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Abstract

Explicit Data Graph Execution (EDGE) architectures of-
fer the possibility of high instruction-level parallelism with
energy efficiency. In EDGE architectures, the compiler
breaks a program into a sequence of structured blocks that
the hardware executes atomically. The instructions within
each block communicate directly, instead of communicating
through shared registers. The TRIPS EDGE architecture
imposes restrictions on its blocks to simplify the microar-
chitecture: each TRIPS block has at most 128 instructions,
issues at most 32 loads and/or stores, and executes at most
32 register bank reads and 32 writes. To detect block com-
pletion, each TRIPS block must produce a constant number
of outputs (stores and register writes) and a branch deci-
sion.

The goal of the TRIPS compiler is to produce TRIPS
blocks full of useful instructions while enforcing these con-
straints. This paper describes a set of compiler algorithms
that meet these sometimes conflicting goals, including an
algorithm that assigns load and store identifiers to maxi-
mize the number of loads and stores within a block. We
demonstrate the correctness of these algorithms in simu-
lation on SPEC2000, EEMBC, and microbenchmarks ex-
tracted from SPEC2000 and others. We measure speedup
in cycles over an Alpha 21264 on microbenchmarks.

1. Introduction
Technology trends–growing wire delays, power consump-
tion limits, and diminishing clock rate improvements–are
presenting historical instruction set architectures such as
RISC, CISC, and VLIW with difficult challenges [1]. To
show continued performance growth, future microproces-
sors must exploit concurrency power efficiently. An impor-
tant question for any future system is the division of respon-
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sibilities between programmer, compiler, and hardware to
discover and exploit concurrency.

In previous solutions, CISC processors intentionally
placed few ISA-imposed requirements on the compiler to
expose concurrency. In-order RISC processors required the
compiler to schedule instructions to minimize pipeline bub-
bles for effective pipelining concurrency. With the advent
of large-window out-of-order microarchitectures, however,
both RISC and CISC processors rely mostly on the hard-
ware to support superscalar issue. These processors use a
dynamic placement, dynamic issue execution model that re-
quires the hardware to construct the program dataflow graph
on the fly, with little compiler assistance. VLIW processors,
conversely, place most of the burden of identifying con-
current instructions on the compiler, which must fill long
instruction words at compile time. This static placement,
static issue execution model works well when all delays are
known statically, but in the presence of variable cache and
memory latencies, filling wide words has proven to be a dif-
ficult challenge for the compiler [19, 23].

Explicit Data Graph Execution (or EDGE) architectures
partition the work between the compiler and the hard-
ware differently than do RISC, CISC, or VLIW architec-
tures [1, 10, 21, 26, 28, 31], with the goal of exploiting fine-
grained concurrency at high energy efficiency. An EDGE
architecture has two distinct features that require new com-
piler support. First, the compiler is responsible for parti-
tioning the program into a sequence of structured blocks,
which logically execute atomically. The EDGE ISA defines
the structure of, and the restrictions on, these blocks. Sec-
ond, instructions within each block employ direct instruc-
tion communication. The compiler encodes instruction de-
pendences explicitly, eliminating the need for the hardware
to discover dependences dynamically. For example, if in-
struction A produces a value for instruction B, A’s instruc-
tion bits specify B as a consumer, and the hardware routes
A’s output operand directly to B.

The TRIPS architecture is an EDGE ISA that employs



a hybrid static placement, dynamic issue execution model.
The TRIPS microarchitecture consists of a four by four grid
of execution units with banks of registers at the top, and
cache memories to the left, as depicted in Figure 1. This
hardware issues instructions dynamically and out-of-order
when their source operands become available. In the TRIPS
architecture, the compiler is responsible for placing instruc-
tions on the execution substrate to minimize physical dis-
tances between producing and consuming instructions, and
for encoding dependences in the instructions themselves.

This execution paradigm has two potential advan-
tages over traditional, single-instruction-granularity archi-
tectures. First, out-of-order execution has the potential to
be more power efficient than in RISC/CISC ISAs, since
the hardware is not required to derive inter-instruction de-
pendences within a block. Second, executing at the gran-
ularity of blocks amortizes the overhead of instruction dis-
patch and mapping (register file accesses, branch prediction,
and instruction cache lookups) over a large number of in-
structions, reducing both energy consumption and enabling
higher instruction-level concurrency.

However, these potential advantages come at the cost of
additional responsibilities for the compiler, which are (1)
forming dense blocks that obey the structural requirements
specified by the ISA, and (2) encoding the dependences in
the instructions and placing the instructions to minimize
inter-ALU communication latencies. Previous work de-
scribes the latter compiler responsibility [25]. This paper
focuses on the former–the compiler flow and algorithms
necessary to generate effective and legal blocks.

The TRIPS ISA places a number of structural restrictions
on blocks to permit simpler hardware, which are more re-
strictive than those for traditional hyperblocks [23] and su-
perblocks [18]. These restrictions make the compiler’s task
of forming dense but legal blocks more challenging. Fewer
restrictions allow for a simpler compiler but require more
complicated hardware. The TRIPS ISA and prototype hard-
ware employ four restrictions on blocks intended to strike a
balance between software and hardware complexity. They
are: (1) fixed block sizes (maximum of 128 instructions),
(2) restricted number of loads and stores (no more than 32
may issue per block), (3) restricted register accesses (no
more than eight reads and eight writes to each of four banks
per block), and (4) constant number of block outputs (each
block must always generate a constant number of register
writes and stores, plus exactly one branch).

While these restrictions are not difficult to meet for small
blocks, the TRIPS compiler’s goal is to fill each block as
much as possible, maximizing the number of instructions in
the dynamic window, while adhering to the ISA-specified
block constraints. To increase TRIPS blocks beyond sin-
gle basic blocks and meet constraints (1) and (2), the com-
piler extends prior work on predicated hyperblock forma-

tion [5, 12, 13, 18, 23]. The compiler uses an algorithm
that incrementally combines TRIPS blocks, checking block
legality before combination.

The hardware enforces sequential memory semantics by
employing a 5-bit load/store ID (LSID) in each load or store
instruction to maintain a total order of memory operations.
To mitigate the effect of the limit on LSIDs (contraint 2),
and to produce a constant number of outputs (constraint 4),
the compiler implements an algorithm that reuses LSIDs on
control-independent paths, guaranteeing that only one load
or store with a given LSID will fire at runtime.

To satisfy the banking constraints (constraint 3), the
compiler modifies a linear-scan register allocator [15, 32].
The compiler uses SSA [16] to reveal register writes and
stores on disjoint paths, and to guarantee that each path
through the TRIPS block produces one and only one write
to any register, and one and only one store to a given LSID
(constraint 4). If any of these constraints are violated (for
example, if the insertion of spill code during register allo-
cation causes a block to exceed its LSID limit or instruc-
tion count), the compiler splits the offending block using
reverse-if conversion [4], and then re-runs register alloca-
tion, iterating as necessary until all TRIPS blocks satisfy
the architectural constraints.

We show that with these algorithms, the compiler can
correctly compile the major desktop and embedded bench-
mark suites: SPEC2000 and EEMBC. On a number of mi-
crobenchmarks extracted from SPEC2000 and a few other
programs, we show that the compiler can generate code that
provides a 83% speedup over an Alpha 21264 using gcc
with full optimization.

2. TRIPS EDGE Architecture Background
This section provides an overview of the TRIPS EDGE ISA
and microarchitecture [10, 21, 25, 26, 28]. EDGE archi-
tectures break programs into blocks that are atomic logical
units, and within those blocks, instructions directly target
other instructions without specifying their source operands
in the instruction word. An example of an EDGE instruction
takes the following form: ADD 126(0), 37(p). When
the ADD instruction receives two operands, it computes the
result, and forwards its result to the left-hand (0) operand
of instruction number 126 and the predicate field (p) of in-
struction number 37. Upon receiving its operands and pred-
icate, instruction 37 will fire only if the predicate condition
evaluates to true.

Figure 1 shows the TRIPS prototype processor microar-
chitecture. The execution core consists of an array of
16 ALUs connected by a lightweight switching network.
The TRIPS microarchitecture binds each instruction num-
ber within a block to a specific reservation station coupled
to an ALU. The microarchitecture consists of five types of
tiles: G-tile (global control), R-tile (registers), E-tile (exe-
cution), I-tile (instruction cache), and D-tile (data cache).
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Figure 1. TRIPS Prototype Processor Core

2.1. TRIPS Block Execution

The global control tile (G-tile) determines which TRIPS
blocks to execute, and tracks up to eight blocks in flight
simultaneously. To fetch a block, the G-tile issues a block
address prediction, checks its I-cache tags, and upon a hit,
signals the slave I-cache banks in the lower four I-tiles
to stream 32 instructions each to their respective row of
ALUs. The top I-tile contains each block’s header, which
consists of control information and the register read/write
instructions, which inject initial register values into a block
and write the block outputs back to the global register file.
These instructions are sent to the four R-tiles, which hold
buffers for the read and write instructions, one bank each of
the architectural register file, and forwarding logic to send
writes from earlier blocks to reads in later ones. Each E-
tile loads its eight instructions from a block into its reserva-
tion stations, thus requiring a total of 64 reservation stations
(eight per block times eight blocks). The maximum win-
dow size is 1024 instructions: 128 instructions maximum
per block times eight blocks in flight.

When a block begins execution, the register read in-
structions fire (one per bank per cycle) and the intercon-
nect routes their values to their target instructions in the E-
tiles, taking one cycle per Manhattan-distance hop. Each
E-tile contains an integer and floating-point unit, and can
issue one ready instruction per cycle. Dependent instruc-
tions on the same E-tile can issue in back-to-back cycles,
but there is a one-cycle bubble for each routing hop in the
E-tile network if dependent instructions reside in different
E-tiles. The instructions in the block fire in dataflow or-
der, with loads and stores routed to the data-cache tiles (D-
tiles) on the left of the array. The four D-tiles each hold
one cache-line interleaved, 8KB bank of the data cache. A
load is either deferred in a D-tile’s load/store queue if the
D-tile predicts it is dependent on a prior store [14, 24], or
speculatively performs a cache lookup and routes its value
to consumers in the E-tile array.

When a branch fires, it routes the computed next-block
address to the G-tile, which confirms that the block predic-

tion was correct (or rolls back). The block commits when
it is the oldest block and receives all of its outputs. Block
completion is detected when the D-tiles signal the G-tile
that all that block’s stores have been received, and when the
R-tiles signal similarly for the register writes. The G-tile
then commits the block, predicts a new next-block address,
and fetches the new block into the just-committed block’s
slot. On an exception or interrupt, execution rolls back to
the last committed block boundary, providing precise ex-
ceptions at a block level.

2.2. TRIPS Block Constraints

By organizing instructions into blocks, the TRIPS microar-
chitecture supports out-of-order execution–of both instruc-
tions within blocks and across blocks–without requiring as-
sociative tags to compare incoming operands. However, too
few restrictions on blocks would require more complicated
hardware (e.g., if a block could emit a different number
of outputs each time it executed). A long-term goal is to
find the right compiler-hardware “sweet spot” in the archi-
tectural definition of a TRIPS block; one that permits the
compiler to form large, full blocks, without requiring un-
necessarily complex hardware. We attempted to find that
balance by choosing the following architectural constraints
on TRIPS blocks:
Fixed Block Size: All blocks contain at most 128 compute
instructions (register reads and writes are additional). This
fixed-size restriction permits the architecture to align each
instruction cache bank with its reservation stations, and also
simplifies the mapping of a block’s instructions onto hard-
ware resources.
Load/Store Identifiers: Each load and store contains a 5-
bit ordering identifier or LSID (e.g., a store with LSID 7
must logically complete before a load with LSID 8 and
a store with LSID 9). There may be more than 32 static
load/store instructions per block, since loads or stores down
disjoint predicate paths may share the same ID, but at most
one memory operation with a given LSID may fire, and
there are at most 32 LSIDs.
Register Constraints: Each register bank issues at most



eight read and eight write instructions per block. This limit
reduces the hardware buffering required for each block.
Since the TRIPS hardware can dynamically forward in-
flight writes to reads from later blocks, all in-flight writes
must be buffered. Each R-tile holds 64 buffered reads and
64 buffered writes (eight per bank per block times eight
blocks in flight). Eliminating the banking restriction would
increase the buffering at each R-tile four-fold.
Constant Output: To detect that a block is complete, each
TRIPS block emits a consistent number of register writes
and stores, plus exactly one branch. The hardware observes
the number of register writes by counting the write instruc-
tions issued to the R-tiles. The compiler encodes the num-
ber of stores in a 32-bit store mask in the block header, en-
abling the D-tiles to detect when they receive all of a block’s
stores. If the code contains a store or register write down
one predicated path but not another, the compiler must in-
sert additional instructions on the alternative path to ensure
the hardware does not wait for a store or write that will
never issue. This restriction adds instruction overhead, but
considerably simplifies detection of block termination.

3. Compiler Approach and Algorithms
This section describes both the compiler flow and algo-
rithms needed to generate correct TRIPS blocks. To com-
pile to the TRIPS ISA, we made a number of additions
to the Scale retargetable compiler for C and Fortran [34].
Scale is written in Java and produces TRIPS assembly lan-
guage (TASL) [35], Alpha assembly, SPARC assembly, and
C. Figure 2 shows the high-level compiler flow, with the
shaded portions of the figure listing the basic phases and
intermediate representations. Above each phase the figure
also shows an example intermediate representation.

Phase I performs inlining, loop unrolling, and scalar op-
timizations. Phase II generates code, forms TRIPS blocks,
performs register allocation, and splits the blocks if nec-
essary. Phase III performs backend optimizations on the
TRIPS blocks, including assigning LSIDs, guaranteeing se-
quential memory semantics, and applying peephole opti-
mizations. Finally, phase IV lowers the code to TRIPS
assembly (TASL [35]), building operand fanout trees and
placing instructions to reduce operand routing latencies and
exploit parallelism.

3.1. Front-end Transformations

In phase I, Scale first transforms programs into a control-
flow graph (CFG), and then performs inlining and unrolling.
Scale performs alias analysis on the CFG and uses the re-
sults to build a static single assignment (SSA) [16] form of
the CFG. Scale then performs the following scalar optimiza-
tions on the SSA form: global variable replacement, sparse
conditional constant propagation, array access strength re-
duction, loop invariant code motion, copy propagation,
scalar replacement, global value numbering, expression tree

height reduction, useless copy removal, and dead variable
elimination. After scalar optimizations, Scale converts the
CFG out of SSA.

The scalar optimizations produce more efficient code,
which improves the TRIPS blocks when they are formed
in phase II. However, inlining and loop unrolling both have
the potential to exceed block constraints, and will force the
block splitter to split the blocks into legal TRIPS blocks.
Currently, we use a default unroll factor of three for un-
rolling. Loops are thus often unrolled imperfectly with re-
spect to the block constraints.

3.2. Code Generation

In phase II, the compiler first generates TIL instructions
from the control flow graph. TIL is a RISC-like TRIPS in-
termediate representation [29] that does not consider phys-
ical placement of instructions. We use the code snippet in
Figure 3 as a running example of how the compiler trans-
forms a program from C to a legal TRIPS block.

To enable transformations on predicated code, the back-
end forms a three-level hierarchical graph that builds on
prior hyperblock research [4]:

TRIPS Block Flow Graph (TFG): A complete TFG
represents a single procedure. Each node in the TFG cor-
responds to one TRIPS block, while each edge represents
control flow between TRIPS blocks. Each TRIPS block is
represented as a predicate flow graph.

Predicate Flow Graph (PFG): A PFG node is repre-
sented as a predicate block and each PFG edge represents
control flow between predicate blocks that will be attained
using predication. The first node in each PFG is the unpred-
icated entry into a TRIPS block. To provide a convenient
location to place spills and register write instructions, we
add an empty, unpredicated, final merge node to every PFG.

Predicate Block: Each predicate block is a basic block
of TIL instructions with uniform predication; either no in-
structions are predicated, or all are predicated on the same
predicate.

Next the compiler identifies the TFG nodes to combine
into TRIPS blocks through if-conversion [2] and block for-
mation merges these nodes together. All the subsequent
phases analyze and transform TFG nodes into legal TRIPS
blocks that meet the architectural constraints, and thus dif-
fer substantially from previous work on hyperblocks and su-
perblocks [4, 9, 18, 23, 27].

Figures 2(b) and (c) show TFG nodes as shaded regions.
These nodes correspond to TRIPS blocks that do not yet
meet all the constraints. Figures 2(b) and (c) also show the
details of PFGs in some of the TFG nodes; in these detailed
TFG nodes each sub-node is a single predicate block. Fig-
ure 3(b) shows the instructions in a TFG node before the
PFGs are formed, and 3(c) shows the code in one PFG after
block formation.
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Figure 2. TRIPS Compiler Overview

3.3. Block Formation

The architecture performs best if the compiler minimizes
the number of TRIPS blocks and fills each one with useful
instructions. The compiler thus tries to combine multiple
TRIPS blocks into a single block. This step consists of two
parts: (1) a policy for combining blocks (TFG nodes) to
produce denser blocks, and (2) an analysis that, given the
TIL instructions in a TFG node, estimates the number of
instructions and LSIDs that will appear in the correspond-
ing TASL. We call the latter step size analysis. Size analy-
sis first estimates the number of instructions and LSIDs for
each node in the TFG. The compiler then combines under-
utilized nodes, as long as the resulting block will not violate
the instruction and LSID limits. Subsequent phases handle
the register limit and constant output constraints.

Combining Blocks

To create full blocks, the compiler uses a greedy algorithm
that merges parent and child TFG nodes unless:

1. The result would violate a block size or LSID con-
straint. To estimate whether merging two TFG nodes
would violate these constraints, the compiler adds the
estimates for the two nodes block size and LSID’s to-
gether. This computation is an overestimate because
subsequent optimizations may eliminate instructions.

2. The parent ends with a function call. Function calls
must end inclusion down one control path to avoid
jumping into the middle of a block (blocks are single
entry).

3. The child has other TFG node predecessors. Without
tail duplication, the compiler cannot merge children
with multiple incoming edges.

Our current policy uses a top-down traversal of the TFG to
combine each TFG node with as many of its children as
will fit. The traversal begins at the root TFG node. When
the compiler visits a TFG node it tries to merge the node
with its first child node. If it succeeds, it tries the next child,
and so on. If all children can be merged, merging contin-
ues with the node’s new children. When a merge fails the
compiler moves on to the next TFG node in a breadth-first
order. The resulting traversal is approximately breadth-first
because merging changes the TFG as the traversal proceeds.

Figure 3(c) shows the block formation pass after combin-
ing the blocks in Figure 3(b), denoted by labels L0 and L1,
into a single TRIPS block. The compiler deletes the branch
to L1, reducing the block size, and inserts predication (de-
noted by t and f). Notice both remaining branches now
target the same label and could be combined with instruc-
tion merging [23]. This example shows how block forma-
tion creates opportunities for further optimization.

Future enhancements include more discriminating merg-
ing policies. For example, if the block cannot accommodate
all its children, a better policy chooses the subset that cre-
ates the most full block, or chooses the most frequently ex-
ecuted child. A policy that merges blocks on a hot path
based on runtime profile information requires tail duplica-
tion to add blocks at control flow merge points, and is more
likely to produce a set of blocks full of the most frequently
executed instructions.

These policies are different from those for VLIW ma-
chines since the constituent instructions within the VLIW
instruction must all be independent, and thus the goal of
block formation is to create and combine independent in-
structions. The constituent instructions in a TRIPS block,
conversely, can be dependent, so the goal of block con-
struction is to combine instructions that are likely to execute



// x, i are in registers

y = x - 2;
if (x > 1) {
  a[i] = y;
  i++;
}

// i is live-out

(a) C Source Code (b) Code Generation (c) Block Formation

(e) LSQ ID Assignment (f) Store Nullification(d) Read/Write Insertion 
    

read  x, g70
read  i, g71
subi  t1, x, 2
sd     y, t1 [0]
tgti   p1, x, 1

ld_t<p1>  t2, a + i  [1]
sd_t<p1> t2, t1      [2]
addi_t<p1> t3, i, 1
br_t<p1> L2

write g71, t3

null_f<p1>  t4
sd_f<p1>    t4,t4    [2]
mov_f<p1> t3, i
br_f<p1>    L2

read  x, g70
read  i, g71
subi  t1, x, 2
sd     y, t1 [0]
tgti   p1, x, 1

ld_t<p1>  t2, a + i  [1]
sd_t<p1>    t2, t1   [2]
addi_t<p1> t3, i, 1
br_t<p1>     L2

write g71, t3

mov_f<p1> t3, i
br_f<p1>    L2

read  x, g70
read  i, g71
subi  t1, x, 2
sd     y, t1 
tgti   p1, x, 1

ld_t<p1>     t2, a + i  
sd_t<p1>    t2, t1      
addi_t<p1> t3, i, 1
br_t<p1>    L2

write g71, t3

mov_f<p1> t3, i
br_f<p1>    L2

subi  t1, x, 2
sd     y, t1 
tgti   p1, x, 1

ld_t<p1>     t2, a + i  
sd_t<p1>    t2, t1      
addi_t<p1> t3, i, 1
br_t<p1>    L2 br_f<p1> L2

L0:
  subi  t1, x, 2
  sd     y, t1
  tgti   p1, x, 1
  br_t<p1> L1
  br_f<p1> L2
L1:
  ld      t2, a + i
  sd      t2, t1
  addi   i, i, 1
  br      L2
L2:

Figure 3. Transforming a Source Program into a Legal TRIPS Block

under the same conditions, as well as creating independent
instructions.

Size Analysis

Size analysis estimates the final number of TASL instruc-
tions from the TIL instructions and the number of LSIDs
for a TRIPS block. Two factors complicate these computa-
tions: (1) subsequent optimizations can add or remove in-
structions; and (2) TIL and TASL instructions do not have
a one-to-one mapping.

To fix the block size and determine the number of LSIDs,
the compiler performs a preliminary LSID assignment, in-
cluding inserting instructions needed to guarantee the se-
quential memory semantics of a block. The compiler re-
computes the assignment as the blocks change.

Translation inaccuracies derive from the difference in
how TIL and TASL encode reuse. Consider a variable defi-
nition that five instructions subsequently use. In RISC ISAs
and TIL, names express this reuse (e.g., a virtual register).
In TASL’s dataflow format, the defining instruction must ex-
plicitly name the location dependent operands. If an instruc-
tion has more consumers than target fields, the compiler
must insert additional copy (fanout) instructions. To avoid
inserting unnecessary copies, and since the ideal fanout tree
topology is affected by the placement heuristics, the com-
piler postpones this step until it is scheduling the TASL.

TASL has three fanout instructions: MOV2, MOV3, and

MOV4, that can target two, three, or four instructions re-
spectively, with correspondingly longer latencies. Which
instruction the scheduler uses is based on the dataflow
graph. Size analysis approximates fanout instructions as-
suming only MOV2 instructions. This estimate is not ideal,
but anticipating the scheduler’s decisions is challenging.

The first part of fanout estimation is straightforward. The
compiler performs a depth-first search on the PFG to deter-
mine the number of uses for a particular register. Since the
TRIPS blocks do not yet contain register read and write in-
structions, the compiler treats any live-in as a read instruc-
tion and any live-out as a write instruction. Next the com-
piler computes the fanout for an instruction by checking if
the number of uses for the register defined by the instruction
exceeds the number of targets for the instruction.

We use size analysis to drive block formation as de-
scribed above, and in the block splitter.

3.4. Block Splitting

Three phases of the compiler may create TRIPS blocks that
violate the block size or load/store constraints: (1) code
generation; (2) spilling during register allocation; and (3)
stack frame generation. If a block violates a constraint, the
block splitter divides the block into multiple TRIPS blocks.
The block splitter combines cutting–a method for splitting
unpredicated regions of code, and reverse if-conversion [4]–
a method for splitting predicated regions of code.



Block splitting begins with size analysis to determine if
a block violates the block size or LSID constraint. Next, it
traverses predicate blocks in the PFG in breadth-first order.
It computes a running total, and continues to the next pred-
icate block only if the current one does not violate the size
and LSID constraints. The block splitter has two choices if a
constraint is violated: it either cuts or reverse if-converts the
predicate block. If the block is unpredicated (i.e., it is a ba-
sic block), then the block splitter cuts it by adding a branch
and a label, creating two new TRIPS blocks that it adds to
the TFG. If the block is predicated, then the block split-
ter must reverse if-convert [4] the predicate block from the
TRIPS block. Reverse if-conversion creates a new TRIPS
block beginning with the predicate block, removes the pred-
icates from the instructions in the predicate block, and in-
serts a branch to it in the original TRIPS block. The com-
piler iterates until there are no violations.

After block splitting, all of the TFG nodes are guaranteed
to meet the TRIPS block size and LSID constraints, but not
the register bank constraint.

3.5. Register Allocation

Just like a RISC register allocator, an EDGE allocator as-
signs virtual registers to physical registers or spills to mem-
ory. However, unlike a conventional allocator, it need not
assign those virtual registers whose live ranges are con-
tained wholly within a block. This feature of the ISA re-
duces the number of register reads and writes.

The TRIPS register constraints pose a unique problem.
There are 128 registers divided into four register banks with
32 registers apiece. Each TRIPS block is limited to eight
register reads and eight writes per register bank (for a total
of 32 register reads and 32 writes). The hardware regis-
ter naming convention maps register names R0 to R127 to
banks by interleaving them on the low-order bits of the reg-
ister name. Compared to a graph coloring [8] or linear-scan
allocator [15, 32], these features require additional state to
track and enforce register bank constraints. The compiler
uses a modified linear-scan register allocator for TRIPS.

One way to pose this problem is to view each TRIPS
block as a large instruction that can use and define 32 regis-
ters. We use this insight to compute live ranges on a block
(TFG node) granularity. A virtual register is live if and only
if it is defined and used in different blocks. The allocator
gives priority to each virtual register based on its definitions,
uses, and spill costs. Subsequently, the allocator assigns vir-
tual registers to physical registers or spills each live range
in priority order.

The assignment phase uses an ordered list of available
registers for each live range. We assign caller saved regis-
ters first by placing them at the front of the list. The allo-
cator selects a register from this list and checks if it would
cause any constituent TRIPS block to exceed its bank lim-

itation. If not, it assigns the register to the live range. Oth-
erwise, it excludes all registers from this bank from the list,
and tries again until it finds an assignment or exhausts the
list. If the allocator cannot satisfy the banking constraints
in all blocks, it spills.

Spilling introduces load and store instructions, and thus
may cause a TRIPS block to violate the block size or
load/store constraints. The block splitter therefore re-
examines every block in which the allocator inserted spill
code. The compiler splits any block with a violation and
then repeats register allocation. Iterative block splitting is
guaranteed to terminate eventually since it strictly reduces
the size of a block. The current allocator rarely spills due to
bank constraints. However, more aggressive TRIPS block
formation may expose the need for additional enhancements
or a graph coloring allocator that tends to spill less [32].

3.6. Memory Ordering and Block Termination

To guarantee sequential memory semantics, phase III of the
compiler assigns a unique ordering identifier (LSID) to each
load and store in a TRIPS block. The microarchitecture
ensures that operations to the same address commit in or-
der [28]. The compiler can satisfy this constraint by simply
assigning an identifier to every load and store in breadth-
first program order. However, the compiler is free to reuse
LSIDs if it can guarantee that only one load or store will
ever fire for each LSID. If the compiler reuses a LSID, it
can include more loads and stores in a block, increasing the
block size and reducing register pressure. The only restric-
tion is that loads and stores cannot share a LSID because the
block termination logic uses stores to detect completion.

The compiler’s LSID assignment algorithm modifies a
breadth-first program order pass by dividing the graph into
levels. For each level it maintains n ordered lists of loads
and stores, where only one of the n lists will execute (e.g.,
for an if-then-else, it creates a level with one list for the true
branch and one for the false). Without loss of generality,
assume the first list starts with a load. The algorithm assigns
this first load a LSID. It then checks the top of the other lists
for loads and assigns them the same LSID. It then assigns
the next LSID and so on, until it exhausts the first list. It
then exhausts the second list, and so on. When it finishes all
the loads and stores at the current level, it moves to the next
level.

The compiler must also guarantee that all paths produce
the same store LSIDs and same register writes to satisfy the
constant output constraint: once the block produces all its
outputs, it completes. For every store LSID in the TRIPS
block, the compiler simply enumerates all paths and checks
whether it contains a store with the same LSID. If not, it
inserts a null store for the missing LSID. The TRIPS ISA
defines a NULL instruction that signals to the hardware no
value will be produced for a store LSID or a register write.



O3 O4 Hand
min max mean min max mean min max mean

SPEC2000 4.9 42.4 12.6 8.4 46.7 18.5 - - -
EEMBC 5.0 32.6 9.3 8.2 49.9 22.7 - - -
Microbenchmarks 3.7 101.3 31.6 16.5 101.3 48.6 17.03 112.5 73.5

Table 1. Dynamic Instructions/Block

A null store is a STORE instruction that receives a NULL
as input.

The compiler solves this same problem for register
writes by converting into SSA form. As it goes into SSA
form, the compiler identifies any upwardly exposed regis-
ter uses in a block and inserts a corresponding register read.
Then the compiler inserts copies on all the paths without
definitions. Figure 3(d) shows the TRIPS block after regis-
ter allocation, read and write instruction insertion and SSA
renaming. Notice the MOV instruction which is in the pred-
icate block on the false path. When SSA eliminates φ nodes,
it produces exactly the semantics the compiler needs to en-
sure that all paths produce the same set of outputs.

Figure 3(e) shows how the compiler assigns LSIDs.
There are three LSIDs: 0, 1 and 2 to a store, load and an-
other store. The first store is unpredicated and will produce
a value down all paths for LSID 0; the second store however
is predicated on p1 being true but there is no corresponding
LSID down the other path through the TRIPS block. In Fig-
ure 3(f), the compiler inserts a null store on the false path
with LSID 2 so that the block produces the same number of
stores to the same LSIDs down all paths. At this point, the
TRIPS block is legal and is ready to be scheduled.

3.7. Placement and Assembly

In phase IV, the scheduler maps TIL instructions to exe-
cution tiles, and then encodes its placement decisions in
TASL [35]. Since, for a given implementation, the instruc-
tion number assignment determines where on the ALU ar-
ray the instruction will be placed, the compiler can im-
plicitly reason about the interconnection topology and de-
lay. The instruction scheduler thus seeks to minimize inter-
instruction latency and contention for an issue slot on the
same ALU. Previous work presents a greedy scheduling al-
gorithm for these constraints [25]. After scheduling, the
assembler and linker create an ELF binary.

4. Results
We use two simulators to produce experimental results.
The first is a fast ISA functional simulator, used to gen-
erate average dynamic block sizes and demonstrate that the
compiled code is correct. For these experiments, we use
all 30 of the EEMBC 2.0 benchmarks and 21 of the 26
SPEC2000 benchmarks (the five remaining benchmarks are
FORTRAN90 and C++ which Scale does not support). For
timing experiments, we use a near-cycle-accurate simulator,

called tsim-proc, that closely models the TRIPS hardware (a
recent performance evaluation estimated that tsim-proc and
the TRIPS RTL differ by under 4% on average). Tsim-proc
faithfully models most delays in the TRIPS prototype im-
plementation, including a one-cycle hop from any tile to an
adjacent tile, a 32KB, 2-way set-associative L1 data cache
with a 2-cycle latency, a 64KB, 2-way set-associative L1
instruction cache with a 1-cycle latency, an 8-cycle block
fetch latency, and a 3-cycle branch prediction latency.

Since tsim-proc is slow compared to higher-level per-
formance simulators, we perform all timing analysis on a
set of microbenchmarks. They consist of 15 frequently
executed loops extracted from SPEC2000 programs, four
kernels from an MIT Lincoln Labs radar benchmark
(doppler GMTI, ff2 GMTI, fft4 GMTI, transpose GMTI),
a vector add kernel (vadd), a ten by ten matrix multiply
(matrix 1), and a prime number generator (sieve). We com-
pile with full optimizations–O3, and O4, which extends
the O3 level with predicated TRIPS block formation as de-
scribed in Section 3.3. Finally we show results for hand-
assembled microbenchmarks.

4.1. Correctness

The instruction-level simulator produces a block profile that
captures the number of blocks and the dynamic number of
instructions that execute, i.e., instructions that do not have
false predicates. Table 1 shows the dynamic averages, max-
imum, and minimum number of instructions in each block
for optimization levels O3 and O4, for all the benchmarks
including SPEC and EEMBC, and also hand-assembly lev-
els for the microbenchmarks. These results demonstrate the
compiler is able to generate correct code for the TRIPS ISA
and block constraints on substantial conventional programs.
These results show that the O4 results provide a significant
improvement in TRIPS block size over O3, but that there
remains a large gap for the microbenchmarks between the
O4 and hand-optimized results.

Figure 4 shows the dynamic block sizes on a per-
microbenchmark basis. Many of the loops show significant
increases when the compiler combines TRIPS blocks at O4.
Those that still show remaining gaps between the O4 level
and hand assembly suffer from suboptimal unrolling of for
loops and the absence of while loop unrolling; ammp 1,
ammp 2, art 1, art 2, and gzip 2 are notable examples.



Figure 4. Average Dynamic Block Size

4.2. Performance Analysis

As a performance comparison baseline, we measured the
microbenchmarks compiled with gcc at full optimization (-
O3), on a DS-10L workstation with an Alpha 21264 pro-
cessor [20]. We compare microbenchmark cycle counts of
the two systems, selecting the Alpha as a comparison point
because it executes programs in an efficient number of cy-
cles, but is also an aggressively clocked implementation (for
its process technology). The only parameters in tsim-proc
that differ from the TRIPS implementation are in the mem-
ory subsystem, which we set to approximate the equiva-
lent structures in the DS-10L workstation and make a fairer
comparison. The parameters we used were a 2MB, 2-way
set-associative L2 cache with a 12-cycle hit latency and a
60-cycle main memory latency.

Figure 5 shows TRIPS speedups over Alpha at the O3,
O4, and hand-assembled levels. Comparing the trends be-
tween Figures 4 and 5 reveals that increases in dynamic
average block size correlate well with improved perfor-
mance. Only transpose GMTI counters this correlation.
The average results show that with basic blocks as TRIPS
blocks (O3), the microbenchmarks run 42% faster than Al-
pha (comparing cycle counts directly). With multiple ba-
sic blocks in a single TRIPS blocks (O4), the microbench-
marks run 41% faster than 03, and 83% faster than on Al-
pha. A large performance gap exists, however, between the
hand-coded microbenchmarks and the compiler; they run a
full 3.2 times faster than the Alpha. The hand-coded mi-
crobenchmarks show an average TRIPS IPC of 3.2, with a
maximum IPC of 4.6; the number of TRIPS to Alpha in-
structions are comparable.

A few individual results stand out. On two benchmarks
(parser 1 and sieve) all versions perform worse than Al-
pha. These benchmarks are highly serial, offering little ILP.
There is one long dependence chain in parser 1 that the O4
compiler can capture in a block with 36 instructions (in the
hand-coded version the block grows to 76 instructions), but
the lack of sufficient ILP exposes the TRIPS block mapping

Figure 5. Performance Comparison

overhead. Even the hand-coded version of sieve has fewer
than 20 instructions in the block on average, again exposing
the dynamic block overheads. One benchmark, matrix 1,
shows a slowdown when going from O3 to O4 compiled
code. There is a single if-converted test inside a loop that
is never true. So the inclusion of the test in the loop body
only adds contention for resources. The compiler could de-
termine with profiling that the test is not on the critical path
and choose not to include it in the loop. The performance
would then be the same for O3 and O4 compiled code.

Five hand-coded microbenchmarks (art 2, art 3,
ff2 GMTI, transpose GMTI, and twolf 1) perform between
a factor of four and ten better than Alpha. Six O4 compiled
microbenchmarks (art 2, art 3, ff2 GMTI, ff4 GMTI,
transpose GMTI, and twolf 1) improve by a factor of at
least three over Alpha. An interesting case is ff2 GMTI;
although the blocks are not full (59 instructions for hand-
coded, and 48 for O4), the processor successfully employs
speculation to exploit loop-level parallelism across blocks,
in addition to unrolled loop-level parallelism within blocks
and ILP within individual loop bodies.

5 Related Work
The work on TRIPS blocks builds on previous work on
compiling predicated hyperblocks for VLIW machines [22,
23, 27]. VLIW architectures build hyperblocks to maximize
exposure of independent instructions for long-word pack-
ing. When forming hyperblocks, VLIW compilers scru-
tinize dependence height in less-frequently-accessed basic
blocks, since that height puts a lower bound on the VLIW
schedule. TRIPS blocks differ in two ways: first, the four
block restrictions limit the hyperblocks that can legally be
formed; second, while both classes of architectures want
hyperblocks to be full of many useful, independent instruc-
tions, dependence height is a non-issue for TRIPS blocks,
since blocks can be committed and deallocated as soon as
all of their outputs are received, regardless of what is hap-
pening down other predicate paths in the block.

EDGE architectures are a hybrid of dataflow and sequen-



tial machines, using dataflow within a block, conventional
register semantics across blocks, and conventional mem-
ory semantics throughout. An EDGE compiler thus differs
significantly from compilers for pure dataflow machines
[3, 17], since dataflow machines limited the programming
model to a functional one where programs cannot produce
multiple values in the same location, relieving the compiler
and architecture of the memory disambiguation problem.

Recent work on compilers for dataflow-like architec-
tures is similar to TRIPS [6, 7, 11]. The most closely re-
lated is the CASH compiler that targets a substrate called
ASH, for application-specific hardware. Like the TRIPS
compiler, CASH’s Pegasus intermediate representation tar-
gets a predicated hyperblock form translated into an inter-
nal SSA representation, compiling small C and FORTRAN
programs. Many of the instruction-level transformations,
using Pegasus, are applicable to TRIPS blocks. Two major
differences between the TRIPS and CASH compilers are
the hardware targets and the block restrictions. The CASH
compiler targets a hardware synthesis tool flow, whereas the
TRIPS compiler targets a specified ISA running on a fixed
microarchitecture. Therefore, the CASH compiler can pro-
duce mostly unconstrained blocks, except for chip area con-
straints. The difference between unbounded graphs for a
co-designed substrate (Pegasus/ASH) versus limited graphs
for a fixed substrate (EDGE ISAs) dramatically changes the
compilation problem.

The WaveScalar architecture [31] forms “waves” that are
similar to hyperblocks except for the mechanism that ex-
ecutes subsequent graphs (polypath wave execution rather
than a single speculative flow of control). A second, more
minor difference is the architectural mechanism used to en-
force sequential memory semantics (instruction pointers in
WaveScalar as opposed to load/store sequence numbers in
TRIPS). The third major difference with the TRIPS archi-
tecture is that WaveScalar publications advocate dynamic,
run-time placement of instructions [30, 31], as opposed to
the static TRIPS approach of mapping compiler-assigned
instruction numbers to specific ALUs, thus permitting the
compiler to optimize for operand routing distance [25].

The RAW architecture [33] is a tiled architecture
whose focus on technology-scaling motivations is similar
to TRIPS. Both the RAW and TRIPS compilers focus on
instruction locality, placing dependent instructions on the
same, or nearby, execution tiles. However, the two architec-
tures’ execution models are fundamentally different. RAW
targets fine-grained parallelism by compiling programs into
many threads of control, running on multiple tiles under a
strict static schedule. TRIPS instead uses a single program
counter, maps instructions from the same TRIPS block to
multiple tiles, and dynamically executes instructions based
only on their dataflow constraints.

6. Conclusions
The block-atomic execution model used by EDGE architec-
tures provides potential performance and energy advantages
compared to traditional ISAs, but also presents new compi-
lation challenges. In particular, the compiler must gener-
ate full blocks of useful instructions but still obey the block
constraints imposed by the ISA. In this paper, we described
the compiler flow implemented to generate code that ad-
heres to the TRIPS block constraints.

With this flow and a set of algorithms used to adhere
to the block requirements, Scale was able to compile and
run all of the SPEC2000 C and FORTRAN77 and EEMBC
benchmarks, and to grow the blocks substantively over ba-
sic blocks. On a set of microbenchmarks, the compiler was
able to outperform an Alpha 21264 running fully optimized
gcc code by 83%. While some of the microbenchmarks
demonstrated large blocks, others showed block sizes that
were still small. A comparison with hand-assembled bench-
marks shows that several more features must be added to the
compiler to approach the 3.2-fold speedup over the 21264
produced by the hand-assembled benchmarks, in particular
while-loop unrolling, while-loop peeling, and predicated in-
struction merging.

Whereas prior dataflow machines required special lan-
guages, we show that the compiler can correctly gener-
ate code for conventional languages using TRIPS’ hybrid
dataflow model. This paper also shows there is potential for
high performance as well.
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