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Abstract. To continue historical rates of improvement, future high-
performance processors are likely to exploit more instruction-level paral-
lelism. The best way to find much of that parallelism is by implementing
an out-of-order issue core with an ultra-large issue window. However,
there are serious challenges in building large issue windows that can hold
hundreds or thousands of instructions, including how to build them, how
to fill them, and how to empty them efficiently. In this paper, we describe
some of the solutions proposed by other researchers that address the lim-
itations currently constraining issue window sizes. We also describe the
solutions being incorporated into the University of Texas TRIPS pro-
cessor, which will contain a 1024-instruction window in each processor
core.

1 Introduction

Commodity microprocessors have shown enormous performance gains over the
past three decades, typically cited at 55% per year. Over the past 15 years,
the bulk of those performance improvements have come from faster clock rates,
improving at 40% per year, and even faster recently. This rate of growth is unsus-
tainable, however, as pipelines are nearing their optimal depths [6]. Once clock
rates reach that point in the next few years, the most promising source of con-
tinued performance improvements is increased parallelism, whether it be coarse-
grained parallelism on a multiprocessor, or increased exploitation of instruction-
level parallelism (ILP). Given the difficulties inherent in parallelizing irregular
codes, and the lack of success in doing so over the past decades, we believe that
striving for increased ILP is a more promising approach.

In this short paper, we discuss how out-of-order issue cores can exploit large
windows of instructions to achieve higher ILP. These windows, which may even-
tually hold thousands of instructions, have enormous implementation challenges,
particularly in the face of emerging technology constraints such as power ceilings
and multi-cycle wire delays.

The major challenges associated with these kilo-windows of instructions (KWTs),
are four-fold:



1. Implementing a kilo-instruction window
2. Filling a kilo-instruction window

3. Flushing a kilo-instruction window

4. Emptying a kilo-instruction window

Each of these challenges will require new techniques to solve effectively. We
describe both the issues for conventional processors as well as the solutions
being incorporated into the TRIPS processor prototype being designed at the
University of Texas at Austin. The TRIPS processor will be the first example
of a KWI; the each of the four processor cores on the prototype chip will issue
instructions out of order from a window of at least one thousand instructions.

In the rest of this paper, we describe the challenges and current solutions
to the four challenges described above. If solved, these challenges will provide
significant performance increases, since past studies have shown that ILP is avail-
able out to thousands of instructions [2]. Recent studies have also shown that
long-latency operations, such as cache misses to main memory, can be toler-
ated with ILP so long as the instruction window is sufficiently large and branch
mispredictions do not invalidate a significant fraction of the window [8].

2 Implementing a KWI

Building large conventional, centralized issue windows is infeasible given four is-
sues: growing on-chip wire delays [1], the quadratic growth of window complexity
with issue width [20], long latencies for large windows, which must match broad-
cast register tags against every entry associatively, and the power limitations of
building large associative structures.

Researchers have proposed techniques for building large but scalable win-
dows. These approaches include building hierarchical windows, where a small,
fast one backs up a larger, slower one [11, 5], clustered processors [9], or dependence-
based queues [13,10].

The TRIPS processor, conversely, implements a physically partitioned win-
dow [12,17] that distributes an issue window among multiple execution units,
treating them jointly as reservation stations, an issue window, operand buffers,
and a distributed reservation station. These functionalities were originally merged
into one structure in the Register Update Unit (RUU) [19]. The TRIPS window
organization has two major differences from the RUU. First, the TRIPS window
is a highly partitioned structure, with a partition at each execution unit (which
number from 8 to 64, depending on the issue width of the processor core). Sec-
ond, the mapping of instructions to slots in the window is performed partially by
the compiler, since the TRIPS processor employs a Static-Placement, Dynamic
Issue (SPDI) execution model.

This compiler mapping enables dependent instructions to be placed close
together, and it also permits each partition of the window to be constructed
with non-associative logic. Since the instruction set specifies that each instruc-
tion contain the physical locations of its consumers, an instruction can send



its operand directly to the exact window slot where a consuming instruction is
guaranteed to be buffered. Thus, while the TRIPS approach requires a change
in instruction set and execution model, it supports out-of-order execution with
a scalable issue window, which can grow linearly with the number of execution
units. There are also power advantages to this approach, as the issues window is
both partitioned and avoids the need for power-hungry, high-latency CAMs to
implement associative lookups for waking up instructions.

3 Filling a KWI

The second major challenge for building feasible KWIs, aside from building scal-
able and practical physical structures, is filling them with useful instructions. The
two challenges for filling KWIs is high-bandwidth fetch and effective prediction.
We discuss each below.

3.1 High-Bandwidth Fetch

Much research has focused on increasing the bandwidth of the front end instruc-
tion fetch unit. There are several challenges to sustaining the levels of bandwidth
required to keep large windows full at high rates of ILP, including fetching past
multiple branches per cycle, renaming many instructions per cycle, and dispatch-
ing many instructions per cycle to the issue window.

Techniques to improve instruction fetch bandwidth include trace caches [16],
fetch target buffers (FTB) [15], and many more. Trace caches are an example of
a technique that deals with branches by crafting a linear sequence of instructions
dynamically, whereas the fetch target buffer exploits idle time to run ahead of
the actual front end fetch rate. By running ahead, the FTB prevents performance
loss when the program enters brief periods when the front end cannot sustain
enough bandwidth for the machine (e.g., too many predicted taken branches).

The solution that we employ in the TRIPS processor is to use large hyper-
blocks as the unit of fetch and map. Hyperblocks are predicated regions of code
that have only one entry point, but which may have multiple exits. We couple
these hyperblocks with an exit predictor that chooses the first taken exit branch
in a hyperblock [14]. By making only one prediction per hyperblock (and implic-
itly predicting all the branches before the predicted exit in that hyperblock), a
large number of instructions—80 on average—can be fetched with each prediction.

Due to the SPDI execution model, in which the compiler places instructions
in a fixed-format block, the instruction caches can be distributed to rows of
ALUs, columns of ALUs, or individual ALUs. When a prediction is made, the
global controller looks up the address produced by the branch target buffer in
the instruction cache tags. If an I-cache hit occurs, the controller broadcasts the
correct index to all distributed I-cache banks, which proceed to fetch their por-
tion of the statically mapped block in parallel. The exit predictor, coupled with
a BTB and the distributed I-cache banks, can run ahead with its predictions,
similar to an FTB, but with many more instructions per prediction and a much
higher sustainable bandwidth from the distributed I-cache array.



3.2 Prediction

For most irregular codes without regular, predictable loops, mispredictions will
result in a small fraction of a KWI being utilized. Currently, integer codes (such
as SPECINT2000) demonstrate a rate of two to ten Mispredictions per Thousand
(kilo) Instructions (MPKTI), with an average of roughly 5 [18]. By dividing 1000
by the average MPKI for a benchmark, the average number of useful instruc-
tions fetched before a misprediction can be obtained. Even the most accurate
predictors currently proposed in the literature, such as the perceptron predic-
tor [7], cannot achieve under 1 MPKI for most benchmarks, indicating that if
straight branch prediction is to be used, considerably more accurate predictors
will need to be developed. Predication of branches has been proposed to reduce
the rate of branches that must be predicted, but it does not typically improve
the predicatility. when an unpredictable branch is removed, the removal often
pushes the poor predictability onto other branches [3].

Simulation results show that the TRIPS processor currently loses 33-50% of
its potential performance to branch mispredictions. The approach that we are
taking is to be more aggressive with if-conversion and loop unrolling, forming
larger hyperblock regions for fetching that contain multiple paths, thus trading
useless instruction overhead for better predictability. Predictability is improved,
however, only when basic blocks that reside on multiple control paths are added
to a hyperblock until they re-join in the control flow graph. If-converting to
control flow merges allows the processor to exploit control independence in a
clean manner, since the successor block is predictable. The challenges to this
approach are (1) providing enough buffering and execution resources that the
overhead (non-taken path) instructions do not impede performance, and (2)
ensuring that the non-taken paths included in the mapped blocks do not have
critical paths significantly longer than the taken paths. The balancing of these
path lengths and the decisions about which paths to include is made at compile
time, and is an active area of research.

4 Flushing a KWI

When a control misprediction occurs in a large window, an enormous number of
in-flight instructions may be invalid. Future systems will benefit from keeping
the flushing and recovery costs as low as possible. This problem is fairly simple
to solve in a conventional processor, which typically defers handling of the mis-
prediction (or synchronous exception) until the faulting instruction reaches the
head of the reorder buffer, at which point the entire pipeline is flushed.

That solution is considerably less attractive in a distributed, large-window
microarchitecture with high communication delays, since it may take many cycles
for the faulting instruction to become the oldest instruction. We are investigating
two techniques to reduce the performance losses due to flushes, the first of which
reduces the overhead of the flush, and the second of which reduces the frequency
of flushes.



T ag-based Flushing: An alternative to waiting for the faulting instruction to
complete is to actively squash only the mis-speculated instructions in flight. Ex-
plicit squashing of all in-flight, mis-speculated instructions is particularly difficult
in a distributed microarchitecture. The approach that we are exploring involves
tagging each block that is mapped to the execution substrate and updating and
broadcasting a tag that indicates that all operations past a mapped block are
now invalid. This approach is similar to how conventional microarchitectures
handle mis-speculated loads that return from memory after a pipeline has been
flushed and re-filled with correct work. Even more efficient would be simply
injecting new blocks with updated tags when a misprediction was detected, re-
quiring little waiting time at all. This scheme adds both the complexity of tag
management and a verification challenge—since old and new operations may be
in flight together—but permits lower-latency flushes.

D istributed Selective Re-Execution: The other approach that we are currently
exploring is to minimize the frequency of complete flushes. The pipeline is flushed
on control mispredictions, but for other kinds of speculative violations, such as
a load/store ordering—or any violation that involves the right instructions com-
puting with the wrong data—we perform selective re-execution, re-firing only
the instructions that depended on the faulting instruction. With this approach,
when the right kind of misprediction occurs, the pipeline does not need to be
flushed, no useful work is thrown out, and no instructions need to be re-fetched.
We describe a protocol for achieving selective re-execution in a distributed mi-
croarchitecture elsewhere [4].

5 Emptying a KWI

In conventional architectures that commit one instruction per cycle, on average,
draining the instruction window of completed instructions is relatively straight-
forward. The Alpha 21264 [9] is able to commit up to 11 instructions per cycle,
but can only commit one branch per cycle.

In a distributed microarchitecture, however, commit is significantly more
difficult. Determining the correct order to remove the instructions from the par-
titions is both necessary and challenging, particularly in a multiprocessor where
ordering must be maintained to satisfy memory consistency models. Stores are
typically written back to the memory system at commit, and register values to
the architectural register file.

A centralized structure to track orderings of written stores, pipelining per-
missions across multicycle communication delays, is one feasible approach. One
drawback of this approach is that a cache miss on a store could quickly make
the commit stage a bottleneck. The store issue argues for write-back, write-
noallocate level-one caches. It is not clear that commit will be a bottleneck for
KIW machines, but it is certainly possible that new approaches will need to be
devised to permit these machines to get instructions out of the pipeline suffi-
ciently fast.



6 Summary

Future performance gains for uniprocessors, above and beyond those afforded
by faster transistors, will have to come from either instruction or thread-level
parallelism. Many (if not most) workloads still do not lend themselves to easy
parallelization or multithreading. Consequently, instruction-level parallelism will
likely grow significantly in importance in the coming decade.

However, to maintain greater ILP, it is likely that the research community
will need to develop wide-issue out-of-order cores that can sift through many
more instructions than today to find enough ready-to-issue instructions each cy-
cle. These large windows have a number of daunting implementation challenges,
including filling the window, designing a practical window, deallocating instruc-
tions for commit, and efficient flushing of the window upon a misprediction.

The TRIPS processor prototype being designed at the University of Texas
will have 1024-entry, distributed instruction issue windows in each processor core
(with four processors on each chip). We have solved several of the challenges of
designing a practical kilo-window, and have shown how to fill it quickly with
a high-bandwidth front end. We are working on the compiler technology to
permit predication to control-flow merge points in an attempt to improve the
predictability of the instruction stream and thus fill the window for irregular
benchmarks. If this effort fails, alternative methods to improve the predictability
must be found. Currently, we are still in the process of designing our commit and
flush logic, which may employ some of the principles described in this paper. We
hope to have a working prototype by the end of 2005, successfully demonstrating
solutions to the problems enumerated in this paper.
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