A HIGH LEVEL LANGUAGE FOR SPECIFYING
GRAPH-BASED LANGUAGES AND THEIR
PROGRAMMING ENVIRONMENTS

APPROVED BY
DISSERTATION COMMITTEE:

Copyright
by
Michiel Florian Eugene Kleyn

1995

To Dominique

with Love.

A HIGH LEVEL LANGUAGE FOR SPECIFYING
GRAPH-BASED LANGUAGES AND THEIR
PROGRAMMING ENVIRONMENTS

by

MICHIEL FLORIAN EUGENE KLEYN, B.Sc., M .Sc.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Exas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXASAT AUSTIN

August 1995

Acknowledgments

I would like to thank my committee chairman, my parents, friends, and
colleagues for making this dissertation possiblgéhwut their invaluable sup-
port it would have taken even longer than it did.

I would also express my sincere appreciation to all of thameations
that financially supported by work.

Bij het beéindigen van mijn academische studie maak ik garne van deze
gelegenheid gebruik om mijn dank te betuigen aan allen, die to mijn weten-
schappelijke vorming hebben bijgedragen, in het bijzonder aan mijn hoogge-
schatte Promotor

A HIGH LEVEL LANGUAGE FOR SPECIFYING
GRAPH-BASED LANGUAGES AND THEIR
PROGRAMMING ENVIRONMENTS

Publication No.

Michiel Florian Eugene Kleyn, Ph.D.
The University of Texasat Austin, 1995

Supervisor: James C. Browne

Vi

Abstract

This dissertation addresses the problem of creating interactive graphical
programming environmentsfor visual programming languages that are based on
directed graph models of computation. Such programming environments are es-
sential to using these languages but their complexity makesthem difficult and time
consuming to construct. The dissertation describes a high level specification lan-
guage, Glide, for defining integrated graphical/textual programming environments
for such languages. It also describes the design of atranslation system, Glider,
which generates an executabl e representation from specificationsin the Glide lan-
guage. Glider isaprogramming environment generator; it automates the task of
creating the programming environments used for devel oping programsin graph-
based visual languages. The capabilities supported by the synthesized program-
ming environments include both program capture and animation of executing pro-
grams.

The significant concepts devel oped for thiswork and embodied in the ab-
stractions provided by the Glide language are: an approach to treating programs as
structured datain away that allows an integrated representation of graph and text
structure; ameans to navigate through the structure to identify program compo-
nents; a query language to concisely identify collections of componentsin the
structure so that selective views of program components can be specified; aunified
means of representing changesto the structure so that editing, execution, and ani-
mation semantics associated with the language can all be captured in auniform
way; and ameansto associate the graphical capabilities of user interfacelibraries
with displaying components of the language.

The data modeling approach embodied in the Glide specification language
isapowerful new way of representing graph-based visual languages. The ap-
proach extends the traditional restricted mechanismsfor specifying composition
of text language structure. The extensions allow programming in visual languages
to be expressed as a seamless extension of programming in text-based languages.
A datamodel of agraph-based visual language specified in Glide formsthe basis
for specifying the program editing, |anguage execution semantics, and program an-
imation in aconcise and abstract way.

Vil

Table of Contents

List of Figures Xiii
Chapter 1 INtrOQUCTIONcueivireiiieeeeeee e 1
11 ProbBlem ... s 1

12 APPIOBCN et 2

13 RESUILS ..ottt 4

14 Contents Of DISSErtationccccoeeererieriereeie e 6
Chapter 2 MOUIVELIONocuiiieeee e 8
21 Visua Languages and their Programming Environments 8
Graph-based Visual Languages.........ccccceveeveeceeeneennens 10

The Interconnection Paradigmccccoveeveeieneennens 13

2.2 Graph MOGEISooveieiiieeeeee e 14
221 Graph Grammars.........coceveereneneereee e 17

2.3 SUMMEIY ittt s e e e e e naneas 18
Chapter 3~ RE@E WOIK......cceecieee e nne s 19
31 Programming Environment Generatorscccoceveeereeneennens 19
3.2 Programming Environments for Visual Languages 22
3.3 Programming Environment Generatorsfor Visua Languages22
34 SUMIMEBIY ettt s ne e 23
Chapter 4 Glide Modéel of Graph Based Visual Languages....................... 24
MaiN [deaS.......oceeieieeeeree s 25

Graph TYPES ... 25

4.1 The Glide Grammarcccecereenenie e 26

A SIMPle ProduCtionccccererereresereseseeeeeees 27

LI 0 o (1 0o PSSR 28

AQOregatioNcovuieieiieieeee et 30
AREIMNELION.......ccieieeee e 31

Operator precedence and expressing commonality32

SNAMNG...ce e 33

CYCIBS . 34

Repetition: Setsand ListS.......cccocveveveevecceceececee 35
TEMINAIS....cceiiieieeee e 36

41.1 Complex GBVL StrUCTUIES..........coeeeeierenie e 36

4.1.2 Example Glide Grammar Specification.............cccccevvenee.e. 38

4.1.3 SUMIMBIY ..ottt n e sae e sane e 40

Glide Grammar SYyNtaXx..........cccceveerererenereseseneeenns 41

viii

4.2

4.2.1

4.3
4.3.1
4.3.2

433

4.3.4

4.4
4.4.1

4.4.2

4.4.3

4.5

45.1
4.6

4.6.1

Glide Path EXPreSsionscccoeievenenieeiieiesesie e 42
Path Expressions and Alternation...........ccccoeeeevvveeenee. 44

UPPEEN <. 45

Glide Path EXpression SyntaXcccccceeeeresieeseeeseesenneens 46
Glide Query DefiNItioNScceveeiieeiie e 47
Tree path eXPreSSIONS.......cccveeeeeeieeieese e 47
SIMPIE QUENTES ..ot nne s 50
MErgING trEES.....ccuve et 50

More Complex QUENESccereeeerieieresese e 51
MUIIPIEIIEES. ... 52
FIteriNg treeS.....ccve e 53
Recursion in tree path eXpressions..........c.ccoceveeeeenne. 53

Graph displays.......ccceevereeieereee e 55

Glide QUENY SYNLAXcccveeiieiiiecie e 56
Glide Action DEfINITIONScccoveriirienirieeeee e 58
Editing ACLIONS........ccceeiiecieece e 59
BasiC action eXPressions..........coeeveeererenesesieseeeenes 59
Example - connecting Objects........cccvveveeveseeniecnene 60
Semantics of action expressions.........ccccveveevveenieeene. 61

Editing VS. SIrUCKUNE........coviiieieecee e 61

USEr iNPUL BCLIONS.........ocieieeiecee e 62
DiSCONNECtioN 8CLIONS........cooveieerieeie e 63
Deletion aCtionS.........ccoceveereneeneee e 64
Conditional action eXpressions..........ccoeveereereesveeneens 64
EXECUtion SEMaNLiCSccccoveireriinee e 65
Example - Transition node state update 66
Example - value update...........cccoovevvviveveeieseeceeee 68
Example - dataflow........ccoeveiciciececeee i, 69
Execution firing regimes.........ccceoevenereneneseneeeenes 70

Glide ACLION SYNEAX ..c.veeeeeeeeeieeee e e e e 70
COMIMON ...t e 70

Editing SPECITIC......ooiiiiiierieeee e 71

Glide Shape PrediCatescoocvveveecieeviee e 72
EXAMPIES ... 73

Design variations - bipartite vs. input-outpui. 76

Glide Shape Predicates SyntaXx..........cccoveevveieeccieeseecneenn 79
Glide Graphical Attribute Definitionsccccevveveveececeenee. 80
Default display.......cccceevieiiieeiiececce e 82
Simpleexample.......cooiirre e 83

List Graphical AttribUES........ccceevveerecee e, 83

4.6.2 Glide Graphical Attributes Syntaxccocevevenerereenne. 85

4.7 Glide Animation DefiNitionsccccovveererinneenenceseee e 86
Simpleexample.......coiiie e 87

More complex example.........cccceeeeeevieereeieseese e 87

Transition aniMatioN..........ccoveeierieneene e 87

ANIMation ProCeAUIESccererererenereseseeeeeeeas 88

4.8 Sl 0101007 TSP 89
Chapter 5 Graph Types for Graph Based Visual Languages...................... 90
51 Data Types in Imperative Languages with Pointers 90
Basic composite datatype.......ccccceevvrieereeieseerieeeene 91

Recursivetypes |: liStS......cocvveveeiie i, 91

Recursive types 11: trees.......oocvveeveeienerene e 92

Recursivetypes I11: grammars..........cccceveeeveeeereneene 93

Shared SErUCLUIES.........c.ooeiieeeereeee e 9

Cyclic shared StrUCIUrES..........ccoeeveeenierenereese e 95

GBVLsand shared/cycliC types........ccocvrerervrerennnnn. 96

5.2 Functional LangUagEScceerereriirieenieniesiese e 97
IVIL e s 98

IMITANTAL. ... 100

53 ADSLract Data TYPES ..ocveeveeeesieerieeiesieesie e e sse e see e ens 101
Graph TYPES ..ottt 102

54 Database MOAEIScocveeiieieicee e 104
541 Model of Network Data Bases.........cccceeevcveeeeevivveeeccciveen. 104
54.2 Object-Oriented Data Models..........ccceveerenineienineeene 104

55 Other Areas Addressing Cyclic and Shared Types 105
551 Parallelizing Compilers and Pointer Structures................ 105
55.2 GAOIS. ..ttt s 106
55.3 Graph GrammarS........cccocceeieeiieesee e esree e s 106

5.6 Dynamic Structures, Anonymity, and Connections 106
S.7 SUMMEBIY ..t ne s 107
Chapter 6 Glider Design and Implementationccocceeeeeneerenceesieenenne 109
6.1 Overview of GHOErccoveiiiree s 110
Programming Environment Generation 110

Programming Environment USe..........ccccoovverereenens 111

Internal or External EXeCUtioN...........ccoevererenennens 112

6.2 Design of Programming Environments and Compiler 114
6.2.1 Programming Environment Design.........cccccveveeveerieenene 114

6.2.2 Compiler DESIN......cccieiiecieecee et 115

6.3

6.4
6.4.1
6.4.2
6.4.3

6.4.4

6.5
6.5.1

6.5.2

6.5.3

6.6

Chapter 7

7.1
711
712
7.13
714
7.15

Target Run-time EnNvironmentcccceeeveneneneneneseeeenes 117
Implementation Language...........cccovevvereereeieeneennns 117

GUI Libraries........cooeeneriineeneee e 117

Glider RUN-time Librarycccccceveeveeceseeseeceseese e 119
Level-0: Access and Alteration of Objects.........c.ccc........ 119
Level-1: Access and Alterationto the PIN....................... 121
Level-2: Path EXPressionS........cccoveveveeveeneesseeseeniesee e 125
Path Expression Algorithm.........cccccoeeveeieeviieecieeenee. 126

Tree Path Expression Algorithm ... 126
Run-time Library Components..........cccceveveveeveereenieseennes 128
Display TreesInterpreter.......ccccooveveevcecveevciecsieeeene, 128

MaiN Frameccooeeiiee e 130
Selection Managerccceevvveeneeiesee e 130
Object-Widget Mapping Managercccccceeveecnnenne. 131
Execution and Animation Managerccoceeeeeenen. 131

Glider Compiler COMpoNentsccocoveeveeiiieeseesiieeseesneenn 133
Class GENEIALONcceeieeeereeeeeeste e ees 133
Class Generation Algorithm.........cccocceveeevveeervceene. 134

Class Generation Examplecccccvvveveeccieeiee s, 134

Graph Language Queries Transation...........c.ccoeevereeuenne. 137
Queries Compilation Algorithm.........cccecveveevvenenne. 137

Query Compilation Example........cccccoevveeceeiieecnenne 138
ACtioNS Trangationccceoeeeeieeneneseee e 140
Editing Actions Trandation...........ccceeeeveeeveerieseennns 140

Editing Action Trandation Example...........ccccueu.... 141

Editing Actions Trangdlation Algorithm..................... 141
Execution Actions Tranglationcccvevevererennns 142
Execution Actions Trandation Algorithm................. 145

Shape PrediCates..........ccoovviieeeeieee e 145

Shape Predicates Trandation Example..................... 146

Shape Predicate Tranglation Algorithm..................... 146

Action Compiler Trandation Algorithm.................... 148

Sl 0101007 RSP R 149
EXAMPIES ... 150
Simple Boolean CirCUItcccoverirerieeeeeeese s 150
Glide Grammar for Boolean CirCuit..........cccoeevenerernenne. 151
Editing Semantics for Boolean Circuit.............ccceveeneene. 152
Execution Semantics for Boolean Circuitcccuee..... 152
Graphical Attributes for Boolean Circuitccccvee..... 154

Queriesfor Boolean CirCUit..........ccceeveeeieeeeiieeecireeeeneenns 154

Xi

7.1.6 Animation of Boolean CirCUitcccoceeeeeeeeieeeccveeenee.
717 Shape Predicates for Boolean Circuit...........cccccveceeveeeneee.
7.2 Complex Petri NetS- PCM ...
7.2.1 Glide Grammar for PCMcccceveeiiiciieceecee e,
7.2.2 View QUEriesfor PCM ...,
7.2.3 Execution Semanticsfor PCMcccccocveeeiieecveeecreee,
724 Animationsfor PCMccccoveveeiieecee e
7.3 The LADVIEW GBVLooeceeeeeeee et
7.3.1 Glide Grammar for LabVIEW.........cccoevievieeiee e,
7.3.2 Queriesfor LAbVIEWcoooviiiiiiciec e
7.3.3 Execution Semanticsfor LabVIEWcccoceeevveeennennee.
7.4 Summary of RESUILScoovveeiiiciece e
Chapter 8 Conclusions and Further Workcccccocveveeieneenncciesee,
Appendix
References

Vita

Xii

List of Figures

Figure1-1 High Level MetaLanguage..........ccocerereeieenienienene s 3
Figure4-1 Displayed Petri Net.........cccooieveeceiiee e 38
Figure4-2 Implementation of aPetri Net.........cccoooveviecieeve e 39
Figure4-3 PIN of the Petri NEt.........ccooooiiiinieeeeee e 40
Figure4-4 Incorrect Instance NEWOrKccccveviveeeveeneeeseee e 73
Figure5-1 Pointer implementation of alist.........cccccoovvviieiviiiiiciic e, 92
Figure5-2 TwoO Views Of areCurSiVEtYPeccceeeeeieereenereneniesesieeeeees 92
Figure5-3 Implementation of aBinary Tree......ccccoccvveveeceseece s 93
Figure5-4 Implementation of aGeneral Tree.......cccccovvceeveevceeveeccieesienns 93
Figure5-5 Implementation of a Shared Structure.............ccccooeveninereennne 94
Figure5-6 Implementation of a Cyclic Structure.........cccceeeveeveeceeseeennene. 95
Figure6-1 Generation of a Programming Environment vs. itsUse. 110
Figure6-2 Detailed view of Glider Compilation............ccccooenireninieennne 115
Figure6-3 Object-Oriented Compiler DeSIgNccceeceeveereecieseesieseenes 116
Figure6-4 Level-0- Object Access and Alteration Procedures.............. 120
Figure6-5 Level-1- PIN Accesand Alteration Procedures..................... 122
Figure6-6 Example Program Instance Network (PIN)ccccceevevvenenee. 124
Figure6-7 Recursive Path Expression Evaluatorcccccevveeviveenieeee. 126
Figure6-8 Recursive Tree Expression Evaluatorcccooveerveieennne. 127
Figure6-9 Mapping between screen widgets and PIN instances............. 131
Figure 6-10 Generated Query Procedure..........ccoeeveevieeniiescieeseesne e 139

Xiii

Chapter 1

| ntroduction

Interactive graphical software systems for supporting users in solving
complex problems are now in widespread use. They are used in document pub-
lishing, computer aided design, and in many other synthesis problem domains.
Such systems enhance a designefectiveness. They make it possible for the
designer to explore design options by facilitating tasks such as construction, re-
finement, manipulation, moddation, viewing, simulation, and analysis of
models of the artifact that is to be created. One problem domain ofisagnif
and ever increasing complexity is that of specifying and developing programs.
Interactive graphical systems are used, for the same reasons, in the domain of
software specitation and programming - to support software developers in
similar tasks on programs (the artifact itself) or models of software artifacts.
Within the domain of developing speiciétions and programs, there is a long
history of research into the use of exploiting graphical techniques. Interest in
so-called graphical languages or visual languages began almost as soon as pro-
gramming languages themselves were developed. The use of visual languages
Is growing, driven by the increasing availability of the hardware and software
execution environments that can support their implementation. This disserta-
tion addresses the problem of creating interactive graphical programming envi-
ronments for the predominant form of visual languages: graph-based visual
languages.

1.1 Problem

Visual programming environmenisg., systems with graphical user in-
terfaces which support a user in developing programs in visual languages, suf-
fer from a problem which is common to all ¢grcomplex software systems;

1

they are difficult and time consuming to develop. Every time anew visual lan-
guage is designed, there remains the large task of creating the interactive envi-
ronment that will support the development process for the new language.
Development of the interactive graphical interface is often the largest single
task in developing a programming system. The design of avisual languageis
aided by the ability to rapidly create a programming environment for it so that
it can be easily evaluated and refined. Visual languages are difficult to use
without the support of an interactive tool and so the creation of a new visual
language requires the considerable time and effort for the implementation of
the tool, above and beyond the design of the language itself and the implemen-
tation of its compiler. Thereisthus afrequent need for creating interactive
graphical environments. Current support of the creation of these environments
Isinadequate because existing graphical tools and libraries are generic and do
not support the abstractions that are specific to visual language programming
environments.

1.2 Approach

The approach of thisresearch was to design, implement, and experi-
ment with a high level language which can be used to describe graph-based vi-
sual programming languages. A high level language is a means of simplifying
the creation of programsin a particular problem domain by providing the ab-
stractions necessary for solving problems in the domain as language con-
structs, so that solution programs can be formulated in a more concise and
direct way. This description isanalyzed by ahigh level language compiler in
order to generate aprogram in atarget language at alower level of abstraction.
The target may bein theform of adirectly executable binary file or in the form
of source code of alower level language which can be further compiled. In or-
der to reach the higher level of abstraction high level languages are mostly de-
clarative. The compilation process transforms the declarative description into
the procedural form required in the target language.

Glide, the high level language described in this thesis is a means
through which the creation of programming environments for visual program-
ming languages based on directed graph models of computation is automated.
As such it is aneta language. The objects that can be described with it are lan-
guages. The compiler for Glide is a generator which analyses the high level
specifcation of a particular visual language and emits a program which is the
programming environment for that visual languaf@s environment is then
used by a user wishing to develop programs in the visual language. The dia-
gram in Figure 1-1 illustrates these relationships.

High Level Specification Meta Language

Language
Creation

Visual Visual Visual
Language A Language B Language C
Program
Creation
Program 1 Program 2
in Language A in Language A

Figure 1-1 High Level Meta Language

Glide itself is not a visual language but a conventional textual language.

Within the context of using a high-level language, the approach devel-
oped in this dissertation is focused in two significant ways:

Graph-Based Visual Languages: First, the model of visual languages is
restricted. No attempt is made to address all forms of visual programming lan-
guages. @ken as a whole there are very wide variations in the appearance, syn-
tax, and semantics of visual languages and some lack of consensus on how to
characterize them. Instead, the work in this dissertation focuses on the particu-
lar form of visual languages which is predominant. This form of visual lan-
guages can be termed “graph-based visual languages” since their common

4

feature is that creating complex annotated graph structures is a central part of
“writing” a program. There are two immediate advantages that accrue from fo-
cussing only these kinds of visual languages: (i) the notion of what a visual
programming language is becomes clearer; and (ii) since graph-based struc-
tures and graph-based models are found in almost all areas of computer sci-
ence computer and computer engineering, and many of these models have
some form of execution semantics associated with them, the concepts devel-
oped in this dissertation are applicable to developing interfaces for them and
the system developed in this dissertation can be used to generate interactive
graphical programming interfaces for them.

Data-model Oriented: Second, within the context of generating a user
interface from a speddfation, the approach that “the data model is the inter-
face” is takeni.e., that a very dective way to design the graphical user inter-
face for an application is to understand the structure of the model that is being
manipulated by the application and being viewed through the interface. A sim-
ple example of this is a word processor; a good word processor must have a
clear and consistent model of a document. The user can quickly understand the
capabilities and limits of the word processing tool by understanding this mod-
el. With this model-oriented approach to visual language interfaces, the de-
scription of the structure of the language becomes the central means by which
the interface itself is structured. The usguerception of the interface is one
“through” which a data object (the program) is manipulated and vieled.
this reason it is possible to generate an interface for a visual language simply
by creating a speddation which is based in lge measure on a description of
the structure of the language itself. This approach, that the interface should not
“get in the way” of the usehas repeatedly been advocated in the of user inter-
face research communitpYC88, Sze93 Fol93, ShuFol].

1.3 Results

The results of this work are a set of concepts for characterizing graph-
based visual languages and a set of abstractions embodied in the Glidie specif

cation language for specifying them and their programming environments. The
concepts allow a undd view of the graphical/textual aspects of such languag-

es and also a ungd view of all the activity associated with them at the user in-
terface: editing them, their on-screen execution/simulation and their
animation. Secondly the abstractions and the design of the Glide language
have been validated by an implemented compiler that has been used to create
programming environments for several graph-based visual languages.

More concretelythe results of the work described in this dissertation
are as follows:

* Glide: a high level language for specifying graph-based visual languages
and their programming environments. Glide consists of several
components:

- A type composition component. The high level language described in
this dissertation provides a means of modeling a visual language as a
special form of composition of types. This specification of types is the
basis for generating the interface.

- A query language component. This query language provides a concise
way of identifying a collection of components of a graph-based visual
language program. Queries are used to specify the contents of views of
programs.

- An action language component. Actions are used to specify changes
to parts of the structure that represents the program. It is used for
specifying both editing operations and an abstract execution semantics
of the language.

- A graphical attributes component. This component is used to relate
parts of the structure that represents the program to graphical properties
of graphical objects that represent these parts on the screen.

- A means to combine the action language and the graphical attributes
to specify how animation of execution should occur

e Glider: A functioning prototype generatorThe generator is an
implementation which validates the design of the Glide specification
language. The Glider prototype consists of two parts: a generator which
converts the high level specification into an executable program iget tar

language, and a run-time library which, when linked with the generated
program forms the complete visual programming environment for a
specific graph-based visual language.

 Examples Existing graph-based languages are specified in the Glide
notation and it is demonstrated that Glider is can automatically produce the
programming environment for the language. Though these interfaces are
not as elegant and aesthetic as hand-crafted ones, theyfegevefand
usable.

» Extensibility: It is shown that because of thvay in which the Glide model
uniformly integrates linear (text) and non-linear (graph) aspects of a graph-
based language, a new framework for creating complex structures for
representing computations is provided.

The system developed and described in this thesis is not a compiler for
graph-based visual languages. The system does, howadiewr the user to
specify the execution of programs in an abstract way so that execution can be
simulated for animation on the screen. If the language designer who provides
the compiler for the graph-based visual language can instrument compiled pro-
grams to report changes when they execute, then the compiled programs can
be coupled to the interface to drive animation from actual programs.

1.4 Contents of Dissertation

This thesis is divided into six major chapters. The next chadt#iva-
tion, justifies the need for a tool for automating the creation of programming
environments for graph-based visual languages by showing that these visual
languages are in widespread use. It also shows that many graph-based models
of computation and speaftion exist, and that these beméfom the ability
of a generator tool to quickly produce interactive programming interfaces for
them, making experimentation and evaluation of models much e@beefol-
lowing chapterRelated Work, identifies previous research that has addressed
the problem of automatically creating programming environments and previ-
ous work in developing programming environments for graph-based visual lan-
guages. It shows that these interface generating tools are inadequate for
creating programming environments for graph-based visual languages. Chap-

ter 4, The Glide Model, provides a detailed exposition of the way in which
graph-based visual languages are modeled with the Glide language. The expo-
sition isaprogressive one; Glideis described by introducing successive com-
ponents of the language and relating them to familiar notations and languages.
In Chapter 5, Graph Types, adata structure issue that needs to be addressed in
representing graph-based languages is described and it is shown that this prob-
lem isfundamental in that it appearsin the context of many other research ar-
eas. The way this problem isaddressed in Glide is presented in the context of
related work. Thisisfollowed by the chapter Glider Design and I mplementa-
tion, which describes the design and implementation of the Glider generator
and how the different components of a Glide specification are translated into a
lower level of executable code by the generator. Finally in, Examples, three de-
tailed examples are described to show how they are can be encoded in Glide
and the resulting interfaces that were created are shown.

Chapter 2

M otivation

This chapter motivates the work of this dissertation by surveying and
analyzing the widespread use of graph-based systems. The first section
(Section 2.1), on visual languages, describes the basic ideas behind visual pro-
gramming languages and then substantiates the claim that graph-based visual
languages are the predominant form for visual languages. The next section
(Section 2.2) surveys graph-based models. It isintended to give an apprecia-
tion for the large variety of ways in which graphs (as mathematical abstrac-
tions) have been used as vehicles for specifying, modeling, and understanding
computational systems. The section makes the distinction between those graph
model s that exist to be seen and edited by a user vs. those that are internal
graph-based structuresthat are never directly seen or manipulated by a user. It
al so makes the distinction between those directed graph models that represent
some form of flow of execution vs. those that are not directly associated with
execution. Those graph models which are intended to be edited by a user and
also have an execution semanticsfit the notion of graph-based visual language
developed in this dissertation and are thus candidates for programming envi-
ronments generated viathe Glider generator. This chapter illustrates the range
of graph-based languages and models for which a generator isintended to be
able to create programming environments.

2.1 Visual Languages and their Programming Environments

In the broadest sense of the term, avisual language is any form of com-
munication that is mediated through graphical means. Research into visual lan-
guagesis aimed at finding ways of exploiting graphical displaysto efficiently
mediate communication. Thisinvolves making use of two or three spatial di-

8

mensions, colqricons, animation, and any other “meaningful graphic repre-
sentations” [ShuVLdef] for which the human visual system has a natural
affinity. Research into visugrogramming languages, howeveas more specif-

ically aimed atihding graphical means other than the conventional linear se-
guence of ASCII symbols to encode and display programs andispéoifs.

The goal is to match this visual appeal with a “spatial” parser which can recog-
nize the picture that is interactively createe.(sketched, drawn, manipulat-

ed) by a userso that a semantic interpretation can be derived from the
recognized structure. An early example of this is the tabular spean inter-

faces of Query-by-Example database interfaces [ShuQBE]. This form of visual
language makes use of vertical and horizontal alignment to convey common re-
lationships between objects. At the time these interfaces were created they
were considered visual language interfaces, but by current standards they
would no longer be considered very graphical. Some visual languages go be-
yond exploiting the ability of users to perceive graphical relationships. They
further exploit a human usarfamiliarity with objects in the physical world by
giving the illusion of direct manipulation of physical objects by means of
graphical objects on the screen. Examples of this are the programming by dem-
onstration visual programming systems such as Programming by Rehearsal
[ShuPBH], KidSim [Kidsim94], and the Alternative Reality Kit [AltReal88].

All visual languages share the need for a programming environment -
an interactive graphical user interface which is used to create and manipulate
visual language programs. Early visual language systems required extensive
custom graphics software to be realized. Now many of these graphics capabili-
ties are becoming more accessible with the more widespread use and standard-
ization of higher level GUI (Graphical User Interface) libraries. Nonetheless,
creating such an interface still requires consideralflerefThis is because
these libraries provide generic support for user interfaces of all kinds and do
not provide the spedd abstractions needed to support developing programs in
visual languages.

10

A common feature of many visual language programming environ-
ments is the use of animation. Animation is the use of dynamic graphics to con-
vey the execution behavior of a program. An example of a visual language in
which programs are animated to illustrate execution is PICT [ShuPICT]. All vi-
sual languages share the need for graphics primitives to support the implemen-
tation of their programming environments, so it has been natural to further
exploit the primitives to support animation. The programming environments
allow the visual language to be executed in situ and the execution behavior is
reflected as animations on the diagram (the visual language program) that the
user created. This “immediate visual feedback” is a powerful aid to program
comprehension [Bur94].i9ual language environments that provide animation
are a specialized form of the more general concept of program visualization.
Most program visualization systems have been developed for producing ani-
mations of algorithms and are independent of any particular programming lan-
guage. Examples of such systems are BALSA [Bro88] anANGO
[XTANGO)]. These systems are used to illustrate and help explain programs
and algorithms using a wide variety of graphical techniques.

Graph-based Visual Languages

Despite the very broad characterization usually given to visual pro-
gramming languages, it becomes evident from surveying the many examples
of visual programming languages that have been created, that those that are
based on creating diagrams in which graphical objects are connected together
into a graph structure are by far the most widespread. A simple tally of papers
in the Proceedings of IEEEiMual Language Wrkshops [VIWks] refects
this. It shows the following approximate ratios of graph-based visual languag-
es as a fraction of the total number visual languages8¥£7/11,
VL'86=9/11, VL'88=16/25, and in the book on visual programming by Shu
[Shu]=20/32. The recognition that graph-based visual programming is one of
the most significant forms of visual programming is not new:

11

“..I think our paradigm is based on representing programs as graphs...”

(from “Is Visual Programming a New Programming Paradigm?” [CHVL 91])

There are too many examples to provide a complete list, but the follow-

ing are three prominent examples of graph-based visual programming lan-
guage environments: the network editor MS® [Sta91], the CODE?2 parallel
visual programming environment [Bro85,NB92,New94], and the graphical
programming component of the LabVIE¥gystem [Nat87,Dye89]:

AVS The data visualization tool \A contains a “network editor”
subsystem. The network editor simplifies the creation of visualizations of
data, allowing a user to compose a visualization program from predefined
modules which process b numeric data sets. These modules are
represented by nodes which are connected to each other with typed data
flow links. The visualization programs can be immediately executed,
evaluated and modified in the editofhe network editor allows rapid
prototyping and reuse of modules. Animation in the form of highlighting of
links and nodes gives the user an indication of the progress of the
execution, the time spent in each module, and the order in which they were
executed.

CODE2: CODE?Z2 is an interactive visual programming system for creating
parallel programs at a high level of abstraction. The interface allows the
user to specify a parallel program by interconnecting node icons with data
dependency links. A node can represent a sequential computation or
another parallel computation subgraph. Attributes associated with the
nodes and the links are used to define the topology of data flow between
nodes and the conditions under which nodes fire. The system is an
integrated text/visual language system: the sequential code within a node is
in a standard programming languageg(C) and can be edited with a text
editor The CODEZ2 system is the implementation of a directed graph-based
model of computation (described in the next section).

LabVIEW LabVIEW is a system for processing data from and controlling
data-acquisition instruments. It contains an embedded general purpose
graph-based visual programming language called “G”. G provides a range
of general purpose programming constructs such as the typical forms of
control structure (while and for loops), and complex data types (arrays) in

12

the form of complex nodes. The LabVIEW visual programming language
is based on a data flow model of computation.

Many visual languages are based on the composition of objects into a
graph but then also make use of 2D graphical features in order convey further
semantics. ypical of these are the various object-oriented design notations
such as RumbaughObject Modelling €&chnique [OMT91], the Booch nota-
tion [Boo94], and the Shlaer/Mellor design language [ShM88]. These nota-
tions are all collections of graph-based visual languages which are overlaid
with text and graphical features (e.g. iconic shapes). These features may have
a particular meaning and their 2D spatial placement can be significant.

Some graph-based visual language are not intended to specify execu-
tion; syntax charts (“railroad diagrams”) is an example. These charts do not
specify the execution of a program but are intended for users of a text language
who wish to understand the syntax of the language or to verify the syntax of
programs in the language. A syntax chart is a visual language for communica-
tion between a language designer and its users.

Graph-based languages are used at all levels of design abstraction. For
example, boolean circuit diagrams are a means to describe a computation at a
very low level abstraction, since they can be directly implemented in hard-
ware. The object-oriented design notations just mentioned, specify computa-
tion at a very high level of abstraction, since they record the initial design
specifcations for systems whose detailed components will be completed at a
later stage.

There are only a few attempts to create general purpose graph-based
languages which are analogous to the general purpose textual ones (C, Pascal)
- LabVIEW and Prograph[CGP89] come closest. Most are “little languages”
which have specialized semantics for a particular domain. They are also often
embedded as part of adgr system (XS is a good example). In these systems
a graph-based approach is used because the graph structure of the program is

13

central to its design or the because the problem domain is not a naturally linear
one €.g., parallel programming).

The Interconnection Paradigm

Underlying the lage variation in visual appearance of graph-based vi-
sual languages is the same basic concept. In all these kinds of graph languages,
itis an “interconnection paradigm” which is being exploited. Making textual
programs by composing elements into a sequence is a végyedif program-
creating mindset from making visual programs by composing elements into a
graph. The key diérence is that whereas in textual programs the tokens (char-
acters or lexical elements) arencatenated orinserted into a linear sequence,
in a graph-based program they amerconnected. It is often stated that the ba-
sic difference between textual languages and visual languages is that the
former are “one-dimensional” while the latter are “two-dimensional”. In the
case of these graph-based visual languages howkvemore accurate to
characterize the diérence as “one-dimensional” vs. “many-dimensional”,
since in graph-based languages any graphical element can potentially be con-
nected to (become adjacent &my number of neighboring elements - not just
one left neighbor anane right neighbor This distinction is at the level of
graphical elements that are manipulated on the screen; a user connects a “link”
graphical element to a “node” graphical element in order to make the link and
the node adjacent. A graphical element can even be transitively adjacent to it-
self through a cycle of adjacent graphical elements - this simply cannot happen
in a text language. Even though the graph is graphically depicted as a two-di-
mensional geometric object, for most graph-based languages the particular
physical location of connected elements is not meaningful. The graph has the
same meaning no matter where the nodes and links are placed - it is only their
interconnection that matters. Howeyprst as in text languages with no for-
matting, it is difficult to read a poorly laid out grafh

1 See Lamport [Lam90] for an illustration of the importance of formatting in
text languages - thiatroduction discusses about how important formatting (i.e.
layout) is in programs vs. in mathematical expressions.

14

The objects that are connected into a graph also often have further struc-
ture in the form of attributes or components. These are either displayed as
graphical or textual annotations of the node or link, or they are made are acces-
sible by opening a new window which displays these details. It is possible to
implement an interface in which the objects can have their structure displayed
and can be individually edited within the graph display itself, but it is only re-
cently that this functionality has become available at the GUI level of abstrac-
tion and has not required detailed low level graphics coding to implement the
visual languages programming environment.

The interconnection paradigm is a key concept that runs through this
dissertation and it is reflected in the design of the Glide Language.

2.2 Graph Models

This section examines the use of directed graphs as abstractions which
are the basis for models of computation. These models exist independently of
whether or not they are created by a user with a graphical programming envi-
ronment, but many do have an associated environment - in which case they can
also be considered graph-based visual languages. Almost all the models of
computation arelirected graph models; the edges have an orientation. The
edges are oriented in order to specify the directiofoof bf data or tokens, or
to indicate the direction of dependencies. Animation of programs of graph-
based visual languages can be driven from the model of computation of the lan-
guage; there is ddw of activity through the structure along the edges which
can be graphically highlighted.

A great many of models and associated environments have been devel-
oped. There are too many to enumerate here, but the following list is a small
representative sample of the main classes of graph-based models of computa-

2 Providing eficient algorithms that produce readable graph layouts for
applications such as graph-based visual programming environments is a
difficult problem and an active area of reseatERd9.

15

tion. It illustrates how widespread the use of a graph abstraction is in models of
software systems.

» Petri Nets: A well known simple example of a graph-based model is Petri
Nets [Pet81]. The Petri Net model is a parallel model of computation which
is used to model the coordinated behavior of devices.

Petri Nets are bipartite graphs; there are two kinds of nodes, transition
nodes and place nodes, and there is one kind of directed link. A Petri Net
executes as follows: Each place node may have zero or more tokens. If all
the place nodes that are connected to links which are directed into a
transition node have at least one token, then that transition node is enabled.
One enabled transition node is chosen non-deterministically and fired
atomicallyThis removes one token from each of the input place nodes and
adds a token to the output place nodes (ones which are connected by links
that are directed out of the transition node).

There a great many variations of this basic theme that have been
developed. For example, Colored Petri Nets is a model which adds
structured typed tokens and more complex firing rules [CPN90], and PCM
IS an augmentation in which nets can be hierarchical, have time delays, and
include parameters which specify replication of nodes at run time [BA88].
Others variations and many visual programing tools which provide
simulation and animation are described in the proceedings for Petri Net
workshops [F86].

« State Transition Systems: A graph-based way of representing finite state
automata is through transition network diagrams. In these diagrams, every
state of a system is represented by a separate node and edges between
nodes are labeled with input symbols representing transitions that can
occur between states. In this model the current state is represented by one
node and not distributed over many nodes.

More complex variations of this basic model have been developed. For
example the system described in [ShuJUac¢83% is a transition network
diagram model for specifying interaction in user interfaces. In this model
there are several types of links which represenfediht types of
transitions €.g., user input, interface output, function invocation). Another
example is modelling communications protocols. Peers in communications
protocols can be modeled as communicating finite state machines. The

16

Prospec system is an example of a visual programming tool developed for

this kind of modeling [CL88]Hygraphs is a model of computation based

on hypegraphs. It is the model underlying the Statecharts visual language
[Har87,Har88]. The model is based on state transition model and is

intended to model so-called reactive systems. Reactive systems are
systems which must respond to external events. Many variations of this
model have been developed including, for example, Modecharts for

modeling real time systems [JM88].

» DataFlow: The data flow model of computation is a graph-based model of
computation which is intended to expose the maximum available
parallelism. In this model of computation values flow along the arcs and
are consumed by nodes which compute new valeigsgimple arithmetic
operations), and the new values are passed on out of the node . Again many
more complex variations of this basic model have been developed [DF82].

e Control Flow: Control flow graphs are used to model the flow of execution
in a program. Flowcharts is an early form of graph-based language for
specifying program structure based on control flow

Some graph models are intended to specify purely static relationships.

For example, the data modelling language Entity Relationship Diagrams is the

visual language for the Entity Relationship (ER) Model. A diagram is not di-

rectly associated with any execution model since it does not specify a computa-

tion to be performed. Instead it spee# static entities; the abstract structuring

of data.

An example of a graph model which is not intended to be either seen or
edited by a user is the global datax graph that is used by an optimizing com-
piler to perform analysis of the use of variables [CCom88]. Tdve &nalysis
is based on graphs composed of nodes which represent basic blocks of instruc-
tions and edges which indicate possible succeeding blocks after branch points.
These graphs are used compute how instructions which create, read, or write
variables create dependencies betweefemint blocks. The results are record-
ed as chains (paths) in the graph. The chains are then used decide if blocks are
independent and can thus be executed out of order or in parallel. Despite the
fact that a system that performs these kinds of analysis is not normally built to

17

be graphical interactive system, a tool such as the one described in this disser-
tation, which could generate the interactive tool from a description of the data
flow model could be very useful for understanding and experimenting which
such graphs.

A graph model in which the editing operations are non-trivial is Binary
Decision Diagrams [BDD92]. These diagrams are a means for encoding bool-
ean functions in the form of a binary DAG (each node has two edges pointing
out and any number pointing in). The nodes in the graph represent boolean
variables and two edges represent the choice of assigning the value 0 or 1 to
the variable. This representation sometimes has advantages over other repre-
sentations such as truth tables for analyzing boolean functions. Graph manipu-
lation operations exist which simplify the graph without changing the function
it computes. This is a non-trivial task that requires skill and experience akin to
being able to simplify algebraic expressions. These graphs can also be an inter-
nal representations manipulated by algorithms which preserve the function

(e.g. memging).

Hypertext systems are systems which the structure of a document is a
non-linear graph of interconnected pages instead of a conventional linear docu-
ment. By themselves hypertext documents are static objects with no associated
execution semantics. However the interaction of a user with a hypertext sys-
tem or the process of traversing the system in order to retrieve information is
dynamic, and models this activjtgased on the graph structure of hypertext
have been developed in theeTlis and PFG systems [Sto88,St090].

221 Graph Grammars

A more radical form of using graphs to model computational systems is
to make the topology (the interconnection state) of the graph part of the execu-
tion model. Inthesegraph grammar models links and nodes can be created,
deleted, connected, and disconnected during execution. Theispgoii of
these changes is in the form of graph rewrite rules. These rules contain a set of
conditions on the attributes (“labels”) and connections of nodes or edges, and a

18

set of changes to the attributes and connections that are to be applied if the con-
ditions are satis#d. Execution of graph grammar programs means that the in-
terconnection of the graph changes - the graph is dynamic. Graph grammars
have been applied to model a great variety of activities, from database design
to biological growth patterns [CER78,Ehr87,Ehr90]. A notion of dynamic
graphs is sometimes also found in systems which are not directly thought of as
graph grammars systems. For example, the CODE2 systems has a notion of
replication and elaboration of graphs structure as part of its model of execution.

Though most the work in this area has dealt with classifying iaald f
ing properties of dierent classes of graph grammars, practical systems have
also been built. The GraphEd system [Him89] is an interactive visual environ-
ment within which collections of graph rewriting rules offdient classes can
be defned and applied to sample graphs. The IPSEN system is a complete soft-
ware development system (CASE tool) based on the graph rewriting concept
[IPSEN92]. The Delta system is a model of parallel computation in which par-
allel programs can be deéd with graph grammars [Delta91]. The ParaGraph
system is an example of using graph grammars to concisely specify regular
communications patterns used in parallel algorithms [BCL90].

Many of these models are visual languages since the rewrite rules and
there efects are specified directly as graph diagrams, and not textually

2.3 Summary

This chapter has given an overview of graph-based visual languages
and the use of directed graph models of computation. When these languages or
models are to be directly created and manipulated by aaiggaphical pro-
gramming environment is needed to support this activity and to visualize the
execution of the resulting program. The next chapter examines the extent to
which previous work has addressed the problem of generating programming
environments from descriptions of languages.

Chapter 3
Related Work

This chapter reviews previous work that is related to the system de-
scribed in thisthesis. It first describes previous research work performed in the
area of programming environment generators. These are systems which allow
the graphical user interfaces for developing programsin alanguage to be auto-
matically generated from a specification of the language. It then examines
some work that hasindirectly addressed the problem of creating programming
environments for graph-based visual languages. It finally presents work that
has directly addressed the problem of creating programming environments for
graph-based languages and discusses the different approaches taken. This
chapter has a second important purpose. It also highlights the concepts devel -
oped in these areas of related work so that the design of Glide and Glider, de-
scribed in the next chapters, can be seen as an extension of these concepts.

3.1 Programming Environment Generators

A significant amount of research work in the late seventies and early
eighties was aimed at the automatic generation of language specific program-
ming environments. These efforts ranged from the comprehensive approach of
creating a complete set of language tools (editors, compilers, debuggers, profil-
ers, etc.) to efforts targeted specifically at creating interactive editors tailored
to aparticular programming language. Some large systems were developed in-
cluding Gandalf [ea85] and the Cornell Program Synthesizer (CPS) [ref
TR81], and more recently Centaur [K|int93], and Pan [Grahm]. These systems
are text language-based systems. Generation of the programming environment
is based upon a specification of the syntax and semantics of the languagein
some meta language (the meta-syntactic formalismin the case of CPS and the

19

20

language description language in the case of Pan). The use of a meta language
embodies the idea that the language tools that had previously been created
manually for each new language, could be synthesized from a language inde-
pendent generator and a specification of the specific language.

These systems create editors that are based on the syntax of the lan-
guage. These kinds of editors are knowstagcture-oriented or syntax-direct-
ed editors. It is possible to generate such an editor by providing a $pettoi
for the syntax of the language in the meta speatibn language (usually some
variation or extension of BNF). The editors are interactive systems in which
the user creates programs via editing actions which change a data structure
which is the abstract syntax tree of a (partially completed) program. The edit-
ing actions are a spedaifset of tree editing operations. The tree may be dis-
played graphically as a tree or as text in a text editor which allows only tree
editing operations. The motivation for using structure oriented editors is stated
by Teitelbaum and Reps:

“Programs are not text: they are hierarchical compositions
of computational structures and should be edited, executed,
and debugged in an environment that consistently acknowl-
edges and reinforces this viewpoint...[TR81]

No parsing is needed in such systems since the syntax tree is created.directly
Because of this, there is more freedom in choosing the particular grammar to
defne the language syntax. Syntax directed editors have the advantage of mak-
ing new users directly aware of the syntax of the language, but they have been
criticized for making some kinds of program alterations morkcdilt. This is
because any change to a program can only go through steps which leave the
program in a syntactically correct state.

A more subtle gkct of these editors is that they convey a feeling of
composition and direct manipulation to creating progrdmstances of the
non-terminals of the language are accessible by the user as templates which
are partially instantiated when the program is being created. The non-terminal

21

instances areifst class editable objects which can be created and moved
around in the tree in the same way as terminaaninals are placed into non-
terminal instance templates; these can in turn be placed inside other non-termi-
nal instance templates. This isféifent from using a plain text editor in which

the user only manipulates arbitrary (semantics-free) character strings. In
[Min92] it is argued that this kind of direct manipulati¢of instances of termi-

nals and non-terminals) is the correct approach to designing structure-based
language editors and that reinforcing this approach in the view of the user
(e.g., by not insisting on a top-down or bottom-up order of editing operations)
can overcome some of the awkwardness of using syntax directed editors.

The GRASE visual programming system is really a syntax-directed edi-
tor for a textual language (Pascal) which is graphically presented through vari-
ants of “Nassi-Schneiderman” diagrams [ShuGRASE]. Nassi-Schneiderman
diagrams are recursive diagrams which divide a 2D rectangular space into tri-
angular or rectangular parts. Each part represent$aaeht syntactic compo-
nent of a production of the syntax of a textual language. Each part can be
recursively subdivided to represent the expansion of a production into compo-
nents. GRASE is a top-down structure editor which makes the component ori-
ented approach of syntax directed editing visually apparent.

The component based look and feel of structure editors is similar to the
interconnection look and feel conveyed by using nodes or links in graph-based
visual language programming environments - this resemblance is exploited
and made concrete in the design of the syntax Spatdn part of Glide and
described in the next chapter

The generators mentioned above were developed for text languages
only. The underlying data model for the structure that represents programs is a
tree, and it is only possible to specify editing actions in terms of manipulating
nodes and branches in a tree. There idinect way of representing the struc-
ture of graph-based languages within the meta-language models of languages
used in these programming environment generators.

22

3.2 Programming Environmentsfor Visual Languages

Though until very recently there have been no direct attempts to gener-
ate programming environments for graph-based languages, there has been
some indirect work in this direction; some programming environments for spe-
cific graph-based languages have made their underlying execution engine ac-
cessible so that it becomes possible, in a limited,wayustomize the
structure of the graph language and the underlying model of computation (the
graph language interpreter or compiler).

One example of this is the PFG (Parallel Flow Graphs) model for hyper-
text oriented systems mentioned in the previous chapber PFG system has
an underlying Petri Net based model of computation. The primitives of the ker-
nel computation engine have been made available to allow the creation higher
level constructs to implement “hightavel” visual languages for particular ap-
plications of the system [Sto88]. Another example of this is the Olympus sys-
tem [Nut91l]. This system was originally a graphical programming
environment for a speced graph-based model of computation: bilogic prece-
dence graphs. The system was then made extensible to allow the model of exe-
cution to be customized while reusing the programming environment.

The existence of these systems further substantiatesghmant that
there is a need for a programming environment generator for graph-based lan-
guages.

3.3 Programming Environment Generators for Visual
L anguages

The recently developed Escalante system is a system that was devel-
oped as an &fshoot of Olympus. It is a system for generating visual languages
that are based on graph models, and is thus the intention is similar to Glide.
The Escalante system uses daliént approach to di@fing the structure of a
graph-based language. In Escalante, graphs are used as a representation medi-
um for objects (nodes) and their relationships (edges). The underlying means

23

for representing objects is then associated with graphical objectsto describe
appearances. Visual languages can be created which do not have a graph ap-
pearance but are represented by an underlying graph. Escalante uses classes to
represent the graph objects (node and edges) and the graphical objects so that
creating anew visual languageis achieved by specializing these classes.

In [Got89,Got92] Gottler advocates the use of graph grammars as a ba-
sisfor visual programming systems. He distinguishes between the user inter-
face level diagram of a visual language and the underlying graph that
representsit. The PAGG (programmed graph grammars) system that imple-
ments this approach is a graph grammar system in which the productions oper-
ate on attributed graphs. The productions are defined by directly drawing
annotated graphs.

3.4 Summary

This chapter as described three threads of research towards the automa-
tion of creating programming environments for graph-based visual languages.
No previous work has attempted to integrate the description of the textual
structure and the graph structure of graph-based visual languagesinto asingle
uniform representation. Thisis uniqueto the Glide model and described in the
next chapter. The next chapter will also show that the notion of a underlying
graph representation to represent graph-based languages also existsin Glide.

Chapter 4
GlideModd of Graph Based Visual Languages

This chapter provides a complete description of the Glide approach to
modeling Graph Basedisual Languages (GBVLSs). The approach is presented
by describing the design of the Glide high level specification language.

A user creates a programming environment for his/her GBVL by speci-
fying a model of the language in Glide. This process involvssdescribing a
data structure, and then describing sets of permissible changes to the data struc-
ture and associating graphical attributes with the data structure. Glide can be
divided into six major components which playfdient roles in this process of
modeling a GBVL. The components are:

e TheGlide Grammar. This is the key underlying component of Glide. The
Glide Grammar is a notation that provides the means to describe the
syntactic structure of a graph based visual language as a set of types.

* TheGlide Path Expressions. Glide path expressions are the basic
mechanism for identifying and accessing parts of GBVL programs.

* TheGlideQueries. This is a query language which provides a concise way
of specifying the selection of parts of a program for dispglide queries
are used to specify the contents of views (windows) of programs.

* TheGlide Actions. This component is used to specify changes of any kind -
generally editing, execution, and animation.

* TheGlide Shape Predicates. Shape predicates are used to further constrain
the admissable instances of a data structure - they are used to specify the
static semantics of a GBVL.

* TheGlide Graphical Attributes. Graphical attributes provide information
for the graphical rendering of the GBVL program on the display

24

25

* TheGlide Animation component. This is the means to tie changes as a
result of execution to changes to the values of graphical attributes in order
to reflect execution activity

The following fgure informally illustrates how these queagtion and anima-

tion specifcations are built up from the lower level components of the lan-

guage.

Queries | Editing|Execution Animation

Actions

Path Expressions

Glide Graphical
Grammar Attributes

Each component is described in turn in sections 4.1 through 4.7. Examples that
illustrate how these components are used are provided in each section.

Main |deas

The main ideas embodied in the design of the Glide language is that
programs are view as data objects. Using this a starting point, Glide allows the
structure of text parts of the language and its graph parts to be represented in a
uniform way In order to navigate and identify pieces of a program in the data
structure path expressions are used. Queries, actions and animations are can
then be expressed as accessing and altering the data in the data structure in
terms of path expressions.

Graph Types

In Computer Science, it is often the case that a research issue or prob-
lem appears while investigating a particular area is found to be similar to prob-
lems encountered in other areas, because the problems laictioefs of a
more fundamental underlying issue. Part of this work on developing a model

26

for GBVLs was an example of this phenomenon. In order to properly model
the structure of such languages, the ability to represent “mutualhedéfob-

jects is needed. Such objects are also termewlii@fstructures, cyclic struc-
tures, shared structures, graph types, or multilinked types, depending on the
area in which they are described. A full discussion of the issues surrounding
the use of such objects in Glide is provided in the next chapter (Chapter 5,
Graph Types). This chapter focuses on describing the design of Glide and how
it is used, and shows how the issue of “mutuallyried” objects arises in the
context of representing graph based visual languages.

4.1 The Glide Grammar

This section describes the key underlying component of Glide, the
Glide Grammar notation. The notation is used to describe the syntactic struc-
ture of a GBVL. It embodies the Glide approach of viewing the structure of a
language in a way that ures the description of the graph aspects of its struc-
ture and the text aspects of its structure.

A Glide Grammar spedifation consists of a set of productions. Such a
set of productions is similar in appearance to both a set of BNF productions
(which are used for describing of the syntax of text languages) and to a set of
“user deifned type” deihitions of standard programming languages such as
“struct” defnitions in C, “class” dahitions in C++ or “record” dehitions in
Pascal (which are used for describing the structure of data used in a program).
These similarities are intentional. The BNF-like aspect of the Glide Grammar
notation allows a Glide user to describe the structure of the textual parts of a
GBVL in the usual way (as a CF&nd to view the description of the graph
structure of the language as an extension and generalization of the way BNF
captures text structure. The typeiddfon-like aspect of Glide Grammar nota-
tion allows the user to view a GBVL as gefg the structure of data.é. pro-
grams) and the construction of a program as the creation, composition and
connection of instances of data types. The productions that make up a Glide

27

grammar will be mostly referred to here as “productions”, though on some oc-
casions the term “type” will be used to emphasize the latter point of view

TheMetanot notation was developed by Meyer in [Mey90] in order to
specify language syntax and semantics. In Metanot, a text language is de-
scribed by modelling a language as a collection of complex structured types.
This forms the basis for defng their semantics. This is a data-oriented view
of programs and is thus suited as the basis for representing languagi specif
editing interfaces. The notation adds “tags” to identify particular pieces of the
structure and it adds the notion of comoposing without orflee syntax of
Glide itself was derived and inspired by Metanot.

Since Glide grammar notation is an extension and generalization of
BNF, the notation is presented here by beginning with an example of the tradi-
tional way of describing the syntax of a component of a text language and then
incrementally introducing examples which use the additional Glide Grammar
constructs which increase the expressiveness of Glide overBi¢Relation-
ship between these additions and BNF productions and C strumitidefs is
carefully discussed at each step. (Any standard imperative language with the
ability to defne user dahed types could have been used; C was chosen be-
cause it is widespread and familjar

A simple production

A simple BNF production déafing the abstract syntax of an “if-state-
ment” might be:

<|f-Statenment>::= <Bool eanExpr > <St at enent > <St at enent >

This same dehition can be made in Glide, but the syntax of Glide Grammar
notation is slightly diferent. The equivalent production in Glide Grammar no-
tation uses==" instead of * : =" to separate the production name (LHS) from
the components (RHS) of the production. The angle brackets”j“used in

BNF to identify non-terminals are omitted in Glide Grammar notatienmi-

nals in Glide are distinguished by being completely in uppercase. A semi-co-

28

lon is used to terminate each production. Hence the equivalenitidef of the
if statement in Glide is thus simply:
| f-Statenent == Bool eanExpr
St at enent
St at emrent
Each component is usually written on a separate line for readabllityhis is
not a requirement.

Tagging
In order to identify each component of the production, Glide provides
the option of prepending each component withga
| f-Statenent == Cond : Bool eanExpr

ThenPart : St at enent

El sePart : Statenent ;
Each component on the RHS of a Glide production then consists of a pair of
identifiers separated by a colon. The tag is on the left of each colon, and a
name of a production is on the right of each colagsrare needed because
they are used in subsequent parts of the Glide language (queries, actions, path
expressions) to specify accessing components of instances of productions.

A production dehition with tags resembles the dation of a user de-
fined type. The small syntactic tBfences between a Glide production and a C
struct deinition are: In Glide a semicolon (“;”) terminates the list of compo-
nents in a production while in C/C++ curly braces (“{}") enclose the “mem-
bers” on the RHS of a dfition; In Glide the components in the RHS are
separated by whitespace while in C/C++ they are separated by semicolons (and
whitespace); In each component of a Glide production, the name of a produc-
tion follows the tag name (separated by a colon) while in C the syntax is re-
versed - the name of the member follows the type of the member (separated by
whitespace). Standard BNF does not have tags, but descriptions of language se-
mantics associated with a BNF grammar often make use of left-to-right integer
indices to refer to each component of a production.

29

There is a subtle but very important semanti¢edénce in the way in
which this kind of a definition is interpreted in Glide as compared to C or BNF:

C - In C a struct can be instantiated, and when it is the values of the members
of the instance that is created must either be initialized or have unpredictable
values. The creation, destruction and existence of an instance of a stmdct is
separable from the creation, destruction, existence of values for the members
it contains.

BNF - In the case of BNFa production is a statement about an object that can

be recognized in parsing a sentence. In the process of parsing, a sequence of
terminals and non-terminalsrigplaced by the non-terminal whose production

is matched. In most uses of BNF there is usually no need to distinguish be-
tween an instance of the use of the production and the symbols that it matched.
If a parse tree is created by a parser then the ‘instance’ of a production corre-
sponds to the non-leaf node of the tree that is created by a particular match
with that production (a reduction).

Glide- In interpreting a Glide Grammar production, the ability to distinguish
between an instance and what the instance contains is critical. A Glide produc-
tion is viewed as naming and d&hg a newcontainer type. The contents of

the type is defied in terms of other container types and primitive types. In con-
trast to C and BNF it is possible to create an instance of the contatheut
creating instances of the types that the container instance contains; the contain-
er instance can exist independently of the instances it contains. This interpreta-
tion stems in part from the structure-oriented view of programs (discussed in
the previous chapter). In structure-oriented editors, container instances (also
calledtemplate instances) for different language constructs can be created and
can be filled with container instances of other constructs or with terminals.

In C, one means to make the existence of values of members of an instance in-
dependent of the instance itself is to peenter membergather than actual
values. In this case the instantiation of the type creates pointers which have to
be initialized (or have unpredictable values), but the instances they point to

30

need not be created at the same time. They could have been created before, or
could be created lateThis notion of a composite type whose instances are
temporally independent of the instances they contain is analyzed in further
depth in next chapter

Aggregation

A difference between a BNF production and a C struchidiei is that
theorder of the components in a production ishefs the order of the sequence
of terminals that should match each component, while the semantics of a struct
is not affected by reordering of the members in itsidi¢ion®. A Glide produc-
tion such as the one above, in which components are separated by whitespace
also indicates that the order of the components is sogmif and should be as
stated (as in BNF). The Glide Grammar notation provides a third combining
operatoyaggregation, to model a set of components in some part of the struc-
ture of a GBVL that have no intrinsic relative order (as in a struchidien).

Combination by aggregation is denoted by a dot (*.”). The following Glide pro-
duction is an example:

Node == Nm: Nane .
St :State ;
The aggregation operator is thus commutative; the following production is
equivalent to the previous one:

Node == St: State .
Nm Nane ;
The aggregation operator is used to combine components when their order is
not signifcant, in contrast combination with whitespace (terro@ttatena-
tion). TheNode production is expressing the fact that a node instaog®sts
of ast at e and aName and there is no intrinsic ordering between the two

1 In some languages ttimplementation of the struct might be assumed to
allocate memory for each member in the order given but it is bad practice to
rely on this ordering directly; the values they hold should only be accessed
through their member names.

31

(st at e doesnt “follow” Name). BNF has no direct way of expressing this form
of combination.

TheNode production also illustrates how the container/component in-
terpretation of a production just discussed allows expressing the fact that a
node is an object which contains other objelet€lide, a parallel isdrawn be-
tween the component oriented view of structured text in structure-oriented edi-
tors and the fact that objects such as nodes in a GBVL often have further
structure. The Glide approach is to view entities associated with a node not as
attributes of the node but asomponents which together make up the node.
This approach is a sigmefant departure from other graph structure speaif
tion languages which usually view information associated with nodes or links
as attributes or “labels”.

Alternation

In Glide, as in BNFit is possible to express the fact that a production
consists of one or more alternative components (or concatenations of compo-
nents) using thalternation operator (“|”). Hence the usual way to idefthe
fact that a text language construct is of two possible kinds is also available in
Glide:

St at ement == if:l1f-Statement |
wh: Whi | e- St at ement
Alternation has a more general use in Glide. In Glide alternation is also the
means to express the fact that a node in a GBVL can be of tieoedtit kinds:

Node == Cn: Cont r ol Node |
Dn: Dat aNode ;
Glide also has a containment/component interpretation of such an alternation
production. Rather than viewing this production as stating that aisedtber
a control node or a data node, it is viewed as stating that a node container in-
stancecontains either a control node instance or a data node instance. The rea-
son for this view is uniformity; the same operator (“|”) is used to express

32

alternativesin both the text structure and the graph structure parts of aGBVL.
A tag can be used to identify the component, whichever type it may be:

Node == NodeType: (Cn: Control Node | Dn: Dat aNode) ;
Operator precedence and expressing commonality

In BNF there are just two operators for combining components: concat-
enation and alternation. A space between componentsis used to denote concat-
enation and vertical bar is used to denote alternation. In Glide, asin BNF,
alternation has lower precedence than concatenation. Hence the following pro-
duction:

St at ement == | f Cond: Bool eanExpr
ThenPar t: St at enent
El sePart: Statenment |
WhCond: Bool eanExpr
Body: St at enent Li st ;

Isequivalent to:

St at ement == (I f Cond: Bool eanExpr

ThenPart : St at enent

El sePart: Statement) |

(WhCond: Bool eanExpr

Body: St at ement Li st) ;
However, unlike the concatenation operator (whitespace), the aggregation op-
erator (dot) has lower precedence than alternation (vertical bar). Hence the
Glide production:

Node == Cn: Cont r ol Node | Dn: Dat aNode .
Nanme: STRI NG .
Stnt: Statenent ;

Isequivalent to:

Node == NodeType: (Cn: Contr ol Node | Dn: Dat aNode) .
Name: STRI NG .

33

Stnt: Statenment ;
Thus an instance of thi®de production has three components, taggedk-
Type, Nane, andst nt . The component taggeddeType can be either an in-
stance of &ontr ol Node or an instance of Bat aNode. In Glide this is the
means for expressirgpmmonality between objects. This form of combination
doesnt exist in BNF It is syntactically similar to the use of a “union”ina C
struct - a member which can contain a value ofedént types at dférent
times. Howevera union is intended for economizing on memory space rather
than for expressiveness. In this example a node, be it a control node or a data
node, always has a name and a statement and so these propertieseddmef
theNode production, while the properties that are spedid control and data
aspects are put in their respective productions.

It is useful to compare the Glide approach to capturing commonality to
the approach used in object-oriented languages. Unlike most object-oriented
languages, in Glide there is texxonomic form of expressing commonalitin-
stead this combination of alternation and aggregation is the way in which com-
monality between types is expressed in Glide. Commonality is expressed
through a composition hierarchy instead of through a taxonomic hierarchy
The containing typeyode, consists of all the common properties plus an alter-
nation of all its “subtypes” (sub as in subcomponent rather than subclass). The
reason for using this approach is simplicity: the same notion of containment de-
scribed earlier (which comes from the BNF notations being essentially compo-
sition formalisms) is, in conjunction with operator “|”, adequate. This “has-a”
rather than “is-a” approach is similar to some variants of object-oriented pro-
gramming models; these are sometimes called “component” or “composition” -
based object-oriented programming.

Sharing

In addition to the difierences between BNE structs, and Glide that
have just been described, there is another very signifdifference in the in-
terpretation of a Glide production. The instances of Glide productions can con-

34

tain instances which are shared. For example, if the following three
productions:

Aaaa == B: Bbbbb ;
Cccc == B: Bbbbb ;
Bbbbb == D: Ddddd ;

were defined, then the semantics of Glide allows the creation of asinglein-
stance of type Bbbbb which is contained in both an instance of Aaaa and an in-
stance of Cccc. Thisisoften referred to as allowing sharing in data structures.
Sharing is exploited in Glide as ameansto express aspects of the structure of a
GBVL. Inorder to allow sharing, the creation of components independently of
their containersis a pre-requisite. The use of sharing is often hazardous and
must be controlled carefully. Glide Shape Predicates (described in Section
4.5) are ameans of specifying static semantics and are used to control the use
of sharing. The issues surrounding the use of sharing is explored in the next
chapter.

Cycles

In addition to the simple sharing just illustrated, Glide also makes use
of amore subtle form of sharing: cyclic sharing. Cyclic sharing is a special
form of sharing in which the sharing and shared objects are the same obj ect.
Cyclic sharing is used in Glide as a means to express the interconnection of
GBVL objects. For example, the following two productions:

Node == NodeNane: STRI NG .
I nput : Li nk .
CQut put : Li nk ;

Li nk == Li nkLabel : STRI NG .

HeadNode: Node .

Tai | Node: Node ;
when combined with admitting cyclic sharing, makes it possibleto expressthe
fact that node objects and link objects can be connected (attached) to each oth-
er. When an instance of the type Node contains an instance of thetypeLi nk and

35

simultaneously the instanceafnk contains the instance of thede produc-

tion, this represents the fact that they are connected. This is a cyclic structure.
Not only ae the objects associated with a node or li@gresented as “compo-
nents” in Glide, but also the objects to which theg aonnectedThe concept

of “component” has thus been generalized to the concept “is a component or is
attached to”. The apparent mutual containment is only possible by decoupling
the existence of the container object from the objects it contains. In the case of
a C struct, the samefett can be achieved by using pointers to contained ob-
jects instead of the objects themselves (and thigestfely how the underly-

ing implementation, that the Glider generator creates, operates). When
instances mutually contain each otltéis represents the fact that they are con-
nected and so can be displayed touching each other in a typical “graph” display

This approach to modeling connected structure has a number of advan-
tages in the context of specifying GBVLs. It is a uniform integrated approach
in which all objects: nodes, links, expressions, terminals, non-terminals, val-
ues are, from the point of view of the interface, peers.

Repetition: Setsand Lists

As do many extensions of BN\NElide provides annotations to indicate
that a component of a production consists of multiple instances of a type.
There are two annotations: a single star (“*”) annotation is used to dehste a
of elements of a given type€. ordered); and a double star (“**”) annotation
is used to denotesetof elements of a type.€. unordered). For example, the
following Glide production states that a ddoaf network consists of a set of
nodes and a set of links:

Dat aFl owNet == N : Node** .
L : Li nk** ;
The default case, no stars, means a single object of a given type. Another exam-
ple: the simpleNode production above spe@f that exactly twai nks are at-
tached to a node; a more general form allows an arbitrary number of input link
and output linksi.e.:

36

Node == NodeName:STRING.
Input: Link**.
Output: Link**;
Note that ** is used to specify that there is no particular ordering amongst the
links. A node which requires at least two links, but may have more can be cap-
tured asfollows.

Node == NodeName:STRING.
L1:Link.
L2:Link.
LMore: Link**;
Terminals

Terminals are identified in Glide productions by being in all upper-
case. Glide providesthe primitive types BOOLEANINTEGER, REAL, STRING.
Any other identifiersin all uppercase define constant terminal symbols. Hence
an enumeration can simply be expressed as the alternation of constant types.
For example:

State == choice: (e:ENABLED | d:DISABLED | f:FIRING)
where ENABLED DISABLED and FIRING are constant terminal symbols. Con-
stant terminal s can also be specified by being enclosed in single quotes to al -
low them to bein mixed case:

Aterm ===""if :BoolExpr :'then’ :ThenPart
Note that because Glide admits cyclic structures, it is possible to define alan-

guage without using any terminals.

4.11 Complex GBVL structures

This Glide grammar-based approach to describing connected graph
structureisvery flexible, allowing more complex forms of GBVL structure
such as ports, hierarchy, and hyperedges to be represented very naturally:

37

Ports- The Glide approach allows the notion of nodes with “ports” to be cap-
tured in a natural way; Nodes have ports as part of their components and it is
these ports that are connected to links.

Node == NodeNane: STRI NG .
I nput Port: Port .
CQut put Port: Port ;

Port == Label : STRI NG .
L: Li nk** ;

Li nk == Head: Port .
Tail: Port ;

Hyper Edges - Edges or links which have multiple ends can be represented.
For example, the following specifies a link which connects three nodes

Li nk == N1: Node .
N2: Node .
N3: Node ;
and a link attached to an arbitrary number of nodes can be specified by

Li nk == N. Node** ;
Hierarchy - Hierarchy the ability to structure a complex object into many lev-
els, is a feature provided by an increasing number of GBVLSs. It can be repre-
sented quite naturally in Glide by including recursion through a production. In
the simple example belqwhe typeGr aph is included as a component of the
Node production to indicate the fact that nodes can themselves contain a com-
pleteGraph and this recursion can continue to and arbitrary depth. This is con-
ceptually no diferent from the use of recursive productions in a BNF grammar

Graph == N: Node* *
L: Li nk** ;
Node == NodeNane: STRI NG .

| nput Port: Li nk** |
CQut put Port: Li nk** .
SubGr aph: Graph;

38

4.1.2 Example Glide Grammar Specification

The following is acomplete example of a Glide Grammar that defines
the structure of asimple form of Petri Nets:

Petri net

Node ==

Pl acenode

Tr ansnode

Pnlink ==

State ==

Nodes : Node**.

Li nks : Link**;

NT: (Pn: Pl acenode | Tn: Transnode) .
I nputs: Pnlink** .

Qut puts: Pnlink**

PLabel : STRI NG

NunmTokens: | NTEGER ;

TLabel : STRI NG

State : State;

LLabel : STRI NG .

Li nkHd : Node .

Li nkTI : Node;

ch: (e: ENABLED | d: DI SABLED | f: FI Rl NG

A typical instance of thistype, containing 3 nodes and 3 links might be dis-
played to a user in an interactive graphical programming interface as the box

shown here:

Link:b,d,f

Transnode: C C

Pl acenode: a, e

Figure 4-1 Displayed Petri Net

TheLi nk instances b, d, and f are graphical elementsin the same way
asthe nodes a, ¢ and e. The interconnection of componentsis represented

39

through cycles between instances of Node and Pnlink. The enclosing box rep-
resents the instance pétri Net and contains a set of Links and a set of

Nodes. A pointer implementation of the interconnection of the components is
shown in this diagram:

40

oo

LN

A%
IS
5

AN,
N\

=

~

¢Qe
O
Figure 4-2 Implementation of a Petri Net
This diagram would not be displayed to a user of the system. It is

shown to illustrate how the “interconnectednesfsgraphical elements is rep-
resented through cyclic references. The following diagram illustrates the com-

40
plete PIN for the Petri Net (with a box for each type instance) Note that the
curved arcs are logically no &gfrent from the straight edged ones.

Petrinet >

Node** >

Link** >

Placenode >

Transnode >

Pnlink >

PnLink** >

10

Figure 4-3 PIN of the Petri Net

This speciication of Petri Nets can easily be extended to accommodate,
say a textual condition attribute by simply adding the BNRmié&bn of the
condition syntax to the current specification:

Transnode == TLabel :String
State :State

Condition :Condexpr;

Condexpr== Varl: STRING

RO: Relop

Var2: STRING ;
Relop==r: (eq:'="|gt:>'|lt:'<"|leq:'=<'|geq:>=')

4.1.3 Summary

The Glide Grammar is a means of capturing the structure of a GBVL,
i.e. how component objects of a GBVL are composed and connected. This

41

structure then forms the basis upon which other aspects such as editing ac-
tions, execution semantics, and graphical appearance araegpetie Glide
Grammar abstracts out the logical structure of a GBVL, separating it from is-
sues of graphical appearance.

The key reason for wishing to represent the structure of GBVLs by ex-
tensions and generalizations of the way the text language structure is represent-
ed, is that is then possible to smoothly integrate the representation of graph
syntax and text syntax into one uniform formalism, and hence to view graph
based visual languages as a generalized form of text based languages. The way
in which semantics, execution and animation is spaaifas will be shown in
the rest of this chaptecan then also be achieved through a uniform notation.
The grammar also allows more complex forms GBVL structures such as ports,
hyperedges and hierarchy to be captured.

Glide Grammar Syntax

A simplified description of the syntax of the Glide Grammar is listed
below The notation used to specify the syntax of the Glide Grammatr itself is
EBNF ({} means zero or more, [] means optional) This description is abstract-
ed to bring out the essential simplicity of the structure of Glide grammar speci-
fications.

<glidegrammar> <productionlist>

<productionlist> <production> *;” { <production> “;" }

<production> <aggregationlist>

<aggregationlist> <aggelement> { “.” <aggelement>}

<aggelement> .= [<tagname>] “." <alternationlist>

<alternationlist> = <altelement> { “|” <altelement> }

<altelement> = [<tagname>] “:” <sequencelist>

<sequencelist> = [<tagname>] “:” <segelement> { “ " <segelement> }
<tagname> .= <identifier>

<segelement> ::= <identifier> |<identifier>"*" | <identifier>"**"

<identifier> is any alphanumeric string not beginning with a number

42

4.2 Glide Path Expressions

This section describes the syntax and semantics of Glide Path Expres-
sions. Glide Path Expressions are similar to the expressions used in standard
programming languages to access components of instances of useddef
types, such as those in C that specify accessing members of structs and/or fol-
lowing pointers to struct®(g.,a.b ,a->b.c.f , etc.). Howeversince the Glide
Grammar allows défition of data models in a way that is more expressive
than C structs, Glide Path Expressions are commensurately more expressive
and their evaluation is more complicated.

Glide Productions can be viewed as typam#&bns. When a program
in a GBVL is created (through the invocation of editing operations which will
be described in Sectich4), many instances of these types are created and in-
terconnected to each other to form a network that represents the program. This
network is termed Brogram Instance NetworfPIN). Glide path expressions
are used to identify diérent parts of the PIN and to navigate through it. Path
expressions are set-valued expressions that are used within Glide queries, ac-
tions, and shape predicates (described in the sections that follow: 4.4, 4.3, and
4.5). Since they are common to these components of Glide they are described
here first.

For the purpose of simplifying the explanation of path expressions, this
section uses idenidrs for the instances that are created in a RAN (
“Node001”). Path expressions in Glide queries and actions in fact never direct-
ly refer to such identiérs; they use variables which are bound to instances and
so the actual identdrs of instances are never visible to either the Glide user or
the GBVL userThey are exposed with idenéfs here to facilitate explaining
path expressions.

The syntax of Glide Path Expressions is simple. A path expressions
consists of an instance followed by sequence of tags connected by a.gots,
“Node001.b.c.g”. (The dot used is of course afeifent kind of dot from the
aggregation dot used in productionBath expressions are used to identify in-

43

stances and components of the instances from the PIN. Consider the following
simple Glide production:

If-Statement == Cond:STRING
ThenPart:STRING
ElsePart:STRING ;
If an instance of such a production, 98001 has a condition component
“a<3”, athen part%:=2 ", and an else pari*=3 ”; then each piece can be ex-
tracted using a path expression:

The path expressiafool.Cond identifies ‘a<3”
The path expressiafol.ThenPart identifies %:=2 ”
The path expressiafool.ElsePart identifies %:=3 ”

The term “identifes” is used here because, depending on context, a
path expression may indicate returning the value found at a location in the PIN
or identify it for alteration. Howevefor brevity an “=" is used in subsequent
examples. The dot notation can be (and is often) used to arbitrary depth. If

If001 was the component taggesl of, sayNode002 then
Node002.IfS.ElsePart =x:=3"

If an instance of a production:

DataFlowNet == N:Node**.
L :Link**;
say DataFlowNet002, has a set of 3 nodesNq03 N004 N005) and a set of 2
links (LO06 L007) then the relevant path expression ideesifa list of instanc-
es:

DataFlowNet002.N =(N0O03 N004 N0O05)
DataFlowNet002.L = (LO06 LOQ7)

44

In a deeper path expression the evaluation is continued through each member
of a set or list. Hence the three nodes have the names “alpha”, “beta”, and
“gamma”, then

DataFlowNet002.N.Name = (“alpha”“beta” “gamma”)
Since the taglidentifies a set of instances of typede, the semantics of path

expression evaluation is that it iterates over each one to reach and the name of
eachNode instance.

Path Expressions and Alter nation

In the case of a production with alternation as in:

Node == NodeType: (Cn:ControlNode | Dn:DataNode) .

Name: STRING.

IfS: IfStatement.

Input: Link.

Output: Link;
there are 3 tags that could be used to identifyitise domponentNodeType,
Cn, orbn). They are used as follows: using a tag inside the alternation will re-
turn the instance, if that instance is of the type associated with the tag, other-
wise it will returnNULL; a tag that identiés the whole alternatiore(g.
NodeType) returns whatever instance is present. For example,

NO001.Cn = ControlNode008

N001.Dn=NULL

NOO1.NodeType = ControlINode008
An path expression containing a tag that ideesifa set or list component will
haveNULL elements removed, returning only the instances of the selected type:

DataFlowNet002.N.Cn = (ControlINode008 ControlINode010)

DataFlowNet002.N.Dn = (DataNode009)

DataFlowNet002.N.NodeType = (ControlINode008
DataNode009
ControlNode010)

45

Note that the result of the last path expression is not a homogenous list
since it contains instances of more than one type.

Uppath

A single dot (*.”) is the “downpath” operatdndicating that the evalua-
tion of the path expression “moves down” in a PIN into the component of an in-
stance identiéd by the tag that follows the dot. It is also possible to the go the
other way “moving up” into the parent instance that contains a given instance.
This is expressed with a “double dot” followed by a tag, for example:

Node002. . N = Dat aFl owNet 001
A double dot (“..”) is used as symbol for the “uppath” operaltas reminis-
cent of “cd ..” in aife system command (UNIX/DOS/VMS). Howeyeaince a
PIN is a graph and not a tree - some instances may have more than one “con-
taining parent”, a tag name is used to identify which parent is desired. In some
cases there may be more than one parent that refers twas as a component)
a given instance through the same tag. In this case, all these parents are re-
turned by an uppath.

In the case of using the uppath operator when an instance is on an alter-
nation, the tag identifying the whole alternation or the tag identifying one of
the alternatives can be used. For example

Cont r ol Node008. . Cn = Node001

Cont r ol Node008. . NodeType = Node001

Cont r ol Node008. . Dn = NULL

Glide Path expressions provide a simple but powerful way of extracting
information from Program Instance Networks as these examples illustrate:

Dat aFl owNet 001. N. St nt = all the statements of all the nodes

Dat aFl owNet 001. N. | nput = all links that are input to some node
Dat aFl owNet 001. L. HeadNode = all nodes at the head of any link
| f St at ement 015. . | f S = the node which containg St at ement 015

46

Because of sharing, two @éfrent path expressions may identify twofdrent

paths that end up in the same place in a PIN. THeréift paths represent dif-
ferent roles that the idenigfd object has; one path may express the fact that a
node is part of some graph, the other that it is connected to some link. The up-
path operator also has a loose correspondence to inheritance; it can be used as
way of accesing the common propetries held in the containing object.

The result returned by a path expression is always a set instalates (f
and no duplicates). Unlike C there is no explicit notion of references or point-
ers in these path expressions; the component referred to by a tag is always iden-
tifies another object (or objects), never a pointer to it (or them).

4.2.1 Glide Path Expression Syntax

The simple syntax of path expressions is shown here. Extensions to this
basic form of path expression are used within the other components of the
Glide language (queries and actions) and are discussed in the relevant section.

<glidepathexpression> ::= <instance> <dotexpression>

<dotexpression> RE

| “.” <tagname> <dotexpression>

| “..” <tagname> <dotexpression>

<tagname> ::= <identif ier>
<instance> .= <identif ier>

47

4.3 Glide Query Definitions

This section describes the queryidéfons component of Glide. This
component allows the Glide user (the GBVL designer) to specify a set of que-
ries which each determine the contents of a view of programs that he/she wants
the GBVL user to have.i¥ws are simply windows which display a part or
parts of a program.ypical views that a Glide user might wish to provide are,
for example: a top level view of the major structural components of the pro-
gram, a top level view of the nodes and links as icons, a more detailed view of
the nodes and links labeled with their more important attributes, detailed views
of the contents of selected nodes and links with all their attributes, views of
specifc annotations of nodes or links, views of the entire program, etavs/
allow the GBVL user to inspect and edit programs. The quergitieh associ-
ated with a view is the means by which the contents of views is saecfue-
ry definitions are used to identify the particular components of the program
that are to be displayed in views, but they are not used to specify the graphical
appearance of these components. The latter is determined by thécspiecif
of the graphical attributes of the productions and will described in Seton

Glide query déahitions are based on Glide path expressions but they
provide a higher level of expressiveness for specifying extracting information
from a Program Instance Network than do simple path expressions. Query def
nitions also make use of a more complex form of path expredseemath ex-
pressions. This sectionifst describes tree path expressions. It then describes
the syntax and semantics of queryidegfons by beginning with a simple ex-
ample and progressing through to more complex forms of queries.

4.3.1 Tree path expessions

Glide query expressions use path expressions and an extended form of
path expressions calld@ree path expressions. A tree path expression has the
same syntax as a path expression, except that a star (“*”) may be used instead
of a tag. For example

Node001. A. B. * . *

48

A star just denotes “all tags” of the production ideatlfby the preceding por-

tion of the path expression. The “tree” in tree path expressions refers to the
fact that instead of specifying and returning a set of instances, tree path expres-
sions specify and return a single tree that is made up of instances. The nodes of
the tree correspond to all the nodes in the PIN that were encountered while tra-
versing the PIN in order to evaluate the tree path expression. Such a tree struc-
ture is thus a subtree of the PIN graph. For example, if a GBVL spaiton
contains the Glide productions:

Node == Name:STRING .
IfS:IfStatement ;
IfStatement == Cond:STRING

ThenPart:STRING
ElsePart:STRING ;

and there exists an instangade001, then the tree path expression

Node0O1.*
returns a one-level tree of the fofm:
Node001
Name IfS
“Start” 1fS001

A tree path expression with two stars such as

Node001.*.*

2 In these tree figures, the tag labels the branch that leads to the value or
instance corresponding to that tag in a particular instance.

49

returns a tree that is two levels deep:

Node001

ElsePart

The expression

NodeOO01.IfS.*
returns a tree that is also two levels deep, butithebranch is pruned:

Node001

ElsePart

“a<3” “b:=3" “b:=2"

Each of these resulting trees is a tree which is derived from the PIN, which it-
selfis a graph. A tree path expression is simply a way of stating which of the
many possible trees in the graph should be extracted.

The tree path expression notation is reminiscentitd globbing” ex-
pressions for identifyingles in shell command languages (of UNIX, DOS,
VMS, etc.),e.q., “Is */*/bin/* ". Both Glide tree path expressions and glob-
bing expressions are used to specify extracting objects from a structure. In
globbing expressions,lest of file pathnames is returned. This list is simply an
uncompacted representation of the pruned tree that the expressiorespétif
Glide the more compact representation of a single tree is used, and the tree is
extracted out of a graph (the PIN) rather than out of a tree (the directory tree).

50

4.3.2 Simple Queries

The simplest form of a Glide query d&tion is one that just relates an
input parameter to a tree path expression:

ShowNode2Deep(n: Node) == { n.*.* }
The LHS of a query contains a “query name” followed by a list of typed “input
parameters”. In this example there is only one input paramitersymbol on
the left of the colon is the name of the input parameter and the symbol on the
right is its type i.e., one of the productions previously defd in the GBVLs
Glide gramman. On the RHS of this difition is areturn clause which, in
this simple case, consists of only one tree path expression. This query expres-
sion just returns the tree corresponding to the tree path expression evaluated
for whichever instance of a node the parameisrbound to.

The query is compiled into a procedure and its name is added to a menu
of commands in the interface generated by Glider so that the user of the GBVL
can invoke it and bring up a new viewhe user invokes the command in con-
cert with selecting one or more objects in existing views. These selections ef-
fect the binding of values to the input parameters of a query invocation.
Invoking the command brings up a window displaying the spetdontents
of the node instance (in this queanll its components, two levels deep). The
display window is created by the “Glideréyv Renderer” - a run-time module
which takes the results of queries (one or more trees) as input.

Merging trees

There can be more than one tree path expression in a query expression,
for example:

ShowNodeCondi ti on(n: Node) == { n.*, n.IfS. Cond }

3 Note the colon in the inputgument list is diferent from the colon in the
Glide Grammar notation; here we are separating a variable from the name of
its type.

51

This is a way of expanding spei@fbranches of a tree - here only tihe
branch of the tree is extended down another level.

Node001

<3

The procedure generated by the Glider queries compilegesdhe two trees
specifed by the two tree path expressions because the trees overlap in the PIN
graph - they have a common “stem” (illustrated in tigerfe with the heavy

line).

4.3.3 More Complex Queries

The shape of the trees produced by the return clause of the queries can
be controlled by using the more complex queries. These queries use the two
other clauses available in Glide queries: shehthat-clause for quantifcation
and thewhere-clause for restrictions.

The following Glide grammar will be used to illustrate these more com-
plex queries. The grammar is a sim@d description of the Petri Net based
GBVL “PCM” [Adi88]. PCM has nodes with structured text attributes and is
hierarchical - a transition node can contain a further complete PCM net.

PCMStructure == PN PCMNet;

PCMNet == N: Node**.
L: Link**;

Node == (P: PlaceNode | T: TransNode) .
I: Link**.
O: Link**;

PlaceNode == NmTk: INTEGER.

52

Rp: RepPar aneter ;
TransNode == Name: STRI NG .

Ta: TransAttibutes .

SubNet : PCMNet ;

TransAttributes == Pi : Pexpr .
TSte: State ;
St at e== Ste:(:ENABLED | :FIRING| : DI SABLED | : ACTI VE)
Li nk== Head : Node .
Tail :Node ;

Multiple trees

The simple queriesreturn only onetree, but aquery can also return a set
of trees. For example, the query

ShowNode2Nodes(nl: Node, n2: Node) == { nl.*, nl.T.*, n2.* }
specifies displaying two objects, each one represented by its own tree. The
trees generated by the first two tree path expressions have acommon stem so
they are merged into one, but the third tree specified by the third tree path ex-
pression does not overlap in the PIN with the previous one and so is not
merged.

The set of trees specified by a query can also be dynamically generated
by using awhere-clause in aquery definition. A where-clause allows the speci-
fication of one or more quantifications over setsor listsin aPIN. For example,
thefollowing query displays all the transition nodes label ed with their names.

ShowEnabl edTokens(ps: PCMSt ruct ure) ==
X, X. Nane
where x menmber-of ps.PN.N. T}
The query returns a set of trees, one for each value of x that was specified by
the quantification in the where-clause. The path expression used in awhere-
clauseisastandard path expression, not atree path expression.

53

Filtering trees

Queries can be further extended to include a logical expression in a suchthat-
clause whichifters the trees based on the value of the logical expression for
each value of a quantified variable. In the evaluation of the query

ShowEnabl edTokens(ps: PCMSt ructure) ==

X, X. Nane

where x menber-of ps.PN.N. T

sucht hat x.Ta. TSte. Ste = ENABLED }
the branches of the tree which have enabled transition nodes only are kept, the
others are omitted. The path expressienPN. N. T has already selected only
those nodes which are transition nodes. The test in the suchthat -clause is used
to keep the transition nodes which hav& at e attribute which has the value
ENABLED. The logical expressions in the suchthat-clause are standard logical
expressions except that the operands that can be variables (gdamtihput)
or path expressions which use these variables, or constants of the base or enu-
merated types. In this example the value of the enumerateditype of each
transition node is tested. The operators available in standard programming
languages for the base types (integeal, boolean, string) are also available in
Glide.

Recursion in tree path expressions

A tree path expression can include a recursive expression to denote the
fact that a tree within the PIN should be traversed to its full depth. The annota-
tion in a tree path expression for recursion is@rféllowed in parentheses by
the path expression that links the levels of the recursion. For example, with the
PCMst r uct ur e grammar listed above, the following query can be used to speci-
fy a single view which shows node and links at all the levels of the hierarchical
PCM net.

ShowAl | (ps: PCMst ructure) == { ps. PN@.N. T. SubNet).* }
The value preceding the recursion expression, in thispease is of typePCcw
Net, and so are the objects found by following the path expression

54

(.N.T.SubNet) threelevels down. Hence the objects ps.PN.*
ps.PN.N.T.SubNet.* , pS.PN.N.T.SubNet.N.T.SubNet.*
(inasingletree) asaresult of thisquery:

, etc. arereturned

PCMStructure003

QN

NO NO0O4 NOO3

TOO06
YubNet

N L
N034 NO83 LO18 LO27

TO16
SubNet

LOO7

L175

Again, the way the resulting trees are eventually depicted isleft to the graphi-
cal attributes and the view renderer. The query is only concerned with identify-

ing components.

Recursion is also useful to specify that acomplete piece of text should
be displayed. For example, the PCM transition nodes have associated predi-
cate expressions. The Glide style BNF syntax of PCM predicate expressions,

isshown here (tags are omitted for clarity):

Pexpr == Pterm | Pexpr 'OR’ Pterm;
Pterm == Pfactor | Pterm ’AND’ Pfactor ;
Pfactor == '(Pexpr’)’| Patom | 'true’ |

'false’ |

55

'NOT’ Pfactor;

Patom == Aexpr’="Aexpr | Aexpr’ # Aexpr |
Aexpr’ < Aexpr| Aexpr’ = Aexpr|
Aexpr’ > Aexpr| Aexpr’ < Aexpr;

Aexpr == Aterm | Aexpr '+’ Aterm | Aexpr’-' Aterm;
Aterm == AFactor | Aterm ’MOD’ Afactor |
Aterm '/’ Afactor | Aterm'*' Afactor ;
Afactor == ' Aexpr’)' | VAR| NUM| " +'NUM|’ -"NUM;

In order to specify that a PCM predicate expression should be completely dis-
played, the following query can be used:

ShowTransNodePredicate(n:Node) ={n.T.Pi@(.*) }.
This query speciés recursing down and returning the entire syntax tree of the
current PCM predicate expressian) of the noden. The systems generated
by Glider always represents such expressions by a syntax tree which is part of
the PIN, but the Glide user has the option of specifying whether the GBVL (in
this case, PCM) user should edit this tree with a structure editing interaction or
allow the GBVL user to edit the expression as a piece of text which is parsed
when the user has finished editing it.

Graph displays

A query can return a tree which, because of the cycles in the graph, con-
tains replication of some instances. For example, the query

ShowGraph(ps:PCMStructure) == { ps.PN.*.*}
This speciifes a tree, in which node replication implicitly describes a graph
(part of the original PIN graph). The following diagram illustrates part of this
tree, showing identifiers of some of the instances involved.

56

PCMVSt ruct ur e003

QN

N L
NOO5 NOO4 NOO3 LO06 LOO7
)\ NOO5 NOO3

LOO6 LOO7

In this example the cycles exist because the node and link instances refer to
each otherWhen this kind of a tree is passed to the view renddreimplicit

graph is recognized and it can be displayed as a connected graph; one in which
PCM links and nodes are shown touching each other

4.3.4 Glide Query Syntax

The following is a simplied abstract syntax of Glide queries which describes
their essential structure. The path expression syrt@xexpr essi on>, has al-
ready been defined in Sectidr2.1.<const > is an integerreal, boolean, or
string. String and list equality can also be tested in suchthat -clauses.

<glidequery> ::= <querylhs> “=="“{* <queryrhs> “}”
<querylhs> ::= <queryname> “(" { <queryinputparams> } “)"
<queryname> ::= <identifier>

<queryinputparams> ::= <variable> “:"” <typename>
<variable> ::= <identifier>

<typename> ::= <identifier>

<queryrhs> ::= <returnclause> [<suchthatclause>]
<returnclause> ::= <variableexpr> { “,"<variableexpr> }
<variableexpr> ::= <variable> <treepathexpr>

<treepathexpr> ::= | “.” <staghame> <treepathexpr>

<stagname>

<suchthatclause> ::=
<quantifications> ::=

<quantification> ::=

<whereclause> ::=

<logicalexpr> ::=

<logop>

<pexpr>

<patom> ::=

<expr> ::=

<arithop> ::=

<eatom> ::=

<relop> ::=

<stringexpr> ::=

<stringrelop> ::

<listexpr> ::=

<listrelop>

| “.” <stagname> “@(“ <dotexpression> ")" <treepathexpr>
<identifier>

| [

“suchthat” <quantifications> [<whereclause>]
<quantification> { “,” <quantifications }
<variable> “member_of” <variable> <dotexpression>
| <variable> “=" <variable> <dotexpression>
“where” <logicalexpr>

<pexpr>

| <pexpr> <logop> <pexpr>

" &&”

(" <pexpr>")’

| “~" <pexpr>

| “true”

| “false”

| <patom>

<expr> <relop> <expr>

| <stringexpr> <stringrelop> <stringexpr>

| <listexpr> <listrelop> <listexpr>

“(" <expr>")”

| <expr> <arithop> <expr>

| <eatom>

T

<variable> <dotexpression>

| <const>

=] e

<eatom>

sz |

<variable> <dotexpression>

| “(* { <const>}%)")

uz | g

57

58

4.4 Glide Action Definitions

This section describes Glide action definitions. Just as query definitions
are used to specify extraction of information out of a PIN, action definitions
are used to specify updatesto aPIN. Action definitions are used to capture dif-
ferent categories of activity, i.e. semantics, associated withaGBVL. Thethree
main categories of activity are editing, execution, and animation, and a com-
plete Glide specification of a GBVL contains a set of action definitions for
each category.

A basic ideathat influenced the design of Glide wasthe desire to pro-
vide auniform way of specifying these different activities. Thiswas achieved
by incorporating datarelated to each one into a single structure and using asin-
gle notation for defining changes to data values. The Glide Grammar is thus
used to specify adata structure which isbased on the GBVL, but itisnot only
the language; it al so contains other components. The syntax of the GBVL pro-
vides the organizing framework for extra componentsrelated to execution and
animation. The different kinds of activity are characterized through action defi-
nitions which specify possible changesto instances of this structure (the PIN).
The different categories of update usually (but not always) affect separate sets
of components of the structure. Editing activity isthe category of actionsin
which the user changes the PIN during program creation and modification. Ex-
ecution and animation activity are the categories of actions which change the
PIN at run-time. An action definition specifies an atomic set of changesto the
PIN. The action definitions for the three categories share asingle uniform nota-
tion, but each has afew additional constructs. The Glide model providesan in-
tegrated approach, in which all these activities are regarded as updates to one
data structure. This not only simplifies the specification language but it also
promotes the view that these activities are all interleaved and part of the over-
all activity of auser usingaGBVL interfacein order to develop programs.

This section introduces action definitions with examples of specifying
editing actions (Section 4.4.1) and then shows how similar definitions are used

59

to specify execution actions (Section 4.4.2). The description of how animation
actions are specified is |eft until after the description graphical attributes
(Section 4.6), since these are used to specify how changes to the val ues of
graphical attributes are coupled to those changesin the PIN associated with ex-
ecution.

4.4.1 Editing Actions

An action definition consists of an action name and zero or more typed
input parameters on the LHS (same as queries) and a RHS that consists of a
conjunctive set of action expressions. Like queries, action definitions make
use of path expressionsto navigate through the PIN and identify instancesin
it. An editing action definition relates the states of the PIN before and after an
occurrence of the action (an action event).

Basic action expressions
A simpleaction expressionis:
n.P.NmTk' =3

It specifies that the value of the number of tokens of agiven node (n) whichisa
place node, is 3 after the occurrence of an action which contains this expres-
sion. In general, these simple action expressions have of the following syntax:

<actionexpression> ::= <pathexpression>* " “=" <newvalue>
<newvalue> ::= <constant>
| “new” “(* <type>)"
| <pathexpression>
| <pathexpression> “[0” <pathexpression>
| “lins” “(* <pathexpression> “,” <pathexpression> “,” <index> “)"
Asbefore, apath expression can be either just avariable (atrivial path expres-
sion) or avariable followed by a dotted sequence of tags (avariable followed
by a dot expression). In an action expression, a path expression is annotated
with aprime (*) toindicate its value in the next time step, i.e. after the event.
Thefirst form simply associates a constant value (integer, real, string or enu-

60

merate) with the place in the PIN speé&tf by a path expression. In the second
form thenew function speciks the creation of a new instance of the spedif
type. In the third form the operator is the usual set union operator used to de-
fine a result which is the union of two existing sets or elementslinEhefunc-

tion specifes list insertion; it dehes the result of an element or list inserted
within another list after a specified index position.

Example - connecting objects

The following example editing action deition uses these simple ac-
tion expressions to specify an update to the PIN in which a node and a link are
created and are connected together

AddNodeAndLink(dfw:DataFlowNetwork) == {
nl=new(Node) O
11 =new(Link) O
nl.Input’' =11 O

I1.HeadNode'=n1l O

dfw.N’ = dfw.N Onl O

dfw.L’ =dfw.L 011}
The deinition consists of a conjunction of six action expressions. iFeeand
second specify the creation of instances of the types andLink in thenew
statements. The two local variableisandi1 are used to identify the new in-
stances within the scope of theidéfon so they can be used in other action ex-
pressions. The fact that the two objects that are created are to be attached to
each other is speo#d by the third and fourth expressions. Finathe last two
expressions specify that the new objects are to be attached to the existing PIN
structure by adding them to the set of nodgsafid links () of the databw
network. The input variabléfw simply provides a starting point in the PIN for
the path expressions suchdag.N anddfw.L to identify places in the PIN that
are to be changed. Note that the operationgnasn the PIN, by both adding
new instances and increasing the number of connections within it.

61

Semantics of action expressions

The semantics gdrime-equals ("=) in an action expression superal-
ly resembles that of assignment, but the two are vefgréifit. First, action ex-
pressions are not procedurally ordered; they are not imperative operations
performed in sequence. Instead, the actiomadedn is as a whole a declara-
tive, atomic statement of the relationship between the state of the PIN before
and after an event (an invocation of an editing action). Second, a prime-equals
action expression represents a more general concept than assignment in that it
specifes a connection operation the PIN. It indicates how the references
(pointers) between instances in the underlying PIN network are to be added, re-
moved, or altered. A connection operation at the level of the PIN may be part
of a visible action at the GBVL level dsiplayed in the user interface (e.g., at-
taching a node to a link, editing text tree structure, or setting a value). The as-
signment of a value is just a special case of such a connection operation. In
other words, though the state of a PIN can be viewed as being in two parts: (i)
the values of components which are terminal types (integers, strings, enumerat-
ed values, etc.) and (ii) the connection of component instances of non-termi-
nals to each other (the topology of the PIN graph), the syntax of action
expressions is such that it allows these two forms of change to be expressed in
a uniform way

The semantics of glide action d@&tions are thus close to the various
graph grammdrlanguages for specifying graph rewritirige(changes to a
graph based on its current state). There are both textual and graphical graph
grammar notations; Glide actions defions is one in which the changes are
expressed textually

Editing vs. structure

Glide editing actions providedecoupling of the creation of structure
from its Glide grammar description; it is up to tBkede user to choose which

4 The word “actions” was used instead of “grammar” so as not to confuse it
with its use in “Glide Grammar”.

62

actions are provided for his/her particular GBVL. For example, an editing ac-
tion may create instances of several types and connect them together appropri-
ately because he/she wishes this to be an atomic editing action for the GBVL
user. It is quite possible to add nodes or links without connecting them to any
other existing ones. For example, a single editing action could consist of add-
ing n1 as component of dfw.N , but not connecting it to any of the linksin
dfw.L . The action definition below is afurther example which illustrates how
to specify an editing operation that connects both ends of an existing uncon-
nected link to two existing nodes:

ConnectLink(n1:Node,n2:Node,[1:Link) ==

nl.lnput’ =11 O

I1.Head =n1 O

n2.Output' =11 g

[1.Tail=n2}
It isthe decoupling that enables the needed flexibility to provide editing opera-
tions which are based on, but separate from, the basic structure of the GBVL
embodied in its Glide grammar.

The Glider generator processes editing definitionsin the sameway as it
does queries; the definitions are compiled into procedures and their names are
added to amenu of editing commands in the interface generated by Glider, so
that the user of the GBVL can access them to invoke the operation. The input
arguments are bound by the user selecting the appropriate objects in existing
views and then sel ecting the editing action from a command menu.

User input actions

There are two actions which prompt the user for information which is
needed to compl ete the action, newchoose and newparse .

Nn.NT'=newchoose(Node.NT)
Thenewchoose function denotes the fact that the user must choose which one
of aset of alternate typesisto beinstantiated, or must provide the value of a

63

terminal type. In this case the NTtag identifies an alternation in the Glide pro-
duction of Node, an alternation which can contain either aPlacenode or a
Transnode. Typically, the prompt by the interface to the user would be
through adialog menu of all the possible typesfor the given alternation, and in
the case of aprimitive type (string, integer), atext dialog box to enter in aval-
uefor the primitive type with the keyboard.

An expression using the newparse function also denotes an interaction.
It provides a means to instantiate a complete parse tree part of a PIN by
prompting a user for astring which will then be parsed in accordance with the
subset of the glide grammar types (productions) which specify atext tree. For
example, the action expression,

n.Test' = newparse(BoolExpr)
might be used to prompt a user for a boolean expression to be associated with
the component tagged Test of anoden.

Disconnection actions

The following action expressions are exampl es of disconnection ac-
tions:

p.T.Ta'=NULL

pn.L’'=ps.L-I1

Thefirst expression specifies that the instance that used to be at the place indi-
cated by the primed path expression is no longer reachable in the PIN by fol-
lowing that path expression. The second expression is used to specify that an
instance or set of instancesisremoved from aset or list. These expressions do
not specify destroying the instance or instances found at the place identified by
the path expression, only their disconnection. The syntax of these actions ex-
pressionsis:

<actionexpression> ::= <pathexpression>* " “=" <newvalue>
<newvalue> ::= “NULL”"

| <pathexpr> “-" <pathexpr>

| “Irem” “(* <pathexpression> “,” <index>)"

Deletion actions

A separate deletion operation is needed for destroying instances, i.e.,
for specifying that they no longer exist in a PIN after an action event. This op-
erationisold , it removes one or more instances from the PIN, and isthein-
verse of the new operation.

old(p.Ta)

This operation destroys the instance found at p.Ta . The object that was at this
position no longer existsin the time step after an action event that includes this
expression. At the PIN level, all referencesto a deleted instance are removed,
so that at the GBVL level a shared object disappears from the many placesit
used to be. Theold operation can take a path expression or atree path expres-
sion as argument, to specify the deletion of many instances at once.

Conditional action expressions

Actions expressions can be made conditional with aboolean expression
which actsasaguard.

<ConditionalActionExpression >
i= “(* <BoolExpression> ")" “0O0 " “(* <ActionExpressionsConjunction> ")”
The syntax and semantics of these boolean expressions isthe same asthat for
the suchthat-clause of Glide queries. The following exampleillustratesits use
in specifying an action that only completesif the nodeis a place node.

(n.P.NmTk=3)=>(n.P.NmTk' =4)

Conditional expressions can be used to differentiate between the types of com-
ponents that could be present, in atag which identifies an alternation. For ex-
ample:

(N.NT=n.P)=>(n1.P.NmTk’=4)

(n.NT=n.T)=>(n1.T.Ste’ = ENABLED)

65

This completes the description of editing actionrdgbns. The follow-
ing section describes the use of action definitions for modeling execution.

4.4.2 Execution Semantics

The purpose of an execution semantics sptibn in Glide is to repre-
sent, at some level of abstraction, a description of the execution behavior of a
GBVL. This description captures the dynamic relationships that exist during
execution between components spiedfin a Glide grammaAs was men-
tioned at the beginning of this section, a key idea embodied in the Glide model
is that the values associated with the execution or evaluation of components of
a program¢€.g. arithmetic expressions, logical expressions, ruieds, fows
of data, etc.) are represented by adding further components to the structure of a
Glide grammarAll actions specify changes to the PIN. The original structure
of the language provides the framework within which to add components
whose values represent the execution state of the syststmucfure-oriented
organization for specifying execution semantics is thus used in the Glide ap-
proach.

Execution action detfitions are intended to provide a way to describe
anabstracted execution semantics. This is a description of the changes that oc-
cur during execution at a level chosen by the GBVL desidgyadding more
detail to a Glide grammar speicition, a iner grained and lower level of de-
scription of the execution semantics can be made. For example, three succes-
sive levels of description in GBVL might be: (i) the binding of values of
variables inside rules associated with nodes, (ii) whether or not the rule condi-
tions are satigéd, (i) whether or not a node was executed. The abstract execu-
tion can either be driven by the interface itself, to give the user (animated)
views of the execution of programs, or it can be coupled to the execution of an
actual program that was generated by extracting a description of the program
from the PIN and passing it to a compiler for the particular GBVL. This com-
piler is provided by the GBVL designer (it is not part of Glider) and must be
able to instrument the program so that it can report androoekpected state

66

changes back to the interface. Though it might be possible to describe acom-
plete execution semantics of simple GBVLsin Glide, in general thisis not the
case - many GBVLs have very complex semantics, which often include the in-
vocation of routines written in existing standard languages such as C or For-
tran.

As mentioned in Chapter 2, in some GBVLsthe program graph is al-
tered only during the development (editing) of the program and it is static dur-
ing execution. Execution of the static graph involves the movement of data or
state through the nodes and links. Thisform of execution is modeled by execu-
tion action definitions which only change terminal valuesin the PIN. Other
GBVLshowever are dynamic; their graph topol ogies change at run-time. Such
GBVLs can be captured in asimple way with Glide because of the uniform ap-
proach in Glide to specifying (i) editing and execution and (ii) value and topol-
ogy change. In some cases the same change can be both part of execution
actions and part of user editing actions - such as the setting of the number of to-
kensin Petri Net place nodes.

Execution action definitions are similar to editing actions except that
they arein the form of conditiond action rules which can be quantified over
sets or lists of componentsin the PIN. These rules test the state of a PIN and
then changeit if their condition is satisfied. The set of rules are compiled into a
set of corresponding procedures. These procedures are invoked by an underly-
ing run-time execution engine which chooses satisfied rules to fire according
to one of several policies specified by the user, called regimes. Execution ac-
tion expressionsinclude all the expressions used for editing except those that
specify user input (newchoose, newpar se).

Example - Transition node state update
In the following simple Petri Net grammar:

Petri Net == N: Node** .
L: Link** ;
Node == (P: PlaceNode | T: TransNode) .

67

I: Link**.
O: Link**;
PlaceNode == NmTk: INTEGER;
TransNode == Name: STRING .
St: State ;
State == Ste:(:ENABLED]|:FIRING|:DISABLED |:ACTIVE);
Link == Lp:PlaceNode .

Lt:PlaceNode;
The following action definition is part of the execution semantics of Petri Nets.

Enable(pn:PetriNet) ==

Ot:pn.N.T (Op:t..NT.I.Lp (p.NmTk >0) 0O t.Ste’=ENABLED)
}
It states that all the transition nodes of the pej {hat have at least one token
in all the place nodes which are input-linked to themT(I.Lp) should
change their state ®NABLED The ‘Ot:pn.N.T " expresses quantifying over
the set of transition nodes within the PIN amgbt..NT.I.Lp " expresses
quantifying over all the place nodes which are inputs to a given transition node
(t). Since execution rules are invoked by the interface itself (rather than the us-
er), execution action d@fitions have a single input parameter which is bound
to the whole PIN.

The rule for firing a transition node is:

Fire(pn:PetriNet) ==
(d:pn.N.T (t.Ste = ENABLED O
t.Ste’=FIRING O
Op:t.NT.O.Lp (p.NmTk’ =p.NmTk + 1)

}

This action dahition states that one of the transition nodes that is in the state
FIRING be chosen and that the number of tokens in all of the place nodes that
are output-linked to iti{p:t..NT.O.Lp) should have their number of tokens

68

incremented. The restricted existential quaatiienotes the non-determinis-
tic choice of a which satisfies the condition.

Example - value update

Execution action défitions can be used to specify the computing of values as-
sociated with expressions. For example, in the following simple productions of
a GBVL which contains nodes that compute an integer value:

Node == NodelLabel:String .
NodeValue:Aexpr;

Aexpr== Val:INTEGER.
Exp:(Var’'+'Var) ;

Var == Val:INTEGER.
Name:STRING;

the grammar represents both the expressierp{.Exp) and its valueAex-

pr.val), as two parts of a component. The following unconditional execution
action rule captures the execution semantics of evaluating the expression by
updating the values of all these expressions:

ComputeAexprVal(dfw:DataFlow) ==
Da:dfw.N.Aexpr (a.Val' =a.Exp.0.Val + a.Exp.2.Val)

dfw.N.Aexpr specifes all arithmetic expressions of all the nodes. Index tags 0
and 2 are used for identifying items in a sequence. The grammardotidbe
expressiorand the value it computes. From the interface point of view these
are both displayable objecfBhe expression is accessible during editing, and
its value is accessible for inspection during execution (and possibly also for
the user to modify during execution). This approach itedént from repre-
senting values of expressionsaibutes, as exists, for example, aitribute
grammar representations for specifying language semantics. The reason for
this integrated approach is because, in this application of generating program-

69

ming interfaces, it is necessary to make the state of the program visible and ac-
cessible in the interface in the same way as the program itself.

Example - data flow

The following simple example illustrates how the semantics of datatype
GBVLs can characterized with action gefions that specify the movement of
data values along nodes and links. For a grammar:

DataFlowNet == N:Node** .
A:Arc**,

Node == Name:INTEGER.
Val:INTEGER.

Operation:Expr.
I:Arc.
O:Arc;
Arc == I:Node.
O:Node.
TransVal:INTEGER;;
the following action dehition expresses the movement of the value into the
arc and out of it:

MoveValln(dfw:DataFlow) ==

On:dfw.N (n.O.Val' =n.Val On.Val'=0)
}

MoveValOut(dfw:DataFlow) ==
On:dfw.N (n.Val’ =n.l.Val On.l.Val'=0)
}

Here O is being as used to record the absence of a value. If needed, an alterna-
tion construct could be used so that the value invtieslot could contain ei-

ther an integer orABSENT. More complex forms oflbw, with a list of values

in the link and/or node can be used to represent queues, LIFOs, etc.

70

Execution firing regimes

Execution action défitions are similar to editing action deitions,
but their invocation is not drivelny the userit is either driven internally by
Glider's rule execution engine or is triggered by the execution of the external
compiled, instrumented program. In the former case, the collection of condi-
tion-action rules is run under some regime suitable for the particular model of
computation of the GBVL. The basic firing regimes provided are the following:

* round_robin - Of the all the action rules matched, fire each in turn in the
order they were originally declared (in the Glide specification), repeat.

e first_and_restart - Of the all the action rules matched, fire the first one
of the order they were originally declared, repeat.

* random and_restart - Of the all the action rules matched, pick one at
random to fire, repeat.

These regimes are similar to fifent fring strategies in “rule-based
systems” €.g., [OPS5-85]). They provide a simple and transparent underlying
control for execution that ensures that the step-by-step logic of execution re-
mains easy to follow for the userhe iring rules themselves provide the
GBVL designer the means by which to implement more complex control logic
for his/her particular GBVL.

This completes the description of the use of actions for editing and exe-
cution. Similar actions which also access graphical attribatesjation ac-
tions, will be described in Sectioh.7.

4.4.3 Glide Action Syntax

The following abstract syntax captures the essential elements of the
syntax of Glide actions. Di@fitions of non-terminals previously deéd in the
query syntax (Sectioa.3.4) are omitted, for example, the conditions in condi-
tional action execution rules are the same as that for queries.

Common

<actiondefinition> ::= <actionlhs> “=="“{* <actionrhs> “}”

71

<actionlhs> ::= <actionname> “(" { <actioninputparams> } “)”
<actioninputparams> ::= <variable> “:" <typename>

<actionname> ::= <identifier>

<actionrhs> ::= [<rquantifiers> “(*] <conjunctiveexpr> [“)"]

<conjunctiveexpr> ::= <conjunctexpr> { "[T" <conjunctexpr> }
<conjunctexpr> ::= [<rquantifiers> “(*] <compactionexpr> [“)"]
<compactionexpr> ::= <simpleactionexpr>

| <condaction>
<condaction > ::= [<rquantifiers>] “(“ <logicalexpr>")" “00" “(* <conjunctiveexpr>")"
<actionexpr> ::= <newvalexpr>
| <destructionexpr>
<creationexpr> ::= <pathexpr>“ " “=" <newvalue>
<newvalue ::= <addnewvalue>

| <remnewvalue>

| <ednewvalue>

<addnewvalue> :: <constant>

| “new” “(* <type>*)”

| <pathexpr>

| <pathexpr> “00” <pathexpression>

| “lins™ “(* <pathexpr> “,” <pathexpr> “,” <index> “)"
“NULL"

| <pathexpr> “-” <pathexpr>

<remnewvalue> ::

| “Irem” “(* <pathexpr> *“,” <index>)"
<destructionexpr> ::= “old “(* <pathexpr> *) *
| “old “(* <treepathexpr> “) “
Editing specific

<ednewvalue> ::= “newchoose” “(* <typename> “)

| “newparse” “(* <typename> “)"

72

4.5 Glide Shape Predicates

This section describes Glidhape predicates. Shape predicates pro-
vide a means of specifying those invariant structural properties of the PINs of
a given GBVL which cannot be captured syntactically with the glide grammar
Foremost among these static semantics are restrictions on sharing and cycles
that can exist in a PIN. Shape predicates are used to express these restrictions
and cause updates to the PIN to ensure that the invariant properties are main-
tained. This section provides examples of shape predicates to show how they
are expressed and used. The next chapter discusses this Glide approach to han-
dling sharing and cycles in greater depth and compares the approach to other
existing techniques addressing the same issue in the context of other problem
domains.

As discussed earlier in Sectidnl, the Glide grammar type speacé-
tions are unconventional in that shared structures and cyclic structures such as
instances which “contain” themselves are permitted. This latitude provides an
elegant, concise, and uniform way of describing the interrelationship of ob-
jects in a GBVL, but there is a price to paid for this elegance. Though the type
specifcation does identify the desired PINs, it also admits instance networks
that do not correspond to a program (either partial or complete). For example,

73

the following diagram illustrates a Petri Net as a collection of type instances
and the references between them (as small arrews),

<U—s;®

-
I

-

<

e
Figure 4-4 %rrect Instance Network

Though this PIN does not violate any of the type compositions prescribed by
the glide grammar productions, it should clearly be excluded because referenc-
es 3 and 4 are not correctly “paired”. It is thus necessary to provide an external
means to characterize the particular sharing and cycles that are admissable and
separate them from those which are not. Shape predicates are the means to ex-
press these constraints in Glide. Shape predicates make use of path expres-
sions to identify the desired cases of cycles and sharing and distinguish them
from the undesired ones.

Examples

The following three examples illustrate how shape predicates can be
used to characterize patterns of cycles and sharing in PINs.

Graphical illustrations of parts of PINs are used to illustrate each pat-
tern. In these illustrations, a full circles() represents some instance of a type
(hence its out-degree, corresponding to the number of tagged components of
the type, isiked). The labelled arrows emanating from full circles represent
the tagged references of instances to each.oMmearrow pointing to a hollow
circle (O) represents a set or list component of a type (hence the sioele’

74

degreeisnot fixed). Elements of alist or set are |abelled by the quantified vari-
able used in the shape predicate, and so are subscripted with integersto differ-
entiate each value.

(i) Simple Fixed - A simple pattern of cycles occurs when instances two types al-
ways point to each other:

p: W;

Shape Predicate: Si npl eCycle(x: X) =={0y:x.1 (y.mn =y) }

The shape predicate is captures the restriction that only the simple cyclesin
which theinstance of a z that isreferredto by aY, refers back to that instance
of z. Hence an instance network such as the one above except that y1 referred
toz2 and z1 to referred y2 would be inadmissable. Note that this invariant
holds only for the instances of typesy and z referred to by X. It may well be
that types Y and z elsewhereinthe PIN do not have this constraint.

(if) Single Collection - In this example instances of a set of one type refer to the
sameinstance of another type:

X == 1:Y**
m?Z;
Y== n:Z;

Shape Predicate: SaneSi nk(x: X) =={0y:x.1 (x.m=y.n)}

In this example the shape predicate is not describing a cycle. This part of the
PIN isonly aDAG.

75

(i) Triple Collection - Thisexampleisasimplified case of the one needed for the
Glide Grammar descriptions Petri Nets used in previous sections.

P == nodes: N** .
l'i nks: L** ;
N == inputs:L** .

out put s: L**
L== tail:N.
head: N ;

Shape Predicate:
Pai red(p: P)=={0On: p. nodes, | : p.links(l On.inputs < n=l.head)}

The predicate involves 3 sets: nodes of a net, links of anet, and input links of a
node. It captures the pairing pattern mentioned in the introduction. It is also
similar to example (i) except that part of the cyclic path goesthrough alist and
hence there is amembership test in the predicate. For clarity, the diagram s
not complete, only cyclesinvolving just node n, with links| 5 (inputs) and | 3
(outputs) are shown. A similar predicate is needed to capture the cycles going
through out put s.

The syntax and semantics of shape predicates are similar to actions.
They are also compiled into procedures. Operationally, shape predicates can
be used in many ways: They may be provided as interface commands and ap-
plied at the users discretion to verify that theinvariant holds. They may also be
triggered after each editing operation to flag an incorrect state of the PIN, or
correct it automatically. It is possible to simplify the specification of many of
the editing operations by using shape predicates to compl ete the references be-

76

tween instances. Shape predicates can also be used to specify simple semantic
checks for the GBVL.

The predicates shown in these examples are simple, but GBVLs with
more complex forms of interconnection structure, such as ones with nodes
which have many ports, or ones with hyperlinks may require more complex
shape predicates. The path expression-based scheme of these predicates allows
these shapes to be specified in a straightforward and concise way

Design variations - bipartite vs. input-output.

The grammar and the shape predicates together specify the set of allow-
able PIN graphs for a given GBVL. As is often the case in specifying languag-
es, there is a design choice as to which aspect of a GBVL structure to capture
directly in the grammar and which to capture as static semantics of a shape
predicate. The following two variations of representing Petri Nets illustrate
this issue. A Petri Net is both a directed graph and a bipartite graph; all links
connect either a place node to a transition node or a transition node to a place
node. This can be directly encoded in the grammar by representing links as ob-
jects which are connected to one place node and one transitionasct®wn
below

Petri Net == N: Node** .
L: Li nk** ;

Node == NT: (P: Pl aceNode | T: TransNode) .
I :Li nk** .
O Li nk** ;

Li nk == Lp: Pl aceNode .

Lt : Tr ansNode ;

77

A graphical illustration of three instances conforming to this grammar is the

following:
nl n2
NTT 11 12 NT
n][] Lp[p3 in [i2[T]
ou{ T[] [ou{ [1]
|

In this grammaprthe bipartite property of the net is captured directly in the rep-
resentation of the link, but direction of the link is not represented in the link it-
self. Given a link, its direction can only be deduced indiredtilgm the
information in the nodes the link is attached to.

An alternative representation is to capture the input-output relationship
directly in the link and let the bipartite nature of the net be implicit, by chang-
ing the definition oti nk in the grammar to:

Li nk == Head: Node .
Tai | : Node;

The difference is illustrated graphically:
nl n2

NTT t1 12 NT

In Headnd In [12] | |
oul 2] | 1 out [T]
The bipartite property of the net can then be captured by using a shape predi-

cate to state the that a link always has one node that is a place and one node
that is a transition:

78

Bi part (pn: Petri Net) ==
O :pn.L ((l .Head.NT = |.Head.P = |.Tail .NT =1.Tail.T)
0 (l.Head.NT =|.Head. T = |.Tail .NT =1.Tail.P)
}
(O - exclusive or) These predicates use the Glide idiom of comparing the
equality of path expressions valuesi and. P) to identify the type in alterna-
tion (as was already illustrated earlier in this chapter).

Both representations can be used; it is up to the designer as to how parti-
tion representing properties of the language between the grammar and the pred-
icates. The déct of the of this partitioning choice on editing interaction is one
aspect that needs to be taken into account. By moving the “bipartitedness” out
of the grammar and into a shape predicate, editing operations can be provided
in which the user is free to put a link between two place nodes. Though this
may create an incorrect structure (which will subsequentlyaggéd by the
verification with thesi part shape predicate) it is often the case that this “loos-
er” form of interaction is preferred by some classes of. udex key advantage
of the Glide model is that it provides tHeXibility of being able suppornany
choices of design. Indeed, in Glide it is quite possible to have both properties
aspects represented explicjtly

Li nk == Head: Node .

Tai | : Node .

Lp: Pl aceNode .

Lt: TransNode ;
and use shape predicates to enforce consistdimeydesign principles should
be the ease and clarity with which the semantics can be expressed and the form
of editing interaction that is desired. It is often the case that the more that is
captured in the grammgathe easier it is to express semantics, but the complex
shape predicates may also be needed.

79

451 Glide Shape Predicates Syntax

Shape predicate syntax is the same as that for action specification ex-
cept that that bi-directional implication (iff) can be used.

80

4.6 Glide Graphical Attribute Definitions

This section describes tigeaphical attributes component of Glide. Up
to this point the description of Glide has dealt with: (i) the grammar and the ac-
tions, which provide a complete but abstract logical description of the struc-
ture and semantics of GBVLs; and (ii) the queries, which allow the designer to
specifywhich parts of a structure to display in a particular viéle purpose
of the graphical attributes component of Glide is to specify the graphical ap-
pearance of these parts as they are displayed in views. The next section (4.7)
will describe how animation speigtions can couple changes in the values of
these graphical attributes with execution.

The main design concepts behind the way graphical attributes are speci-
fied and used in Glide are the following:

(i) There is close correspondence between what appears on the screen
and the underlying data structure spiedfwith the Glide grammail he inter-
face directly exposes the data model for reasons that were already discussed in
the introduction chapteBecause of this approach, graphical attributes are sim-
ply attributes of the types and tags spiecifin the Glide grammaEach type
or tag can have one or more graphical attributes which indicate how instances
of a given type are to appear on the screen or how the tag labelling an instance
should appear

(i) The Glide graphical attributes aheerarchical. The syntax of
graphical attributes is recursive. Attributes have a name and a list of values,
and a value can itself be an attribute name and a list of values. Thuscpecif
graphical attributes may contain arbitrary levels of further specification detail.

(i) The use of graphical attributes canfregressive. As graphical at-
tributes are added, or more levels of spieaifion are added to a given at-
tribute, the views produced by the run-time rendering system will be
progressively more distinctive in graphical appearance. Indeed gifaphical
attributes are provided in a Glide spézation, the rendering system will still

81

be able to produce a default generic dispbmsed solely on the structural de-
scription in the grammadAs attributes are added, more of this default appear-
ance will be superseded with the specified graphical appearance.

(iv) Many of the graphical attributes are takdtrectly from the graphi-
cal capabilities of the GUI library that supports the interface. There are still
quite a few GUI libraries (awolkits) in existence and the capabilities of these
libraries are still evolving. Rather than providing a static generic set of at-
tributes which would reduce the possible displays to the lowest common de-
nominator of these libraries, and fail to make available their particular
capabilities, the attributes te€t the capabilities of a GUI directhjn advan-
tage of this approach is that graphical attributes are “open”, allowing more at-
tributes to be added when underlying facilties GUI support them. A
disadvantage of this approach is that if a new underlying GUl getad to
support the Glider generated interfaces, parts of this component of a Glide
specifcation would need to change to match the new GUI. However the chang-
es are limited to just this component of a Glide speaifon and in practice
there is a lage overlap in the kinds of graphical primitives provided the vari-
ous GUIs. In this chapter speicifattributes of a particular toolkit are used
This approach also means that graphical attributes are more concrete than the
those of the preceding sections; spieailames of shapes, colors, widths and
patterns of links, etc. are typical.

(v) The Glide model uses a composition-oriented approach to capturing
commonality between types. Hence, as has been discussed eadi type
can consist of a collections of types, one of which is an alternatiorao$i -
ti on orpl ace. In order to accommodate this composition-oriented approach,
graphical attributes can contain path expressions which provide a means to re-
flect the graphical properties of the subobject (in this casesi ti on or
pl ace) in the superobject (in this casede).

5 In this case the widget properties of the Tk API of thETk GUI toolkit
[Oust94].

82

Operationallythe values of graphical attributes are combined with the
result of a query (query trees) and passed as more complex data structure (the
gliderdisplay tree) to the run-time rendering module. The latter interprets this
information and performs the appropriate invocations of GUI library calls to
produce the view on the screen. This process is analogous to the use of “dis-
play lists” (which are really trees) in classical graphical rendering models (e.g.
PHIGS). This process will be described in detail in the Chapter 6 on the Imple-
mentation of Glider

Default display

If no graphical attributes are provided, the renderer will produce a de-
fault display of a PIN based only on its type structure sgetih the grammar
There are in fact two forms of default displtextual andgraphical:

In the case of the textual display (when no GUI whatsoever is avail-
able), the program will be displayed as aklist of records structured accord-
ing to the individual grammar productions and will contain the internal system-
generated idenirs for all the instances in the PIN. These idesrtsfare also
then used for all the references between instances. This display fechaf
textual display of the PIN. The very g number of identiérs used to encode
references makes this form of displayfai@ilt read and understand, and it is
the fact that graphical approaches display these relationships by graphical adja-
cency and nesting that can make them so much more concisdesti/ef

The default graphical mode useasting of boxes according to the
structure of the grammar to show the same information. Each box is labelled
with the type name of the instance and the relevant tag. Shared objects will ap-
pear repeated at the multiple places they are shared. As graphical attributes are
added to the Glide speaifition these boxes for instances offdient types
will instead have their own speiifshapes, colors, and icons, and sharing will
be displayed as objects adjacent to each othgriiode and links touching
each other).

83

Simple example

Graphical Attributes are spei@tl as hierarchically nested lists with the
keyword “Appear ance”. For example:

Appear ance(Petri Net) == {Box {Backgr oundCol or Red}
{ Bor der
{Si ze 3}
{Col or Bl ue}

}
This is a simple example of hierarchical spieaifion. It states that instances
of the typePet ri Net should be displayed as a red box with 3 pixel blue border
Severalappear ance(Petri Net)== ... defnitions might appear in a single
Glide specifcation, each would simply be added to the list of graphical at-
tributes for the typeet ri Net . Tag graphical attributes are spésif by includ-
ing a tag name after the type, e.g.:

Appear ance(Petri Net. Nane) = {Text {Font Hel vetica)}
4.6.1 List Graphical Attributes

The following is the list of the graphical attributes and their meanings.
An attribute without choice of values simply indicates it is boolean set to true.
Graphical attributes listed here can be nested when appropriateoleng.in-
sidet ext)

e Termnal - Used to indicate the leaf of a display tree - default to a box with
the name of the type unless further attributes are provdided.

* Text - Used to indicate that a terminal should appear as editable text.

* Texttree - Used to indicate that portion of a PIN is a parse tree which
should be displayed as a string of text obtained by putting all the leaf
values of the tree into a single text string

* GRAPH- Used to indicate that compoents of this type can be displayed
connected togethee.f., Node* * andLi nk** as components @kt ri Net)
This graphical attribute requires additional information which is basically

84

the same as that which is embedded in the shape predicate, i.e. the paths by
which the objects are shared.

« Port Indicate that this component is a port of a node and should be
displayed at the on the edge of a node or inside the node and links can be
show connected to the port. Nested attribytesN) to indicate whether
the ports are displayed inside the perimeter of the node or outside touching.

+ Shape Indicates shape of object
Nested attributesrc, Bitmap, Line, Oval, Polygon, Rectangle

« ForegroundColor Color
« BackgroundColor Color
« Border Properties of shape borders
Nested attributesvidth, Color
« Icon -If no futher detail is being shown, the bitmap is used, iconically

indicating the type of the objea.§. firing rule, dataflownode, token, etc.).
If more detail is being shown, the bitmap is used as a title of the box.

e Line
Nested attributesstraight Manhattan SplineCurved, Direct-
ed) Width, Color

e Arrow
Nested attributeshape, Size, Color

e Shading
e Labelling (Inside, Beside, Above, Below)
* Font
Nested attributesize, Color, Family, Style)

Note that thesizE attribute is only ever used for fonts. This is because of the
nested display approach to displaying objects. As more detail is presented the
size of the enclosing object will grownd hence it is not necessary to assign
specific sizes.

85

4.6.2 Glide Graphical Attributes Syntax

<graphicalttributedef> ::=
“Appearnce” “(* <type name> “)" “=" “{* <graphicalattribute> “}"
| “Appearnce” “(* <type name>"."<tagname> “)" “=" “{"* <graphicalattribute> *}"

<graphicalattribute> ::= <graphicalattributename> <graphicalattributevalue>
<graphicalattributename> ::= <gattributeidentifier>
<graphicalattributevalue> ::= <identifier>

| <constant>

| 4« <graphicalattribute> “}"

86

4.7 Glide Animation Definitions

Thefinal component of a Glide specification isaset of animation defini-
tions. The purpose of animationsisto provide the GBVL user with useful dy-
namic graphics. These dynamic graphics can be used to convey the flow and
control activity of an executing program, highlighting where and when chang-
es are taking place so that a user can more quickly comprehend (i) the execu-
tion semantics of the language and (ii) whether or not the program that the user
has created i s matching the users specific expectations about its execution. An-
imations can be avery effective means of diagnosing problems because anoma-
lous behaviour can be made instantly apparent with the right animation.

The basic means by which animations are specified with Glide is by
ruleswhich are similar in form to execution actions. The only differenceisthat
they relate particular tests on the state of the PIN structure to changing the val-
ues of graphical attributes. In other words they specify invariant relationships
between PIN components and the values of graphical attributes. In thisway
graphical features just described, such as the color, border size, font, shape,
will change in response to changing PIN state. The same test syntax as execu-
tion rulesis used, so that graphical changes can be made to occur only when
very specific conditions on the state of the PIN occur. In addition, animation
conditions can also trigger on specific changes of state of the PIN between ad-
jacent stepsin the execution. Finally, it isalso possible for animation, to trig-
ger active graphical attributes. These are simply graphical attributes which are
in fact procedures which execute in agiven state in order to create a dynamic
animation of agiven state (e.g. the cyclic movement of avalue along an arc, to
illustrate that the system has reached the state where the value has arrived) .

87

Simple example

Simple examples of animation are the following:

EnableGreen(pn:PetriNet) ==
{ Ot:pn.N.T (t.Ste =ENABLED) O (t..NT<Color>=Green)}

FiringRed(pn:PetriNet) ==

{ Dt:pn.N.T (t.Ste =FIRING) O (t..NT<Color> = Red)}

The graphical attributes are accessed viaa special form of path expres-
sion terminating with angle brackets enclosing the particular graphical at-
tribute. The enclosed expression may itself be a dot expression to indicate
accessing a nested graphical attribute.

M ore complex example

The conditonsin the invariants can be made as complex as desired, so
that very specific animation can be used to detect and indicate and avery spe-
cific condition. Though at the moment these animation invariants are designed
to only be created and specified by the designer, opening such facilitiesto the
user is quite straightforward.

{ Ot:pn.N.T (t.Ste = FIRING Ot.input.Lp.NmTk<2) O
(t..NT<Color>=Red)
}
This animation definition specifies that transition nodes should trun red when
they arein the state FIRING and all their input place nodes have less than two
tokens.

Transition animation

In addition to producing graphical reflections of the state of the PIN, It
Isalso possible to create animations of change of statein the PIN.

{ Ot:pn.N.T (t.Ste = FIRING) 0(t.Ste’ =DISABLED)
O (t..NT<Color>'=Red)}

88

This animation will cause transition nodes which have fired and become dis-
abled to turnred.

Animation procedures

In addition to the tying a graphical attribute to the valuein the PIN (or,
more generally, the state of thethe PIN), it is also possible to register attributes
which are procedures. Thisis similar to the path transition paradigm of
[XTANGQ]. Such animation provides no more information that simply having
acolor valuereflect the state, but the activity is does provide a more noticeable
effect which can be used to make some animations more obvious than others.

{ Ot:pn.N.T (t.Ste = FIRING 0O (t..NT<Flash>)}

This example invokes the graphical attribute which is aroutine which flashes
the node momentarily. The semantics of these active animations are blocking
ones; the execution of the program itself stops, the animation procedures runs
to completion before the next step of program execution.

89

4.8 Summary

This chapter has described the Glide model. It has described how it is
based on an extended notion of composition of types which accepts and ex-
ploits cycles and sharing to encode a concise and rich description of the com-
ponents graph-based visual language and their-nefationship. Building on
this underlying data structure spec#tion component and path expressions to
navigate through such structures, Glide provides queries for extraction, actions
for capturing semantics, graphical attributes for specifying graphical rendering
of the structure, and animation definitions for visualizing execution.

The Glide query language is a query language which provides a suc-
cinct and simple way to extract parts of a program from the PIN that represents
the whole program. The queries allow the Glide user to specify both what ob-
jects should be displayed in a view and at what level of detail those objects
should be shown. The query language is one that is adapted to the Glide data
model for graph-based visual languages.

The various forms of Glide action daitions provide a uniéd notation
for describing changes associated with the language. Simple forms of action
just test and change terminal values associated with obgegtdifing state,
number of tokens, etc.). More complex forms change thegation of the
graph structure of the PIN itself, gluing or ungluing objects. Execution seman-
tics are encoded as rules that access and test the PIN and then alter it.

The appearance is derived by a generic display generator in conjunc-
tion with attributes which can progressivelyinefthe graphical apperance of
instances of given types.

The next chapter provides a more detailed analysis of the issues sur-
rounding the use of shared and cyclic types. Chapter 6 describes the implemen-
tation of the Glider compilation process and how it translates a complete Glide
specification in order to generate and interface for a GBVL.

Chapter 5

Graph Typesfor Graph Basad Visual Languages

This chapter provides a deeper analysis of the Glide data model by re-
lating it to work in a diverse range of other research areas within each of which
the issue of recursive and cyclic data types has also been addressed. The areas
are: functional languages, abstract data types, data base models, object-orient-
ed data models, formalization of pointers, compiler data structure dependency
analysis, and graph grammars. The need to address the issue arises for a vari-
ety of reasons in each of these areas. In the case of Glide the need arises from
wishing to support the “interconnection paradigm” of GBVLSs.

This chapterifst examines and reviews the use of these special data
types at the lower level of abstractionioifperative languages and pointers
(Section5.1) (this has already been partially discussed in Seeibnthe
Glide Grammar). It then examines the higher level approaches to characteriz-
ing these types that are found in foemal and declarative languages used in
the areas mentioned (Sections 5.2 through 5.5), so that they can be compared
to Glide. Finally in Section 5.6, an illustration of why this issue is so closely
related to the connection-based paradigm of GBVLs is provided.

5.1 Data Typesin Imperative L anguages with Pointers

This section presents a series of examples ahdefns of complex
data types and illustrates the implementation of instances of these types with
pointers in imperative languages. Each successivritieh represents a class
of data type which is more expressive. The purpose of this series is to show
how the final examples correspond to the types found in Glide.

90

91

Basic composite data type

The simplest form of composite data type is one in which primitive
types are composed and can be manipulated and as a unit. For example, the co-
ordinates of objects in 2D-space might be represented through the following
composite type definition (using Glide-style notation).

COORDI NATE == X-coordi nate: | NTEGER

Y- coordi nat e: | NTEGER

Label : STRI NG ;
Such a type can be instantiated for all combinations of values of each of its
component primitive types. Thus the set of values (instances) of thedgpe
DI NATE is the set of values of the cartesian product of the domains of each com-
ponent (NTEGER X | NTEGER X STRI NG). All modern programming languages
provide at least this level of type definition facility

Recursivetypes|: lists

A next higher level of expressiveness in composite types is to allow
type deinitions to berecursive. In this case the deifition of a new type in-
cludes the type being datd. The simplest example of a recursive type is a
list. For example, the type definition

LI ST == Label : STRI NG
Tail: LIST ;

IS a composite type in which one of thellls contains a value also of type
LI ST. Instances of this type are lists whose elements are strings.

In an imperative language it is possible to make ugeiotersto repre-
sent instances of this type. A pointer is a memory location which contains a
value which identies another memory location. Instead of assigning the value
of a primitive type to the componemeld Tai | , a pointer which is the address

92

in memory of theifst element of the tail of the list is assigned to ib&f A
picture of such a list instance might be the following

a/\b/\c

Figure 5-1 Pointer implementation of a list

This informal graphical depiction illustrates the concrete poibtesed imple-
mentation of an example list. dereferencing operation must be used to access
the tail. Imperative languages such as C or Pascal require the use of a special
annotation in the type di@ition (e.g., *LI ST) to indicate the presence of a
pointer to a given type. The dereferencing operator and this annotation bring to
the surface an aspect of the implementation which would ideally be hidden
[Hoare75]. A recursive type does not restrict the size (length) of the instances.
This introduces the issue of dynamic structures whose size is only known at
run-time and may vary during the course of program execution. A listestkf

in this way can be viewed either as a linked list or as a recursive containment
as illustrated by the two diagrams in thguire below (taken from [BL86] p.

83).

0] a/\b/\C

(i) a b @

Figure 5-2 Two views of a recursive type : linked list or
containment (from Guttag and Liskov p. 83)

Recursivetypesll|: trees

A simple generalization of the list type is the tree typees can also
be conveniently represented using recursive typmidi@ins. For example, the
following defines a binary tree type.

93

BTREE == Label : STRI NG
Lbranch: BTREE
Rbr anch: BTREE ;
Instances of such atype can be similarly implemented with pointers, asisillus-
trated here.

c
allr—m

NE RE
d \ e
f
Figure 5-3 Implementation of aBinary Tree

These definitions can be naturally extended to trees with other branching fac-
tors. So called general treesin which the branching factor varies can also be
handled in a pointer-based implementation by using (dynamic) lists of point-
ers, e.g.:

d e

f

g
Figure 5-4 Implementation of a General

(A [representssomeimplementation of alist.)

Recursivetypes|ll: grammars

A different extension of expressivenessisto allow acomposite typeto
contain different combinations of types. These are sometimes termed variants
or constructors:

EXPR == Fexpr : (Flt1: FLOAT Op: OPERATOR Fl t 2: EXPR)

94

| I expr :(Intl: 1 NTEGER Op: OPERATOR I nt 2: EXPR) ;
In this example an instance of typePR can be either the combination of a
FLOAT, anEXPR, and anoPERATOR Or anl NTEGER, anEXPR, and anOPERATOR.
The variants are distinguished here by the fg®r andl expr. This exten-
sion provides a type daition language with the same level of expressiveness
as context free grammars, the notation being equivalent to BNfpe deini-
tion corresponds to a production and each direct or mutual recursion between
type deinitions corresponds to a recursive use of productions in a grammar
data type of this class can be used to specify a set of instances which corre-
spond to the parse trees of sentences of a given language. A program in the lan-
guage thus corresponds to a tree instance of such a type. Hence, the
specifcation meta-languages for automatic programming environment genera-
tors discussed earlier (Chapter 3) allow the user to specify a language as a data
type from this class.

Shared Structures

A different form of generalization is to allow instances of recursive
types in which parts of the instance structuresheeed. It is possible to take a
type definition that is of the same form as the previous one for binary trees,

BDAG == Label : STRI NG
Branchl: BDAG
Branch2: BDAG,
but create an instance for the type which is not a tree but an agyegic. The
diagram below illustrates an example (again, at the level of implementation
with pointers).

| ﬂb2>

C d

e

Figure 5-5 Implementation of a Shared

95

Admitting such structures to be legal instances of the type introducessthe f
problem for the formal spedtfation of changes to such instances. If the value
(in the sense of the previous examples) of the DAG rootadsainodifed by
modifyingc it has theside effect of modifying the value of the DAG rooted at

b. The component labelledis shared by both the instance rooted and the

one rooted alb. Admitting side-eflects violates the requirement of referential
transparency of a declarative formal description. Instances implemented as
DAGs encounter the problem of siddexts through structure sharing. This
problem of structure sharing occurs whenever a component object has more
than one “parent”.

Cyclic shared structures

A further step in increasing expressiveness is to atighic structures.
Using the same form of type definition:

BDG == Label : STRI NG
Branchl: BDG
Branch2: BDG ;

the following instance could be admitted:

a b

d e

g e

Figure 5-6 Implementation of a Cyclic

In order to admit the structure thatmsplemented with pointers as illustrated,
itis necessary to remove a further restriction. In the previous categories only
the typedefinition was recursive. In the case illustrated abovenhtance of a
typecan also “contain” itself as a component. This is recursion in the instance
rather than in the type -racursive instance, though the termsyclic structure

or circular structure are more commonly used. Circularity can be thought of as

96

a special case of sharing in which the shared item and sharing item are the
same [Lev78]. The cycles in such structures cause further problems for declar-
ative formal descriptions of structure manipulation. This is essentially because
such descriptions rely on the ability to traverse a well-founded data structure,
which a cyclic graph is not. A naive structural equality test of two cyclic in-
stances, for example, would not terminate because it will get caught in a loop.

Note that cyclic structures can only occur as instances of a set of types
that are recursive, but it is not necessary that a set of types be recursive for sim-
ple, non-cyclic sharing to occur

GBVLsand shared/cyclic types

The use of structures with sharing and cycles are surprisingly common,
especially in interactive systems which need a way to represent the intercon-
nection of objects. For example, hypertext systems allow links between com-
ponents of a document without restriction, so that the structure of the
document as a whole can be an arbitrary directed graph. CAD/CAM modelling
packages contain data structures for 2-D and 3-D geometric modeling. These
models have cyclic pointers to represent the topological properties such as the
interconnection between volumes, faces, edges, vertices. Graphical user inter-
face toolkits allow an interactive graphical interface to be created by compos-
ing small interactive objects (“widgets”) into a complete interface for given
application. The neighboring relationships between such objects are often cap-
tured with interobject references which may be cyclic [ET++89].

The area of concern for Glide, interfaces for GBVLs, is another applica-
tion area in which these kinds of structures are needed, as the description of
Glide in the previous chapter has already illustrated. Classical notations for de-
fining the structure of programming languages are essentially describing tree-
based structures. The program is viewed as a hierarchical decomposition of the
text string. The Glide view of GBVLs is, howevyehat components are not
only parts of other components, but they may also be connected to each other
This adjacency is defed mutually: If two objects A and B are connected, this

97

can be represented by the fact that A has a property identifying its connected
neighbor as B and B has a property identifying A. When properly exploited,
this mutual definition approach provides very compact, direct, versatile, and el-
egant way of capturing thelogical structure of connected and composite ob-
jectsof aGBVL. Such cyclic definitions must be considered with care because
they can cause problems, as has already been alluded to and will be shown in
more detail in the next sections.

The complete Glide Grammar type system is an extension of the exam-
plesthat have just been described. The notion of variantsis added with the al-
ternation operator (|); the distinction between ordered and undordered
combination is added with the aggregation operator (.); ameans of expressing
commonality is added by combination of alternation and aggregation; and fi-
nally the postfix annotations (* and **) are added to express lists and sets di-
rectly.

Having described how these kinds of datatypes can be captured at the
lower level of abstraction of imperative languages, the different ways they
have been characterized in formal declarative languages is now examined.
Thisessentially involves avoiding the explicit use of pointers, asisdonein
Glideand isadvocated in [Hoare75]. Section 5.2 examines functional languag-
es, Section 5.3 abstract data types, Section 5.4 data base models, and
Section 5.5 notes afew other areasin which thisissue has al so been addressed.

5.2 Functional Languages

Functional languages (such as ML, Miranda, Pure Lisp, etc.) allow a
more abstract view of datatypes than the pointer implementationsjust illustrat-
ed. Functions accessing and manipulating instances of the types (values) can
be defined abstractly and in away independent of their implementation. Two
functional languages are used here asillustrative examples, first ML [Paul]
and then Miranda[BW88].

98

ML

As its name suggests (Meta Language), one of the primary purposes of
ML is to describe languages, and thus it is well-suited to applications centered
on representing language structure. The data typeitleh constructs of ML
can be used to describe sets of trees which correspond to programs of a lan-
guage.

If ML were used to capture the structure of the nodes and links of Petri
Nets in the same fashion as Glide, the following set of ML recursive data type
definitions might be appropriate:

dat at ype
Node = NODE of {\lodeNarre

*

* O and

I I NPUTS of Edge |ist and

O

QUTPUTS of Edge |i st and

Edge = EDGE of Node
* Node ;

In ML, the keyworddat at ype introduces a data type deition and the key-
word and is required in ML when défing a set of types which are recursive.
For simplicity this dehition has omitted the use of variants, but ML does pro-
vide them (they are known as typenstructors) to allow creation of a given
type out of diferent combinations of other types.

The set of type défitions above is accepted by the ML compiler and
there is no need for any visible use of pointers for the user of ML, either in the
definition of the type itself or for functions using the types. The problem with
this composite type digiflition is that instances that are cyclic qaot be creat-
ed; only instances which correspond to trees can be instantiated. In order to
preserve referential transparency as required in ML, an instance of a type can
be created but cannot be changed. A small change to part of an instance can
only be modeled by constructing a completely new copy of the structure with
the small change. The problem of sidéeets in shared structures does not
arise since update-in-place is not available, but the consumption of time and

99

space due to copying structure for every change soon becomes prohibitive. A
further consequence of this requirement for referential transparency is that it is
not possible to create cyclic structures: one of the components of a cyclic in-
stance is the instance itself which, byidgfon, hasnt been created yet. These
problems can also be viewed as a consequence sfrtbefunctional seman-

tics of ML.

It is because cyclic structures are so useful in real programming prob-
lems, howeverthat ML does include an imperative extensiagierence types,
which are similar to pointers. Thef keyword is used to specify a reference
type. The following changes to the previousidiifon is how the Petri Net
type could also be defined in ML.

dat at ype
Node = NODE gf {\lodeNarre

* O and
I = | NPUTS of ref Edge li st and
(0] = QUTPUTS of ref Edge li st and
Edge = EDCE of Node

* Node ;

The only diference between this deition and the previous one is the addi-
tion of ther ef qualifiers in the dehitions of thel NTPUTS, QUTPUTS, andeEDGE
types. The reference type extension to ML can be used in conjunction with de-
structive assignment €) to create cyclic structures. This requires a notion of
change of state and thus lies outside the functional model. In ML, support for
imperative programming is closely associated with the use of reference types.
It is not possible to create cyclic instances of recursive types without using
ref. The solution to the need for cyclic structures is in ML to stop being declar-
ative.

100

Miranda

Miranda is a lazy functional language with an elegant minimalist syn-
tax. The analogous definition of nodes and links in Miranda is shown here:

node = Makenode nodenarne
i nputs
out puts
i nputs = Makei nput s [edge]
out put s = Makeout put s [edge]
edge = Makeedge node
node
nodenane ::= Makenodenarne [char]

In Miranda square bracketg]() are used to indicate a list of elements of a giv-
en type.

In contrast to ML, cyclic instances of this typan be created in Miran-
da, without requiring an imperative extension. There are two ways to explain
why this works in Miranda. At the abstract level, Miranda is a lazy functional
language, so a value can be used before it is created, and hence it is possible to
create an object out of itself (the cyclic case). At the underlying implementa-
tion level, all values in Miranda are accessed by always dereferencing from a
pointer Thus the pointer to an object can be created and used before the object
itself is created. Structures which are implemented as cycles in Miranda are
viewed agnfinite structures, because at the functional level of abstraction they
can be regarded as such - the underlying pointer structure is not visible and not
accessible. faversal operations (such as printing of amiié structure) do
not terminate. A problem with this approach is that a cyclic list composed of
two elements (containing the same value) cannot be distinguished from a cy-
clic list of one element (containing the same value). Both have the same value
of being an infinite list of the value.

101

In contrast to ML, Miranda does not “break symmetry”. Whenr#fe
construct is used in ML, the deition of | NPUTS andouTPUTS is different from
the other type definitiondn Miranda and Glide this does not happen.

The issues of sharing and cyclic structures are well known problems of
functional languages and various solutions have been proposed. One proposed
solution that avoids “recreating the entire data structure” after any change to a
data structure is described by Burton arahy on the use of multilinked data
structures in functional languages [BY90]. This solution “hides” the change of
state as auxiliary heap data structure which must then be passed as an extra ar-
gument between functioimvocations. It is possible to reduce the amount of
copying by carefully sharing structure between the successive heaps associat-
ed with each function invocation. Though this approach does permit cyclic
types, it is still far from and ideal solution since it simply defers the problem of
structure re-creation to this auxiliary structure which ifieetfrepresents the
state of the system. The problem of dealing with state and functional languages
continues to receive attention in research on functional languages [FLS93].

5.3 Abstract Data Types

Work on the formal speddation of abstract data types is similar to the
work in functional languages in that both strive for concise declarative abstract
descriptions of data types and functions operating on thethe same spirit
as functional descriptions, ttagebraic approach to specifying abstract data
types (ADT) allows the semantics of such types to bengef via algebraic
equations interrelating the functions [Gut78]. The intent behind the algebraic
specifcation of abstract data types is to characterize the behavior of a data
type without needing to appeal to any particular implementation (poeinter
based or otherwisé.)The problems of dealing with shared and cyclic struc-
tures have also been investigated here:

1 This ideal is in some sense at odds with visual programming and program editing in
general, since the data type instance (the program) is intendeditbtbe for
direct manipulation by the userot hidden.

102

Thethesisof M.R. Levy hasdirectly addressed the problem of extend-
ing the ideas of algebraic specification of abstract datatypesto incorporate
shared and circular structures[Lev78]. Two solutions are proposed to provid-
ing an abstract description: (i) providing an explicit algebraic characterization
of the use of references and assignment by relating references to a special no-
tion of congruence and (ii) by relating circular structuresto infinite objectsin
continuous algebras. Sets of equations are used to characterize sharing in in-
stances of atype. These sets of equations play asimilar roleto that of the shape
predicates of Glidein characterizing the loops.

Moller [Mol85] also addresses the problem of shared and cyclic struc-
tures from an abstract mathematical perspective on algebraic specification. He
proposes a solution to the inability of algebraic formalismsto describe graph
structuresin which agraph is characterized as arepeating pattern in an infinite
tree. Thisresembles the Mirandaview of cyclic structures asinfinite struc-
tures. The repeating patternissimilar to the notion of congruences of Levy. So-
lutions of Moller and Levy require a high degree of comfort with abstract
algebraic techniques.

Graph Types

More recent work by Klarlund and Schwarzbach [K& S93] also exam-
inesthe problem of capturing cyclic structures as adata type (which they term
graph types). The authors provide asimpler yet effective way of formalizing at
least a subset of graph structures as abstract datatypes. The key ideas are to
first identify an underlying spanning tree of agraph structure and then to use a
simple language based on regular expressions to define the remaining links
which span the tree. These regular expressions are termed routing expressions
and are similar to Glide path expressions. The authors demonstrate that this
technique makesiit possible to describe awide class graph structuresincluding
doubly linked lists, threaded trees, and binary trees with the leaves linked to
theroot. They also note however that some structures are not amenable to this
form of description. The graphs defined by their routing expressions are func-

103

tions of the underlying tred,e., for a given set of routing expressions and a
given tree it is not possible to have more than one graph. A further disadvan-
tage that this technique shares with ML references is that symmetry is broken
since the one path to a node on the spanning tree is distinguished from the oth-
ers described by routing expressions. The contribution of this work is that it is
possible to identify subclasses of general graphs which, because of some
unique propertycan be characterized in a simple way - in this case through
regular expressions on paths in a tree.

It is instructive to compare the syntax and semantics of lexical compo-
nents of K&S routing expressions with those of Glide path expressions. The
rough correspondence between them is shown in the following table:

K&S Glide Meaning
LX X access component tagged x
A X access parent (identified through x)

test if node is root

$ test if node is leaf
T test if parent of type T
T.v X.Ww = Xx.v | testif component is of type T variant|v
(expr)* @(expr) | repeat zero or more times
0 regular expression composition
+ regular expression alternation

Though the syntax of K&S routing expressions is richiee Glide data model

IS more abstract than the data model of K&S. Glide incorporates representing
sets and lists directly in the type, hence the extra routing expression constructs
are not needed in Glide path expressions.

104

54 Database M odels

The issue of shared and cyclic structures also arises in work on develop-
ing models of data bases, especially when the goal isdanfore expressive
data models than the relational one.

54.1 M odel of Network Data Bases

Network model data bases have faced similar issues; these data bases
represent an early case of attempting to deal with references/pointers. The
work by Gangopadhyay [DG83] provides a formal model of network data
bases (“DML”). In this model the same problem of shared mutable data struc-
tures is explicitly considered. Here, the solution used is to distinguish between
the concept oifdentity of a data item as distinct from #alue The identity of
a shared component of a data structure does not change, only the value associ-
ated with it. An auxiliary look-up data structure (thgge-staté) is used to as-
sociate identities with values. This auxiliary structure is described using a state
transition model. This solution is thus similar to the Barsa@lution in func-
tional programming.

5.4.2 Object-Oriented Data M odels

Object-oriented data models are useful for representing data that has a
more complex structure than can be naturally represented by the more rigid re-
lational model. Object-oriented programming languages have been described
as languages which provide extensive support for dealing with and controlling
the use of pointers. The following comments by Stroustrup [ARM91] also al-
lude to the issue under consideration:

“One of the most powerful intellectual tools for managing complexity is
hierarchy, that is, organizing related concepts into a tree
structure......Naturally, this organization has its limits. Sometimes even a
directed acyclic graph seems insufficient for organizing concepts of a
program; some concepts seem to be inherently mutually dependent. If a set
of mutually dependent classes is so small that it is easy to understand, then
cyclic dependencies need not be a problem.*”

105

K& S also note the close rel ationship between their formal specification of
graph types and work on formal models of object-oriented programming, be-
cause of the need to deal with mutual reference between objectsin the | atter.

55 Other Areas Addressing Cyclic and Shared Types

This section notes afew other areas in which the issue of sharing acy-
clesin data structures al so appears.

551 Parallelizing Compilers and Pointer Structures

The issue of sharing is also of concern to designers of parallelizing
compilers. These compilers attempt to identify various forms of dependencies
in programs. If the compiler can identify the type or the absence of dependen-
ciesit may then be possible to partition a program into independent pieces
which can be executed separately. Most of thiswork has focused on array de-
pendencies but Hummel, Hendern and Nicolau [HH& N92] have examined the
problem in the context of arbitrary (pointer-based) C data structures. In these
structures, dependencies due to sharing (the term used hereis aliasing) can pre-
clude parallelization.

The scheme used by HH& N isin effect the dual of Glide shape predi-
cates. HH& N define alanguage (orginally ADDS and subsequently ASAP)
which allow the definition of predicates (called aliasing axioms). They are
used to specify where sharing that does not occur. The reason for thisisthat in
the task of parallelizing programsthe goal isto identify those parts of astruc-
ture which are not shared, do not carry dependencies, and therefore the pro-
gram statements accessing might be safely executed in parallel. These
references may be named, in which case dependency detection is quite easy, or
they may be anonymousin which case dependency detection is more difficult.
The languages based on aliasing axioms are used as by the programmer to de-
scribe his/her data structures so that the compiler can exploit the information
contained in them to produce parallel code which will not violate the depen-

106

dencies. The aliasing axioms of ADDS and ASAP use path expression which
are al'so based on regular expressions of names of members of C structs.

The aliasing axioms fulfill asimilar role to Glide shape predicatesin
that they provide the extra higher level description of the structuresthat is
needed to characterize them more accurately.

55.2 Galois

Recent work by Turpin combines the use of pointer-based data struc-
tures with adeclarative logic-based language. Though the approaches are very
different, thisissimilar in intent to the references of ML in that they both make
pointers first-class objects in the language and then attempt provides aformal
semantic characterization of these objects as part of the language.

553 Graph Grammars

Thework in this areatakes a somewhat different approach to character-
izing graph structures. Classes of graphs are described by collections of graph
rewriting rules. A graph grammar is a collection of rulesto change graphs by
first matching and then altering parts of the graph structure. These rules are of -
ten graphically depicted. Graph grammars sidestep the issue of cyclic types, by
avoiding representing data structuresin alinear text form. The problem of cir-
cular structuresis hidden by dealing with pictures of graphs directly. The diffi-
culties encountered in attempting to find a concise standard textual notation
for graph rewriting is an indication of the underlying problem of cyclic struc-
tures[Ehr90].

5.6 Dynamic Structures, Anonymity, and Connections

Thissurvey of the different approaches to describing shared and cyclic
structures showsthat there is an underlying issue of whether or not to associate
explicit names (a pointer isakind of name) with objects so that these names
can be used to refer to the objectsin the graph. The desire to avoid using names
can best be illustrated by the following diagram showing a simple manipula-
tion in asimple graph - the exchange of two nodesinit.

107

RV SRvy

V=(ab,c.d,e) V=(ab,cde)
(i A\nd —>
E =((ab), (b,c)a,c), (d.e)) E=((ae) (be) (ae) (dc)

Consider the node swapping operation indicate byN~<=* . In the
top diagram (i) it is evident that the before and after graphs are isomorphic;
without labels; no discernible change has occurred. Howétbe objects are
given identifers then a chand®s occurred (ii). Any linear text representation
(iii) of graphs requires some form of idemgifs, and then it is not immediately
obvious that the graph has not changed. In the graphical case (i) the abstract
“identity” of the objects comegurely from their mutual attachment to other
objects. The intent behind the pointerless, nameless approach of Glide to cy-
clic structures is to preserve this abstract qualitys by assigning identdrs
the anonymous quality of objects in the graph diagrams is lost.

5.7 Summary

This chapter has put the Glide data type model into context by relating
it to work on other declarative models of data types. These models either do
not admit sharing and cycles, do allow them with special annotations, or do al-
low them with auxiliary means of specifying where cycles and sharing are per-
mitted. Glide is of the latter form. The Glide grammar is used to specify the

108

basic compositional structure of types and then shape predicates are used to de-
fine and constrain the use of cycles and sharing. The uses of various forms of
path expressions for expressing paths through the structure on which the char-
acterization of cyclesisbased was also described. The chapter has also demon-
strated that the issue of managing cycles and sharing in data structures arisesin
awide variety of application areas. Thereason theissue arisesin Glideis that
the components of graph-based visual languages that are manipulated by a user
in theinterface are inherently mutually defining; each getsitsidentity from the
other componentsit is attached to. Simple predicates based on path expres-
sions (as others have found as well) allow a concise characterization of many
shapes of sharing and cycles.

Chapter 6

Glider Design and Implementation

This chapter describes the design and implementation of Glitesys-
tem that generates interactive graphical programming environments for GBV-
Ls from their Glide spedi¢ations. Such a programming environment allows
the user to edit, viewexecute, and animate programs “written” in a GBVL.
Glider consists of two main partscampiler which translates the various parts
of a Glide specitation into programs, andran-time library (RTL) which pro-
vides a set of procedural abstractions which are used by the programs.

Section6.1 provides an overview of how the Glider system is used.
Section6.2 describes the high level design of the Glider compiler and of the
programming environments (composed of the programs generated by the com-
piler and the RL they are linked to). Sectiof.3 discusses the choice ofgat
language and GUI library used. Sections 6.4 and 6.5 present the Glider imple-
mentation in detail: Sectiof.4 describes the procedural abstractions and a col-
lection of run-time components, each handling spectésks, that form the
Glider RTL; and Sectior6.5 describes the program generator components that
form the Glider compilerThe structure of Sectio®.5 follows that of Chapter
4 since there are separate compilation algorithms used for each part of the
Glide specification language.

Overall, the last three sections provideostom-up description of Glid-
er: they start with the languages and libraries needed to supportfthéehen
progress up through the levels of abstraction within the,Rnd fnish by
showing how the Glide high level spdcHtions are compiled into procedures
which make calls to the procedural abstractions provided byTh&iis API).

109

110

6.1 Overview of Glider

It is important to clearly distinguish the two phases of activity associat-
ed with Glide:generating the programming environment for a given GBVL
andusing the end product that is generated - the user interface for developing
programs in the GBVL. The left and right halves of Figés& below illustrate
the relationship between these two activities.

Programming Environmei@eneration Programming Environmerhise
Petri languagé Petri
Designer Programmer| 4@ Animation
® § }
Petri PE
NG /'@ Glider RTL
Glide Specification PL and GUI Library
of Petri PE A
+ @ (6 Petri Program
Glider *
Compiler
i c Petr_iI
Glider ompiler
@ RTL v
Petr_lI * @
Petri PE Compiler instrumented
Petri executable

PL = Programming Language
PE = Programming Environment
GUI = Graphical User Interface
RTL = Run-time Library

Figure 6-1 Generation of a Programming Environment vs. its Use

Programming Environment Generation

In the generation phase, the Glider compiler is invoked in order to com-
pile a specitation, written in Glide, that a language designer has developed to

111

specify the programming environment for his/her particular GBVL. In the dia-
gram above the example GBVL is called “Pet(@ . Executing Glider gener-

ates an executable progr@n This program is the programming environment
for Petri. The program, the output of Glidey in the form of source code in a
standard programming language which can subsequently be compiled and
linked to the Glider RL in order to create the complete executable. Parts of
the RTL access routines of a standard programming language library and GUI

library @) .

Glider does not itself compile programs of a given GBVL, it only gener-
ates a programming environment for developing them. It is the separate respon-
sibility of the language designer to write the compiler for the language itself
(3. In order to allow programs to be animated, they must be appropriately in-
strumented by the compiler with functions that report changes relevant to the
abstracted execution of the GBVL (that the designer provided in Glide specif
cation), so that the changes in the executing program are communicated back
to the interface. (Howeveabstract execution of programs, based on only the
GBVL Glide execution semantics, is possible, and is described below).

Programming Environment Use

In order for a user to program in the GBVL (Petri, in this case), the
Glider-generated programming environment is executed, causing an interac-
tive graphical user interface to appear on the screen ready for user interaction
(5. The user can then create and manipulate Petri language programs through
the editing commands that the designer spstifThese commands update the
underlying Program Instance Network (PIN) that represents the program. The
different parts of the program are visible through views of parts of the PIN that
the designer spedgd as Glide queries. When the user has completed editing a
Petri program(®, a representation of the program appropriate for the Petri
compiler is extracted from the PIN and is passed to the compiler to generate an
executable of the progra(? . This executable is run, having been instrument-
ed with reporting functions. These functions are invoked as the program exe-

112

cutes so as to relay changes of program state back to th(8PINhe changes
trigger animations which illustrate the behavior of the executing program to
the programmer). The programming environment thus provides a “closed
loop” which allows the programmer to interactively develop programs and
modify them after viewing their behavior in animations.

Internal or External Execution

The execution within the PIN is driven by a combination of the abstract
execution speci¢ation and changes to the PIN that represent the state of exe-
cuting program. The reporting functions invoked during program execution
maintain a consistent “mirroring” of the state of the executing program and the
PIN. Procedures derived from the Glide actions that specify the abstracted exe-
cution semantics are executed in response to changes in the mirrored state.
These ensure that the executing program and the program as represented in the
interface stay in step. Thigtire below illustrates this basic idea of maintain-
ing consistency between the state of execution as modeled in the PIN and the
state of execution in the real program:

PIN changes -> mm

functions reporting changes -> + + +

executing program changes -> SN N Y N NV VOV

P time

The actual program may ung@rmany low level state transitions while
the PIN only undagoes one “high level” transition (since it has an abstract
model of the program execution). Each change in the PIN is triggered by state
changes relayed by the reporting functions.

The abstract execution specétion can be used in two ways, internally
or externally:

(i) Internal Smulation - It is possible to specify the execution seman-
tics of a language completely within Glide. In this case the language designer

113

Is effectively specifying a (slow) interpretive simulator and no separate | an-
guage compiler (or instrumented executable) isrequired. The Glide execution
semantics condition-action rules specification is compiled into a set of proce-
dures that access and alter the PIN data. If the conditions on valuesin the data
of aparticular rule are met, the rule can fire and operations are invoked to up-
date valuesin the PIN data structure.

(ii) Tracking External Execution - If the execution semantics of the lan-
guage are not fully specified within Glide, the abstract execution specification
isused to track and to verify the execution of the actual program. After each
high level transition, the interface waits until the reported state
variables change as expected. If the abstract specification is non-deterministic
- at some points during execution one of several possible transitions may occur
- then the reporting functions are used to indicate which particular transition
actually occurred in thereal program (e.g.: the actual nodethat fired out of the
several enabled nodes, or which branch of a condition wastaken).

114

6.2 Design of Programming Environments and Compiler

From afunctional point of view, acomplete programming environment
system program consists of (i) the routines generated by the Glider compiler,
(i) theroutinesin the RTL, and (iii) the routines provided by the libraries of
the target language and the GUI system. This section first describes this archi-
tecture, i.e., the contents of (i), (ii), and (iii) and the interfaces between them.
It then describes the design of the compiler itself, which generates (i).

6.2.1 Programming Environment Design

From a data structures point of view, a complete programming environ-
ment system consists of (i) sets of user interface widgets which are on-screen
visual representations of instancesin the PIN (representing parts of, say, a Pet-
ri program), and (ii) the PIN itself. Front-end user events (e.g., mouse and key-
board) are translated into widget-specific events by the GUI. These eventsthen
invoke commands whose actions were defined in the Glide specification. The
actions are implemented as (generated) procedures which, descending through
several layers of abstraction, perform updatesto the PIN. The PIN updates are
then reflected back on the screen by passing updated information back to the
widgets (creation, deletion, modification of values of their properties). Back-
end execution events from arunning program also cause PIN updates:

visual changes widget updates execution reporting events
User Interface PIN Program
» »
user events PIN updates

Various components of the RTL maintain the consistency between in-
stance creation/del etion and value changesin the PIN, and the widgets and
widget property values that represent them. Changes occur first to the PIN and
then to the user interface widgets. The widgets are thus functionally dependent
on the PIN; they always reflect the current state of the PIN. The interface wid-
gets themselves are supported by adata structure which isinternally managed
by the GUI library. The management of the PIN is achieved through a set of

115

layered components in théR. There are déctively three layers of abstrac-
tion in the R'L. Each will be described in turn in Sectiéré.

6.2.2 Compiler Design
The Glider compiler consists of several sub-compilers, one dedicated

to translating each part of a Glide spéxtion, as is illustrated in Figui@ 2,
an expanded view of the lower left of FigLﬁél@. Each sub-compiler trans-
lates its particular part of a specHtion by creating an abstract syntax tree

(AST) for it and then generating code from the AST

A Glide Specification

Glider Compiler

Action Specifications

Glide Grammar

Specifications
1.Class Generatof| 2. Queries 3. Actions
Sub-compiler Sub-compiler Sub-compiler

Execution
Procedures

Editing
Procedures

Shape
Verification
Procedures

Class
Definitions

Animation

Procedures

I Standard Language CompiIIr
Glider
Y RTL
I Linker I

Figure 6-2 Detailed view *

of Glider Compilation Executable

116

The most significant part of the sub-compilers are their code genera-
tors. All the code generators share a common object-oriented design. Each
AST iscomposed of aset of AST nodes which are objects created from class
definitions which encapsul ate the semantics of Glide language constructs.
These AST node class definitions contain methods for computing variable
bindings, semantic checks, symbol table manipulation and access, and pro-
gram templ ates used in the generation of source code associated with the par-
ticular Glide language construct (Figure 6-3). Depending on the particular sub-
compiler, the AST may betraversed (passed) one or more times, invoking spe-
cific methods from the classes during each pass. Each AST node class contains
methods which may beinvoked for the particular pass.

Root
CodeTemplate:
BindMethod:
AS| nodeclassA A S| nNode class b
CodeTemplate: “for<vi>in...” CodeTemplate: "while<v3>...”
BindM ethod:procedure bindvi() BindM ethod:procedure bindv3()
Figure 6-3 Object-Oriented Compiler Design

Using an object-oriented design for a compiler is becoming more common
with the widespread availability of object-oriented programming languages
(OOPLSs) such as C++ (e.g., [New94]). Thismodular design has several bene-
fits. The standard benefit of programs written in an object-oriented manner,
that they are more easily modified and extended, makes changing and extend-
ing the Glide language simpler. The design also allows the generator to be
more easily retargetable. It makesit possibleto create executables which are
written in new languages and/or use new GUI libraries, by just modifying the
code templates stored in the AST node class definitions, and porting the RTL
to the new language.

117

6.3 Target Run-time Environment

In the demonstration system that was built, the Glider compiler gener-
ates programs in the interpreted language Tcl and the Glider RTL consists of
programsimplemented in acombination of C and Tcl and they use the GUI Li-
brary Tk [Oust94]. Though the demonstration system has been implemented to
target this particular substrate, the compiler is designed, as has just been de-
scribed, to allow easy retargeting to other substrates (e.g., C/C++/Motif). Itis
possible to target both compiled and interpreted languages. In the former case,
source code that is generated is further compiled and linked asisillustrated at
the bottom of Figure 6-2. The latter case is more simple since no secondary
compilation is needed; the source code generated by the Glider compileris
simply concatenated with the RTL source and fed to theinterpreter at run-time.
The example segments of generated code and the algorithms listed in follow-
ing sections are given in a simple pseudo-code, reflecting the fact that almost
any standard language/GUI library could be targeted by simple modifications
to the code generators.

Implementation Language

Tcl isan interpreted language which, in combination with its GUI wid-
get library Tk, providesahigh level target for the generator and the RTL. Tcl is
asimple high level language that provides built-in support for string and list
manipulation. Tcl also provides atight and elegant interface to its associated
GUI library Tk. Thissubstrate allows the generated programs to be small and
fairly simple. Tcl also has various object-oriented extensions, one of which,
itcl, was used as the implementation language for PINs in the demonstration
system [ITCL94]. The Tcl/Tk target environment was chosen for speed and
ease of development of the demonstration system.

GUI Libraries

GUI libraries are still undergoing rapid change, but a number of stan-
dard librariesthat are in widespread use have emerged over the last few years.
These standard libraries, such as (Motif [Mot93], Microsoft Windows[M SWin],

118

andMacintosh System 7.x) have a great deal in common. They provide similar
forms of user interaction widgets such as command menus, pop-up menus,
check boxes, type-in dialog boxes, etc.

Newer GUI libraries that are currently being developed seek to extend
the breadth of forms of interaction with new widgets, and raise the level of ab-
straction provided for programming or specifying a complete interface. The Tk
system provides a core of the common forms of widgets but it also and allows
extensions to be easily incorporated. A number of GUIs developed and de-
scribed in the research literature have included a “graph widget” extension
[PT90RDM*87,GNV88,Him89,daV93pea9]. The Appendix provides a short
summary of these extension packages. These widgets support the display of
connected objects (nodes and links)i&ént layout algorithms for graphs,
which are needed for these displays have also been the subject of extensive re-
search [GDro3)H89,ET89. A basic requirement for supporting the intercon-
nection paradigm for GBVL programming environments is good support for
such graph displays. Good support includes the ability to perform fast automat-
ic layout of nodes and links of arbitrary sizes, the display of ports, the labeling
of nodes, links and ports, support for hierarchical graphs, multiple links be-
tween the same nodes, etc. After an evaluation of available graph widgets, the
dot/dag graph display libraries were integrated into Tk for the demonstration
system GNV8g|.

The Tk library has good support for dynamically creating and modify-
ing nested widgets through the use of “frame” widgets for composing widgets
together and treating them as a unit. These nested widgets are exploited to di-
rectly refect the recursive structure of GBVL speécdtions in the Glide Gram-
mar.

119

6.4 Glider Run-time Library

The Glider RL consists of a set of components and it has a three-level
layered set of procedural abstractions for implementing these components and
supporting the compilegenerated programs. This sectiastfdescribes each
level (Sections 6.4.1-6.4.3) and then the components that are built using them
(Section6.4.4). In addition to providing a clean structuring of tie.Rthese
levels of abstraction also deé interfaces for portability - theTR can be
moved to a new run-time environment by re-implementing it at the level most
suitable for the new tget environment.

6.4.1 L evel-0: Access and Alteration of Objects

Viewed at the lowest level of abstraction, a PIN is implemented as a set
of objects dehed by classes. The class nhefions are generated from the
Glide Grammar spedifation; there are one or more classes for every Glide
production (type). The objects contain the following data:

* PIN Data: The classes contain data members corresponding to tags of the
Glider production. These members can contain either the value of a
primitive type (integerreal, etc.), a reference (id, name, pointer) to another
object, or a list of references to other objects.

* Meta-Data: The classes contain data members which steta-data about
the PIN data. This meta-data includes the names and types of the PIN data
members, whether the member represents a single item (SINGME &
collection (SET or LIST), whether the member is from a Glide alternation
(CHOICE) or part of an ordered sequence (SEQUENCE), and the number
of alternation choices and their tags. The including of meta-data in classes
is a very common practice in object-oriented systems. Some object-
oriented languages provide direct support foreig.(Smalltalk), while in
others, such as C++, it must be implemented by the prograniméne
case of Glide this information is simply a re-representation of some of the
symbol table data that was created when parsing the Glide productions. It
Is included in the classes so that it is available to the next higher level
routines which make use of it.

120

Back Pointers. The objects also contain back pointers. Back pointers
implement an inverse mapping from an object to each of the objects that
refers to the given object (contains a pointer to it). Each back pointer has
associated with it the name of the tag through which an object references
the given object. Note that more than one back pointer may have the same
tag. These back pointers are used, for example, in implementing the double
dot “uppath” Glide path expression operatoBack pointers are
automatically maintained by thelR as objects and references are created
and destroyed.

Widget Pointers. These are back pointers to widgets. Each object contains
a list of all the widgets currently displayed on the screen that represent the
object (in one or more windows). This list is used, for example, to
implement highlighting of all the widgets that represent an object when
one of the widgets representing it is selected, or for animating all the
widgets when the object is updated during execution. There is a one-to-
many mapping of objects to widgets.

Graphical Attributes: The graphical attributes provided in a Glide
specification are simply implemented as additional members of the classes.
The graphical attributes can be associated with a Glide production or with
specific tags in the production.

Since all the information used iddftened” out into data members of

the classes at this level, the following small core of procedures is all that is

needed to manipulate and access the objects

create: class — objectid
Creates an object a given class, returnglantifier for the object.

destroy: objectid —
Deletes the object associated with the object identifier

set: objectid, member, {pos-in-list}, (objectid|val|NULL) —
Sets the value of a member to be an object identifiee value of a primitv
type, or NULL. If the member contains a list, the insertion position in thé
can be specified (pos-in-list).

get: objectid, member — (objectid|objectid-list|val]|val-Iist]|NULL)
Returns the value associated with the member

Figure 6-4 Level-0 - Object Access and Alteration

121

At this level-0 the object pointersyf ecti d) are visible in the sense discussed
in Chapter 5. This interface is imperative; the procedures have the tede ef
of assigning values to members or of creating or deleting otﬁects.

The class hierarchy is in essenta fThough there is a “root” class
from which all the generated classes are derived, it only serves to simplify im-
plementation. The reason thea inheritance structuring of OOPLs is not used
is because the Glide language uses an aggregation approach to expressing com-
monality (see SectioA.1) rather than a taxonomic one. Theyt&robject-ori-
ented language is being exploited simply as a high level implementation
language providing encapsulation, polymorphism, and managingobject
referencing, not for inheritance.

6.4.2 Level-1: Access and Alteration to the PIN

At the next level up from the basic procedures just described igex lar
collection of more spead procedures for accessing and altering the data struc-
ture at the higher PIN level of abstraction. Tdhasses andobjects of level-0

1 “{}" indicates optional aguments and “(|)” indicates alternative types of
arguments.

2 Depending on the implementation OOPL, the objectids may be tympddointers
in C++). In this case the four procedures should viewed as being polymorphic, and
instantiated for each combination of input and output object types.

122

are used to implement tlgpes andinstances at level-1 respectivelylhe pro-
cedures that define level-1 are:

1)

gCol | ectionType:instance tag— CHO CE | SI NGLETON |
SET | LIST | SEQUENCE

gTagChoi ces: i nstance tag — tag-list

gTagChoi ce: i nstance tag — tag

gTagsAl |l :instance —» tag-1list

@)

gCet Type: i nstance —» type

gl sOf Type: i nstance type — bool ean

gl sl nstance: i nstance — bool ean

gl sSanel nst ance: i nstance i nstance — bool ean

(©)

gMake: type — instance

gDestroy:instance — instance

gConnect:instance tag i nstance {pos} —» PIN

gDi sconnect:instance tag i nstance —» PIN

C)

gConnect edTo: i nstance tag — instance | instance-list

gConnect edBy: i nstance tag — instance-li st

gl sConnect edTo: i nstance tag i nstance — bool ean

(5

gAddConnect edBy: i nstance tag instance —» PIN

gRemConnect edBy: i nstance tag instance - PIN

(6)

gGAGet Val ue: i nstance {tag} ga — ga-value

gGASet Val ue: i nstance {tag} ga ga-value — PIN

Figure 6-5 Level-1 - PIN Acces and Alteration Procedures

Set (1) are used to access tag information about a given instance. Set
(2) are used to access information about instances themselves - such as which
type they are an instance of. Set (3) are used to alter the PIN by creating or de-
leting an instance of a type, or by associating (connecting) an instance with the
tag in another instance. The procedures (4) provide information on how in-
stances are interconnected. This includegth@nect edBy procedure which
returns the list of instances that have the given instance has as a component -
this procedure is implemented via the back pointers of level-0. The two proce-
dures (5) are used to implement the automatic maintenance of the “back point-
ers” when instances get connected and disconnected. Procedures (6) return and

123

change the values of graphical attributes. These attributes may be associated
with an instance or more specifically with a tag in an instance.

Theset procedure of level-0 is used to implement the “connect/discon-
nect” semantics of altering the PIN. Associating a value of a primitive type
with a tag is viewed, at this level, esnnecting it rather tharassigning it. The
only difference between instances of composite types and of primitive types is
that after completely disconnecting an instance of a composite type, it can sub-
sequently destroyed, but a primitive value is only connectedearplace and
cannot be shared, making the need to “destroy” it siymar$. Procedures of
this level which change the PIN can be viewed as functions which map
PIN — PIN; a modifcation to any single instance is a change to the value of the
PIN as a whole. The functions infe€t defne an abstract data type spé&af
tion for the semantics of a set of PINs as a graph type.

The following diagram of a typical instance of a typical PIN, similar to
the figures used in earlier chapters, illustrates the level-0 vs. level-1 view

124

- Pexpro85
P00 NMTK | s PMTNO24) PexprA026
Pterm-086
R “FALSE"
NO P Rp020 Taobiy Pterm-A030
Pfactor087
Proc PfactorB032
NmT Patom-088
P08 ST 0 Ta Sy cpecs N Palom-A034
N 076 Rp ngZ'l s
I
PcmNet003
T
NmTK
podg | 1 | m 2 “Svard” ‘325"
Rp %22
o741 No8o. POLONMTK .,
Rp Rp023
Pn L Nm
“alpha” Nm
7ol " 3t:> WA 1T, 5> "gammal
b7 PMTNO73
P¢mSto01 e N Ta
Nm
- » T TN
Nm, “peth’ btTN040 Pcmiet05T PmTNO73
TO
Ta
NO7 | N
Sv Ta052 pj
Biv
Pr FALSE”
Lo12 M St
Lp
Svgpssva L013 Lp ol [U
TRUE" L014
4Svar2” '-tL L 01 b
“FALSE” 25 Lp X /Lt L018
SvQPSsvar3” 6 P
“33.5"
SvQpésvarg”
“38.2" 0
Figure 6-6 Example Program Instance Network (PIN)

This is part of an example of the PIN of a PCM program; one which contains 5
Nodes (three place and two transition nodes) and 3 links at the top level, and a
subgraph of the (bottom right) with 3 nodes and 2 links. The instances (empty
circles) are labelled with their objectids or their values (if they are of a primi-
tive type), links are labeled with the relevant tags (bold). Full circles are used
to indicate tags which contains sets or lists. The two dangling trees (top right

125

and bottom right) are the syntax trees of node attributes. At level-1 the objec-
tids neither are not visible or accessible, and altering the PIN is equivalent to
creating and deleting edges and filled circles in the diagram.

The set of procedures of level-1 also represent an interface of portabili-
ty; if an OOPL is expressive enough to directly support the implementation of
these procedure.g., an OOPL that provides meta-data automatically) then
this would obviate the need for implementing level-0. In the Gliddr & the
demonstration system all these routines were implemented as calls to the level-
0 primitives with parameters bound appropriately

6.4.3 Level-2: Path Expressions

Finally, the next higher level of abstraction is one providing the path ex-
pression evaluation functions:

Eval Pat hExpr: i nstance pathexpr — (instance|instance-list)

Eval St ar Pat hExpr : i nstance starpathexpr — PINTree

These are implemented using the procedures of lew&lallpat hExpr IS used

to in both queries and actiors,al st ar Pat hExpr iS used in queries. Path ex-
pressions are the expressions of the form B. C, wherex is a variable whose
value is an instance of some type, and, C are, names of tags of successive
complex types. Star path expressions are the similar forms of expression which
can also include stars#(") to indicate all tags of the corresponding typeal -

Pat hExpr returns a single instance orlatflist of instanceseval st ar Pat hExpr
returns a treep{ NTree) corresponding to all the instances encountered in tra-
versing the PIN graph when evaluating the expression. Algorithms for these
two functions are shown beloWhe pseudo-code description below is meant
to show the essential simple recursive structure of the algorithms. The actual
implemented algorithms are somewhat more complicated - they include the
checks for avoiding looping in the graph and include the ability to evaluate re-
cursion in path expressionsd” . .)").

126

Path Expression Algorithm

Level-1 and Level-2 procedures are in bold, the functionsappend cre-

procedure Eval Pat hExpr (instance pathexpr) {

dottype : = Dot Type(pat hexpr)
headt ag : = Pat hExpr HeadTag(pat hexpr)
tail expr : = Pat hExpr Tail (pat hexpr)
returnlist := enpty
if (headtag is enpty) then // term nation: end of path expr, just return value itself
returnlist :=instance
el se
case dottype in
DOUBLEDOT /1 go up, iterate and collect over each parent
{ foreach el emin gConnect edBy(instance, headt ag)
returnlist := append(returnlist, (Eval Pat hExpr (el emtail expr)))
endf or }
S| NGLEDOT /1 go down
{ case gColl ecti onType(instance, headtag) in
SI NGLETON /'l a single element, return the el ement
{ returnlist := Eval Pat hExpr (gConnect edBy(i nst ance, headtag), tail expr)}
LI ST, SET, or SEQUENCE /]l iterate and col | ect over |ist
{ foreach el emin gConnectedTo(i nstance, headt ag)
returnlist := append(returnlist, (Eval Pat hExpr (el emtailexpr)))
endfor }
CHO CE /1 head tag is a single elenent, return the el enent
{ choice : = gTagChoi ce(i nstance, headt ag)
returnlist := Eval Pat hExpr (gConnect edTo(i nstance, choi ce), tail expr)}
endcase
endcase
endi f

return returnlist }

Figure 6-7 Recursive Path Expression Evaluator

atesalist composed of itsinputs.

Tree Path Expression Algorithm

The algorithm to evaluate tree path expressionsis similar, but instead
of returning alist of instances, atree structure (pPiI NTr ee) composed of instanc-
esisreturned. The recursive construction of the tree expandsinto branches if

127

either (i) a tag containing a set or list is encountered, or (i) &“encoun-

tered in descending the star path expression. The funetiene creates a tree
node composed of its inputs.

procedur e Eval St ar Expr Tr ee (instance,pathexpr) {

headtag := PathExprHeadTag(pathexpr)
tailexpr := PathExprTail(pathexpr)

returnnode := empty

i f (gl slnstance(instance)istrue and pathexpr is not empty)

then
i f (headtagisa“*”)

t hen /I star => expand path into tree and fol |l ow each branch

foreachval in gTagsAll (instance)

nodelist := append(nodelist,

Eval St ar Expr Tr ee(instance,tailexpr))
endf or

returnnode := mknode(instance,nodelist)

el se

1

no star => keep goi ng down the path
tagval :=

gConnect edTo(instance,headtag)

case gCol | ecti onType(instance,headtag)
SINGLETON

in
/'l head tag is a single element, return the el ement

{returnnode := mknode(instance, gEval St ar Expr Tr ee(tagval,tailexpr))) }

LIST, SET, or SEQUENCE

/1 head tag contains a list,

collect results
{ foreachval intagval

nodelist := append(nodelist,

Eval St ar Expr Tr ee(instance,tailexpr))
endf or

returnnode := mknode(instance,nodelist)) }

CHOICE /1 head tag is a single elenent,
gTagChoi ce(instance,headtag)

returnnode := mknode(instance,

(

endcase

return the el enent
{choice :=

Eval St ar Expr Tr ee(gConnect edTo(instance,choice),tailexpr))}

endi f

el se /I term nation:

end of the path expr,just return the i nstance or value itself
{returnnode := mknode(instance)}

endi f

r et ur nreturnnode }

Figure 6-8 Recursive Tee Expression Evaluator

This completes the description of the three levels of abstraction of pro-
cedures for accessing and manipulating the PIN. The functions provided by the
last two levels are used both in implementing thié Romponents, which will

128

be described in the following Secti@4.4, and they are also used in the pro-
grams created by the Glider sub-compilers, described in Se&6on

6.4.4 Run-timeLibrary Components

This section describeslR components that perform specifun-time
tasks. They are: thdisplay trees interpreter, themain frame, theselection
manager, theobject-widget mapping manager andexecution and animation man-
ager componentsAll are built on the PIN access and alteration procedures just
described.

Display Trees Interpreter

Glide queries evaluate to a set of sub-trees of the ¢\ ub-trees of
the PCM PIN of Figuré-6). After a query is evaluated, the resulting trees are
augmented to incorporate graphical attribute information in order to create a
more complex tree data structure called a Glitigplay tree. These display
trees are passed to a GlidéFlRcomponent, theisplay tree interpreter. This
component traverses a display tree and invokes the appropriate GUI library
widget creation calls, with the appropriate bindings of graphical properties, in
order to render a set of widgets on the screen. Such a process is similar to the
use of a “display list” data structure in some 3D graphics systems such as
PHIGS.

A display node of a display tree is a complex nested data structure con-
taining bothwhat is to be displayed arttbw (graphically) it is to be displayed.
The following diagram shows the structure of a node that represents an in-
stance which contains a set of component instances:

TAG N

TYPE Node

COLLTYPE SET

VALUE DDTV COMPOS/GA DDTV SIMPLE/GA | DDTV COMPOS/GA

OBJECTID P0OO1 OBJECTID P002 OBJECTID P003

COMPS Cc2 C3 COMPS COMPS C4 | C5 | C6

129

In this example the instance contains a set of three component instemages (
P00z P003; in Other cases there may be only a single instance (in whichcoase,
LTYPE = SINGLEDN). Each component instance may itself be composite (next level
down in the tree) or simple (a leaf). The display directive (DDTi#gfindi-

cates whether each component is composite or simple, and it also contains
graphical attributes and values (which may themselves be nested). The values
ci....ceare nodes and the next level down in the display tree - they have the
same structure as the whole diagram.

At the top level, the task of the display tree interpreter is to recursively
traverse down the display tree containing such these complex nodes, examine
the display directives embedded in the nodes and then perfdrspatch,
based on the directives, to routines specialized to display according to the par-
ticular directives, passing to it the branch of the tree at that level. For example,
if a tree contains the syntax tree of, saiy arithmetic expression, the display
tree interpreter will invoke a dispatch routimasplayTextTree, which
will collect all the leaves of the expression syntax tree and display them as a
string of text in a text dialog box widget. This design for creating views makes
the display tree interpreter extensible - new specialized dispatch routines can
be added. The dispatch routines implemented in the demonstration system are:

» DisplayConnected - Provides a classical “graph” display of nodes and
links.
» DisplayList - Displays the instances as a horizontal.row

* DisplayText - Displays a value of a primitive type in a text dialog box

* DisplayTextTree - “Unparses” a syntax tree and displays it as a string
of text. This allows the string to be edited as piece of text.

The routines may recursively invoke the display tree interpreter again - for ex-

ample theDisplayList routine might display a row of objects, each of

which is a graph.

130

Main Frame

When anew interfaceis started, a simple menu bar which provides ac-
cess to commands appears. Some of these commands are generic to all interfac-
es(e.g., loading and saving program files, controlling speed of animation, etc.)
and the others - those generated from their Glide specification - are specific to
the particular GBVL. The Glider RTL component main frame contains all the
procedures for the generic commands - since they do not need to be generated.
The main frame window has the following appearance.

File Edit View Animate Help

File: |

A logo bitmap identifying the particular GBVL isdisplayed on the left of the
main frame.

Selection M anager

The Glider RTL selection manager component handles maintaining the
set of instances selected by the user and their consumption by commandsin-
voked by the user. This modul e al so handles the highlighting of widgetsto indi-
cate which instances have been selected. The selection manager implements a
stack of instances that records which instances the user has selected by click-
ing on the widgets that represent them. Commands (viewing or editing) can
then consume (pop) one or more items and use them as arguments when they
areinvoked:

gPushOnSel ecti onStack: instance — stack
Pushes instance on stack.

gPopOF f Sel ecti onStack: instance — stack, instance
Pops instance off the stack.

gFet chQut Of Sel ecti onSt ack: type — stack, instance
Extracts instance of given type out of the stack.

131

Object-Widget M apping Manager

A separate Glider component maintains the one-many mapping be-
tween instances and widgets (the widget back pointers). The mapping is updat-
ed as instances are created or deleted and widgets representing them are
created or deleted from the screen. Entries are generally added during the exe-
cution of the display tree interpreter, as widgets representing instances in the
display trees appear on the screen, and are generally deleted when the user
closes and destroys awindow full of widgets:

Screen Program Instance Network

ViewA ViewB =

- N
- N
=g T \ O
i |+ - L _
- | I -ﬁo
_
ViewC WidgetC6 P
Ve
I:II:II:II:DQ\ ey A
Figure 6-9 Mapping between screen widgets and PIN instances

Execution and Animation M anager

The RTL execution and animation manager component controls the ex-
ecution of programs and the animations they cause. The component contains
the procedures to select and invoke the execution actions, to read in PIN up-
date events from the reporting functions, and to invoke the animation proce-
dures which update the graphical appearancein response to changesin the PIN.

This component allows the user, through the menu in the main frame
window, to select which of the animations provided by the designer are to be
enabled.

The speed with which a program is executed and animated can be con-
trolled by the user. The speed control isin two parts: The user can choose the

132

time delay between the application of successive abstract execution actions
and can also choose how fast the animation themselves run. Animation con-
sists of values of graphical attributes being updated to reflect updatesin execu-
tion state, and of animation functions which execute when the execution is
(stopped) in a particular state. The animation functions have their own speed
of running (e.g,. rate of aflashing animation function) which isindependent of
the speed of the execution of the program itself (beit internal or tracking exter-
nal).

133

6.5 Glider Compiler Components

This section describes how the Glide spieaifions are translated into
programs. The generated programs make use offthg@FRcedures of level-1
and level-2 and they are invoked through tAd.Rnanager components just
described. The Glide productions are translated into classes whiole tied
PIN. The queries, actions (editing, execution, and animation), and the shape
predicates are translated into procedures which access and alter the PIN.
Though parts of a Glide speici&tion are compiled by separate sub-compilers
(as was illustrated in Figur@-2) the sub-compilers do share information
through using a single symbol table. The graphical attributes part of a Glide
specifcation does not need to be compiled. The attributes and their values are
simply placed into the appropriate classidi¢gions. During execution they are
read from the objects into the display trees and passed into the display system
for interpretation.

Since the Glider compiler produces code in a high level language and
the Glider R'L provides and even higher level API, the “amount” of transla-
tion required to get from the Glide specétion to procedural code is relative-
ly small. For this reason, the compilation algorithms are relatively simple and
straightforward. This section provides an outline of the algorithm used in each
of the three sub-compilers, tlskass generator, thequeries compiler, theac-
tions compiler, and examples of small sample translations.

6.5.1 Class Generator

The Glide grammar part of a specdtion is translated into class def
tions for the objects that implement the PIN data structure clidss gener a-
tor sub-compiler parses a grammar speation and creates an AST which is
then traversed to create classidgfons in the OOPL. In the demonstration
system, the object-oriented extension of tcl, itcl, was used gstt@OPL, but
an example of generated C++ code is also shown in this section, for compari-
son. The class generator component also generates a symbol table of the names

134

of all the productions and tags - this is subsequently used for variable type
checking in the query and action sub-compilers.

Class Generation Algorithm

Class generation consists of the following steps:

. Since providing tag names for components in a Glide grammar specification
is optional, any missing tags are first filled in with unique names. They are
generated by the compiler and added into the AIIS is so that names for

all tags are present for the following generation steps.

. One class definition is created for each production in the Glide grammar
Data members are defined for each component of the production.

. Members for the additional properties described earlier (meta-data, back
pointers, widget pointers, graphical attributes) of each member are added to
the class definition.

. For productions containing sequences (component combined with
whitespace “ ”) inside alternations, additional class definitions are created;
one for each sequence. Each of these extra classes contains a PIN data
member for each component in the sequence.

. A predefined classRoot ” of which all the generated class are subclasses is
added to complete the class definitions file.

Class Generation Example

The following shows a simple example. Three productions from the

Glide Grammar of the PCM GBVL are:

PCMStructure ==
PN:PCMNet .
SV:StateVariable** ;
PCMNet ==
N:Node** .
L:Link** ;
Node ==
NT:(P:PlaceNode | T:TransNode) .
l:Link**
O:Link** ;
Pexpr ==
Pe:(:Pterm | :(Pexpr ‘or’ Pterm));

135

These productions are translated into the following six classes in itcl:

itcl_class PCMStructure { itcl _class Pexpr{
i nherit Root i nherit Root
constructor {conf ig}{} constructor {conf ig}{}
pr ot ect ed Tags-List {PN SV} pr ot ect ed Tags-List Pe
pr ot ect ed PN-type “SINGLETON PCMNet” pr ot ect ed Pe-type “CHOICE CO C1”
pr ot ect ed SV-type “SET StateVariable” pr ot ect ed CO-type “SINGLETON
public PN Pterm”
public SV prot ect ed Cl-type Pexpr-C1
} publ i ¢ Pe-choice
public CO
itcl_class PCMNet{ public C1
i nherit Root }
constructor {conf ig}{}
prot ect ed Tags-List {N L} itcl _class Pexpr-Cl{
pr ot ect ed N-type “SET Node” i nherit Root
pr ot ect ed L-type “SET Link” constructor {conf ig}{}
public N pr ot ect ed Tags-List {SO S1 S2}
publiclL prot ect ed SO-type “SINGLETON Pexpr”
} pr ot ect ed Sil-type “SINGLETON OR”
prot ect ed S2-type “SINGLETON Pterm”
itcl_class Node { public SO
i nherit Root public S1“or”
constructor {conf ig}{} public S2
pr ot ect ed Tags-List {NT | O} }
pr ot ect ed NT-type “CHOICE P T”
pr ot ect ed P-type “SINGLETON PlaceNode” itcl _class Root{
pr ot ect ed T-type “SINGLETON TransNode” constructor {conf ig}{}
pr ot ect ed I-type “SET Link” publ i ¢ GraphicAttribs
pr ot ect ed O-type “SET Link” }
publ i ¢ NT-choice
public P
publicT
public |
public O
}

The class and member names with numbsrsdi, etc.) are the system-gener-

ated names. The protected members are the meta-data, and the public members
are the PIN and graphical attribute data. By usintedéint templates and dif-
ferent AST traversals, the compiler can create equivalent C++ class$-def
tions. The equivalent C++ class definitions for this example are:

136

cl ass PCMStructure :
private:
enummTags {PN, SV},
const int m_NumTags = 2;
TagSort m_PN_Sort = SINGLETON ;
TagClass m_PN_type = PCMNet;
TagSort m_SV_type = SET;
TagClass m_SV_type = StateVariable;
public:
PetriNet* PN;
StateVariable** SV;

publ i c Root {

b
cl ass PCMNet: public Root{
private:

enummTags {N, L};

const intm_NumTags =2 ;

TagSort m_N_Sort = SET ;

TagClass m_N_type = Node ;

TagSort m_L_Sort = SET,;

TagClass m_L_type = StateVariable;
publi c:
Node** N ;
Link** L ;
h

/1 ptr to list of ptrs

cl ass Node :
private:
enummTags {NT, I, O};
const intm_NumTags =3 ;
TagSort m_NT_Sort = CHOICE ;
mTags m_NT_Choices[2] = {P, T};
mTags m_NT_Choice;
TagClass m_P_type = PlaceNode;
TagSort m_P_Sort = SINGLETON;
TagClass m_T_type = TransNode ;
TagSort m_T_Sort = SINGLETON;
TagSort m_|_Sort = SET,;
TagClass m_|_type = Link;
TagSort m_O_Sort = SET;
TagClass m_O_type = Link;
public:
PlaceNode* P;
TransNode* T;
Link* I;
Link* O;
GraphicAttribsPtr GA;

publ i ¢ Root {

cl ass Pexpr: publ i ¢ Root {
private:
enummTags {Pe CO C1};
const int m_NumTags = 1;
TagSort m_Pe_Sort = CHOICE ;
mTags m_Pe_Choices[2] = {CO, C1};
mTags m_Pe_Choice;
TagClass m_CO_type = Pterm;
TagSort m_CO_Sort = SINGLETON;
TagClass m_C1_type = Pexpr-C1;
TagSort m_C1_Sort = SEQUENCE;
public:
Pterm* CO;
Pexpr-C1* C1,
h
cl ass Pexpr-Cl: publ i ¢ Root{
private:
enummTags {S0 S1 S2},
const intm_NumTags = 3;
TagClass m_SO0_type = Pexpr;
TagSort m_SO_Sort = SINGLETON;
TagClass m_S1_type = String;
TagSort m_S1_Sort = SINGLETON;
TagClass m_S2_type = Pterm;
TagSort m_S2_Sort = SINGLETON;
public:
Pexpr* SO;
char* S1 ="‘or”";
Pterm* S2;

%

cl ass Root {
public:
GraphicAttribsPtr GA;
h
PCMNet

enumTagClass { PCMStructure

Node Pexpr Pexpr-C1};
enumTagSort { SINGLETON LIST
SET CHOICE SEQUENCE},

typedef struct
G aphi cal Attri bTree *GraphicAttribsPtr

typedef struct GraphicalAttribTree {
char* Attribute;
GraphicAttribsPtr
char* value_primitive;
GraphicAttribsPtr next;

} GraphicalAttribs;

value_composite;

Here the private members (prefixed with m_) store the meta-data. The
itcl classes are alittle more concise than the C++ ones becauseitcl, being an in-

137

terpreted language, allows some meta-data to be derived. Hence they do not
have to be explicitly dafed in separate membeusd., the number of choices
associated with aHo ce tag can be computed from the length of the tcl list).
Also, itcl is a weakly-typed language so that typing declarations for members
and the auxiliary enums and structs are not needed.

6.5.2 Graph Language Queries Translation

Thequeries sub-compiler analyzes the queries in the spafion and
produces a parameterized procedure for each one that computes thiedpecif
collection of PIN trees. The basic query evaluation algorithm is to evaluate the
tree expressions in a query in the context of all the desired combinations of in-
put parameter values and quaitif variable values in the queriyhe queries
sub-compiler generates a procedure for each query; the body of the procedure
implements this evaluation.

Queries Compilation Algorithm

The queries compilation algorithm consists of the following steps:

1. Create a procedure header with a new name for the query procedure. Open a
new procedure definition.

2. Insert statements for consuming from the selection stack, and binding to
local variables, values for the input parameters of the query

3. If there is awhere clause in the query then insert, for each quantification
expression, statements for evaluating the quantification and for collecting
all the results in a list of lists of values.

4. Insert a statement computiaj combinations of values of the input vari-
ables of step 2 and quantified variables of step 3.

5. If there is asuch-that clause in the query then insert a-foop that filters
the list of combinations of values computed in 4 with the test expression in
the such-that clause. This loop removes all elements (combinations of val-
ues) for which the test does not hold.

138

6. Insert a sequence of statements for each tree path expression in the query
return-clause. Each sequence contains a-foop over the combinations in
the filtered list. Insert statements in the body of thedop that:

- Evaluate the tree path expression for the particular combination of
values.

- Call a function that collects into the list of trees (forest) collected so
far the new PIN tree, mging the tree if it overlaps (has a common
stem).

7. Insert code to return the forest and close procedure definition.

In addition to the basic algorithm code, additional bookkeeping state-
ments are added as wédlg., to register the fact that when the procedure is in-
voked with a particular set of input values that the corresponding view exists
on the screen). The forest returned by the query procedure is subsequently aug-
mented with graphical attribute values and display directive information and
passed to the display tree interprefére execution of the display tree inter-
preter produces the view on the screen.

Query Compilation Example

The following example illustrates this translation with a simple query
for the PCM GBVL. The input query:

ShowBusyPl aces(ps: PCMSt ruct ure) == { x.Nmrlk, x.Name

wher e x nenber-of ps.PN. N P

sucht hat x. NmTk > 3 }

139

istranslated into the following procedure:

procedure queryproc_ShowBusy () {

PINForest:=empty /1 local variable in whichPINtrees are collected
/1 (1) get input instances fromthe selection stack
ps_inst:= gFetchOutOfSelectionStack(“ PCMStructure”)
local_vars := append(local_vars,”ps”)
local_vars_values := append(local_vars_values,ps_inst)
/'l (2) generate sets of values from where-clause quantification expressions
x_gvalset:= gEvalPathExpr (ps_inst,”.PN.N.P")
local_vars := append(local_vars,”x")
local_vars_values := append(local_vars_values,x_gvalset)
/1 (3) conpute a list of all the conbinations of |ocal variable val ues
combinations_list:= gCrossProduct (local_vars_values)
/1 (4) renpve all conbinations that fail the restriction test

foreach comb in combinations_list

testexprval := gBindAndEval (local_vars,comb,”gEvalPathExpr(x,\".NmTk\") >3")
if (testexprval) then
f iltered_combinations := append(f iltered_combinations,combination}
endif
endfor
combinations_list:=f iltered_combinations

/1 (5) collect and merge tree expression evaluationin return |ist
foreach comb in combinations_list
idx := search(local_vars,”x")

PINForest:= gMergeTF (PINForest, gGetStarExprTree (index(comb,idx),”.NmTk"))
endfor

foreach comb in combinations_list
idx :=search(local_vars,”x”)

PINForest:= gMergeTF (PINForest, gGetStarExprTree (index(comb,idx),”.Name”))
endfor

return PINForest}

Figure 6-10 Generated Query Procedure

append COMpOSeES its argumentsinto alist. The routines gMergeTF, gCrossProd-
uct , and gBindAndEval are support functions provided by the RTL. gBindAndE-
val takesasinput alist of variables, alist of value bindingsfor the variables,
and a boolean expression; it returns the value of the expression with the vari-
ables bound to the values. The function gmergeTF creates the collection of trees
(PINForest) by merging in new trees.

140

6.5.3 Actions Translation

This section describes the actions sub-compiler. This compiler is used
for the remaining parts of a Glide specification: the editing and execution ac-
tions, the shape predicates, and the animations. These parts all contain action
expressions that are translated into sequences of statements that update the
PIN. An action expression is either simple or a conditional action expression.
The latter is composed of a boolean test expression and action expressions
guarded by the test. The boolean expression can contain access expressions
which accessvaluesinthe PIN (same as such-that clausein aquery).

All expressions are translated to appropriate calls of level-1 procedures
and of the path expression evaluation procedure of level-2. After actionsare in-
voked (either by the user or the system itself), the changes to the PIN caused
by the actions are immediately propagated to any dependent views on the
screen (i.e., ones that contain widgets representing the relevant parts of the
PIN). The basic process of translating the different categories (editing, execu-
tion, shape predicates, and animations) is the same, with some variation for
each particular category. In this section, examples of translation in each catego-
ry are shown, followed by a description of the specific variation of the general
algorithm.

Editing Actions Translation

The editing actions specify the set of interactive operations available to
the user to create and modify programs. Input parameter bindings are obtained
viathe selection stack in the same ways as with queries. Editing actions are
usually just a conjunction of action expressions, though conditional actions
can, and are, sometimes used.

141

Editing Action Translation Example

The following editing action spedati&ation is one which just adds a tran-

sition node to a PCM PIN, unconnected to other nodes and links:
AddTransNode(pm:PCMNet) == {

t1 =new(TransNode) O
nl=new(Node)]
nl.T'=t1 o

pm.N'=pm.N 0Onl }

It is translated into the following procedure:
pr ocedur e editingaction_AddTransNode {}{

I get input argunents fromthe sel ection stack
pm_inst:= gFet chQut Of Sel ecti onSt ack("PCMNet”)

1 performactions

tl_inst:= gMake("TransNode”);
nl_inst:= gMake("Node”);
gConnect(nl_inst,"T", gEval Pat hExpr (t1_inst,".”)

gConnect(pm_inst,”"N”,n1_inst)

gUpdat eVi ews()

Though the source and tgat forms are supacially similar, their se-
mantic interpretations are quite tifent. As has already been discussed in
Section4.4.1, the Glide specdation is a declarative statement relating the
PIN before and after the editing event - hence the ordering of the conjoined ex-
pressions has no sigiénce. On the other hand, theg@rcode consists of or-
dered sequential imperative statements. The compiler re-orders the
conjunction to satisfy the data dependencies implied by the action expressions
before generating the sequential code. Through this analysis the compiler also
catches semantic errors, such as associating a prime-equals expression with
the same PIN place.g.,n1.7=t1 on1.T=t2).

Editing Actions Translation Algorithm

1. In the AST perform dependency re-ordering of action expressions.

2. Open a new editing procedure definition.

142

3. Insert code to bind input parameters to values on the selection stack. (same
as queries).

4. [Recursive step] For each action expression:

- If the action expression is simple, insert appropriate level-2 connect
statements.

- If the action expression is a conditional expression, insert an
evaluation of the boolean expression in the condition-part of an if-
statement and open the then-part of the statement. Repeat this step on
actions inside conditional action expression, inserting the results. Close
the then-part of the statement.

5. Insert call to a procedure to update views and then close procedure defini-
tion.

The boolean expressions are evaluated in the same way as the se€ts-in
that clauses in queries.

Execution Actions Translation

Execution actions are similar to editing actions, but there are the follow-
ing differences:

« The execution actions do not take useginated input parameter
bindings. Instead, they are provided with the value of the top level type of
the GBVL (e.g., Pcvst ruct ure, Or Petri Net) through which any part of the
whole PIN can be addressed via the appropriate path expression.

e Conditional actions can be existentially quantified over sets or lists in the
PIN. In this case the code generated attempts to find a value in the set or list
that satisfies the boolean expression and, if it succeeds, executes the
guarded actions for the given value.

e Conditional actions can be universally quantified over sets or lists in the
PIN. In this case the actions are executed for those values that satisfy the
boolean expression.

* Simple action expressions can be universally quantified over sets or lists in
the PIN. In this case the action expressions are executed for all values of
quantified variables.

143

The quantiications are evaluated by introducing-loops over the values of
the variables and recording the boolean value of the quantified expression.

Execution Action Translation Example

The following two execution actions for Petri nets:
Enable(pn:PetriNet) =={
Ot:pn.N.T (Op:t..NT.1.Lp (p.NmTk >0) 0O t.Ste’=ENABLED)}

Fire(pn:PetriNet) ==
(1:pn.N.T (t.Ste = ENABLED O
t.Ste’=FIRING O
Op:t..NT.O.Lp (p.NmTK’ = p.NmTk + 1))}

144

aretranslated into the following two procedures:

procedure exec_action_petri_enable {

pn_inst:= gGet I nst ance(“PetriNet”)

/'l iterate over set of forall quantification
foreacht_inst i n gEval Pat hExpr (pn_inst,”.N.T”")

/'l evaluate and iterate over existential quantification
FAFlag :=TRUE

foreachp_inst in gEval Pat hExpr (t_inst,”..NT.l.Lp")

i f (gBi ndAndEval (p,p_inst,”"gEvalPathExpr(p,\".NmTk\") >0")) t hen
FAFlag := FALSE
endi f
endf or

i f (FAFlag) then
gConnect (gEval Pat hExpr (t_inst,”.”),”Ste”,ENABLED)

endi f
endf or
}
procedur e exec_action_petri_f ire{
pn_inst:= gCet | nst ance("PetriNet”)

/1 eval uate there exists quantification
TEFlag:=FALSE

foreacht_inst i n gEval Pat hExpr (pn_inst,”.N.T")
if (gli_Eval Pat hExpr (t_inst,”.Ste”)==ENABLED) t hen
candidates := append(candidates,t_inst)
TEFlag :=TRUE
endi f
endf or
if (TEFlag) then
chosen_t_inst:= gPi ckOne(candidates)
gConnect (gEval Pat hExpr (chosen_t_inst,”."),”Ste”,FIRING)
foreachp_inst in gEval Pat hExpr (chosen_t_inst,”..NT.O.Lp")

gConnect (gEval Pat hExpr (p_inst,”.”),"NmTk”",(gEval Pat hExpr (p_inst,"NmTk")+1)
endf or

endi f

It isthese proceduresthat are selectively invoked by the execution and
animation manager according to the one of the firing regimes described in
Section 4.4.2 (for internal simulation) or according to the reporting functions
(for tracking an external execution). An existential quantification istranslated
into invoking the function gpickone , which picks at random one of the values

145

that made the test true,,of the execution is tracking, follows the choice re-
ported by the executing program.

Execution Actions Translation Algorithm
. In AST, perform dependency re-ordering on actions, check for violations.
. Open new execution procedure definition.
. Insert code to bind input parameter to top level instance.

. [Begin recursive steps]

a b~ W N P

. If there are universal quantifiers, open a-ltwop for each one. For each
action expression, insert appropriate level-2 connect statements. If the
action expression is a conditional expression, insert an evaluation of the
boolean expression in the condition-part of an if-statement and repeat this
steps from 4 on actions inside conditional action expression, inserting the
results in the then-part. Close loops.

6. If there are existential quantifiers, open alfwop for each one. These loops
try all values in the range, collecting those that satisfies the condition. Insert
code to chose one combination satisfying condition and repeat steps from 4
on actions inside conditional action expression, inserting the results in the
then-part. Close loops.

7. Insert call to function to update views and close procedure definition.
Shape Predicates

Shape predicates are used to verify consistency of the structure and
they are translated into procedures which check and maintain the shape of the
PIN. The time at which the procedures are applied can be set to be (i) immedi-
ately after any editing interaction with the programpaar(ii) deferred to
when requested by the programnidre main use of shape predicates is to ensur-
ing cyclic and shared references are up to date and consistent, but they can be used
to express other static semantic constraints as well. Shape predicates state invari-
ants. Shape predicates consist of action expressions without any primed variables
and they do not use existential quantifications.

146

Shape Predicates Translation Example

In this example (from Chapter 4) instances of a set of one type must point to the
same instance of another type:

X== [Y*,
m:Z;
Y == nz;
SameSink(x:X) == {Oy:x.I (xxm=y.n)}

It is translated into the following procedure that maintains the shape in-
variant:

pr ocedur e Same_Sink (x_inst) {

foreachy_inst gEval Pat hExpr (x_inst,”.I")

X_m:= gEval Pat hExpr (x_inst,”.m")
y_n:= gEval Pat hExpr (y_inst,”.n")
i f ((x_m!=NULL)||(y_n!=NULL)) then

i f (x_m==NULL) then
gConnect (gEval Pat hExpr (x_inst,”.m"),”m”, gEval Pat hExpr (y,”.n"))
el sei f (y_n==NULL) then
gConnect (gEval Pat hExpr (y_inst,”.n"),"n”", gEval Pat hExpr (x_inst,”.m"))
endi f
el seerror()
endi f

endf or

Shape predicates are bi-directional - both connect ways to re-establish
the invariant are attempted by the procedure. Note however that this proce-
dures makes the assumption that eithektisepointing to a or they’s are.

Shape Predicate Translation Algorithm
1. Open new shape procedure definition
2. Insert code to input parameter to top level instance.

3. If there are universal quantifiers open-foops for each one.

147

4. Insert connect code to maintain equalitgembership, or implication, in
both directions. Close loops.

5. Close procedure definition.

Animation Compilation

Animation procedures in the programming environment are triggered
in response to changes in the abstracted, mirrored, execution state. The anima-
tions are speciéd as constraints which relate one or more PIN instances
and/or values to one or more graphical attribute values, so that any change to
the causes changes to the graphical attributes. The animationcgiguit are
compiled into procedures which are invoked when the relevant parts of the
PIN are changed.

Animations can not only specify changes to the values of
graphicalattributes, but can also specify the execution of animations functions
- these usually cycle through a set of values for a graphical attribute. The com-
pilation of animations is similar to that for shape predicates, since both ensure
that the invariant properties they state are maintained. Howsiare the
graphics are always dependent properties, it is not necessary to attempt the bi-
directional updates.

Animation Compilation Example

The animation invariant:

Enabl eGreen(pn: Petri Net) ==
{ Ot:pn.N.T (t.Ste = ENABLED) O (t<Col or> = Green)}

148

is translated to:

pr ocedur e EnableGreen{pn_inst) {

foreacht_inst gEval Pat hExpr (pn_inst,”.N.T")
i f (gEval Pat hExpr (t_inst,”.Ste”)==ENABLED) t hen
gSet GA(gEval Pat hExpr (t_inst,”.NT"),"Color",GREEN)
endi f
endf or

gGr aphi cal Updat eVi ews()

Thegaraphicalupdateviews ~ call causes invocation of calls to the GUI so
that views that contain widgets representing the instance that has the attribute,
is updated. Note that the user must also supply further animation invariants the
color again.

Action Compiler Translation Algorithm
. Open new shape procedure definition
. Insert code to input parameter to top level instance.

. If there are universal quantifier open-oops for each one.

A W N P

. Insert connect code to maintain truth of invariant by modifying the graphi-
cal equality specified. Close loops.

5. Insert call to propagatgraphical attribute updates to views and close pro-
cedure definition and close procedure definition.

149

6.6 Summary

This chapter has described the design and implementation of the Glider
system. The system consists of arun-time library and acompiler. The RTL pro-
videstheinterface to the GUI library and supports the programs generated by
the compiler with the operations for manipulating PIN data structures. The
compiler translates Glide type definitions that characterize the syntax of a
GBVL into classes of an OOPL and it then generates procedures for accessing
and altering the objects of the classes from Glide the query and action defini-
tions. The graphical attributes of the GBVL are stored in the classes and
passed to the run-time component which creates views. Animation is accom-
plished by routines which reflect the execution state of the program represent-
ed in the PIN in the values of graphical attributes. RTL manager components
invoke the compiled-generated procedures and maintain consistency between
the GUI interface, the PIN and the executing program being animated.

The next chapter shows results: it providesthree examples of specify-
ing typical GBVLsand resulting displays.

Chapter 7

Examples

This chapter presents three detailed examples which demonstrate the
use of Glide in specifying programming interfaces for GBVLs. The three ex-
amples are:

* Boolean Circuits,

« PCM - a variant of Petri Nets for modeling parallel systems performance,
and

e LabVIEW - a part of an early version of this commercial GBVL for
expressing computations associated with data acquisition instruments.
The three examples were chosen to illustrate both the breadth of structures and
of models of execution that can be captured in Glide, and to illustrate a progres-
sive increase in complexity of structure and semantics with each example.
Each section presents an example, discusses variations on ways in which the
GBVL can be represented and notes those aspects of the semantics of the
GBVL which are easy or ditult to capture in Glide.

7.1 Simple Boolean Circuit

This section shows one way in which simple combinational boolean cir-
cuits can be described in Glide as a GBVL. This particular Glide spetton
includes a complete execution semantics - the values that a boolean circuit
computes - as well as all the intermediate computed values on the wires.

150

151

711 Glide Grammar for Boolean Circuit

This Glide grammar represents boolean circuits:

Circuit == G Gate** . WWre** ;
Gate == GI: (O:OGate | And: AndGate | Inv:Inverter) .
Lbl : TEXT ;
AndGate == Inl:InPort .
In2: I nPort .
Qut: Qut Port ;
O Gate == Inl:1nPort .
In2: I nPort .
Qut: Qut Port ;
Inverter == Inl:InPort .
Qut: Qut Port ;
| nPort == Vol : BOOLEAN .
WWre ; /1 an i nput port can have only one wire
CQut Por t == Vol : BOOLEAN .
WWre** ; /1l an out put port can have many wires
Wre == Sr:QutPort . /'l wirelinks source and sink
Si:lInPort ;

Though this grammar is small and simple, there are alreadyiseymifdesign
choices and some semantics of boolean circuits reflected in it:

 There are two kinds of ports on the gatesport and outPort. The
distinction captures the fact that a gateutput can be attached to many
wires, but a gate’input to only one.

* All ports are associated with a gate. It would be possible to change the
grammar so as to include the set of all ports in the top lewveduit
production. This is useful for representing ports which are attached to ends
of wires without being associated with any gate. Ports “at the edge of
circuit board” could then be included, allowing the user to set input values
to the “board”.

* It is possible to have a more compact specification. For example, it is
possible to use aggregation (.) and an intermediate production to “factor”
out the fact that gates are either one-input or two-input. In a language as
simple as this one it is not really needed, but as a GBVL becomes more
complex such factoring is becomes useful.

152

7.1.2 Editing Semantics for Boolean Circuit

The following list of edit operations provide a simple set of actions for
creating and deleting gates and wires and for connecting them tagether

AddAnd(c:Circuit) == { g = new(Gate.And.*) Oc.G'=c¢.G Og}
AddOr(c:Circuit) == {g=new(Gate.Or.*) Oc.G'=c.G dg}
AddInv(c:Circuit) == {g=new(Gate.In.*) Oc.G'=c¢.G Og}
AddWire(c:Circuit) == {w = new(Wire) Oc.W =c.W Ow}
Connect(i:InPort,0:0utPort) == {w = new(Wire) ad
W' =w Oo.W' =0.W Ow 0O
0..0ut..GT..W’=0..0ut..GT.W’ Ow}

Disconnect(w:Wire,g:Gate) == {

(w=g.GT.In.W 0 g.GT.In.W’ =NULL Ow.Si"=NULL) O

(w=g.GT.In1.W O g.GT.In1.W’=NULL Ow.Si’=NULL) 0
(w=g.GT.In2.W O g.GT.In2.W’=NULL Ow.Si’=NULL) 0
(w 09.GT.OutW 0O ¢g.GT.OutW' =g.GT.OutW-w Ow.Sr'=NULL)}
DeleteWire(w:Wire) == {old(w)}
DeleteGate(g:Gate) == {old(g) }
SetVoltage(i:InPort, v:BOOLEAN) == {i.Vol' = v}

The frst four commands just create individual circuit objects and add them to
a circuit. These single-object creation edit operations are the kinds of opera-
tions that can be associated with a “palette” from which circuit objects drag-
and-drop into a view showing the circuit. The disconnect operation detaches a
selected wire from a selected gate. The wire itself is not deleted, since it is still
attached to its other gate. The disconnect operation is complex because it en-
sures the that mutual references between ports and wires are properly main-
tained (removed). An alternative means of maintaining them is through shape
predicates. The last command allows the user to set input voltage values.

7.1.3 Execution Semantics for Boolean Circuit

In this simple system, the complete execution semantics of the lan-
guage of boolean circuits can be captured within Glide. Four execution action

153

rules, one for each type of gate and one to propagate the signal along the wire
are suficient.

EvalAnd(c:Circuit) == [a:c.G.And(a.Out.Vol'=a.In1.Vol&&a.In2.Vol)
EvalOr(c:Circuit) == [Jo:c.G.Or(0.0ut.Vol'=0.In1.Vol|| 0.In2.Vol)
Evallnvert(c:Circuit) == gi:c.G.Inv(i.Out.Vol' =(i.In.Vol))
Propagate(c:Circuit) == Ow:c.G.W (w.Si.Vol' =w.Sr.Vol)

Selecting the actionring regimeround_robin allows all the gates to
compute their outputs (one atomic execution step for each type of gate). These
are followed at the end by an execution step in which the values at the output
ports are propagated along the wires to the input ports. Alternative forms of ex-
ecution control are possible:

* The first three actions could be combined into a conjunction in order to
have all the gate output values produced in one atomic execution step.

» “Clocked” execution of the gates could added by introducing a boolean
component to represent the clock in the Glide grammar - one which is
shared by all the gates, so that all the gates only compute their outputs
when the clock value is true.

« A data-driven execution semantics would require a more extended
representation of state of execution - one in which additional variables
associated with each gate were added to the grammar and used to record
the arrival of data.

154

7.1.4 Graphical Attributesfor Boolean Circuit

The graphical attributes below specify that in agraph display the wires
should be shown aslines, the gates as boxes and they identify icon images for

the different types of gate.

Circuit == {{GRAPH {NW}}
Gat e == {{!1 NGRAPH { SHAPE Box}
{Connect edThrough {.GTI. Qut. W.GT.Inl. W
.GT.In2.W.GT.In. W}

{1 CON gat e. xbnt}

AndGate == {{I CON and. xbnt}
O Gate == {{I CON or.xbm}}
Inverter == {{ICONinv.xbm}}
Wre == { {1 NGRAPH { SHAPE Li ne}

{Connect edThrough {.Sr .Si}}}}

Note that anicon for a generic gate is associated with the type Gat e. Addition-
al attributes specify how to create the graph display. The path expressionsin
the Connect edThr ough attribute indicate to the graph display renderer how
the widgets representing gates and wires are to be displayed interconnected -
the path expressions are derived from the rel evant shape predicates (see 7.1.7).

7.1.5 Queriesfor Boolean Circuit

The following four queries provide progressive levels of detail in dis-
playing Boolean Circuit GBVL programs.
ShowTop(c: Circuit)=={ c.*}

Showhol e(c: Circuit)=={ c.*.*}
Showval ues(c: Circuit)=={ c.*.*.* *}
ShowOneGate(g: Gate) == { g.*.*.*}

155

With only these simple queries and the small number of graphical at-
tributes - all other graphical features of the views being left to defaults of the
display renderer - the three queries produce the following views on acircuit.

File Edit Views Run Animations Help

File: |

]
Hyd

H[E|E

-

Lbi: \Gated

i |

The ShowValues view allows direct user access to changing the voltage logic
values of the ports (of the gates). The fourth query can be used in conjunction
with selecting a single node out of ShowTop or ShowWhole viewsin order to
display it to the level of detail of the ShowValues view (rightmost in figure),
but in its own separate widow.

156

7.1.6 Animation of Boolean Circuit

The following two simple animation actions specify that the voltage
logic value at the output (sink) end of the wires should be reflected on the

wires by coloring the wires.

TrueRed(c:Circuit) == {Ow.c. W{w. Si.Vol =00 (wfill>=red)}
Fal seGreen(c:Circuit)=={Ow.c. W{w. Si.Vol =10 (wfill>=green)}

fill isan attribute of the (Tk) widget for specifying its color. The sink value
Is chosen so that the wire color indicates that a value has propagated. The ani-
mations take placein all view windowsin which wires appear.

7.1.7 Shape Predicates for Boolean Circuit

The following list of shape predicates describe the cyclic structure of

mutual references between gates, ports, and wires.

Qut Attached(c:Circuit) ==
Ow.c.WOo:c.GTl.Qut{w.Sr =0 < wlo. W
InAttached(c: Circuit) ==

Owc.Whi:c.Gl.In{fw.Si =i = w=i.W
InlAttached(c:Circuit) ==

Ow.c.WOi:c.Gl.Inl{w.Si =i < wSi =i}
I n2Attached(c: Circuit) ==

Owc.WOi:c.Gl.In2{w.Si =i « wSi =i}

The set of editing actions shown earlier do not allow the structure to become
inconsistent so these shape predicates serve to chracterise the legal structures
but are not needed for creating the system.

157

7.2 Complex Petri Nets- PCM

The second example consists of a Glide spmadibn of an extension of
basic Petri Nets, “PCM” (Parallel Computations Model). PCM is a directed
graph based language intended for performance modeling of parallel computa-
tions [BA88] [Adi88]. PCM is one of a very lge number of variations on the
basic Petri Net model that have been developed over the years. The major ex-
tensions provided by PCM over Petri Nets and shown here are the use of hierar-
chy and the use of additional (textually speail) attributes. The textual
attributes are used to specify the semantics of PCM program nodes and give
PCM more expressive power than simple Petri Nets for describing parallel sys-
tems. In PCM, hierarchy is through the transition nodes,a PCM transition
node may either be a primitive transition node or a composite transition node
which contains a lower level PCM subnet.

7.2.1 Glide Grammar for PCM

The Glide Grammar for PCM consists of the speation of the difer-
ent types of nodes and links, and their textual attributes. The top level produc-
tions capture the basic PCM graph structure:

PCMSt ructure == PN: PCMNet .
SV: St ateVari abl e* ;
PCWMNet == N: Node** .
L: Li nk** ;
Node == NT: (P: Pl aceNode| T: Tr ansNode) .
I : Li nk** .
O Li nk** ;
Pl aceNode == NmTk: | NTEGER .
Rp: | NTEGER ;
TransNode == TT: (Prt:PrimtiveTransNode| Sbt: Subnet Tr ansNode) .
Nm TEXT . /1 Name for | abelling node

Ta: TransAttri butes ;
PrimtiveTransNode==

Subnet TransNode == [It: TransNode .

Tt: TransNode .

PN: PCMNet .

Rp: | NTEGER ; /1 replication paraneter
Link == Lt: TransNode .

Lp: Pl aceNode ;

158

Therecursion of PCMNettype through SubnetTransNode istheway in which
the hierarchical nature of the PCM language is represented. The Rp compo-
nents are parameters which specify run-time replication of nodes.

Thefollowing lower level productions capture the syntax of the textual -
ly specified parts of PCM programs. These are mostly attributes associated
with the transition nodes. Transition nodes have: a predicate expression (Pi)
on state variables which must be true for the node to fire; a sequence of proce-
dures (Proc) which are executed when the node fires to assign new values to
the state variables, and adelay (Tau) - afixed amount of time before the node
fires. The Glide syntax of the text expressionsweretrivially derived from their

BNF [BASS].
TransAttributes == Pi:Pexpr.
Pival:PexprVal. /1 Predicate result val ue
Phi:Proc.
PhivVal:REAL /1 Procedure result val uel
Tau:REAL. /1 Ti me del ay
Ste:State;
State == St:(:ENABLED | :DISABLED | :ACTIVE)
Pexpr == Pe:(:Pterm | :(Pexpr'|| Pterm))
Pterm == Pt:(:Pfactor | :(Pterm ‘&&’ Pfactor))
Pfactor == Pf:(:Pexpr| :Patom| :TRUE[:FALSE [:(‘I' Pfactor))
Patom == Pa:(:(Aexpr ‘=" Aexpr) | :(Aexpr ‘=" Aexpr) |
((Aexpr ‘>=" Aexpr) | :(Aexpr ‘=<’ Aexpr) |
((Aexpr >" Aexpr)|:(Aexpr ‘< Aexpr))
Aexpr == Ae:(:Aterm | :(Aexpr '+’ Aterm) | :(Aexpr ‘-’ Aterm))
Aterm == At:(:AFactor |
(Aterm ‘MOD’ Afactor) |
((Aterm /" Afactor) |
:(Aterm *' Afactor))
Afactor ==Af:(:(‘'(Aexpr')’) |:StateVariable |
‘REAL |:(*' REAL)
Proc == Pr:(:Assnmt|:(Proc‘;’ Assnmt))
Assmt == As:(StateVariable ‘:=’ Aexpr)
StateVariable == VarName:STRING.
VarVal:REAL

The execution state of anode during execution is represented by the
values of the enumerated type State . Thisincludesthe AcTIVE state which

159

does not exist in standard Petri Nets. It is used to indicate that execution is cur-
rently active within the nods’subnet .

The admissibility of sharing in Glide is being exploited in this speif
tion in two ways, beyond its use in representing interconnection of nodes and
links:

* In the Subnet TransNode production, the components tagged and Tt
specify the distinguished nodes in the submethat are the “initiating”
transition and the “terminating” transition nodes respectivéhese two
nodes are shared components with the nodes in the sibnet

* The top levebv component refers to a global list of PCM “state variables”.
These variables are present in the expressions associated with transition
nodes. Glide sharing is used in order to represent the fact that state
variables arePCM shared variables accessible by all expressions in
transition nodes. This means that the text expressions are no longer strictly
pure BNF text expressions since (i) one of expression components uses the
aggregation operator (.) and (ii) they contain composite components which
are shared (with other expressions and the list of all the state variables, in
SV: St at eVari abl e*).

The extra uses of sharing is a style of use of Glide in which more of the seman-
tics of a GBVL is relected in the spedidfation of its structure. Use of sharing

is at the discretion of the Glide us#s disdavantage is that it makes the Glide
grammar more dense, less hierarchical and thus mdreudtifunderstand. I8
advantage is that the spdacé#tion of structure and semantics of a GBVL can
become very compact.

7.2.2 View Queriesfor PCM

The following is a set of queries, which, like those used for boolean cir-

cuits, provide progressively more detailed views of PCM programs.
Progranifop (p: PCMStructure) == { p.*, p.PN. *}

Progr anNodeTypes(p: PCMSt ructure) == { p.*, p.PN. *.*}

Progr anNodesDet ai | (p: PCMSt ruct ure) == {p. PN. *. *_ *}

Pr ogr anSubNet s(p: PCMSt ructure) =={p. PN. *. *.* p.PN. T. Sbt. PN. *. *}

160

Thefirst three queries provide the views shown below. Note the list of
icons along the bottom, one for each PCM state variable (SV).

%"" File Edit Views Run Animations Help
b File: |

The fourth query produces the views shown below. The hierachical na-
ture of PCM can be seen directly, with one of the transition nodes being a sub-
net transition node containing a net of three nodes. The two nodes in the
entries1t and Tt at the top of that transition node are the initiating and termi-
nating transition nodes which are al'so in the subnet. Thisis made directly evi-
dent to the interface user; selecting either one will highlight the node in both
places, because it isthe same object.

161

7.2.3 Execution Semantics for PCM

The following rules capture an abstract description of the PCM execu-
tion semantics. The execution model is abstract in that the full semantics of
PCM predicate and procedure evaluation is not included, only the completion
of thetheir evaluation is represented. The semantics of PCM also incorporates
time - adelay timeis associated with each transition node. Thisis outside the
Glide model. These lower level details can be provided by an external real

162

PCM program if it isavailable. In the abstract execution semantics below the

fact that apredicateistrueisrepresented in a separate component (Piv) .

Enable(pn:PCMNet) ==
{ Ot:pn.T(Op:t..NT.L.Lp (p.NmTk > 0)) Ot.Ta.PiV=TRUE
0 t.Ta.Ste’=ENABLED }
Disable(pn:PCMNet) ==
{ Otpn.T(Op:t..NT.L.Lp(p.NmTk =0) Ot.Ta.PiV = FALSE)
0 t.Ta.Ste’=DISABLED }
PrimitiveFire(pn:PCMNet) ==
{ Opr:pn.T.Prt(pr..TT.Ta.Ste = ENABLED)
0 pr..TT.Ta.Ste’=DISABLED |
Op:pr.. TT.NT.L.Lp(p.NmTKk' =p.NmTk + 1) O
Op:pr.. TT.NT.L.Lp(p.NmTK' = p.NmTk - 1) }
SubNetActivate(pn:PCMNet) ==
{ Gst:pn.T.Sbt {st..TT.Ta.Ste=ENABLED

0 st..TT.Ta.Ste "=ACTIVE O
Op:st.. TT..NT.L.Lp(p.NmTk' =p.NmTk - 1) O
st.lt.Ta.Ste =ENABLED} /Istartthesubnet
SubNetComplete(pn:PCMNet)==
{ Cst:pn.T.Sbt {st..TT.Ta.Ste=ACTIVE Ost.Tt.Ta.Ste = ENABLED
0 st..TT.Ta.Ste "=DISABLED 0O
st.Tt.Ta.Ste "=DISABLED 0O

Op:st.. TT..NT.L.Lp(p.NmTk' =p.NmTk + 1)}

These execution rules reflect the more complex execution model for PCM as
compared to standard Petri Nets. The values of predicates associated with
Transition nodes must be true for anode to fire or become active. A primitive
transition node firesimmediately; tokens are removed from input place nodes
and added to output place nodesin one event. In the case of a subnet transi-
tions, the net within the node is run to completion in between removing and
adding tokens. Note the use of the expression st.It.Ta.Ste and
st.Tt.Ta.Ste to express accessing the initiating and terminating transition
nodes of a subnet.

724 Animations for PCM

Thefollowing list shows a collection of four simple animations. The
first two reflect the state of the nodes by their color. The second two animation
actions color and change the width of links according to whether the place
nodes they orignate from have any tokens and thus whether the links are con-

163

tributing to enabling or preventing the transition node they are connected to
from firing.

Enabl edGreen(pn: PCMNet) ==
{Ot:pn. N T(t. Ta. Ste = ENABLEDO t <background> = green)}
Di sabl edRed(pn: PCMNet) ==
{Ot:pn.N. T(t.Ta. Ste = DI SABLEDO t <background> = red)}
ToksFor Li nk(pn: PCMNet) ==
{ O :pn.N.P..NT.O
(1.Lp.Nmfk >0 0O Il<width>=301<fill>
NoToksFor Li nk(pn: PCWNet) ==
{ O :pn.N.P..NT.O
(I.Lp.NmTk =0 0O I<width>=10I<fill>=red}

green) }

7.3 TheLabVIEW GBVL

This section provides anfal example, that of the LabVIEW graphical
programming language. More specdily, the Glide specifation presented in
this section was derived from [Dye89], which provides an informal english de-
scription of the syntax, semantics, and graphical appearance of an early ver-
sion of LabVIEW The commercial system has evolved, but the compact and
self-contained Dye description provides an ideal source from which to derive a
Glide specification and compare it.

In essence LabVIEW is a hierarchical dadwaflanguage, but it also in-
tegrates typical sequential programming control constructs. It also provides
support for composing and decomposing collections of data values through
nodes spedadit for that purpose. LabVIEW is a more complex language and has
a lage Glide specitation that rdects this. The overall structure of LabVIEW
as represented with Glide grammar productions is presented here. Only some
salient aspects of the specdtion are shown here, with a more complete speci-
fication is provided in the Appendix. Some of the important Grammar produc-
tions are shown here, and some representativeitiens of the semantics as a
representative example of LabVIEW node execution.

164

7.3.1 Glide Grammar for LabVIEW

The following top level productions identify the major types of inde-
pendent components in LabVIEWhese are: “@rminals” the LabVIEW term
for ports, “Signals” the LabVIEW term for links through which datavs. Ter-
minals have values and connect signals to Nodes. Nodes perform computa-
tions on the values. The values passed have usieedaiumeric-based data

types (scalgrarray) .
Bl ockDi agram ==

S: Signal ** .
N: Node** .
T: Term nal ** . [* only the ‘independent’ terminals */
TL: Text Label ** ; /* set of comments */
Node ==
MT: (1 UN: | nst runent UseageNode | [* attached to virtual instrument */

SN: St ruct ur eNode |
AMWN: Arr ayMani pul ati onNode |

BN: Bundl eNode) . /* gather and split values */
Enabl e: BOOLEAN . /* for execution semantics */
Cnmmt : STRI NG, /*to add a comment */

Diagrams can containvie major types of nodes. Of these, theuc-
t ur eNode node type which provides dérent kinds of controlléw and hierar-
chy. These nodes are one of four kinds: for loop, while loop, select (similar to a

165

switch/case type statement), sequence (for executing afully ordered sequence

of computation in order).

For LoopNode ==

LLT: LoopLi mi t Ter m nal .
ItCnt:lterati onCount Term nal .
I nTn: Tunnel Ter m nal ** .
Qut Tn: Tunnel Term nal ** .
Enabl e: BOOLEAN .
SbD: Bl ockDi agr am ;
For LoopLi mi t Term nal ==
Val : | NTEGER .
Name: STRI NG ;
Whi | eLoopNode

== ItCnt:lterati onCount Term nal .
LCond: LoopCondi tion .
Shft R ShiftRegsiter** .
I'tCnt: | NTEGER ;

\Whi | eLoopCondi ti onTer m nal

/* Loop Limt Term nal */

/* Iteration Count */

/* Inputs */

/* Qutputs */

/* For execution senantics */
/* Sub Di agram body of | oop */

/* Loop Limt Value */

== Val : BOOLEAN .
Name: STRI NG ;
/* auxilliary productions used in both | oop productions */
Iterati onCount Ter m nal /* al so used in while | oop */
== Val : | NTEGER .

Name: STRI NG ;
Shi ft Regi ster ==

Val : Val ue /* records previous val ue */

Terminalsin LabVIEW are more complex than portsfor asimpler lan-
guage such as Boolean Circuits. They are used in LabVIEW for binding sig-

nals to different parts of the computation nodes. The grammar reflects the
different types of terminal which depend on their role in the computation. Sig-

nals connect terminals.

Term nal ==
TT: (FPCT: Front Panel Control Ternm nal |
BDC : Bl ockDi agr amConst ants) .
Val :Val ue
Cnmmt : STRI NG ;
Front Panel Control Term nal ==
FPC: Fr ont Panel Control .
DT: Dat aType ;
Bl ockDi agr amConst ant s

== PT: (Pi:3.141 | e:2.71 | TRUE:O | FALSE: 1) ;

/* coment for describing termnal */

/* Input fromthe User Interface */
/* adapts to front panel */

The next level of detail of the grammar describes the structure of the ar-
ray manipulation nodes, the bundling nodes and the structure node. The array

166

manipulation nodes are used to extract values from arrays or to compose them
back into arrays.

/1 gather and split val ues
ArrayMani pul ati onNode==
: ArrayEl ement Repl acenent |
: Arrayl ndexer Node |
: ArrayBui | di ng
ArrayEl ement Repl acenment ==
:Arrayl nput Ter mi nal
: Scal ar Val ueTer m nal
: Numeri cl ndex** .
: ArrayCQut put Term nal ;
/'l slicing data out of multidimensional array

Arrayl ndexer Node== : Arrayl nput Ter mi nal

sl ndex** .

: ArrayCQut put Term nal ;
ArrayBui | der Node== : ArrayCQut put Ter ni nal

:Arrayl nput Term nal * ;

The Bundler nodes are used to pack and unpack values.

Bundl eNode == : Bundl er Node |
: UnBundl er Node ;
Bundl er Node == ;I nput Term nal s** .
: Qut put Ter m nal
. Dat aType ;
UnBundl er Node== : Qut put Term nal s** .
: I nput Ter m nal
. Dat aType ;

7.3.2 Queriesfor LabVIEW

These pictures are graphically much more primitive than the actual Lab-
VIEW User Interface, but the Glider generated version is quite useable and its

specification much more compact.

Progranievel _1 (bd: Bl ocDi agram) == { bd.*.*.*}
Progranievel _2 (bd: Bl ocDi agram) == { bd.*.*.*}
Progranievel _3 (bd: Bl ocDi agram) == { bd.*.*.*.*}

167

The queries produce various levels of detail in views:

‘d @ o 1n'rn:|1'rmn4|
FLN: m OutTn: r'rmml
Ml— SpD:
k| e

* [
W r'l b - f
sl ° [s%] 1
» SgND
InTn: | TTIO0 |
M— OutTn: | TTO003
= OutTe:| r700a]
T
* SLI:
Rum:
= o
W‘l.N:I
@ *
le:l—
I N [wa] e
* InTn: | TTII][IZI
@ o OutTh: | T'mnnz'
FLN: m ShetR:
7
CIm
o
InTn: | TTIO0N |
OutTn: TTIJleI
—
SbI:

7.3.3 Execution Semantics for LabVIEW

The execution semantics of LabVIEW is quite large and complex. This
section just focuses on the execution semantics of |0op node types as represen-
tative examples. The execution actions shown here are again derived from
their description in the Dyethesis.

168

The execution action that specifies its behavior is the following.

ExecForLoop(bd:BlockDiagram) ==
-TE-:f 1:bd@(.N.SN.CT).N.SN.FLN {
(f |..CT.Enable = TRUE)
=>(f l.Enable=FALSE /l'loop start
=>f |.Enable’=TRUE &&

f LItCnt'=0)
(f LEnable=TRUE &&f l.ItCnt<f I.LLT.Val /* during | oop */
=>f LItCnt'=f [.ItCnt+1 &&
f 1.SbD.Enable’=TRUE)
(f |.Enable =TRUE &&f I.LLT.Val=f l.ItCnt /* loop term nation */
=>f |.Enable’ = FALSE &&
f I..Sn.Enable’ = FALSE)

This execution action rule checks if the loop has been enabled (by a an-
other rule which sets thenable attribute of the enclosing structure node to
TRUB. If so, theEnable attribute is set to true and three possible actions can oc-
cur: initializing the loop, performing an iteration, or terminating the loop. The
enabling of the node is controlled by other execution action rules which enable
a node if values have arrived on all inputs. The incremented iteration count
(tcnt) is available as input (more specHlly as an input terminal) to the
block diagram enclosed by the for loop.

The while control loop has a similar execution semantics dpatidn.
In this case the loop termination condition is a boolean terminal that takes its a

boolean value.

ExecWhileLoop(bd:BlockDiagram) ==
-TE-:wl:bd@(.N.SN.CT).N.SN.WLN {
(wl..CT.Enable =TRUE)

=>(wl.Enable = TRUE &&f .LCond=1 /* during | oop
=>f |.Active’=TRUE)
(wl.Enable = TRUE &&f l.LCond=0 /* end | oop

=>wl.Enable’ = FALSE &&
wl..Sn.Enable’ = FALSE)

The semantics of bundle and array index nodes are examples of seman-
tics which dificult to represent in Glide. This is simply because the primitive

169

types provided by the Glide language itself does not include arrays. There are
two remedies: (i) use Glide liststo simulate arrays so that arrays exist as exten-
sions of the PIN structure; or (ii) expose array manipulation primitvesif they
are provided by the implementation langauge (C or Tcl in the case of the proto-

type).
7.4 Summary of Results

This chapter has given examples which demonstrate how the Glide Lan-
guage concepts described in earlier chapters allow the specifier to achieve di-
rect compact and integrated descriptions of GBVL language syntax and
semantics and associated interface editing and animation, and that this can be
donein abroad range of GBVLs. Thisis possible because of the unified ap-
proach integrating text and graph structure, and because of the unified ap-
proach to specifying execution and editing semantics.

Chapter 8

Conclusions and Further Work

Thisfinal chapter summarizes the contributions of the work described
in this dissertation and suggests avenues of further research which can now be
pursued based on it.

This dissertation has described a high level language for specifying
graph-based visual languages and their programming environments. The essen-
tial idea developed in this dissertation is that of a model for representing the
graph-based visual languages. The structure of GBVLSs, in which programs
consist of acombination of text and graph structure, is modeled with asmall
but powerful set extensions over BNF, so that the combination of graph and
text structureis captured in a seamless way. The model then also allows the ba-
sic definition of the structure of the language to be augmented with additional
semantic components and with graphical attributes. The data model provides
the foundation upon which specification of access and alteration to datais
built. These are constructs for identifying pieces of data (the path expressions,
the tree path expressions, and the queries) and constructs to express change to
pieces of data (the editing, execution, and animation actions). The constructs
allow the specification of views of programs, and editing, execution, and ani-
mation semantics to be captured so that a structure-oriented graphical program-
ming environment for the GBVL can be generated automatically.

The way of characterizing GBVLs has been validated by creating a
working compiler that implements the translation algorithms for each part of
the specifications, and by creating arun-time library to support the generated
code. Several existing graph-based visual languages have been modeled and
programming environments for them produced.

170

171

The work on Glide and Glider also represents solving a problem by
drawing on concepts and solutions to problems frorfedént areas of re-
search. The design of the Glide language and the Glider generator has drawn
on a wide variety of areas including: graphical user interface design, language
specifc programming environments, programming environment generators,
specifcation of the semantics of programming languages, spatdn of com-
plex data types, graph grammars, data models and query languages, and func-
tional languages. In this respect it represents a synthesis of the ideas taken
from these areas.

The Glide language and Glider systems now open several new avenues
for further exploration. These can be divided into two main categories: (i) rela-
tively straightforward enhancements and variations to the current implementa-
tion of the Glider system and (ii) pursuing the ideas embodied in Glide and
Glider further:

(i) For the short-term:

* An obvious immediate extension to Glide would be to allow the user to
formulate his/her own view queries, so that views were not only tailored to
a particular language but could also be created add-hoc. For example, the
user could define highly diagnostic views by specifying particular
conditions to be met by the executing program for components to appear in
the view - an advanced form of animation. These would be expressed as
suchthat-clause boolean expressions on the execution semantics
components. There is very little that stands in the way of this since the
compilation of queries is fairly simple - performing their compilation at
run-time would not be too ditult.

* Glide in Glide: A programming environment for Glide could be created by
specifying Glide in Glide. A graph-based view of the Glide grammar is
fairly straightforward - along the lines of the way railroad diagrams are
related to BNFThe way in which queries and actions could be recast as
GBVLs is less clear but worthy of investigation. Such a system would then
allow visual programming environments to be created with a visual
programming environment.

172

More experimentsGlide offers up a new framework within which to
experiment with new graphical languagd@fie examples of the previous
chapter show that Glide and Glider form a “workbench” that provides the
opportunity to bettermore quickly and more frequently explore the utility

of a GBVL as a means for solving problems. Previgudlg time and
expense of such an endeavour would too often have been deemed too
costly Glide is intentionally open-ended so that completely new variations
of GBVL structure which have not been used very much can be explored,
e.g., Graph languages with subgraphs associated with edges, edges with
more than two end points, even graphs as one component in a text
sequence.

(ii) For longer term investigation, there are several extensions to the syntax
and semantics of Glide that could be explored:

GBVLs with user defined data types. Glide is weak in the ability express
GBVLs in which new data types can be defined. Examining how easy it
would be to add this to Glide merits further study

There are several ways in which the path expressions could be made more
expressivee.g., limits on depth of recursion.

Glide is a general purpose programming language. The data modeling
available in Glide is very expressive it may well be a useful model for
specifying graph-based computations independent of whether a graphical
user interface for it.

In conclusion, the work on Glide and Glider represents an advance on

formalizing a signifcant segment of visual forms of specétion. By focus-

sing on the graph-based visual forms that are so frequently used in communi-
cating about computing systems designs it has been possible to put them on a
more sound and formal footing.

Appendix

LabViewin Glide

The following is a LabVIEW spedifation in Glide, derived from Rob
Dye’s original thesis, pages 38-59. Comments are enclosed in /*...*/ and itali-
cised.

/* LabView Syntax represented in Glide Grammar */

BEGIN_GLI_GRAMMAR

[*----TOP LEVEL *

/* Root of block diagram hierarchy. States that a Labview program consists of
Nodes, Terminals, and Signals. The user can add text labels for documentation
comments. Only self-standing, “independent”, terminals are listed in TL, there

are other “dependent” terminals which are components of nodes since they only ex-
istwith the nodes */

Bl ockDi agram ==

S: Signal ** .
N: Node** .
T: Term nal ** . /* only the ‘independent’ terminals */
TL: Text Label ** ; /* set of comments */
Text Label == /* used for adding comments to the diagram */
Txt: STRI NG ;
[*---- Levell: MAJOR NODE TYPES *
/* This level 1 identif ies the major kinds of nodes that exist in a labview pro-
gram. Of these, the structure node is a type of Node that can be one of a further
four types of control f low node. */
Node ==
MT: (1 UN: | nst runent UseageNode | /* attached to virtual instrument */
SN: St ruct ur eNode |
AMN: Arr ayMani pul at i onNode |
BN: Bundl eNode) . /* gather and split values */
Enabl e: BOOLEAN . /* for execution semantics */
Cmmmt : STRI NG, /*to add acomment */
I nst runent UseageNode==
I nstldent: | NTEGER . /* Instrument Identif ier */
I nst Type: STRI NG ;
[*--Level2: CONTROL STRUCTURENODES -------mmmm im0 */

174

/* Structure nodes have tunnels - these are points at which signals cross bound-
aries into nodes. Hence if they are inputs viewed fromoutside the node they are
outputs viewed frominside the node, and vice-versa.*/

Struct ur eNode ==
CT: (FLN: For LoopNode | WALN: Whi | eLoopNode |
SLN: Sel ecti onNode | SQN: SequenceNode) .
Tns: Tunnel **
Tunnel Term nal ==
TnTm (I npT: | nput Tunnel | Out T: Qut put Tunnel) ;

| nput Tunnel == /* An input tunnel is an entry port for a gate*/
Al F: Aut omat i cl dexi ngFl g .
Si ns: Si gnal ** . /* signal inside fan out */
Sout s: Si gnal ; /* signal outside */
Qut put Tunnel == /* An output tunnel is an exit port for a gate */
Si ns: Si gnal . /* signal inside node */
Sout s: Si gnal ** ; /* signal outside node fan out */
/* ---- Level 3: 4 Types of Control FlOW ---------mmommmmmmm oot */
/* Two types of |oop control flow */
/* ---- For Loop ------ */
/* The for | oop enabl es repeated execution of the sub bl ock diagramit contains.
The Terminals are not |isted under the top level list of terminals since they

only exist as part of the for |oop */

For LoopNode ==

LLT: LoopLi mi t Term nal . /* Loop Limt Term nal */
ItCnt:1terationCount Term nal . /* lteration Count */
I nTn: Tunnel Ter m nal ** . /* Inputs */
Qut Tn: Tunnel Term nal ** . /* Qutputs */
Enabl e: BOOLEAN . /* For execution semantics */
SbD: Bl ockDi agram ; /* Sub Di agram body of | oop */
For LoopLi m t Term nal ==

Val : | NTEGER . /* Loop Linmt Value */

Name: STRI NG ;

/[* ---- \Wile Loop ------ */

/* Contains Iteration Count, test expression evaluated after executing | oop ,
zero or nore shift registers, Wile |oop also has Iteration Count term nal? */

\Whi | eLoopNode
== ItCnt:lterati onCount Term nal
LCond: LoopCondi tion .
Shft R ShiftRegsiter** .
It Cnt: | NTEGER ;
Wi | eLoopCondi ti onTer m nal
== Val : BOOLEAN .
Nanme: STRI NG ;
/* auxilliary productions used in both | oop productions */
I'terationCount Ter m nal /* also used in while | oop */
== Val : | NTEGER .
Name: STRI NG ;
Shi ft Regi ster ==
Val : Val ue /* records previous val ue */

175

[* ---- Select ------ */
SelectNode ==
:CaseSelectorTerminal .
:SelectNodeDiagram**;
SelectNodeDiagram ==
:DiagramNumber .
:BlockDiagram;

/* ---- Sequence ------ */

/* The sequence local termnals are for getting val ues between diagrans in se-
quence */

SequenceNode ==
SND:SequenceNodeDiagram** .
BD:BlockDiagram .
SLT:SequenceLocalTerminal ;

/* ---- TERM NALS */
/* Termnals are the | abvi ew versi on of ports. Tunnels are term nals which have

an inside and an outside. The distinction between fixed and adaptive terminals is
omtted */

Terminal ==
TT:(FPCT:FrontPanelControlTerminal |
BDC :BlockDiagramConstants) .

Val :Value
Cmmnt:STRING ; /* comment for describing term nal */
FrontPanelControlTerminal ==
FPC:FrontPanelControl . /* Input fromthe User Interface */
DT: DataType; /* adapts to front panel */

BlockDiagramMathFunctions

== PT:(Add:'+'|Times:*" |Div:"/"| Sub:-");
BlockDiagramConstants

== PT:(:Pi|:e:TRUE:FALSE);

[* ---- SIGNALS */
/* Signals are the | abvi ew versi on of wires */
Signal ==
DSr:Terminal . /* data source termnal */
DSi:Terminal**. /* data sink terminal arbitrary fanout */
Dim:INTEGER. /* indi cates nunber of di nensions */
Val:Value;
Value ==
V:(:INTEGER |:REAL). /* Actual val ue */
DT:DataType; /* Data type of the val ue */
/* ---- ARRAY HANDLI NG */

/* Labvi ew provi des support for flow and mani pul ati on of arrays of val ues */

ArrayManipulationNode
== :(:ArrayElementReplacement |
:ArraylndexerNode |
:ArrayBuilding) ;
ArrayElementReplacement ==
:ArraylnputTerminal .
:ScalarValueTerminal . /* thing that repl aces */

:Numericlndex** . /* canreplace at many places */
:ArrayOutputTerminal ;
ArraylndexerNode ==

:ArraylnputTerminal . [* slicing data out of multidim data */
[Index**.
:ArrayOutputTerminal; [*outputis of lesser rank by # of indices /
ArrayBuilderNode
== :ArrayOutputTerminal . /* of dimension n*/
:ArraylnputTerminal* ; /*ofdimensionnorn-1*/
/*----BUNDLE HANDLING */
/* Labview provides support for low and manipulation of arrays of values */
BundleNode ==
:BundlerNode | :UnBundlerNode ;
BundlerNode ==
JInputTerminals** . [*invariant# of wires in = array size */
:DataType. /* adapts to wire */
:OutputTerminal; /*only one */
UnBundlerNode ==
:OutputTerminals**. [*invariant # of wires out = array size */
:DataType. /* adapts to wire */
{InputTerminal ; /*only one */

END_GLI_GRAMMAR

BEGIN_GLI_QUERIES
Levels1(b:BlockDiagram) =={b.*}
Levels2(b:BlockDiagram) == {b.*.*}
Levels3(b:BlockDiagram) =={b.*.*.*}
END_GLI_QUERIES

/*
6.2 LabView Execution Semantics

This section provides a list of the execution actions that specify the executions

semantics of Labview. The basicideais to use aboolean component as a token

(e.g. Enable) torepresent the passing of control, form node to node. e.g. from

calling to called nodes, selecting in a case statement etc. Such specif ications
are similar to the operational semantics of a high level langauge (like C) into a

low level one (like assembler).A node is enabled only when values are available

atall of its inputs.

*

BEGIN_GLIDE_EXEC_ACTIONS

/* propagate a value along a signal. The Labview semantics is that a copy of the
value atthe source terminal is made available at the sink. Since a primitive
value is beiing 'assigned’ itis a copy. Since signals have arbitrary fanout, the
movement of the dat values to all the data sink terminals */

PropagateSourceToSignal(d:BlockDiagram) ==
-FA-s:d.@(???7?).S{s.Val'=s.DSr.Val &&
s.Dsr.Val'=NULL
}

[* This quantif icationis over all the terminals of all the signals */

176

177

PropagateSignalToSink(d:BlockDiagram) ==
-FA-sink:d.@(???7?).S.DSi{sink.Val' =sink..DSi.Val }
}

/* nodes are activated when data is avaliable at all inputs this actionis for
all for |oops */

Activate(d:BlockDiagram) ==
-FA-sn:d.@(????).SN{-FA-:v:Term.Val '=NULL => sn.Activate = TRUE }
}

/* Semantics of ForLoop. The three guarded actions captures the semantics of ini-
tializing, incrementing and terminating of a for | oop. Performupdate action on
al | ForLoops. */

ExecForLoop(bd:BlockDiagram) ==
-TE-f 1:bd@(.N.SN.CT.SbD).N.SN.FLN{
(f |..CT.Enable = TRUE)
=>(f |.Enable =FALSE /l'oop start
=>f |.Enable’=TRUE &&

f LItCnt'=0)
(f 1.Enable=TRUE &&f l.tCnt<f I.LLT.Val /* during | oop */
=>f [ItCnt' =f .ItCnt+1&&
f 1.SbD.Enable’=TRUE)
(f |.Enable = TRUE &&f I.LLT.Val=f I.ItCnt /* | oop term nation */
=>f |.Enable’=FALSE &&
f |..Sn.Enable’ = FALSE)

}

/* Semantics of sequential control execution. Keep a counter which increnents.
The the node with in the list whichis the same as the current vaue of the counter
is enabled. Need some way of counting intothe list in dide...*/

ExecSequence(bd:BlockDiagram) ==
-TE-:5q:bd@(.N.SN.CT.SbD).N.SN.SQN{
(sq..CT.Enable =TRUE)
=>(sq.Enable =FALSE /I sequence start
=>sq.Enable’ =TRUE &&
f 1.SqCnt.vVal'=0)

(sq.Enable = TRUE && sq.SqCnt.Val < f |.SgTotalNum.Val /+ during | oop */
=>-TE-n:sqn.Diags (sq.DiagNumber = sq.SqCnt.Vval’)
=>sqg.SqCnt.Val'=f l.ItCnt.Val +1 &&
f |.Active’=TRUE)
(sqg.Enable =TRUE &&f I.LLT.Val=f l.ItCnt.Val /* loop term nation
=>f |.Enable’ = FALSE &&
f |..Sn.Enable’ = FALSE)

178

/* Semantics of while | oop execution. expression. */

ExecWhileLoop(bd:BlockDiagram) ==
-TE-:wl:bd@(.N.SN.CT.SbD).N.SN.WLN {
(wl..CT.Enable=TRUE)
=>(wl.Enable = FALSE I startloop
=>wl.Enable’ = TRUE &&
f LltCnt.Val'=0)
(wl.Enable = TRUE && wl.LCond =1 /* duringloop
=>wl.ltCnt.Val’=wlItCnt.Val + 1 &&
f LActive’=TRUE)
(wl.Enable = TRUE && wl.LCond =0 /* end | oop
=>wl.Enable’ = FALSE &&
wl..SN.Enable’ = FALSE)
}
}

/* Semantics of Sel ect Node - Sel ect nodes are anal ogous to switch statenents.
Uses there-exists to find the sel ected of case type statement */

ExecSelect(bd:BlockDiagram) ==
-FA-:sIn:bd@(.N.SN.CT.SbD).N.SN.SLN {

(sIn..CT.Enable =TRUE)

=>(-TE-:acase:sIn.Cases {

(acase.val = sIn.Switch.DiagramNumber)
=>acase.SubDiag.Enable’ = TRUE)
}

}

ExecBundle(bd:BlockDiagram) ==
-FA-bun:bd.Nodes.Bundle()
-FA-inputs:Bundlelnputs (bun.Bundle = append(new)

}
END_GLI DE_EXEC_ACTI ONS

/* The graphical attributes add icons to the major |abview node types. */

BEG N_GLI _GRAPHI CALATTRI BUTES
{BlockDiagram {GRAPH{N S}}}
{Node {SHAPEINGRAPH Box ConnectedThrough {
{.MT.CT.InTn.TnTm.Sins .MT.CT.OutTn.TnTm.Sins} HEAD}
{.MT.CT.InTn.TnTm.Souts .MT.CT.OutTn.TnTm.Souts} TAIL}}
WRAP TRUE BITMAP node.xbm }}

{PrimitiveNode {BITMAP transnode.xbm }}
{InstrumentUseageNode {BITMAP placenode.xbm }}

{ForLoopNode {BITMAP forloop.xbm }}

{WhileLoopNode {BITMAP whileloop.xbm }}

{SequenceNode {BITMAP sequence.xbm}}

{SelectionNode {BITMAP selection.xbm }}

{Signal {SHAPEINGRAPH Line ConnectedThrough}}

END_GLI _GRAPHI CALATTRI BUTES

179

Graph Toolkits

The graph editor toolkits that have been developed in recent years are

noted here. In general, the displayanipulation, and editing of graphs has re-
mained just outside being included in a standard GUI system and has be creat-
ed as a separate layer on top. The following ones have either been described in
the literature or are publicly available:

EDGE - The EDGE system was first described in [Pau88] and forms the
basis of a thesis by Paulisch [EDGE90]. EDGE is object-oriented

(implemented in C++) so that the classes, “node” and “edge” can be
specialized, adding attributes which define the application. Both edges and
links can be labelled. The package also supports hierarchy and
incorporates a number of automatic layout algorithms. EDGE has been
used for displaying call graphs, makefile dependencies, simple logic
circuits. It also contains some support for animation (routines for

highlighting nodes and links).

XGRAB - XGRAB is a package has had several implementations, the latest
being on top of the Inteigws GUI library It has been used to display
“program call graphs, module dependenfiyite state automaton graphs
and database designs”. XGRAB (originally GRAB) evolved from the
original work by Carl MeyerThe current version leverages the higher
level of sophistication of the Interviews GUI librarnge.d., zooming
commands). [RDM87]

TGE - This package is also developed on Interviews. The paper by Karrer
and Scacchi provides a description of the essential requirements for a
general tool graph interface library and point out théadilties of trying

to use one of the existing packages to implement a real systgmtlie

need to be able to store graphs). [KS90]

XSIM - A simple but dective package. XSIM provides support for
flagging syntactic errors and generating the textual representation of a
graph suitable for input to other programs. XSIM has been used as a front
end a Generalizedmed Petri Nets (GTPN) simulatdiTho90]

DAG - The DAG system is described by Gansndprth, and ¢ in
[GNV88]. It describes various layout strategies and performance statistics
for them. This package and it successor was used in Glider

180

* GMB - The GMB graph display system was created in the context and
managing software in the Faust software programming environment for
developing supercomputing applications. GMB was used for such things as
the display of file compilation dependencies (makefiles). [J88] [JG89]
[Jab90].

« GUIDE Il - Guide is an internal product of Scientific and Engineering
Software Inc. It is one of the few systems that provides a high level of
functionality for both graph display and manipulatiand other more
standard interactors such as tables and menus, integrated in the same
package

* A number of earlier systems exist, notably the ones developed on
interactive lisp workstations such as the ISI Grapher [Rob87] and the
Interlisp Grapher [Int85].

* Some experiments have been performed by MacKinlay et al. at Xerox with
the display of graphs in 3D. This has the advantage of being able to display
quite lage graphs (which is a problem in 2D because readable layouts take
up lalge amounts of screen space), but it is not yet clear how useful they
are.

Systems 1, 2, and 4 are publicly available. All these packages face the
graph layout problem.e., the need to provide a readable arrangement of
nodes and links, preferably in the smallest amount of space. The problem of ef-
ficient of 2D layout algorithms for readable graph displays has received exten-
sive attention (see surveys by Harel [DH89] aadnimasia [RB88], and an
analysis of the problem in [ET89]. Many of these algorithms have already been
incorporated into some the graph GUI tools such as EDGE and XGRAB.

References

[ACR™89]

[ACS90]

[AI89]

[AltReal88]
[ARMO1]

[AYC8S8]

[BASS]

[BCL9O]

[BDD92]

[BDG'91]

[BH92a]

Bowen Alpern, Alan Carle, Barry Rosen, Peter Sweney, and Kenneth
Zadeck. Graph attribution as a specification paradig@M SIGPLAN
Notices 24(2):121-129, February 1989.

B. Alpern, L.Carter, and TSelker. Visualizing computer memory
architecture. IrfProceedings of the First IEEE Workshop on Visualization
pages 107-113, October 1990.

H. Ammar and SRezaul Islam. Time scale decomposition of a class of
generalized stochastic Petri net modelEEE Trans. on Software
Engneering 15(6):809-820, June 1989.

R. Smith. The Alternative Reality KVorkshop on Visual Languag&388

B. StroustrupThe C++ programming language 2nd esddison-Wesley,
1991.

R. Akscyn, E. Yoder, D. MacCracken. The data model is the heart of
interface designCHI 1988

J.C. Browne and Ashok Adiga.Performance Evaluation of
Supercomputerhapter: Graph Structured Performance Models. Elsevier,
1988, pp. 239-281.

Duane Bailey, Janice Cuny, and Craig Loomis. Paragraph: Graph editor
support for parallel programming environmentgernational Journal of
Parallel Programming 19(2):75-110, 1990. parallel programming
environment graph grammar.

R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams. IPACM Computing Survey¥ol 24, No.3 Sept. 1992.

A. Beguelin, JDongarra, GGeist, R.Manchek, and VSunderam.
Graphical development tools for network-based concurrent
supercomputing. IBupercomputing ‘9Qlpages 435-444, Nov 1991.

M. H. Brown and J. Hershberger. Animation of Geometric Algorithms: A
Video Review. Technical Report 87a, DEC Systems Research Center, Palo

181

182

Alto, June 1992.

[BH92b] M. H. Brown and J. Hershberger. Color and Sound in Algorithm
Animation. Technical Report 76a, DEC Systems Research Center, Palo
Alto, June 1992.

[BL86] B.Liskov, J.GuttagAbstraction and specification in program devel opment,
MIT Press, Cambridge, Mass.1986.

[Bo094] G. Booch.Object-oriented analysis and design with applications. 2nd ed.
Redwood City, 1994.

[Bow89] JonatharP. Bowen. Formal specification of window systems. Technical
Monograph PRG-74, June 1989.

[Bro85] J.C. Browne. Formulation and programming of parallel computers: A
unified approach. IProc. Intl. Conf. Par. Proc., pages 624—631, 1985.

[Bro88] Marc H. Brown.Algorithm Animation. ACM Doctoral Dissertation Award.
MIT Press, Cambridge, Mass, 1988.

[Bro92] M. H. Brown. Zeus: A System for Algorithm Animation and Multi-view

Editing. Technical Repoit5, DEC Systems Research Center, Palo Alto,
February 1992.

[BS84] M. H. Brown and RSedgewick. A System for Algorithm Animation.
Computer Graphics, 18(3):177-186, July 1984.

[BSS84] D.R. Barstow, HE. Shrobe, and ESandewall, editorsInteractive
Programming Environments. McGraw-Hill, New York, 1984.

[BS84] M. H. Brown and RSedgewick. A System for Algorithm Animation.
Computer Graphics, 18(3):177-186, July 1984. (BALSA)

[Bur94] M. Burnett, R. Hossli, T. Pulliam, B. VanHoorst, X. Yang. Toward Visual

Programming Languages for Steering Scientific ComputationsEEE
Computational Science and Engineering, Winter 1994,

[BY90] W Burton, HK Yang. Manipulating multilinked data structures in a pure
functional languageSoftware Practice and Experience Vol 20 (11) 1167-
1185 Nov 1990.

[BW8Sg] R. Bird, P. Wadlerintroduction to Functional Programming. Prentice-Hall
1988.

[CComp88] C. Fischer, R. LeBlan&rafting a compiler. Benjamin/Cummings, Menlo
Park, CA, c1988.

[CER78] Volker Claus, Hartmut Ehrig, and Grzegorz Rozenberg, edi@naph-
grammars and their application to computer science and biology:
international workshop. Springer-Verlag, Bad Honnef, October 1978.

[CGP89]

[Che91]

[Chig5]

[CHVL91]

[CL88]

[CLU93]

[Cou90]

[CPN9O]

[CS90]

[daVvo3]

[Dea9?]

[DF82]

183

LNCS73.

P.T. Cox, F.R. Giles, and TPRietrzykowski. Prograph: A step towards
liberating programming form textual conditioning. [BEE Workshop on
Visual Language, pages 150-156, Rome, Italy, October 1989.

D. Cheng. A survey of parallel programming tools. Technical Report RND-
91-005, NASA Ames, May 1991.

Uli H. Chi. Formal specification of user interfaces: A comparison and
evaluation of four axiomatic approach&SEE Transactions on Software
Engineering, 11(8):671-685, August 1985.

C. Holt in Report on E-mail Panel: Is Visual Programming a New
Programming ParadigmZEE Workshop on Visual Languages 1991.

C.Chow and SLam. Prospec: An interactive programming environment
for designing and verifying communication protoc¢EEE Transactions
on Software Engineering, 14(3):327-338, March 1988.

B. Liskov. A history of CLUProceedings of the Second ACM SIGPLAN
History of Programming Languages Conference (HOPL-11). ACM
SIGPLAN Notices. V28, Number 3, March 1993.

Bruno CourcelleHandbook of Theoretical Computer Science, volume B -
Formal Models and Semantics, chapter 5 - Graph Rewriting: An Algebraic
and Logic Approach, pages 194-242. Elsevier, Amsterdam, 1990.

K Jensen, Colored Petri Nets: A High Level Language for System Design
and Analysisin Advances in Petri Nets 1990 LNCS no.483, Springer,
Berlin NY 1990, pp. 342-416..fn our opinion, all users of CP-nets (and other

kinds of Petri-nets) are forced to make simulations - because it is impossible to
construct a CP-net without thinking about the effects of the individual transitions.

Thus the proper question is not whether the modeller should make simulations or

not, but whether he wants computer support for this activity. With this rephrasing

the answer becomestrivial: Of course we want computer support..”

L. Chang and BSmith. Classification and evaluation of parallel
programming tools. Tech Rept CS90-22, Dept. of Comp. Sci. Univ. of New
Mexico, 1990.

M. Frohlich, M. Werner. daVinci. Ver 1.1 User Manual. Tech Report Univ.
Bremen August 1993

Nate Dean. Viewing and analyizing graphs with netpaéProteedings of
the DIMACS Workshop, March 1992.

Davis, Keller. Data Flow Program Graphs| EEE Computer Special |ssue
on DataFlow Langauges. 1982

[DH89]

[Dil90]

[Dix91]
[DP83]

[Dye89]

[E. 90]

[ea85]

[ea91]

[EGF91]

[Ehr87]

[Ehr90]

[ELNY92]

[ENRS2]

184

R.Davidson and DHarel. Drawing graphs nicely using simulated
annealing. Technical Report CS89-13, Weizmann Institute of Science, July
1989.

Antoni Diller. Z - A Introduction to Formal Methods. John Wiley and Sons,
Chichester, 1990.

Alan John Dix.Formal Methods for Interactive Systems. 1991.

Dipayan Gangopadhya formal system for network databases and its
applications to integrity based issues. Ph.D. Thesis, University of Texas,
Dept. of Computer Sciences 1983.

R.Dye. Labview : A visual data-flow programming language and
environment. Master’s thesis, Dept. of Elec. and Comp. Eng. University of
Texas at Austin, 1989.

E. Kant, F. Daube, W. MacGregor, J. Wald. Synthesis of mathematical
modelling programs. IMathematica Conference Proceedings, Redwood
City, CA, January 1990.

D. Notkin etal. The GANDALF Project.The Journal of Systems and
Software, 1985.

J.Werth etal. The interaction of the formal and practical in parallel
programming environment development: Code. Tech. Rep. TR-91-09,
Dept. Comp. Sci., Univ. Texas at Austin, 1991.

M. Blattner E.Glinert and CFrerking. Visual tools and languages:
Directions for the 90's. IWorkshop on Visual Languages, pages 89-95.
IEEE, 1991.

Hartmut Ehrig, editorGraph-grammars and their application to computer
science : 3rd international workshop. Springer-Verlag, Warrenton,
Virginia, USA, December 1987. LNCS291.

Hartmut Ehrig, editor. Graph-Grammars and their Application to
Computer Science: 4th International Workshop. Springer-Verlag, Bremen,
Germany, March 1990. See discussion page 41.

G.Engels, CLewerentz, MNagl, WSchafer, and Achurr. Building
integrated software development environments partl: Tool specification.
ACM Transaction on Software Engineering and Methodology,
1(2):125-167, April 1992.

Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozenberg, edi@naph-
grammars and their application to computer science : 2nd international
workshop. Springer-Verlag, Haus Ohrbeck, October 1982. LNCS153.

[EnvI2]

[ERL9O0]

[ET89]

[ET++89]

[F86]

[FA90]

[FLS93]

[Fol93]

[GDro3]

[GH8O]

[GH78].

[Got89]

[Got92]

[GNVS88]

[Grahm]

[GS92]

185

InteractiveDevelopment Environments. Software through pictures, 1992.
595 Market Street, San Fransisco CA94105.

H. EI-Rewini and TG. Lewis. Task grapher: A tool for scheduling parallel
program tasks. IProceedings of the 5th Distributed Memory Computing
Conferencepages 1171-1178, Charleston So. Carlonia, April 1990.

P.Eades and Rlamassia. Algorithms for automatic graph drawing: an
annotated bibliography. Tech Report CS-89-09, Dept. of Comp. Sci.,
Brown Univ., 1989.

A. Weinand, E. Gamma, R. Marty. Design and implementation of ET++ a
seamless object-oriented application framewstkuctured Programming
Voll No. 2 1989.

F. Feldbrugge and K. Jensen. Petri Net Tools Survey. Petri Nets: Central
Models and Properties. lAdvances in Petri Netpages 20-61, Berlin,
1986. Springer-Verlag. LNCS 254.

D. Workman FArefi, C. Hughes. Automatically generating visual syntax-
directed editorscCommunications of the AGN83(3), March 1990.

Workshop on State in Programming Languages (SIPL), June 12
Copenhagen, Denmark..

J. Foley. A Second Generation User Interface Design Environment: The
Model and the Runtime Architectureroceedings of CH93.

Graph Drawing ‘93 ALCOM International Workshop on Graph Drawing
and Toplogical Graph Algorithms. September 1993. Paris.

J.Guttag and Jornig. Formal specification as a design toolPhoc. 7th
Symp. Principles of Programming Lang.CM, 1980.

J. Guttag and J. Hornin@.he Algebraic Specification of Abstract Data
TypesActa. Inform, vol. 10. 1978.

H. Gottler, Graph grammars, a new paradigm for implementing visual
languages. Ifurographics’'89 pages 505-516, 1989.

H. Gottler, Diagram editors = graphs + attributes + graph grammars.
Man-Machine Studiefl992) 37,481-502.

E. Gansner, SNorth, and KVo. Dag - a program that draws directed
graphs.Software Experience and PractjcE8(11):1047-10621047-1062,
November 1988.

M. Vanter, S. Graham, R, Ballance. Coherent user interfaces for language-
based editingint. J. of Man-Machine Studié$o 37 1992 pp. 431-466.

E.P. Glinert and PD. Stotts. Special issue on visual languages and

[Har87]

[Har8ss]

[HC88]

[HC90]

[HE91]

[HH&N92]

[Him89]

[HO]

[Hoare75]

[Hun9O]

[It85]

[IPSEN92]

[ITCLY4]

[J88]

186

concurrent computinglournal of Visual Langauges and ComputiB),
June 1992.

David Harel. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programmjrgy231-274, 1987.

D. Harel. On visual formalism€ommunications of ACMB1(5):514-529,
May 1988.

A. Hough and JCuny. Initial experiences with a pattern-oriented parallel
debugger. InProceedings of the 1988 Workshop on Parallel and
Distributed Debugging pages 195-205. ACM, 1988. also SIGPLAN
Notices 24(1).

A. Hough and JCuny. Perspective views: A technique for enhacing
parallel program visualization. Coins Technical Report 90-02, University of
Massachusetts at Amherst, January 1990.

Michael Heath and Jennifer Etheridge. Visualizing the performance of
parallel programdEEE Softwargpages 29-39, September 1991.

J. Hummel, L. Hendren, A. Nicolau. A language for conveying the aliasing
properties of dynamic, pointer-based data structutesernational
Conference on Parallel Processin§92.

Michael Himsolt. Graphed: An interactive graph editor. SRACS ‘89
1989.

Jack Hagemeister and Paul Oman. Powerful CASE on the Mac. product
review, [EEE Computeduly 1992.

C.A.R. Hoare. Recursive data structuredl. Journal of Computing and
Information Scienced/ol. 4, No. 2 1975.

N. Hunt. Idf: A graphical data flow language for image processing and
computer vision. INREEE Conf. on Systems, Man, and CybernetiEEE,
Nov 1990.

Xerox Artificial Intelligence Systems, Pasadena, G¥erlisp-D Reference
Manual October 1985.

G. Engels, C. Lewerentz, M. Nagl, W. Schafer, A. Schurr. Building
Integrated Software Development Environments Partl: Tool Specification.
In ACM Transactions on Software Engineering and Methodolégyil,

Vol. 1, No. 2, 125-167, 1992.

M.. McLennan, Object-Oriented Programming with [incr Tcl]. Seminar at
Tcl/Tk Workshopuhe 20-25, 1994, in New Orleans, LA.

David Jablonowski et al. GMB - IACM SIGGRAPH Symposium on User

[Jabo0]

[Jac85]

[JG89]

[IM88]

[K&S93]
[Kan9o]

[KidSim94]

[KKS88]

[Klint93]

[KN9O]

[KS84]

[KS90]

[Lam90]

[Lan87]

187

Interface Software, Banff, Canada, March 1988.

David Jablonowski. Gmb: Graph manager / browser. Technical Report
CSRD 968, Center for Supercomputing Research and Development, Univ.
of Illinois, February 1990.

R.J.K. Jacob. A state transition diagram language for visual programming.
Computer, 18(8):51-59, August 1985.

David Jablonowski and Vincent Guarana. Gmb - a tool for manipulating
and animating graph structureSoftware Practice and Experience,
19(3):283-301, March 1989.

A. Jahanian and AMok. Modechart: A specification language for real-time
systemsl|EEE Transactions on Software Engineering, 1988.

N. Klarlund, M. Schwartzbach. Graph TypB©OPL 1993.

Elaine Kant. Automated program synthesis. Industry Leaders in Computer
Science and Electrical Engineering Distinguished Lecture Series Video,
May 1990. University Video Communications.

D. Smith, A. Cypher, J. Spohrer; KIDSIM: Programming Agents without a
Programming Langaug€ommuincations of the ACM July 1994, pages 55-
66.

Hyoung-Joo Kim, Henr§. Korth, and Avi Silberschatz. Picasso: A
graphical query langauge.Software Practive and Experience,
18(3):169-203, March 1988.

P. Klint A Meta-Environment for Generating Programming Environments.
ACM Transaction on Software Engineering Methodology Vol 2, April
1993.

D. Kimelman and TNgo. Program visualization for rp3: An overview.
Technical Report RC 15917, IBM T.J. Watson Research Center, July 1990.

P.Kruchten and ESchonberg. The ada/ed system: A large scale experiment
in software protoypingTechnique et science informatiques, 3(3):179-185,
1984.

A. Karrer and WScacchi. Requirements for an extensible object-oriented
tree/graph editor. IRroceedings of ACM Third Annual Symposiumon User
Interface Software and Technology, pages 84-91, 1990.

L. Lamport. A temporal logic of actions. Tech. Ref®ff Digital Research
Center, 1990.

D. Lange. A formal approach to hypertext using post-prototype formal
specification. INTERCHI

[LD8S5]

[LER92]

[LevO2].

[LMCF90]

[Loy91]

[MDB87]

[Mey90]

[MK92]

[Min92]

[Mol85]

[Mot93]

[MR92]

[MSWin]

[Nat87]

[NB92]

188

RalphL. London and Robea. Duisberg. Animating Programs Using
Smalltalk.IEEE Computer, pages 61-71, August 1985.

T.G. Lewis and HEI-Rewini. Introduction to Parallel Computing,
chapterl2. Prentice-Hall, 1992.

M.R. Levy Data types with sharing and circulafiy.D. Thesis Dept. of
Computer Science, University of Waterloo 1978.

T. LeBlanc, JMellor-Crummey, and Rrowler. Analyzing parallel
program executions using multiple views. Technical Report TR90-110,
Rice University, January 1990.

JosephPatrick Loyall. Specification of Concurrent Systems Using Graph
Grammars. PhD thesis, Dept. of Comp. Sci., Univ. of lllinois, Urbana-
Champaign, May 1991.

B. H. McCormick, T.A. DeFanti, and MD. Brown. Special issue on
visualization in scientific computing.Computer Graphics, 21(6),
November 1987.

B. Meyer.Introduction to the Theory of Programming Languages. Prentice
Hall, 1990.

J.Magee and Xramer. Mp: A programming environment for
multicomputers. InProc. of Working Conference on Programming
Environments for Parallel Computing, Edinburgh, April 1992. Springer-
Verlag. IFIP WG10.3.

Interacting with structure-oriented editoisit. J Man-Machine Sudies
(1992) 37,399-418

B. Moller On the algebraic specification of infinite objects - ordered and
continuous models of algebraic typesActa Informatica 22 p.537-578
1985.

V. Quercia, T.O'Reilly Volume 3M: X Window System User's
Guide:Motif Edition 2nd Edition January 1993 ISBN: 1-56592-015-5.

BradA. Myers and ManBeth Rosson. Survey on user interface
programming. Tech. Rpt. CMU-CS-92-113, Carnegie-Mellon, School of
Comp. Sci., February 1992. To appear in Proceedings SIGCHI'92.

C. PetzoldProgramming Windows 3.1, Microsoft Press Books - ,ISBN: 1-
55615-395-3, 1992.

National Instruments Corp., 12109 Technology Blvd. Austin, Texas.
LabVIEW: a demonstration, 1987.

P.Newton and JC. Browne. The Code2.0 graphical parallel programming

[New94]

[NUH89]

[Nuto1]
[OMT91]
[OPP89]
[Ousto4]
[Pan91]
[Pauss]

[Pau]
[Pet81]

[PL88]

[Pou94]

[PT90]

[RC89]

[RDM*87]

189

language. IProc. ACM Intl. Conf on Supercomputjniyly 1992.

Peter Newton. A Graphical Targetable Parallel Programming
Environment and its Efficient ImplementatiéthD thesis, Dept. of Comp.
Sci., The University of Texas at Austin, 1994,

H. Kawata N.Uchihira and SHoniden. A concurrent program synthesis
using petri net and temporal logic in mendels-zone. Tech. Rep. 449, ICOT,
Jan 1989.

G. Nutt. A simulation system architecture for graph modelddwances in
Petri Nets Berlin, 1991. Springer-Verlag.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Loren®éiject-
oriented modeling and desigRrentice Hall, 1991.

Joseph Oliger, Ramani Pichumani, and Dulce Poceleon. A visual object-
oriented unification system. Technical report, Center for Large Scale
Computing, Dept. Comp Sci., Stanford Univ., 1989.

J. Ousterhouflcl and the Tk ToolkitAdison-Wesley, Reading MA, 1994

Bhalchandr&hankar Pandit. A syntax directed editor for code. Master’s
thesis, Dept. of Comp Sci., Univeristy of Texas at Austin, 1991.

FrancedNewberry Paulisch. An interface description language for graph
editors. InWorkshop on Visual LanguageEEE, 1988.

L. PaulsonML for the Working Programme€ambridge University Press.

J. PetersonPetri net theory and the modeling of systefientice-Hall,
Englewood ClIiff, 1981.

Uwe Pleban and Peter Lee. An automatically generated, realistic compiler
for an imperative language. BIGPLAN '88 Conference on Language
Design and Implementatippages 222—-227, Atlanta Georgia, June 1988.
ACM.

A. Poulovassilis, M. Levine. A nested-graph model for the representation
and manipulation of complex objec&SCM Transactions on Informations
System&/ol 12 No. 1 Jan 1994 pages35-68.

FrancedNewberry Paulisch and Walter Tichy. Edge: An extendible
graph editorSoftware-Practice and Experiencg1(20), June 1990.

G.Roman and KCox. A declarative approach to visualizing concurrent
computationslEEE Computer1989.

L. Rowe, M.Davis, E.Messinger, CMeyer, C.Spirakis, and ATuan. A
browser for directed graphsSoftware Practice and Experience

190

17(1):61-76, 1987.

[Rob87] Gabriel Robins. The ISI grapher: A portable tool for displaying graphs
pictorially. In Symboliikka 87Helsinki, Finnland, August 1987. Also Chp
12. Multicomputer Vision, 1988 Academic Press.

[RTB88] EnricoNardelli RobertoTamassia and Carlo Batini. Automatic Graph
Drawing and Readability of DiagramEEE Transactions on Systems, Man
and Cyberneticsl8(1):61-79, January-February 1988.

[SBN8S] D. Socha, MBailey, and DNotkin. Voyeur: Graphical views of parallel
programs. InProceedings of the 1988 Workshop on Parallel and
Distributed DebugginglEEE Workkshop On Visual Languagesyes
206-215, New York,NY, 1988. ACM. also SIGPLAN Notices 24(1).

[SBY87] R. G. Smith, PS. Barth, and R.. Young. A Substrate for Object-Oriented
Interface Design. In BShriver and PWegner, editors, Research
Directions In Object-Oriented Programmingages 253-315. MIT Press,
Cambridge, MA, 1987.

[ShMB88] S. Shlaer, S. MelloObject-oriented systems analysis : modeling the world
in data N.J.,Yourdon Press, Englewood Cliffs, 1988.

[Shu] Nan C. Shu, Visual Programming, Van Nostrand Rheinhold, NY, 1988.
[ShuQBE] Nan C. Shu, Chapter 11, Visual Programming, Van Nostrand Rheinhold,
NY, 1988.

[ShuFol] J.D. Foleyin Visual Programming, Nan C. Shu ed., page "Mfhen a
person uses an interactive graphics system to do real work, he wants the system to
virtually disappear from his conciousness so that only his work and its ramification
have a claim on his energy”

[ShuGRASE]Nan C. Shu Chapter 9, Visual Programming, Van Nostrand Rheinhold, NY,
1988.

[ShuJLin] Nan C. Shu Chapter 9, Visual Programming, Van Nostrand Rheinhold, NY,
1988.

[ShuPBH] Nan C.. Shu, Chapter 5, Visual Programming, Van Nostrand Rheinhold,
NY, 1988.

[ShuPICT] Nan C. Shu, Chapter 10, Visual Programming, Van Nostrand Rheinhold,
NY, 1988.

[ShuVLdef] Definition of Visual Programming in Nan C. Shu, Visual Programming: :
“Visual Programming - the use of meaningful graphic representations in the
process of programming”

[Sil92] Silicon Graphics Inclris Explorer’ User's Manual Jan 1992.

[Spi8s]

[SS92]

[SSW'92]

[Sta90]

[Sta91]
[Sto88]

[Sto90]

[STP93]

[Sur82]

[Sze93]

[Szw87]

[Tho90]

[TR81]

191

J.Spivey. Understanding Z - A Specification Language and its Formal
SemanticsCambridge Univ. Press, 1988.

S. Sistare. Data visualization and programming in the prism programming
environment. In Proc. of Working Conference on Programming
Environments for Parallel Computindgdinburgh, April 1992. Springer-
Verlag. IFIP WG10.3.

D. Szafron, JSchaeffer, P.S. Wong, Ehan, PLu, and CSmith. The
enterprise distributed programming modelPhoc. of Working Conference
on Programming Environments for Parallel Computigglinburgh, April
1992. Springer-Verlag. IFIP WG10.3.

JohnT. Stasko. The path-transition paradigm: A practical methodology for
adding animation to program interfacdsurnal of Visual Languages and
Computing 1:213-236, 1990.

Stardent Computer IN&VS Reference Manydl991.

D.P. Stotts. The PFG Language: Visual Programming for Concurrent
Computation Expressing High-Level Visual Concurrency Structures in the
PFG Kernel Language. limt. Conf. on Par. Pro¢.pages 72-79, August
1988. Vol2: Software, Univ Maryland.

P. Stotts Graphical Operational Semantics for Visual Programming. in
Visual Languages and Visual ProgrammiiggK Chang 1990

Interactive Development Environment’s “Software Through Pictures”. 595
Market Street San Fransisco CA94105. System reviewed by P. D. Stotts in
Tools Review: ‘Software through Pictures’ from IDE Inc.Journal of
Visual Languages and Computi(itp93) 4, 201-209.

Bernard Surfin. Formal specification of a display oriented text editor.
Science of Computer Programmijr{@):157—202, 1982.

P. Szelky, P. Luo, R. Neches Beyond Interface Builders: Model Based
Interface ToolsHuman Factors in Computing Systems INTERCHS
pages 383-390. Amsterdam 24-29 April 1993

Gerd Szwillus. Cegs - a system for generating graphical editors. In
H. Bullinger and BSchakel, editorsHuman-Computer Interaction -
Interact ‘87. Elsevier, 1987.

GregoryS. Thomas. Xsim 2.0 user’s guide. ftp cs.washington.edu, April
1990. Dept. of Comp Sci. Univ Washington.

T. Teitelbaum and TReps. The cornell program synthesizer.: a syntax-
directed programming environmenCommunications of the ACM
24(9):563-573, Sept. 1981.

[Tur92]

[VLWKs]

[VZMC92]

[XTANGO]

[YNTL8S]

192

Russel TurpinProgramming Data Structures in Logic. PhD thesis, Dept.
of Comp. Sci., The University of Texas at Austin, 1992.

Proceedings of the IEEE Workshop on Visual Languages. 1990, October
Skokie Illinois; Proceedings of the IIEE Workshop on Visual Languages
1991, October Kobe Japan; 1994 (10#E5E/CSInternational Symposium
on Visual Languages, October 1994.

Lynette van Zijl, Deon Mitton, and Simon Crosby. A tool for graphical
network modelling and analysiSEEE Software, pages 47-54, January
1992.

J. T. Stasko. Tango: A framework and system for algorithm animation.
Computer v 23 n 9 Sep 1990, pp 27-39.

J. T. Stasko. Simplifying algorithm animation with TanBooceedings of
the 1990 | EEE Workshop on Visual Languages, pp 1-6.

S.S. Yau, RA. Nicholl, J.J.-P. Tsai, and S.-S. Liu. An Integrated Life-
Cycle Model for Software MaintenanddeEE Transactions on Software
Engineering, 14(14):1128-1144, August 1988.

Vita

Michiel Florian Eugene Kleyn was a born a citizen of the Netherlands
in Tripoli, Libya on August 15, 1961, the son of HenrKfeyn and Johanna M-
C. Kleyn-Hillen. After graduating from St. PaslSchool in London in 1979,
he enrolled at Imperial College, University of London, where he received the
degree of Bachelor of Science in Electrical Engineering in 1983 and of Master
in Computing Science in 1984. After four years in the Systems Science Depart-
ment at the Schlumbger Research Laboratory in Connecticut on graphical
user interfaces and object-oriented programming, he entered the Graduate
School of the University ofdxas in September 1989. While enrolled at the
University of Texas, he also worked at Schlumgper Austin Systems Center
on computer graphics and parallel programming.

Permanent address: 3A Bennett Park, Blackheath, London.

This dissertation was typed by the author

