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Debugging is a process that involves establishing rel ationships be-
tween several entities: The behavior specified in the program, P, the model/-
predicate of the expected behavior, M, and the observed execution behavior,
E. Thethesis of the unified approach isthat a consistent representation for P,
M and E greatly simplifies the problem of concurrent debugging, both from
the viewpoint of the programmer attempting to debug a program and from the
viewpoint of theimplementor of debugging facilities. Provision of such acon-
sistent representation becomes possible when sequential behavior is separated
from concurrent or parallel structuring. Given this separation, the program be-
comes a set of sequential actions and relationships among these actions. The
debugging process, then, becomes a matter of specifying and determining rela-
tions on the set of program actions. The relations are specified in P, modeled in
M and observed in E. This simplifies debugging becauseit allows the program-
mer to think in terms of the program which he understands. It also simplifies
the development of a unified debugging system because all of the different ap-
proachesto concurrent debugging become instances of the establishment of re-
| ationships between the actions.
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The unified approach defines aformal model for concurrent debugging
in which the entire debugging processis specified in terms of program actions.
The unified model places all of the approaches to debugging of parallel pro-
grams such as execution replay, race detection, model/predicate checking, exe-
cution history displays and animation, which are commonly formulated as
digioint facilities, in asingle, uniform framework.

We have also developed afeasibility demonstration prototype imple-
mentation of thisunified model of concurrent debugging in the context of the
CODE 2.0 parallel programming system. Thisimplementation demonstrates
and validates the claims of integration of debugging facilitiesin asingle
framework. It isfurther the case that the unified model of debugging greatly
simplifies the construction of a concurrent debugger. All of the capabilities
previously regarded as separate for debugging of parallel programs, both in
shared memory models of execution and distributed memory models of execu-
tion, are supported by this prototype.
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Chapter 1.  Introduction

Debugging is aprocess that establishes arelationship between the pro-
gram (typically some small segment of alarge program) and its execution be-
havior. The processinvolves several entities and relationships between those
entities. It starts with a program that has been observed to produce invalid fi-
nal statesfor one or moreinitial states. The segment of the program that is sus-
pected of being faulty is selected for monitoring. Expectations about the
execution behavior of the suspect program segment are specified in amodel or
apredicate. The programis, then, run and its actual execution behavior is ob-
served. The actual execution behavior is checked against the model/predicate
to reveal any unexpected behavior. Mapping of the unexpected behavior back
to the program brings the programmer closer to the bug. This completes one
cycle of aprocessthat isrepeated until the bug islocated.

The entities involved in the debugging process include the program, P,
the model/predicate of the expected behavior, M, and the actual execution be-
havior, E. Ideally M and E should be expressed in a representation consistent
with the program P so that the programmer is not forced to understand and ma-
nipulate several different notations. Additionally, the facilities provided by a
debugger in each part of the debugging process should help in manipulating
and establishing relationships between the entitiesinvolved in that part of the
process.

Debugging of even sequential programs becomes difficult when debug-
gersfor conventional text string languages use unrelated and typically infor-
mal representations for M and E. The problem exacerbates for concurrent
programs written in pure text forms which often require adifferent representa-
tion for each of the three entities; P, M and E. Such programs often express
concurrency by adding synchronization and communication primitivesto the
sequential text. This produces a complex entanglement of the concurrent con-
siderations of synchronizations and communications with the sequential con-
siderations of flow of control and flow of data. This entanglement givesriseto
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ambiguities among various parts of the debugging process for concurrent pro-
grams by turning each part of the process into a separate problem
(Section 2.2). These ambiguities obscure the relationship between the differ-
ent representations used for the entities. Debugging facilities that establish re-
lationships among P, M and E appear to be incompatible or even orthogonal .
Incompatibility of the facilities for different parts of concurrent debugging
forcesthe programmer to either use different facilities for different parts of the
cycle or debug without them. Use of multiple representationsfor B, M and E
typically compelsthe debuggersto either constrain the range of behaviorsthat
can be checked [ReSc94]; or to tolerate the ambiguitiesin the observed behav-
ior [EGP89], [HMW90], [NM91a]; or to demand extra programming effort
[SBN89], [LMF9Q], [Bat89].

Using separate representations for different portions of the debugging
process introduces special problemsinto the debugging of concurrent or paral -
lel programs. Many approaches to debugging parallel programs appear to be
different when approached conventionally. Thereisalong list of supposedly
different debugging facilitiesfor concurrent programs: execution replay facili-
ties[LM86], [MiC89], [Net93], race detection facilities[NM91b], [ Sch89],
predicate/model checking facilities [Bat89], [HsK90], [WaG91], execution
history displays [Pau89], [FLM89], [H091] and animation facilities [PaU89].
Thismultiplicity of different views of concurrent debugging forces the pro-
grammer to learn many different representations (Section 2.1.2).

1.1 The Unified Approach

Thethesis of our approach isthat a consistent representation for all of
the different entities (P, M and E) involved in the debugging process greatly
simplifies the problem of concurrent debugging, both from the viewpoint of
the programmer attempting to debug a program and from the viewpoint of the
implementor of debugging facilities. Provision of such a consistent representa-
tion becomes possible when sequential behavior is separated from concurrent
or parallel structuring. Given this separation in the representation, the pro-



gram becomes a set of sequential actions and relationships among these se-
guential actions. The abstractions in this representation, which anedef
below, have a natural graphical representatior.Will use the graphical repre-
sentation in all of our discussions, although textual representations capturing
the graphical structures are equivalent.

The debugging process for concurrent programs, then, becomes a mat-
ter of specifying and determining relations on the set of program actions.
These are specd in the program, modeled in the expected behavior and ob-
served (recorded) in the actual execution behavior (Chapter 3). This sasplif
the task of debugging because it allows the programmer to think in terms of
the program which he understands. It also allows for the automation of the te-
dious tasks of establishing relationships between the entities. Moreébger
use of actions allows a clean separation between the measurement parts of a
debugging tool and the analysis parts of debugging tools. This separation
makes the task of the developer of the debugging systems for concurrent pro-
grams much more simple as all of thefdient approaches to debugging of
parallel programs become instances of the establishment of relationships be-
tween the prograrg’actions.

1.1.1  TheAbstraction of Computation Actions

Def. 1-1 An action is an operation for which there exists a known
input/output relation for a given initial state.

Although concurrent debuggers bhef execution events to be the exe-
cution occurrences of program actions, they often leave the g@e@hs of
actions implicit. Unlike other approaches that typically use events, the ap-
proach described in this dissertation is formulated in terms of actions. The uni-
fied model of concurrent debugging formalized in Chapter 3, debugs the
concurrent behavior in terms of relations on the sebwputation actions:

Def. 1-2 A computation action is a piece of program text that starts and/or
ends with a synchronization statement.



The abstraction of computation actions and the “causality” of their de-
pendence relations allows the ued approach to disentangle concurrent syn-
chronization and communication from sequentiahfof control andlbw of
data. A computation action can be viewed as consisting of three parts as
shown in Figurel-1. (i) A condition speciéd on the actios input dependenc-
es that determines when the action should start its execution. (ii) A sequential
computation that the action will execute. And, (iii) a condition spegtibn the
action’s output dependences that determines what follows after its execution.
Thus, computation actions interact with each other through their dependences.
They start executing their internal sequential computation when their input de-
pendences are satisl. They end execution by enabling data on their output
dependences.

Input Figurel-1. Abstraction of a
Dependences computation action.
Condition
Sequential
Text
Condition
A Output

Dependences

The abstraction of a computation action decomposes the concurrent de-
bugging problem into two almost disjoint problems that can be approached at
different levels. A programmer debugs the concurrent state (SEcfd) at
the upper level, where the only important concerns are the relations on the set
of computation actions. Internal states of a computation aat@not impor-
tant at this level. They only become important when the programmer moves to
the lower level, inside the action to debug the internal sequential computation
of the action.

The use of computation actions provides a graphical representation for
the program where nodes are the computation actions and where arcs represent
the dependences between the actions. Oatads well as shared data depen-



dences are represented. Computation actions are naturally available in graphi-
cal visual programming languages like CODE 2 [New93], the language for
which we have implemented the ued debugger (Chapter 4). Computation
actions can also be obtained from a textual representation of the program as ex-
plained in Appendix A.

1.1.2  Program and its Execution

The key concept in providing a consistent representation is that both
the structure of a program and its execution behavior have natural representa-
tions as graphs when actions are represented at an appropriate level of abstrac-
tion. The program, Rs a directed graph (perhaps notidedl until runtime,
Section3.1) whose nodes are sites for the execution of computation actions,
and arcs are the dependences with which the actions synchronize and commu-
nicate. There are also hypedges between nodes representing shared data-de-
pendences between actions (Sec8o).

The execution, E, of a program (Sect®R) is the traversal of the runt-
ime instantiation of the program graph starting with an assignment to an initial
state, until the instantiation of en&l state. Taversal of the graph causes exe-
cution of actions at the nodes and generates a partially ordered set of execution
occurrences of actions or events.

Def. 1-3 An event is an execution of the action at a node of the program
graph.

Therefore, each event maps to the action of which it was an execution
occurrence. This provides a unique idaatifor each event that consists of the
id of the action and its execution count. The unique idensifalllow the debug-
ger to record the execution, E, as a partial order on the set of events. As each
action is capable of executing multiple number of times, the recorded partial
order is a “pomset” [Pra86]; a partial order on the multi-set of occurrences of
actions as events (Secti@r2.2).



In the recorded partial-ordethe orderings indicate much more than a
mere temporal ordemhey indicate (dataddw and shared-data) dependences
that “cause” the actions to execute at the nodes. A debugger can, then, collect
the dependence information from the orderings dedént executions of the
same action, and deduce the conditions that govern the execution of the action
(Section3.2.2). Therefore, a programmer can describe the expected behavior
M, as some conditions on the expected dependences of selected actions. Then,
the debugger can observe the execution orderings of those actions, and deduce
the conditions governing their execution. It can raise an exception if they
don’t match the expected behavior (Sect®8). This guides the programmer
towards the dending action. Thus,

Def. 1-4 Debugging is the process of identifying those actions of the
program that are responsible for the failure of the program to
meet its final state specification.

1.2 The Debugging Process

The use of actions by the umifl model of concurrent debugging pro-
vides a consistent representation for all the entitieM(Rnd E) involved in
the debugging process (Chapter 3). This not only simeplthe task of the pro-
grammey but also simplies the provision of debugging facilities that estab-
lish relationships between the entities. The feasibility demonstration
prototype of the uniéd model of concurrent debugging has been implemented
in the CODE 2 environment (Chapter 4). It covers all theed#ht parts of the
debugging process and provides facilities that:

1. Record and display the actual execution behavior of the program.
2. Restrict the recorded execution behavior to selected actions of the program.
3. Allow the user to specify a model/predicate of the expected behavior

4. Automate the checking of the expected behavior



5. Display any unexpected behavior that is detected during checking. This dis-

play allows the user to map the unexpected behavior to the program.
6. Provide post-restriction of the recorded information to selected actions.
7. Make cyclical debugging possible by providing a replay capability

8. Provide support for interactive debugging.

Note that the provision of all of the above facilities is made possible by the
same recorded information; nametiiye “causal” orderings among the execu-
tions of actions (Chapter 3).

1.2.1 Block Triangular Solver Example

A parallel program for a Blockrfangular Solver algorithm is used to
illustrate the debugging process. The problem is to solve the systerh for
a dense lower triangular matix The algorithm is quite simple and involves
dividing the matrix and the vector into blocks as shown in Figure 1-2(a). Each
“a” in the figure represents a sub-matrixAfand each “b” represents a sub-
vector ofb. Let the number of sub-blocks ble

The algorithm replacds with the solution vectox. The case foN =4
is shown in Figure 1-2(b). Notice that ongenas been computed, the opera-
tions = b - g jb; can be performed in parallel for i = j+1 to N. Thus, the algo-
rithm proceeds iterativeJyvorking on columns of the blocked system one at a
time from left to right.

Let Solve be a sequential function that solves this problem (applied to a
single block).
To process the j-th colum do
Sol ve(aj j, bj);
for each i fromj+1 to N do
bi = bi - ai’j * ij
Each of the iterations of tifeor loop can be done in parallel. Lidtult
be a computation that does = b; - a; j*b;. The parallelism in this algo-
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Figurel-2. (a) Matrix,A and vectorb. (b) Replacindg with vectorx.

rithm stems from the ability to perform tiMeult computations “beneath” the
Solve computation for a column in parallel. This is readily seen in the data-
flow graph for the algorithm as shown in Figure 1-3. T$ienbdes are calls to
Solve and the in” nodes are calls tM ult.

b1—>5 :Xl

:X2

—»SZ
4<‘ —»S :X3

b3—>m1 —»mz —>m3 —>sS ,—> X4

4

Figurel-3. Data-flow for Block Tiangular Solver

Figure 1-4 shows an implementation of this program in the CODE 2
graphical/visual parallel programming environment. NBds sends the ap-
propriate segments @fto the nodes that perform ts@ndm operations of
Figure 1-3. A single instance of no8elve performs, one after anothexll of
thes operations, wherea$-1 instances of nod& ult perform them opera-



tions. Node Gath collects the segments of x from each execution of the Solve
node and combines them into the single vector x. The arc leaving M ult implies
aniteration. First s, isdone, and then mi1 isperformed in parallel by Mult |n
stances whose indices range fromi = 1..N-1. Next s, is done followed by m'2
performed in parallel by Mult instances whose indices range fromi = 2..N-1,
and so on.

) B_IN [ = -- the natrix O n -- size of matrix
-- size of block sys
C Dist O w
-- size of a block
Solve O blk
Hult Gath
X ouT

Figure 1-4. CODE 2 Graph for Block Triangular Solver (DoBTS)

Note that the nodes of a program graph are type templates. The number
of instances of a node that actually execute is determined at runtime
(Section 4.2.1). In the above example, at runtime, there were N-1 executable
instances of node M ult and one instance each of nodes Solve, Dist and Gath.
Note the distinction between the nodes specified in Figure 1-4 and their exe-
cutable instances at runtime. The instances of templates are the executable
computation actions of the unified model of concurrent debugging described
in Chapter 3, and are referred to as computation actions or actions.

1.2.2 Different Parts of the Debugging Process

Suppose that a deliberately introduced bug in the above example caus-
es a sequencing error between Solve and M ult actions. The execution of this
bugged version starts with an initial state where N=4, and terminates with a
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segmentation fault. @/now follow the diferent steps of the debugging pro-
cess:

1. Identify and select the portions of the program whose behavior is to be moni-
tored.

This is a set of “suspect” nodes or subgraphs. Note that it is typically
impossible to monitor the entire execution behavior of thgel@omplex pro-
grams which are actually the ones that need debugging. The visual/graphical
representation of P makes the selection of suspect portions of the program
easy In our example, we can click on tBelve andMult nodes of the graph
of Figure 1-4 to inform the debugger that they need to be monitored. The de-
bugger makes additional preparationsitief out event executions of other
nodes likeDist andGath (Section3.3.2). This greatly helps in later steps as
much of the irrelevant information is filtered out.

2. Specify the expected execution behavior of the set of nodes that are to be
monitored.

The natural mode of representation of execution behavior for graphical
programs is the partially ordered set of events expected to be generated by the
execution of the actions at the nodes of the suspect subgraphs. Let us call this
representation, M, for Model of the expected execution behaVids given
as a partially ordered set of eventse ¥an either construct this set of events
directly, or construct a graph of actions whose execution will generate the de-
sired partially ordered sets of events (SecBds). In this case, we specify M
by drawing a graph d¥lult andSolve. See Figure 1-5(a). In the dalaw de-
scription of Figure 1-3, note thgtindicates thafolve works on the-th sub-
block when it executes forth time. Andmji indicates that theth instance of
Mult works on the-th sub-block when it executes for thhth time. The speci-
fication of the expected behavior can, then, state that if an executsotvef
is preceded by an execution dffailt action, then the index of tiMult action
is equal to the block number on which it worked. Note in Figure 1-3nihat
precedes,, m?, precedes; andm; precedes,.
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Figurel-5. (a) Graph of M, (b) Graph of E, (c) Elaborated graph of M

3. Capture the execution behavior of the selected portions of the program.

This is a partially ordered sequence of events that actually occurred in
the execution (SectioB.2). Let us call this partially ordered set of events E.
This is obtained by annotating the program graph with spatiéns to record
only the events and the orderings resulting from the execution of the suspect
nodes or subgraphs. The selectioaflt andSolve nodes in step 1 produced
such an annotation. As a result, the actual execution behavior observed by the
debugger as shown in Figure 1-5(b), contains event executions of only the se-
lected nodes (Sectio®.3.2). In theifjure,s; indicates the-th execution of
Solve and eventnji indicates the-th execution of that executable instance of
Mult whose node index js

4. Map E to M to determine the locations where the actual and expected events
first divege.

The mapping of E to M can be done automatically since they are speci-
fied from the same representation. The result is ideatibn of event sequenc-
es in E that do not correspond to the allowed sehddfin M. In Figure 1-
5(b), we note that events’;, m?; andm®; precede evers,, Sz andsy, respec-
tively. We, howeverexpected evenmjj to precede eversf, wherej =i-1. This
detects the occurrence of the unexpected behavior; av?qmrecedings;;,
and evenm31 precedings,. The events map to actiom®, m3 ands as shown
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in Figure 1-5(c). Apparentl)actionsmz, andm?® sent data tohe actionsin
their wrong execution§m/ should have sent data when its execution counts
was equal tg, i.e. during eveanj.)

Note that mapping of E to M gives an elaborated graph of M as shown
in Figure 1-5(c). This is a run-time structure that shows dynamically created
instances of node templates (Sect®h.1). The elaborated graph is obtained
from the partial order graph of E in Figure 1-5(b) by folding back subsequent
executions of a node, to its first execution.

5. Map the elaborated graph of M back to P to define corrective action.

Since the elaborated graph of M contains instances of the node tem-
plates of Pthe mapping is automatic, and guides us towards feadihg ac-
tion in P The mapping from Figure 1-5(c) to Figure 1-4, helps in identifying
the ofending action. Note that we ascertained above that data is sent by ac-
tions ofMult in the wrong executions t8olve. By looking at the specddation
of the output rule oMult , we found that the data was being sent ol8dbre
without checking that the index of the action was equal to its execution count
(or the count of the sub-block which it was solving).

1.3 Overview of the Unified Debugger

The use of actions allows us to separate the analysis and presentation
concerns of the debugger from its measurement and recording concerns (Chap-
ter 4). Instrumentation inserted in the actions is only responsible for control-
ling their executions and generating the event information (Chapter 5). The
analysis and presentation of this information is separately carried out by the
debugging facilities (Chapter 6). The interactive facility allows the user to con-
trol the execution of actions and query their state at runt@haygter . See
Figure 1-5. The event information generated by the instrumentation during the
recording run, replay run, or the restricting run of the actions, can either be
used by the facilities on-théyf or in a postmortem fashion. The event infor-
mation is frst topologically sorted to ensure a causal arrival of events
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(Section6.3). Then, depending upon the options selected by theitisegiv-
en to one or more of the following facilities that provide:
1. Animation and execution history displays (Sectof).
2. Checking of the expected behavior (Sectds).
3. Post-restriction to interesting events (Sec8al).

4. Filing for postmortem display or checking (Sect&.2).

Note that the trace event records from an earlier execution are used for replay
CYCLICAL

Instrumentation Y
> Recording| Restricting| Replaying
™ T,;ﬁge - R-ggg%; run run run
A
C
Y Y Y
(L: Postmortem On-the-fly
I A \
C / /
A l
L Y
Topological Sorting Interactive

Tracing | Checking| Display | Restricting Control

Y
Animation | History|

Figurel-6. Available facilities

131 The Actual Execution Behavior

An event is identiéd by the id of the action and its execution count. In-
strumentation inserted in each action is only responsible for recording its exe-
cution and informing its successors about its event id. The execution event
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record of each action containstheids of its predecessors. Thisinformationis
used to construct a partial order representation of E that provides a definition
of the concurrent state (Section 3.2). The predecessors and successors of an
event in this partial order, indicate the conditions that triggered and followed
each event.

Execution history display isapictorial view of the concurrent state of
E. Animation issimply adisplay of the progress of execution as E is mapped
to M (Section 3.2.4). During animation, the elaborated graph acts as an under-
lying structure whose nodes and arcs are highlighted in the topol ogical sort or-
der as each event and its orderings are mapped to the nodes and the arcs of the
elaborated graph.

1.3.2 Restricting Execution to Selected Actions

Therestriction facility records the executions of actions selected for
monitoring, and filters out the executions of remaining actions. An action se-
lected for monitoring records its execution and forwards the id of each of its
execution event to its successors (Section 3.3). An action whose execution is
not to be recorded simply forwards its predecessor list to its successors. The
forwarded list eventually reaches a selected action that recordsit. Execution
traceis, thus, restricted to contain only the execution events of selected ac-
tions and their orderings. Thisfiltering greatly simplifies the checking of the
model of the expected behavior. Note that the restriction described aboveis
done by the instrumentation inserted in the actions at runtime. The unified de-
bugger also providesfacilities for post-restricting the event trace generated by
the instrumentation. The event trace can be post-restricted to actions selected
for display, and actions selected for checking (Section 6.1).

1.3.3  Predicate/Model of the Expected Behavior

A model/predicate of the expected behavior may specify immediate or-
derings, or transitive orderings between execution events of the selected ac-
tions (Section 3.3). It may al so specify absence of orderings. A race condition,
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for example, isamodel of expected behavior that specifies absence of order-
ings between executions of actions whose data accesses may conflict
(Section 3.6).

The model/predicate of the expected behavior may be formally or infor-
mally specified by the programmer. The checker facility provided by the de-
bugger automatically checksfor the formally specified behavior (Section 6.4).
The programmer must visually check the (informally specified) behavior
against the displays provided by the debugger (Section 6.5). The ability of our
approach to restrict the traces to only the selected actions hel ps both the pro-
grammer and the checker facility.

1.3.4  Automatic Checking of the Expected Behavior

Expected behavior specifying immediate orderings can be checked eas-
ily asthese orderings are available in the execution event records of actions.
However, checking of transitive orderings or absence of orderings between ex-
ecution eventsis much moreinvolved.

The checker hasto collect the predecessor information from the event
records of each action to establish transitive orderings. Our checker establish-
esthese orderings with the help of vector clocks (Section 6.4). The size of the
clock vector depends upon the number of actions whose rel ationships are be-
ing checked. The checker updates and maintains the vector clock during the to-
pological sorting of the event records.

1.3.5 Display of the Unexpected Behavior

It is not enough for the checker facility of adebugger to come back to
the user with aterse statement saying that the expected behavior did not occur.
It should additionally be capable of displaying to the user the unexpected be-
havior that actually happened. Thus, event records need to be sorted and saved
during checking as the user may later request their display (Section 6.1). We,
therefore, postpone the updating of vector clocks until the topological sorting
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of the execution event records. This avoids any extra overhead that may bein-
curred by the actions in maintaining the vector clocks during their execution.

1.3.6  Cyclical Debugging

A programmer often cycles through the debugging steps a number of
times before identifying abug. Execution replay (Section 3.5) allows the user
to exactly replay an execution with the exact ordering of eventsasin theinitial
execution. The program isfirst run to record the non-deterministic choices of
dependences with which each action executes. It is, then, replayed by forcing
the actions to make the choices recorded in the earlier run (Section 5.4).

1.3.7  Support for Interactive Debugging

The use of actions simplifiesinteractive control over the execution
(Chapter 7). The elaborated graph provides mapping between the run-time ob-
jects and the symbols defined in the program. These mappings are helpful in
controlling the execution of actions, and querying their state at run-time. The
debugger providesthe usual breakpoint facilities.



Chapter 2.  State of the Art and the Related Work

Debugging of parallel and distributed programs has been a subject of
much research in recent years. There are over 600 citations contained in the
two bibliographies published in 1989 [UtP89] and in 1993 [PaN93]. The work
surveyed in these bibliographies describes many different approaches for con-
current debugging and reports on the implementation of many different facili-
ties. Bates and LeBlanc notein [LeM89] that the previous work provides no
framework or model for the total process of concurrent debugging. Thereisno
definition of concurrent debugging that says why a particular facility or fea-
tureis provided and how it relates to the process of debugging. Theresult is
that most of the facilities or tools which have been proposed or implemented
arerestricted to some subpart of the debugging process and that the tools are
generally incompatible. In this circumstance, the programmer must learn and
use many different methods and tools. The programmer typically hasto com-
pose his own process for debugging of parallel programs and use different con-
ceptsand different facilitiesfor different stepsin debugging.

Chapter 1 gave a specification of the process of debugging which in-
volves rel ationships between the program, P, the expected behavior of the pro-
gram, M, and the observed actual execution behavior, E. Debugging consists
of a series of mappings between these entities. In particular, the mappings
which areimportantareP -~ M - E -~ M - P. Thisprocess definition is used
asaframework for defining previous work. The analysis focuses on the restric-
tion in conceptsthat have tended to partition the different subparts of the de-
bugging process making each part a separate problem area. It is clearly
impractical to attempt to give adetailed discussion of all of the previouswork.
Rather, this chapter relates what this approach considersto be the most signifi-
cant previous work in the context of the debugging process.

2.1 Sequential and Concurrent Debugging

Table 2-1 shows how major concurrent debugging facilities relate to
different parts of the debugging process.

17
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Table2-1. Coverage of various parts of the debugging cycle.

Concurrent Debugging Facilities
Various Parts of theSequential
Debugging Cycle | Debuggers Static |Execution Race |Displaysf Model
Analysid Replay |DetectiopAnimationChecker
Uses structural x@ X
information of P
Presents to user a
. X X

representation of E
Records causal b
orderings; P- E X X X
Restricts E to selected

X X
events
Provides mapping to c

. X X

program; E- P
Allows user to X X
represent M
Checks expected d
behavior; M- E X X X X
Presents unexpected X X
behavior; E- M
Enables_cychcal NG xf
debugging
Allows |r_1teract|ve X X
debugging

a. In the form of static call graph

b. Available by default in a sequential execution.
c. Typically, animation facilities provide mapping to a process structure, not P

d. Can check only some predefined behaviors like deadlocks and access anomalies
e. Available by default: In the absence of non-determinism in sequential executions.
f. Some replay facilities also support race detection, and use structural information o
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2.1.1  Sequential Debugging

A source level sequential debugger like dbx covers various parts of the
cycle (Table 2-1). It represents the program, P, as a sequence of source code
lines of the program that is being debugged.

The user interacts with the debugger with commands that refer to pro-
gram actions. The actions are source lines of the program text or function/proc-
edure calls. The debugger presents the execution, E, as a sequential trace of
events. Each event is an execution occurrence of an action, i.e. asourceline or
afunction/procedure call. As both the execution, E, and the program text, P,
are sequences of lines, there is a straightforward mapping between the two.
Note that the compiler provides the debugger with mapping of the physical ad-
dressesto the lines of the source code.

Asitisdifficult to debug the entire execution behavior of a program at
the same time, the user focuses, in each debugging cycle, on the execution be-
havior of some small segment of the program. A sequential debugger helpsthe
user in comparing the expected execution behavior of the segment against its
actual execution behavior by restricting the execution trace to occurrences of
interesting actions. It provides commands like:

trace <sourceline>[ if <condition>],and
trace <function> [if <condition>].

In these commands, the user represents the expected behavior, M, as
conditions on the program state. The debugger can easily check such a condi-
tion because it is associated with the specified action (sourceline, or call). The
identity of the action allows the debugger to monitor the breakpoint without
much overhead. The debugger inserts atrap at the address corresponding to
the action. The execution breaks at this point and the condition is tested. How-
ever, checking of acondition that can not be pin-pointed to happening at a par-
ticular action is much more expensive to monitor. For instance, the command
trace i f <condi ti on> asksthe debugger to monitor the condition after
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the execution of every source line. This monitoring is very expensive and such
commands are often avoided by the programmer

The debugger provides interactive support using static and dynamic
structure of the program. Static call graph is available in the symbol table in-
formation. At runtime, the debugger maintains the current stack of active call
frames. Note that each instance of a call (or a block of code) is represented in
memory with a frame. This provides the debugger with the dynamic structure
of the computation. In addition, the debugger maintains mappings which help
in providing breakpoint control of the execution and querying the runtime
state of objects. Following mappings are maintained:

1. Mappings between source lines and the addresses of their generated code.
2. Mappings between calls and the addresses of their executable code.

3. Mappings between active blocks (scopes) and their frame addresses.

2.1.2  Concurrent Debugging Facilities

A concurrent execution introduces problems arising from multiple
threads of control, synchronizations among these threads of control, probe ef-
fect, race conditions and non-determinism [McH89]. This makes concurrent
debugging much more di€ult than sequential debugging. Therefore, concur-
rent debugging facilities often tend to develop around one of these problems.
See Figure 24

Execution history displays help user in keeping track of the numerous synchroni-
zations that have taken place among various threads of exeftM&80],
[FLM89], [PaU89] The focus of such displays is, thus, limitedeto

Animation facilities help in following the progress of execution “instantaneously”
in each thread of contr¢HoC87], [PaU89] [HoC90], [SBN89], [ZeR91],
[Ho91]. The focus of animation is mappikgo P

1 Dotted lines show that some approaches may address more than one problem area.
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Problem Areas

Static_ Model
Analysis Probe Efect Distributed Systems Checkers
Execution|~__/_| - Numerous _ | History

Replay Non-Determinism Synchronizations Displays

Roce Shared Memory Multiple Execution " |Animation
Detection ] Access Threads Facilities

Figure2-1. Debugging facilities tget individual problem areas

Race detection facilities detect simultaneous accesses to shared data (RWY
[NM90a], [EGP89], [HMW90], [Sch89]. Their focusiiace behavior in the P
- E part of the debugging cycle.

Predicate/model checkers automate the process of verifying the expected behav-
ior of events happening at various sites in a distributed system [HHK85],
[BFM83], [BH83], [HsK90], [WaG91], [Bat89],[GaW92] [ReSc94]. They
allow a user to specify M, but, are limited to M E part of the debugging
cycle.

Execution replay facilities overcome the non-determinism of a concurrent execu-
tion [LM86], [For89], [MIC89], [Net93]. They make cyclical debugging pos-
sible, but often ignore individual parts of a cycle.

Static analysis extracts more information from P when “probéef’ [Sto88], a
principle similar to Hiesenbgls uncertainty principle, limits further instru-
mentation [Ry83], [Ta080],[BBC88], [CaS89], [McD89]. They analyze P
and are limited to the B M part of the debugging cycle.

2.2 Problemsin Various Parts of the Cycle

Fig. 2-2 shows the problems and ambiguities often encountered during
the mapping between dé&rent representations in various parts of the debug-
ging cycle.
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Figure 2-2. Ambiguities in various parts of the cycle

Parallel and distributed execution environmentstypically provide pro-
cesses or threads as executable unitsto run the program text. Thereis often a
complex multiplexing of the program text among instances of the pro-
cess/thread structure during execution due to resource limitations, schedul er
policies, and other constraints. A concurrent debugger must resolve the map-
ping and timing ambiguities resulting from such multiplexing. A visualization
of execution history [PaU89], [McH89] can help in resolving some of these
ambiguities by displaying various threads of control and the synchronizations
among them. Thisistypically atime-process graph representation of the exe-
cution [LMF90], [FLM89]. Eventsin such arepresentation are defined in the
context of the process/threads of the execution environment and not as occur-
rences of program actions. This creates ambiguities in mapping the observed
execution behavior to the program (Section 2.2.1). An animation facility can
help in resolving some of these ambiguitiesinthe E — P part of the cycle. Ani-
mation facilities[HoC87], [PaU89], [McH89], [H0o91] provide an instanta-
neous view of the mapping of events of atime-process graph to a graphical
structure. This, however, translatesinto extra effort for the user who must then
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develop a graphical structure that can support animation [HoC90], [SBN89],
[Ho91], [ZeR91]. Such structures are, howewarable to support the visual-
ization of the abstractions deéd by the useiThis has forced some of the ap-
proaches to abandon the use of visualizations [CFH93].

Execution of a parallel program typically generates so much trace in-
formation that it is dificult to debug the entire program at once. Concurrent
debuggers provide two types of facilities for dealing with this explosion of
event information:

1. Checker facilities that automatically check a formally specified model/predi-

cate of the expected behavior against the actual execution behavior

2. Visualization facilities that allow the user to visually check the expected
behavior against a display of the actual execution behavior

Visualization facilities typically do not accept a formal speation of
M for automatic checking. The user has to visually check an informal represen-
tation of M against the displayhat is, the visualization facilities does not al-
low the user to select program segments whose execution behavior would be
displayed. Consequentlghe displays often contain a lot of irrelevant informa-
tion, making visual checking tedious. These factors often cast skepticism on
the utility of visualization facilities [Mi92].

The use of a textual representation of P in which actions are not deter-
mined makes it dffcult for a user to formally model the expected behavior in
P — M part of the cycle. The text does not allow the user to readily represent
conditions about the concurrent state that involve event orderings. Hence,
predicate/model checkers use execution pnothlem oriented [HsK90] ap-
proaches for representing the user expectatigastion 2.2.3)To accomplish
this, they may demand extra programminfpgffrom the user [Bat89]. Fur-
thermore, their use of events, instead of actions, fanuhef M creates addi-
tional problems in checking the expected behavior in.NE part of the cycle.
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These problems can, in turn, constrain the range of expected behaviorsthat a
checker will allow auser to representin M [Ho91], [WaG91], [ReSc94].

Inthe P — E part of the cycle, debuggers for shared memory and dis-
tributed systems approach the problem of recording causal orderings different-
ly. Shared memory debuggers typically do not record the inter-process
orderings. They only approximate the orderings from the sequential traces ob-
tained for each process [HMW90], [NM91a], [Sch89], [EGP89]. Thisrestricts
their model checking ability to only onetype of expected behavior; the race
behavior resulting from the non-deterministic access of shared data. Thus,
they only provide afacility for race detection. On the other hand, distributed
debuggers like [Gaw92] provide more generalized predicate/model checking
facilities. They use specialized clocks [Mat89], [Fid89] for time stamping
events and recording the causal orderings. This allowsthem agreater flexibili-
ty in checking avariety of predicates/models of expected behaviors. However,
this creates the overhead of maintaining these vector clocks [ReSc94].

InM - P part of the cycle, the user maps any unexpected behavior in
M to the program in order to get closer to the bug. A terse message from the
checker stating that the check for expected behavior hasfailed, is not enough
to the user. The checker must help the user by presenting the unexpected be-
havior that caused the check to fail [Bat89]. However, existing checkers sel-
dom keep enough information during measurement that would allow them to
present the unexpected behavior to the user. Thisforcesthe user to exert extra
effort in repeatedly querying the debugger for the same information.

221 Mapping Ambiguities

In E - P part of the cycle, adebugger has to map the events defined in
the context of processes/threads of the execution environment on to the pro-
gram text. However, ambiguities arise in mapping intra-process arcs of atime-
process graph to their corresponding sequential text in the program. For in-
stance, in Fig. 2-3(a) thereis an ambiguity about the intra-process arc x of Pro-
cess 3. x can either map to the sequential text S or to the sequential text T of
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Fig. 2-3(b). Eventv that immediately follows, and maps to the synchroniza-
tion statemenwai t (eV) is not of much helpaai t (ev)is neither associated
with S nor with T The synchronization event simply sits at the boundary
where a piece of text ends and another one starts. Note that ars egsotia-

tion in a time process graph is with a process (#3 in this case), not with an ac-
tion of the program text.

Instead of letting a synchronization statement sit ambiguously on the
border of two sequential text segments, we propose an abstraction that perma-
nently associates the synchronization statements of a program with its sequen-
tial text segments. The abstractions resulting from this association is that of a
computation actioms given in Section 1.1.1. The concept of computation ac-
tion disentangles the sequential contilolf considerations from the synchro-
nization considerations. The programmer is, then, able to concentrate on
dependences between actions instead of scheduling entities such as a process

Animation facilitiedMcH89], [Pau89] typically require an underly-
ing process structure for supporting their visualizations of the Emapping.
In this structure, nodes are processes and arcs are synchronization/communica-
tion links between processes. Current animation facilities often demand extra
user effort to develop an alternate structure for supporting the visualizations
of theE - P mapping. A textual representation of P can not directly support
this visualization because it conceals the synchronization dependences to
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which interprocess arcs of a time-process graph map. These dependences are
concealed in the semantics of the synchronization constructs. For e.g., the de-
pendences that ordprandw in Figure 2-3(a), are concealed in the semantics

of wai t (ev) in Figure 2-3(b) that shows the text of process 3.

We, therefore, use a graphical representation of P [New93] whose
nodes are the computation actions and whose arcs are their dependences (Sec-
tion 3.1). Occurrence instances of computation actions are partially ordered.
They provide a “pomset” [Pra86] representation of E that allows us to automat-
ically generate the animation structure (Section 3.2).

2.2.2  Ordering Ambiguities

In the P— E part of the cycle, a debugger should record the events and
their orderings. Distributed systems often record the event orderings by ex-
ploiting the data dependences introduced by the send/receive of messages with
the help of unique time-stamps (or iderdik) [Mat89], [Fid89], [WG92]

Shared memory debuggers that detect rfig®01a], [HMW9O0], howeverig-

nore the data dependences introduced by the accesses to the shared synchroni-
zation variables. They may, also, ignore the unique identifiers or time-stamps
for each event. Aeir recorded event traces often contain ambiguities about the
inter-process orderings as shown in Figure 2-3(c). There is ambiguity as to
whether thevai t (ev) of process 3 was fulfed by thepost (ev) of process 1

or 2. This necessitates the use of approximatjbidéW90], and leads to in-
tractability [NM90Db]. Inability to record the order of accesses to shared ob-
jects further complicates the detectiomraces (simultaneous access to shared
objects with at least one write), andexdts the accuracy of detected races
[NM91a], [NM91Db].

Note, howeverthat if an event that write-accesses a shared object, ap-
pends its unique idenidr to the object, then a later event access to that object
can identify its “causal” predecessor (Section 3.2.1). This observation allows
us to support execution replaand to support race detection with little extra
overhead (Section 3.4).
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2.2.3 Modeling Problems

A sequentiatlbx debugger is usdiriendly. It allows the user to associ-
ate expected conditions with a program action. For instancedhx aom-
mand such asthen at <stnt> i f <conditi on>", the user associates a
condition about the sequential state of the executing program with a statement
of interest. Laterthe debugger allows the user to interactively follow the con-
ditional progress of the execution that has been restricted to the interesting ac-
tions. Such grogram oriented approacHHsK90] is not possible with a
“textual” representation of a concurrent program. Untike conditions, con-
ditions about the concurrent state involve event orderings whose correspond-
ing dependences are not visible in the textual representation. For instance,
event orderings in an expected behavior like E(p) precedew” for Figure 2-
3(a), correspond to dependences that are not visible in the textual representa-
tion of Figure 2-3(b). Hence, assertion/model chedk=is90], [McH89]
adopt execution oriented approaches that use models like temporal logic, inter-
leaving, partial order or automaibl®91]. In P— M part of the cycle, there-
fore, a user has to exert extrbogfto learn a new language, specify the
expected behavior and, then, debug iuser errors[Bat89] before debug-
ging the original program.

2.2.4  Filtering Ambiguities

In M - E part of the cycleassignment andresolution problems
[Bat89] are typical of the ambiguities that arise during filtering and recogni-
tion of the expected behavidks most existing checkers are execution orient-
ed, they use events in their representation of the expected beleanddeave
the actions implicit. This conceals the information that (i) evargsactually
multiple occurrences of actions, and (ii) the observed event orderings are the
unrolling of the communication/synchronization structure of the program ac-
tions. For instance, a behavior like precedesw” gives no information to the
debugger about the actions that correspond to gvamdw. Ambiguities
can, then, arise whenever more than one observed beftavibe £xpected
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behavior In Fig.2-3(a), ‘p precedesn” can fit several behaviorsp of process

2 precedes th@d$tw of process I of process 1 precedes the secoid pro-

cess 2, op of process 2 precedes the seaomnd process 3. Such ambiguities
restrict the range of checkable behaviors. This, in turn, restricts the range of
behaviors that can be represented [Hd81], [Bat89].

Information deihing actions such as their statement line numbers,
could have resolved these ambiguities, YMerefore, use such information
about the actions to simplify thiering and recognition of the expected be-
havior (Section 3.3).



Chapter 3.  The Unified Model of Concurrent Debugging

The unifed model presented in this chapter decomposes the problem of
debugging a concurrent program into two levels. A programmer debugs the
concurrent state at the upper level, where the only important concerns are the
relations on the set of computation actions; spediin the program,,Mnod-
eled in the expected behavjd, and observed in the execution behayior
Internal states of a computation action are not important at this level because
the execution occurrences of the computation action are considered atomic.
These states only become important when the programmer moves to the lower
level, inside the computation action, to debug its internal sequential text.

3.1 The Specified Behavior

Notation3-1 2p is the set of computation actions specified in the program.

Data dependences that force the computation actions to execute in a
particular order are represented by ordered pairs:

Def. 3-1 The set ofdata-flow dependencesFp U Zp X Zp.

For instance, the dependence ofexei ve of a message on isend,
the dependence offaof a semaphore on it or the dependence ofaai t of
a synchronization event on p®st , represent such datéw dependences.
The write-read dependence on a shared synchronization variable, or on a mes-
sage, forces the actions to execute in a particular.oflermotivation for rep-
resenting the synchronization dependences as tatedependences comes
from the language independence and machine independence goals of the
CODE graphical programming environment [BASYOB92]. The datalbw
characterization of the synchronization and conttolvfdependences in
CODE allow the environment to support shared memasyvell as, distribut-
ed systems.

The set of ordered paiFfs gives a graphical representation of the pro-
gram. The nodes of the program grapp, Fp) are the set of computation ac-
tions, and its arcs are the data-flow dependences. See Figure 3-1(a).

29
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Figure 3-1. (a) Program graph (b) Elaborated graph (c) Pomset execution

3.1.1 TheElaborated Graph

In order to achieve parallelism in a concurrent execution, the same
piece of program text is often assigned to multiple executable units (processes
or threads) of the execution environment. Such an assignment of actions of Zp
to the processes/threads of the execution environment is represented by the set
of executable computation actions.

Def. 3-2 An executable computation actionisan instance of u 1 Xpwhich
can execute at runtime.

Thus, computation actionsin Zp are template types. There can be one
or more executabl e instances of atemplate computation action at runtime. In
the block-triangular solver example explained in Section 1.2.1, there were N-1
executable instances of the M ult node (template) at runtime.

Notation 3-2 The set of executable computation actions is denoted by 2.

Let = 0 5px N. Then, ul, ul 0 % indicate theinstantiations of u O Zp
withindicesi and j. The actual identity of the executable unit to which anin-
stance is assigned is not important. The superscriptsi, j are only logical idsfor
distinguishing between the multiple instances.

The elaborated graph (Z, F) isthe runtime structure resulting from the
instantiations of the template computation actions of the program graph (Zp,
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Fp). In this structure, the runtime replication of templateE®is represented

by the set of executable actios,The corresponding replication of arcgf

is represented by the dataW dependences;, = {(ui, vj) | (uv) O Fpand ul, vl

(0 Z}. Itis called elaborated graph because it shows the “elaboration” (replica-
tion) of nodes and arcs of the program graph. Figure 3-1(b) shows such an
elaborated graph where actianof Figure 3-1(a) replicates (or elaborates)
into three actionsy®, w2, andw?.

In the following sections, the term computation action (or simply ac-
tion) will be used for a member of the set of “executable” computation actions,
>. The preix “template” will be explicitly used to refer to the template compu-
tation actions of the s&jp. To simplify the notation, the superscripts (indices)
of executable instances will not be indicated unless multiple instantiations of a
template action are being considered.

3.1.2 Firing and Routing Rules

Intuitively, a computation action acts like a procedure whose input pa-
rameters are the input dependences and output parameters are the output de-
pendences. It begins execution by obtaining a set of values from its input
dependences. Then, it performs a sequential computation on this data. It ends
its execution by putting a set of values on its output dependences.

Input dependences of an actio@are given by the incoming arasyu)
={(v,u) | (v, u) OF}. And, output dependences are given by the out-going
arcs;out(u) = {(u, v) | (u, v) O F}. Conditions specitd on the input depen-
dences determine when to initiate the execution of a computation action, and
conditions speciéd on the output dependences determine what follows its ex-
ecution. The pre-condition that initiates the execution of a computation action



32

is called an inputifing-rule, and the post condition that follows its execution
is called the output routing-rule [New93].

Def. 3-3 An input firing rulel(u) is a set of subsets of input dependences
i.e.1(u) O 2"W. An output outing rule O() is a set of subsets
of output dependences; i®(u) O 20U\,

An input firing rulel(u) is a condition in the disjunctive normal form
(sum of products). Each elementi@f) represents a disjunct, and is given by a
subset oin(u), i.e. input dependences of The state of a datdefwv depen-
dence ¥, u) can be represented by a string of values denoted hy. |[A com-
putation actions ready for executioff the state of all the dependences of an
element O I(u) are non-empty strings i.el (v, u) 01 :: [v, u] # €. Then, input
to the actioru is a set of sudix values detached from the state of dependences
in 1. On completing its computation,will catenate a set of output values as
prefixes to the state of all the dependences given in etemeenio 0 O(u).

3.2 The Observed Behavior

The debugger observes the execution occurrences of computation ac-
tions and their orderings. Figure 3-1(c) shows this information.

Def. 3-4 A computation eveng an execution occurrence of some
executable computation action.

Notation3-3 The set of computation events is denoted by V

An actioncan occur multiple number of times. Subscripts in Figure 3-
1(c) denote the multiple occurrences of actions\VSa&tevents is, thus, a set
of multiple occurrences of actionsr a “multiset” of occurrences of actions.
The functiony: V - Z maps each event of V to that actionXfof which it is
an occurrence.



33

We support this mapping by associating an execution cournteith
each actioru 0 2. The action id-execution count pairéndu.i) provides a
uniqgue identifier for each event. Therefore,

Notation3-4 Thei-th execution occurrence of an actiof! > is denoted
by the event; OV.

3.21  Causality of Data Flow Dependences

In order to record the orderings enforceddyyhe debugger appends
the unique identiér with the data shared through the ddtavfdependences.
Whenever an actionputs some data on its output dependdnc¢e) [ F in its
i-th occurrence, it appends the ideietiu; to the data. Similarlywhenever an
actionu begins itg-th execution by removing some data from its input depen-
dence(v, u) O F, it detaches the idenié&fr appended to the data, and puts the
detached identiér in a predecessor list denotediny.Pg. The list contains
such pairs for all the predecessor events that have “causeidtitlexecution
occurrence ofl. The traces contain records of the execution occurrences of
each event. The trace record of an evgmontains the action id, execution
countu.i, andthe predecessor listi.Pg. Also, see @ble 1.

Def. 3-5 The orderings enforced Byare < = {(u;, vj) |u, v; OV Ou; O
VJPF}

The transitive closure of'<results in an irrdéxive partial ordering
that constitutes theausal orderings <. The orderings &simply refect the
“causality” of data-flow dependences.

Lm. 3-5 u<Fy 0 (uv)OF
Consequentlyif u; <F vj, then there is some data shared betwgend
vj, namely the state of the datéefv dependencgu, v) O F. The representation
of the state of a datdefv dependence in Sectidl by a string of values (or
an ininite FIFO bufer) takes into account this dependence. Moreavei-
lows us to model the general cases of the send and receive of messages in dis-
tributed systems, and the dataww dependences of the graphical/visual
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languages like CODE [BAS90],[NB92]. But, the representation may create
problems in modeling the synchronization primitives of shared memory sys-
tems. However, as seen in Section 3.2.3, concurrent state does not depend
upon the internal representation of the states of the data-flow dependences. It
only depends upon the event orderings. Thus, we can represent the state of a
synchronization dependence, with a string (or a buffer) of length one. It will
denote the data dependence due to the shared synchronization variable (whose
only permitted values are set or reset). The debugger records the causal order-
ings by appending and detaching the identifier to the shared synchronization
variable.

3.2.2 Execution History Pomsets

As seen above, actions can occur multiple number of times as events,
i.e. theset V of eventsisrelated to the set X of actionsthrough the function p:
V - Z. This effectively turns the poset (V, <€) into a pomset (£, V, <€, )
[Gai88], [Gis88], [Pra86]. A POMSET isaPartially Ordered MultiSET of oc-
currences of actions, in much the sameway asastringisaTOMSET; aTotal-
ly Ordered MultiSET of occurrences of alphabets. The pomset (Z, V, < c M) is
called a causal pomset because <€ are the causal orderings. It isinstrumental
in unifying our model because its expression of the concurrency propertiesis
independent of the way time or events are modeled in asystem [ Gai 88].

A pictorial representation of the causal pomset is an execution history
display. We can now explain why execution history displays are so helpful in
debugging. They display the causal orderings of events. These orderings allow
aprogrammer to determine the conditions that initiated and followed each exe-
cution occurrence of an action. From Lemma 3-5, an immedi ate predecessor
of u; must map to an input dependence of u; and from Def. 3-3, an element of
the input firing rule of u is asubset of input dependences. Hence, immediate
predecessors of an event u; inform the programmer about that element of the
input firing-rule that initiated the i-th occurrence of u. Similarly, immediate
successors of an event u; inform the programmer about that element of the out-
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put routing-rule that determined the condition following ithile execution oc-
currenceof u.

Notation3-6  “u;={(v, u) |v; <F u}andu” ={(u,v) |y <F v}
Def. 3-6 A causal poms€E, V, <, n) is compatible with the firing and

routing rules if Ou; OV :: *u; O 1(u) Ou;” O O(u).

This shows the compatibility of the immediate orderings of a given
event with the rules spemtl on the immediate dependences of its correspond-
ing action. In Sectio®.3.1, we extend this compatibility of immediate order-
ings with the immediate dependences to the compatibility of transitive
orderings with the transitive dependences. This provides a framework for rep-
resenting and checking the expected behavior

3.2.3 Concurrent Execution State

There is non-determinism associated with the choices of the elements
given in the inputifing rules. An action can non-deterministically select dif-
ferent elements of aring rule. In Figure 2-3, the second occurrence of action
w can non-deterministically select any element fronmipgit firing rule. Dur-
ing execution replaya record of the causal ordering$orms our debugger to
select the right element of thieifg rules for each execution occurrence of an
action. Thus, it reconstructs the states of the previous execution. Usamgl <
following [Mat89], we find a notion of concurrent state:

Def. 3-7 A concurrent state of an executiorfz, V, <€, H) is a consistent
cut-set of the poseWV/( <C). A setCS OV is a consistent cut-set
iff yy 0CSOv; <®u 0 vjOCS

Thus, the state of an actiarafter itsi-th occurrence is represented by
its causal historynamely the partially ordered set of all the events that were
causally beforai;. Note that the above daftion is independent of the local
state of an action. Itis, also, independent of the contents of the messages ex-
changed by the actions. It only depends upon the order of events. Hence, dis-
tributed systems often reduce their roll-back and recovery overhead by only



36

recording the event orderings, and not the content of messages or the check-
points of the local states [JhZw90]. Therefore, our execution replay facility ex-
ploits this definition to reduce the recording overhead (Se@tidn

3.24 Animation

Animation provides an instantaneous view of the progress of execu-
tion. It is simply the process of displaying Def. 3-6 on the elaborated graph
while traversing the execution pomset.

During animation, the debugger traverses the execution pomset. On en-
countering the-th event occurrence of an actionit highlights in the elabo-
rated graph those input dependences of the adhahcorrespond to the
immediate predecessors ofiitth event occurrence. It, then, highlights the ac-
tionu. Then, it highlights those output dependences of the action that corre-
spond to the immediate successors afttsevent occurrence.

We can automatically generate an elaborated graph from the execution
pomset. Note that the structure shown in Figure 3-1(b) is obtained by folding
all the subsequent occurrences of actions in Figure 3-1(c) to itts¢ioécur-
rencesThis fulfills the requirement of a strong coupling between animation
and execution histofMcH89].

3.3 The Expected Behavior

A user represents the expected behavior by selecting Soteeest-
ing” actionsZy, from X. Then, the expectations about the execution behavior
of the selected actions are spmaifas some conditiong, Oy, on their expect-
ed dependenceBy,.

331 Representing Expected Behavior

A dbx debugger is closely coupled with the program because it com-
pels the programmer to use only those objects that already exist in the pro-
gram; e.g. it would not allow a user to specify a non-existent print variable.
Taking cue frondbx, we closely couple our checker with the program and
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Figure3-2. (a) Elaborated Graph. (b) Execution.

only allow the user to work with only those actions that are sigekiih the
program.

Note that if a user expects that eveujtandy; will be ordered in the ex-
ecution, then their actionsandv, must exhibit a (transitive) datésW depen-
dence in the program. That Lﬁ,<CVj O (u,v) OF* whereF* is a transitive
closure ofF. This also follows from Lemma 3-5. For instanog,<C c; in Fig-
ure 3-2(b) corresponds to thransitive datalbw dependence betweemandc
of Figure 3-2(a); both are shown by dotted lines. Thus, any pattern that is ex-
pected in an execution, must be the unrolling of a pattern already presentin the
program structure.

Thus, a user starts specifying expected behavior by selecting a subset
>\ of interesting actions from the prograly; [ . Figure 3-2(a) shows a se-
lection of such actions. The user can then specify a dependence between the se-
lected actions only if it corresponds to some dependenE& &ome of such
selected dependences are showngagF-igure 3-2(a).

Def. 3-8 Fwm are the selected dependences from the transitive data-flow
dependenceB* restricted to interesting actions ifgy O F* /
2\, WhereXy, O 2.

An observed ordering likém,, ?) in Figure 3-2(b), that can not be
mapped to a datdeiw dependence fromRy, is, therefore, symptomatic of a
bug!
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Figure3-3. (a) Expected Behavidib) Restricted execution.

In Figure 3-2(a), the structure built @y, is the speci€ation of the ex-
pected behaviorAkin to the conditions in dbx command likest op i n
<scope>if <condi ti on>, a user can, then, providerg rulely, and rout-
ing ruleOwMm to further restrict the occurrences of “interesting” actitciste
that the rules are conditions about the concurrent state, whitneagnditions
are about the sequential state. Suppose the userispexiffI” output routing
rule for actiorm in Figure 3-2(a). Then, the checker caief out occurrences
m; andmg because they subscribe to thé tule. But, will raise an exception
for m, as it does not subscribe to thé ‘fule.

3.3.2 Recognizing the Expected Behavior

In dbx, a directive likenhen at <stnt>....informsthe debugger to
make necessary preparations for the spegi$tatement. It also informs it to
ignore the rest of statements. Similatilye selection oky, from Z. informs
the debugger to specially prepare for “interesting” actipsand to safely ig-
nore the “uninteresting” actior’s- ,,. Then, the debugger caiftér out the
uninteresting events and can restrict the execution to occurrenggs of

The restricted pomsekE(V, <C, W)/ Zy, of Figure 3-2(b) only contains
the interesting events and their mutual orderings. The restriction operator “/”
[Gai88] retains all the events and orderings of interesting actions, but removes
from the restricted pomset all the events and orderings of uninteresting actions.
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The debugger establishes the orderings among interesting events by ex-
ploiting the fact that occurrences of interesting actions can only be ordered if
there exists a mutual (transitive) dependence. In Figure 3-2(b), eveaisd
c, are only ordered because of the transitive dependence that exists between
actionsm andc. Note in Figure 3-2(a) that the dependence goes through an in-
tervening uninteresting actign Our debuggertherefore, establishes the or-
derings between occurrencesnofindc, by asking the uninteresting actipn
to relay the causality information that arrived from its predecessors, forward
to its successors.

Unlike interesting actions, uninteresting actions do not trace their exe-
cution occurrences. Instead of sending the ideartdf their current occur-
rence to their successors, they simply relay forward their predecessor lists. See
Table 1. These lists keep getting relayed forward by the intervening uninterest-
ing events until they land in the predecessor lists of the interesting events.
Only then they are traced. Predecessor lists of interesting events, therefore,
only contain the identiérs of their causally preceding interesting events. Exe-
cution is thus filtered t6=, V, <€, ) / 2.

Table3-1. Recording and restricting instrumentafion

Monitored Interesting Actions Uninteresting Actions
Occurrences u ullx-2x\m
usendstov append(msg: u, u.i); append(msg: u.i.Pg);

U receives msg

u.i.Pg [ detach(msg);

u.i.Pg U detach(msg);

u executed

trace (u, u.i, u.i.Pg);
ui+1).Pe =
u.i = u.+1;

u.(i+1).Pg = u.i.Pg;
ui=ui+1;

a. In the set uniofl, if there are two events of the same action, then only the
most recent event of the two is a member of the set union.

The structural information of M and the fact that the causal pomset is
restricted tax),, greatly simplifes recognition of the expected behavibine
debugger traverses the partial or,derd tries to check if Lemma 3ahd Def.
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3-6 also hold for M. It checks whether each immediate successor v; of agiven
event u; corresponds to some successor v of the action u in the dependences
Fu- Additionally, the debugger checks whether the immediate predecessors
and successors of an event u; satisfy the input firing and output routing rules
| and Oy for u. If an ordering u; <F vj fails to correspond to some depen-
dence (u, v) O F),, or theimmediate predecessors * u; or successors u;” fail to
meet the expected conditions I, (u) or Oy (u), then an error has been recog-
nized. This happens for the unexpected orderings of m, in Figure 3-2(b).

Def. 3-9 Event u; isin error if ui" OOy (u) O uj O Iyy(u).

Thus, concurrent debugging is the process of following the unexpected order-
ings given by the erroneous events, in the direction of causality.
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3.4 Shared Data Dependences

Unlike data-fow dependencek that force an ordering on the execu-
tion of actions, shared data dependences do not impose any particular order-
ings. A shared data object is therefore modeled by the set of actions that share
the object. The set of those objects is denoted by S.

Def. 3-10 The set okhared data dependencesis S 2%, A shared data
dependenceis a seD of computation actions, D [0 2 (orD [0 S).

The actions that participate in a shared data depend2ace classi-
fied into disjoint sets afeaders andwriters.

Notation3-7 Readers of D are denoted bfRp andwriters are denoted by
Wp; whereRp O Wp =D, Rp n Wp = 0.

For example, in Fig3-4(a), shared data dependerixe {a, r, w} is
shown by the hypeedge connecting actioasr andw. The set ofeaders, Rp
={r} and set of writers\Np = {a, w}.

The order of accesses to shared objects is recorded with the same mech-
anism that was used in recording m':e)rderings (Sectiol.2.1). This, how-
ever, requires a protocol for ensuring a valid serialization on the accesses to
shared objects like the CREW (concurrent read exclusive write) protocol
[LM86]. Note that membens andv of a shared data dependence have a valid
serialization if for every occurrencg of a write-access and every occurrence
vj of another access, eitheroccurs beforej, orv; occurs beforel;. The pro-
tocol, therefore, disallows simultaneous write-access to a shared object with
other accesses. The uei debugger ensures a deterministic replay by imple-
menting the protocol as [hM86]. Without the implementation, simultaneous
accesses to a shared object can hinder a deterministic replay by corrupting the
object and giving unpredictable results. Moregw@srexplained latethe pro-
tocol is also helpful in detecting race conditions.

Unlike [LM86] that uses versions of shared objects to record the order-
ings, we use a simpler mechanism for recording the ordexfaccesses to a
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Figure3-4. (a) Dependences. (b) Orderings.

shared objedd [J S. Each shared object has appended to it the idendif the

event that last wrote it. Whenever an action accesses a shared object, it reads
the identifer appended to the object, and places the identif the predeces-

sor slot reserved for that object in its trace event record. A wiit@ddition

to the above, replaces the idergifappended to the object with the ideietif

of its current event occurrence.

In addition to the predecessor ligtPg for the datalbw dependences
(Section3.2.1), the trace record for each event now requires another predeces-
sor listuj.Pgfor shared data dependences. The list has aisRy D] for each
shared data dependeri@eén which a given action participates. Then, the iden-
tifier in the slot foD in the predecessor list of an event record, determines the
causal orderingsD.

Def. 3-11 Causal order of accessesnd] Sis <P = {(vj, u) |y, v O VO
Ui.Ps[D] = Vj}
There is, thus, an ordering relatie® for eachD O Sgenerated like

<F. These relations augmenft in the irrefexive partial ordering©. The or-
dering<C s, thus, a transitive closure of the immediate orderirfigg], <P.

Note that shared predecessor ordermB, explicitly indicates the
“causal” precedence of a write event to a given read/write event. Hovibger
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“temporal” precedence [Gai88] of a read event to a given write event is indi-
cated implicitly For example in Figure 3-5, ordering? (shown by solid
arcs) explicitly indicate the causal precedence of the write eyemthe read
eventr,, and to the write event. However the precedence of the read event

r to the write event;; (shown by the dotted arc) is implied by the assurance of
serialization protocol. The protocol ensures that if a read event and a write
event have the same shared predecetisam the read event must have preced-
ed the write event. That ig precedes; if r..Pg[D] = u;.Pg[D] Or O Rp Ou

O Wp. As explained belowthe precedence of read-events to a given write
event is made more explicit by recording the number of readers along with the
id of the write event.

<Dy v, <P
u,vOWp — = Vs U<

o A
Ui

Vi o »O—— >0

'k

Figure 3-5. Precedence of a write event to a read and a write event.

3.5 Execution Replay

The goal of an execution replay facility is to record enough informa-
tion about the non-deterministic choices made by the events of an execution so
that during replaythe events can be forced to make the previous choices.
Thus, replay facility works in two phases: A recording phase in which the exe-
cution is run to record the ordering information. Then, a replay phase in which
the information recorded earlier is used to deterministically replay the execu-
tion. In order for the replay to work, it is assumed that the environment pro-
vides the same input to the program during both the plias&6], [McH89],
[MiC89].

There are two types of non-deterministic choices in a concurrent execu-
tion: Choices associated with the dataafdependences and choices associat-
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ed with the shared data dependences. The unified model separately dealswith
the choices associated with each type of dependence.

A record of causal orderings < F is sufficient to overcome the non-deter-
minism associated with the choices of elementsin afiring rule. During the
checking of theinput firing rules, the replay mechanism not only checksif the
state of an input dependence is not empty (Section 3.1.2), but also ensures that
the event id appended to the value obtained from the dependence is from the
same event that fired the earlier execution. Thus, during the i-th execution of
u, afiring rule1 O I(u) isonly satisfied if O (x, u) 01 :: [x,u] # € [lappende-
d_id U u;.Pg, where appended_id is theid appended to the value on the given
dependence.

The other source of non-determinism is associated with shared data de-
pendences. These dependences do not force the actionsto execute in any par-
ticular order. The debugger, therefore, records the non-deterministic order of
accesses to shared objects so that during the replay phase, the accesses can be
forced to occur in the previously recorded order. The replay mechanism en-
suresthat (i) the write access that preceded a given access during the recording
phase must also precede during the replay phase, and (ii) all the readers that
preceded a given write event in the recording phase must also precede during
the replay phase. For this purpose, the recording instrumentation maintains a
count of readersin addition to theid of the last write event with each shared
object. The debugging information appended to each shared object D (I Sis,
then, atuple (w.D, n.D):

Notation 3-8 w.D istheid of the computation event that last wrote D.

Notation 3-9 n.D isthe current count of the computation events that have
read D after it was written by w.D.

In the recording phase, the replay instrumentation performs the actions
shown in Table 3-2 during each execution of acomputation actionu O D. If u
isareader, the instrumentation saves theid of the last write event in u;.P{ D],
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and increments the reader counD. If u is a writer then the instrumentation

saves the id of the last write event as well as the current reader count. It initial-
izes the appended reader count to zero, and replaces the id appended to the ob-
ject with its own id, namely;. After u completes its-th execution, the shared
predecessor information containedujtPgis traced in the event record along

with the flow predecessor informationaile 3-1).

Table3-2. Replay instrumentation foriB S.

udl D u; obtains access to D u; releases access to D

Recording Phase

uRp | uj.P4D] :=w.D; n.D:=n.D +1;
udWp | ui.P4D] :=(w.D, n.D) n.D:=0; wD:=u;;

Replay Phase

udRp | ifu;.PdD] = wD; n.D:=n.D +1,;
uOWp | ifu;.PdD] = (w.D, n.D) n.D:=0;, wD :=u;

Note that the shared-predecessor information for a reader is simply the
id of the event that last wrote the object, whereas the shared-predecessor infor-
mation for a writer is a tuple containing the id of the previous wraed the
count of the readers. The model assumes that a computation action obtains ac-
cess to a shared object before the start of its sequential computation and releas-
es the access at the end of the sequential computation. It is also assumed that
there is a dummy tuple §00) initially appended to each object. The dummy
event id @ helps in ensuring the replay of the initial accesses to a shared ob-
ject.

During the replay phase, the instrumentation ensures that Rp,
thenu is not granted a read access to D inAtis execution unless the id ap-
pended to D is the same as the one recordedRg D]. That is, the instrumen-
tation checksf u;.PdD] = w.D. If, howeveru O Wp, then the instrumentation
additionally ensures that the current reader count is the same as the one record-
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ed earlierThat is, the instrumentation does not grant access until the append-
ed id is the same as the recorded id, and the appended reader count is the same
as the recorded reader count containag.P{ D].

3.6 Race Detection

Simultaneous accesses (with at least one write) to a shared object can
race with each other and can corrupt the shared data with unpredictable re-
sults. Races are detected by identifying those pairs of events whose accesses
to a shared object included at least one write and whose accesses would have
been unordered in the absence of the debuggerforcement of the serializa-
tion protocol. For e.g., dotted arcs of FB34(b) show the R orderings for
eventsw, andr4 (andw; andr») that were forced by the debuggeserializa-
tion protocol. The events are otherwise unordered undenkthout the de-
buggets protocol, theserrderings may not exist, therelmausing a data-
race. Thenw; andrq (or wq, rp) can execute simultaneously with unpredict-
able results. Thus, aIID<orderings observed under the serialization protocol,
should be supported bf<(i.e. should be causally ordered) as, for instance,
the ordering betweeay andw;.

Notation3-10 p.D is the set of computation events that have read D after it
was written byw.D.

Table 3-2 describes the instrumentation needed for race detection. Note
that the instrumentation for race detection maintains the set of current readers,
p.D, whereas the replay instrumentation describedaind 3-2 simply main-
tained the count of readersD. The orderings are, howeveecorded similar-
ly: A reader only saves the id of the previous write eveni.Pd D], whereas
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a writer saves the count of readdpsD| in addition to the id of the last write
event.

Table3-3. Instrumentation for data-race detection.

i-th u obtains access to D.
u releases access
exec of o D
udD Race is detected if: | Recording of Orderings
ulbRp wD % Cuy u,.P4D] := wD; p.D :=p.D O {u}
Jow. | @P % Cu; O < | uiPdDI:= (@D, lpD) oD = {}:
D1 OvOpD:utyy # >y wD =uyj;

Whenevera computation actiom obtains a read or a write access in its
i-th execution, the instrumentation signals a race if the last writer of the object
(w.D) is not a causal predecessowugfRecall thakCis a partial order result-
ing from the transitive closure of the immediate orderiﬂﬁ%gs <D ifuis
obtaining a write access, then instrumentation additionally checks the order-
ings with the current readers of the object (membepsf A race is also sig-
nalled if a current reader of the object is not a causal predecesgor of

In Figure 3-4(b), race for eventg andw, (and for events, andw;)
will be detected by checking the conditionD % © uj. The race between
eventsw, andr, will be detected by the conditiof # Cui Ov; O pD.

Implementing a serialization protocol, and recordingqﬁenrderings
of accesses to a shared object, may seem unnecessary for detecting races. It
may appear simpler to report races for pairs of events that are unordered under
<F. However as explained ifNM90a], this can result in reports of spurious
races that are infeasible and could never adour debuggés implementa-
tion of the serialization protocol is instrumental in eliminating the spurious ar-
tifacts that can result from the use of shared objects that were corrupted by an
earlier race. Furthermore, the recorckét helps in improving the accuracy of
detected races by identifying other spurious races.
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Vector clocks are often used to maintain a condensed representation of
the (transitive) causal history of events of an execution [Fid89], [Mat89],
[Gaw92]. If events are timestamped with vector clocks, then checking of tran-
sitive relationship between any two given events can be done in unit time.
Note that race detection in our model requires the implementation of the dy-
namic vector clocks (Section 8.1.1). By associating such avector clock with
each event, we can compute the transitive closure of <P and <F, and can detect
the races at runtime as explained in Section 8.3.5. Moreover, this can allow us

to further optimize the amount of recording done for replay purposes
(Section 8.3.6).



Chapter 4.  Implementation Concepts

The unified model of concurrent debugging as described in Chapter 3
has been implemented in the CODE 2.0 visual/graphical parallel programming
environment [NB92], [New93]. This chapter describes the capabilities provid-
ed by thisimplementation of the debugger and the extensions and enhance-
ments of the CODE 2.0 programming system which are necessary to support
implementation of the unified model of concurrent debugging. It also de-
scribes the flow of information among the conceptual elements of the debug-
ging system and the instrumentation of a CODE 2.0 program. An important
element of thisimplementation of the unified model of debugging isthat the
user provides the implementation with some simple declarative annotationsto
the parallel program in the CODE 2 environment. The instrumentation and the
presentationsto the programmer are al so presented in the context of the hierar-
chical dynamic graph structure of the CODE program.

Run-Modes

\ \ A
|Full-Recording| | Restricted-Recording| | Replay |

Figure 4-1. Debugging run-modes.

4.1 Overview

Debugging instrumentation added to the actions (Chapter 5) allowsthe
program to be run in one of the modes shown in Figure 4-11. In each of these
modes, interactive support is available along with other debugging facilities.
In the full-recording mode, the instrumentation generates execution event
recordsfor all executions of every program action. In the restricted-recording
mode, recording isrestricted to only the selected actions. In the replay mode,

1 There is also a performance run mode in which debugging instrumentation
generates a logical trace of the execution for performance measuring purpose. In
addition, there is a debugging-off mode in which all the debugging instrumentation
can be turned off. See Section 5.1.1.

49
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the instrumentation uses the event records from a fully recorded trace of an
earlier execution to exactly replay that execution.

The instrumentation can save the event records of the execution of ac-
tions in the internal structures of the debugger for a later use. It can also send
the event information to any of the facilities requested by the user for immedi-
ate analysis and presentation. See Figure 4-2. The facilities prdindedis-
playing, checking and/or post-restriction of the event information (Chapter 6).
As shown in theiure, events traced in éef or recorded in internal structures
are available for postmortem analysis and presentation. Note that the events of
a fully recorded trace can also provide a replay of the recorded execution.

CYCLICAL

Internal Structures Instrumentation y
> Event - Full || Restricted| Replaying
Records » |Recording|Recording run

C

Y y Y

C PostMortem On-the-fly

L

I

g ¥ Y L

L Topological Sorting Interactive
Tracing | Checking| Display | Restricting Control
Y \
File Animation | History

Figure4-2. Available facilities.

Debugging facilities are available on-tHg-during the execution of ac-
tions or in a postmortem fashion after the end of the execution. Events arriving
on-the-fy or in a postmortem fashion are topologically sorted before they are
utilized by any of the facilities. The sorting delays the utilization of an event
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by a facility until the arrival of all of its predecessors is ¢onéd. This en-
sures a causal delivery of events to the facilities. The sorting process also
helps in post-restricting the events according to the individual needs of each
facility (Section6.1).

4.2 CODE 2 Environment

Programming in CODE 2 environment is done by drawing nodes and
arcs, and then annotating them. Nodes interact with each other through arcs
that bind names in one scope to the names in another scope.

In Figurel-4, “CODE 2 Graph for BlockfTangular Solver (DoBTS),”
on page9, Dist, Mult, Gath andSolve nodes are UC (unit of computation)
nodes. UC nodes provides the sites where sequential computation takes place.
As such, they correspond to the abstraction of the computation actions consid-
ered by our model. Annotation of a UC node consists of a list of input ports,
list of output ports, list of local variables,iarig rule, a sequential computa-
tion and an outputring rule. See Figure 4-3. The annotations also specify
whether it is a start node, a terminating node or neither

firing rule

local Sequential
data Comp

routing rule
)

e ports

Figure4-3. CODE 2 Unit of Computation (UC)

A data-fow arc between the nodes such as the one betetrand
Solve, binds the output port d@ist to the input port oSolve. Ports are queues
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of datathat leave or enter a node. Each node uses its own local names for the
ports so that nodes can be reused in different contexts.

A firing rule for aUC serves two purposes. It defines condition under
which the node is permitted to execute. Second, it describes which local vari-
ableswould have data placed in them that has been removed from the designat-
ed input port. A routing rule for aUC determines the data that will be placed
on the output ports.

Figure 4-4 shows the main program graph for the block triangular solv-
er example explained in Section 1.2.1. Nodesrdsys and dobtsin this graph
are call nodes. They call other graphs. For example, dobts calls the graph
DoBTSshownin Fig. 1-4. Thus, CODE programs can be hierarchical. Nodes
like creation parameter and interface nodes aid in this hierarchical composi-
tion. Creation parameters are visible to all the nodes within agiven call graph.
Interface nodes of acall graph are like formal parametersto a function call.
They are thus aliases for the nodes within the call graph.

§oreate Juxit]

é getinp printp

blk

prans @

Figure 4-4. Block triangular solver main program graph.

There are al so name sharing nodes that contain the objectsto be shared
by various UCs. A UC declaresitself to be areader or awriter of a shared ob-
ject of aname sharing node. The UC declaresits intention to share with the
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node through a shared dependence arc. See [New93] for more information
about CODE 2 program graphs.

421  Templates and their Executable Instances

Nodes of a CODE 2 program graph are type templates. It istheir in-
stances that exist and execute at run-time, and create other instances by send-
ing datato them. A policy of lazy creation of instances is employed. That is,
executable instances are not created until they are needed. For example, anin-
stance for atemplate like Solve in Figure 1-4 will not be created unless datais
sent to it. This happens when Dist puts data on its output port that is bound to
theinput port of Solve.

A UC template may be instantiated one or more number of times. The
number of times it getsinstantiated is determined dynamically at run-time.
This depends upon the binding on the output arc connected to a port specified
in the output rule. For example, the binding on the arc connecting templates
Dist and Mult in Fig. 1-4 specifies that the data placed on the output port
B_TO_M[i] of Dist goesto an input port of the instance M ult'. Dist node can
now determine the number of M ult instancesin existence by sending dataon
appropriate indices of the output port B_TO_M. If it sends data on output port
B_TO_M{[i] wherei=1..N-1, the binding would cause the data to be received
by N-1 instances of Mult. Instances M ult®, Mult?, ..., MultN-L would, then,
be created if they are not already instantiated.

Instances of a UC and call node templates exist in the CODE 2 run-
time environment as structs. The struct for aUC node instance containsits
template UID, and itsindex (see Figure 4-5). The UID isauniqueidentifier as-
signed to each template node by the CODE 2 front-end. The index helpsin dif-
ferentiating one instance of atemplate from another in a given instance of the
call nodetemplate. Thus, the M ult instances considered above are differentiat-
ed by their indices. In addition, each instance contains the local state, the nest-
ing context (Section 4.4.2), and some other information needed by the run-
time environment. Action-specific debugging information needed by thein-
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strumentation (Sectioh.1.2), and the various facilities (Sectiér?) is also
kept in the struct for the UC node instance.

typedef struct UcNodel nst *UcActi onl d;

struct UcNodel nst {

Tnpl t U D ui d;
I ndex i ndex;
Cal | Nodel nst *parent; // Nesting context

/1 Info needed by runtine
/'l Local state
/'l Action-specific debugging infornmation

s

Figure4-5. Internal representation of a UC node instance (UC actic

Note on Terminology

As unit of computation nodes (UC) nodes spediin a CODE 2 pro-
gram graph are template types, the set of UC templates corresponds to the set
of template computation actiornss, of the unifed model (Sectio8.1). Conse-
guently the set of UC instances created at runtime corresponds to the set of ex-
ecutable computation actioris(Section3.1.1). In the following sections, the
term “template” will be explicitly used whenever a reference to a UC template
or a template computation action is intended. UC instances will be referred to
as such or as executable computation actions, or simply as UC actions.

In Figure 4-5, note that the id of a unit of computation actido¢ -
tionl d)is at ypedef for a pointer to the struticNodel nst. The phrase
“inside the action” will, therefore, be used to mean “inside the struct for that
UC node instance”. SimilarJythe phrase, “id of the action” will be used to
mean “an object of typecAct i onl d that points to the struct for that UC
node instance”. Thus, knowing the id of a UC action implies that all the infor-
mation stored in the struct of theNodel nst is also available.
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4.2.2 UC Execution Event

An event for the CODE 2 implementation of the iedfconcurrent de-
bugger is an execution occurrence of a unit of computation or UC action. A
UC action starts executing by checking thing rules. See Figuré-6. If the
condition of a rule evaluates to “true”, data is removed from the input ports
specifed in the rule, and the data values are bound to the local variables. The
UC action, then, tries to acquire read and write locks for any shared objects
which it has declared that it wants to access. On success, the action performs
the speciked sequential computation. It then selects a satigbuting rule,
and sends out data on the output ports sptly the rule. This completes
one execution (event) of the action, and mimdifthe state of input ports of
those actions to which data was sent. This also readies for execution the ac-
tions to which data was sent.

Tenpl ate routi ne Firing Rulei:
- X Check inporp
| Firing Rule 1: | Check inporg
| Firing Rule 2: | .
. Remove inporp

Remove inporg

| Get R/W Lockl | .

| Get R/W Lock?2 |

Sequential
Computation

Routing Rulek:

| Routing Rulel |

Send outpors
| Routing Rule2 | Send outport

Figure4-6. Execution of a@mplate Instance.
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4.2.3 CODE 2 Runtime System

The CODE 2 runtime system implements the execution of aUC action
by aroutinethat is generated by the translator for each UC template. The tem-
plate routine takes as an argument the id of the action whose execution it is go-
ing to implement. The id allows the routine to access the local state and
nesting context of the UC action. Note that at the time of its creation, each ac-
tion is provided with a pointer to the template routine that implementsits exe-
cution.

The CODE 2 execution environment for Sequent shared memory ma-
chine consists of aready queue, a number of worker tasks, and the template
routines that implement actions [New93]. The ready queue containsids of the
actionsthat have received new data on their input ports. The worker tasks are
light-weight FastThread threads. Each worker loops around looking for aUC
action to run from the ready queue. On finding one, it executes the action by
running its corresponding template routine. The execution of the action
would, inturn, ready for execution the actions to which the datais sent.

CODE 2 is aretargetable, machine independent parallel programming
environment [New93]. In addition to the parallel implementation of the runt-
ime system on the Sequent shared memory machine, thereisaserial and adis-
tributed implementation. The serial implementation of the runtime systemis
on a Sun-4 workstation and is quite similar to the parallel Sequent implementa-
tion. The only differenceisthat the serial implementation employs only one
worker task and no synchronizations. The distributed implementation of the
CODE 2 runtime system is on a network of workstations using PV M message
passing primitives [Vok94].

The description of the unified debugger given below isfor the parallel
Sequent implementation. The serial implementation of the debugger isvery
similar. Distributed implementation of the unified debugger is discussed in
Section 8.3.2.
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4.3 Debugging Environment

Figure 4-7 shows the debugging environment for the Sequent shared
memory parallel machine. As mentioned above, worker tasks execute the UC
actions by running their corresponding template routines. Instrumentation add-
ed to these routines provides debugging support for replaying, recording and
restricting traces (Chapter 5). The instrumentation sends an on-the-fly stream
of information about the execution of these actions to the debugger on the
News Q. The worker tasks and the debugger task can, therefore, run asynchro-
nously. The debugger task isthen free to interact with the user, respond to the
execution information, provide display and other facilities, and maintain de-
bugging information (Chapter 6).

internal | EVent Worker tasks
dructures | records
t Template Routines with

Program] [ Instance nstrumentation
SymTab || struct = |
A A

A
\

Debugger Task v
<—> | Fi|e| Restrict | Display | Check | Irggrr?[(r:glve

Figure 4-7. Debugging Environment

I nformation about the symbols and templates of the program, actions,
and event occurrences are maintained in various internal structures
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(Section 4.4). These structures allow the debugger to map between the tem-
plates, actions, and events (Section 4.5).

431 News from the I nstrumentation

Instrumentation inserted in the template routines sends news about the
execution of UC actionsto the debugger task. The news are about the event oc-
currences, state changes and encountering of breakpoints.

News About the Event Occurrences

After each execution of a selected action, the instrumentation sends a
news item to the debugger task containing the event record that was generated
or used during the execution. Note that during the recording mode, the instru-
mentation generates a new event record for each execution of a selected ac-
tion. These records are later used during the replay mode to re-execute the
action.

The information contained in these recordsis utilized by the facilities
for model checking, display, filing or for further restriction of the trace. So, the
records are sent to the debugger task only if the user has requested one or more
facilities.

News about the Stopped/Running State of an Action

The instrumentation can change the execution state of an action when
it stops the action by enqueuing it inthe St opQ. The state al so changes when
the instrumentation resumes the execution of the action from wherever it was
stopped. The news about the change in the state is sent to the debugger task.
The debugger task then forwards the newsto the user. The user can, then, em-
ploy theinteractive facility for querying the state of the stopped action (Chap-
ter 7). The interactive facility can later be employed for continuing the
execution of the action. Thisis done by enqueuing the id of the action in the
Ready Q.
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News about the Encountering of Breakpoints

A user can set various kinds of breakpoints for an action (Section 7.2).
Depending upon their type, the breakpoints are conditionally or unconditional -
ly evaluated at selected points during the execution of the action. Theinstru-
mentation sends news about the results of these eval uations to the debugger
task.

4.3.2 TheDebugger Task

The debugger task continuously loops around looking for the input
from the user, and for the execution information coming from the instrumenta-

tion on the News Q See Figure 4-8.
Chkr Bpt

Translate Cmd

R

Interpret

L
|Get Event News|—>| Sort

Post-Restrict ¢

Figure 4-8. The Debugger Task.

On recognizing some input from the user, the debugger interprets the
command. If the command is executable, it isimmediately executed. Other-
wise, it is handed over to one of the facilitiesfor translation. The facility, then,
sets breakpoints for the specified action(s) where the translated command will
be evaluated. The user-breakpoint (Section 7.2), checker-breakpoint
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(Section6.5.4), and the display-breakpoint (Sect&#d) are respectively set
by the interactive, checking and display facilities.

Any execution information that is seen by the debugger task on the
News Qis handed over to the sorting facilifjhe sorting delays each event un-
til its causal arrival is comimed. Once an event gets sorted, post restriction
takes place (Sectiof.1). The sorted event is then given to the facilities select-
ed for displaying, checking and/alirig. The checker facilityif selected, eval-
uates the translated commands associated with the checker breakpoints and
signals any exceptions (Sectiérb). Similarly the display facilityif selected,
presents the event information as spiecfoy the user (Sectio®.4). If ar-
chiving of the event trace is requested, then the evem¢dsih the speciéd
format. Once the facilities have utilized the information in the record of the
sorted event, the record is deleted if saving of the event trace has not been re-
guested by the user (Secti6rB.2). Note that the user can request to have the
trace of event records internally saved for a later replay and/or postmortem uti-
lization.

4.3.3 Communicating with the Instrumentation

The debugger task provides the instrumentation with information
(Section5.1) that allows it to properly execute the actions in the selected
mode. This includes:

1. Global information that applies to the execution of all the actions.

This is distributed by means of shared variables.

2. Action-specific information that may be f@ifent for diferent actions.

This is stored inside the selected actions. The instrumentation obtains
access to this information when the template routine provides it with the ac-
tion id.
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4.4 Internal Structures

At the top level, the uniéd debugger maintains three structures: The
debugger symbol table, the dynamic instance tree, and the event graph. The
symbol table contains an internal representation of the symbols and templates
of the program. The dynamic instance tree contains information about the runt-
ime instantiations of templates of the program into instances. Event graph cap-
tures the orderings between the execution occurrences of actions.

44.1 Debugger Symbol Table

The symbol table allows the debugger to interact with the ltssrn-
tains information about user de¢d types, local variables in égfent scopes,
input ports, output ports, and call graphs. It also contains information about
the UC, NS, and call node templates of the CODE 2 program graph. The set of
template computation actions (Section3.1) is, therefore, available through
a symbol table lookup for the UC template symbols.

The CODE 2 compiler/translator was moeéd to add symbol table in-
formation to the generated code. The added information is in the form of a rou-
tine which is linked with the other code generated by the transktastart-
up, the debugger invokes this routine to enter the information in its symbol ta-
ble. Figure 4-9 shows a part of the debugger symbol table entry routine for the
block triangular solver example. The routine contains a call for each symbol
that is to be entered in the debuggesymbol table.

void _c2_dbgSymEntry()

{
_c2_entrPgmSym(“bts”, 46);
_c2_entrArrayTypeSym(“real”,“Vector”,46);
_c2_entrArrayTypeSym(“Vector”, “Matrix”, 46);
_c2_entrGphSym(“DoBTS”", 26, 46);
_c2_entrUCSym(“Gath”,31,26);
_c2_entrvVarSym(*b”, -1121, “Vector”, 31);

}

Figure4-9. Translator generated symbol table entry routine.
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Information about a symbol includes name of the symbol, block con-
taining the symbol, type of the symbol (if any) and the UID of the symbol. The
UID refers to the unique id assigned to the symbol by the CODE 2 comipiler
Figure 4-9, entry for the variabléd" provides information about its type
(Vector), its UID (- 1121), and the UID of the enclosing blocBX) in
which the variable is defed. Note that the UC template symb@Ght h” has a
UID of 31, and is thus the enclosing block fdx" In CODE 2, names given to
UC templates lik&sath andMult are optional because the graphical frontend
can uniquely identify each node from its graphical context. These UIDs are
used by the runtime to implement lazy creation of template instances. The de-
bugger uses them for mapping the symbols to their object addresses
(Section7.4.3) and for mapping between the templates and their instances
(Section4.5).

4.4.2 Dynamic Instance Tree

The run-time elaboration of the templates of a program graph into in-
stances introduces two types of relationships: One is captured by the elaborat-
ed graph and the other is captured by the dynamic instance tree.

1. The elaborated graph shows the relationships established by the flow of data
and the accesses of shared objects between the UC actions.

Figure 4-1 shows the elaboration of the program graph as a result of
the fow of data between instances of the UC templates of Figure 1-4. These
data-fow and shared access relationships are available in the debugging infor-
mation stored inside each UC instance. The display facility uses this informa-
tion to construct the elaborated gragh, F), as it is presenting the event
information to the user (Sectid4). As such, the primary use of the elaborat-
ed graph is to communicate to the user the synchronization structure of the
computation resulting from the instantiations of the UC templates at runtime.

2. Dynamic instance tree shows the hierarchical relationship established by the

nesting of an instance within the scope of another instance.
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Figure4-10. Data-flow relationships of the dynamic instance grapt
Creation of a UC action inside a given call graph instance gives rise to

such a nesting. The instances amgamized in a tree. Each tree node represents
an instance of a UC, call graph or an NS (name sharing) template of the pro-
gram graph. The node contains the type and the address of the node instance it
represents. The tree is rooted at the main program graph. Figurelbvs
such a tree for the mabts program graph. A call instance contains a list of all
of its children nodes. Any of these children can itself be a call graph instance.
For example, the child node bfsin Figure 4-1 isdobts, which is itself a
call graph instance and thus contains other instances.

Whenever a new instance is created inside a call instance, a new child
node is introduced in to the list of children for that call instance. Additionally
the newly created instance is informed about its nesting context by storing a

pointer to the parent call instance inside the struct for the new instance.
bts

N

rdsys@ GetSizeO dobt O PrintAns

O O O O O eee 7O
Get\als Dist Gath Solve Multl Mult? MultN-1

Figure4-11. Nesting relationship in the dynamic instance tree.
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As the execution proceeds, the newly created instances keep getting
added to the dynamic instance tree. The tree therefore contains the current in-
formation about all the dynamically created instances. It is, therefore, also of
use to the run-time for managing the creation of instanaeavdid duplica-
tion, our implementation uses the tree maintained by the runtime. It obtains a
handle to the graph by storing the identity of the root of the instance tree. Note
that the instance of the root program graph is created by the runtime system at
start-up.

The dynamic instance tree is mainly used by the debuggerdganiaz-
ing and maintaining the internal debugging information. The root of the tree
serves as a representation for the scope of the program. The debugger uses the
handle to the root of the dynamic instance tree in implementing functionality
that requires iterating on all the instances. For example, determining the mem-
bership of the set of executable computation actibiiSection3.1), selecting
a particular scope (Sectigh5.1), determining the fctive recording option
of all the instances (Sectidn3.1), preparing all the instances for a new run
(Section7.1.3) requires such iteration.

4.4.3  Event Recordsand Event Graph

An event is an execution occurrence of a UC action. It is therefore iden-
tified by the id of the action (a pointer to the struct of its UC node instance)
and its execution count. The event record of the execution of a UC action con-
tains information about the ids of the predecessor events and the counts of the
successor events. See Figure 4-12. Note that the id of the action in the event
record (and the event id) maps the event to its corresponding action and, thus,
supports the mapping V — 2 needed by the unified model (Sect@2.2).

The list of fow-predecessors contains ids of the events whose data was
removed by the action from its input ports. The list of shared predecessors con-
tains ids of the events that last wrote the objects that were shared accessed by
the action in this execution. These lists are the implementations of the sets
u;.Pe (Section3.2), andy;.Pg(Section3.4) for an event; in V.
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typedef struct UcEvid *UcEvld;

struct UcEvld {
UcActionld id;
int ExecCnt;

b

struct UcEvRec {
UcActionld id;

int ExecCnt;

Li st fpl; /1 list of flow predecessors
Li st spl; /'l list of shared predecessors
int fscnt; /1 count of flow successors
int sscnt; /1 count of shared successors

Figure 4-12. Event record and event id.

The number of flow successors are the number of eventsto which the
data was sent via the data-flow arcs. The number of shared successorsisthe
number of readers or writers that accessed the shared object written by the
event. Note that the number of shared successorsis more than zero only for the
actions that write any shared object. Thisinformation is needed during topo-
logical sorting to delete the information that is no longer needed by any of the
facilities (Section 6.3.2).

Thedisplay facility (Section 6.4) usesthe event record information to
construct the event history graph as shown in Figure 4-13. Thisisapictorial
representation of the pomset (%, V, <C H) considered in Section 3.2.2. The one-
to-many relationship that may exist between an action and its events (Figure 4-
14) ismaintained by keeping the list of event records inside the action. Note
that the set of events, V, is, thus, aunion of thelists of events kept inside each
action in Z. Keeping the event records within an action, allows the replay in-
strumentation to access the event records whenever it has the action id
(Section 5.1.2). Moreover, the debugger can present to the user all the event in-
formation of agiven action (command | se in Table B-1).
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Figure4-13. Event history graph of the DoBTS example for N=4.
4.5 Selecting a Scope

The debugger maintains information about the currently selected
scope. The selected scope can be that of the program, a call instance, a UC ac-
tion, or an event. Note that the context of the currently selected scope is used
to interpret context-sensitive commands lgka nt <expr >, andst op (Ap-
pendix B). The user must select an appropriate context before such commands
are issued. For example, the program scope is selected for issuing a global
command to stop the execution of all the actions (Chapter 7). Simifarly
guerying the state of an action, the action must be selected before issuing (say)
aprint oradunp command. Note that the root of the dynamic instance tree
serves as a representation for the scope of the program. Several commands are
available to the user for selecting a scope (Appendix B).

The mappings existing between the symbol table, dynamic instance
tree and the event graph (Figure 4-14) allow the debugger to select a scope
specifed by the useiThe symbol table contains symbols for UC, call node and
NS templates. These symbols are used to construct unique ielenfior the
instances as explained belo@iven such a unique idengf for an instance,
the debugger can traverse the dynamic instance tree, and locate the isstance’
struct. Once the struct is obtained, the debugging information contained in that
struct becomes available (Figure 4-5). Note that the debugging information for
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aUC action containsthelist of its events (Section 5.1.2). If an event of the ac-
tion isto belocated, then thislist is searched for the given execution count to
obtain the desired event record.

Symbol Table Dynamic Instance Tree Event Graph

Actions

Mult
O

Mult 2
o=

Figure 4-14. Mappings between templates, actions, and events.

Unique Identification of Instances

It is possible to have several instances of the same template with the
same index in various call graph instances. Unique identification of an in-
stance, therefore, requires the nesting context of the instance in addition to its
template id and the index. Consider for example, that an instance of the main
program graph contains two instances of DoBTS call graph; dobts! and
dobts?. If both contain a UC action Mult 3, then the two Mult 3 actionsin
dobts! and dobts? would have the same template UID and the same index (i.e.
3). The only way of distinguishing between the two actionsistheir nesting
context. Thisinvolves giving each instance a path-name similar to the one
Unix assignsto afilein adirectory. Then, the two UC actions are uniquely
identified by /dobts/Mult 3 and /dobts2/Mult 3. Therefore, commands that re-
fer to UC, call graph and NSinstances require the full pathname (Appendix B).

4.5.1 Selecting an Instance with a given Pathname

Searching for an instance with the given pathname is recursive and

starts at the root of the dynamic instance tree. The search for (say) /dobts?/-

Mult 3, starts with the lookup for the name dobts in the symbol table. This
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yields the corresponding symbol which providesthe UID of the dobts tem-
plate. The search then examines each child of the root for an instance with
UID of dobtsand index of 2. As each instance contains the UID of its corre-
sponding template and itsindex, the search would eventually locate the in-
stance dobts?, if it exists. Asdobtsis an instance of acall graph, and the path
name still has an extension (M ult3), the search continues by descending inside
the dobts? call instance and examining its children. The lookup for Mult in
the symbol tableyieldsits UID. Theindex 3 isgiven in the pathname. So, the
search examines the children of dobts? for an instance with the UID and index
of Mult. If the search fails at any of these steps, the search exits with the error
status. The search succeeds if all the instances given in the pathname have
been located in their proper context.

452  Constructing the Pathname for an Instance

Given the UC action id, the full pathname of an instance can be con-
structed. The struct for each instance containsits UID, itsinstance index and
its nesting context. Using the UID, the symbol table lookup yields the symbol
for the corresponding template. As UID is unique for atemplate, thereisno
ambiguity. The nesting context of an instance is available as a pointer to the
parent call instance (Figure 4-5). The UID in the parent instance struct allows
us to obtain the symbol for the parent graph. The symbolsfor each of the par-
ent along the path is, thus, obtained recursively. The recursion ends at the root
graph instance which does not have a parent (indicated by anil pointer).



Chapter 5.  Debugging Instrumentation

Debugging instrumentation is inserted in the executable code generat-
ed by the CODE 2.0 translator to relieve the debugger task from micro-manag-
ing the execution of UC actions. This obviates the need for intrusion from a
“centralized” monitor/debugger as the instrumentation takes over the responsi-
bility for recording the execution information, controlling what is recorded,
and controlling the execution itself. The debugger task, then, uses the informa-
tion generated by the instrumentation to implement the facilities provided to
the userThe instrumentation is in the form of calls to a library of runtime rou-
tines that perform various action-spécidebugging activities. The calls are
inserted at dierent points in a template routine where they can record, replay
restrict, and interactively control the execution of an action. 8bk%-2. Be-
fore explaining these calls, this chapter explains the information needed by the
instrumentation to ensure the execution of actions in the proper debugging
mode.

5.1 Information Requirements

The debugger requires both global information and action spéucif
formation. Global information is provided through shared variables in the Se-
guent implementation. Action-speiciinformation is provided by storing it
inside each action. The instrumentation obtains the action-spadidrma-
tion when the instrumentation calls are invoked from the template routine with
the action id as a paramet®ecall that id of the action makes available the de-
bugging information inside the struct for that action.

5.1.1 Global Information

The information about the currently selected mode for running the pro-
gram is available i€ur Mbde. See able5-1. During the execution of each ac-
tion, Cur Mode selects appropriate instrumentation for the full-recording,
restricted recording and the replay mode. Commandsédpt -ing andst op-
ping of actions provided by the interactive facility (Chapter 7) require coopera-

69
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tion from the instrumentation. I nformation about the current global state of the
execution which isavailablein Cur St at e, helpstheinstrumentation inim-
plementing the global next -ing and st op-ping of actions. The instrumenta-
tion sends information about the execution of actionsto the debugger task if
any of the debugging facilities described in Chapter 6 have been sel ected.
SendNews informs the instrumentation whether to send the news about the
execution events of actionsor not.

Table 5-1. Global Information used by the Instrumentation.

Global .
Information Options Use
Recording? Select recording instrumentation
Replay Select replay instrumentation
CurMode | DebugOff Turn-off all instrumentation
PerfTr Performance timing instrumentation
Postmortem? Facilities use pre-recorded trace
{ Stopped,Nexting, Waiting, |Providesinteractive control over the
CurState . - . :
Stopping, Finished execution of actions.
SendNews Boolean True if the debugger task_ ngeds
EvRec for any of the facilities.

a. Section 5.3.1 explains how the full-, restricted-, and off-recording modes are selected
b. Postmortem mode is not used by the instrumentation.

5.1.2  Action Specific Information

Table 5-2 describes the use of action-specific debugging information
kept in the struct UcNodel nst (Figure 4-5) for each UC action. Some of
these variables are selected by the user, while others are maintained by the in-
strumentation.

The user controls the amount of recording by selecting appropriate re-
cording options. This determinesthe Ef f RecOpt (Section 5.3.1) which in-
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forms the instrumentation what information to record in the restricted
recording mode. The user may set a breakpoint, or issue a command to control
the execution of an actiotdsr BpOn, UCCommand, andl sSt opped inform

that portion of the instrumentation which implements the interactive facility
what actions to take. Instrumentation calls are insertedvatious points in a
template routineTable5-2). Cur At indicates the most recent instrumentation
call made by an action. This is helpful in resuming the execution of an action
from the point where it was stopped by the instrumentation.

Table5-2. Action-specific information needed by the instrumentation.

Field Type Usage
ExecCount int Recording, replaying, checking
Cur EvRec pointer toEvRec Recording, restricting, replaying
EvReclLi st list of EvRec Recording, replaying
Cur Fp pointer Replaying

Sel RecOpt |{ful | ,restrict,of f}|DetermineEf f RecOpt

Ef f RecOpt [{ful | ,restrict,of f }|Recording, restricting

Cur Sp pointer Replaying
Cur At At (see Bble5-2) Interactive
UCConmand|{cont, next, stop} |Interactive
| sSt opped Boolean Interactive
Usr BpOn Boolean Interactive

The instrumentation maintains the aenircount of the number of times
an action has executeixecCount is updated after each execution of an ac-
tion.

Whenever an action begins a new executicur,EvRec is made to
point to an appropriate record. During replay mdde, EvRec points to the
event record whose information is being used to replay the current execution.
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During full recording mode, Cur EvRec pointsto anewly created record that
will contain the information recorded for the execution. If executions of an ac-
tion are not being recorded, then for each execution of the action Cur EvRec
pointsto the same record. Thisrecord helpsin propagating information about
the predecessors of the event to its successors.

Event records generated by the recording and restricting instrumenta-
tion can beinternally savedin alist. Therecordsin EvRecLi st may later be
used for replay. During replay mode, Cur Fp, and Cur Sp point to the prede-
cessorsthat are currently expected by the action to ensureitsreplay.

5.2 Full-Recording I nstrumentation

In the full-recording mode, executions of all UC actions are recorded ir-
respective of the user selections for each action. Event records are generated
for every execution of an action, and they contain flow-predecessor orderings,
aswell as shared predecessor orderings (if any exist).

521 Deter mination of Flow Predecessor s

The instrumentation determines the <" orderings (Section 3.2) by ob-
taining theid of the predecessor event from the data removed from each input
port. In order to allow the successor events to determine their predecessors,
current event id is appended to the data sent out on each output port.

In CODE, ports of aUC node are implemented as queues. The run-time
uses a container object for carrying values of different types on these queues.
We make provisionsin the definition of the container object to carry the addi-
tional information that the recording instrumentation is going to append.

Dataisremoved from an input port by dequeuing the container object
from the queue representing the input port. At this point, the Det achF-
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pAct () routine detaches the predecessor information from the object and

adds it to the predecessor list in the current event record.

Table 5-3. Instrumentation inserted in atemplate routine.

Instrumentation | Point At which
Breakpoint inserted Usage Action
Actions See Figure 4-6.
voi d Start of template |Recording, restrict-|Get Cur EvRec for a
Begi nEVAct () |routine ing, replaying, new UC exec
interactive
voi d End of template  |Recording, restrict-| Send and/or save
EndEvAct ()  |routine ing, replaying CurEvRec info
voi d On removing Recording, restrict-|Remove dbg. info.

Det achFpAct ()

from an input port

ing, interactive

appended to data

voi d Before sending on |Recording, restrict-| Append dbg. info. to

AppendFpAct () |an output port ing, replaying, data sent out
interactive

voi d About to acquire a|Recording, restrict-| Read appended info to

ReadSpAct () |R/W lock ing, replaying shared object

voi d About to release a|Recording, restrict-|Write to info appended

WiteSpAct () |writelock ing, replaying to shared object

Bool ean Checking/ remov- |Replaying Check id appended to

CheckFpAct () |ing from an inport input data

Bool ean About to acquire a|Replaying Check id appended to a

CheckSpAct () |R/W lock shared object

Bool ean After sequential  |Interactive Evaluate any user

Af t ConpAct () |computation breakpoints here

Bool ean Before sequential |Interactive Evaluate any user

Bef ConpAct () | computation breakpoints here

Sending of avalue on an output port is moreinvolved. The run-time
first locates the destination action using the binding specified for the output
port. It createsthe actionif it isnot already in existence. Then, the value to be
sent is placed in a container object. At this point, AppendFpAct () appends
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the identifer of the current event to the object. The object is then inserted in
the queue that represents the input-port of the destination action. Note that
each event record additionally contains a count of number of successors. W
increment this count whenever the data is sent on an output port.

522 Deter mination of Shared-Predecessors

The instrumentation determines the shared predecessors (S&étjon
by reading in the event ids that were appended to the shared objects by their
last writers. This is done for each shared object accessed by the action in the
current execution. In order to enable the successor events to determine their
shared predecessors, the instrumentation replaces the event id appended to the
shared object that is being written, with the current event id.

In CODE, a shared object resides in a name sharing node action. This is
implemented by declaring a shared object asld fn the struct representing
the name sharing node. For each shared object inside a name-sharing node, we
ask the compiler to declare an additionald in the struct. This newdild is
used for appending the predecessor informatio® &nd w.D of Section3.5).

An action obtains access to a shared object by acquiring a read or a
write lock through a typical CREW protocol. Instrumentation is added where
the locks are being acquired and released. When the action is about to acquire
a read- or a write-lock to a shared objé&tadSpAct () reads the eventid ap-
pended to the shared object. It adds the event id to the list of shared predeces-
sors kept in the actios’current event record. Similarlwhen an action
releases a write lockl i t eSpAct () replaces the appended id with its cur-
rent event id. This allows the events that later access the object to determine
their predecessor

struct SharedPred {
Evid evid;
int rdrcnt; /'l reader count; significant
}; /1 only in full recordi ng node
/1 and replay node.
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The predecessor information that is written to or read from the exten-
sion to to the shared object defion contains a readarount in addition to the
event id. This is helpful during replay when a writer must wait until all the
readers of the object written by its predecessor have come and read the object
(see also dble 3-2).

In ReadSpAct (), an action acquiring access to an object reads the
event id appended to the object as explained above. In addition, hqufever
the action is acquiring read-access, then it increments the readet. But, if
the action is acquiring a write-access, then it records the appended-reader
count. InW i t eSpAct (), the action releasing the write-lock, appends its id
to the object, and initializes the read®unt to zero.

5.3 Restricting I nstrumentation
In the restricted-recording mode, the user has several options to control
the amount of recorded information:

1. Option to turn dfor on, the recording of events of selected actions.

2. Option to record flow predecessor orderings with the shared predecessor

orderings or without them.

3. Option to override the selected options for all actions in a given scope.

531 Determining the Effective Recording Option

The amount of recording is controlled by theféetive” recording op-
tion. Ef f RecOpt may be diferent from the option “selected” by the user
Sel RecOpt can be overridden by the parent scepaption. Bble 5-4 de-
scribes the possible recording actions for UC and call instances.

The efective recording option of an instance depends upon (i) the in-
stances selected option, and (ii) its paren€fective option. The selected op-
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tion is efective only if the parens'Ef f RecOpt isRestri ct. Otherwise,
the action$ efective option is the one inherited from its parent action. That is,

if my parent’s EffRecOpt is Restrict
then
my EffRecOpt = my SelRecOpt;
else /* Full or Off */
my EffRecOpt = my parent’s EffRecOpt

This rule is applied recursively to all the instances of the dynamic in-
stance tree starting from its root. The reddf f RecOpt is always equal to
Sel RecOpt . If a new option is selected for a call instance, then the rule is re-
cursively applied to all the instances inside the scope of that instance.

Table5-4. Efective recording options for UC and call instances.

Instance EffRecOpt Recording Action
Type
Full Record flow and shared predecessors.
ucC Restrict Record only flow predecessors.
Off Do not generate any event records.
Full Turn to full the recording of all internal instances.
Call Restrict Defer to individual selections for internal instances.
Off Turn off the recording of all internal instances.

Thus, full recording mode of the execution is chosen by selecting a
Ful | option for the root of the dynamic instance tree, i.e. the program scope.
This overrides the selections of all internal instances and for€eklaeffec-
tive option for all the instances of the tree. Similathe restricted recording
mode is chosen by selecting tRest ri ct option for the root. Similarlythe
off recording mode is chosen by selecting @id¢ option for the root that
turns of the recording of all the instances by overriding their selected record-
ing options.
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5.3.2  Turning Off the Recording of a UC Action

Each action has to maintain the list of its predecessors; even those ac-
tions not selected for full recording. The list of predecessors maintained by the
actions that were not selected for recording, helps in establishing orderings be-
tween event occurrences of the selected actioalsl€T3-1). Instrumentation
for an action whose recording is turnedl édrwards the list of the predecessor
events to the successor events.

This requires that the provision for appending to the data sent on the
gueues should be capable of holding more than one event id; it must be a list of
eventids. A similar provision is needed in the extension to theitieh of a
shared object. An event record is used for temporarily accumulating the prede-
cessors. It is pointed to by tkier EvRec. During each execution, the prede-
cessors are accumulated in this event record. By the end of the execution,
these predecessors have been forwarded to the successor events.

Det achFpAct (), andReadSpAct () are responsible for detachin-
g/reading a list of event ids, and then concatenating the list to the list of prede-
cessors kept in the current event record. Note that the list may contain one or
more event ids.

Forwarding of thelbw-predecessors information is doneAppendF-
pAct () where a copy of the list ofdw-predecessors is appended to the data
sent on the output port. Similarlyw W i t eSpAct (), extension to the shared
object definition is replaced with a copy of the list of shared predecessors.

5.3.3  Restricting the Recording of a UC Action

With theRest ri ct recording option, instrumentation only records
flow-predecessors. It does not record shared predecessors. Therefore, it em-
ploys some of the instrumentation for thel | option recording, and some of
the instrumentation for th&f f option.
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A new event record is generated for each execution. In this event
record, Det achFpAct () and ReadSpAct () accumulate the flow and the
shared predecessors as described above. Asthe list of flow-predecessors so ac-
cumulated isto beretained, AppendFpAct () will only forward the current
event-id to its successors. However, thelist of shared predecessorsis not to be
retained. So, Wit eSpAct () will forward the entirelist of shared predeces-
sorsto its successors as described above.

5.4 Replay Instrumentation

Replay instrumentation is responsible for enforcing that an action exe-
cutes with the same orderings that were recorded in an earlier execution
(Section 3.4). Therecord of orderingsisavailablein thelist of event records
kept with each action. If the action is starting its n-th execution, then Be-
gi nEvAct () would fetch the event record whose execution count isn from
thislist.

During the execution, the replay mechanism uses the recorded order-
ings for overcoming the two sources of non-determinism: One source of non-
determinism is associated with the data-flow orderings and appears as choices
inthefiring rules of aUC. The other source of non-determinism is associated
with the choices of ordering with which concurrent actions could obtain ac-
cess to shared objects. Running the execution in replay mode, therefore, re-
quires that the event records contain both the list of flow-predecessors and the
list of shared-predecessors. This meansthat the available trace should have
been recorded at thef ul | option.

At the end of the execution, EndEvAct () sendsinformation to the de-
bugger task that it has successfully replayed the execution event.

5.4.1  Enforcing Previously Recorded Flow Orderings

It may appear that we can force an action to fire with the previously re-
corded orderingsif we only ensure that the rule firing the current execution is
the same as the one that fired the previous execution. This could have been the
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case if the input ports were not capabl e of receiving datafrom more than one
action. However in CODE 2, input ports can receive data from different ac-
tions. The data gets merged in the port queue in some nondeterministic order.
Then, simply ensuring that the same rule firesis not enough. We must ensure
that (i) the samerulefires, (ii) the datathat was checked on a port, was from
the same predecessor, and (iii) the data that was removed from the port was
also from the same predecessor.

Consider for examplefiring rulei in Figure 4-6. Thereis a checking
phase in which portsp, q, ... specified by therule are checked for data. Thisis
followed (if the checking is successful) by aremoving phase in which datais
removed from each of the portsp, q, .... As mentioned above, ports are queues.
So, the queue for inport p may have datafrom different predecessors. There-
play instrumentation must therefore search the entire queue looking for the
data from a particular predecessor. If datafrom the desired predecessor is
found, then the checking of a port is successful. The checking phase completes
successfully if each port contains data from the expected predecessor. Now the
removing phase can begin. The replay instrumentation must again access each
port and remove data of the expected predecessor. Simply, checking and re-
moving from the head of the queue is not enough.

Note that each predecessor inthelist is associated with the port-queue
from which it was removed. The same queue must be checked and removed
from during replay. This association can be established by recording not only
the predecessor id, but also the id of the port from which it was detached. Dur-
ing replay, it isthen simpleto identify the predecessor that need to be checked
for agiven port. This, however, incurs extraoverhead. Our implementation cir-
cumventsthis overhead by the following observation.

Thelist of flow-predecessorsin an event record contains event-idsin
the order in which the firing rule removed the data from the input ports. This
order isthe same as the order in which the compiler arranges the checking of
the input ports. We keep a pointer to the predecessor that is being checked. If
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the checking is successful, it is made to point to the next predecessor in the
list. Otherwise, it is simply rewound to the first predecessor in the list.

Initially, when the checking of &iihg rule starts, the curreribiv pre-
decessqrCur Fp, points to theifst predecessor in the liskor each port speci-
fied by the ruleCheckFpAct () is used to check if there is data from the
currently pointed predecessdrhe instrumentation call goes through the
gueue checking for the data from the required predecds$#dinds the right
predecessothe pointer is advanced to the next predecessor in the list. Then,
the next port of the rule is checked. This continues until the predecessor listis
exhausted or the checking fails tod data on the port, or data is found on the
port but not from the same predecesddre checking of a rule succeeds only
if all the predecessors in the list match the appended ids of the data in each in-
put port. If the checking succeeds then the action goes and removes the data.

5.4.2 Enforcing Shared Accessin the Recorded Order

Note that the list of shared-predecessors available in the event record is
in the order in which shared locks are acquired by an action. The current
shared-predecessor point€ur Sp, keptin the action is used to remember
the next predecessor that needs to be checked. At the start of the execution,
this is rewound to therst predecessor in the list. An action trying to acquire a
read-lock or a write-lock checks the id appended to the object with the id giv-
en by the current shared predecessor

If the action tries to acquire a read-lock and the comparison between
the id appended to the shared object is the same as the id of the current-shared
predecessortthen it will increment the appended rea@eunt inCheck-

SpAct () and will be granted the lock. A writer not only has to compare the id
appended to the object with the current shared-predecdasdaalso has to
compare if the appended reader count is same as the reader count given in the
current-fow predecessor record. This is don€hreck SpAct () . The writer

is not granted the lock until both the conditions are met. After obtaining ac-
cess, current shared-predecessor is made to point to the next shared-predeces-
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sor in the list. Note that a writer replaces the id appended to the object with its
current event id, and initializes the reader count to zero as in the recording
phase when it releases the lock.

55 Interactive I nstrumentation

The instrumentation for supporting user interactions with the the pro-
gram execution provides break-points in the execution of actions where user
commands can be evaluated. These commands can either alter the normal
course of execution, or they can cause the evaluation of other commands that
can provide the user with on-thlg-fnformation about the local states of ac-
tions. Note that all of this is done asynchronously from the debugger task.

55.1  Controlling the Course of Execution

This requires instrumentation for stopping the execution of an action,
resuming its execution from whereever it was stopped, and nexting to the suc-
cessors.

Stopping and Continuing

The concurrent and local state is unde#l during the execution of a
UC action whenifing and routing is taking place. Stopping of the execution is
only meaningful (and safe from the runtime point of view) after thed
takes place and before the routing starts. Curreatlyimplementation sup-
ports two places where the execution can be stopped; before the start of the
computation and after the end of the computation.

Bef ConpAct () andAft ConpAct () determine if the action has to
stop its execution. If thelCCommand isst op or theCur St at e is St op-
pi ng, then the instrumentation would change the stopped status of the action
to true, and would enque the action in 8tepQ After sending the “news” to
the debugger that the action has stopped, the template routine returns prema-
turely. That is, if it is being stopped Bef ConpAct (), then it will not pro-
ceed with the sequential computation, and if it is being stopped by
Af t CompAct (), then it will not start the routing. Thereafter it is the debugger
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tasks duty to inform the user, respond to the user queries, and ready the action
for execution.

Eventually the action beginsits execution. Begi nEvAct (), then,
finds out that the action was stopped. So, it makesthe routine to jump to the lo-
cation where the action was stopped. Note that Cur At in the action keeps
track of the point from which the last instrumentation call wasinvoked.

Nexting to the Successor s

If the UCCommand isnext or the Cur St at e isNext i ng, then Ap-
pendFpAct () appends astop command to the data being sent on the output
port. Thiscommand is then seen by the Det achFpAct () of the successor
event. If Det achFpAct () sees a stop command, the command is simply
placed inside the action. This command would then be evaluated after the fir-
ing by Bef ConmpAct (). Thiswould cause the action to stop as explained
above.

5.5.2 User Breakpoints

A user breakpoints can be of two types: It may be an unconditional
command to st op or next the execution as explained above. Or, it may be a
conditional command that can be evaluated at different points during the exe-
cution of actions. The conditional command specifies the place where the con-
ditionisto be evaluated. It can also specify acondition on local state that must
be evaluated at that place. The evaluation of the condition is done depending
upon whether the Usr BpOn flagistrueor false. Thisis set by theinteractive
facility at the time of creation of an action or before the start of the execution.
If breakpoint ison, the condition is evaluated and any associated commands
executed. The commands may ask the action to stop its execution, print the lo-
cal state, or next to the successors. Currently, we do this evaluation only in
Bef ConpAct () and Af t ConpAct () . Section 8.2.1 explains how this can
be done at other placesin the sequential computation.



Chapter 6.  Debugging Facilities

Event information generated by the instrumentation is analyzed and
presented by various debugging facilities. This chapter explainsthe facilities
provided by the debugger task for sorting, post-restricting, checking, display-
ing, and filing. The facility that provides interactive control over the execution
of actions requires cooperation between the instrumentation and the debugger
task and is explained in the next chapter.

6.1 Post Restriction

Therestricted recording mode is useful in collecting only the event in-
formation which is needed for displaying and/or checking purposes. However,
it is often the case that the information collected is much more than what the
user iscurrently interested in viewing through one of the facilities. The debug-
ging information may have been previously collected in atrace, or it may be
that it isbeing collected on-the-fly from afull recording run or the replay run
of the program. The user may want to have different views of thisinformation;
each onerestricted to adifferent set of actions. The post restriction facility al-
lows further restriction of the information recorded at runtime. Note that when
the programisrunin either the full recording mode or the replay mode thein-
formation arriving at the debugger task is typically much more than what the
user iscurrently interested in viewing.

>
2 record S : Set of all actions

Yrecord - Selected for recording
w Ydisp - Selected for displaying
> check : Selected for checking

Figure 6-1. Relationships between selected actions.
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6.1.1 Partial Orderings

The set of all the executable computation actiors.i§his is main-
tained in the dynamic instance tree (Secdoh.2). In the restricted recording
mode, the user can select the actions whose executions would be recorded. Let
this set b& ecorgl! >- See Figuré-1. The event records sent to the debugger
task represent the executions of actions belonging to thg sgtq. The par-
tial order seen by the debugger task is therefore restricte@dgq i-e. (V. >,
<, W/Yrecorg Note that in the full-recording mode or during the replay run
Yrecord— 2- In these modes, the amount of event information seen by the de-
bugger task is (My, <, ). This is much more than what the user may be inter-
ested in viewing through any of the facilities.

The unifed debugger allows the user to selectaté#nt sets of actions
for checking and displaying. The set of actions whose execution behavior
would be checked by the model checke¥ iseck Y recorg. The set of actions
whose execution behavior would be displayed jgo U 3 record NOte that
there can be any relationship betwégjs,and3 checknot just the one shown
in Figure 6-1. The display facility requires further restriction toXV<,
W/ record! 2 disp While, the checking facility requires further restriction to (V
> <\MW/>record! 2check This means that the post-restriction for display
should take place separately from the post-restriction for checker

The restriction for checker and the display facilities takes place as each
event is sorted, and the information about its predecessors becomes available.
This is explained in Sectiof 3.1 after describing the sorting process.

6.1.2  Options Available with Post-Restriction

The unifed debuggés ability to do post-restriction allows the facili-
ties to ofer several options to the us@able 6-1 describes the optionsestd
by the facilities that displagheck, save andé the recorded trace. The com-
mands for selecting these options are given in Appendix B. If any option other
thanof f is selected for a facilitythen the facility is considered selected.
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Di spTr,Fi |l eTr,SaveTr,CheckTr areflagswhich indicate whether afa-
cility is selected or not.

Table 6-1. Various options offered by different facilities.

Facilities | Options Description

record | Display recorded trace; restricted tO  racorg

check | Display trace post-restricted t0 Y chack

Di spTr . . .

di sp Display trace post-restricted to 3 gisp

of f Di spTr isfase

on Check the trace post-restricted to 3
CheckTr check

of f CheckTr isfalse

record | Savetherecorded trace; restricted tO Y racorg

di sp Save the trace post-restricted to 3 g
SaveTr

check | Savethetrace post-restricted to Y check

of f SaveTr isfdse

xgrab | Useformat displayable by XGRAB [RDB+87] system

edge Use format displayable by EDGE [] graph editor

FileTr |perftr | Useformat for performance post-processing
default Use the default debugger format.
of f Fil eTr isfase

6.2 Information Requirements

The user can select one or more facilities. TheflagsDi spTr, Fi | eTr,
SaveTr and CheckTr inform the debugger what facilities are selected. Note
that all the facilities are not available in every debugging mode. Table 6-2
showsthe availability of the facilitiesin each debugging mode. The user can
only select from the facilitiesthat are available in agiven mode.Only those fa-
cilities are available in a given mode which make sense. For example, in the



performance tracing mode, the facilities fitinfy, displaying and checking of
event trace are not available because they may disrupt the timings that are be-
ing recorded. In the replay mode, saving of the event trace is not available be-
cause the instrumentation is using the event records that are already saved.
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Table6-2. Availability of various facilities in dierent modes.

Curre

nt Mode

Facilities Utilizing Event Tace

Di spTr

CheckTr

Fil eTr

SaveTr

Interactive
Facility

Run
Modes
(On-the-fly

Replay Rur

X

X

X

X

Restricted
Recording

X

X

X

X

Full
Recording

Recording
Off

Performanc
Tracing

D

Debugging
Off

Postmorten

From

n File

Modes

From
Records

The facilities provided by the debugger task need action-spadibr-
mation described inable 6-3. Note that the action specihformation need-
ed by the instrumentation is maintained in the action (Sed&i@r). The
information needed by the facilities is also kept inside the attibmis infor-

mation becomes accessible to the facilities whenever they have the action id

1 This oganization will have to change in the distributed implementation.
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(Section4.2.1). ThelagsChkr BpOn andDi spBpOn indicate whether the ac-
tion has been selected for checking/displaying purposes. Tlagsedeter-
mine the membership of s€fgneckandy qisp respectivelyThe information
needed for post-restricting the event trace to actiof}gjgfandy checkis kept

inDi spRestri ct andChkr Restri ct, respectivelylnput dependences of
the actionn the elaboated graph are maintainedlinpAr cs. This is a list of

ids of those actions from which data was received by the action. The list of
Sor t Nodes helps the debugger task in sorting the incoming trace of events.

Table6-3. Action specific information needed by the facilities.

Field Type Usage
Chkr BpOn Boolean checking, post-restriction
Di spBpOn Boolean displaying, post-restriction
di sp D spRestri ct post-restriction
vcl k Chkr Restri ct post-restriction
| NpArcs List of UcActi onl d displaying, filing
Sor t NodelLi st |List of Sort Node Sorting

6.3 Topological Sorting

The debugger task loops around looking for news arriving from the in-
strumentation (SectioA.3.2). News about the execution events of actions ar-
rive in no particular ordeirhe checking,ilfing, or displaying of an event must
be delayed until all the events that were causally before the event have arrived.
This is done by topologically sorting the arriving events using the information
in their trace event records. Note that each news item about the execution
event of an action contains the event record.

The sorting facility determines that a given event is sorted if all of its
predecessors are sorted. Note that the predecessor information inside an event
record is in the form of event ids (Sectiém.3). Therefore, the sorting facili-
ty has to ascertain from a given id of an event, whether the event is sorted or
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not. This means that the sorting status of an event should be readily available
given the evens id. For this purpose, each event of an action is represented by
aSort Node that contains the sorting status. See Figure 6-2. The node is
placed in theSor t NodeLi st (Table 6-3) maintained inside the action. The

list allows the sorting facility to map each event id to its corresporfshng -

Node and obtain the relevant sorting information.

In order to map a given event id, the facility uses the id of the action
(available inside the event id; see Figure 4-12) to accesSothteNodeLi st
for the action. It then uses the execution count of the event, to search the list
for the correspondin§or t Node. If the node exists, a pointer to it is returned.
Otherwise, a newor t Node is created (with arrived and sortddds initial-
ized to false). The new node is inserted in$bet NodeLi st of the action,
and, a pointer to it is returned.
t ypedef struct SortNode *Sort Node;

struct Sort Node {

Eventld ei d; /1l correspondi ng event

Bool ean arrived; // has the event arrived?

Bool ean sorted; // is it sorted?

Li st fpsnl; /1 list of flow pred sort nodes
Li st spsnl ; /1 list of shared-pred sort nodes
i nt fscnt; /1 #flow successors seen

i nt sscnt; /! #shrd successors seen

Chkr Restri ct vel k; /1 For checker restriction

Di spRestrict di sp; /1 For display restriction

Figure6-2. Sorting information for each event.

On receiving news about the execution event of an action, the sorting
facility uses the id of the arriving event to obtain its correspon8arg Node
as explained above. The facility sets the arrivad bf theSor t Node to
“true”. It, then, initializes the information inside tHser t Node with the in-
formation contained in the event record that arrived with the news item. This
involves translating the predecessor lists of the event record (which are in
terms of event ids) into predecessor lists of sort nodes. That is, each eventid in
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the predecessor list of the event record, is mapped to its corresp&uding

Node. The objective is to make the sorting status of the predecessors readily
available to the sorting facilityDnce this is done, the arriv8dr t Node is in-
serted in thé\i t Li st . This list contains sort nodes of all those events that
have arrived and are waiting to be sortadr(i ved flag is true, andort ed

flag is false).
void sortTrace()

{
foreach SortNode sn in WaitlList

if (areAll PredSorted(sn)) {
del ete sn from Vi tList;
sn->sorted = true;
doPost Restriction(sn);
provi deFacilities(sn);
del Predsl f NoSucc(sn);

endf or;

The sorting algorithm picks upSor t Node from theWai t Li st , and
checks if all the predecessors of the event (represented by the node) have been
sorted. This is done by looking at ther t ed flag of the predecessor sort
nodes. If they are all sorted, then the node is deleted froMéthieLi st , and
is marked as sorted. The event information inside the sorted node is then used
for post-restriction as explained beloWihen, the node is given to the facilities
requested by the usekfter that each predecessor sort node is accessed and the
count of successors seen by the predecessor is incremented. The predecessor
node is deleted if no other successors are expected by it. The algorithm, then,
picks up the next node (if any) from tiMi t Li st , and repeats the above pro-
cess.

Note that the algorithm sketched above can be made micee et by
adding additional information t8or t Node as explained in [KiZe93].
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6.3.1  Support for Post-Restriction

Information needed for post-restriction is maintained with each action
u of Y ecorg@nd each event; of the action. As seen irable 6-3, the restric-
tion information for an action is maintained along with other action-gpeif
formation. The restriction information for an event is maintained inside its
correspondingor t Node. See Figure 6-2. Note that the information needed
for checker post-restriction is separate from that needed for display post-re-
striction. This is so because there can be any relationship bepyggsnand
> disp Consequentlyrestriction to actions df check(Section6.5.2) takes place
separately from restriction to actionsXisp (explained below). Howevethe
process of post-restriction is quite simillris a three step process that takes
place after an event has been sorted. It useSaheNode of the newly sorted
event:

voi d doPost Restriction(SortNode sn)

{
initRestrictlnfoFromJc(sn);
updat eResti rct | nf oFr onPred(sn);
updat eUcRestri ctl nfo(sn);

}

1. Initialize the post-restriction information inside tis®rt Node using the
information of its corresponding action.

Note that &or t Node contains the id of its corresponding event. The
event id makes available the id of the corresponding action, and hence the
post-restriction information inside that action. This information is then copied
inside the sort node.

2. Update the post-restriction information inside 8w t Node using corre-

sponding information from all of its predecessor nodes.

Note that each predecessor is already sorted, and, thus, has its own
post-restriction information. The information inside 8o t Node is brought
up to date with respect to all of its predecessors’.
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3. Update the post-restriction information inside the action using the sorted
events information.

The post-restriction information inside tBer t Node was more cur-
rent than the information inside its corresponding action. So, information in-
side the action is brought up to date using the information inside the
Sor t Node. This is necessary because this information will be later copied in-
side aSor t Node when the next event occurrence of the action is sorted.

Need for Maintaining Information with Actions

In order to enable post-restriction, later event occurrences of an action
iN Y record- 2restrice MUst be informed about the predecessor events known to
the action through its earlier occurrences. For this purpose, post-restriction in-
formation is maintained inside each action. This is a list of its currently known
predecessor events. The information allowsi ttiteevent occurrence of an ac-
tion u in Y record- 2 restricttO forward the predecessor information of ewgrtb
the successors of its later event occurrenggs; Ui+, ...

To see why it is necessary to maintain current post-restriction informa-
tion with each action, consider the situation depicted in Figure 6-3. The prede-
cessor information available witly has to be carried over to its later
occurrenceu;q, so that it can eventually be forwarded/jtS The information
maintained with eact in Y (ecorg- 2 restrictallows this when it is copied inside
theSor t Node. When step (3) of the above process is runufpthe post-re-
striction information withu will have the predecessorxg. Whenstep (1) is
performed fow;,q, the post-restriction information witkor t Node of uj,q
will get xy fromu. Eventually when step (2) is performed fg, its sort node
will get the idxy from the sort node afj. 4.

2 Note thatu; O u,.P. The precedence ofi; to uj; is only indicated by the
execution count stored in their event records.
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oy h
Oy U;.P = {xy}
Q. W O
\O Uy, UieP={w} N
viO VP ={Uisg} Vj-P:{\Qk’ wi}

Figure 6-3. Need for maintaining restriction information with actions.

Note that the information kept inside the action performs a function
similar to the one performed by Cur EvRec during the recording by the instru-
mentation (Section 5.1).

Display Post-restriction

The partial order execution of DoBTS call graph of Figure 1-4is
shown in Figure 4-13. Its post-restriction to events of Solve and M ult actions
isshown in the event graph of Figure 6-5.

Let u.dr.P denote the set of predecessor event ids kept inside the
Di spRestri ct information for each action u in Y gcorg- Similarly, let
u;.dr.P denote the set of predecessor event ids kept inside the Di spRe-
strict information of the Sor t Node for each sorted event u;. The process
of post-restriction for each sorted event u; isgiven in Table 6-4.

6.3.2 Deletion of Information no Longer Needed

The Sor t Node of an event can be deleted when the count of succes-
sors seen by a sorted event is equal to the count of successors expected by it.
The expected count of successorsisthe actual number of successors recorded
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by the instrumentation. This is available inside the event record
(Section4.4.3).

Table6-4. Display post restrictioh.

Steps Post-restriction

1| initDispFromAction(u;) = | Yj.dr.P:= u.dr.P

updateDispFromPred(u;) = | Yi-dr-P = uj.dr.P e {vj} it v O3 disp
Uvj Dui.P UpdrP = updrP OevidrP i v O3 gisp

3| copyDispToAction(u;)= | u.dr.P:= u.dr.P

a. In the set unioil, if there are two events of the same action, then only the most recent
event of the two is a member of the set union.

The number of successors seen by a newly sorted event is initially zero.
This is incremented each time a successor is sorted. On getting sorted, an
event increments the successor count of each of its predecessors. This is done
by accessing the sort node of each of its predecessors and incrementing the
count of successors seen by the predecessor which is stored there. On incre-
menting, if the successor count seen by a predecessor is found to be equal to
the number of successors expected by it, then this means that the predgcessor
Sor t Node is no longer needed. That is, there would be no other successors
looking for this node and it can, thus, be safely deleted. At this time, the event
record itself can be deleted if the user has not requested that it be saved for a
later replay or postmortem analysis.

Ability to delete a sort node when it is no longer needed by any of the
successors depends upon the accuracy of the successor count. During the full-
recording mode and the replay run of the program, the exact count of succes-
sors is known. Therefore, sort information is deleted in these modes as soon as
itis no longer needed.

However during the restricted recording mode, the exact count of suc-
cessors is often not known as shown in Figure 6-4(a). Suppose the instrumenta-
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uj.SuccCnt =1

I
X /\\.@m O/\b

X O\ / \ Xk.P = {Ui} yl_P = {ui}

(a) (b) (c)
Figure6-4. Successor counts in the restricted recording mode.
tion is recording the event occurrences of actians andy, and is not
recording the occurrences of actianThe instrumentation would record the
successor count of theth execution ofi as “1” because event ig is sent to
only one successpor;. As event occurrences ofire not being recordethe id

of the predecessor (namely) received by is forwarded to its successoqs
andy;. Now, bothx, andy; know thatu; is their predecessdBut, the count of
successor withi; is only one.

The situation can get still more complicated. Suppose acka@amsly
are not selected for recording. Then, the instrumentation would forward their
predecessor id (namely;) to their successors. This id can, thus, go on propa-
gating. As shown in Figure 6-4(c), the successor counf will not be fnal
until its id lands in the predecessor lists of those actions all of which are being
recorded. Either we can delay the sorting until that time, which can potentially
be until the end of the execution in which case no facilities would be available
until the end of the execution. Qve can delay the deletion of the sort infor-
mation until after the execution has terminatee. tdke the later approach.
So, in the restricted recording mode, we delay the deletion of sort information
until the end of the execution.

6.4 Display Facility

The display facility maintains three graphical representations:
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1. An event history graph which shows the ordering relations of an event with

respect to other events.

2. An elaborated graph which shows the dependence relations between the

actions introduced at runtime, and

3. A program graph which shows the relations between templates specified by
the programmer

Figure 6-5 shows the three graphs restricted to actions and events of
templatesSolve andMult of the DoBTS call graph of Figure 1-4.

The display facility shows mappings between events, actions, and tem-
plates on these graphs. The mappings connect the three graphs togetker
mappings can be viewed statically when the executioninashied or is
stopped at a breakpoint. Qhey can be viewed dynamically as the events ar-
rive during the execution or in a postmortem fashion. The dynamic view
shows the progress of the execution and is often termed animation.

Our implementation currently displays these graphs textulltiius
uses the same internal structures for display purposes as are used for other pur-
poses. A proper GUI interface may require separate structures that would be
linked with the internal debugger structures. Note that the user has the option
to dump the graphs to dd, and then display them using XGRAB graph
browsing system @ble 6-1). Vérk on a proper GUI interface is currently in
progress (Sectio8.3.1).

6.4.1 Display of Mappings

The user may view these mappings by selecting an action, a template or
an event.

By Selecting an Event

If an event is selected, the display would highlight its corresponding ac-
tion and template. For example, if we select e\mﬁtin Figure 6-5(c), then
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actionm3is highlighted in the elaborated graph and its corresponding tem-

plate M ult is highlighted in the program graph.
Program Graph Elaborated Graph Event History Graph

LN

Mult
@ (b) (©

Template | D: action Index: Exec Count: 12 3
Figure 6-5. Mappings between program, elaborated and event graph.

Solve

When an event is selected, information in its event record becomes
available. The information contains action id that implements mapping from
an event to its corresponding action (Section 4.4.3). Theid of the action stored
intherecord for (say) event m32 isasapointer to the struct for its correspond-
ing action m?3. The struct contains information about the location of the action
node in the elaborated graph. Using thisinformation the action nodeis high-
lighted.

The mapping from an action to its corresponding template isimple-
mented by keeping the template UID in the action struct (Section 4.4.2). The
lookup for the template UID in the symbol table yields the corresponding tem-
plate symbol. Information contained in the data structure defining the symbol
allowsthefacility to identify the node Mult in the program graph.

By selecting an action

If an action is selected, the display would highlight its corresponding
template and event(s). For example, if action m3isselected in Figure 6-5(b),
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then events m31, m32, and m33 are highlighted in the event history graph, and
template M ult is highlighted in the program graph.

Therelationship from an action to its corresponding events is one-to-
many. Thisisimplemented by storing the list of event recordsin the action
(Section 4.4.3). When an action is selected, the debugging information stored
initsaction struct becomes available. This allows highlighting of each event
of the action.

The mapping from the action to its corresponding template is given by
the UID stored in the action. As explained above, thisis used to highlight the
template node in the program graph.

By selecting a template

If atemplateis selected, the display would highlight its corresponding
actions and events. For example, if template Mult is selected in the program
graph of Figure 6-5, then the display would highlight actions m%, m?, and m3
in the elaborated graph. The display would also highlight all the events for

these actionsi.e. eventsm3;, m®,, m33, m?;, m?,, and m';.

Thereisone-to-many relationship from atemplate to its actions. These
actions can be nested in various contexts. Locating all of them, therefore, re-
quires searching the entire dynamic instance tree. Note that the debugger
keeps a handle to the root of the tree to allow for this kind of searching. The
search for any action with the given template UID involves searching the en-
tire dynamic instance tree. Once an action isidentified, its corresponding
event records also become available. These records can, then, be displayed as
explained above.

6.4.2 Displaying Progress of Execution (Animation)

The arrival of asorted event introduces new relationships or highlights
existing ones between the nodes of the event graph, elaborated graph and the
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template graph. The process of displaying these relationships, asthey areintro-
duced or highlighted, provides adynamic view of the progress of execution.

The event history graph scrolls forward as nodes corresponding to the
newly sorted events are created in the graph and their orderings with respect to
the existing nodes of the graph are determined. Simultaneous mappings of
these events and their orderings on the elaborated graph provides animation.
Figure 6-6 showsthis process frame by frame.

AN

Frame-1

)
ZAN AN o

7 N O
CCoo

Frame-3 L

ff@*ﬁ !/A\%%M

Framed Frame-7 )/O
]

Figure 6-6. Displaying the progress of execution (animation).

The process involves repeating the following steps for each newly sort-
ed event.
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1. Create an event node corresponding to the event in the event history graph.

Establish the mapping between the event and the newly created node.

2. Display the predecessor orderings of the event.

For each predecessor of the new event, the corresponding node is iden-
tified in the event history graph. Note that sorting ensures that such a node al-
ready exists. An arc is introduced from this predecessor event node to the new
event node. This arc is highlighted. After the orderings with all the predeces-
sors have, thus, been displayed, the new event node is highlighted.

3. ldentify the action node in the elaborated graph corresponding to the event.

Create the action node if it does not already exist. This is the current ac-
tion node.

4. Highlight the dependences of the current action node that correspond to the
predecessor orderings.

For each predecessor of the newly sorted event, the corresponding ac-
tion node is identied. Sorting again ensures that the action node is already
present in the elaborated graph. A dependence arc is introduced between the
predecessor action node and the current action node if it does not already ex-
ist. If it exists, then it is simply highlighted. After all the dependences corre-
sponding to the predecessor events have been highlighted, then the current
action node is highlighted.

5. Highlight the mappings to the templates of the program graph.

As each action is highlighted, its corresponding template is highlight-
ed. Similarly as each dependence in the elaborated graph is highlighted, its
corresponding dependence in the program graph is highlighted. Note that tem-
plate UID’s associated with each action allow us to identify and display these
mappings.
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This completes the display of the progress of execution with the arrival
of anew event. Note that a proper GUI interface is being developed

(Section 8.3.1) that will support optionslike the ones shown in Figure 6-7.
Figure 6-7. User options for the visualizations.

Displ
Opst?o%
Forward/ Full/ Manual/ | | Zooming/

Backward| |Restricted Auto Panning

6.5 Checker Facility

Our checker is ableto detect immediate, transitive and concurrent rela-
tionships between event occurrences of actions selected for checking. That is,
we consider therelationshipsin the partial order (V, ¥, <, W)/> record ! > check-
Note that an event may become immediately related in this partial order dueto
post-restriction, even though it was transitively related in the recorded partial

order (V, Y, <, W/ record-

Note, also, that events of partial order (V, 3, <, 1) may become immedi-
ately related in (V, ¥, <, W)/Y recorg- Theimmediate predecessor relationships
of this partial order can be checked at runtime during the execution of actions
at user breakpoints (Section 7.4.2).

6.5.1  Checking Relationships

The checker detects various relationships during the sorting of the
events when post-restriction to Y heck 1S taking place. The record for an event
contains the list of immediate predecessors. Sorting of an event ensures that
all the predecessors have causally arrived and have already been sorted.

Checking of immediate relationships is simple because the record for
each event containsalist of itsimmediate predecessors.
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Checking of transitive relationships of an event can either be done by
recursively searching each predecessor of the event, or by timestamping each
event with a vector clock. Searching the predecessors in a braesttbrfa
depth frst manner may require the traversal of entire causal history (state) of
the event which is often expensive [FoZw90]. On the other hand, vector clocks
provide a brief summary of the causal histdtgch element of a vector clock
corresponds to an action and ideresfthe most recent predecessor event
known through the clock [Mat89].

We decided to use the vector clocks because they not only help in estab-
lishing ordering relationship between events, but are also helpful in establish-
ing concurrent relationships.

Vector clocks can either be maintained during the execution of actions,
or they can be maintained during sorting of the events by the checker as ex-
plained belowWe take the latter approach for several reasons:

1. It allows separation of the checker concerns from those of the recording and

instrumentation concerns.

2. It avoids runtime overhead.

Maintaining vector clocks during sorting avoids the computation and
communication overhead incurred when the clocks are maintained during the
execution of actions.

3. Events are sent to the checker and other facilities anyway for detecting of con-
current relationships, displays, and/or filing.

As events are sent irrespective of whether the vector clocks are main-
tained during the execution or during the sorting, it is, therefore, mbre ef
cient to maintain the vector clocks with the checkéste that events must
also be sent in case the user requests a view of the unexpected behsvior
mentioned in Sectiod.3.5, it is not enough for the checker to simply state
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whether a relationship holds or not. It should also be able to provide more in-
formation about the actual execution behavior

The downside for maintaining the vector clock with the checker is that
it may delay the triggering of breakpoints. But, this happens in any case for
conditions that can not be checked locallyaf®91], [ReSc94].

6.5.2 Post-restriction and Vector Clocks

Post-restriction to actions §f.heckiS carried out using the same vector
clocks that are being maintained for the checkéis involves the following
steps:

1. Associate a vector clock with each action.

Each action ir} ecorgmaintains current information about its most re-
cent predecessor events. This information is restricted to the eventg.ef
and is thus maintained in a vector clock of siggnkckl-

Letu.T be the vector clock maintained for an actol Y ;ecorg Thus,
theChkr Restri ct information seen indble 6-3 and in Figure 6-2 actually
refers to a vector clock. Each slot of this vector corresponds to an action in
Y check and contains the execution count of that action. Note that an event is
identified by the action id and the execution count. Thus, if the slot corre-
sponding to action id in the vector contains the execution coyrnhen the
most recent event afthat is known through this vectorug

The reason for maintaining vector clocks for action§ gfeckis that
their relationships is being checked by the model che¢kawever the rea-
son for maintaining vector clocks for actionsyQfcord- > checkiS 10 help in
post-restriction as explained in Secti®s3.1.

2. After each event occurrence of an action, increment the slot for the action in

the actions vector clock.
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The events seen by the sorting facility are the executions of actions of
Y record Whenever an event gets sortedy’s vector clock is incremented only
if uis a member 0¥ check

If u O Y check then its event occurrences are recognized by the checker
Therefore, the slot faw in its vector clock is incremented iweT[u] := u.T[u]
+1. Howeveyif u O Y check then its occurrences are not being recognized.
There is no slot fou in u.T. So, there is no change in the current value of the
vector clocku.T.

3. Time-stamp each event occurrence of the action with the current vector clock

of the action.

Whenever an event is sorted, it is time-stamped with the current val-
ue ofu.T. This is done by copying the vecto!T inside its corresponding
Sor t Node. Let this time-stamp be;.T.

4. Update the everg’'timestamp using the timestamp of each of its predecessors.
Note that each predecessor is already sorted, and, hence, its vector
timestamp is available. Sa,v; U u;.P, we do:
updateVelk(u;. T, vj.T) =
Ow D 3 check Ui TIW] <vj.T[w] Ui T[w] =vj.T[w]

5. Use evens timestamp to update its actiswector clock.

After the update in (4), the evestimestampuy;.T, contains the most
recent information about the eventausal predecessors. This information is,
then, used to bring the vector clock of its corresponding aatidhup to date
by performingupdateVclk(u.T, u;.T). Note that the value of the vector clock,
u.T, resulting from this update will be later used to time-stammehe event
occurrence of the action.
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6.5.3 Checker Commands

Currently, the unified debugger supports two types of commands. One
checks predecessor relationships and the other concurrent relationships be-
tween occurrences of actions. Each command issued to the checker is assigned
areferenceid andisentered in areferencelist CmdRefList . Asexplained lat-
er, thislist isused in translation of each command into an appropriate break-
point before the executionisrun. Thereferenceid is also used in deletion of
the breakpoints and their associated commands.

Checking immediate and/or transitive predecessors

If u, v, warethe action identifiers supplied by the user, then the com-
mand to check if event occurrences of u are preceded by an event of v, and an
eventof w is:

checkpred u{v, w}
That is, Ouj OV © Ovj, w OV 21y <Cu Owy <Cu;.

The command isthus of the form check pred <action_id>‘{’
<action_id_list>"} and is checked using vector clocks [Mat89].

Each <action_id> iscomposed of atemplate identifier and an in-
dex. Syntax for the debugger commandsis given in Appendix B. Two com-
mands for the same action result in the or-ing of the checking. Note that a
firing ruleis aset of subsets of input dependences. So, to construct afiring rule
like{{(u, V), (v, V), (w,V)}, {(w, V), (X, V)}} theuser hasto givetwo check pre-
decessor commands.

checkpred V{u, v, w},andcheckpred viw, x}
The result of these two commandsis Ov; OV ::
(O}, Um, Wi OV 2y <Cv; Oup <Cv; Owy <€) O

(Owy, x; OV wy <Cv; Ox <Cv;)
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Checking concurrent relationship

The checker command to seeif any event occurrences of a set of ac-
tionswere concurrent ischeck parallel ‘(‘<action_id_list> ))

check parallel ( u, v, w) detectsif there were any events of u, v
and w that occurred concurrently. That is, Juj, vj, wg OV 2 uj || vj || wg. The
alogrithm described in [GawW92] is used for checking concurrent relationships.

6.5.4 Command Translation

The size of the vector clock used for checking depends upon the num-
ber of actions being checked i.e. | ¥ checkl- The number of such actionsis not
known until the start of the execution because a user may add or delete the
commandsissued to the checker. So, each command that isissued to the check-
er issimply inserted in the CmdRefList . The commandsinthislist aretrans-
lated just before the start of the execution. The translation generates a
ChkNode for each action that is mentioned in acommand. The list of these
nodes, ChkList, now representsthe set } -heck- The size of the vector clock,
i.€.| Y checkls ISthe number of check nodesin thislist. The check node for an
action is used for the following purposes.

struct ChkNode {

Tnpl t Ul D ui d;

I ndex i ndex; /'l index of the action
UcActionld id; /] pointer to the inst struct
Vel k vc; /'l Vector clock for inst

Chkl d cid; /'l checker id; slot in vector
Li st chkcnds; /! commands to be checked

1. It maintainsthe current vector clock for the action.

2. It determines the mapping between the <action_id>  and the check id.

The check id of an action determines the slot in the vector clock re-
served for the action. Note that during checking, the actions are identified by
thisid.
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3. The node keeps the list of commands that need to be evaluated by the checker
for each occurrence event of the action. Note that each action specified in the

command is represented by the check-id.

4. The node allows the insertion of a checker breakpoint in actions that would
be later created or re-run.

Because of their lazy creation (Sectr2.1) and the dynamism of the
CODE 2 programs, UC actions may not exist when the checker command is is-
sued or translated. The insertion of a checker breakpoint for an action has to be
delayed until when it is created or re-run. The check node keedsiie
t Ul Dand thd ndex which was obtained from theact i on_i d> given on
the command line by the us@rhe mapping of this identdr to theUc Ac-
tionl dis established later when the action is created or re-run. Whenever a
new action is created, its UID and index is used to searc@itkki st for a
ChkNode with the same UID and Index. If there exists such a node, then the
action id is noted inside tiéhkNode for later reference. The breakpointis in-
serted in the action by turning tiak Bpkon flag inside the action @ble 6-

3).

After post-restriction, each sorted event is given to the facilities select-
ed by the userRecall that the event information is now represented by a
Sort Node, and contains the up to da@hkr Restri ct information
(Section6.3). As explained above this information is actually a vector clock
for the event. If the event is of an action)Xqfeck then there is a correspond-
ing ChkNode containing the list of commands that need to be checked for the
action. The relationships speeidl by these commands are checked using the
vector clock for the event. Note that the current vector clocks of all the actions
with which the relationship has to be checked are availal@blkii st . The
predecessor and concurrent relationships between actions are checked in the
usual manner [ReSc94], [GaW92].



Chapter 7.  Interactive Facility

The interactive facility establishes cooperation between the instrumen-
tation inserted inside each action, and the debugger task. This also requires co-
operation from the runtime system. The facility allows the user to interactively
control the execution of actions and to query their local state at various break-
points set by the user

7.1 Controlling the Execution

Interactive control is available at the scope of the program and at the
scope of an action. A given command is interpreted in the context of the cur-
rently selected scope (Sectidrb). If the currently selected scope is that of the
whole program, then the commands are considered global. Otherwise, they are
applied to the currently selected scope of the action.

Running the program under the control of a traditional debugger like
dbx typically involves the use of signals apdr ace utilities. In response to a
run command, such a debugger would usually execute the obgeof the
program with somexecv type of a (Unix) command in a child process. The
debugger would maintain the current state of all processes being run by the ap-
plication. It would manage their creation and deletion and would catch all the
signals generated by the processes. Querying the state of each process would
involve switching from the context of the debugger process to the context of
the desired process and then interpreting the commands. Re-running would in-
volve exiting the child process and doing ano#egcv of the object file.

Running the program under the control of the iedidlebugger is, how-
ever, much simpler in our implementation because we deal with the actions
and not processes. The template routine of an action executes like a thread in
the name space of other actidn¥he actions cooperate with the debugger

3 This is true for all actions in the Sequent runtime system [New93]. It is true for
those actions that have been mapped to the same PVM task by the distributed
runtime system [9k94].
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task in controlling the execution. Control is exercised by enqueuing and de-
gueuing the actions from the ready and the stop queues.

7.1.1  Controlling the Execution of a UC Action

There are three commands to control the execution of an action: st op,
cont , and next . A user may give acommand to an action by selecting the ac-
tion and, then, directly issuing the command. Or, the user can set a breakpoint
that would conditionally trigger the issuance of the command during the exe-
cution of the action (Section 7.2).

The command issued to an action is stored inside the struct for that ac-
tion. The default setting for the stored command iscont . It allows the execu-
tion of the action to proceed normally. If the stored command is either next or
st op, then this acts as a breakpoint during the execution of the action as de-
scribed below. A command can cause atransition between the stopped or not-
stopped state of the action as shown in Figure 7-1.

cont
next

o——(_Not-Stopped
A

st op

cont
next

Stopped
st op

Figure 7-1. State transitions for a UC action.

Stop Command

The command to st op the execution of an action is stored inside the
action. During the execution of the action, the stored command actsasare-
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guest to the instrumentation for stopping the action before the start of its se-
guential computation. Stopping is implemented by changing the state to
stopped, and enqueuing the action in$hepQ. Simultaneouslythe debug-

ger task is informed about the stopping of the action. The debugger then for-
wards the news to the user

Cont Command

Thecont command continues the execution of an action from where
ever it was stopped. It removes the stopped action fro8ttbpQ, and read-
ies it for execution by putting it on tiReady Q. The state of the action is not
changed at this time. Eventugllyworker task picks the action from the ready
gueue and starts executing it. When the action begins its execution, the instru-
mentation notes that the state of the action is stopped. It now changes the state
of the action to not-stopped and ensures that the action resumes its execution
from the point indicated by the fieldir At (Table 5-2) inside the action.

Next Command

Thenext command issued to an action causes all the successors of the
action to stop before they begin their sequential computation.

If the action is stopped, then the command removes the stopped action
from theSt opQand readies it for execution by putting it on Ready Q. Lat-
er, when the action is executing and is about to send data on its output ports,
thenext command stored inside the action would inform the instrumentation
to stop the successors. This is done by appendingttbe directive to the
data being sent. When the successors are about to begin their sequential com-
putation they note the directive and stop themselves as explained in
Section5.5.

7.1.2 Global Control of the Execution

Commands issued when the currently selected scope is “program”
(Section4.5) are considered global. Figure 7-1 shows global commands that
cause transition between various global states.
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/_\V y -

Figure 7-2. Global state transitions in response to global commands.

Running

The user starts a new execution with ar un command. The command
causes atransition to Runni ng state when the start node specified in the
CODE 2 program graph isreadied for execution by putting it on the Ready Q.
Runni ng state indicates that one or more actions are executing or are ready to
execute.

Execution of the start node readies for execution all the actions to
which it sends data. Their execution would, in turn, ready other actions for ex-
ecution and so on. Eventually, the termination node specified in the CODE 2
program graph would complete its execution.This would cause atransition to
Fi ni shed state. The state indicates that the program has run to compl etion.

Continuing

Issuance of acont command readies for execution all the stopped ac-
tions by flushing them from the St opQto the Ready Q. This causes atransi-
tionto Runni ng state.

Stopping

The user can stop all the actions that are running by issuing ast op
command. This causes atransition to St oppi ng state. The state informs the
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instrumentation to stop any action that is about to begin its sequential compu-
tation. Eventuallyall the actions that were executing or were ready to run
would stop. This would cause a transitiorStoopped state as explained be-
low.

Nexting

The user can ask the successors of all the actions that can run to stop by
issuing anext command. The command causes all the stopped actions to be
readied for execution byushing theSt opQto theReadyQ. It also causes a
transition toNext i ng state. The state informs the instrumentation to ask ev-
ery successor of the currently executing actiosttop. This is done by ap-
pending thest op command with each data that is sent out on an output port.
Eventually all the executing actions would stop causing a transitidWita -

I ng state.

Wai ting or Stopped

Wai t i ng andSt opped states indicate that there are no actions that
are ready to run (the ready queue is empty), and there are no actions that are
currently being executed by any of the workers (workers are idle). This im-
plies that an action can not become ready for execution except through a user
command. Itis, then, safe for the user to query the state of the actions and is-
sue other global commands.

Soon after the debugger comes up, the global state bed@#mes ng.
This happens becauReadyQis empty and all the workers are idle. Issuing
the run command can then start the execution. The stopping of an action on a
set breakpoint may also cause a transitiov&ot i ng state. This can happen
if all the other actions that can currently execute are dependent upon the ac-
tion. So, the actios’stopping will cause them to starve for data and eventually
stop. For instance, in Figure 4-13 Dfst action stops as a result of a user
breakpoint, then all actions would eventually become idle because they de-
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pended on Dist for the data that could have triggered their execution, causing
an eventual transitionto Wi t i ng state.

Recall that workers loop around looking for actions to run from the
ReadyQ A worker that failsin acertain number of attemptsto find an action
to run from the ready queue, declaresitself to beidle. This activates a typical
termination detection algorithm [ChMi88] for detecting whether all the work-
ersareidleor not. If it turns out that all the workers are idle, then the global
stateis changed to St opped if the current stateis St oppi ng. Otherwise, it
ischanged to Wi t i ng.

Our shared memory implementation of the termination detectionissim-
ple. When the application starts, each worker task is assigned alogical id. The
worker with the largest id is designated as the decider. Each worker only
checksfor the workerswith lower ids. A worker task idlesitself if itisidle and
all theworkerswhoseids arelessthanitsid, are also idle. Eventually, the de-
cider worker (one with the maximum id), discoversthat all other workers are
idle. So, itidlesitself and declaresthe stateto be Wi t i ng or St opped.

7.1.3  Rerunning the Execution

Rerunning the program involves preparation of the objects created in
the previous execution by the program and the debugger for a new run. Some
of these objectswill be reused in the new run. Therefore, they need to bere-ini-
tialized. Others objects are no longer useful and the storage allocated to them
must be recovered. Re-initialization and storage recovery of objects created
by the debugger is simple because the debugger knows what objectsit created
and what aretheir initial values. However, re-initialization and storage recov-
ery of the objects created by the program is difficult because the debugger has
no knowledge about those objects.

Objects Created by the Debugger

Rerunning the program in a given mode requires mode-specific prepa-
rations of the objects created by the debugger. If the program isbeing runin
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the replay mode, then the debugger ensures that event records are available
from which the execution would be replayed. It also determines whether the
events were recorded in the full-recording mode. Note that in order to ensure a
proper replay, the trace should have been recorded in the full recording mode.

If the program is being rerun in the recording mode, then the instrumen-
tation will be generating new event records. So, previously recorded events of
the actions are deleted. Thisis done by accessing the debugging information
kept for each action and deleting the event recordsin thelist kept there. Ac-
tion-specific information maintained by the instrumentation (Section 5.1.2)
and thefacilities (Section 6.2) isre-initialized. Some of the previous user se-
lectionslike recording options are, however, retained.

Display, checker and user breakpoints are reeval uated to reflect any de-
letions or insertions. All the check nodes are deleted and the checker com-
mands are re-translated to generate a new list of check nodes (Section 6.5).
Options selected for various facilities (Table 6-1) are retained subject to the
availability of thefacilities (Table 6-2). ReadyQ, St opQand News Qare emp-
tied.

Objects Created by the Program

When aprogram isrerun by atraditional debugger like dbx, recovering
the storage allocated in its previous execution isrelatively simple. It only in-
volvesexi t -ing the child process that exec-d the program object file when
the program was run. However, in our implementation there is no child pro-
cess with which the program was executed, that could be exited to get rid of
the storage allocated by the program.

The debugger task and the worker tasks are simply light-weight
threads. Actionsthat execute are objects (Figure 4-5) that hang around along
with all their local state. Their local state consists of objectsthat were allocat-
ed by the specifications provided by the user. The only objects of the program
that the debugger knows about are the actions created during the execution
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(Section4.4.2). Local state of the actions is entirely managed by the program.
There are two ways of recovering the storage allocated by the program:

1. Exit the debugger along with the program and then re-run the program. Exit-

ing will recover all the storage allocated by the program.

2. Re-run the program without exiting the debugdée debugger must recover
all the storage allocated by the program.

Exiting and reentering the program each time the execution is run is not a
userfriendly option. Furthermore, exiting the program with the debugger would
also destroy the debugger objects that need to be reused. This would necessitate
dumping of the contents of those objects tibealdfefore the debugger is exited,
and then their re-construction when the debugger is reentéotd.that event
records use pointers to action structs for action ids. In the replay mode, these
records are used for enforcing repl&xiting and then reentering meant that
we will have to reconstruct the pointers when new actions are created as the
program is rerun.

Hence, we decided to reuse the existing actions and recover the local
state allocated by the prograﬂﬁortunately CODE 2 runtime system manag-
es all the objects that are allocated on the heap, and keeps a table of the space
allocated to them. The table was accessible to the debug§gea complete
clean up of all the objects allocated by the action was possible.

7.2 User Breakpoints

The interactive facility allows the user to set various breakpoints for a
specifed action. The instrumentation arranges to break the execution of the ac-
tion at these points, and execute the breakpoint commands conditionally or un-
conditionally, as specited. Setting of a breakpoint requires the following
information:

4 The ability to reconstruct the debugger state is also quite useful. It will be needed
when we implement the starting of another session (or replaying) from a file.
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1. The id of the action for which the breakpoint is being set.

The action id may be explicitly supplied in commands Bkep i n
<action_i d>. Otherwise in commands liksg op i f condition, it is as-
sumed to be the currently selected scope (Sedtion

2. The point where the break should occur during the execution of the action.

Currently the user has option to break the execution of an action at two
points; before the serial computation of a UC or after the computation of a UC.
The option to break at other points within the sequential computation is fairly
well understood in the context of sequential debugging and was, thus, not im-
plemented. Its implementation is tied with the provision of stepping facility as
described in Sectio8.2.1.

3. The commands that need to be executed on hitting the breakpoint.

The user can specify the commands that would be executed at a break-
point. For examplepwhen at bpt {cmdl; cmd2; ... }allows the userto
specify the commands to be executed at the Spddifeakpoint. These com-
mands are only allowed to access and change the local state of the action.
Their syntax is given in Appendix B.

4. The condition under which to execute the specified commands.

This is optional. The breakpoint commands can, thus, be conditionally
or unconditionally evaluated. The speed condition is on the local state of
the action and may specify the immediate predecessors expected for the given
execution. Note that the immediate predecessors of an action can be checked
easily during the execution of the action because the current event record
(Section5.1.2) maintains this information.

The commands to set user breakpoints are entered in a list. The list
helps in insertion, and deletion of breakpoints. Each command in the listis
translated into &sr Br eakPt . The breakpoint contains a reference to the
command that produced it. It contains the point where the break should occur
and the list of commands that are to be executed. There is an AST correspond-
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ing to each command in this list. As the commands may have to be conditional-
ly evaluated, the AST includes any specified conditions.

struct UsrBreakPt
UsrBpCmd  usrref; /| Reference to bp conmand

Wher e poi nt ; /'l point of insertion

Li st comands; // actions to be taken
UcActionld id; /1 back-end id of action
Trpl tU D uid; /1 front-end id

| ndex i ndex; /1 index of action

The breakpoint contains tk&ct i on_i d> given by the useiWhen-
ever a new action is created, the breakpoint list is consulted to see if there is a
breakpoint speciéd for this action. If there is, then the action is informed
about the breakpoint by settitugr BpOn (Section5.5.2) to true. The id of the
action is noted for future reference. The list of breakpoints is, therefore, useful
in setting and un-setting of breakpoints.

7.3 Evaluation of User Commands

The evaluation of a user command can simultaneously occurfan-dif
ent contexts. It may be the case that when the debugger frontend is evaluating
a user command, several UC actions could be at their respective breakpoints
evaluating their breakpoint commands. At the same time, the checker could be
busy evaluating its commands. The routine that evaluates user commands
should, therefore, be simultaneously callable from several contexts. This is en-
abled by allocating a separate stack for each context from which the evalua-
tion routine is invoked. The context information is associated with the stack.
Evaluation of context sensitive commands lgta nt <expr >, then, takes
place depending upon the context in which the evaluation is being done.

» Evaluation by the Debugger

The debugger maintains information about the currently selected scope
(Section4.5). Conditions and expressions spiecifin a command are evaluat-
ed in the context of the currently selected scope. For example, if the debugger
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is evaluating the command pri nt <expr >, then the names givenin the
<expr > are evaluated in the context of the currently selected action.

» Evaluation at a User Breakpoint

During the execution of an action, commands eval uated at a user break-
point refer to the scope of the action. For example, the condition specified in
print inSolvei f <bool _expr >refersto the scope of Solve So, when
the breakpoint is hit during the execution of Solve the evaluation routineis
given the base address of Solvewhere the local state is saved. Evaluation of
<bool _expr > takes placein this context.

» Evaluation by the Checker

The checker evaluates the commands during sorting. The only infor-
mation that isavailable to it isthe event information. The commands are thus
interpreted in the scope of the event that has just been sorted. The user may
need to trigger other commands as aresult of this checking. However, thiswas
not implemented.

7.4 Querying the State of Actions

It is safeto query the local state of an action when it is stopped. Itis
also safe to query any action when the global stateis stopped or waiting.

7.4.1 Local State of an action

Given the name of a symbol, the symbol table provides information
about the type of the symbol, its UID and areference to the symbol of its en-
closing block (Section 4.4.1). Thisinformation is needed for printing the val-
ue of agiven symbol or testing conditions on its state.

Ina CODE 2 program, the programmer can declare objects of various
types within the scope of an action. The availabletypesarearr ay, struct,
i nt,real ,andchar.
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CODE 2 arrays are dynamic. A two dimensional array is actually an ar-
ray of arrays. A multi-dimensional array isan array of an array, and so on. The
size of the array is runtime dependent. In order to print out the contents of a
given array, we need the size of the array and the index into it. The CODE 2
runtime library provides aroutine that returnsthe size of the array given its ad-
dress. Symbol table information providesthe type of the array. Therefore, the
contents of agiven array can be printed. The debugger not only allows the user
to see the contents of an array, but also provides the ability to index into a par-
ticular element of the array and see its contents. Note that the content of agiv-
en index of an array may be asingle object or a (multi-dimensional) array.

Aninput port of an action isaqueue of agiven type. The user can look
at the data values currently waiting in agiven input port. The debugger obtains
the address of the port, and uses some runtime knowledge about the queue for
printing out the values waiting inside the queue.

7.4.2 Debugger Defined Objects

In order to help the user in debugging, accessto three objects available
to the debugger was found to be useful. These are ExecCnt (Table 5-2), No-
del ndex (Figure4-5), and Pr ed (Figure 4-12). These objects are used by the
debugger for supporting various facilities. The user may employ these sym-
bolsin the conditions and expressions specified for various commands. For ex-
ample,

stop inMult i f Nodel ndex = 3
will cause the stopping of that action of Mult whose index is 3. Similarly,
stop in Multif ExecCnt = 3

will stop any action of Mult that executes for the third time. Similarly, the user
can insert a breakpoint that tests for the immediate predecessors.

stop in Gathif Pred (Mult)
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would causésath to stop if its immediate predecessor is an eveiM oft.
Also,

print Pred
would print all the predecessors of the currently selected event.

7.4.3  Addresses of Objects

A traditional debugger likdbx computes the address of an object by
adding the dket of the object to the base address of its enclosing block. It ob-
tains the dfset from the symbol table information that is provided by the com-
piler. The debugger also maintains a runtime stack of active frames which can
provide the base address of each frame. The debugger maintains the base ad-
dress of the currently selected object/frame. Tligedfof the object is added

to the base address of its enclosing block to generate the address of the object.
void * c2 getSymAddr (U D, pU D, Data)
int UD, pUD,

voi d *Dat a;

{

switch(pU D) {
case 31:
switch(UD) {
case -1111:
return (void *) ((struct _c2 nv3l *) Data)->B FR S;
br eak;

case -1121:

return (void *) & (struct _c2 nv3l *) Data)->b;
br eak;

Figure7-3. Compiler generated routine for obtaining addresses.

The unifed debugger takes a tefent approach for computing the ad-
dresses. Instead of providing thésaft of a symbol, the compiler provides the
UID of the symbol (Sectiod.4.1). It also provides a routine for computing the
address of an object whose corresponding syrshdlD is given along with



120

the parent UID and the address of the synweticlosing block. A part of the
code generated by the compiler is shown in Figure 7-3.



Chapter 8.  Future Work

The research reported in this dissertation includes both thetabetf of
the unifed model of concurrent debugging and also a feasibility demonstra-
tion implementation of the unéd model. It has become clear that the iedlif
model does provide a framework for a complete and comprehensive debug-
ging system for parallel and concurrent programming. The future work which
would be needed to realize this comprehensive debugging system for concur-
rent and parallel software includes the following:

1. Enhancements and extensions to the current unified model for concurrent and

parallel debugging. The extensions include:
* Dynamic vector clocks.
* Hierarchical representation of the events.

* Hierarchical replay

2. Interfaces to other modes of program validation:

* Integration with an interpretdrased sequential debugger

* Interface to or integration with static analysis and symbolic analysis systems.
3. Enhancements of the implementation making it mdectve for the user

and more user friendlyrhese enhancements include:

* A graphical user interface for the debugger and a better integration with the

CODEZ2 programming interface.

*

An implementation for a distributed execution environment.

* Implementation of rollback and recovery

*

Buffering of logical event traces for performance measurements.

* A stepping facility for sequential code of the computation actions.
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* More extensive facilities for model checking.
* Definition of hierarchical replay

* Reconstruction of a debugging session from a file.

Another extension which would be sigednt, although not a part of
the unifed model of debugging itself, is to map programs written in sequential
and parallel text string languages into the action/relationship programming
model so that the unified debugger can be applied to them as well.

The following sections explain each of the above points.

8.1 Enhancements to the Unified Model

Extensions to the undd model for concurrent debugging will allow
the debugger to support dynamic vector clocks, hierarchical representation of
events, and optimization of the amount of recording necessary for.replay

8.1.1 Dynamic Vector Clocks

The use of vector clocks typically assumes that the number of slots in a
vector is ixed, and the mapping of each slot to its corresponding executable
entity (process/thread) is already available [GaW92], [Mat89], [ReSc94],
[Fid89]. Howeverwhen the number of executable entities vary or when the
entities migrate, the assumption is no longer valid. For example, processes
may get created (or deleted) at runtime, or they may migrate. The interpreta-
tion of the slots in the vector clock must reflect these changes.

The unifed debugger requires dynamic vector clocks for implement-
ing race detection (Sectidh3.5) and optimizing the recording overhead for
replay (Sectior8.3.6). The vector clocks used by the wdfdebugger map
each slot of a vector to an action (Sectéh.2). As UC actions are instances
of templates, and their number varies at runtime (Secti@ri), the vector
clocks should be able to adjust to an increasing number of slots (i.e. actions).

Note that the checker facility of the ur@él debugger currently uses
vector clocks for checking relationships among occurrences of actions
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(Section6.5). It ixes the size of the vector before the execution is run to the
number of actions whose relationships are being checked. The dynamic vector
clocks will also make possible the deletion and addition of commands given to
the checker during the execution. Note that the checkes the number of ac-
tions before the execution, and addition and deletion of commands can vary
the number of actions, and hence the interpretation of the slots of the vector

Dynamic vector clocks will also allow the checker facility to check re-
lationships between the templates. Currerttlg facility, checks relationships
among execution occurrences of UC actions. Itis unable to check relation-
ships among the templates, because the number of instances of a template can
vary at runtime.

The problem of increasing number of slots in the vector clock can be
addressed by (say) maintaining a current count of slots with each vector clock
object. The creation of a new instance, will cause a new slot to be added to the
vector The routine that evaluates the checker commands and interprets the
slots will be informed of the new mapping.

8.1.2 Hierarchical Representation of Events

CODE 2 graphs are hierarchical. The runtime hierarchical context of
each UC action is available in the dynamic instance tree (Setdo?). How-
ever, the events of these actions are not displayed in their hierarchical context
because the notion of a graph event is noingef. In order to represent the
events hierarchicallyit is necessary to dieke the conditions that determine
when the execution of a graph started and when it ended.

Note that there are explicitring and routing rules that determine the
start and the end of an execution of a computation action (Sektia2). But,
there are no such rules for a CODE 2 call graph. Once a CODE 2 call graph is
instantiated, the actions inside the graph can execute independently of the
graph whenever the firing rules of the actions are satisfied [New93].
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There are several deitions which give semantics to the execution of a
graph [H091], [ZeR91], [ReSc94]. The execution of a graph can also be con-
sidered as a sub-pomset [Pra86], andrdfiimement operator [Gis88] can,
then, be used to map one pomset to anofBimen an appropriate deition, it
is possible to use the information currently available at runtime with the uni-
fied debugger to represent the events in their hierarchical contexts.

8.1.3  Hierarchical Replay

The storage requirements for the execution replay facility can be fur-
ther reduced by only recording the event orderings of actions belonging to a
set of selected subgraphs. Event orderings of actions that do not belong to this
set of subgraphs will not be recorded. The subgraphs whose orderings are not
being recorded will be considered as “holes”.

In the recording phase (Secti@mb), the instrumentation will record
the contents of any communication that occurs across these holes. An event
record will, then, contain the content of the message from a predecessor event
if the predecessor belongs to a subgraph that is not selected. However
record will only contain the id of the predecessor if the predecessor belongs to
a selected subgraph. The replay phase will work as follows: An action will get
the actual message sent by the predecessor during replay if the predecessor be-
longs to a selected subgraph. The action will, howelvegiven the pre-re-
corded message if the predecessor belongs to a subgraph that is not selected.

8.2 Interfacesto Other Systems

The capability of the uniéd debugger can be greatly enhanced by inter-
facing it with an interpretebased sequential debugger and systems for static
and symbolic analysis.

8.2.1 Interpreter and Stepping Facility

Advanced debuggers often use an interpreter to obviate the need to re-
compile each time a small moutiation is made to the user code [Sy83]. The
interpreter can especially be useful in the CODE 2 runtime system for a net-
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work of heterogenous workstations where compiling code for different ma-
chines can be time consuming. An interpreter like UPS [Rus91] can be
interfaced with the unified debugger to support small modifications made to
the sequential computation of aUC action.

Theinterpreter could also provide afacility to step through the sequen-
tial computation. Theinteractive facility currently allows stopping at the start
and at the end of the sequential computationin aUC action (Chapter 7). It sup-
ports next -ing from the beginning of the sequential computation of aUC ac-
tionto itsend, and next -ing from the end of the sequential computation of a
stopped action to the beginning of the computation of all of itslogical succes-
sors. Theinteractive facility currently does not support stepping through the
sequential computation. Ability to step through the sequential code is howev-
er quite useful and can be provided with an interpreter. The interpreter will
only be invoked only when the user requests single stepping of the sequential
computation. Otherwise the execution will proceed through the computation
asit doescurrently.

8.2.2  Static Analysisand Symbolic Analysis

Information generated during static analysis has been used to simplify
the runtime information requirements for race detection and execution replay
[MiC89]. Itis, however, also possibleto use the information collected at runt-
ime to manage the complexity of static analysis facilities. Note that the static
analysis of parallel programs for detecting access anomalies and deadlocksis
intractable [Tay84]. Thelogical orderings of events actually exhibited by the
execution at runtime can be used for simplifying static analysis because thisin-
formation is not available at compile time. Similarly, thisinformation can also
be used for simplifying symbolic analysis[YoTa36].

8.3 Enhancementsto the Current Implementation

The objective of the implementation described in Chapter 4-Chapter 7
was to demonstrate that the unified model of concurrent debugging providesa
framework that allows a single debugger to support all of the debugging facili-
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ties that have previously been ihefd separatelylhe current implementation

is a prototype that provides the basic functionality needed for a demonstration
of feasibility. In order to allow the user to fully exploit this functionality fol-
lowing enhancements in the short-term are foreseen.

8.3.1 A Graphical User Interface (GUI)

The implementation currently uses a mazifion of the textual inter-
face provided by the Berkeley (BSBBx. The interface is only capable of ac-
cepting textual input and providing a textual output. In order to view the
different graphical representations produced by the debutigeegraphs are
first dumped using one of thi#éihg options described in Sectidh1.2. The
dumpedile can, then, be picked up and displayed with the XGRAB graphical
editor [RDB+87].

Work on the next generation of CODEs2jraphical frontend is current-
ly in progress. The plan includes the provision of a proper GUI environment
for interactive debugging. In this interface, interactions between the user and
the debugger would be based on the display of three graphs; the elaborated
graph, program graph and the execution event graph (SexddnThe iigure
given on the next page shows some of the icons and displays planned for the
interface. The user would be able to click on the interesting nodes of these
graphs to see their execution behayard make various selections. The com-
mands and selections described in Appendix B will berefl through icons
and buttons.

8.3.2 Distributed | mplementation

This dissertation describes the implementation of theadchrhodel of
concurrent debugging in the context of a shared memory machine. However
the abstractions used by the model are machine independent and are also appli-
cable in a distributed environment.

CODE 2 environment is able to translate the programs into executables
that can run on a network of workstations using PVM message passing primi-
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tives [Vok94]. Current implementation of the unified debugger for Sequent
shared memory machine was designed keeping in view this distributed imple-
mentation of the CODE runtime system. For example, the decision to have a
separate debugger task that would communicate with the worker tasks through
News Qand St opQ (Section 4.3) was prompted by this consideration. Note
that the debugger task could have been implemented in a manner similar to a
template routine (Section 4.2.2) that is picked up by aworker task for periodic
running.

The distributed implementation of the unified model has been designed
and is being implemented. In thisimplementation, the debugger task and the
worker taskswill be PV M tasks (processes). | nteractions between the debug-
ger task and the instrumentation described in Section 4.3, will be through the
PV M messages. Global commands will be sent to each worker task. Whereas,
commands that only apply to a particular action will be sent to that worker
task to which the action has been mapped by the runtime system. In order to
execute the debugger commands on aremote machine, there will be aremote
debugger with the worker task executing on that machine. The worker task
and the remote debugger will multiplex their execution asthey do in the serial
implementation of the debugger. Note that thereis a serial implementation of
the unified debugger for the CODE 2 runtime system for Sun4 workstations.
The remote debugger will execute the commands sent toit. It will maintain the
structures local to the machine like the ReadyQand St opQ. It will also con-
trol the instrumentation inserted inside the UC actions that have been mapped
to its machine by the runtime system.

The central debugger task will maintain the News Q. News from thein-
strumentation (Section 4.3.1) will be directly sent to the central debugger
from the remote locations. The central debugger task will maintain adynamic
instance tree which will be aunion of all the branches instantiated by the runt-
ime system at various machines. It will also maintain aSt opQthat will reflect
the status of all the stop queues at remote locations.
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The manner of identifying an action will change. Curreritig debug-
ger identifes an action with a pointer (Sectidr.1). In the distributed envi-
ronment, this pointer may not be unique. So, the debugger will maintain
another level of indirection between the full-pathnames with which an in-
stance is identiéd by the user (Sectioh5), and the address of the struct with
which the runtime system identifies the instance at a remote location.

8.3.3 Recovery and Roll-Back

The replay facility exactly replays an earlier execution using the order-
ing information recorded for that execution (Sectto4d). The information re-
quired for recovery and roll back of a concurrent execution [JhZw90] is
contained in the information recorded for replay purposes. So, the capability
provided by the replay facility can be extended to provide roll back and recov-
ery. The orderings will, then, have to be recorded on a stable storage. Note,
however that the replay facility can only replay the execution from the begin-
ning. During recovery and rollback it is not always convenient, or even feasi-
ble, to re-start the execution from the beginning each time there is a crash. In
order to avoid this, the recovery mechanism can periodically checkpoint the
state of the execution on stable storage. The execution can, then, be started
from the last checkpoint.

In the CODE 2 environment, a facility for checkpointing is already
available for process migration and load balancing purposag9W. This
checkpointing facility can be used in conjunction with the replay facility to
provide recovery and roll-back from the last checkpoint. The checkpointing
and recording of orderings will, then, have to done on stable storage. Note that
it is not necessary to checkpoint the entire state of each process. The recovery
mechanism can benefrom approaches like [MiC89]. These approaches use
data-fow analysis to limit the amount of information that must be recorded in
order to replay an execution from some point in the past. This can greatly re-
duce the checkpointing overhead.
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8.3.4  Extending Facilitiesfor Model Checking

The checker facility currently provides checking of threetypes of rela-
tionships (Section 6.5). Theimplemented functionality is, however, also capa-
ble of supporting the checking of several other types of relationships. For
example, linked predicates [MiC88] and path expressions [HsK90]. These
predicates/models only require immediate ordering information which is cur-
rently available. Disjunctive predicates [ GaWw92] require maintenance of vec-
tor clocks which are also currently available. There are other relationships
[ReSc94] which can also be supported by the implemented functionality.

8.3.5 Implementation of Race Detection

Asexplained in Section 3.4, the orderings <€ are the transitive closure
of theimmediate orderings recorded by the debugger. The instrumentation de-
scribed for race detection in Table 3-3 makes use of these orderings. These < c
orderings are not directly available from the immediate orderings that are be-
ing recorded. These can, however, become available if the instrumentation
maintains the vector clocks as described in Table 8-1. Note that w.D.T isthe
vector timestamp of the last writer, and p.D.T is the combined timestamp for
all the readers of an object.

Table 8-1. Data-race detection instrumentation with vector clocks.

uUj obtainsaccessto D. U; releases access

ullD to D

Race is detected if: If raceis detected

p.D :=p.D O {u;};

udRp @D.T # .7  |updaté(u;.T, wD.T); updatep.D.T, u;.T)

wD.T £ u;.T update(y.T, w.D.T); oD :={}:

wD =vuy;
update(y.T, p.D.T) w.D.T:=u;.T

uldw,
D ijp.DD

V.- T[] # u;.T[v]

a lfw=wD.T, thenwD.T ¢ u.Tif wD.Tw] £ u;.T[w]
b. update(T T’) = Ou: T'[u] > T[u] :: T[u] := T'[u]
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8.3.6  Optimizing the Replay Recording

The replay facility currently records all thew¥W-predecessor and
shared predecessor orderings (Sectom). It is possible to optimize the
amount of recording necessary for replay [Net93]. Theieshihodel of con-
current debugging can provide further optimization by only recording the non-
deterministic choices. But, this requires the provision of dynamic vector
clocks (that can adjust according to increasing number of actions), and imple-
mentation of the race detection facility at runtime. The instrumentation will
check the races as explained able 8-1, but will record the orderings as de-
scribed in Bble 3-3 only if a race is detected.

8.3.7  Implementation of Other Options

Section6.1.2 describes several options that afereid by various de-
bugging facilities. Most of these options have been implemented and can be se-
lected by the useHowever the options to save and/alefthe post-restricted
event trace is not implemented. That is, the implementation can curnégitly f
save the events of the partial order which has been restricigddnq but is
unable toile/save the events of the partial order that has been post-restricted
to actions of 4ispOr > check This remains to be implemented.

In the postmortem mode, facilitiesfefed by the uniéd debugger uti-
lize event records that were traced in an earlier executiabl€T6-2). The
trace can be in aé or in the form of records saved in internal structures. The
implementation currently provides postmortem utilization of trace from the
records, but does not provide utilization from a trabe fThat is, the loop
from the trace file to records as depicted in Figure 4-2 is not implemented.

Dumping the state of a debugging session tteahd reconstructing it
later can be quite useful to the usi&ithough, the debugger can “source” the
commands saved in dd (Appendix B), it is unable to reconstruct the entire
debugging session. This ability remains to be implemented.
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The interactive facility provides two types of commands for setting
user breakpointsst op at.... andwhen at....<cnmd_|i st>.
(Section7.2). Other types of breakpoints can also be implemented with the
current functionality For example, breakpoints likesnce at.... and
wat ch at... <var _|ist>. The formeris activated “once” the execution
reaches the spe@f point, and is then reset. The latter monitors the changes
to the variables at a given point and only informs the user when the value
changes. Similarlythe ability to “assign” a diérent value to a variable at runt-
ime when stopped at a breakpoint may also be quite useful to the user

8.3.8  Buffering Requirements

A buffer maintained with each worker task can make the performance
tracing mode more robust, and can make the evaluation of commands at a
breakpoint more étient.

Performance Tracing

The unifed debugger provides a performance-tracing mode for generat-
ing the timings of the logical trace of the execution (Sectdnl). In this
mode, the instrumentation saves the event records with timing information in
the internal structures. No input/output is allowed during performance tracing
because it may disrupt the timings that are being recorded. After the execu-
tion, the mode is switched to the postmortem mode. Then, the event records
saved during the performance-tracing mode are dumpedI|toia theper -

f t r format mentioned indble 6-1.

Saving all the event records in internal structures until the execution
has run to completion can potentially cause the memory to run out. The prob-
lem can be avoided by implementing (say) a circulafdyufith each worker
task. Each worker task, after executing an action (Sedtid:8), will put the
execution event record in its baf. The debugger task will, then, be responsi-
ble for periodically removing the event records from thddrsfand dumping
them to a file.
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Breakpoint Evaluations

Theinteractive instrumentation (Section 5.5) can use the buffer main-
tained with each worker task for performance-tracing purposes. Note that the
evaluation of commands at a user breakpoint requires a separate stack
(Section 7.3). Currently, the implementation reserves a chunk of memory for
the stack each time the breakpoint command evaluation routine is entered dur-
ing the execution of an action. The allocation and de-allocation that takes
place each time an action enters and exits the breakpoint evaluation routineis
inefficient. If thereis abuffer maintained with each worker task, then this buff-
er can be used as a stack during the evaluation of the breakpoint commands.
Note that there is no conflict in this usage because the performance tracing
mode and the modes in which interactive facility is available are mutually ex-
clusive (Table 6-2).

Furthermore, the commands activated at a user breakpoint often gener-
ate information that has to be communicated to the debugger task. Currently,
the result of these commandsis printed on the standard output. Thisis unsatis-
factory, because the information should be sorted and presented to the user in
the context of the execution event of the action. The buffer allocated for each
worker task can also serve the purpose of saving the partial results of com-
mand evaluations. It will befilled with the result of any breakpoint commands
executed during the execution of actions. After the execution of the action, the
contents of the buffer will be communicated to the debugger task.

8.4 Textual languages

Computation actions are naturally available in the CODE 2 graphical
programming environment. These are not readily availablein the textual paral-
lel languages which add synchronization/communication to an existing se-
guential language. However, as explained in Appendix A, the computation
actions can be extracted from the graphical representation of the program
maintained by the compilers. The unified model of concurrent debugging can,
then, be applied to these languages.
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Thisrequires that the mappings from the basic blocks of the graphical
representation maintained by the compiler to the computation actions of the
program graph needs to be formalized. Furthermore, the runtime should be
able to map the instances of these computation actionsto the templates defined
in the program graph. This may involve extrawork for the debugger if these in-
stances are allocated on the stack by the runtime system. Note that in the
CODE 2 runtime system, instances of atemplate are allocated on the heap and
the mapping information isreadily available to the debugger in the struct for
each action (Section 4.2.1).



Chapter 9.  Conclusions

This dissertation has defined and described aformal model of concur-
rent debugging in which the entire debugging processis specified in terms of
program actions and executions of program actions. This unified model of par-
allel debugging places all of the approachesto debugging of parallel programs
such as execution replay, race detection, model/predicate checking, execution
history displays and animation, which are commonly formulated as disjoint fa-
cilities, in asingle, uniform framework.

We have also developed afeasibility demonstration prototype of ade-
bugger implementing this unified model of concurrent debugging in the con-
text of the CODE 2.0 parallel programming system. This implementation
demonstrates and validates the claims of integration of debugging facilitiesin
asingle framework. It isfurther the case that the unified model of debugging
greatly simplifiesthe construction of aconcurrent debugger. All of the capabil-
ities previously regarded as separate for debugging of parallel programs, both
in shared memory models of execution and distributed memory models of exe-
cution, have been given an implementation in this prototype.

The critical concept underlying the unification of concurrent debug-
ging isthe concept of separation of concerns. Separation of concerns leadsto
parallel programswhich are formulated so that specifications for parallel con-
siderations such as synchronization and communication are completely sepa-
rated from the specification of sequential transformations on data. The model
of concurrent debugging which we have specified here can be applied to any
parallel programming language or system in which this condition ismet. The
CODE 2.0 parallel programming system is an example of such a programming
system.

It isthe case, however, that conventional text string parallel program-
ming systems do not explicitly display such astructure unless separately ana-
lyzed to identify the computation actions. However, this analysisto identify
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computational actions and to separate specification of sequential computa-
tions from specification of communication and synchronization can be accom-
plished with the data gathered by the parallelizing compilers. Therefore the
unified model of parallel debuggingis, in fact, applicableto all parallel pro-
grams provided they have been pre-processed into an appropriate extended
generalized data-flow graph where computational actions are cleanly specified
and separated from communication and synchronization behavior. It is our be-
lief that this representation of programsisinitself beneficial and its adaptation
will lead to simpler and more effective parallel programming.



Appendix A. Computation Actionsin a Textual
Representation

The computation actions used by the unified model are naturally available
in the CODE 2 graphical parallel programming environment. As explained,below
the abstraction of computation actions can also be extracted from a parallel pro-
gram written in a textual sequential language with extensions for synchronizations
and communications. Note that the abstraction of computation actions perma-
nently associates the synchronization statements of a concurrent program with its
sequential text segments. It permanently associates a blocking synchronization
with the sequential text that follows it, and permanently associates a signal syn-
chronization with the sequential text that precedes it.

Al Extracting a Graphical Representation

A parallel program written in a sequential language with extensions for
synchronization primitives may be considered as consisting of three types of
statementshlocking synchronizationsignal synchronization andon-syn-
chronization statements

* A blocking synchronization makes the execution progress of a process
where it resides, dependent on the occurrence of one or more
synchronizations elsewhere. Execution of the process suspends if the
corresponding synchronization has not occurred. For examphdd,
evwai t () in Cray Fortran,in() orread() in Linda, rendezvous in
Ada, P operation on a semaphore, and so on. In distributed systems, the
primitive is usually a ecei ve() of message. Note that a non-blocking
receive is actually a blocking receive at a lower level [Lam86].

» A signal synchronization is a non-blocking synchronization operation that
does not change the execution state of the process in which it executes. It is
independent of the execution state of any other process, but may be
instrumental in changing the execution state of a dependent process.
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Examples: cal | evpost() in Cray Fortran, out () in Linda, V
operation on a semaphoreet () in PPL, and so on. Its equivalent in
distributed systems is tls®end() of a message.

From a text containinglocking synchronizationsignal synchroniza-
tion andnon-synchronization statementsstatic analysis techniques routinely
extract a synchronization-contrdbfv graph [Tay83], [TO80], [BBC88],
[CaS89], [McD89], [MiC89]. The graph typically contains three types of
nodes and two types of arcs. Nodes represent blocking synchronization, signal
synchronization, and control decision statements. While arcs represent inter
process synchronization dependences and intra-process cdatvaldpen-
dences.

main () {
[* workers= n*/
[* counter ct= n*/
post (ev; : i = 1..n);

while (1) {
c_wait (ct);
/* calculate work done */
i.f (work_done) lf
exit ();
post (ev; : i = 1..n); ?\ exit
1} @ D\\ eviii=1.n

FigureA-1. (a) Procesmain (b) Synchronization-control-flow graph

FigureA-1(a), and Figuré-2(a) showa textual parallel program writ-
ten in a PPL like extension €. Processnain signalsn workers to starts, and
then waits on a synchronization counterOn completion, eacworker re-
ports by incrementingt. When countt reaches, main wakes up. It deter-
mines if more work is needed. If not then it exits, else it signalsvinkers
again, and so on.

FigureA-1(b), and FigureA-2(b) show the synchronization control
flow graphs extracted from their corresponding text. Note that in Fijure
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1(b),a, p, g andf are control dependencesit andev; are signal synchroniza-
tion dependences amtis a blocking synchronization dependence. Similarly
in FigureA-2(b), mandr are control dependenceas;is a signal synchroniza-
tion andev; is a blocking synchronization dependence. Intra-process control
arcs labeled bg, w andf correspond to the sequential text containing non-syn-
chronization statements.

worker i () { r worker i
while (1) {
Wa]tlge\(;ig some work/ m E{_I/Wi
;:_set (c): | w
} } ) | ?\Ct (@

FigureA-2. (a) Workeri (b) Synchronization-control-flow graph

A.2 Extraction of Computation Actions

The abstraction ofomputation actions, shown by the dotted ovals in
FigureA-1(b) and FigureA-2(b), permanently associates the synchronization
statements with the sequential texts. It permanently associates a blocking syn-
chronization with the sequential text that follows it, and associates a signal
synchronization with the sequential text that precedes it. Tihasking syn-
chronizationswvait (ev;) in FigureA-2, is associated with the tewtthat fol-
lows it, and blocking synchronizatianwait (ct) in FigureA-1 is associated
with the textf that follows it. Alsosignal synchronizations_set(ct) is associ-
ated with the texiv that precedes it, and signal synchronizapost (ev; : i =
1..n) is associated with textsandf that precede ifThus,

Def. A-1 A computation action is a block of a flow graph that:

[1] may contain internal control flow provided the internal control
structures (loop, if-then-else, etc.) do not contain any synchronization
statement;



[2]

[3]

[4]
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it may begin with dlocking synchronization, that must be the first
statement of the block; and

it may end with aignal synchronization, that must be the last statement
of the block.

it may contain more than otocking (signal) synchronization
provided they are all together at the start (end) of the block with no other
intervening statement-types.

After the synchronization statements have been associated with their

bordering sequential texts, we are left with the contowfdecision nodes.
The abstraction ofifing rules subsumes these decision nodes as shown in
FigureA-3(a) and (b) For example, in Figur&-3(b), input fring rule of ac-

¢majn
(a)
= worker i
A evi:i=1.n
r e\/i
p ct ¢/
qj ;5 m (mOev;) O(r Dev;)
Oct) O(gOct
(P . ) O(qOct)
exitd(qOo m O ct
\ ev: i:1..n)
exit ct
evi:i=1.n
@ (b)

FigureA-3. (a) Computation actiona andf, and (b)w

tionwis (mUev;) L (r Uev;), and the output firing rule of wim Lct .

The set otomputation actions Zp, then, characterizes the speif be-

havior of the textual program. Thus, in the above example,

p={a,wf};
Fp={(a w), (af), (wf), (f, w)};

Op(a) = {{(a, w), (a, )}};
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Op(f) = {{exit}, {(f, w)}};
Ip(w) = {{(a, W)}, {(f, W)}};
Ip(f) = {(f, ), (w, D}}.

ay man ey worker i a Program

. Structures
ev:i=1.n W
+ __>
; ct w
ct f

Note thatthefiring-rulesexplicitly state the conditions that were implicit
in the semantics of the synchronization primitives. Debuggers often keep these se-
mantics implicit. InFigure A-3(b), input iring rule that initiates the execution of
the computation blockw” has been stated gsn Uey) U(r Dey)”. It says thatv
may initiate its execution if one of the two disjuncts is true i.e. control reacimes at
orr andev; has been posted. Similartjre post-condition that follows the execu-
tion ofw can be stated as a rulm ] ct’. It says thatv signals by synchronizing
the counter €t” and transferring control ton” .



Appendix B. The Unified Debugger for CODE 2

This appendix provides a brief oveiew of the commands with which
a user interfaces with the unified debugdg@r details see the user marual

B.1 Description of Commands

Table B-1 gives a brief description of the commands accepted by the
unified debuggemNote that:

* Some of the commands are context-sensitive. The legal context for such
commands is specified in the table. The debugger may assume a default
context for a command if a proper context is not selected. For example,
run command is always considered global, i.e. applying to the program
scope, whereasont will return with an error message if the currently
selected scope is not a UC instance or the program scope.

* There are default aliases for some of the commands.

* Output of some of the commands can be redirected to a file.
TableB-1. Brief listing of the available commands.

Command| Alias ;?gg'le CI(_)?I?;I(ts Description
al i as - Define alias for a command
check - Check for parallel/predecessor relationshij
cont c Pgm/UC Continue the execution
debug - Internal command for maintenance
del ete d - Delete a user/checker/display breakpoint
di sp - Select actions for display restrictions
dunp yes Call /UC Dump the local state of the Call (NI) /JUC
hel p h yes |- Print a help message
list | yes Pgm/Call/lUC |Provide a listing of instances/events

1 Available as an internal document with the CODE project of the Computer Science
Department, UT Austin. It is also available via anonymous ftp to cs.utexas.edu in
~/ pub/ code/ . Or send e-mail tbr owne@s. ut exas. edu.
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TableB-1. Brief listing of the available commands.

ors

—

Command| Alias eRcEt}gg_le Clc_)(ra\?s;ts Description
list ‘e’ Ise yes Pgm/Call/UC/|List all events of the selected scope
event
list ‘7’ Isi yes Pgm/Call/ List all instances of the selected scope.
uc
mode yes |- Change/show the currently selected mode
next n Pgm/UC Stop at aftcomp; or at befcomp of success|
output - Select trace display/filing/saving option
print p yes |[Call/luC Print result of the specified expression
psym yes |- Print info about the specified symbol
quit q - Exit the debugger
rcopt Pgm/Call/UC |Select from restrict/full/dfrecording option
run r - Start a new run of the execution
select cd Pgm/Call/ Select the specified scope
UC/Event
source - Read and execute commands from the filg
status Show currently set user/checker/disp brkp
stop... st Pgm/UC Stop the execution or set a stop breakpoin
whatis yes |[Call/UC Print the type of the given symbol
when... ucC Set a breakpoint for evaluating given cmd
where de yes Pgm/Call/ Show the currently selected scope.
UC/Event
which yes Call /UC What is the current context of the symbol
unalias - Remove an alias
B.2 Syntax of Commands

<cmd> =  <mode_cmd>
<output_cmd>
<disp_cmd>
<rcopt_cmd>
<list_cmd>
<select_cmd>
<exec_cmd>



<output_cmd>
<chk_cmd>

<disp_cmd>
<mode_cmd>

<rcopt_cmd>

<list_cmd>
<select_cmd>

<exec_cmd>
<alias_cmd>

<intrnl_cmd>
<del_cmd>

<query_cmd>
<usrbp_cmd>

<source_cmd>
<status_cmd>

<savetr>
<f iletr>

<disptr>
<rctype>

<f iletype>
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<alias_cmd>
<intrnl_cmd>
<del_cmd>
<query_cmd>
<usrbp_cmd>
<source_cmd>
<status_cmd>

output  {<savetr> | <f iletr> | <disptr>}

check pred <action_id> '{'<actionid_list>"}' |

check parall {<action_id_list>}

disp <action_id_list>

mode [ record [<rc_opt>] | replay |perfir |
dbgoff | postmortem [<from_opt>] ]

rcopt [<rc_opt>]

Isi <list_opt> | Ise <list_opt>

where |

cd |

cd'''|

cd /' [<scope_path>] |

cd <scope_path> |

cd : INT

run | cont | stop | next

alias NAME NAME |

alias NAME STRING |

alias  NAME '(' <name_list>")' STRING |

alias NAME |
alias |
unalias NAME

debug [-] INT | psym
delete [check | disp] INT
default: user breakpoint
print <expr> |
dump |
stop <usrbp_opt> |
when <usrbp_opt>'{' <cmd_list> '}
source <f ilename>
status

record <rctype>

uf ile <f iletype>

disp <disptype>}

[elabgph | evgph [bothgph | off]
default: bothgph

[record |edge | xgrab|off]| perftr]
default: record



<disptype>
<rc_opt>
<from_opt>
<scope>
<action_id>
<action_id_list>
<name_list>

<f ile_name>

<tmplt_name>

<index_list>
<usrbp_opt>

<cmd_list>
<where_in>
<where_at>
<int_list>

<bool_expr>

<expr>

Special Symboals:

Nodelndex ExecCnt

[restrict |record |check]|
default: record
restrict | off | full
record | uf ile
<tmplt_name> |
<tmplt_name> <index_list>
<scope>
(of aUC action)
<action_id> |
<action_id> "', <action_id_list>
NAME | NAME ',' <name_list>
STRING
NAME | UID
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off]

(of aUC, NS or a Cal node template)

T <int_list> "'

[in <where_in>] [at <where_at>]

[if <bool_exp>]
<cmd>";' |

<cmd>";' <cmd_list>
<scope>

befcomp | aftcomp

2= INT | <int_list> INT

Pred

Pred '(‘action_id_list ")’
<expr> (of type boolean)
SYMBOL
CONSTANT

<expr> T expr_list '
<expr>"' NAME

'+' <expr>

-' <expr>

'&' <expr>

<expr>'"*' <expr>
<expr>'+' <expr>
<expr>'[' <expr>
<expr> DIV <expr>
<expr> MOD <expr>
<expr> AND <expr>
<expr> OR <expr>
<expr> '<' <expr>

<expr> '<''='<expr>
<expr>'>''=' <expr>
<expr>'="'='<expr>
(' <expr>")

(local to aUC scope)



Keywords:

alias
check
di sp
hel p
node
of f
pred
repl ay
stat us
use
whi ch

aft conp
cont
di v

if

next

out put
print
restrict
step
whati s
xgr ab

and
debug
edge
in

nil
perftr
psym
run
stop
when

at
dbgof f
ufile
list
not
paral |
qui t
sel ect
r copt
wher e
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bef comp

del ete

ful

nod

or

post nortem
record
source
unal i as
wherei s
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