics
================================

This section provides a list of the execution actions that specify the executions
semantics of Labview. The basic idea is to use a boolean component as a token
(e.g. Enable) to represent the passing of control, form node to node. e.g. from
calling to called nodes, selecting in a case statement etc. Such specif ications
are similar to the operational semantics of a high level langauge (like C) into a
low level one (like assembler).A node is enabled only when values are available
at all of its inputs.
*/

BEGIN_GLIDE_EXEC_ACTIONS

/* propagate a value along a signal. The Labview semantics is that a copy of the
value at the source terminal is made available at the sink. Since a primitive
value is beiing ’assigned’ it is a copy. Since signals have arbitrary fanout, the
movement of the dat values to all the data sink terminals */

PropagateSourceToSignal(d:BlockDiagram) == {
 -FA-s:d.@(????).S { s.Val’ = s.DSr.Val &&

s.Dsr.Val’ = NULL
}

/* This quantif ication is over all the terminals of all the signals */

177

PropagateSignalToSink(d:BlockDiagram) == {
 -FA-sink:d.@(????).S.DSi { sink.Val’ = sink..DSi.Val }
}

/* nodes are activated when data is avaliable at all inputs this action is for
all for loops */

Activate(d:BlockDiagram) == {
 -FA-sn:d.@(????).SN { -FA-:v:Term.Val != NULL => sn.Activate = TRUE }
}

/* Semantics of ForLoop. The three guarded actions captures the semantics of ini-
tializing, incrementing and terminating of a for loop. Perform update action on
all ForLoops.*/

ExecForLoop(bd:BlockDiagram) == {
 -TE-:f l:bd@(.N.SN.CT.SbD).N.SN.FLN {
 (f l..CT.Enable = TRUE)

=> (f l.Enable = FALSE // loop start
=> f l.Enable’ = TRUE &&
 f l.ItCnt’ = 0)

 (f l.Enable = TRUE && f l.ItCnt < f l.LLT.Val /* during loop */
=> f l.ItCnt’ = f l.ItCnt + 1 &&
 f l.SbD.Enable’ = TRUE)

 (f l.Enable = TRUE && f l.LLT.Val = f l.ItCnt /* loop termination */
=> f l.Enable’ = FALSE &&

 f l..Sn.Enable’ = FALSE)
}

}

/* Semantics of sequential control execution. Keep a counter which increments.
The the node with in the list which is the same as the current vaue of the counter
is enabled. Need some way of counting into the list in Glide...*/

ExecSequence(bd:BlockDiagram) == {
 -TE-:sq:bd@(.N.SN.CT.SbD).N.SN.SQN {
 (sq..CT.Enable = TRUE)

=> (sq.Enable = FALSE // sequence start
=> sq.Enable’ = TRUE &&
 f l.SqCnt.Val’ = 0)

 (sq.Enable = TRUE && sq.SqCnt.Val < f l.SqTotalNum.Val /+ during loop */
=> -TE-n:sqn.Diags (sq.DiagNumber = sq.SqCnt.Val’)

 => sq.SqCnt.Val’ = f l.ItCnt.Val + 1 &&
 f l.Active’ = TRUE)

 (sq.Enable = TRUE && f l.LLT.Val = f l.ItCnt.Val /* loop termination
=> f l.Enable’ = FALSE &&

 f l..Sn.Enable’ = FALSE)
}

}

178

/* Semantics of while loop execution. expression. */

ExecWhileLoop(bd:BlockDiagram) == {
 -TE-:wl:bd@(.N.SN.CT.SbD).N.SN.WLN {
 (wl..CT.Enable = TRUE)

=> (wl.Enable = FALSE // start loop
=> wl.Enable’ = TRUE &&
 f l.ItCnt.Val’ = 0)

 (wl.Enable = TRUE && wl.LCond = 1 /* during loop
=> wl.ItCnt.Val’ = wl.ItCnt.Val + 1 &&
 f l.Active’ = TRUE)

 (wl.Enable = TRUE && wl.LCond = 0 /* end loop
=> wl.Enable’ = FALSE &&

 wl..SN.Enable’ = FALSE)
}

}

/* Semantics of SelectNode - Select nodes are analogous to switch statements.
Uses there-exists to find the selected of case type statement */

ExecSelect(bd:BlockDiagram) == {
 -FA-:sln:bd@(.N.SN.CT.SbD).N.SN.SLN {
 (sln..CT.Enable = TRUE)
 => (-TE-:acase:sln.Cases {
 (acase.val = sln.Switch.DiagramNumber)

=> acase.SubDiag.Enable’ = TRUE)
 }
}

ExecBundle(bd:BlockDiagram) == {
 -FA-bun:bd.Nodes.Bundle()
 -FA-inputs:BundleInputs (bun.Bundle = append(new)

}
END_GLIDE_EXEC_ACTIONS

/* The graphical attributes add icons to the major labview node types.*/

BEGIN_GLI_GRAPHICALATTRIBUTES
{BlockDiagram { GRAPH {N S}}}
{Node { SHAPEINGRAPH Box ConnectedThrough {

{{.MT.CT.InTn.TnTm.Sins .MT.CT.OutTn.TnTm.Sins} HEAD}
{{.MT.CT.InTn.TnTm.Souts .MT.CT.OutTn.TnTm.Souts} TAIL}}
 WRAP TRUE BITMAP node.xbm }}

{PrimitiveNode { BITMAP transnode.xbm }}
{InstrumentUseageNode { BITMAP placenode.xbm }}
{ForLoopNode { BITMAP forloop.xbm }}
{WhileLoopNode { BITMAP whileloop.xbm }}
{SequenceNode { BITMAP sequence.xbm }}
{SelectionNode { BITMAP selection.xbm }}
{Signal { SHAPEINGRAPH Line ConnectedThrough}}

END_GLI_GRAPHICALATTRIBUTES

179

Graph Toolkits

The graph editor toolkits that have been developed in recent years are

noted here. In general, the display, manipulation, and editing of graphs has re-

mained just outside being included in a standard GUI system and has be creat-

ed as a separate layer on top. The following ones have either been described in

the literature or are publicly available:

• EDGE - The EDGE system was first described in [Pau88] and forms the
basis of a thesis by Paulisch [EDGE90]. EDGE is object-oriented
(implemented in C++) so that the classes, “node” and “edge” can be
specialized, adding attributes which define the application. Both edges and
links can be labelled. The package also supports hierarchy and
incorporates a number of automatic layout algorithms. EDGE has been
used for displaying call graphs, makefile dependencies, simple logic
circuits. It also contains some support for animation (routines for
highlighting nodes and links).

• XGRAB - XGRAB is a package has had several implementations, the latest
being on top of the InterViews GUI library. It has been used to display
“program call graphs, module dependency, finite state automaton graphs
and database designs”. XGRAB (originally GRAB) evolved from the
original work by Carl Meyer. The current version leverages the higher
level of sophistication of the Interviews GUI library (e.g., zooming
commands). [RDM+87]

• TGE - This package is also developed on Interviews. The paper by Karrer
and Scacchi provides a description of the essential requirements for a
general tool graph interface library and point out the difficulties of trying
to use one of the existing packages to implement a real system (e.g,. the
need to be able to store graphs). [KS90]

• XSIM - A simple but effective package. XSIM provides support for
flagging syntactic errors and generating the textual representation of a
graph suitable for input to other programs. XSIM has been used as a front
end a Generalized Timed Petri Nets (GTPN) simulator. [Tho90]

• DAG - The DAG system is described by Gansner, North, and Vo in
[GNV88]. It describes various layout strategies and performance statistics
for them. This package and it successor was used in Glider.

180

• GMB - The GMB graph display system was created in the context and
managing software in the Faust software programming environment for
developing supercomputing applications. GMB was used for such things as
the display of file compilation dependencies (makefiles). [J88] [JG89]
[Jab90].

• GUIDE II - Guide is an internal product of Scientific and Engineering
Software Inc. It is one of the few systems that provides a high level of
functionality for both graph display and manipulationand other more
standard interactors such as tables and menus, integrated in the same
package.

• A number of earlier systems exist, notably the ones developed on
interactive lisp workstations such as the ISI Grapher [Rob87] and the
Interlisp Grapher [Int85].

• Some experiments have been performed by MacKinlay et al. at Xerox with
the display of graphs in 3D. This has the advantage of being able to display
quite large graphs (which is a problem in 2D because readable layouts take
up large amounts of screen space), but it is not yet clear how useful they
are.

Systems 1, 2, and 4 are publicly available. All these packages face the

graph layout problem.i.e., the need to provide a readable arrangement of

nodes and links, preferably in the smallest amount of space. The problem of ef-

ficient of 2D layout algorithms for readable graph displays has received exten-

sive attention (see surveys by Harel [DH89] and Tammasia [RTB88], and an

analysis of the problem in [ET89]. Many of these algorithms have already been

incorporated into some the graph GUI tools such as EDGE and XGRAB.

181

References

[ACR+89] Bowen Alpern, Alan Carle, Barry Rosen, Peter Sweney, and Kenneth
Zadeck. Graph attribution as a specification paradigm.ACM SIGPLAN
Notices, 24(2):121–129, February 1989.

[ACS90] B. Alpern, L.Carter, and T.Selker. Visualizing computer memory
architecture. InProceedings of the First IEEE Workshop on Visualization,
pages 107–113, October 1990.

[AI89] H. Ammar and S.Rezaul Islam. Time scale decomposition of a class of
generalized stochastic Petri net models.IEEE Trans. on Software
Engneering, 15(6):809–820, June 1989.

[AltReal88] R. Smith. The Alternative Reality Kit.Workshop on Visual Languages1988

[ARM91] B. Stroustrup.The C++ programming language 2nd ed.Addison-Wesley,
1991.

[AYC88] R. Akscyn, E. Yoder, D. MacCracken. The data model is the heart of
interface design.CHI 1988

[BA88] J.C. Browne and Ashok Adiga.Performance Evaluation of
Supercomputers, Chapter: Graph Structured Performance Models. Elsevier,
1988, pp. 239-281.

[BCL90] Duane Bailey, Janice Cuny, and Craig Loomis. Paragraph: Graph editor
support for parallel programming environments.International Journal of
Parallel Programming, 19(2):75–110, 1990. parallel programming
environment graph grammar.

[BDD92] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams. InACM Computing Surveys, Vol 24, No.3 Sept. 1992.

[BDG+91] A. Beguelin, J.Dongarra, G.Geist, R.Manchek, and V.Sunderam.
Graphical development tools for network-based concurrent
supercomputing. InSupercomputing ‘91, pages 435–444, Nov 1991.

[BH92a] M. H. Brown and J. Hershberger. Animation of Geometric Algorithms: A
Video Review. Technical Report 87a, DEC Systems Research Center, Palo

182

Alto, June 1992.

[BH92b] M. H. Brown and J. Hershberger. Color and Sound in Algorithm
Animation. Technical Report 76a, DEC Systems Research Center, Palo
Alto, June 1992.

[BL86] B.Liskov, J.Guttag,Abstraction and specification in program development,
MIT Press, Cambridge, Mass.1986.

[Boo94] G. Booch.Object-oriented analysis and design with applications. 2nd ed.
Redwood City, 1994.

[Bow89] JonathanP. Bowen. Formal specification of window systems. Technical
Monograph PRG-74, June 1989.

[Bro85] J.C. Browne. Formulation and programming of parallel computers: A
unified approach. InProc. Intl. Conf. Par. Proc., pages 624–631, 1985.

[Bro88] MarcH. Brown.Algorithm Animation. ACM Doctoral Dissertation Award.
MIT Press, Cambridge, Mass, 1988.

[Bro92] M. H. Brown. Zeus: A System for Algorithm Animation and Multi-view
Editing. Technical Report75, DEC Systems Research Center, Palo Alto,
February 1992.

[BS84] M. H. Brown and R.Sedgewick. A System for Algorithm Animation.
Computer Graphics, 18(3):177–186, July 1984.

[BSS84] D. R. Barstow, H.E. Shrobe, and E.Sandewall, editors.Interactive
Programming Environments. McGraw-Hill, New York, 1984.

[BS84] M. H. Brown and R.Sedgewick. A System for Algorithm Animation.
Computer Graphics, 18(3):177–186, July 1984. (BALSA)

[Bur94] M. Burnett, R. Hossli, T. Pulliam, B. VanHoorst, X. Yang. Toward Visual
Programming Languages for Steering Scientific Computations.In IEEE
Computational Science and Engineering, Winter 1994.

[BY90] W Burton, HK Yang. Manipulating multilinked data structures in a pure
functional language. Software Practice and Experience Vol 20 (11) 1167-
1185 Nov 1990.

[BW88] R. Bird, P. Wadler.Introduction to Functional Programming. Prentice-Hall
1988.

[CComp88] C. Fischer, R. LeBlanc,Crafting a compiler. Benjamin/Cummings, Menlo
Park, CA, c1988.

[CER78] Volker Claus, Hartmut Ehrig, and Grzegorz Rozenberg, editors.Graph-
grammars and their application to computer science and biology:
international workshop. Springer-Verlag, Bad Honnef, October 1978.

183

LNCS73.

[CGP89] P.T. Cox, F.R. Giles, and T.Pietrzykowski. Prograph: A step towards
liberating programming form textual conditioning. InIEEE Workshop on
Visual Language, pages 150–156, Rome, Italy, October 1989.

[Che91] D. Cheng. A survey of parallel programming tools. Technical Report RND-
91-005, NASA Ames, May 1991.

[Chi85] Uli H. Chi. Formal specification of user interfaces: A comparison and
evaluation of four axiomatic approaches.IEEE Transactions on Software
Engineering, 11(8):671–685, August 1985.

[CHVL91] C. Holt in Report on E-mail Panel: Is Visual Programming a New
Programming Paradigm?IEEE Workshop on Visual Languages 1991.

[CL88] C. Chow and S.Lam. Prospec: An interactive programming environment
for designing and verifying communication protocols.IEEE Transactions
on Software Engineering, 14(3):327–338, March 1988.

[CLU93] B. Liskov. A history of CLUProceedings of the Second ACM SIGPLAN
History of Programming Languages Conference (HOPL-II). ACM
SIGPLAN Notices. V28, Number 3, March 1993.

[Cou90] Bruno Courcelle.Handbook of Theoretical Computer Science, volume B -
Formal Models and Semantics, chapter 5 - Graph Rewriting: An Algebraic
and Logic Approach, pages 194–242. Elsevier, Amsterdam, 1990.

[CPN90] K Jensen, Colored Petri Nets: A High Level Language for System Design
and Analysis.In Advances in Petri Nets 1990 LNCS no.483, Springer,
Berlin NY 1990, pp. 342-416. “..In our opinion, all users of CP-nets (and other
kinds of Petri-nets) are forced to make simulations - because it is impossible to
construct a CP-net without thinking about the effects of the individual transitions.
Thus the proper question is not whether the modeller should make simulations or
not, but whether he wants computer support for this activity. With this rephrasing
the answer becomes trivial: Of course we want computer support..”

[CS90] L. Chang and B.Smith. Classification and evaluation of parallel
programming tools. Tech Rept CS90-22, Dept. of Comp. Sci. Univ. of New
Mexico, 1990.

[daV93] M. Frohlich, M. Werner. daVinci. Ver 1.1 User Manual. Tech Report Univ.
Bremen August 1993

[Dea92] Nate Dean. Viewing and analyizing graphs with netpad. InProceedings of
the DIMACS Workshop, March 1992.

[DF82] Davis, Keller. Data Flow Program Graphs.In IEEE Computer Special Issue
on DataFlow Langauges. 1982

184

[DH89] R. Davidson and D.Harel. Drawing graphs nicely using simulated
annealing. Technical Report CS89-13, Weizmann Institute of Science, July
1989.

[Dil90] Antoni Diller. Z - A Introduction to Formal Methods. John Wiley and Sons,
Chichester, 1990.

[Dix91] Alan John Dix.Formal Methods for Interactive Systems. 1991.

[DP83] Dipayan Gangopadhyay.A formal system for network databases and its
applications to integrity based issues. Ph.D. Thesis, University of Texas,
Dept. of Computer Sciences 1983.

[Dye89] R. Dye. Labview : A visual data-flow programming language and
environment. Master’s thesis, Dept. of Elec. and Comp. Eng. University of
Texas at Austin, 1989.

[E. 90] E. Kant, F. Daube, W. MacGregor, J. Wald. Synthesis of mathematical
modelling programs. InMathematica Conference Proceedings, Redwood
City, CA, January 1990.

[ea85] D. Notkin etal. The GANDALF Project.The Journal of Systems and
Software, 1985.

[ea91] J.Werth etal. The interaction of the formal and practical in parallel
programming environment development: Code. Tech. Rep. TR-91-09,
Dept. Comp. Sci., Univ. Texas at Austin, 1991.

[EGF91] M. Blattner E.Glinert and C.Frerking. Visual tools and languages:
Directions for the 90’s. InWorkshop on Visual Languages, pages 89–95.
IEEE, 1991.

[Ehr87] Hartmut Ehrig, editor.Graph-grammars and their application to computer
science : 3rd international workshop. Springer-Verlag, Warrenton,
Virginia, USA, December 1987. LNCS291.

[Ehr90] Hartmut Ehrig, editor. Graph-Grammars and their Application to
Computer Science : 4th International Workshop. Springer-Verlag, Bremen,
Germany, March 1990. See discussion page 41.

[ELN+92] G. Engels, C.Lewerentz, M.Nagl, WSchafer, and ASchurr. Building
integrated software development environments part1: Tool specification.
ACM Transaction on Software Engineering and Methodology,
1(2):125–167, April 1992.

[ENR82] Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozenberg, editors.Graph-
grammars and their application to computer science : 2nd international
workshop. Springer-Verlag, Haus Ohrbeck, October 1982. LNCS153.

185

[Env92] InteractiveDevelopment Environments. Software through pictures, 1992.
595 Market Street, San Fransisco CA94105.

[ERL90] H. El-Rewini and T.G. Lewis. Task grapher: A tool for scheduling parallel
program tasks. InProceedings of the 5th Distributed Memory Computing
Conference, pages 1171–1178, Charleston So. Carlonia, April 1990.

[ET89] P.Eades and R.Tamassia. Algorithms for automatic graph drawing: an
annotated bibliography. Tech Report CS-89-09, Dept. of Comp. Sci.,
Brown Univ., 1989.

[ET++89] A. Weinand, E. Gamma, R. Marty. Design and implementation of ET++ a
seamless object-oriented application framework. Structured Programming,
Vol1 No. 2 1989.

[F86] F. Feldbrugge and K. Jensen. Petri Net Tools Survey. Petri Nets: Central
Models and Properties. InAdvances in Petri Nets, pages 20–61, Berlin,
1986. Springer-Verlag. LNCS 254.

[FA90] D. Workman F.Arefi, C. Hughes. Automatically generating visual syntax-
directed editors.Communications of the ACM, 33(3), March 1990.

[FLS93] Workshop on State in Programming Languages (SIPL), June 12
Copenhagen, Denmark..

[Fol93] J. Foley. A Second Generation User Interface Design Environment: The
Model and the Runtime Architecture.Proceedings of CHI 93.

[GDr93] Graph Drawing ‘93. ALCOM International Workshop on Graph Drawing
and Toplogical Graph Algorithms. September 1993. Paris.

[GH80] J.Guttag and J.Hornig. Formal specification as a design tool. InProc. 7th
Symp. Principles of Programming Lang.. ACM, 1980.

[GH78]. J. Guttag and J. Horning.The Algebraic Specification of Abstract Data
Types. Acta. Inform., vol. 10. 1978.

[Got89] H. Gottler, Graph grammars, a new paradigm for implementing visual
languages. InEurographics’89, pages 505–516, 1989.

[Got92] H. Gottler, Diagram editors = graphs + attributes + graph grammars.Int. J
Man-Machine Studies (1992) 37,481-502.

[GNV88] E. Gansner, S.North, and K.Vo. Dag - a program that draws directed
graphs.Software Experience and Practice, 18(11):1047–10621047–1062,
November 1988.

[Grahm] M. Vanter, S. Graham, R, Ballance. Coherent user interfaces for language-
based editing. Int. J. of Man-Machine StudiesNo 37 1992 pp. 431-466.

[GS92] E. P. Glinert and P.D. Stotts. Special issue on visual languages and

186

concurrent computing.Journal of Visual Langauges and Computing, 3(2),
June 1992.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, 8:231–274, 1987.

[Har88] D. Harel. On visual formalisms.Communications of ACM, 31(5):514–529,
May 1988.

[HC88] A. Hough and J.Cuny. Initial experiences with a pattern-oriented parallel
debugger. InProceedings of the 1988 Workshop on Parallel and
Distributed Debugging, pages 195–205. ACM, 1988. also SIGPLAN
Notices 24(1).

[HC90] A. Hough and J.Cuny. Perspective views: A technique for enhacing
parallel program visualization. Coins Technical Report 90-02, University of
Massachusetts at Amherst, January 1990.

[HE91] Michael Heath and Jennifer Etheridge. Visualizing the performance of
parallel programs.IEEE Software, pages 29–39, September 1991.

[HH&N92] J. Hummel, L. Hendren, A. Nicolau. A language for conveying the aliasing
properties of dynamic, pointer-based data structures.International
Conference on Parallel Processing 1992.

[Him89] Michael Himsolt. Graphed: An interactive graph editor. InSTACS ‘89,
1989.

[HO] Jack Hagemeister and Paul Oman. Powerful CASE on the Mac. product
review,IEEE ComputerJuly 1992.

[Hoare75] C.A.R. Hoare. Recursive data structures. Intl. Journal of Computing and
Information Sciences. Vol. 4, No. 2 1975.

[Hun90] N. Hunt. Idf: A graphical data flow language for image processing and
computer vision. InIEEE Conf. on Systems, Man, and Cybernetics. IEEE,
Nov 1990.

[Int85] Xerox Artificial Intelligence Systems, Pasadena, CA.Interlisp-D Reference
Manual, October 1985.

[IPSEN92] G. Engels, C. Lewerentz, M. Nagl, W. Schafer, A. Schurr. Building
Integrated Software Development Environments Part1: Tool Specification.
In ACM Transactions on Software Engineering and Methodology, April,
Vol. 1, No. 2, 125-167, 1992.

[ITCL94] M.. McLennan, Object-Oriented Programming with [incr Tcl]. Seminar at
Tcl/Tk Workshop June 20-25, 1994, in New Orleans, LA.

[J88] David Jablonowski et al. GMB - InACM SIGGRAPH Symposium on User

187

Interface Software, Banff, Canada, March 1988.

[Jab90] David Jablonowski. Gmb: Graph manager / browser. Technical Report
CSRD 968, Center for Supercomputing Research and Development, Univ.
of Illinois, February 1990.

[Jac85] R. J.K. Jacob. A state transition diagram language for visual programming.
Computer, 18(8):51–59, August 1985.

[JG89] David Jablonowski and Vincent Guarana. Gmb - a tool for manipulating
and animating graph structures.Software Practice and Experience,
19(3):283–301, March 1989.

[JM88] A. Jahanian and A.Mok. Modechart: A specification language for real-time
systems.IEEE Transactions on Software Engineering, 1988.

[K&S93] N. Klarlund, M. Schwartzbach. Graph Types.POPL 1993.

[Kan90] Elaine Kant. Automated program synthesis. Industry Leaders in Computer
Science and Electrical Engineering Distinguished Lecture Series Video,
May 1990. University Video Communications.

[KidSim94] D. Smith, A. Cypher, J. Spohrer; KIDSIM: Programming Agents without a
Programming Langauge.Commuincations of the ACM July 1994, pages 55-
66.

[KKS88] Hyoung-Joo Kim, HenryF. Korth, and Avi Silberschatz. Picasso: A
graphical query langauge.Software Practive and Experience,
18(3):169–203, March 1988.

[Klint93] P. Klint A Meta-Environment for Generating Programming Environments.
ACM Transaction on Software Engineering Methodology Vol 2, April
1993.

[KN90] D. Kimelman and T.Ngo. Program visualization for rp3: An overview.
Technical Report RC 15917, IBM T.J. Watson Research Center, July 1990.

[KS84] P.Kruchten and ESchonberg. The ada/ed system: A large scale experiment
in software protoyping.Technique et science informatiques, 3(3):179–185,
1984.

[KS90] A. Karrer and W.Scacchi. Requirements for an extensible object-oriented
tree/graph editor. InProceedings of ACM Third Annual Symposium on User
Interface Software and Technology, pages 84–91, 1990.

[Lam90] L. Lamport. A temporal logic of actions. Tech. Report57, Digital Research
Center, 1990.

[Lan87] D. Lange. A formal approach to hypertext using post-prototype formal
specification. INTERCHI

188

[LD85] RalphL. London and RobertA. Duisberg. Animating Programs Using
Smalltalk.IEEE Computer, pages 61–71, August 1985.

[LER92] T.G. Lewis and H.El-Rewini. Introduction to Parallel Computing,
chapter12. Prentice-Hall, 1992.

[Lev92]. M.R. Levy Data types with sharing and circularityPh.D. Thesis Dept. of
Computer Science, University of Waterloo 1978.

[LMCF90] T. LeBlanc, J.Mellor-Crummey, and R.Fowler. Analyzing parallel
program executions using multiple views. Technical Report TR90-110,
Rice University, January 1990.

[Loy91] JosephPatrick Loyall.Specification of Concurrent Systems Using Graph
Grammars. PhD thesis, Dept. of Comp. Sci., Univ. of Illinois, Urbana-
Champaign, May 1991.

[MDB87] B. H. McCormick, T.A. DeFanti, and M.D. Brown. Special issue on
visualization in scientific computing.Computer Graphics, 21(6),
November 1987.

[Mey90] B. Meyer.Introduction to the Theory of Programming Languages. Prentice
Hall, 1990.

[MK92] J.Magee and J.Kramer. Mp: A programming environment for
multicomputers. In Proc. of Working Conference on Programming
Environments for Parallel Computing, Edinburgh, April 1992. Springer-
Verlag. IFIP WG10.3.

[Min92] Interacting with structure-oriented editors. Int. J Man-Machine Studies
(1992) 37,399-418

[Mol85] B. Moller On the algebraic specification of infinite objects - ordered and
continuous models of algebraic typesin Acta Informatica 22 p.537-578
1985.

[Mot93] V. Quercia, T.O’Reilly Volume 3M: X Window System User’s
Guide:Motif Edition 2nd Edition January 1993 ISBN: 1-56592-015-5.

[MR92] BradA. Myers and MaryBeth Rosson. Survey on user interface
programming. Tech. Rpt. CMU-CS-92-113, Carnegie-Mellon, School of
Comp. Sci., February 1992. To appear in Proceedings SIGCHI’92.

[MSWin] C. Petzold, Programming Windows 3.1, Microsoft Press Books - ,ISBN: 1-
55615-395-3, 1992.

[Nat87] National Instruments Corp., 12109 Technology Blvd. Austin, Texas.
LabVIEW: a demonstration, 1987.

[NB92] P.Newton and J.C. Browne. The Code2.0 graphical parallel programming

189

language. InProc. ACM Intl. Conf on Supercomputing, July 1992.

[New94] Peter Newton. A Graphical Targetable Parallel Programming
Environment and its Efficient Implementation. PhD thesis, Dept. of Comp.
Sci., The University of Texas at Austin, 1994.

[NUH89] H. Kawata N.Uchihira and S.Honiden. A concurrent program synthesis
using petri net and temporal logic in mendels-zone. Tech. Rep. 449, ICOT,
Jan 1989.

[Nut91] G. Nutt. A simulation system architecture for graph models. InAdvances in
Petri Nets, Berlin, 1991. Springer-Verlag.

[OMT91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen.Object-
oriented modeling and design, Prentice Hall, 1991.

[OPP89] Joseph Oliger, Ramani Pichumani, and Dulce Poceleon. A visual object-
oriented unification system. Technical report, Center for Large Scale
Computing, Dept. Comp Sci., Stanford Univ., 1989.

[Oust94] J. Ousterhout.Tcl and the Tk Toolkit. Adison-Wesley, Reading MA, 1994

[Pan91] BhalchandraShankar Pandit. A syntax directed editor for code. Master’s
thesis, Dept. of Comp Sci., Univeristy of Texas at Austin, 1991.

[Pau88] FrancesNewberry Paulisch. An interface description language for graph
editors. InWorkshop on Visual Languages. IEEE, 1988.

[Pau] L. Paulson.ML for the Working Programmer. Cambridge University Press.

[Pet81] J. Peterson.Petri net theory and the modeling of systems. Prentice-Hall,
Englewood Cliff, 1981.

[PL88] Uwe Pleban and Peter Lee. An automatically generated, realistic compiler
for an imperative language. InSIGPLAN ’88 Conference on Language
Design and Implementation, pages 222–227, Atlanta Georgia, June 1988.
ACM.

[Pou94] A. Poulovassilis, M. Levine. A nested-graph model for the representation
and manipulation of complex objects.ACM Transactions on Informations
Systems Vol 12 No. 1 Jan 1994 pages35-68.

[PT90] FrancesNewberry Paulisch and WalterF. Tichy. Edge: An extendible
graph editor.Software-Practice and Experience, S1(20), June 1990.

[RC89] G. Roman and K.Cox. A declarative approach to visualizing concurrent
computations.IEEE Computer, 1989.

[RDM+87] L. Rowe, M.Davis, E.Messinger, C.Meyer, C.Spirakis, and A.Tuan. A
browser for directed graphs.Software Practice and Experience,

190

17(1):61–76, 1987.

[Rob87] Gabriel Robins. The ISI grapher: A portable tool for displaying graphs
pictorially. In Symboliikka 87, Helsinki, Finnland, August 1987. Also Chp
12. Multicomputer Vision, 1988 Academic Press.

[RTB88] EnricoNardelli RobertoTamassia and Carlo Batini. Automatic Graph
Drawing and Readability of Diagrams.IEEE Transactions on Systems, Man
and Cybernetics, 18(1):61–79, January-February 1988.

[SBN88] D. Socha, M.Bailey, and D.Notkin. Voyeur: Graphical views of parallel
programs. In Proceedings of the 1988 Workshop on Parallel and
Distributed DebuggingIEEE Workkshop On Visual Languages, pages
206–215, New York,NY, 1988. ACM. also SIGPLAN Notices 24(1).

[SBY87] R. G. Smith, P.S. Barth, and R.L. Young. A Substrate for Object-Oriented
Interface Design. In B.Shriver and P.Wegner, editors,Research
Directions In Object-Oriented Programming, pages 253–315. MIT Press,
Cambridge, MA, 1987.

[ShM88] S. Shlaer, S. Mellor.Object-oriented systems analysis : modeling the world
in data, N.J.,Yourdon Press, Englewood Cliffs, 1988.

[Shu] Nan C. Shu, Visual Programming, Van Nostrand Rheinhold, NY, 1988.

[ShuQBE] Nan C. Shu, Chapter 11, Visual Programming, Van Nostrand Rheinhold,
NY, 1988.

[ShuFol] J.D. Foleyin Visual Programming, Nan C. Shu ed., page 17:” When a
person uses an interactive graphics system to do real work, he wants the system to
virtually disappear from his conciousness so that only his work and its ramification
have a claim on his energy”

[ShuGRASE]Nan C. Shu Chapter 9, Visual Programming, Van Nostrand Rheinhold, NY,
1988.

[ShuJLin] Nan C. Shu Chapter 9, Visual Programming, Van Nostrand Rheinhold, NY,
1988.

[ShuPBH] Nan C.. Shu, Chapter 5, Visual Programming, Van Nostrand Rheinhold,
NY, 1988.

[ShuPICT] Nan C. Shu, Chapter 10, Visual Programming, Van Nostrand Rheinhold,
NY, 1988.

[ShuVLdef] Definition of Visual Programming in Nan C. Shu, Visual Programming: :
“Visual Programming - the use of meaningful graphic representations in the
process of programming”

[Sil92] Silicon Graphics Inc.Iris Explorer‘ User’s Manual, Jan 1992.

191

[Spi88] J.Spivey. Understanding Z - A Specification Language and its Formal
Semantics. Cambridge Univ. Press, 1988.

[SS92] S.Sistare. Data visualization and programming in the prism programming
environment. In Proc. of Working Conference on Programming
Environments for Parallel Computing, Edinburgh, April 1992. Springer-
Verlag. IFIP WG10.3.

[SSW+92] D. Szafron, J.Schaeffer, P.S. Wong, E.Chan, P.Lu, and C.Smith. The
enterprise distributed programming model. InProc. of Working Conference
on Programming Environments for Parallel Computing, Edinburgh, April
1992. Springer-Verlag. IFIP WG10.3.

[Sta90] JohnT. Stasko. The path-transition paradigm: A practical methodology for
adding animation to program interfaces.Journal of Visual Languages and
Computing, 1:213–236, 1990.

[Sta91] Stardent Computer Inc.AVS Reference Manual, 1991.

[Sto88] D.P. Stotts. The PFG Language: Visual Programming for Concurrent
Computation Expressing High-Level Visual Concurrency Structures in the
PFG Kernel Language. InInt. Conf. on Par. Proc., pages 72–79, August
1988. Vol2: Software, Univ Maryland.

[Sto90] P. Stotts Graphical Operational Semantics for Visual Programming. in
Visual Languages and Visual Programming, S-K Chang 1990

[STP93] Interactive Development Environment’s “Software Through Pictures”. 595
Market Street San Fransisco CA94105. System reviewed by P. D. Stotts in
Tools Review: ‘Software through Pictures’ from IDE Inc. inJournal of
Visual Languages and Computing (1993) 4, 201-209.

[Sur82] Bernard Surfin. Formal specification of a display oriented text editor.
Science of Computer Programming, (1):157–202, 1982.

[Sze93] P. Szelky, P. Luo, R. Neches Beyond Interface Builders: Model Based
Interface Tools.Human Factors in Computing Systems INTERCHI ‘93
pages 383-390. Amsterdam 24-29 April 1993

[Szw87] Gerd Szwillus. Cegs - a system for generating graphical editors. In
H. Bullinger and B.Schakel, editors,Human-Computer Interaction -
Interact ‘87. Elsevier, 1987.

[Tho90] GregoryS. Thomas. Xsim 2.0 user’s guide. ftp cs.washington.edu, April
1990. Dept. of Comp Sci. Univ Washington.

[TR81] T. Teitelbaum and T.Reps. The cornell program synthesizer.: a syntax-
directed programming environment.Communications of the ACM,
24(9):563–573, Sept. 1981.

192

[Tur92] Russel Turpin.Programming Data Structures in Logic. PhD thesis, Dept.
of Comp. Sci., The University of Texas at Austin, 1992.

[VLWks] Proceedings of the IEEE Workshop on Visual Languages: 1990,October
Skokie Illinois; Proceedings of the IIEE Workshop on Visual Languages
1991, October Kobe Japan; 1994 (10th)IEEE/CS International Symposium
on Visual Languages, October 1994.

[vZMC92] Lynette van Zijl, Deon Mitton, and Simon Crosby. A tool for graphical
network modelling and analysis.IEEE Software, pages 47–54, January
1992.

[XTANGO] J. T. Stasko. Tango: A framework and system for algorithm animation.
Computer v 23 n 9 Sep 1990, pp 27-39.

J. T. Stasko. Simplifying algorithm animation with Tango.Proceedings of
the 1990 IEEE Workshop on Visual Languages, pp 1-6.

[YNTL88] S.S. Yau, R.A. Nicholl, J.J.-P. Tsai, and S.-S. Liu. An Integrated Life-
Cycle Model for Software Maintenance.IEEE Transactions on Software
Engineering, 14(14):1128–1144, August 1988.

Vita

Michiel Florian Eugene Kleyn was a born a citizen of the Netherlands

in Tripoli, Libya on August 15, 1961, the son of Henri F. Kleyn and Johanna M-

C. Kleyn-Hillen. After graduating from St. Paul’s School in London in 1979,

he enrolled at Imperial College, University of London, where he received the

degree of Bachelor of Science in Electrical Engineering in 1983 and of Master

in Computing Science in 1984. After four years in the Systems Science Depart-

ment at the Schlumberger Research Laboratory in Connecticut on graphical

user interfaces and object-oriented programming, he entered the Graduate

School of the University of Texas in September 1989. While enrolled at the

University of Texas, he also worked at Schlumberger Austin Systems Center

on computer graphics and parallel programming.

Permanent address: 3A Bennett Park, Blackheath, London.

This dissertation was typed by the author.

