
19.5: D. Burger Appears in the 2005 GOMACTech Intelligent Technologies Conference

19.5: Breaking the GOP/Watt Barrier with EDGE Architectures

Doug Burger and Stephen W. Keckler
Department of Computer Sciences
The University of Texas at Austin

1 University Station, C0500, Austin, TX 78712-0233
{dburger, skeckler}@cs.utexas.edu

Abstract: Achieving excellent power/performance ratios

is easy for processor designs that have sufficiently low

performance needs. The techniques traditionally used to

extract higher levels of performance from RISC or CISC

architectures, however, have either exacerbated power

limitations or placed an undue burden on the programmer.

In this paper, we describe how Explicit Data Graph

Execution (EDGE) architectures have the potential to offer

both high performance and high programmer productivity

while achieving a high performance/power ratio.

Keywords: Embedded systems; microprocessors;

computer architecture; low-power systems.

Introduction
Balancing power and performance has become one of the

dominant issues in system design, from embedded systems

to supercomputers. Designers are tasked with maximizing

performance given a power budget, or minimizing power

given a required level of performance. In either case,

designers strive to maximize performance per watt.

Power/performance tradeoffs may be made at both the

microarchitectural level and the circuit level. With the

former, the architect's goal is to maximize the ratio of

fundamental, useful work (ALU operations) to active

overhead circuitry, such as control logic. Single-issue, in-

order RISC cores, such as low-power ARM or PowerPC

implementations, have excellent compute/overhead logic

ratios, so are often used in ultra-low power embedded

systems. That design point, however, is a low-performance

solution; scaling to higher performance while maintaining

power efficiency is difficult with current approaches.

Current alternatives for achieving higher performance have

power drawbacks. Deeper, power-hungry pipelines

increase latch counts, control overhead, and suffer CPI

drops. Wide-issue RISC or CISC superscalar cores suffer

from increased bookkeeping logic and power-hungry

structures that increase quadratically with issue width [3].

Wide-issue VLIW cores, such as Intel's Itanium, push the

wrong responsibilities, particularly execution scheduling –

into the compiler, resulting in poor performance. Finally,

CMPs place the responsibility of obtaining performance

squarely on the programmer, significantly reducing

productivity. The overheads of running parallel program,s

particularly load imbalances, can also result in poor

performance/power ratios.

An alternative to these approaches is the design of new

instruction sets that provide both high performance and

high power efficiency. In this paper, we describe such an

approach: Explicit Data Graph Execution (EDGE) ISAs.

We also describe the TRIPS architecture, which is a

specific example of an EDGE ISA (just as PowerPC is an

example of a RISC ISA), and compare it to an Alpha 21264

on a number of microbenchmarks. We show that the

TRIPS prototype either eliminates the Alpha’s power-

hungry hardware structures outright, or greatly reduces

their activity factors. The sole exception are the load/store

queues, which are considerably larger (and thus power

inefficient) in TRIPS.

EDGE Architectures
EDGE architectures [2], conceived and developed as a part

of DARPA's Polymorphous Computing Architectures

program, are designed to offer high instruction-level

concurrency along with significant reductions in overhead

and control logic. EDGE ISAs encode dependences in the

instructions themselves, permitting limited dataflow-like

execution that supports efficient mapping of many different

application classes to a common compute substrate. This

direct instruction-to-instruction communication permits

most operands to bypass the register file. Instructions can

be issued whenever their operands arrive from their parent

instructions, permitting aggressive out-of-order execution

with little overhead or extra control. The hardware thus

supports flexible, energy-streamlined dataflow execution,

while appearing as a morphable, highly concurrent

substrate to the software without requiring explicit

programmer support or new languages.

The TRIPS hardware prototype implements one type of

EDGE ISA on a chip that contains two 16-wide issue cores.

The TRIPS ISA breaks code into blocks of instructions and

amortizes the control overhead across those instruction

blocks. This solution completely eliminates many of the

power-hungry structures in traditional superscalar

architectures, and reduces the access frequency of many

others.

As shown in Figure 1, each block in the TRIPS prototype

architecture can contain up to 128 instructions (including

32 loads or stores and up to eight branches). The TRIPS

compiler partitions the program into a control-flow graph

G

D2

D1

D0

D3

I0

I1

I2

I3

I4

R0 R1 R2 R3

E0 E1 E2 E3

E4 E5 E6 E7

E8 E9 E10 E11

E12 E13 ET4 E15

G

D2

D1

D0

D3

I0

I1

I2

I3

I4

R0 R1 R2 R3

E0 E1 E2 E3

E4 E5 E6 E7

E8 E9 E10 E11

E12 E13 E14 E15

M0

M1

M2

M3

M4

M5

M6

M7

M11

M10

M9

M8

M15

M14

M13

M12

N0 N1 N2 N3

N16

N17

N18

N19

N23

N22

N21

N20

N4 N5 N6 N7

EBC DMA0 SDC0

C2C DMA1 SDC1

EBI SD0

C2C SD1

IRQ, GPIO

(Not shown to scale)

TRIPS Processor 1

TRIPS Processor 0

OCN

N8

N9

N10

N11

N15

N14

N13

N12

Figure 1. Diagram of the TRIPS ASIC Prototype.

of these large blocks by merging smaller basic blocks into

predicated hyperblocks and performing transformations

such as inlining and loop unrolling to enlarge the blocks

further. The compiler assigns each instruction of a block to

one of the sixteen ALUs in the execution array. Up to eight

instructions per block can be assigned to any given ALU,

hence the maximum block size of 128 instructions (8

instructions per ALU across 16 ALUs).

In the TRIPS execution model, the compiler chooses the

physical placement of the instructions, but instructions

within a block issue in run-time (dynamic) order, based on

when each instruction's operands arrive at its ALU. Unlike

a VLIW architecture, the TRIPS compiler does not

statically determine the issue order of the instructions.

When an instruction fires, it determines the location of its

dependent children by examining the target fields encoded

in the instruction itself. Each field specifies the ALU and

reservation station where a dependent instruction is located.

The resultant operand is then routed to the consuming ALU

across a lightweight switched network. If the child

instruction is mapped to the same ALU as its parent, no

routing occurs; if the child instruction has received all of its

other operands, it can fire in the cycle immediately

following the parent instruction.

When the compiler assigns a block's instructions to ALUs,

it attempts to balance concurrency, in which independent

instructions are mapped to different ALUs, with reduced

latency, in which dependent instructions are mapped to the

same or nearby ALUs. In this manner, the wire-delay

problems associated with future CMOS technologies are

mitigated, as most communication is local or near-neighbor

if the compiler is successful

When a block is to be executed, the control tile (marked

"G" in Figure 1) performs a block branch prediction,

speculating which block is the next to execute. It then

accesses its instruction cache tags, which reside only in the

G-tile, to see if the block is contained in its instruction

cache. If so, the G-tile streams the block's I-cache index to

a number of slave banks ("I-tiles" in Figure 1), which each

access their portion of the block. The I-tiles stream those

instructions across the row of ALUs to their reservation

stations at the execution tiles (“E-tiles”) where the ALUs

are located. Concurrently, each register file bank (or "R-

tile"), reads the registers needed by the block and injects

them into the routed operand network to initiate block

execution. Instructions within the block communicate

directly as previously described, without accessing the

register files. Only live-out values from the block are

routed to the register file and stored, prior to block

completion. Within a block, all communication occurs from

one instruction directly to another, but all inter-block

communication occurs through the register file.

Loads and stores are routed to a column of data cache

banks on the side of the processor, and are kept ordered by

sequencing queues in those cache banks ("D-tiles"). Before

completion, a block sends all stores to the store queues in

the D-tiles, all register writes to the R-tiles, and the result of

one branch, determining the next block to execute, to the

G-tile. At that point, a new block is fetched and mapped

into the resources vacated by the old block.

The TRIPS microarchitecture allows up to eight such

blocks to be in flight at once. Each ALU must thus contain

64 reservation stations, eight instructions per block at that

ALU times eight blocks. Since each TRIPS processing

core contains 16 ALUs, each core thus supports up to 1024

instructions in flight. More detail on the TRIPS

architecture and overall EDGE concepts can be found

elsewhere [2, 4].

This architecture has two capabilities that make it

polymorphous or able to adapt to many types of workloads

such as single speculative thread, loop, vector, streaming,

and multithreaded. First, the compiler's ability to place

instructions on individual ALUs--combined with the

flexibility of the routed mesh inter-ALU network--means

that many shapes of dataflow graphs may be mapped to the

substrate by the compiler. Whether the graph is a single

long dependence chain, or many short parallel slices, the

compiler is able to schedule them to the substrate. The

second polymorphous feature involves the memory system,

also shown in Figure 1, which is a two-dimensional array

of polymorphous banks connected by a second lightweight

routed network. These banks are individually addressable,

and can be configured as a large shared L2 cache,

partitioned per-processor L2 caches, or a mix of cache and

scratchpad memories managed by the compiler.

Power Advantages of EDGE Architectures
EDGE architectures have the potential for improved power

profiles because of the intrinsic instruction-to-instruction

communication, which ideally would allow most energy to

be spent performing useful computation.

19.5: D. Burger

The TRIPS ISA augments this potential advantage through

its use of blocks of instructions. By amortizing control and

bookkeeping logic across each large block of instructions,

the per-instruction energy consumed by control and non-

compute circuitry can be potentially much lower than in

RISC or CISC architectures. Below we enumerate the

potential power advantages of the TRIPS ISA and

microarchitecture:

• Branch prediction: Only one prediction is done for

each TRIPS block, as opposed to one per branch in

conventional pipelines. Since each block contains up

to eight branches, and many branches are converted to

intra-block predicates, a potential order-of-magnitude

reduction in branch predictor accesses is possible.

• Register accesses: A superscalar architecture requires

a large physical register file to support the many in-

flight instructions, along with many ports to support

the issue of multiple instructions per cycle. In TRIPS

blocks, any value which is created and consumed

within a block—and is not live past the end of the

block—will never access the register file. Since the

number of register file accesses is reduced, fewer ports

are required; TRIPS supports four register banks, each

of which has only one read and one write port. The

Alpha 21264, conversely, contains two register banks,

each of which has 4 read and 4 write ports, with every

register result being written to both banks.

• Instruction fetching: In the TRIPS microarchitecture,

one instruction cache access provides an entire block

of instructions. Only one tag comparison is performed

for each block, as opposed to a tag compare for every

4-instruction packet in a superscalar architecture. In

TRIPS, when the I-cache tags are accessed and a hit

occurs, the microarchitecture sends the correct index to

5 slave banks; each bank accesses part of the block and

sends it to the reservation stations in its row.

• Issue window design: In a superscalar processor, the

issue window contains a CAM in which every entry

compares its input operand register tags with the tags

broadcast by each completing instruction. In a 4-wide

machine with an 80-instruction issue window, 640 tag

comparisons per cycle must be made in the worst case.

Since EDGE architectures support direct instruction

communication, each operand obtains the location of

its consumer(s) from its instruction tag bits, is routed

to the reservation station holding the consuming

instruction, and accesses a RAM entry, without ever

performing an associative lookup. The disadvantage to

this model is that a distribution tree is required to fan

an operand out if it has many consumers.

• Register renaming: TRIPS does not need typical

register renaming, and requires none of the associative

matching used to detect inter-fetch packet dependences

in conventional architectures. Since TRIPS does

support forwarding of register outputs of one block to

register inputs of another in-flight block, it needs some

logic to track inter-block register dependences.

However, since the fraction of instructions accessing

registers is small (10-30%), the energy required to

implement this forwarding is likely much less than in

conventional register renaming.

• Loop reuse: One feature not supported in the TRIPS

prototype, but which we will explore in future designs,

is the ability to refresh loops. Since instructions are

statically mapped, a committing block (in a loop) that

finds a predicted block with the same address, need not

trigger an instruction fetch or decode, it simply sends a

signal that “refreshes” the block by clearing all valid

bits and re-injecting the new register values. Thus, if

loops are aligned properly with the number of blocks

supported by the hardware, they can execute in steady

state without instruction fetching or decoding.

Another major source of power consumption is operand

routing/bypassing from ALU to ALU. In TRIPS, operands

are transmitted along a lightweight 2-D mesh routing

network. Reducing router power in TRIPS depends on the

compiler scheduling dependent instructions near one

another to minimize the number of hops required. In

superscalar processors, operands are sent along an all-to-all

bypass network of wires, comparators, and muxes. The one

structure where TRIPS is currently at a clear power

disadvantage is the load/store queue; each memory

operation requires an associative search against all other

memory instructions in flight. The load and store queues in

the Alpha 21264 have 32 entries each; in TRIPS, the

load/store queue has 256 entries and there are four copies

of it.

Experimental Evaluation
Since power consumption can vary greatly based on design

tools, engineering effort, and choice of circuit families, we

focused on comparing TRIPS microarchitectural activity

counts with those of a conventional, high-performance

superscalar architecture to highlight the power pros and

cons of the TRIPS architecture and implementation.

The reference model against which we compare is an

Alpha 21264 [1], chosen as an example of a high-ILP core

that supports branch prediction, dependence prediction, and

4-wide superscalar issue, but which was also designed to

run at a high frequency. We compared hand-assembled

TRIPS microbenchmarks to the same microbenchmarks

compiled for an Alpha with gcc –O3. The alpha binaries

were then simulated on our 21264 Alpha simulator, which

has been validated against an actual Alpha workstation.

The 13 microbenchmarks consist of loops extracted from

the SPEC2000 benchmarks.

Table 1. Ratio of TRIPS to Alpha operations.

Benchmark # Insts Speedup Predictions I-cache Registers LSQ Op. net

ammp_1 75.4% 345.5% 4.2% 3.0% 2.5% 129.7% 225.6%

ammp_2 134.3% 304.6% 13.4% 5.4% 7.8% 54.1% 311.1%

art_1 122.3% 176.3% 15.2% 4.0% 6.1% 49.9% 343.9%

art_2 98.7% 542.9% 24.6% 7.0% 5.4% 73.7% 328.4%

art_3 82.2% 781.2% 15.5% 3.8% 2.4% 69.5% 221.8%

bzip2_3 111.5% 459.0% 11.0% 3.2% 1.6% 52.8% 265.0%

equake_1 71.6% 174.0% 24.7% 3.8% 7.2% 72.8% 264.5%

gzip_2 144.2% 193.7% 17.3% 7.5% 6.1% 2.3% 223.4%

matrix_1 47.0% 315.9% 10.8% 4.0% 5.8% 62.8% 149.8%

parser_1 80.1% 78.7% 8.4% 4.1% 4.2% 2.5% 148.2%

sieve 107.9% 73.0% 53.2% 28.6% 11.9% 39.8% 218.4%

twolf_3 58.4% 140.7% 14.1% 2.8% 1.1% 0.2% 72.6%

vadd 73.2% 186.0% 15.9% 5.5% 2.1% 57.6% 204.3%

Mean 92.8% 290.1% 17.6% 6.4% 4.9% 51.4% 229.0%

Table 1 shows that TRIPS executes only 93% of the

instructions, on average, that the same programs compiled

to an Alpha ISA would. The speedup (cycle count

reduction assuming normalized clocks) factor of three

shows the performance potential of the architecture.

The activity factor reductions are also significant. The

TRIPS microarchitecture reduces the branch predictor

accesses by over 80%, the I-cache tag matches by well over

90%, and the register file accesses (despite requiring fewer

ports) by 95%. TRIPS requires fewer load/store queue

accesses because it is able to register allocate more loads

and stores for the loops. However, each load/store queue

access is more expensive for TRIPS than the 21264, as

discussed earlier. We do not show issue window lookups,

since each TRIPS lookup is an inexpensive RAM access as

opposed to an expensive CAM search for the superscalar

model. Finally, in the last column of Table 1 we show the

ratio of the total TRIPS operand routing hops to the number

of Alpha instructions bypassed. This number shows break-

even factor by which one TRIPS router hop must be more

energy efficient than bypassing one operand along the

entire superscalar network. On average, one superscalar

instruction bypass must consume slightly more than twice

one TRIPS router hop for TRIPS to break even.

Conclusions
Power is a fundamental limiting factor for future high-

performance systems. Embedded systems that require more

performance than a single-issue RISC core can provide

currently face a number of unappealing options.

New instruction set paradigms may enable much more

efficient performance/power ratios on systems that can

easily achieve a sustained giga-op per watt. In this paper,

we have shown that EDGE architectures have the potential

to accomplish these goals. Using the TRIPS EDGE

architecture as our experimental platform, we have shown

that as much of a 20x reduction in activity factors are

possible for many of the power-hungry structures in

today’s high-performance processors. The sole remaining

challenge is building power and area-scalable load/store

queues, which is the one structure that is significantly

worse in the TRIPS design than conventional designs. We

have proposed some preliminary solutions to this challenge

[5], and are working to address this last remaining issue

comprehensively.

Acknowledgments
We are grateful to our sponsors for their support. This

research is supported by the Defense Advanced Research

Projects Agency under contract F33615-03-C-4106, with

additional support from NSF CAREER awards 9985109

and 9984336. We also thank Karu Sankaralingam, Ramdas

Nagarajan, Raj Desikan, and Robert McDonald for their

assistance with data collection and figures.

References

1. Alpha 21264 Microprocessor Hardware Reference

Manual, July 1999. Compaq Computer Corporation.

2. Doug Burger, Stephen W. Keckler, et al. Scaling to the

End of Silicon with EDGE Architectures. IEEE

Computer, 37(7):44–55, July 2004.

3. Subbarao Palacharla et al. Complexity-effective

Superscalar Processors. In Proc. of the 24th

International Symposium on Computer Architecture,

pages 206–218, June 1997.

4. Karthikeyan Sankaralingam et al.. Exploiting ILP,

TLP, and DLP with the Polymorphous TRIPS

Architecture. In Proc. of the 30th International

Symposium on Computer Architecture, pages

422–433, June 2003.

5. Simha Sethumadhavan et al. Scalable Hardware

Memory Disambiguation for High ILP Processors. In

Proc. of the 36th Ann. Symp. on Microarchitecture,

pages 399–410, Dec 2003.

