
1

Memory Systems

Doug Burger
James R. Goodman
Gurindar S. Sohi

University of Wisconsin-Madison

0.1 Introduction

Thememory system serves as the repository of information (data) in a computer system. The processor (also

called the central processing unit, or CPU) accesses (reads or loads) data from the memory system, performs

computations on them, and stores (writes) them back to memory. The memory system is a collection of storage

locations. Each storage location, ormemory word, has a numericaladdress. A collection of storage locations

from anaddress space. Figure1 shows the essentials of how a processor is connected to a memory system via

address, data, and control lines.

When a processor attempts to load the contents of a memory location, the request is very urgent. In virtually

all computers, the work soon comes to a halt (in other words, the processorstalls) if the memory request does

not return quickly. Modern computers are generally able to continue briefly by overlapping memory requests,

but even the most sophisticated computers will frequently exhaust their ability to process data and stall momen-

tarily in the face of long memory delays. Thus, a key performance parameter in the design of any computer, fast

or slow, is the effective speed of its memory.

Ideally, the memory system must be both infinitely large so that it can contain an arbitrarily large amount of

information, and infinitely fast so that it does not limit the processing unit. Practically, however, this is not possi-

ble. There are three properties of memory that are inherently in conflict: speed, capacity, and cost. In general,

technology tradeoffs can be employed to optimize any two of the three factors at the expense of the third. Thus it

2

is possible to have memories that are (1) large and cheap, but not fast; (2) cheap and fast, but small; or (3) large

and fast, but expensive. The last of the three is further limited by physical constraints. A large-capacity memory

that is very fast is also physically large, and speed-of-light delays place a limit on the speed of such a memory

system.

Thelatency (L) of the memory is the delay from when the processor first requests a word from memory until

that word arrives and is available for use by the processor. The latency of a memory system is one attribute of

performance. The other isbandwidth (BW), which is the rate at which information can be transferred from the

memory system. The bandwidth and the latency are closely related. IfR is the number of requests that the mem-

ory can service simultaneously, then:

(1)

From Eq.(1) we see that a decrease in the latency will result in an increase in bandwidth, and vice versa, ifR

is unchanged. We can also see that the bandwidth can be increased by increasingR, if L does not increase pro-

portionately. For example, we can build a memory system that takes 20 ns to service the access of a single 32-bit

word. Its latency is 20 ns per 32-bit word, and its bandwidth is

or 200 Mbytes/s. If the memory system is modified to accept a new (still 20 ns) request for a 32-bit word every

5 ns by overlapping requests, then its bandwidth is

or 800 Mbytes/s. This memory system must be able to handle four requests at a given time.

Building an ideal memory system (infinite capacity, zero latency and infinite bandwidth, with affordable cost)

is not feasible. The challenge is, given the cost and technology constraints, to engineer a memory system whose

abilities match the abilities that the processor demands of it. That is, engineering a memory system that performs

BW
R
L
---=

32

20x10
9–

--------------------bits
sec

32

5x10
9–

-----------------bits
sec

3

as close to an ideal memory system (for the given processing unit) as is possible. For a processor that stalls when

it makes a memory request (some current microprocessors are in this category), it is important to engineer a

memory system with the lowest possible latency. For those processors that can handle multiple outstanding

memory requests (vector processors and high-end CPUs) it is important not only to reduce latency, but also to

increase bandwidth (over what is possible by latency reduction alone) by designing a memory system that is

capable of servicing multiple requests simultaneously.

Memory hierarchies provide decreased average latency and reduced bandwidth requirements, whereas par-

allel or interleaved memories provide higher bandwidth.

0.2 Memory Hierarchies

Technology does not permit memories that are cheap, large, and fast. By recognizing the nonrandom nature

of memory requests, and emphasizing theaverage rather than worst case latency, it is possible to implement a

hierarchical memory system that performs well. A small amount of very fast memory, placed in front of a large,

slow memory, can be designed to satisfy most requests at the speed of the small memory. This, in fact, is the pri-

mary motivation for the use of registers in the CPU: in this case, the programmer makes sure that the most com-

monly accessed variables are allocated to registers.

A variety of techniques, employing either hardware, software, or a combination of the two, can be employed

to assure that most memory references are satisfied by the faster memory. The foremost of these techniques is

the exploitation of thelocality of reference principle. This principle captures the fact that some memory loca-

tions are referenced much more frequently than others.Spatial locality is the property that an access to a given

memory location greatly increases the probability that neighboring locations will be accessed immediately. This

is largely, but not exclusively, a result of the tendency to access memory locations sequentially. Temporal local-

ity is the property that an access to a given memory location greatly increases the probability that the same loca-

tion will be accessed again soon. This is largely, but not exclusively, a result of the high frequency of programs’

looping behavior. Particularly for temporal locality, a good predictor of the future is the past: the longer a vari-

4

able has gone unreferenced, the less likely it is to be accessed soon.

Figure2 depicts a common construction of a memory hierarchy. At the top of the hierarchy are the CPU reg-

isters, which are small and extremely fast. The next level down in the hierarchy is a special, high-speed semi-

conductor memory, known as acache memory. The cache can actually be divided into multiple distinct levels;

most current systems have between one and three levels of cache. Some of the levels of cache may be on the

CPU chip itself, they may be on the same module as the CPU, or they may all be entirely distinct. Below the

cache is the conventional memory, referred to asmain memory, or backing storage. Like a cache, main memory

is semiconductor memory, but it is slower, cheaper, and denser than a cache. Below the main memory is the vir-

tual memory, which is generally stored on magnetic or optical disk. Accessing the virtual memory can be tens of

thousands of times slower than accessing the main memory, since it involves moving mechanical parts.

As requests go deeper into the memory hierarchy, they encounter levels that are larger (in terms of capacity)

and slower than the higher levels (moving left to right in Figure2). In addition to size and speed, the bandwidth

in between adjacent levels in the memory hierarchy is smaller for the lower levels. The bandwidth in between

the registers and top cache level, for example, is higher than that between cache and main memory or main

memory and virtual memory. Since each level presumably intercepts a fraction of the requests, the bandwidth to

the level below need not be as great as that to the intercepting level.

A useful performance parameter is theeffective latency. If the needed word is found in a level of the hierar-

chy, it is ahit; if a request must be sent to the next lower level, the request is said tomiss. If the latencyLHIT is

known in the case of a hit and the latency in the case of a miss isLMISS, the effective latency for that level in the

hierarchy can be determined from thehit ratio (H), the fraction of memory accesses that are hits:

(2)

The portion of memory accesses that miss is called themiss ratio (). The hit ratio is strongly influ-

enced by the program being executed, but is largely independent of the ratio of cache size to memory size. It is

not uncommon for a cache with a capacity of a few thousand bytes to exhibit a hit ratio greater than 90%.

Laverage LHITH LMISS 1 H–()+=

M 1 H–=

5

0.3 Cache Memories

The basic unit of construction of a semiconductor memory system is amodule or bank. A memory bank, con-

structed from several memory chips, can service a single request at a time. The time that a bank is busy servicing

a request is called thebank busy time. The bank busy time limits the bandwidth of a memory bank. Both caches

and main memories are constructed in this fashion, although caches have significantly shorter bank busy times

than do main memory banks.

The hardware can dynamically allocate parts of the cache memory for addresses deemed most likely to be

accessed soon. The cache contains only redundant copies of the address space, which is wholly contained in the

main memory. The cache memory isassociative, or content-addressable. In an associative memory, the address

of a memory location is stored, along with its content. Rather than reading data directly from a memory location,

the cache is given an address and responds by providing data which may or may not be the data requested. When

a cache miss occurs, the memory access is then performed with respect to the backing storage, and the cache is

updated to include the new data.

The cache is intended to hold the most active portions of the memory, and the hardware dynamically selects

portions of main memory to store in the cache. When the cache is full, bringing in new data must be matched by

deleting old data. Thus a strategy for cache management is necessary. Cache management strategies exploit the

principle of locality. Spatial locality is exploited by the choice of what is brought into the cache. Temporal local-

ity is exploited by the choice of which block is removed. When a cache miss occurs, hardware copies a large,

contiguous block of memory into the cache, which includes the requested word. This fixed-size region of mem-

ory, known as a cacheline or block, may be as small as a single word, or up to several hundred bytes. A block is

a set of contiguous memory locations, the number of which is usually a power of two. A block is said to be

aligned if the lowest address in the block is exactly divisible by the block size. That is to say, for a block of size

B beginning at locationA, the block is aligned if

(3)A modulo B 0=

6

Conventional caches require that all blocks be aligned.

When a block is brought into the cache, it is likely that another block must be evicted. The selection of the

evicted block is based on an attempt to capture temporal locality. Since prescience is difficult to achieve, other

methods are generally used to predict future memory accesses. A least-recently-used (LRU) policy is often the

basis for the replacement choice. Other replacement policies are sometimes used, particularly because true LRU

replacement requires extensive logic and hardware bookkeeping.

The cache often comprises two conventional memories: the data memory and the tag memory, shown in

Figure3. The address of each cache line contained in the data memory is stored in the tag memory, as well as

other information (state information), particularly the fact that a valid cache line is present. The state also keeps

track of which cache lines the processor has modified. Each line contained in the data memory is allocated a cor-

responding entry in the tag memory to indicate the full address of the cache line.

The requirement that the cache memory be associative (content-addressable) complicates the design.

Addressing data by content is inherently more complicated than by its address. All the tags must be compared

concurrently, of course, because the whole point of the cache is to achieve low latency. The cache can be made

simpler, however, by introducing a mapping of memory locations to cache cells. This mapping limits the num-

ber of possible cells in which a particular line may reside. The extreme case is known asdirect mapping, in

which each memory location is mapped to a single location in the cache. Direct mapping makes many aspects of

the design simpler, since there is no choice of where the line might reside, and no choice as to which line must

be replaced. Direct mapping, however, can result in poor utilization of the cache when two memory locations

are alternately accessed and must share a single cache cell.

A hashing algorithm is used to determine the cache address from the memory address. The conventional map-

ping algorithm consists of a function with the form

(4)

whereAcache is the address within the cache for main memory locationAmemory, cache_size is the capacity of the

Acache

Amemory mod cache_size

cache_line_size
---=

7

cache in addressable units (usually bytes), andcache_line_size is the size of the cache line in addressable units.

Since the hashing function is simple bit selection, the tag memory need only contain the part of the address not

implied by the hashing function. That is,

(5)

whereAtag is stored in the tag memory anddiv is the integer divide operation. In testing for a match, the com-

plete address of a line stored in the cache can be inferred from the tag and its storage location within the cache.

A two-way set-associative cache maps each memory location into either of two locations in the cache and can

be constructed essentially as two identical direct-mapped caches. However, both caches must be searched at

each memory access, and the appropriate data selected and multiplexed on a tag match (hit). On a miss, a choice

must be made between the two possible cache lines as to which is to be replaced. A single LRU bit can be saved

for each such pair of lines to remember which line has been accessed more recently. This bit must be toggled to

the current state each time either of the cache lines is accessed.

In the same way, anM-way associative cache maps each memory location into any ofM memory locations in

the cache and can be constructed fromM identical direct-mapped caches. The problem of maintaining the LRU

ordering ofM cache lines quickly becomes hard, however, since there areM! possible orderings, so it takes at

least

(6)

bits to store the ordering. In practice, this requirement limits true LRU replacement to three- or four-way set

associativity.

Figure3 shows how a cache is organized into sets, blocks, and words. The cache shown is a 2-Kbyte, four-

way set-associative cache, with 16 sets. Each set consists of four blocks. The cache block size in this example is

32 bytes, so each block contains eight 4-byte words. Also depicted at the bottom Figure3 is a four-way inter-

leaved main memory system (see the next section for details). Each successive word in the cache block maps

into a different main memory bank. Because of the cache’s mapping restrictions, each cache block obtained

Atag Amemory div size_of_cache=

log2 M!()

8

from main memory will be loaded into its corresponding set, but may appear anywhere within that set.

Write operations require special handling in the cache. If the main memory copy is updated with each write

operation—a technique known aswrite-through or store-through—the writes may force operations to stall while

the write operations are completing. This can happen after a series of write operations even if the processor is

allowed to proceed before the write to the memory has completed. If the main memory copy is not updated with

each write operation—a techniques known aswrite-back or copy-back or deferred writes—the main memory

locations become stale, that is, memory no longer contains the correct values and must not be relied upon to pro-

vide data. This is generally permissible, but care must be exercised to make sure that it is always updated before

the line is purged from the cache and that the cache is never bypassed. Such a bypass could occur with DMA

(direct memory access), in which the I/O system writes directly into main memory without the involvement of

the processor.

Even for a system that implements write-through, care must be exercised if memory requests may bypass the

cache. While the main memory is never stale, a write that bypasses the cache, such as from I/O, could have the

effect of making the cached copy stale. A later access by the CPU could then provide an incorrect value. This

can only be avoided by making sure that cached entries are invalidated even if the cache is bypassed. The prob-

lem is relatively easy to solve for a single processor with I/O, but becomes very difficult to solve for multiple

processors, particularly so if multiple caches are involved as well. This is known in general as the cachecoher-

ence or consistency problem.

The cache exploits spatial locality by loading an entire cache line after a miss. This tends to result in bursty

traffic to the main memory, since most accesses are filtered out by the cache. After a miss, however, the memory

system must provide an entire line at once. Cache memory nicely complements an interleaved, high-bandwidth

main memory (described in the next section), since a cache line can be interleaved across many banks in a regu-

lar manner—thus avoiding memory conflicts and being loaded rapidly into the cache. The example main mem-

ory shown in Figure3 can provide the entire cache line with two parallel memory accesses.

Conventional caches traditionally could not accept requests while they were servicing a miss request. In other

9

words, theylocked up or blocked when servicing a miss. The growing penalty for cache misses has made it nec-

essary for high-end commodity memory systems to continue to accept (and service) requests from the processor

while a miss is being serviced. Some systems are able to service multiple miss requests simultaneously. To allow

this mode of operation, the cache design islockup-free or non-blocking [Kroft, 1981]. Lockup-free caches have

one structure for each simultaneous outstanding miss that they can service. This structure holds the information

necessary to correctly return the loaded data to the processor, even if the misses come back in a different order

than that in which they were sent.

Two factors drive the existence of multiple levels of cache memory in the memory hierarchy: access times

and a limited number of transistors on the CPU chip. Larger banks with greater capacity are slower then smaller

banks. If the time needed to access the cache limits the clock frequency of the CPU, then the first-level cache

size may need to be constrained. Much of the benefit of a large cache may be obtained by placing a small first-

level cache above a larger second-level cache; the first is accessed quickly and the second holds more data close

to the processor. Since many modern CPUs have caches on the CPU chip itself, the size of the cache is limited

by the CPU silicon real-estate. Some CPU designers have assumed that system designers will add large off-chip

caches to the one or two levels of caches on the processor chip. The complexity of this part of the memory hier-

archy may continue to grow as main memory access penalties continue to increase.

Caches that appear on the CPU chip are manufactured by the CPU vendor. Off-chip caches, however, are a

commodity part sold in large volume. An incomplete list of major cache manufacturers is Hitachi, IBM Micro,

Micron, Motorola, NEC, Samsung, SGS-Thomson, Sony, and Toshiba. Although most personal computers and

all major workstations now contain caches, very high-end machines (such as multi-million dollar supercomput-

ers) do not usually have caches. These ultra-expensive computers can afford to implement their main memory in

a comparatively fast semiconductor technology such as static RAM (SRAM), and can afford so many banks that

cacheless bandwidth out of the main memory system is sufficient. Massively-parallel processors (MPPs), how-

ever, are often constructed out of workstation-like nodes to reduce cost. MPPs therefore contain cache hierar-

chies similar to those found in the workstations on which the nodes of the MPPs are based.

10

Cache sizes have been steadily increasing on personal computers and workstations. Intel Pentium-based per-

sonal computers come with 8 Kbyte each of instruction and data caches. Two of the Pentium chip sets, manufac-

tured by Intel and OPTi, allow level-two caches ranging from 256 to 512 Kbyte and 64 Kbyte to 2 Mbyte,

respectively. The newer Pentium Pro systems also have 8 Kbyte, first-level instruction and data caches, but they

also have either a 256 Kbyte or a 512 Kbyte second-level cache on the same module as the processor chip.

Higher-end workstations—such as DEC Alpha 21164-based systems—are configured with substantially more

cache. The 21164 also has 8 Kbyte, first-level instruction and data caches. Its second-level cache is entirely on-

chip, and is 96 Kbyte. The third-level cache is off-chip, and can have a size ranging from 1 Mbyte to 64 Mbyte.

For all desktop machines, cache sizes are likely to continue to grow—although the rate of growth compared

to processor speed increases and main memory size increases is unclear.

0.4 Parallel and Interleaved Main Memories

Main memories are comprised of a series of semiconductor memory chips. A number of these chips, like

caches, form abank. Multiple memory banks can be connected together to form aninterleaved (or parallel)

memory system. Since each bank can service a request, an interleaved memory system withK banks can service

K requests simultaneously, increasing the peak bandwidth of the memory system toK times the bandwidth of a

single bank. In most interleaved memory systems, the number of banks is a power of two, that is,. An n-

bit memory word address is broken into two parts: ak-bit bank number and anm-bit address of a word within a

bank. Though thek bits used to select a bank number could be anyk bits of then-bit word address, typical inter-

leaved memory systems use the low-orderk address bits to select the bank number; the higher order

bits of the word address are used to access a word in the selected bank. The reason for using the low-orderk bits

will be discussed shortly. An interleaved memory system which uses the low-orderk bits to select the bank is

referred to as alow-order or astandard interleaved memory.

There are two ways of connecting multiple memory banks:simple interleaving andcomplex interleaving.

Sometimes simple interleaving is also referred to asinterleaving, and complex interleaving asbanking.

K 2
k

=

m n k–=

11

Figure5 shows the structure of a simple interleaved memory system.m address bits are simultaneously sup-

plied to every memory bank. All banks are also connected to the same read/write control line (not shown in

Figure5). For a read operation, the banks start the read operation and deposit the data in their latches. Data can

then be read from the latches, one by one, by appropriately setting the switch. Meanwhile, the banks could be

accessed again, to carry out another read or write operation. For a write operation, the latches are loaded, one by

one. When all the latches have been written, their contents can be written into the memory banks by supplyingm

bits of address (they will be written into the same word in each of the different banks). In a simple interleaved

memory, all banks are cycled at the same time; each bank starts and completes its individual operations at the

same time as every other bank; a new memory cycle can start (for all banks) once the previous cycle is com-

plete. Timing details of the accesses can be found inThe Architecture of Pipelinined Computers, [Kogge, 1981].

One use of a simple interleaved memory system is to back up a cache memory. To do so, the memory must be

able to read blocks of contiguous words (a cache block) and supply them to the cache. If the low-orderk bits of

the address are used to select the bank number, then consecutive words of the block reside in different banks,

they can all be read in parallel, and supplied to the cache one by one. If some other address bits are used for bank

selection, then multiple words from the block might fall in the same memory bank, requiring multiple accesses

to the same bank to fetch the block.

Figure6 shows the structure of a complex interleaved memory system. In such a system, each bank is set up

to operate on its own, independent of the other banks’ operation. In this example, Bank 1 could carry out a read

operation on a particular memory address, while Bank 2 carries out a write operation on a completely unrelated

memory address. (Contrast this with the operation in a simple interleaved memory where all banks are carrying

out the same operation, read or write, and the locations accessed within each bank represent a contiguous block

of memory.) Complex interleaving is accomplished by providing an address latch and a read/write command

line for each bank. Thememory controller handles the overall operation of the interleaved memory. The pro-

cessing unit submits the memory request to the memory controller, which determines the bank that needs to be

accessed. The controller then determines if the bank is busy (by monitoring a busy line for each bank). The con-

12

troller holds the request if the bank is busy, submitting it later when the bank is available to accept the request.

When the bank responds to a read request, the switch is set by the controller to accept the request from the bank

and forward it to the processing unit. Timing details of the accesses can be found inThe Architecture of Pipe-

lined Computers [Kogge, 1981].

A typical use of a complex interleaved memory system is in avector processor. In a vector processor, the pro-

cessing units operate on a vector, for example a portion of a row or a column of a matrix. If consecutive ele-

ments of a vector are present in different memory banks, then the memory system can sustain a bandwidth of

one element per clock cycle. By arranging the data suitably in memory and using standard interleaving (for

example, storing the matrix in row-major order will place consecutive elements in consecutive memory banks),

the vector can be accessed at the rate of one element per clock cycle as long as the number of banks is greater

than the bank busy time.

Memory systems that are built for current machines vary widely, the price and purpose of the machine being

the main determinant of the memory system design. The actual memory chips, which are the components of the

memory systems, are generally commodity parts built by a number of manufacturers. The major commodity

DRAM manufacturers include (but are certainly not limited to) Hitachi, Fujitsu, LG Semicon, NEC, Oki, Sam-

sung, Texas Instruments, and Toshiba.

The low-end of the price/performance spectrum is the personal computer, presently typified by Intel Pentium

systems. Three of the manufacturers of Pentium-compatible chip sets (which include the memory controllers)

are Intel, OPTi, and VLSI Technologies. Their controllers provide for memory systems that are simply inter-

leaved, all with minimum bank depths of 256 Kbyte, and maximum system sizes of 192 Mbyte, 128 Mbyte, and

1 Gbyte, respectively.

Both higher-end personal computers and workstations tend to have more main memory than the lower-end

systems, although they usually have similar upper limits. Two examples of such systems are workstations built

with the DEC Alpha 21164, and servers built with the Intel Pentium Pro. The Alpha systems, using the 21171

chip set, are limited to 128 Mbyte of main memory using 16 Mbit DRAMs, although they will be expandable to

13

512 Mbyte when 64 Mbit DRAMs are available. Their memory systems are eight-way simply interleaved, pro-

viding 128 bits per DRAM access. The Pentium Pro systems support slightly different features. The 82450KX

and 82450GX chip sets include memory controllers that allow reads to bypass writes (performing writes when

the memory banks are idle). These controllers can also buffer eight outstanding requests simultaneously. The

82450KX controller permits one- or two-way interleaving, and up to 256 Mbyte of memory when 16 Mbit

DRAMs are used. The 82450GX chip set is more aggressive, allowing up to four separate (complex-interleaved)

memory controllers, each of which can be up to four-way interleaved and have up to 1 Gbyte of memory (again

with 16 Mbit DRAMs).

Interleaved memory systems found in high-endvector supercomputers are slight variants on the basic com-

plex interleaved memory system of Figure6. Such memory systems may have hundreds of banks, with multiple

memory controllers that allow multiple independent memory requests to be made every clock cycle. Two exam-

ples of modern vector supercomputers are the Cray T-90 series and the NEC SX series. The Cray T-90 models

come with varying numbers of processors—up to 32 in the largest configuration. Each of these processors is

coupled with 256 Mbyte of memory, split into 16 banks of 16 Mbyte each. The T-90 has complex interleaving

among banks. The largest configuration (the T-932) has 32 processors, for a total of 512 banks and 8 Gbyte of

main memory. The T-932 can provide a peak of 800 GByte/second bandwidth out of its memory system. NEC’s

SX-4 product line, their most recent vector supercomputer series, has numerous models. Their largest single-

node model (with one processor per node) contains 32 processors, with a maximum of 8 Gbyte of memory, and

a peak bandwidth of 512 Gbyte/second out of main memory. Although the sizes of the memory systems are

vastly different between workstations and vector machines, the techniques that both use to increase total band-

width and minimize bank conflicts are similar.

0.5 Virtual Memory

Cache memory contains portions of the main memory in dynamically-allocated cache lines. Since the data

portion of the cache memory is itself a conventional memory, each line present in the cache has two addresses

14

associated with it: its main memory address and its cache address. Thus, the main memory address of a word can

be divorced from a particular storage location and abstractly thought of as an element in the address space. The

use of a two-level hierarchy—consisting of main memory and a slower, larger disk storage device—evolved by

making a clear distinction between the address space and the locations in memory. An address generated during

the execution of a program is known as avirtual address, which must be translated to aphysical address before

it can be accessed in main memory. The total address space is only an abstraction.

A virtual memory address is mapped to a physical address, which indicates the location in main memory

where the data actually reside [Denning, 1970]. The mapping is maintained through a structure called thepage

table, which is maintained in software by the operating system. Like the tag memory of a cache memory, the

page table is accessed through a virtual address to determine the physical (main memory) address of the entry.

Unlike the tag memory, however, the table is usually sorted by virtual addresses, making the translation process

a simple matter of an extra memory access to determine the physical address of the desired item. A system

maintaining the page table in the way analogous to a cache tag memory is said to haveinverted page tables. In

addition to the physical address mapped to a virtual page, and an indication of whether the page is present at all,

a page table entry often contains other information. For example, the page table may contain the location on the

disk where each block of data is stored when not present in main memory.

The virtual memory can be thought of as a collection of blocks. These blocks are often aligned and of fixed

size, in which case they are known aspages. Pages are the unit of transfer between the disk and main memory,

and are generally larger than a cache line—usually thousands of bytes. A typical page size for machines in 1995

is 4Kbyte. A page’s virtual address can be broken into two parts: a virtual page number and an offset. The page

number specifies which page is to be accessed, and the page offset indicates the distance from the beginning of

the page to the indicated address.

A physical address can also be broken into two parts, a physical page number (also called apage frame num-

ber) and an offset. This mapping is done at the level of pages, so the page table can be indexed by means of the

virtual page number. The page frame number is contained in the page table and is read out during the translation,

15

along with other information about the page. In most implementations the page offset is the same for a virtual

address and the physical address to which it is mapped.

The virtual memory hierarchy is different than the cache/main memory hierarchy in a number of respects,

resulting primarily from the fact that there is a much greater difference in latency between accesses to the disk

and to main memory. While a typical latency ratio for cache and main memory is one order of magnitude (main

memory has a latency ten times larger than the cache), the latency ratio between disk and main memory is often

four orders of magnitude or more. This large ratio exists because the disk is a mechanical device—with a latency

partially determined by velocity and inertia—whereas main memory is limited only by electronic and energy

constraints. Because of the much larger penalty for a page miss, many design decisions are affected by the need

to minimize the frequency of misses. When a miss does occur, the processor could be idle for a period during

which it could execute tens of thousands of instructions. Rather than stall during this time, as may occur upon a

cache miss, the processor invokes the operating system and may switch to a different task. Because the operat-

ing system is being invoked anyway, it is convenient to rely on the operating system to set up and maintain the

page table, unlike cache memory, where it is done entirely in hardware. The fact that this accounting occurs in

the operating system enables the system to use virtual memory to enforce protection on the memory. This

ensures that no program can corrupt the data in memory that belong to any other program.

Hardware support provided for a virtual memory system generally includes the ability to translate the virtual

addresses provided by the processor into the physical addresses needed to access main memory. Thus, only upon

a virtual address miss is the operating system invoked. An important aspect of a computer that implements vir-

tual memory, however, is the necessity of freezing the processor at the point at which a miss occurs, servicing

the page table fault, and later returning to continue the execution as if no page fault had occurred. This require-

ment means either that it must be possible to halt execution at any point—including possibly in the middle of a

complex instruction—or that it must be possible to guarantee that all memory accesses will be to pages resident

in main memory.

As described above, virtual memory requires two memory accesses to fetch a single entry from memory, one

16

into the page table to map the virtual address into the physical address, and the second to fetch the actual data.

This process can be sped up in a variety of ways. First, a special-purpose cache memory to store the active por-

tion of the page table can be used to speed up the first access. This special-purpose cache is usually called a

translation lookaside buffer (TLB). Second, if the system also employs a cache memory, it may be possible to

overlap the access of the cache memory with the access to the TLB, ideally allowing the requested item to be

accessed in a single cache access time. The two accesses can be fully overlapped if the virtual address supplies

sufficient information to fetch the data from the cache before the virtual-to-physical address translation has been

accomplished. This is true for anM-way set associative cache of capacityC if the following relationship holds:

(7)

For such a cache, the index into the cache can be determined strictly from the page offset. Since the virtual page

offset is identical to the physical page offset, no translation is necessary, and the cache can be accessed concur-

rently with the TLB. The physical address must be obtained before the tag can be compared, of course.

An alternative method applicable to a system containing both virtual memory and a cache is to store the vir-

tual address in the tag memory instead of the physical address. This technique introduces consistency problems

in virtual memory systems that either permit more than a single address space, or allow a single physical page to

be mapped to more than one single virtual page. This problem is known as thealiasing problem.

Chapter 102 is devoted to virtual memory, and contains significantly more material on this topic for the inter-

ested reader.

Research Issues
Research is occurring on all levels of the memory hierarchy. At the register level, researchers are exploring

techniques to provide more registers than are architecturally visible to the compiler. A large volume of work

exists (and is occurring) for cache optimizations and alternate cache organizations. For instance, modern proces-

sors now commonly split the top level of the cache into separate physical caches, one for instructions (code) and

one for program data. Due to the increasing cost of cache misses (in terms of processor cycles), some research

Page_size
C
M
-----≥

17

trades-off increasing the complexity of the cache for reducing the miss rate. Two examples of cache research

from opposite ends of the hardware/software spectrum areblocking [Lam, 1991] andskewed-associative caches

[Seznec, 1993]. Blocking is a software technique in which the programmer or compiler reorganizes algorithms

to work on subsets of data that are smaller than the cache, instead of streaming entire large data structures

repeatedly through the cache. This reorganization greatly improves temporal locality. The skewed-associative

cache is one example of a host of hardware techniques that map blocks into the cache differently, with the goal

of reducing misses from set conflicts. In skewed-associative caches, either one of two hashing functions may

determine where a block should be placed in the cache, as opposed to just the one hashing function (low-order

index bits) that traditional caches use. An important cache-related research topic isprefetching [Mowry, 1992],

in which the processor issues requests for data well before the data are actually needed. Speculative prefetching

is also a current research topic. In speculative prefetching, prefetches are issued based on guesses as to which

data will be needed soon. Other cache-related research examines placing special structures in parallel with the

cache, trying to optimize for workloads that do not lend themselves well to caches. Stream buffers [Jouppi,

1990] are one such example. A stream buffer automatically detects when a linear access through a data structure

is occurring. The stream buffer issues multiple sequential prefetches upon detection of a linear array access.

Much of the ongoing research on main memory involves improving the bandwidth from the memory system

without greatly increasing the number of banks. Multiple banks are expensive, particularly with the large and

growing capacity of modern DRAM chips. Rambus [Rambus Inc., 1992] and Ramlink [IEEE Computer Society,

1993] are two such examples.

Research issues associated with improving the performance of the virtual memory system fall under the

domain of operating system research. One proposed strategy for reducing page faults allows each running pro-

gram to specify its own page replacement algorithm, enabling each program to optimize the choice of page

replacements based on its reference pattern [Engler et al., 1995]. Other recent research focuses on improving the

performance of the TLB. Two techniques for doing this are the use of a two-level TLB (the motivation is similar

to that for a two-level cache), and the use of superpages [Talluri, 1994]. With superpages, each TLB entry may

18

represent a mapping for more than one consecutive page, thus increasing the total address range that a fixed

number of TLB entries may cover.

Summary
A computer’s memory system is the repository for all the information that the CPU uses and produces. A per-

fect memory system is one that can immediately supply any datum that the CPU requests. This ideal memory is

not implementable, however, as the three factors of memory capacity, speed, and cost are directly in opposition.

By staging smaller, faster memories in front of larger, slower, and cheaper memories, the performance of the

memory system may approach that of a perfect memory system—at a reasonable cost. The memory hierarchies

of modern general-purpose computers generally contain registers at the top, followed by one or more levels of

cache memory, main memory, and virtual memory on a magnetic or optical disk.

Performance of a memory system is measured in terms of latency and bandwidth. The latency of a memory

request is how long it takes the memory system to produce the result of the request. The bandwidth of a memory

system is the rate at which the memory system can accept requests and produce results. The memory hierarchy

improves average latency by quickly returning results that are found in the higher levels of the hierarchy. The

memory hierarchy generally reduces bandwidth requirements by intercepting a fraction of the memory requests

at higher levels of the hierarchy. Some machines—such as high-performance vector machines—may have fewer

levels in the hierarchy, increasing memory cost for better predictability and performance. Some of these

machines contain no caches at all, relying on large arrays of main memory banks to supply very high bandwidth,

with pipelined accesses of operands that mitigate the adverse performance impact of long latencies.

Cache memories are a general solution to improving the performance of a memory system. Although caches

are smaller than typical main memory sizes, they ideally contain the most frequently-accessed portions of main

memory. By keeping the most heavily-used data near the CPU, caches can service a large fraction of the

requests without accessing main memory (the fraction serviced is called the hit rate). Caches assume locality of

reference to work well transparently—they assume that accessed memory words will be accessed again quickly

19

(temporal locality), and that memory words adjacent to an accessed word will be accessed soon after the access

in question (spatial locality). When the CPU issues a request for a datum not in the cache (a cache miss), the

cache loads that datum and some number of adjacent data (a cache block) into itself from main memory.

To reduce cache misses, some caches are associative—a cache may place a given block in one of several

places, collectively called a set. This set is content-addressable; a block may or may not be accessed based on an

address tag, one of which is coupled with each block. When a new block is brought into a set and the set is full,

the cache’s replacement policy dictates which of the old blocks should be removed from the cache to make room

for the new block. Most caches use an approximation of least-recently-used (LRU) replacement, in which the

block last accessed farthest in the past is the one that the cache replaces.

Main memory, or backing store, consists of banks of dense semiconductor memory. Since each memory chip

has a small off-chip bandwidth, rows of these chips are placed together to form a bank, and multiple banks are

used to increase the total bandwidth out of main memory. When a bank is accessed, it remains busy for a period

of time, during which the processor may make no other accesses to that bank. By increasing the number of inter-

leaved (parallel) banks, the chance that the processor issues two conflicting requests to the same bank is

reduced.

Systems generally require a greater number of memory locations than are available in the main memory (i.e.,

a larger address space). The entire address space that the CPU uses is kept on large magnetic or optical disks;

this is called the virtual address space, or virtual memory. The most frequently-used sections of the virtual mem-

ory are kept in main memory (physical memory), and are moved back and forth in units called pages. The place

at which a virtual address lies in main memory is called its physical address. Since a much larger address space

(virtual memory) is mapped onto a much smaller one (physical memory), the CPU must translate the memory

addresses issued by a program (virtual addresses) into their corresponding locations in physical memory (physi-

cal addresses). This mapping is maintained in a memory structure called the page table. When the CPU attempts

to access a virtual address that does not have a corresponding entry in physical memory, a page fault occurs.

Since a page fault requires an access to a slow mechanical storage device (such as a disk), the CPU usually

20

switches to a different task while the needed page is read from the disk.

Every memory request issued by the CPU requires an address translation, which in turn requires an access to

the page table stored in memory. A translation lookaside buffer (TLB) is used to reduce the number of page table

lookups. The most frequent virtual-to-physical mappings are kept in the TLB, which is a small associative mem-

ory tightly coupled with the CPU. If the needed mapping is found in the TLB, the translation is performed

quickly and no access to the page table need be made. Virtual memory allows systems to run larger or more pro-

grams than are able to fit in main memory, enhancing the capabilities of the system.

Defining Terms
Bandwidth: The rate at which the memory system can service requests.

Cache memory:A small, fast, redundant memory used to store the most frequently accessed parts of the main

memory.

Interleaving: Technique for connecting multiple memory modules together in order to improve the bandwidth

of the memory system.

Latency: The time between the initiation of a memory request and its completion.

Memory hierarchy: Successive levels of different types of memory, which attempt to approximate a single

large, fast, and cheap memory structure.

Virtual memory: A memory space implemented by storing the more-frequently-accessed parts in main mem-

ory and less-frequently-accessed parts on disk.

References
Denning, P. J. 1970. “Virtual memory,” Computing Surveys, vol. 2, no. 3, pp. 153-170.

Engler, D. R., Kaashoek, M. F., O’Toole, J. Jr. 1995. “Exokernel: An Operating System Architecture for Appli-

cation-Level Resource Management,”Proc. 15th Symposium on Operating Systems Principles, pp. 251-266.

Hennessy, J. L. and Patterson, D. A. 1990.Computer Architecture: A Quantitative Approach, 1st ed. Morgan

Kaufmann Publishers, San Mateo, CA.

21

Hill, M. D. 1988. “A case for direct-mapped caches,”IEEE Computer, vol. 21, no. 12.

IEEE Computer Society. 1993.IEEE Standard for High-Bandwidth Memory Interface Based on SCI Signaling

Technology (RamLink), Draft 1.00 IEEE P1596.4-199X.

Jouppi, N. 1990. “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative

Cache and Prefetch Buffers,” Proc. 17th Annual International Symposium on Computer Architecture, pp. 364-

373.

Kogge, P. M. 1981.The Architecture of Pipelined Computers, New York: McGraw-Hill.

Kroft, D. 1981. “Lockup-Free Instruction Fetch/Prefetch Cache Organization,”Proc. 8th Annual International

Symposium on Computer Architecture, pp. 81-87.

Lam, M.S.,Rothberg, E. E., and Wolf, M. E. 1991. “The Cache Performance and Optimizations of Blocked

Algorithms,” Proc. 4th Annual Symposium on Architectural Support for Programming Languages and Operat-

ing Systems, pp. 63-74.

Mowry, T. C., Lam, M. S., Gupta, A. 1992. “Design and Evaluation of a Compiler Algorithm for Prefetching,”

Proc. 5th Annual Symposium on Architectural Support for Programming Languages and Operating Systems, pp.

62-73.

Rambus, Inc. 1992.Rambus Architectural Overview, Mountain View, CA.

Seznec, A. 1993. “A case for two-way skewed-associative caches,”Proc. 20th International Symposium on

Computer Architecture, pp. 169-178.

Smith, A. J. 1986. “Bibliography and readings on CPU cache memories and related topics,”ACM SIGARCH

Computer Architecture News, vol. 14, no 1, pp. 22-42.

Smith, A. J. 1991. “Second bibliography on cache memories,”ACM SIGARCH Computer Architecture News,

vol. 19, no 4, pp. 154-182.

Talluri, M. and Hill, M. D. 1994. “Surpassing the TLB Performance of Superpages with Less Operating System

Support,” Proc. Sixth International Symposium on Architectural Support for Programming Languages and

Operating Systems, pp. 171-182.

22

Further Information
Some general information on the design of memory systems is available in High-Speed Memory Systems by

A. V. Pohm and O. P. Agarwal.

Computer Architecture: A Quantitative Approach by John Hennessy and David Patterson contains a detailed

discussion on the interaction between memory systems and computer architecture.

For information on memory system research, the recent proceedings of the International Symposium on Com-

puter Architecture contain annual research papers in computer architecture, many of which focus on the memory

system. To obtain copies, contact the IEEE Computer Society Press, at 10662 Los Vaqueros Circle, P.O. Box

3014, Los Alamitos, CA 90720-1264.

23

FIGURE CAPTIONS

Figure 1. The memory interface

Source: Dorf, R. C. 1992.The Electrical Engineering Handbook, 1st ed., p. 1928. CRC Press, Inc.,
Boca Raton, FL. With permission.

Figure 2. A memory hierarchy

Source: Dorf, R. C. 1992.The Electrical Engineering Handbook, 1st ed., p. 1932. CRC Press, Inc.,
Boca Raton, FL. With permission.

Figure 3. Components of a cache memory.

Source: Hill, M. D. 1988. “A case for direct-mapped caches,”IEEE Computer, vol. 21, no. 12, p. 27.
IEEE Computer Society, New York, NY. With permission.

Figure 4. Organization of a cache.

Figure 5. A simple interleaved memory system. (Source: Adapted from Kogge, 1981.)

Source: Kogge, P. M. 1981.The Architecture of Pipelined Computers, 1st ed., p. 41. McGraw-Hill, Inc.,
New York, NY. With permission.

Figure 6. A complex interleaved memory system. (Source: Adapted from Kogge, 1981.)

Source: Kogge, P. M. 1981.The Architecture of Pipelined Computers, 1st ed., p. 42. McGraw-Hill, Inc.,
New York, NY. With permission.

Figure 7. Virtual-to-physical address translation

Source: Dorf, R. C. 1992.The Electrical Engineering Handbook, 1st ed., p. 1935. CRC Press, Inc.,
Boca Raton, FL. With permission.

24

PROCESSING

UNIT

MEMORY

SYSTEM

ADDRESS

DATA

CONTROL

FIGURE 1

25

CPU

Cache
Main Virtual

Memory Memory

Very Fast
(Electronic speeds)

Semiconductor SRAM

Small

Fast
(Electronic Speeds)

Semiconductor DRAM

Large

Very Slow
(Mechanical Speeds)

Magnetic/Optical

Very Large

Very Fast

Semiconductor SRAM

Tiny

FIGURE 2

Registers

(Electronic speeds)

128 bytes - 4Kbytes 32 Kbytes - 4 Mbytes 4 Mbytes - 512 Mbytes 40 MBytes - 8 Gbytes

26

tag index offset state tag data

Compare Incoming & Stored Tags
and Select Data Word

Data Word Hit/Miss

Decode

Incoming Address A Cache Block (Frame)

FIGURE 3

27

4-way set-associative cache

16 sets

4 cache blocks/set

Eight 4-byte words/block

4 main memory banks

Each successive word in a
block maps to a different
main memory bank.

FIGURE 4

28

Bank

1

Latch

Bank

2

Latch

Bank

3

Latch

Bank

2k

Latch

Switch

d bit data bus

k address bits

(switch select)

m address

bits

FIGURE 5

29

Bank

1

Latch

Bank

2

Latch

Bank

3

Latch

Bank

2k

Latch

Switch

d bit data bus

k address bits

(switch select)

m address
bits

M
em

or
y

C
on

tr
ol

le
r

B
us

y/
C

om
pl

et
e

C
om

m
an

d

FIGURE 6

30

virtual page number page offset

+

page frame number page offset

Page Table

page-table-
base-register

protection

dirty bit

reference bit

in-memory?

FIGURE 7

XXXXX

