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Abstract

Dynamic multicore architectures, that fuse and split
cores at run time, potentially offer a level of perfor-
mance/energy agility that static multicore designs cannot
achieve. Conventional ISAs, however, have scalability lim-
its to fusion. EDGE-based designs offer greater scalability
but to date have been performance limited by significant
microarchitectural bottlenecks. This paper addresses these
issues and makes three major contributions. First, it pro-
poses Iterative Path Prediction to address low next block
prediction accuracy and low speculation rates. It achieves
close to taken/not-taken prediction accuracy for multi-exit
instruction blocks while also speculating the predicated ex-
ecution path within the block. Second, the paper proposes
Exposed Operand Broadcasts to address the overhead of
operand delivery for high fanout instructions by exposing a
small number of broadcast operands in the ISA. Third, we
present a scalable composable architecture called T3 that
uses these mechanisms and show it can operate across a
wide range of power and performance spectrum by increas-
ing energy efficiency and performance significantly. Also,
T3 improves energy efficiency by about 2x and performance
by up to 50% compared to previous EDGE designs.

1 Introduction
Traditional power scaling methods such as dynamic volt-

age and frequency scaling (DVFS) are becoming less effec-
tive given the current trends of transistor scaling [28, 9].
One possible direction is to use architectural innovations to
distribute execution of each thread across a variable number
of processing cores in a flexible manner [9, 28, 11, 8, 12].
Such dynamic distributed microarchitectures can operate
at different energy and performance points, supplementing
traditional DVFS methods. Explicit Data Graph Execution
(EDGE) [22] architectures were conceived with the goals
of offering high performance, high energy efficiency, and
high flexibility, by distributing computation across many
simple tiles. By raising the level of control abstraction to

an atomic, predicated, multi-exit block of instructions, in
which branches are converted to predicates, control over-
heads such as branch prediction and commit can be amor-
tized. By incorporating dataflow semantics into the ISA, ag-
gressive out-of-order execution is possible while using less
energy than out-of-order RISC or CISC designs. The intra-
block data-flow encodings push much of the run-time de-
pendence graph construction to the compiler, reducing the
energy required to support out-of-order execution through
construction and traversal of those graphs. To date, EDGE
architectures have not yet demonstrated these potential ad-
vantages as a result of two main weaknesses [7].

The first weakness is associated with predicates. Unlike
out-of-order designs that use predicates to avoid hard-to-
predict branches [4, 16], EDGE architectures employ pred-
icates to build large instruction blocks to reduce fetch bot-
tlenecks. The combination of speculative block-based ex-
ecution and predication within blocks in EDGE architec-
tures moves branch prediction off of the critical path and
alleviates the fetch bandwidth bottleneck. However, per-
forming multi-exit, next-block prediction on each block re-
sults in loss of prediction accuracy as the global history of
branches no longer includes those branches that have been
converted into predicates. Additionally, the branches that
are converted to predicates are evaluated at the execution
stage rather than being predicted, thus manifesting them-
selves as execution bottlenecks. This paper proposes a new
distributed predictor organization called an Iterative Path
Predictor (IPP). IPP quickly predicts an approximate pred-
icate path through each block and uses it to speculatively
execute high-confidence predicates in the block once those
instructions are fetched. It also uses that predicted predicate
path to predict the next-block target address by appending
the path to the global history. IPP increases the rate of pre-
dictions (improving performance) and both inter- and intra-
block prediction accuracy (saving energy). IPP improves
performance by 15% and yields a 5% energy saving with
16 composed cores per thread.

The second weakness in prior EDGE designs is high-



fanout operand delivery. For low-fanout operations, us-
ing dataflow communication among a block’s instructions
eliminates the need for the broadcast bypass network, asso-
ciative tag matching, and register renaming logic found in
conventional out-of-order processors. However, for high-
fanout operands, our baseline EDGE compiler generates
trees of move instructions to propagate values to destina-
tion instructions. These fanout instructions increase exe-
cution delay and consume additional energy. This paper
proposes an ISA extension called Exposed Operand Broad-
casts (EOBs). EOBs, which are low-power broadcast tags,
are assigned by the compiler to the highest-fanout operands.
Different from register tags, EOBs are not assigned dynam-
ically and do not require centralized power-hungry register
renaming. They also consume little bypass energy, as their
bit width is small. Using 16 composed cores, EOBs result
in a speedup of 5% and 10% energy savings.

This paper makes three main contributions. First, IPP
resolves the scalability issues of control dependences and
speculative execution across many cores. Second, EOBs
handle data dependences between instructions in a scalable
and power efficient manner. Third, we demonstrate that
a scalable composable core architecture, including mech-
anisms that reduce the negative effects of control and data
dependences can address a much wider range of power and
performance than traditional fixed-core architectures that
support only DVFS. We implement IPP and EOB solutions
along with other recently proposed mechanisms [18, 19]
in a new microarchitecture (with ISA extensions) called
T3. T3 improves performance and energy-delay product by
about 50% and 2x, respectively, compared to TFlex [12], a
previously proposed EDGE architecture.

2 Background
EDGE ISAs [22] were designed with the goals of high

single-thread performance, ability to run on a distributed,
tiled execution substrate, and good energy efficiency. An
EDGE compiler converts program code into single-entry,
multiple-exit predicated blocks. The two main features of
an EDGE ISA are block-atomic execution [15] and static
dataflow [5] within a block. Instructions in each block use
dataflow encoding through which each instruction directly
encodes its destination instructions. Using predication, all
intra-block branches are converted to dataflow instructions.
Therefore, within a block, all dependences other than mem-
ory are direct data dependences. An EDGE ISA uses ar-
chitectural registers and memory for inter-block communi-
cation. This hybrid dataflow execution model supports ef-
ficient out-of-order execution, conceptually using less en-
ergy to construct the dependence graphs, but still supports
conventional languages and sequential memory semantics.
Each block is logically fetched, executed, and committed as
a single atomic entity. This block-atomic execution model

amortizes the book-keeping overheads across a large num-
ber of instructions and reduces the number of branch predic-
tions and register accesses. It also reduces the frequency of
control decisions, providing the latency tolerance needed to
make distributed execution across multiple cores practical.

The TRIPS microarchitecture implemented the first in-
stantiation of an EDGE architecture. TRIPS supports fixed-
size EDGE blocks of up to 128 instructions, with 32 loads
or stores per block. Instructions could have one or two
dataflow targets, and instructions with more than two con-
sumers in a block employed move instructions, inserted by
the compiler to fan operands out to multiple targets. To
achieve fully distributed execution, the TRIPS microarchi-
tecture uses no global wires, but was organized as a set of
replicated tiles communicating on routed networks. The
TRIPS design has a number of serious performance bot-
tlenecks [7]. Misprediction flushes are particularly expen-
sive because the TRIPS next-block predictor has low ac-
curacy compared to modern predictors, and the refill time
for such a large window was significant. Since each in-
struction block is distributed among the 16 execution tiles,
intra-block operand communication is energy- and latency-
expensive. The predicates used for intra-block control cause
performance losses, as they are evaluated in the execution
stage, but would have been predicted as branches in con-
ventional superscalar processors. Finally, the registers and
data caches distributed around the edges of the execution
array limit register and memory bandwidth, forcing some
instructions to have long routing paths to access them.

TFlex was a second-generation EDGE microarchitec-
ture [12], which implemented the TRIPS ISA but improved
upon the original TRIPS microarchitecture. TFlex dis-
tributes the memory system and control logic, making each
tile a fully functional EDGE core, but permits a dynami-
cally determined number of tiles to cooperate on executing
a single thread. Thus, TFlex is a dynamic multicore de-
sign, similar in spirit to Core Fusion [11]. The ability to
run a thread on a varied number of cores, from one to 32,
is a major improvement over TRIPS, which has fixed ex-
ecution granularity. Due to this fixed granularity, TRIPS
is unable to adapt the processing resources in response to
changing workload mix, application parallelism, or energy
efficiency requirements. Unlike the registers, instruction
cache banks, and data cache banks that TRIPS distributes
along the edges of the execution array, the TFlex microar-
chitecture interleaves and distributes these storage struc-
tures across all participating cores to facilitate better scal-
ability and bandwidth. TFlex distributes the control re-
sponsibilities across all participating cores by employing
distributed protocols to implement next-block prediction,
fetch, commit, and misprediction recovery without central-
ized logic, enabling the architecture to scale to 32 partici-
pating cores per thread. Each TFlex core has the minimum
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Figure 1. T3 Block Diagram.

resources required for running a single block, including a
128-entry RAM-based instruction queue, a L1 data cache
bank, a register file, a branch prediction table, and an in-
struction (block) cache bank. When N cores are composed,
they can run N blocks simultaneously, of which one block is
non-speculative. Similar to TRIPS, TFlex design distributes
the instructions from each in-flight block among all partic-
ipating cores, increasing operand communication latency.
TFlex also has the software fanout trees, poor next-block
prediction accuracy, and no speculation on predicates.

The T3 microarchitecture addresses bottlenecks in
TFlex, including speculation accuracy and operand deliv-
ery. Figure 1 shows the T3 microarchitecture block dia-
gram with shaded boxes representing the new components
designed for performance and energy efficiency. T3 em-
ploys a new predictor design called an Iterative Path Predic-
tor (IPP – described in Section 3), which unifies branch tar-
get and predicate prediction while providing improved ac-
curacy for each. On the other hand, instead of solely relying
on intra-block dataflow mechanisms to communicate intra-
block operands, T3 employs ISA-exposed operand broad-
cast operations (EOBs – explained in Section 4). In addition
to IPP and EOBs, T3 employs other mechanisms for fur-
ther improving power efficiency. To reduce high intra-block
communication, deep block mapping [18] maps each block
to the instruction queue of one core, permitting all instruc-
tions to execute and communicate within the core. Criti-
cal inter-block value bypassing [19] bypasses remote regis-
ter forwarding units by sending late-arriving register values
directly from producing to consuming cores. Block reis-
sue [19] permits previously executed instances of a block
to be reissued while they are still in the instruction queue,
even if they have been flushed, thus saving energy.

3 Iterative Path Predictor
An EDGE compiler uses predication to generate large

multi-exit blocks by converting multiple nested branches
into predicates. Therefore, all control points within a
block are converted into a DAG of predicates generated by
dataflow test instructions. By speculatively executing sev-

I1:   bz R1, B2 
I2:   subi a, R2, 1 
I3:   bz a, B3 
I4:   ST ADDR 
I5:   j B1 

(a) Initial representation

Read R1 <i1,op1> 
Read R2 <i2,op1> 
i1:   tz <e2,p><i2,p> 
i2:   subi_f 1 <i3,op1> 
i3:   tz <e1,p> <e3,p> <i4,p> 
i4:   ST_f ADDR 
e1:  br_f B1 
e2:  br_t B2 
e3:  br_t B3 

(b) Dataflow representation
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i2 

ST 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(c) Dataflow diagram

Figure 2. Sample code, its equivalent predi-
cated dataflow representation and predicated
dataflow block including two predicated exe-
cution paths and three possible exits.

eral of these large predicated dataflow blocks, EDGE mi-
croarchitectures can reduce fetch, prediction, and execu-
tion overheads, and can distribute single-thread code across
light-weight cores. In these architectures, instead of pre-
dicting each single branch instruction, prediction is per-
formed on a block-granularity using a next block predictor
or target predictor. This predictor predicts the next block
that will be fetched following the current block. As EDGE
blocks can have multiple exits, each block can have mul-
tiple next block addresses depending on the history of the
previously executed blocks and the execution path within
the block determined by the predicates. Figure 2 shows a
sample code, its dataflow representation, and a diagram cor-
responding to the predicated dataflow block of the code. In
the dataflow representation, the target fields of each instruc-
tion represent a destination instruction and the type of the
target. For example, p and op1 represent the predicate and
first operand target types, respectively. The two branches in
the original code (I1 and I3) are converted to dataflow test
instructions (i1 and i3). During execution, once a test in-
struction executes, its predicate value (1 or 0) is sent to the
consuming instructions of that test instruction. The small
circles in the diagram indicate the predicate consumer in-
structions and their predicate polarity. The white and black
circles indicate the instructions predicated on true and false,
respectively. For instance, the subi only executes if the i1
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Figure 3. Block diagram of TFlex block predictor and Iterative Path Predictor.

test instruction evaluates to zero (false). Depending on the
value of the predicate instructions, this block takes one of
three possible exits. If i1 evaluates to 1, the next block will
be block B2. If both i1 and i3 evaluate to 0, this block loops
back to itself (block B1). Finally, if i1 and i3 evaluate to 0
and 1, this block branches to block B3. This model of pred-
icated execution changes the control speculation problem
from one-bit taken/not-taken prediction to multi-bit predi-
cate path prediction when fetching each block. Thus, an
accurate EDGE predictor must use a global history of the
predicates in previous blocks to predict the predicate path
that will execute in the current block and then use that in-
formation to predict the next block. This section proposes
the first such predictor called Iterative Path Predictor (IPP).

One drawback associated with predicated dataflow
blocks is that the test instructions producing the predicates
within blocks are executed and not predicted like normal
branches. A critical path analysis showed that when run-
ning SPEC benchmarks across 16 composed TFlex cores,
on average 50% of the critical cycles belong to instructions
waiting for predicates. In Figure 2(b), i1 will not execute
until the value of R1 has arrived. Similarly, i3 will not ex-
ecute until both R1 and R2 have arrived and the result of
the i2 (subi) instruction is evaluated. To mitigate this bot-
tleneck caused by intra-block predicates, IPP uses the pre-
dicted predicate path of each block to speculate on the value
of predicates within that block, thus increasing the specula-
tion rate among the distributed cores.

3.1 Fused Predicate/Branch Predictor

Previous EDGE microarchitectures predict the block exit
to perform next block prediction. The original TFlex pre-
dictor is distributed across all participating cores. For each

block, next block prediction is performed by a core selected
based on the block PC, regardless of the core executing
that block. The predictor core and executing core commu-
nicate the prediction and the prediction results during the
fetch/commit/flush of the block. Figure 3(a) illustrates the
block diagram of the next block predictor in each TFlex
core. This 16K-bit predictor consists of two 8K-bit com-
ponents: (a) an exit predictor that is an Alpha 21264-like
tournament predictor that predicts a three-bit exit code (the
ISA allows between one and eight unique exits from each
block) of the current block, and (b) a target predictor that
uses the predicted exit code and the current block address
to predict the next block address (PC). Because each exit
can result from a different branch type, the target predictor
supports various types of targets such as sequential, branch,
call, and return targets. For the block shown in Figure 2(c),
the TFlex exit predictor predicts which of the three exits
from the block (Exit 1 to 3) will be taken and then the
target predictor maps the predicted exit value to one of the
target block addresses (B1 to B3 in the figure).

Similar to the TFlex predictor, IPP is a fully distributed
predictor with portions of prediction tables distributed
across participating cores. IPP uses the TFlex mapping
mechanisms to identify which core holds the needed tables
for each block. Figure 3(b) shows the block diagram of
the IPP predictor in each core. Instead of predicting the exit
code of the current block, IPP contains a predicate predictor
that iteratively predicts the values of the predicates (predi-
cate paths) in the current block. The predicted values are
grouped together as a predicted predicate bitmap in which
each bit represents a predicate in the block. For example,
for the block shown in Figure 2(c), the bitmap will have
two bits with the first and second bits predicting the results
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Figure 4. Two OGEHL-based pipeline design used in IPP.

of the test instructions i1 and i3. The target predictor is sim-
ilar to the target predictor used by the TFlex block predictor.
It uses the predicted predicate bits (values) along with the
block address to predict the target of the block. The rest of
this subsection discusses the predicate predictor in IPP.

Predicting predicates in each block is challenging since
the number of predicates per block is not known at predic-
tion time. For simplicity, the predicate predictor used by
IPP assumes a fixed number of predicates in each block.
The predicate predictor component must predict multiple
predicate values as quickly as possible so that it does not
become the system bottleneck. After studying different pre-
dictors, we designed an optimized geometric history length
(OGEHL) predictor [23] for predicate value (path) specula-
tion. The original OGEHL branch predictor predicts each
branch in three steps. First, in the hash compute step, the
branch address is hashed with the contents of the global his-
tory register (GHR) using multiple hash functions. Then,
the produced hash values are used to index multiple pre-
diction tables in the table access step. Each entry in these
tables is a signed saturating counter. Finally, in the pre-
diction step, the sum of the indexed counters in the pre-
diction tables is calculated and its sign is used to perform
prediction. Positive and negative correspond to taken and
not-taken branches or true and false predicate values, re-
spectively. The absolute value of the sum is the estimated
confidence level of the prediction. By comparing the con-
fidence level to a threshold, a confidence bit is generated
for each prediction. When the prediction is performed, the
corresponding counters in the tables and the GHR value are
updated speculatively. We use the best reported OGEHL
predictor in [23] with eight tables and a 200-bit global his-
tory register (modified from the original 125-bit GHR). As-
suming this best-performing predictor distributed across 16
cores, the size of the prediction tables stored on each core is

about 8Kbits, which is equal to the size of the exit predictor
in the original TFlex predictor shown in Figure 3(a). There-
fore, using IPP does not incur any additional area overhead.
When a core performs a next block prediction, it broadcasts
its changes to the GHR to other cores to keep the global
history registers consistent across cores.

To accelerate the predicate path prediction, we opti-
mize the OGEHL predictor by converting each step in the
OGEGL predictor into a pipeline stage as shown in Fig-
ure 4(a). Although, this predictor can predict one pred-
icate in each cycle, this pipeline may have data hazards
when predicting back-to-back dependent predicates in one
block. For example, if the second predicate in a block is
false only when the first predicate is true, this correlation
is not captured in this pipeline because when the first pre-
diction is still in flight, in the prediction stage, the second
prediction is in the access stage. To address this issue, a
hazard-free pipelined OGEHL shown in Figure 4(b) reads
dual prediction values from each prediction table in the ta-
ble access stage. The correct value is selected at the end of
that stage depending on the prediction value computed in
the prediction stage (selecting the second prediction based
on the first prediction). Using this pipelined OGEHL pre-
dictor may introduce some energy overhead, for which we
account in our energy measurements. However, our results
indicate that this energy overhead is negligible compared to
the energy savings due to improved next block prediction
accuracy and predicate prediction.

3.2 Speculative Execution of Predicates

When the next target of a block is predicted, the pre-
dictor sends the predicted predicate bitmap to the core ex-
ecuting that block. It also sends another bitmap called the
confidence bitmap with each bit representing the confidence
of its corresponding predicted predicate. When an execut-
ing core receives the predication and confidence bitmaps,



I1:  add c, a, b 
I2:  sub e, c, d 
I3:  add f, c, g 
I4:  bz x L1 
I5:  st c, f 
I5a:  j EXIT 
L1: 
I6:  st e, f 

(a) Initial representation

i1:  add <i2, op1> <i1a, op1>  
i1a:  mov <i3, op1> <i5 op1>  
i2:  sub <i6, op1>  
i3:  add <i5, op2> <i6, op2>  
i4:  testnz <i5, pred><i6, pred> 
i5:  st_t 
i6:  st_f 

(b) Dataflow representation

i1:  add [S‐EOB=1, op1] 
i2:  sub [R‐EOB=1] <i6, op1> 
i3:  add [R‐EOB=1] <i5, op2><i6, op2> 
i4:  testnz <i5, pred><i6, pred> 
i5:  st_t [R‐EOB=1] 
i6:  st_f 

(c) Dataflow/EOB representation

Figure 5. A sample code and corresponding code conversions for the hybrid dataflow/EOB model.

it stores the information required for speculative execution
of the predicates in the instruction queue. The instruction
queue is extended to contain one confidence bit and one
prediction bit for each predicate-generating test instruction.
For each predicate with its confidence bit set (meaning high
prediction confidence), the speculation starts immediately
after receiving these bits by sending the predicted value to
its destination instructions. For example, assume the bitmap
associated with the block shown in Figure 2(c) is 00, mean-
ing that the i1 and i3 predicates are both predicted to be 0. If
both confidence bits are also set, the store instruction, i4, is
executed and the block loops through Exit1 immediately,
thus avoiding waiting for predicates to be computed and in-
put registers R1 and R2 to arrive. If the bitmap is 10 or
11, Exit2 is taken, ignoring all instructions in the block
and branching directly to block B2. For detecting predi-
cate misspeculations, this mechanism relies on the dataflow
execution model used by TFlex. The speculated test instruc-
tions in a block still receive their inputs values from other
instructions inside the block. Once all inputs of a specu-
lated test instruction have arrived, that instruction executes,
its output is compared against the predicted value of that
predicate and if the two do not match, a misspeculation flag
is raised. Consequently, the block and all of the blocks that
depend on it are flushed from the pipeline and the prediction
tables are updated for that block. That block is then fetched
and re-executed in the no-predicate-prediction mode.

4 ISA-Exposed Operand Broadcasts
By eliminating register renaming, result broadcast, and

associative tag matching in the instruction queue, the di-
rect dataflow intra-block communication achieves substan-
tial energy savings for low-fanout operands compared to
conventional out-of-order designs. However, the energy
savings are limited in the case of high-fanout instructions
for which the compiler needs to generate software fanout
trees [7]. Each instruction in the EDGE ISA can encode up
to two destinations. As a result, if an instruction has a fanout
of more than two, the compiler inserts move instructions to
form a dataflow fanout tree for operand delivery. Previous
work [7] has shown that for the SPEC benchmarks, 25% of
all instructions are move instructions. These fanout move
trees manifest at runtime in the form of extra power con-
sumption and execution delay. To alleviate this issue, this

paper proposes a novel hybrid operand delivery that exploits
compile-time analysis to minimize both the delay and en-
ergy overhead of operand delivery. This mechanism uses
direct dataflow communication for low-fanout operands
and compiler-generated ISA-exposed operand broadcasts
(EOBs) for high-fanout operands. These limited EOBs
eliminate most of the fanout overhead of the move instruc-
tions providing both performance and power improvements
by (1) eliminating fetch and execution of these instructions,
and (2) executing fewer code blocks because block forma-
tion is more efficient without the excess instructions.

4.1 Static EOB Assignment

The original EDGE compiler [25] generates blocks con-
taining instructions in dataflow format in which each in-
struction directly specifies each of its consumers using a 9-
bit instruction identifier. Each instruction can encode up
to two target instructions in the same block and for in-
structions with more consumers than targets, the compiler
builds fanout trees using move instructions. The modified
EOB-enabled compiler accomplishes two additional tasks:
choosing which high-fanout instructions should be selected
for one of the limited intra-block EOBs, and assigning one
of these EOBs to each selected instruction. The number of
available EOBs is determined by a microarchitectural pa-
rameter called MaxEOB. The compiler uses a greedy al-
gorithm, sorting all instructions in a block with more than
two targets and selecting instructions to broadcast based on
the number of targets. Starting from the beginning of the
list, the compiler assigns each instruction in the list an EOB
from the fixed number of available EOBs until all EOBs are
assigned or the list is empty. The compiler must encode the
EOB in both the producer and consumer instructions. Each
instruction can produce up to one Send EOB and consume
up to two Receive EOBs.

Figure 5 illustrates a sample program, its equiva-
lent dataflow representation, and its equivalent hybrid
dataflow/EOB representation generated by the modified
compiler. In Figure 5(a), a, b, d, g, and x are the inputs
read from registers and except for stores, the first operand
of each instruction is the destination. In the dataflow code
shown in Figure 5(b), instruction i1 can only encode two of
its three targets. Therefore, the compiler inserts a move in-
struction, instruction i1a, to generate the fanout tree for that



instruction. For the hybrid communication model shown
in Figure 5(c), the compiler assigns an EOB (1 in this ex-
ample) to i1, the instruction with high fanout, and encodes
the broadcast information into both i1 and its consuming
instructions (instructions i2, i3 and i5). Finally, the com-
piler uses dataflow direct communication for the remaining
low-fanout instructions, e.g. instruction i2.

4.2 Microarchitectural Support for EOBs

Superscalar cores broadcast every operand to every in-
struction, which requires a wide CAM. EOBs use the ISA
to greatly reduce the number of broadcasts, so that only
the small number of instructions that need to send a broad-
cast communicate with the instructions waiting for a broad-
cast operand. This approach greatly reduces the number
of sends, receives, and the width of the associative logic
needed to match senders and receivers. Although they both
use CAMs, EOBs are more energy efficient than the in-
struction communication model in superscalar processors
for several reasons. First, because EOBs use small iden-
tifiers, the bit width of the CAM is small compared to a
superscalar design which must track a larger number of
renameable physical registers. Second, the compiler can
select which instruction operands are broadcast, which in
practice is a small fraction of the total instruction count.
Third, only a portion of instructions in the queue are broad-
cast receivers and perform an EOB comparison during each
broadcast. To implement EOBs in T3 cores, a small EOB
CAM array stores the receive EOBs of broadcast receiver
instructions in the instruction queue.

Figure 6 illustrates the instruction queue of a single core
when running the broadcast instruction i1 in the sample
code shown in Figure 5(c). When the broadcast instruction
executes, its send EOB (value 001 in this example) is sent to
be compared against all of the potential broadcast receiver
instructions in the instruction queue. Only a subset of in-
structions in the instruction queue are broadcast receivers,
while the rest need no EOB comparison. Operands that
have already received their broadcast do not have to per-
form CAM matches, saving further energy. Upon an EOB
CAM match, the hardware generates a write-enable signal to
write the operand into the instruction queue entry of the cor-
responding receiver instruction. The broadcast type field of
the sender instruction (operand 1 in this example) is used
to select the column containing the receivers. Tag deliv-
ery and operand delivery do not happen on the same cycle.
Similar to superscalar operand delivery networks, the EOB
of the executing sender instruction is first delivered one cy-
cle before instruction execution completes. On the next cy-
cle, when the result of the broadcast instruction is ready, its
output is written simultaneously into all matching operand
buffers in the instruction window. Figure 6 also illustrates
a sample circuit implementation for the compare logic in

each EOB CAM entry. The CAM tag size in this figure is
three bits which represents the bit width of EOBs. In this
circuit, the compare logic is disabled if one of the follow-
ing conditions is true: (1) if the instruction corresponding to
the CAM entry has been previously issued; (2) if the receive
EOB of the instruction corresponding to the CAM entry is
not valid, which means the instruction is not a broadcast re-
ceiver (for example instruction i5 in Figures 5 and 6); or (3)
if the executed instruction is not a broadcast sender.

5 Results
5.1 Experimental Methodology

We use an execution-driven, cycle-accurate simulator to
simulate the TRIPS, TFlex, and T3 processors [12]. The
simulator is validated against the cycles collected from the
TRIPS prototype chip. In TFlex or T3 modes, the simulator
supports different configurations in which a single thread
can run across a number of cores ranging from 1 to 16 cores
in powers of 2. We limit the number of composed cores be-
tween 1 and 16 as performance and power scaling does not
improve much when merging more than 16 cores for integer
benchmarks. The power model uses CACTI [27] models
for all major structures such as instruction and data caches,
SRAM arrays, register arrays, branch predictor tables, load-
store queue CAMs, and on-chip network router FIFOs to
obtain a per-access energy for each structure. Combined
with access counts from the architectural simulator, these
per-access energies provide the energy dissipated in these
structures. The power models for integer and floating point
ALUs are derived from both Wattch [2] and the TRIPS
hardware design database. The combinational logic power
in various microarchitectural units is modeled based on de-
tailed gate and parasitic capacitances extracted from RTL
models and activity factor estimates from the simulator. The
baseline EDGE power models at 130nm are suitably scaled
down to 45nm using linear technology scaling. We use a
supply voltage of 1.1 Volts and a core frequency of 2.4
GHz for the TRIPS, TFlex, and T3 platforms. We accu-
rately model the delay of each optimization used by the T3
simulator. Also, we use CACTI and scaled TRIPS power
models to estimate the power consumed by the tables or
combinational logics used by various T3 features, including
the OGEHL tables and the EOB CAM and comparators.

To examine the performance/power flexibility of the T3
microarchitecture, we compare it to several design points
in the performance and power spectrum of production pro-
cessors. We use the Intel Core 2 and Atom as representa-
tives for high performance and lower power platforms re-
spectively, and rely on the chip power and performance
measurement results reported in [6] for these platforms at
the same 45nm technology node. We use the McPAT [14]
models to estimate the core power consumption to com-
pare against T3. The main idea of such a comparison is
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TFlex Basic Hazard-free
original pipelined pipelined
predictor IPP IPP

Block prediction MPKI 4.03 3.29 2.93
Predicate prediction MPKI N/A 0.65 0.54
Average speedup 1.0 1.11 1.14

Table 1. Pedictor accuracy and speedup for
SPEC INT.

not a detailed, head-to-head comparison of T3 to these plat-
forms, but to demonstrate the power/performance flexibility
offered by T3 in the context of these other chips. The bench-
marks include 15 SPEC 2000 benchmarks (7 integer and 8
floating point) each simulated with a single Simpoint [24]
region of 100 million instructions as well as 25 EEMBC
benchmarks executed to completion. We exclude Fortran
and C++ SPEC benchmarks as they are not supported by
the TRIPS compiler. Since SPEC and EEMBC results are
very similar, we only show the SPEC results in this paper.

Next, the section presents a power/performance design
space exploration of IPP and EOBs. To illustrate the power
and performance scalability of IPP and EOBs, the section
then compares the fully integrated T3 system to previous
EDGE microarchitectures across different core composition
granularities and microarchitectural features.

5.2 Design Exploration for IPP

Table 1 compares different proposed pipelined IPP de-
signs including the basic pipelined IPP and the hazard-free
pipelined IPP shown in Figures 4 for SPEC INT bench-
marks. The prediction accuracy of FP benchmarks is sig-
nificantly higher and does not affect the analysis. In this
experiment, each SPEC benchmark runs using 16 com-
posed cores. This table presents MPKI (mispredictions per
kilo instructions) for both next block prediction and predi-
cate value speculation. It also presents speedups compared
to the original TFlex predictor show in Figure 3(a). Us-
ing the basic pipelined IPP improves next block prediction

MPKI from 4.03 to 3.29. By capturing the correlation be-
tween consecutive predicates in each block, the hazard-free
pipeline improves MPKI to 2.93, while improving predi-
cate prediction MPKI from 0.65 down to 0.54. Of the 14%
speedup achieved by the hazard-free IPP pipeline, the con-
tributions of speculative execution of predicates and im-
proved next block prediction accuracy are 12% and 2%,
respectively. This predictor increases core-level energy
consumption by 1.2%, most of which is consumed by the
OGEHL adders. However, energy saved by this predictor
because of the improved next block and predicate predic-
tion accuracy is 6%, resulting in a total energy saving of
4.8%. This energy saving can be significantly improved by
using top predication in which predicates are placed on top
of dependent chains of instructions, instead of bottom predi-
cation used in this study. Using IPP to predict top predicates
results in the same performance boost while preventing use-
less execution of instructions on incorrect predicate paths.

Table 2 evaluates the hazard-free IPP design when vary-
ing the number of predicted predicate values per block. The
next block prediction accuracy first improves when increas-
ing predicted branches (predicate values) from 1 to 3 and
then degrades. This observation is supported by the fact
that for most SPEC benchmarks, the average number of ex-
ecuted predicates per block is three. The predicate predic-
tion MPKI, however, increases consistently as the number
of speculated predicates increases from 1 to 5, which has
a minor effect on performance. While the best next block
prediction is achieved when predicting three predicates per
block, the best speedup occurs when predicting 4 predicates
per block due to the increased intra-block speculation.

5.3 Design Exploration for EOBs

By converting high fanout operands in instructions with
at least three targets, the compiler eliminates the fanout
trees. However, the overall energy benefit is dependent on
the total number of available EOBs. Increasing the number
of the available EOBs (MaxEOBs) reduces the operand



Number of predicted
predicates per block 1 2 3 4 5
Block prediction MPKI 4.43 4.00 2.86 2.93 2.96
Predicate prediction MPKI 0.10 0.29 0.44 0.54 0.57
Ave. speedup vs. TFlex 1.03 1.04 1.12 1.14 1.13

Table 2. Accuracy and speedups of the
pipelined IPP when varying the number of
predicted predicates per block.

delivery energy until the overheads from EOB width be-
comes dominant. Figure 7 illustrates the energy breakdown
into executed move and broadcast instructions for a variety
of MaxEOBs values on the SPEC benchmarks each run-
ning across 16 composed cores. The energy values are nor-
malized to the total energy consumed by move instructions
when instructions within each block communicate only us-
ing dataflow (MaxEOBs = 0). When only using dataflow
(the original TFlex operand delivery), all energy overheads
are caused by the move instructions. Allowing one or two
broadcast operations in each block, MaxEOBs of 1 and
2, we observe a sharp reduction in the energy consumed
by move instructions. The compiler chooses the instruc-
tions with highest fanout first when assigning EOBs. For
these MaxEOBs values, the energy consumed by EOBs is
low. As we increase the total number of EOBs, the energy
consumed by broadcast operations increases dramatically
and fewer move instructions are removed. At 16 EOBs, the
broadcast energy becomes dominant. For high numbers of
MaxEOBs, the broadcast energy is an order of magnitude
larger than the energy consumed by move instructions. The
key observation in this graph is that allowing only 4 to 8
broadcasts in each block minimizes the total energy con-
sumed by moves and broadcasts. For such MaxEOBs, the
total overhead energy is about 28% lower than the energy
consumed by the baseline TFlex (MaxEOBs = 0) and
about 2.7x lower than when MaxEOBs is equal to 128.
We also note that for MaxEOBs larger than 32, the en-
ergy consumed by move instructions is at a minimum and
does not change, but the EOB CAM becomes wider so the
energy consumed by EOBs continues growing.

Using 3-bit EOBs removes 73% of dataflow fanout in-
structions and instead 8% of all instructions are encoded as
the EOB senders. These instructions send EOBs to 34%
of instructions (EOB receivers). Using 3-bit EOBs results
in about 10% total energy reduction on T3 cores. The con-
sumed energy is reduced in two ways: (1) it saves the energy
consumed during execution of the fanout trees which con-
stitute more than 24% of all instructions; and (2) by better
utilizing the instruction blocks, it reduces the fetch and de-
code operations by executing 5% fewer blocks. Also, EOBs
improve performance in all benchmarks except vpr. When
using EOBs for this benchmark, memory instructions are
receiving their operands sooner and firing in a different or-
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Figure 7. Averaged energy breakdown be-
tween move instructions and broadcasts for
various numbers of available EOBs.

der; thus causing more violations in load/store queues.

5.4 Performance and Energy Scalability

This subsection compares efficiency and scalability of
IPP and EOBs and the full T3 system against several previ-
ously proposed original and enhanced EDGE architectures.
Figure 8 shows the average speedup and energy consump-
tion (L2 energy excluded) for (a) TRIPS; (b) TFlex [12]; (c)
T3-base which is a system that applies previously proposed
EDGE optimizations including deep mapping [18], block
reissue [19] and register bypassing [19] on top of TFlex;
and (d) T3-full which is a fully integrated T3, that applies
EOBs and IPP on top of T3-base. T3-base is the same as T3-
full without IPP and EOBs. These results are normalized to
a common baseline, which is TFlex with one core. Since
the 1-core baseline runs only one block, it does not sup-
port speculation and IPP. However, T3 1-core can support
EOBs to become slightly faster than TFlex 1-core. We did
not enable EOBs in T3 1-core to simplify the graphs. This
figure also breaks down the contributions of IPP and EOBs
on the full T3 system (IPP and EOB charts). The EOBs
used in these experiments are 3 bits wide and IPP uses the
hazard-free pipeline predicting up to 4 predicates per block.
In these graphs, T3 and TFlex charts are reported in differ-
ent configurations each running different core counts rang-
ing from 1 to 16. TRIPS results are straight lines since it
does not support composability.

T3 illustrates a significant reduction in consumed en-
ergy and increase in performance compared to both TRIPS
and TFlex. This major increase in energy efficiency is
largely attributed to the IPP and EOBs. For INT bench-
marks, Figures 8(a) and 8(c) show that TFlex-8 (TFlex us-
ing 8 cores) outperforms TRIPS by 1.12× while consuming
slightly more energy. However, relying on the optimized
microarchitectural components, T3-8 (EOB charts with 8
cores in the figure), outperforms TRIPS by 1.43× while
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Figure 8. Average speedups and energy over single core for SPEC with varying numbers of com-
posed cores and optimizations (shaded areas represent Core2 and Atom DVFS operational ranges).

consuming about 25% less energy. T3-4 achieves the best
inverse-energy-delay-product (inverse-EDP). This value is
1.8× of that of original TFlex and 2.6× of that of TRIPS.
More than half of this increase caused by the combination
of IPP and EOBs. For FP benchmarks, TFlex-16 outper-
forms TRIPS by about 1.7× while consuming 30% more
energy. T3-16 (EOB charts), on the other hand, outper-
forms TRIPS by about 2.5× while consuming 1.1× less
energy. T3-16 reaches the best energy efficiency in terms
of inverse energy-delay-product (inverse-EDP) and inverse-
ED2P which are 3.2× and 7× better compared to TRIPS.

To better quantify power and performance benefits of
IPP and EOBs in the T3 system, we focus on the speed
and power breakdown for INT benchmarks, which are in-
herently hard for a compiler to parallelize automatically.
On average, T3-16 outperforms TFlex-16 by about 1.5×

across both INT and FP benchmarks, which translates to
a speedup of about 50%. For the INT benchmarks, the
speedups stem primarily from the IPP (14%) compared to
other high-performing optimizations such as deep block
mapping (7%), and block reissue (10%). As shown in the
energy graphs, the T3 optimized cores save significant en-
ergy compared to original TFlex. For example T3-16 con-
sumes about 35% less energy than TFlex-16 for SPEC INT
benchmarks. The main energy saving results from EOBs
(11%) compared to other energy-saving optimizations such
as deep block mapping (8%), and block reissue (7%).

T3 can span a broad range of points in the en-
ergy/performance spectrum beyond what conventional pro-
cessors can achieve using DVFS. Figure 8 also reports rela-
tive performance and energy results of Atom and Core 2. In
each graph, different voltage and frequency operating points



of Core 2 represent the high-performance operating re-
gion (2.4GHz/1.1v and 1.6GHz/0.9v). Similarly, operating
points of Atom represents the low-energy operating region
(1.6GHz/1.1v and 800MHz/0.8v). T3 runs only vary the
number of composed cores with a fixed frequency and volt-
age equal to that of the high Core 2 voltage and frequency
operating point (2.4GHz/1.1v). T3 achieves high energy ef-
ficiency in both low-energy and high-performance regions.
By composing only a few T3 optimized cores, T3 can
achieve major performance boosts in low-energy regimes.
For example, while the energy consumed by T3-2 falls
within the low-energy region (Figures 8(c) and 8(d)), its
performance is close to the range of the high-performance
region (Figures 8(a) and 8(b)). Merging more cores sig-
nificantly boosts performance at a relatively small energy
cost. For example, while T3-4 and T3-8 perform at or above
the high-performance region, their consumed energy is be-
low this region. While conventional processors are typi-
cally limited in their energy/performance space by possi-
ble DVFS configurations, T3’s composable cores enable a
different axis on which to trade performance and energy.
As composibility is independent of DVFS, the combina-
tion of the two techniques can further extend the range of
power/performance trade-offs. For instance, 1, 2, 4, 8, or 16
composed cores with 5 DVFS points provides 25 different
energy-efficient operating points in the power/performance
spectrum as opposed to 5 with DVFS alone.

6 Related Work and Generality
Distributed architectures: WiDGET [28] decouples

thread context management units from execution units
and can adapt resources to operate in different power-
performance operating points. CoreFusion [11] is a fully
dynamic approach that fuses up to 4 cores with a conven-
tional ISA using central control and renaming units. T3, on
the other hand, exploits distributed control and execution
mechanisms such as IPP that use no central control unit.
Similar mechanisms may be employed by other distributed
architectures such as CoreFusion [11] or WiDGET [28]. For
example, with a mechanism similar to IPP, it is possible to
support trace caches in a distributed architecture. In such an
IPP-like design, for a given trace address, a dedicated core
can include the next trace prediction data. A local predic-
tor in that core can use the shared GHR to predict the next
trace address. Previously mechanisms for trace caches such
as Path-based (or trace paths) predictors [21] and multiple-
branch predictors [20] do not exploit OGEHL and are not
distributable. They use an extended Pattern History Table
and a central GShare predictor.

Predicate prediction: The predicate prediction mech-
anisms in the literature [4, 16, 13] only focus on lightly
predicated code, in which dependent chains of predicates
do not exist. IPP proposed in this paper, conversely, per-

forms both branch and predicate prediction across large and
heavily predicated hyperblocks, where chains of dependent
predicates exist. The insights from the IPP design can be
adopted by any design that supports predication, enabling
more aggressive predication to streamline the fetch and bet-
ter utilize fetch bandwidth.

Hybrid operand delivery: Most previous architectures
have relied on either broadcast or fanout exclusively. The
most related work used hardware to select the right mech-
anism dynamically, which is less precise than the compiler
and includes hardware runtime overhead that the EOBs do
not incur [3, 10, 17]. Our approach can be applied di-
rectly to any other explicitly token-based systems, such
as dataflow architectures, WaveScalar [26], or Transport-
Triggered Architecture [1]. With ISA extensions, a For-
wardFlow architecture [8] can also take advantage of this
mechanism. ForwardFlow dynamically generates an ex-
plicit internal dataflow representation to scale instruction
wakeup, selection, and issue across multiple cores. An
EOB-like compile time analysis can help ForwardFlow save
power by not generating these graphs at runtime and also by
focusing only on critical low-fanout data dependences.

7 Conclusions
This paper demonstrates an energy-scalable compos-

able multicore architecture can provide a much wider dy-
namic range of energy efficiency and performance than both
conventional and previous EDGE designs have achieved.
To achieve a high degree of energy efficiency and scal-
ability, this paper addresses two fundamental issues as-
sociated with composable block-based dataflow execu-
tion. The Iterative Path Predictor solves the low multi-
exit next bock prediction accuracy and low speculation rate
due to heavy predicate execution. The Exposed Operand
Broadcasts address reduces the energy consumed and la-
tency incurred by compiler-generated trees of move in-
structions built for wide-fanout operands. Exploiting both
low-overhead architecturally exposed broadcasts and direct
dataflow communication, the proposed architecture (called
T3) supports fast and energy-efficient operand delivery for
high- and low-fanout instructions. Exploiting these mech-
anisms, T3 removes operand delivery and speculation bot-
tlenecks and improves performance and energy efficiency
by about 50% and 2x, respectively, compared to prior
edge designs. Such a design achieves high energy effi-
ciency at different power and performance operating points
across a wide power/performance spectrum and extends
the power/performance tradeoffs beyond what conventional
processors can offer using traditional voltage and frequency
scaling. These features make such composable designs an
attractive candidate to be used in systems employed for a
wide range of workloads under varying power and perfor-
mance constraints.
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