The SimpleScalar Tool Set, Version 2.0

Doug Buger*

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706 USA

*Cont act :

Todd M. Austin

MicroComputer Research Labs, JF3-359
Intel Corporation, 2111 NE 25thvAnue
Hillsboro, OR 97124 USA

dbur ger @s. wi sc. edu

http://ww. cs. w sc. edu/ ~nscal ar/ si npl escal ar. ht n

This document describeslease 2.0 of the SimpleScalar tool
set, a suite of &g publicly available simulation tools thatfef
both detailed and high-performance simulation of modernanicr
processos. The ne release deérs moe tools and capabilities,
precompiled binaries, cleaner interfaces, better documentation,
easier installation, immved portability and higher perfor-
mance This paper contains a complete description of the tool
set, including etrieval and installation instructions, a descrip-
tion of how to use the tools, a description of thggaSimpleS-
calar architectue, and many details about the internals of the
tools and how to customize theniti/this guide the tool set can
be bought up and gnerting results in under an hour (on sup-
ported platforms).

1 Overview

Modern processors are incredibly complaanels of engi-
neering that are becoming increasingly hard waluate. This

easy annotation of instructions, without requiring a getad
compiler for incremental changes. The instruction definition
method, along with the ported GNU tools, reskev simulators
easy to write, and the old onega simpler to etend. Finally
the simulators ha been aggres&ly tuned for performance,
and can run codes approaching “real” sizes in tractable amounts
of time. On a 200-MHz Pentium Pro, thesfest, least detailed
simulator simulates about four million machingles per sec-
ond, whereas the most detailed processor simulator simulates
about 150,000 per second.

The current release dwsion 2.0) of the tools is a major
improvement @er the preious release. Compared tersion 1.0,
this release includes better documentation, enhanced perfor-
mance, compatibility with more platforms, precompiled SPEC95
SimpleScalar binaries, cleaner ingenés, tvw nev processor
simulators, option and statistic management packages, a source-
level delugger (DLite!) and a tool to trace the out-of-order pipe-
line.

paper describes the SimpleScalar tool set (release 2.0), which The rest of this document contains information about obtain-

performs &st, flxible, and accurate simulation of modern pro-

ing, installing, running, using, and modifying the tool set. In

cessors that implement the SimpleScalar architecture (a closesection2 we proide a detailed procedure forwinloading the

derivative of the MIPS architecture [4]). The tool setaalina-

release, installing it, and getting it up and running. In Se&jon

ries compiled for the SimpleScalar architecture and simulatesye describe the SimpleScalar architecture and details about the

their execution on one of seral pravided processor simulators.
We provide sets of precompiled binaries (including SPEC95),
plus a modified &rsion of GNU GCC (with associated utilities)
that allavs you to compile yourwn SimpleScalar test binaries
from FORTRAN or C code.

The adantages of the SimpleScalar tools are higkilflkty,
portability, extensibility, and performance. &include fie ee-
cution-driven processor simulators in the release.yTrange
from an &tremely fst functional simulator to a detailed, out-of-

target (simulated) system. In Sectiénwe describe the SimpleS-
calar processor simulators and discuss their interogtings. In
Section5, we describe ta tools that enhance the utility of the
tool set: a pipeline tracer and a souroelaetugger (for step-
ping through the program being simulated). In Sedione pro-
vide the history of the tools’ #elopment, describe current and
planned dbrts to extend the tool set, and conclude.

2 Installation and Use

order issue, superscalar processor simulator that supports non-

blocking caches and speculatiexecution.
The tool set is portable, requiring only that the GNU tools

The only restrictions on using and disttimg the tool set are
that (1) the copright notice must accompgrall re-releases of

may be installed on the host system. The tool set has been testetthe tool set, and (2) third parties (i.e., you) are forbidden to place

extensvely on magy platforms (listed in SectioB). The tool set
is easily atensible. ¢ designed the instruction set to support

This work was initially supported by NSF Grants CCR-9303030, CCR-

9509589, and MIP-9505853, ONR Grant N00014-93-1-0465, a donation

from Intel Corp., and by U.S. Army Intelligence Center and FHua-
chuca under ContractABT63-95-C-0127 and ARF order no. D346.
The current support for thisask comes from aariety of sources, all of
to which we are indebted.

ary additional distrilition restrictions onxensions to the tool
set that you release. The goght notice can be found in the dis-
tribution directory as well as at the head of all simulator source
files. We have included the caopight here as well:

Copyright (C) 1994, 1995, 1996, 1997 tmdd@ M. Aistin
This tool set is distrited “as is” in the hope that it will be
useful. The tool set comes with no veaty, and no author or

distributor accepts anyessponsibility for the consequences of its
use

Everyone is ganted permission to copsodify and edistrib-
ute this tool set under the following conditions:

This tool set is distrited for non-commeial use only
Please contact the maintainer foestrictions applying to
commecial use of these tools.

Permission is ganted to anyone to malor distritute cop-
ies of this tool set, either agaeived or modified, in any
medium, povided that all copyright notices, permission and
nonwarmanty notices & preserved, and that the disttitor
grants the ecipient permission for furtheedistribution as
permitted by this document.

Permission is ganted to distriote these tools in compiled
or executable form under the same conditions that apply for
source code provided that either: (1) it is accompanied by
the coresponding matne-readable sowe codeor (2) it
is accompanied by a writtenfef, with no time limit, to give
anyone a madtne-readable copy of the casponding
source code ineturn for rimtursement of the cost of distri-
bution. This written dér must permit verbatim duplication
by anyoneor (3) it is distrituted by someone wheaeived
only the &ecutable form, and is accompanied by a copy of
the written dffer of souce code that thereceived concur-
rently.

In other words, you are welcome to use, share and ingro

these tools. §u are forbidden to forbid gone else to use, share

and imprae what you gie them.

2.1 Obtaining the tools

The tools can either be obtained through therldv\Wide
Web, or by cowentional ftp. ler example, to get the filsi m
pl esi mtar. gz via the WWW enter the URL:

ftp://ftp.cs.w sc. edu/ sohi/ Code/ si npl escal ar/
sinplesimtar

and to obtain the same file with traditional ftp:

ftp ftp.cs.wisc.edu

user: anonynous

password: enter your e-nmil
cd sohi/ Code/ si npl escal ar
get sinplesimtar

address here

Note the “targz” sufix: by requesting the file without the “.gz”
sufiix, the ftp serer uncompresses it automaticallp get the
compressedarsion, simply request the file with the “.gz" fsuf

The five distritution files in the directory (which are symbolic
links to the files containing the latestrsion of the tools) are:
simplesim.targz - contains the simulator sources, the
instruction set definition macros, and test program source
and binaries. The directory is 1 MB compressed and 4 MB
uncompressed. When the simulators arit,lithe directory
(including object files) will require 11 MB. This file is
required for installation of the tool set.

simpleutils.tar.gz - contains the GNU binutils sourceefv
sion 2.5.2), retgeted to the SimpleScalar architecture.
These utilities are not required to run the simulators them-
seles, hut is required to compile yourm SimpleScalar

benchmark binaries (e.g. test programs other than the ones
we provide). The compressed file is 3 MB, the uncom-
pressed file is 14 MB, and thaild requires 52 MB.

simpletools.targz - contains the retgeted GNU compiler
and library sources needed taild SimpleScalar bench-
mark binaries (GCC 2.6.3, glibc 1.0.9, and f2c), as well as
pre-huilt big- and little-endian ersions of libc. This file is
needed only touild benchmarks, not to compile or run the
simulators. The tools are 11 MB compressed, 47 MB
uncompressed, and the full installation requires 70 MB.

simplebench.bigtar.gz - contains a set of the SPEC95
benchmark binaries, compiled to the SimpleScalar architec-
ture running on a big-endian host. The binaries tatder 5

MB compressed, and are 29 MB when uncompressed.

simplebench.little.tar.gz - same as ale, ecept that the
binaries were compiled to the SimpleScalar architecture
running on a little-endian host.
Once you hee selected the appropriate files, place therdo
loaded files into the desired get directory If you obtained the
files with the “.gz" suix, run the GNU decompress utility (gun-
zip). The files should mo have a “.tar” sufix. To remae the
directories from the arche:

tar xf filenane.tar

If you download and unpack all files, release, you shoulg ha
the following subdirectories with follwing contents:
simplesim-2.0- the sources of the SimpleScalar processor
simulators, supporting scripts, and small test benchmarks. It
also holds precompiled binaries of the test benchmarks.
binutils-2.5.2 - the GNU binary utilities code, ported to the
SimpleScalar architecture.

sshig-na-sstrix- the root directory for the tree in which the
big-endian SimpleScalar binary utilities and compiler tools
will be installed. The unpaekl directories contain header
files and a pre-compiled cppf libc and a necessary object
file.

sslittle-na-sstrix - same as ale, ecept that this directory
holds the little-endianersions of the SimpleScalar utilities.
gcc-2.6.3- the GNU C compiler code, gated twvard the
SimpleScalar architecture.

glibc-1.09- the GNU libraries code, ported to the SimpleS-
calar architecture.

f2¢-1994.09.27- the 1994 release of TRT Bell Labs’
FORTRAN to C translator code.

spec95-big - precompiled SimpleScalar SPEC95 bench-
mark binaries (big-endiarevsion).

spec95-little - precompiled SimpleScalar SPEC95 bench-
mark binaries (little-endianersion)

2.2 Installing and running Simplescalar

We depict a graphicalverviev of the tool set in Figuré.
Benchmarks written in FORRAN are comerted to C using Bell
Labs’ f2c comerter Both benchmarks written in C and those
corverted from FORRAN are compiled using the SimpleScalar
version of GCC, which generates SimpleScalar asseriibly
SimpleScalar assembler and loadaiong with the necessary

FORTRAN

benchmark source benchmark source

SimpleScalar

’ GCC

f2c

.<_

SimpleScalar
assembly

SimpleScalar
GAS

_ ¢ Object files
SSlibc.a

Simulator source
(e.g., sim-outorder.c)

Host C compile

—» RESULTS

Simpl |

implescalar

ol
_ 9

SimpleScalar
executables

v

k Precompiled SS

binaries (test, SPEC95)

Figure 1. SimpleScalar tool set overview

ported libraries, produce SimpleScalaeeutables that can then
be fed directly into one of the prioled simulators. (The simula-
tors themseles are compiled with the host platfosmatve
compiler; ayy ANSI C compiler will do).

make install

$HOST here is a “canonical configuration” string that represents
your host architecture and system (CPU-C@MF-SYSTEM).
The string for a Sparcstation running SunQGitld be sparc-sun-

If you use the precompiled SPEC95 binaries or the precom-gyngs4.1.3, running Solaris: sparc-sun-solaris2, a 386 running

piled test programs, all you Veto install is the simulator source
itself. If you wish to compile yourven benchmarks, you will
have to install and bild the GCC tree and optionally (recom-
mended) the GNU binutils. If you wish to modify the support
libraries, you will ha&e to install, modify and luild the glibc
source as well.

The SimpleScalar architecture,dikhe MIPS architecture [4],
supports both big-endian and little-endiate@utables. The tool
set supports compilation for either of thesgéss; the names for
the big-endian and little-endian architecture ssbig-na-sstrix
and sslittle-na-sstrix, respectiely. You should use the et

Solaris: i386-sun-solaris2.4, etc. A complete list of supported
$HOST strings resides i DI R/ gcc- 2. 6. 3/ | NSTALL.

This installation will create the needed directorie$lil R
(these includéi n/, |'i b/, i nclude/, andman/). Once the
binutils hare been hilt, build the simulators themseads. This is
necessary to do beforeilding GCC, since one of the binaries is
needed for the cross-compilenilol. You should edi$l DI R/
si npl esi m 2. 0/ Makef i | e to use the desired compile flags
(e.g., the correct optimizationviel). To use the GNU BFD
loader instead of the custom loader in the simulators, uncomment
-DBFD_LOADER in the Malefile. To huild the simulators:

endian-ness that matches your host platform; the simulators may

not work correctly if you force the compiler to ptide cross-
endian support. @ determine which endian your host uses, run
the endian program located in thei npl esi m 2. 0/ direc-
tory. For simplicity; the folloving instructions will assume a big-
endian installation. In the follang instructions, we will refer to
the directory in which you are installing SimpleScalar as
$ID K.

The simulators come equipped with thewroloader and
thus you do not need taiitd the GNU binary utilities to run sim-
ulations. Haovever, mary of these utilities are useful, and we rec-
ommend that you install them. If desiredjld the GNU binary
utilities:

cd $IDIR binutils-2.5.2

configure --host=$HOST --target =sshi g-na-

sstrix --with-gnu-as --with-gnu-1d --pre-
fix=$ID R
make

1. You must hee GNU Male to do the majority of installations described
in this document. @ check if you hee the GNU ersion, gecute “malk -

V" or “gmake -v”. The GNU ersion understands this switch and displays
version information.

cd $IDIR/ sinplesim2.0
make

If desired, hild the compiler:

cd $IDIR/ gcc-2.6.3

configure --host=$HCST --target =sshi g- na-
sstrix --with-gnu-as --with-gnu-1d --pre-
fix=$ID R

make LANGUAGES=c

..I/sinplesim2.0/simsafe ./enquire -f >!
float. h-cross

make install

We provide pre-lilt copies of the necessary librariessbi g-
na-sstrix/lib/, soyou do not need tauitd the code in
glibc-1.09 unless you change the library code. Building these
libraries is tricly, and we do not recommend it unless youeha
specific need to do so. In thakat, to lild the libraries:

cd $IDIR/ glibc-1.09

configure --prefix=$l D R sshig-na-sstrix
sshi g-na-sstrix

setenv CC $I DI R/ bi n/ sshi g-na-sstrix-gcc

unsetenv TZ

unset env. MACHI NE

make In Figure3, we depict the three instruction encodings of Sim-

meke install pleScalar instructionsegister, immediate, andjump formats. All
Note that you must e already bilt the SimpleScalar simula- instructions are 64 bits in length.
tors to hild this library since the glibc tild requires a compiled The raister format is used for computational instructions.
simulator to test tmt machine_specific parameters such as The immediate format SuppOl’tS the inclusion of a 16-bit constant.
endian-ness. The jump format supports specification of 24-bit jummess.

If you have FORTRAN benchmarks, you will need tauitd The raister fields are all 8 bits, to suppoxtension of the archi-
f2c: tected rgisters to 256 intger and floating point gesters. Each

instruction format has a #xi-location, 16-bit opcode field that
facilitates &st instruction decoding.

The annote field is a 16-bit field that can be modified post-
compile, with annotations to instructions in the assembly files.
The annotation intesfce is useful for synthesizingweénstruc-
tions without hging to change and recompile the assembler
Annotations are attached to the opcode, and comeoifiamors:
cd $IDIR sinplesim2.0 bit and field annotations. A bit annotation is written as fadlo
simsafe tests/bin.big/test-math W a $r6, 4($r7)

The test should generate about a page of output, and wileryn v The annotation in thisxample is /a. It specifies that the first bit

?olfllg\ljxl/?/rlngzssrgri?e has been ported to—and should run Or'_theof the annotation field should be set. Bit annotations /a through /p

set bits 0 through 15, respeetly. Field annotations are written
- gcc/AIX 413/RS6000 in the form:

- XIc/AIX 413/RS6000 | W 6: 4(7) $r6, 4($r7)

- gcc/HPUX/RA-RISC

cd $I DI R f2c-1994. 09. 27
make
make install

The entire tool set should wdoe ready for use. 8\provide pre-
compiled test binaries (big- and little-endian) and their sources in
$I DI R/ si npl esi n2. 0/ t est s). To run a test:

- gce/SunOS 4.1.3/9RC This annotation sets the specified 3-bit field (from bit 4 to bit 6
- gec/Linux 1.3/x86 within the 16-bit annotation field) to thalue 7.

- gce/Solaris 2/SRRC System calls in SimpleScalar are managed by a proxy handler
- gee/Solaris 2/x86 (located insyscal | . c) that intercepts system calls made by

- gcc/DEC Unix 3.2/Alpha the simulated binarydecodes the system call, copies the system
- c89/DEC Unix 3.2/Alpha call aguments, mads the corresponding call to the hestperat-

- gcc/FreeBSD 2.2/x86 ing system, and then copies the results of the call into the simu-
- gcc/MIndowsNT/x86 lated prograns memory If you are porting SimpleScalar to a

new platform, you will hae to code the system call translation
from SimpleScalar to your host machinesipscal | . c. A list

3 TheS mplescal ar architecture of all SimpleScalar system calls igdable elsehere [2].

The SimpleScalar architecture is ded from the MIPS-IV SimpleScalar uses a 31-bit address space, and its virtual
ISA [4]. The tool suite defines both little-endian and big-endian memory is laid out as foltes:
versions of the architecture to impeoportability (the ersion 0x00000000 Unused

used on a gen host machine is the one that matches the endian- 0x00400000 Start of text segnent
ness of the host). The semantics of the SimpleScalar ISA are a 0x10000000 Start of data segment

superset of MIPS with the follang notable diferences and 0x7f ffc000 St ack base (grows down)

additions: The top of the data gment (which includes init and bss) is held

» There are no architected delay slots: loads, stores, and conin mem br k_poi nt. The areas belw the tet sggment and
trol transfers do notecute the succeeding instruction. above the stack base are unused.

e Loads and stores supportdvaddressing modes—for all
data types—in addition to those found in the MIPS architec- 4 S§ymulator internals

ture. These are: ingded (r@ister+rgister), and auto-incre-)) .) .
ment/decrement. In this section, we describe the functionality of the processor

simulators that accompgrthe tool set. W describe each of the

e A square-root instruction, which implements both single- ~. . . : .
simulators, their functionalitycommand-line guments, and

and double-precision floating point square roots. :
P gp q internal structures.

* An extended 64-bit instruction encoding. The compiler outputs binaries that are compatible with the

We list all SimpleScalar instructions in FiglreA complete MIPS ECOFF object format. Library calls are handled with the
list of the instruction semantics (as implemented in the simula- ported \ersion of GNU GLIBC and POSIX-compliant Unix sys-
tor) can be found elséhere [2]. In Bblel, we list the archi- tem calls. The simulators currentlyeeute only uselevel code.
tected rgisters in the SimpleScalar architecture, their harédw Al SimpleScalarelated &tensions to GCC are contained in the
and softvare names (which are recognized by the assembler),confi g/ ss subdirectory of the GCC source tree that comes
and a description of each. Both the number and the semantics ofyith the distritution.

the ragisters are identical to those in the MIPS-IV ISA. The architecture is defined ims. def , which contains a

Control
j - jump

ja - jump and link

Jr - jump register

jar - jump and link register
beq - branch ==

bne - branch !=0

blez - branch <=0

bgtz - branch >0

bltz - branch< 0

bgez - branch>=0

bct - branch FCC TRUE
bef - branch FCC FALSE

Load/Store

Ib - load byte

Ibu - load byte unsigned

Ih - load half (short)

Ihu - load half (short) unsigned
Iw - load word

diw - load double word

|.s- load single-precision FP
|.d - load double-precision FP
sb - store byte

sbu - store byte unsigned

sh - store half (short)

shu - store haf (short) unsigned

sw - store word

dsw - store double word

S.s- store single-precision FP
s.d - store double-precision FP

addressing modes:

(©)

(reg+C) (with pre/post inc/dec)
(reg+reg) (with pre/post inc/dec)

Integer Arithmetic

add - integer add

addu - integer add unsigned
sub - integer subtract

subu - integer subtract unsigned
mult - integer multiply

multu - integer multiply unsigned
div - integer divide

divu - integer divide unsigned
and - logical AND

or - logical OR

xor - logical XOR

nor - logical NOR

sl - shift left logical

srl - shift right logical

sra - shift right arithmetic

dt - set less than

Sltu - set less than unsigned

Figure 2. Summar y of SimpleScalar instructions

Floating Point Arithmetic

add.s - single-precision (SP) add
add.d - double-precision (DP) add
sub.s - SP subtract

sub.d - DP subtract

mult.s- SP multiply

mult.d - DP multiply

div.s- SPdivide

div.d - DP divide

abs.s - SP absolute value

abs.d - DP absolute value

neg.s - SP negation

neg.d - DP negation

sqrt.s - SP square root

sgrt.d - DP square root

cvt - int., single, double conversion
c.s- SP compare

c.d - DP compare

Miscellaneous

nop - no operation

syscal - system call

break - declare program error

Hardware Name | Software Name | Description

$0 $zero Zero-valued source/sink
$1 $at reserved by assembler
$2-%3 $v0-$v1 fn return result regs
$4-$7 $a0-%$a3 fn argument value regs
$8-$15 $to-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $kO-$k1 reserved by OS

$28 $gp global pointer

$29 $sp stack pointer

$30 $s8 saved regs, callee saved
$31 $ra return address reg

$hi $hi high result register

$lo $lo fow result register
$f0-$f31 $f0-$f31 floating point registers
$fce $fce floating point condition code

Table 1: SimpleScalar ar chitecture register definitions

Register format: |

Immediate for mat:

Jump format: |

16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt
63 32 31

16-annote 16-opcode 8-rs 8-rt 16-imm
63 32 31

16-annote 16-opcode 6-unused 26-target
63 32 31 0

Figure 3. SimpleScalar ar chitecture instruction f ormats

macro definition for each instruction in the instruction set. Each

macro defines the opcode, name, flags, operand sources and des-

tinations, and actions to be @kfor a particular instruction.

The instruction actions (which appear as macros) that are
common to all simulators are definedss. h. Those actions
that require dierent implementations in dérent simulators are
defined in each simulator code file.

When running a simulatprrai n() (defined inmai n. c)
does all the initialization and loads theggtr binary into mem-
ory. The routine then callsi m_mai n(), which is simulator
specific, defined in each simulator code figg.m rmai n() pre-
decodes the entirexesegment for &ster simulation, and then
begins simulation from the tget program entry point.

The folloving command-line @uments are\ailable in all
simulators included with the release:

-h prints the simulator help message.

-d turn on the delg message.

i start execution in the DLite! daelgger (see
Section5.2). This option is not supported in
thesim-fast simulator

-q terminate immediately (for use with -dump-

config).

-dumpconfig <file>
generate a configuration fileviiag the com-
mand-line parameters. Comments are per-
mitted in the config files, and i@ with a #.

read in and use a configuration file. These
files may reference other config files.

-config <file>

4.1 Functional smulation

The fastest, least detailed simulat@in{-fast) resides in
simfast.c. sim-fast does no time accounting, only func-
tional simulation—it gecutes each instruction serialsimulat-
ing no instructions in parallesim-fast is optimized for rev
speed, and assumes no cache, instruction checking,
support for DLite!.

A separate ersion ofsim-fast, calledsim-safe, also performs

functional simulation, bt checks for correct alignment and
access permissions for each memory reference. Although similar
sim-fast and sim-safe are split (i.e., protection is not toggled
with a command-line gument in a megred simulator) to maxi-
mize performance. Neither of the simulators accept adi-
tional command-line guments. Both ersions are ery simple:
less than 300 lines of code—ththerefore mafx good starting
points for understanding the internabnkings of the simulators.
In addition to the simulator file, bodim-fast andsim-safe use
the following code files (not including header filesgi n. c,
syscall.c, nmenory.c, regs.c, |loader.c, ss.c,
endi an. ¢, andm sc. ¢c.sim-safealso usesll i t e. c.

4.2 Cachesimulation

The SimpleScalar distriion comes with tw functional
cache simulatorssim-cache andsim-cheetah. Both use the file
cache. c, and thg use si m cache.c and si m chee-

t ah. c, respectiely. These simulators are ideal fa@sf simula-
tion of caches if the &fct of cache performance omegution
time is not needed.

sim-cache accepts the follwing aguments, in addition to the

universal aguments described in Sectidn

-cache:dI1 <config>
-cache:dI2 <config>
-cache:ill <config>
-cache:il2 <config>
-tlb:dtlb <config>

configures a hel-one data cache.
configures a hel-two data cache.
configures a kel-one instrcache.
configures a hel-two instr cache.
configures the data TLB.

-tlb:itlb <config> configures the instruction TLB.
-flush <boolean> flush all caches on a system call;
(<boolean>=0|1 | true | UE | false | ALSE).
remap SimpleScal&’ 64-bit
instructions to a 32-bit equalent in
the simulation (i.e., model
machine with 4-wrd instructions).

generate a i-based profile, as
described in Sectio#.3.

The cache configuration (<config>) is formatted as faito

-icompress

-pcstat <stat>

<name>: <nset s>: <bsi ze>: <assoc>: <repl >

Each of these fields has the foliag meaning:

<name> cache name, must be unique.

<nsets> number of sets in the cache.

<bsize> block size (for TLBs, use the page size).
<assoc> associatiity of the cache (pwer of two).
<repl> replacement polic(l | f | r), where

I = LRU, f = FIFO,r = random replacement.
The cache size is therefore the product of <nsets>, <bsize>, and
<assoc>. ©® have a unified leel in the hierarcl “point” the
instruction cache to the name of the data cache in the correspond-
ing level, as in the follwing example:
i1l il1:128:64:1:
il2 dl2
:dl1 dl 1: 256: 32: 1:
:dl 2 ul 2: 1024: 64: 2:

-cache
-cache
-cache
-cache

h .
and has n'Phe defults used isim-cache are as follws:

L1 instruction cache: il1:256:32:1: (8 KB)

L1 data cache: di1:256:32:1:1 (8 KB)

L2 unified cache: ul2:1024:64:4:1 (256 KB)
instruction TLB: itlb:16:4096:4:1 (64 entries)
data TLB: dtlb:32:4096:4:1 (128 entries)

sim-cheetah is based on wrk performed by Ragin Sugumar and
Santosh Abraham while thevere at the Uniersity of Michigan.

It uses their Cheetah cache simulation engine [6] to generate sim-
ulation results for multiple cache configurations with a single
simulation. The Cheetah engine simulates fully assweiati
caches diciently, as well as simulating a sometimes-optimal
replacement polic This poliy was called MIN by Belady [1],
although the simulator refers to it gat. Opt uses future knd-

edge to select a replacement; it chooses the block that will be ref-
erenced the furthest in the future (if at all). This polgoptimal

for read-only instruction streams. It is not optimal for write-back
caches because it may be maxpensve to replace a block ref-
erenced further in the future if the block must be written back, as
opposed to a clean block referenced slightly lasfthe future.
Horwitz et al. [3] formally described an optimal algorithm that
includes writes; hwever, only MIN is implemented in the simu-

lator.

wish to profile by tet address.

We have included the Cheetah engine as a stand-alone library To generate the statistics for the profile, falithe follaving

which is huilt and resides in thei bcheet ah/ directory sim-
cheetahaccepts the follwing command-line guments, in addi-
tion to those listed at the ¢h@ning of Sectior:

-refs [inst | data | unified]
specify which reference stream to analyze.
-C [fa| sa|dm]

fully associatve, set associat, or direct-
mapped cache.

-R [lru | opt] replacement polic

-a <sets> log base 2 minimum bound on number of
sets to simulate simultaneously

-b <sets> log base 2 maximum bound on set number

-l <line> cache line size (in bytes).

-n <assoc> maximum associatity to analyze (in log
base 2).

-in <intenal> cache size intert to report when simulating
fully associatie caches.

-M <size> maximum cache size of interest.

-C <size> cache size for direct-mapped analyses.

Both of these simulators are ideal for performing higlelle
cache studies that do not ¢alaccess time of the caches into

example:

simprofile -pcstat simnum.insn test-math >&!
t est - mat h. out
obj dunmp -dl test-math >! test-math.dis
textprof.pl test-math.dis test-math. out
si m_num.insn_by_pc
We shav a sgment of the tet profile output in Figurd. Make
sure that “objdump” is theersion created when compiling the
binutils. Also, the first line of ext pr of . p| must be changed
to reflect your systers’path to Perl (which must be installed on
your system for you to use this script). As an aside, note that “-
taddrprof” is equialent to “-pcstat sim_num_insn”.

4.4 Out-of-order processor timing simulation

The most complicated and detailed simulator in the distrib
tion, by far, is sim-outorder (the main code file for which is
si m out or der . c—about 3500 lines long). This simulator
supports out-of-order issue anxkeution, based on the &ister
Update Unit [5]. The RU scheme uses a reordesffier to auto-
matically rename gsters and hold the results of pending
instructions. Each ycle the reorder uffer retires completed
instructions in program order to the architectegister file.

account (e.g., studies that are concerned only with miss rates). T The processas memory system empjis a load/store queue.

measure the ffct of cache @anization upon thexecution time
of real programs, teever, the timing simulator described in
Sectiond.4 must be used.

4.3 Profiling

The distrilution comes with a functional simulator that pro-
duces wluminous and aried profile informationsim-profile

Store \alues are placed in the queue if the store is speeilati
Loads are dispatched to the memory system when the addresses
of all previous stores are kmo. Loads may be satisfied either by

the memory system or by an earlier stoatug residing in the
queue, if their addresses match. Spearddthiads may generate
cache missesui speculatie TLB misses stall the pipeline until

the branch condition is kmm.

can generate detailed profiles on instruction classes and We depict the simulated pipeline dfim-outorder in
addresses, x& symbols, memory accesses, branches, and dataFigure5. The main loop of the simulatorlocated in

segment symbols.
sim-profile takes the folleving command-line guments,
which toggle the arious profiling features:

-iclass instruction class profiling (e.g. ALU,
branch).

-iprof instruction profiling (e.g., bnez, addi).

-brprof branch class profiling (e.g., direct, calls, con-
ditional).

-amprof addr mode profiling (e.g., displaced, R+R).

-sgyprof load/store sgment profiling (e.g., data,
heap).

-tsymprof execution profile by tet symbol (functions).

-dsymprof reference profile by datagment symbol.

-taddrprof execution profile by tet address.

-all turn on all profiling listed abe.

Three of the simulatorssifn-profile, sim-cache andsim-out-
order) support tet segment profiles for statistical irder
counters. The supported counters includg aided by users, so
long as thg are correctly “rgistered” with the SimpleScalar
stats package included with the simulator code (see Sdcthn
To use the counter profiles, simply add the command-line flag:

-pcstat <stat>
where <stat> is the inger counter that you

si m_mai n(), is structured as foles:

ruu_init();

for (0:) {
ruu_commit();
ruu_witeback();
I sq_refresh();
ruu_issue();
ruu_di spatch();
ruu_fetch();

}

This loop is ®ecuted once for each gmt (simulated)
machine gcle. By walking the pipeline in reerse, inteistage
latch synchronization can be handled correctly with only one
pass through each stage. When thgeaprogram terminates
with an exit() system call, the simulator performs a
| ongj np() tomai n() to generate the statistics.

The fetch stage of the pipeline is implemented in
ruu_fetch(). The fetch unit models the machine instruction
bandwidth, and tads the folleving inputs: the program counter
the predictor state, and misprediction detection from the branch
execution unit(s). Eachycle, it fetches instructions from only
one I-cache line (and it blocks on an I-cache miss until the miss
completes). After fetching the instructions, it places them in the
dispatch queue, and probes the line predictor to obtain the correct

00401a10: (13, 0.01): <strtod+220> addiu $al[5], $zero[O0], 1
executed

13 time strtod.c: 79
00401a18: (13, 0.01): <strtod+228> bclf 00401a30 <strtod+240>
strtod. c: 87
never { 00401a20: : <strtod+230> addi u $s1[17], $s1[17],1
execute 00401a28: . <strtod+238> | 00401a58 <strtod+268>
strtod. c: 89
00401a30: (13, 0.01): <strtod+240> mul.d $f2, $f 20, $f4
{ 00401a38: (13, 0.01): <strtod+248> addiu $v0[2], $v1[3], -48
00401a40: (13, 0.01): <strtod+250> mtcl $vO[2], $f0

Figure 4. Sample output fr om te xt segment statistical pr ofile

v |

Fetch |—»| Dispatch|—»| Schedule[—»| Exec |—»| Writeback|—»| Commit

Memory

schedulet Mem

[-Cache| D-Cache D-TLB
\ Virtual memory/

Figure 5. Pipeline f or sim-outor der

cache line to access in thexheycle. cycle, the routine gets as mjameady instructions as possible
The code for the dispatch stage of the pipeline resides infrom the scheduler queue (up to the issue width). The functional
ruu_di spat ch() . This routine is where instruction decoding units’ availability is also cheokd, and if thg have available
and rgister renaming is performed. The function uses the access ports, the instructions are issued. Findily routine
instructions in the input queue filled by the fetch stage, a pointer schedules writebackvents using the latepcof the functional
to the actie RJU, and the rename table. Once pgtle, the dis- units (memory operations probe the data cache to obtain the cor-
patcher taks as maninstructions as possible (up to the dispatch rect lateng of the operation). Data TLB misses stall the issue of
width of the taget machine) from the fetch queue and places the memory operation, are serviced in the commit stage of the
them in the scheduler queue. This routine is the one in which pipeline, and currently assume aefixlateng. The functional
branch mispredictions are noted. (When a misprediction occurs,units’ latencies are hardcoded in the definition of
the simulator uses speculatistate bffers, which are managed fu_config[] insi m outorder.c.
with a copy-on-write polig/). The dispatch routine enters and The writeback stage residesrimu_wri t eback(). Each
links instructions into the BU and the load/store queue (LSQ), cycle it scans thevent queue for instruction completions. When
as well as splitting memory operations int@teeparate instruc- it finds a completed instruction, italks the dependence chain of
tions (the addition to compute thdesftive address and the mem- instruction outputs to mark instructions that are dependent on the
ory operation itself). completed instruction. If a dependent instruction dstiwg only
The issue stage of the pipeline is contained in for that completion, the routine marks it as ready to be issued.
ruu_i ssue() andl sg_refresh(). These routines model The writeback stage also detects branch mispredictions; when it
instruction vakeup and issue to the functional units, trackirgg re determines that a branch misprediction has occurred, it rolls the
ister and memory dependences. Eagtle; the scheduling rou- state back to the checkpoint, discarding the erroneously issued
tines locate the instructions for which thgister inputs are all instructions.
ready The issue of ready loads is stalled if there is an earlier ruu_conmi t () handles the instructions from the writeback
store with an unresodd efective address in the load/store stage that are ready to commit. This routine does in-order com-
queue. If the address of the earlier store matches that obitie w mitting of instructions, updating of the data caches (or memory)
ing load, the storealue is forvarded to the load. Otherwise, the with store \alues, and data TLB miss handling. The routieeds
load is sent to the memory system. retiring instructions at the head of th&J® that are ready to
The eecute stage is also handledrinu_i ssue() . Each commit until the head instruction is one that is not resdyen

an instruction is committed, its result is placed into the archi-
tected rgister file, and the BU/LSQ resources deted to that
instruction are reclaimed.

sim-outorder runs about an order of magnitudeveto than
sim-fast. In addition to the guments listed at the gmning of
Sectiond, sim-outorder uses the follwing command-line au-
ments:

Specifying the processor core
-fetch:ifgsize <size>
set the fetch width to be <size> instructions.
Must be a pwer of two. The dedult is 4.
-fetch:speed <ratio>

set the ratio of the front end speed rekato
the execution core (allwing <ratio> times as
mary instructions to be fetched as decoded
per g/cle).

-fetch:mplat <gcles>

set the branch misprediction latgnthe
default is 3 gcles.

-decode:width <insts>

set the decode width to be <insts>, which

must be a peer of two. The dedult is 4.
-issue:width <insts>

set the maximum issue width in agn

cycle. Must be a pmer of two. The dedult is
4,

-issue:inorder force the simulator to use in-order issue. The
default is flse.

-issue:wrongpath

allow instructions to issue after a misspecula-
tion. The dedult is true.

-ruu:size <insts>

capacity of the RU (in instructions). The
default is 16.

-Isq:size <insts>
capacity of the load/store queue (in instruc-
tions). The dedult is 8.
-res:ialu <num>
specify number of inger ALUs. The defult
is 4.
-res:imult <num>

specify number of intgeer multipliers/diid-
ers. The defult is 1.

-res:memports <num>

specify number of L1 cache ports. The
default is 2.

-res:fpalu <num>

specify number of floating point ALUs. The
default is 4.

-res: fpmult <num>
specify number of floating point multipliers/
dividers. The defult is 1.
Specifying the memory hierarchy
All of the cache ayjuments and formats used sim-cache
(listed at the bginning of Sectiord.2) are also used sim-out-
order, with the folloving additions:

-cache:dlllat <gcles>

Specify the hit latencof the L1 data cache.
The deéult is 1 gcle.

-cache:d12lat scles>

Specify the hit latencof the L2 data cache.
The de#ult is 6 gcles.

-cache:illlat <gcles>

specify the hit latencof the L1 instruction
cache. The defiltis 1 gcle.

-cache:il2lat <gcles>

specify the hit latencof the L2 instruction
cache. The defllt is 6 gcles.

-mem:lat <1st> <nd>

specify main memory access laterfirst,
rest). The defults are 18yxles and 2ycles.

-mem:width <bytes>

specify width of memorys in bytes. The
default is 8 bytes.

-tlb:lat <gycles>
specify lateng (in cycles) to service a TLB
miss. The defult is 30 gcles.
Specifying the branch predictor
Branch prediction is specified by choosing the failg flag
with one of the six subsequengaments. The datilt is a bimo-
dal predictor with 2048 entries.

-bpred <type>

nottaken always predict not tadn.

taken always predict tag&n.

perfect perfect predictor

bimod bimodal predictar using a branch tget
buffer (BTB) with 2-bit counters.

2lev 2-level adaptve predictor

comb combined predictor (bimodal and 2#

adaptve).
The predictoispecific aguments are listed belo

-bpred:bimod <size>
set the bimodal predictor table size to be
<size> entries.

-bpred:2le <I1size> <I2size> <hist_size> <xor>
specify the 2-leel adaptie predictor
<llsize> specifies the number of entries in
the first-level table, <I2size> specifies the
number of entries in the secondé¢ table,
<hist_size> specifies the history width, and
<xor> allavs you to xor the history and the
address in the secondvé# of the predictor
This olganization is depicted in Figufe In
Table2 we shav how these parameters cor-
respond to modern prediction schemes. The
default settings for the four parameters are 1,
1024, 8, and 0, respeatiy.

-bpred:comb <size>
set the meta-table size of the combined pre-
dictor to be <size> entries. The detft is
1024.

-bpred:ras <size>
set the return stack size to <size> (0 entries
means to return stack). The detft is 8.

attern 2-bit.
istory predictors

branch — branch
address prediction

= N

@0, (<]

N N

(¢} D

<+——>
hist_size

Figure 6. 2-level adaptive predictor structure

predictor || I1_size | hist_size | 12_size | xor
GAg 1 W oW 0
GAp 1 w >oW 0
PAg N w oW 0
PAp N W oN+W 0
gshare 1 w W 1

Table 2: Branch predictor parameters

entries.
-bpred:btb <sets> <assoc>
configure the BTB to he <sets> sets and an
associatiity of <assoc>. The datilts are
512 sets and an assooidti of 4.
-bpred:spec_update <stage>
allow speculatie updates of the branch pre-
dictor in the decode or writeback stages
(<stage> = [ID|WB]). The dafilt is non-
speculatre updates in the commit stage.

Visualization

-pcstat <stat>

record statistic <stat> byxtaddress;
described in SectioA.3.

-ptrace <file> <range>
pipeline tracing, described in Sectidn

4.5 Simulator code file descriptions

The following list describes the functionality of the C code

files in thesi npl esi m 2. 0/ directory which are used by all
of the simulators.

bi t map. h: Contains support macros for performing bit-
map manipulation.

bpred. [c, h]: Handles the creation, functionalitand
updates of the branch predictorspred_create(),
bpred_I ookup(), andbpr ed_updat e() are the ky
interface functions.

cache. [c, h]: Contains general functions to support
multiple cache types (e.g., TLBs, instruction and data
caches). Uses a liek-list for tag comparisons in caches of
low associatiity (less than or equal to four), and a hash

table for tag comparisons in high&ssociatiity caches.

The important integces areache_creat e(),
cache_access(),cache_probe(),
cache_flush(),andcache_fl ush_addr ().
dlite.[c, h]: Contains the code for DLite!, the source-
level taget program delgger

endi an. [¢, h] : Defines a f& simple functions to deter-
mine byte- and wrd-order on the host and get platforms.

eval . [c, h] : Contains code tovaluate &pressions, used
in DLite!.

event g. [¢, h] : Defines functions and macros to handle
ordered eent queues (used for ordering writebacks). The
important interce functions arevent g_queue() and
event q_servi ce_events().

| oader. [¢, h] : Loads the tayet program into memaoyy
sets up the ggnent sizes and addresses, sets up the initial
call stack, and obtains the get program entry point. The
interface i d_I| oad_prog() .

mai n. c: Performs all initialization and launches the main
simulator function. The dy functions are
simoptions(), simconfig(), simnmain(),
andsi m stats().

nmenory. [c, h]: Contains functions for reading from,
writing to, initializing, and dumping the contents of the tar-
get main memoryMemory is implemented as a dar flat
space, each portion of which is allocated on demand.
mem access() is the important inteafce function.

m sc. [¢, h] : Contains numerous useful support func-
tions, such aéat al (), pani c(),warn(),info(),
debug(),getcore(), andel apsed_tine().
options.[c, h]: Contains the SimpleScalar options
package code, used to process command-liganants
and/or option specifications from config files. Options are
registered with an option database (see the functions called
opt _reg_*()). opt _print_hel p() generates a help
listing, andopt _print_opti ons() prints the current
options’ state.

ptrace. [c, h]: Contains code to collect and produce
pipeline traces frorsim-outorder.

range. [¢, h] : Holds code that interprets program range
commands used in DLitel.

regs. [c, h] : Contains functions to initialize thegister
files and dump their contents.

resource. [c, h]: Contains code to manage functional
unit resources, dided up into classes. The three defined
functions create the resource pools andsyb tables
(res_create_pool ()), return a resource from the spec-
ified pool if available ¢ eg_get ()), and dump the con-
tents of a poolr(es_dunp()).

si m h: Contains a fe@ extern \ariable declarations and
function prototypes.

stats. [¢, h] : Contains routines to handle statistics mea-
suring taget program behd@or. As with the options pack-
age, counters are ‘gestered” by type with an internal
database. Thet at _reg_*() routines rgister counters
of various types, andt at _reg_f or nul a() allows you

to register epressions constructed of other statistics. to your local Perl binaryand you must he Perl installed on
stat_print_stats() prints all rgistered statistics. your system).

The statistics package also hasilities to measure distiib
tions; st at _reg_di st () creates an array disttition,
stat _reg_sdi st () creates a sparse array disitibn,
andst at _add_sanpl e() updates a distriltion. -

e ss.[c, h]: Defines macros toxpedite the processing of 5.2 TheDLite! debugger

instructions, numerous constants needed across simulators, Release 2.0 of SimpleScalar includes a lightweight symbolic
and a function to print out inddual instructions in a read- delugger called DLite!, which runs with all simulatosscept for

pi pevi ew. pl <ptrace_file>

We depict sample output from the pipetracer in Figure

able format. sim-fast. DLite! allows you to step through thendmark taget
« ss. def : Holds a list of macro calls (the macros are defined €0d& not the simulator code. The degjger can be incorporated
in the simulators ands. h andss. c), each of which into a simulator by adding only four function calls (whiclvéna

defines an instruction. The macro calls accept gsnaents already been added to all simulators in the distian). The
the opcode, name of the instruction, sources, destinations,"éeded four function prototypes aredini t e. h.

actions to recute, and other information. This file sEs\as To use the delgger in a simulation, add the "-i" option
the definition of the instruction set. (which stands for interact) to the simulator command line.

i ite!
« symbol . [c, h] : Holds routines to handle program sym- Below we list the set of commands that DLite! accepts.

bol and line information (used in DLite!). Getting help and getting out:

e syscall.[c, h]: Contains code that acts as the irsteef help [string] print command reference.
between the SimpleScalar system calls (which are POSIX- version print DLite! version information.
compliant) and the system calls on the host machine. quit exit simulator

e« sysprobe. c: Determines byte andokd order on the host terminate generate statistics angiesimulator

platform, and generates appropriate compiler flags.

« version. h: Defines the @rsion number and release date
of the distrilution.

Running and setting breakpoints:
step execute ngt instruction and break.

cont [addr] continue &ecution (optionally continuing
starting at <addr>).

S Utilities break <addr> set breakpoint at <addr>, returns <id> of
In this section we describe the utilities that accorgpidue breakpoint.
SimpleScalar tool set; pipeline tracing and a souree-ehig- dbreak <addr>[r,w,x]
er set data breakpoint at <addr> for (r)ead,
9 X -
(w)rite, and/or e(x)ecute, returns <id> of
breakpoint.

5.1 Out-of-order pipelinetracing rbreak <range> [r.w,x]

The tool set praides the ability to dract and vies traces of set breakpoint at <range> for (r)ead, (w)rite,

the out-of-order pipeline. Using the “-ptrace” option, a detailed and/or e(x)ecute, returns <id> of breakpoint.
history of all instructions»ecuted in a range may beved to a

file. The inf i 4 includes instruction fetch. reti " breaks list actve code and data breakpoints.
ile. The information szed includes instruction fetch, retirement, delete <id> delete breakpoint <id>.
and stage transitions. The syntax of this command is as/follo .

clear clear all breakpoints (code and data).

-ptrace <file> <start>:<end>

<file> is the file to which the trace will be Printing information:

saved. <start> and <end> are the instruction print [modifiers] <expr>
numbers at which the trace will be started print the \alue of <epr> using optional
and stopped. If theare left blank, the trace modifiers.

will start at the bginning and/or stop at the

display [modifies] <expr>
end of the program, respely.

display the alue of <gpr> using optional

For example: modifiers.
-ptrace FOO.trc 100:500 option <string>print the \alue of option <string>.
trace from instructions 100 to 500, store the options print the \alues of all options.

trace in file FOO.src.

) FOO.trc 110000 stat <string> print the \alue of a statisticalariable.
-ptrace tre:

o)] stats print the \alues of all statisticalariables.
tlrggggrom program lggnning to instruction whatis <epr> print the type of <epr>.
' regs rint all register contents.
-ptrace FOO.trc : .eg P . .eg . .
. . iregs print all instruction rgister contents.
trace the entire progranxecution. .) . -
fpregs print all floating point rgister contents.

The traces may be vieed with thepi pevi ew. pl Perl script,
which is preided in the simplesim-2.0 directorfYou will have
to update the first line gfi pevi ew. pl to have the correct path

mstate [string] print machine-specific state.
dump <addr> [count]

new cycle > @610
indicator

new instruction gf = ‘0x0040d098: addiu
definitions gg = ‘0x0040d0a0: beq
[IF] [DA]
current pipeline —» gf gb
state 99 gc
gd\
ge
inst. being inst. being
fetched, or in decoded, or

fetch queue

awaiting issue

pipeline event:
(misprediction

r2,r4, -1’ detected), see output
r3, r5, 0x30’ header for event defs
[EX] [WB] [CT]
fy fr\ fq
fz fs
ga+ ft
fu
inst. inst. writing inst. retiring
executing results into results to

RUU, or register file
awaiting retire

Figure 7. Example of sim-outorder pipetrace

dump memory at <addr> (optionally for

<count> words).

dis <addr> [count]
disassemble instructions at <addr> (option-

ally for <count> instructions).

symbols print the \alue of all program symbols.
tsymbols print the \alue of all program t¢ symbols.
dsymbols print the \alue of all program data symbols.

symbol <string>

print the \alue of symbol <string>.

Legal arguments:
Arguments <addr>, <cnt>, xpr>, and <id> are anlegal

expression:
<expr> ~ <factor> +|- <gpr>
<factor> ~ <term> *|/ <hctor>
<term> « (<expr>)
| - <term> | <const> | <symbol> | <file:loc>
<symbol> « <literal> | <function name> | g&ster>
<literal> ~ [0-9]+ | 0x[0-9,a-f]+ | O[O-7]+
<register> ~ $r[0-31] | $f[0-31] | $pc | $fcc | $hi | $lo

Legal ranges:

<range>
<address>

<instruction> ~ {<literal>}:{<literal>}
<cycle> « #{<literal>}:{<literal>}
Omitting optional aguments to the left of the colon will defit
to the smallest alue permitted in that range. Omitting an
optional agument at the right of the colon will defit to the
largest \alue permitted in that range.

Legal command modifiers:

o~ s o

print a byte

print a half (short)

print a word (defult)

print in decimal format (defult)
print in octal format

~ <address> | <instruction> | yae>
~ @<function name>:{+<literal>}

X printin he format

1 printin binary format
f print float

d print double

c

print character
s print string

Examples of legal commands:

break mai n+8

break 0x400148

dbreak stdin w

dbreak sys_count wr

rbreak @rain: +279

rbreak 2000: 3500

rbreak #:100 cycle 0 to cycle 100
rbreak : entire execution

6 Summary

The SimpleScalar tool setas written by ddd Austin @er
about one and a half years, between 1994 and 1996. He continues
to add impreements and updates. The ancestors of the tool set
date back to the mid to late 1980s, to tools written by Manoj
Franklin. At the time the tools werewadoped, both indiduals
were research assistants at thevrsity of Wsconsin-Madison
Computer Sciences Department, supervised by Professor Guri
Sohi. Scott Breach pvaded \aluable assistance with the imple-
mentation of the proxy system calls. The first relecas assem-
bled, delbigged, and documented by Doug @en also a
research assistant aidtonsin, who is the maintainer of the sec-
ond release as well. &in Skadron, currently at Princeton,
implemented manof the more recent branch prediction mecha-
nisms.

Many exciting extensions to SimpleScalar are both undgrw
and planned. Edrts hare beyun to etend the processor simula-
tors to simulate multithreaded processors and multiprocessors. A
Linux port to SimpleScalar (enabling simulation of the OS on a
kernel with publicly &ailable sources) is planned, usinyide-
level emulation and a uséavel file system. Other plans include

extending the tool set to simulate ISAs other than SimpleScalar
and MIPS (Alpha and 2RC ISA support will be the first addi-
tions).

As they stand nwy, these tools prade researchers with a simula-
tion infrastructure that isabt, flxible, and dicient. Changes in
both the taget hardvare and softare may be made with mini-
mal efort. We hope that you find these tools useful, and encour-
age you to contact us withays that we can impve the release,
documentation, and the tools themsslv

References

[1] L. A. Belady A Study of Replacement Algorithms for a
Virtual-Storage ComputetBM Systems Journal, 5(2):78—
101, 1966.

[2] Doug Buger and dddM. Austin. The SimpleScalarobl
Set \ersion 2.0. &chnical Report 1342, Computer Sci-
ences Department, Umrsity of Wisconsin, Madison, W],
1997.

[3] L.P Horwitz, R.M. Karp, R.E. Miller, and A.Winograd.
Index Ragister Allocation.Journal of the ACM, 13(1):43—
61, January 1966.

[4] Charles PriceMIPSIV Instruction Set, revision 3.1. MIPS
Technologies, Inc., Mountaini&v, CA, January 1995.

[5] GurindarS. Sohi. Instruction Issue Logic for High-Perfor-
mance, Interruptible, Multiple Functional Unit, Pipelined
ComputerslEEE Transactions on Computers, 39(3):349—
359, March 1990.

[6] RabinA. Sugumar and Santo€h Abraham. Hifcient
Simulation of Caches under Optimal Replacement with
Applications to Miss Characterization. Rroceedings of
the 1993 ACM Sgmetrics Conference on Measurements
and Modeling of Computer Systems, pages 24-35, May
1993.

