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Abstract

A previous evaluation of scheduled region prefetching
showed that this technique eliminates the bulk of main-
memory stall time for applications with spatial locality.
The downside to that aggressive prefetching scheme is that,
even when it successfully improves performance, it
increases enormously the amount of superfluous memory
traffic generated by a program. In this paper, we measure
the predictability of spatial locality using density vectors,
bit vectors that track the block-level access pattern within a
region of memory. We evaluate a number of policies that
use density vector information to filter out prefetches that
are unlikely to be useful. We show that, across our bench-
marks, an average of 70% of useless prefetches can be
eliminated with virtually no overall performance loss from
reduced coverage. Thanks to the increase in prefetch accu-
racy, a few benchmarks show performance improvements
as high as 35% over the base region prefetching scheme.

1.  Introduction

Long memory latencies continue to degrade application
performance. Previous work showed that main-memory
access stalls accounted for 60% of SPEC CPU2000 runt-
ime on a next-generation processor with an aggressive
memory system [5]. That work also described scheduled
region prefetching, a scheme for aggressively prefetching
from large regions around each demand miss, which nearly
eliminates those stalls for applications with high spatial
locality. By combining request prioritization and DRAM-
aware scheduling on the memory channels with low-prior-
ity loading of prefetches into the L2 cache, the proposed
scheme avoids the penalties associated with increased
memory channel contention, DRAM row buffer misses,
and cache pollution. These techniques serve both to
improve performance for applications with exploitable
locality and to prevent performance degradation for appli-
cations that have little locality.

However, the scheduled region prefetching scheme
indiscriminately prefetches everything in a large region,
issuing many useless prefetches for applications without
perfect spatial locality. Although the performance impact
of useless prefetches in this scheme is minimal, superflu-
ous traffic consumes power, reduces the number of useful
prefetches that may be issued, and aggravates bandwidth
limitations in a multiprocessor environment. In this paper,
we extend scheduled region prefetching to select prefetch
candidates more judiciously, attempting to eliminate the
issue of useless prefetches. Specifically, we record locality
patterns using density vectors—bit vectors that track access
patterns within a memory region—and use these vectors to
predict future locality. Our results show that we can elimi-
nate 70% of useless prefetches, improving mean prefetch
accuracy from 46% to 65%, without reducing mean
prefetching performance gains. Although some of our
benchmarks see slightly lower performance relative to the
unfiltered prefetching scheme due to reduced coverage, the
higher accuracy increases performance on others—by as
much as 35% in one case.

In the next section, we discuss the most pertinent of the
vast body of literature on prefetching. In Section 3, we
measure several applications to determine the predictabil-
ity of spatial locality patterns. In Section 4, we propose
several prefetching policies motivated by these measure-
ments, and measure their efficacy. We conclude in
Section 5.

2.  Related work

Previous studies have sought to exploit spatial locality
while balancing memory traffic and cache pollution by
dynamically fetching or prefetching a quantity of data on a
cache miss, which was determined by predicted locality.
These quantities were either variable-sized contiguous
blocks or patterns of blocks within a larger region. The
locality prediction may be based on profile data [2,7], com-
piler annotations [6], or dynamic hardware detection
[3,4,7]. The scheduled region prefetching scheme, includ-



ing the filtering additions we study in this work, is purely
hardware based. Unlike earlier works, which must use con-
servative locality estimates to avoid bandwidth contention
and cache pollution, the prioritized scheduling and place-
ment techniques on which we build already address these
performance issues. Thus, in this work, we seek primarily
to avoid fetching useless data rather than to identify pre-
cisely the most useful data.

Our density vector techniques are very similar to earlier
proposals by Kumar and Wilkerson [4] and Burger [1].
Kumar and Wilkerson propose a Spatial Footprint Predic-
tor (SFP) to predict the portions of a cache block that will
get used before eviction. Our technique for measuring den-
sity vectors borrows from their spatial footprint work.
However, they tracked doubleword-level locality within an
L1 cache block to improve traffic efficiency relative to
fetching conventional cache blocks. We track block-level
locality within a large region to reduce superfluous traffic
relative to an aggressive prefetching scheme.

3.  Quantifying spatial locality and its predict-
ability using density vectors

In this section, we define metrics to estimate both the
available spatial locality in a program and its predictability.
These metrics will indicate both whether enough locality
exists for aggressive prefetching to be worthwhile, and
whether this locality is sufficiently predictable to permit
differentiation between likely good and likely bad
prefetches. Density vectors form the cornerstone of our
measurement methodology.

3.1.  Density vectors

We define a density vector as a bit vector that records
the set of cache blocks within a region of the address space,
which are fetched from memory during a particular period
of time (an epoch). Epoch boundaries are determined on a
per-region basis. A region’s current epoch ends, and its
next epoch begins, when any block in the region is fetched
for the second time (i.e., a miss to a block occurs and the

block is already in the density vector.) This policy is the
same as was used by Kumar and Wilkerson [4].

We refer to a particular density vector within a pro-
gram’s execution as . That notation represents the
density vector for epoch of a region . We denote the
current epoch for region x at time t as . The starting
and ending times of epoch are and ,
respectively.

In Figure 1, we depict an example of the construction of
density vectors. We show the density vectors under con-
struction for the current epoch for two four-block regions,
A and B, denoted D(A, · ) and D(B, · ), respectively. The
shaded squares represent the density vector bits that are
changed in a given cycle. Block 2 of region A is fetched
first, then block 0 of region A, and so on. When block 2 of
region A is replaced by block B2, the corresponding bit in

is not cleared. However, the loading of this
block for the second time—detected as a miss to a block
already marked in the current density vector—triggers the
end of epoch . This reference then becomes the initial
reference of epoch .

3.2.  Density-vector metrics

We define several metrics to help measure density vec-
tor locality and consistency. The number of bits in a den-
sity vector is , where is the region size
and is the L2 block size. We define the population
count, or PC, to be the number of bits in a density vector
that are set. PC thus becomes a good measure of available
spatial locality. Another definition is longest run length, or
LRL, which represents the longest contiguous string of set
bits in a vector. The LRL metric estimates whether the ref-
erence pattern is dense or sparse.

We define correlation as the fraction of bits that are
identical between two density vectors. Formally, we define
the correlation between two b-bit vectors X and Y to be:

(1)

where ⊕ indicates the bit-wise exclusive-or operation.
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Figure 1. Density vector and epoch example
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3.3.  Experimental Methodology

We simulate the same target system, using the same
parameters, as in previously published region prefetching
work [5]. The simulated CPU is a four-wide out-of-order
superscalar with a 64-instruction issue window. The mem-
ory system includes 64KB, 2-way set-associative non-
blocking L1 instruction and data caches, a 1MB 4-way set-
associative non-blocking L2 cache, and a 4-channel Direct
Rambus memory system. The region size for which we
prefetch is 4KB, and all block sizes are 64 bytes. Density
vectors thus contain .

Previous work [5] defined memory-intensive bench-
marks to be those that incurred more than 0.75 L2 misses
per 1000 instructions. In this paper, we use a representative
set of memory-intensive benchmarks from three different
classes: (1) five benchmarks that showed good spatial
locality (equake, facerec, fma3d, mgrid, parser), (2) three
benchmarks that showed poor spatial locality (ammp,
bzip2, vpr), and (3) a bandwidth-bound benchmark (art).
Due to space considerations, we do not present the rest of
the SPEC2000 benchmarks.

For each benchmark, we begin simulation from a check-
point 20 to 60 billion instructions into the program, simu-
late for 2 billion instructions to warm up the caches and
density-vector information, then record statistics for the
following 500 million instructions of program execution.

3.4.  Metrics for Correlation

In this section, we define metrics for quantifying the
correlation that exists among density vectors in a program.
We measure three types of correlation.
• Local correlation: This metric, abbreviated L-Cor, mea-
sures the correlation between the two most recent epochs in
the same region. If the access patterns to a region remain
constant over time, this local correlation will be high (close
to 1).

(2)

• Spatial correlation: This metric, abbreviated S-Cor,
measures the correlation between adjacent regions, indicat-
ing whether the recent density vectors of nearby regions
will indicate the future access pattern for a given region.

(3)

• Global correlation: This metric, abbreviated G-Cor,
measures the correlation based on the phase the application
is currently in, by comparing the two most recent density
vectors to be computed, regardless of their address.

(4)

3.5.  Measuring Correlation

In Figure 2, we show cumulative distribution functions
of our locality and correlation metrics for our nine mem-
ory-intensive benchmarks. As with the correlation metrics,
population count (PC) and longest run length (LRL) are
also divided by b, so that all metrics fall between zero and
one. A PC value of one indicates that all bits in the density
vector are set; similarly, an LRL value of one indicates that
the longest run of set bits encompasses the entire vector.
PC is always greater than LRL, since every set bit in the
longest consecutive run also counts toward the population
count. A “perfect” correlation, in which every density vec-
tor matches exactly the vector against which it is com-
pared, results in a value of one. A point on the horizontal
(x) axis represents the fraction of density vectors examined
that have a population count, longest run length, or correla-
tion less than or equal to the y-value of the point in ques-
tion.

For the nine benchmarks shown in Figure 2, the PC and
LRL curves indicate a significant variation in spatial local-
ity patterns. Some of the benchmarks have strong spatial
locality, that is, the majority of blocks in every region are
referenced (equake, fma3d). This situation is reflected by
the population count curve quickly approaching 1 on the
left-hand side of the graph. Ammp and vpr have little spa-
tial locality: fewer than 20% of density vectors include
more than 20% of the blocks in a region. Bzip’s population
counts are only slightly higher; the large gap between the
PC and LRL curves for bzip indicate that even when multi-
ple blocks within a region are accessed, the pattern is
sparse. For these latter benchmarks, prefetching every
block in a region will generate significant wasted traffic.

Several benchmarks exhibit a bimodal spatial locality
pattern. This pattern is illustrated best by mgrid, where the
PC curve has a single nearly vertical section, reaching from
near 0 to near 1 on the y axis, close to the 30% mark on the
x axis. This shape indicates that nearly 30% of epochs have
no spatial locality, while the remaining 70% have very
strong spatial locality (the entire region is accessed). For
mgrid, the LRL curve follows the PC curve, indicating that
all of the spatial locality is comprised of dense access pat-
terns. Other benchmarks exhibit a slightly different bimo-
dality. For example, in facerec, the PC curve has two
vertical sections (at 0% and near 75% on the x axis, with a
crossover near 0.4 on the y axis), while the LRL curve has
a single vertical section near 75%. This pattern indicates
that about 25% of epochs show a dense access pattern cov-
ering the entire region, while the remaining epochs have
only 40% referenced blocks in a sparse pattern.

Turning to the correlation curves in Figure 2, we see
that most of the benchmarks show strong correlations for at
least one of our correlation types. A strong correlation is

b 64 bits=

L-Cor x ex,( ) CORR D x ex,( ) D x ex 1–,( ),( )=

S-Cor x ex,( ) CORR D x ex,( ) D x 1– ex,( ),( )( )=

G-Cor x ex,( ) CORR D x ex,( ) D y ey,( ),( )
y ey, tend ex( ) tend ey( ) tend ez( )> > ez

z

,
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∀[
]
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indicated by high y-axis values at low x-axis coordinates.
In addition, if one curve is above another in the figure, the
correlation represented by the first curve is stronger than
that represented by the second.

Overall, the local correlation (L-Cor) is the most accu-
rate of the three we measure; it shows the highest accuracy
for six of the nine benchmarks. Spatial correlation (S-Cor)
is slightly stronger in equake, but all three correlations are
high for that benchmark. Global correlation (G-Cor) is
generally slightly lower than L-Cor, but is much higher

than either local or spatial correlation for mgrid, and some-
what higher for fma3d. However, G-Cor is much lower
than L-Cor in art and facerec.

These results show both that there is significant variance
in the number of blocks used in regions both across and
within benchmarks, and that, for most benchmarks, the
local correlation (L-Cor) of density vectors is strong. Spa-
tial correlation (S-Cor) never shows a significant advantage
over L-Cor, and will not be considered further in this paper.
Global correlation (G-Cor) is generally slightly weaker

Figure 2.  Density vector correlations and statistics
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than L-Cor, but may be significantly better or worse than
L-Cor for individual benchmarks. In the next section, we
measure our ability to exploit these local and global corre-
lations to reduce unnecessary prefetch traffic while main-
taining high coverage for benchmarks with spatial locality.

4.  Improving scheduled region prefetching
using density vectors

Through careful scheduling and placement, scheduled
region prefetching (srp) avoids the performance losses
generally associated with prefetching schemes: pollution
and contention. However, srp still generates a high quan-
tity of useless prefetches. Although the bad prefetches do
not degrade performance, they consume power, may inter-
fere with multiprocessor performance, and may cause per-
formance losses due to missed opportunities to issue good
prefetches. In this section, we exploit the correlation
explored in Section 3, using density vectors to filter out
prefetches that are unlikely to be needed by the processor.
Ideally, this filtering will reduce traffic with no losses in
prefetch performance, and perhaps even slight gains. In
Section 4.1, we review srp. In Section 4.2, we show how
density-vector filters may be added to srp, and describe a
number of possible filter policies. In Section 4.3, we evalu-
ate the efficacy of those policies assuming unlimited stor-
age for density vectors. Finally, in Section 4.4, we quantify
the losses due to finite density vector buffering.

4.1.  Scheduled region prefetching

Srp aggressively exploits spatial locality by prefetching
every block in an aligned region surrounding a demand
miss that is not already in the cache [6]. For example, a
cache with 64-byte blocks and 4KB regions would fetch
the required 64-byte block upon a miss, and then prefetch
all of the 63 other blocks in the surrounding 4KB-aligned
region not already resident in the cache.

Aggressive prefetching can reduce performance in three
ways: by competing with demand misses for bandwidth, by
interfering with DRAM row buffer locality, and by pollut-
ing the cache with useless data. Srp uses three mechanisms
to avoid each of those sources of performance loss: reduc-
ing the priority of prefetch requests in memory-channel
scheduling (to eliminate the bandwidth-related perfor-
mance loss), prioritizing prefetches to maximize row buffer
hits (to minimize DRAM row buffer interference), and
placing prefetches in the lowest-priority replacement posi-
tion in the L2 cache sets (to minimize cache pollution-
related performance loss). The memory channel scheduler
functions by issuing prefetch requests only when the mem-
ory channels are otherwise idle.

In Figure 3, we depict the proposed memory controller
design that implements this scheduling policy. (The shaded

prefetch filter component is not part of the original design,
and will be discussed in the following section.) The
prefetch queue maintains a list of region entries. Each entry
is a bit vector, with one bit for each block in the region. A
bit in the vector is set if the corresponding block is to be
prefetched. When a demand miss occurs, an entry for the
surrounding region is added to the prefetch queue, if one is
not already present. The L2 cache tags are probed to initial-
ize the vector, marking only those blocks not already in the
cache. We assume that these probes can occur in the back-
ground, using idle tag ports, but do not model this process
in detail. Within a region, prefetches are issued in linear
order beginning with the block after the demand miss, and
wrapping around at the end of the region. If a demand miss
or writeback arrives at the access prioritizer, it is issued as
soon as possible, interrupting the flow of prefetch requests
from the prefetch prioritizer. Prefetches thus add little addi-
tional channel contention, delaying a demand miss only
until the current prefetch finishes issuing.

The base design used in this paper is enhanced from that
of previous work [5] in two ways. First, this Rambus con-
troller schedules demand fetches more aggressively, inter-
leaving the row and column packets of accesses to
independent banks to better hide precharge latencies where
possible. The previous study pipelined Rambus demand
requests, but did not reorder them. Second, we tuned the
prefetch queue size, finding that a two-entry queue pro-
vides the best overall performance; deeper queues do not
benefit benchmarks with locality, but penalize benchmarks
without locality by buffering large numbers of useless
prefetch candidates.

This base design improves performance by an average
of 65% across the ten SPEC CPU2000 benchmarks with
significant spatial locality, without degrading performance
on the remaining 16 benchmarks. However, as demon-
strated in Section 4.3, memory channel utilization is
increased significantly for the base srp scheme, particu-
larly for the benchmarks with little spatial locality.
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prioritizer
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L2 cache &
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Figure 3.  Throttling prefetch memory controller



4.2.  Prefetch filter design

The prefetch filter shown in Figure 3 is intended to
eliminate the bulk of the useless prefetches. The filter takes
the prefetch candidates nominated by the L2 cache (i.e., all
non-resident blocks within the region of a demand miss),
and filters out the set of candidates that it predicts will not
be useful based on its internally stored density-vector his-
tory. We model the filter as a function that provides a bit
mask indicating the predicted useful blocks within a given
region at a given point in time. We denote this function as

, where y is the bitmap that indicates the pre-
dicted useful blocks within region x at time t. The vector of
prefetch candidates added to the prefetch queue is then the
intersection (bit-wise AND) of the vector of non-resident
blocks provided by the L2 cache and the vector of pre-
dicted useful blocks provided by the filter function.

The original srp scheme effectively used the following
filter:

(5)

Density vectors can be used as a prefetch filter in a
straightforward fashion. A simple prefetch filter that
exploits local correlation (L-Cor) among density vectors
can be represented as:

(6)

Note that time t is in the middle of epoch , so
is the latest complete density vector for the

region containing x.
Because our scheduling and placement techniques allow

more aggressive prefetching, we also examine a pair of less
conservative prefetch filters using the union (bit-wise OR)
of multiple previous density vectors. The or2 filter com-
bines the previous two density vectors for a region:

(7)

The least conservative filter, orN, selects the blocks that
have been referenced at any point in the past, by maintain-
ing the union of all previous density vectors. We do not
present results for orN in the paper, since it performed
worse in all cases than other filters.

(8)

Finally, the prefetch filter that exploits global correla-
tion (G-Cor) uses the most recently recorded density vector
from any region:

(9)

Implementations of these prefetch filters require two
types of storage: a set of current density vectors under con-
struction, as illustrated in Figure 1, likely maintained by
the cache controller; and a set of previously recorded den-
sity vectors accessed by the filter mechanism. Throughout
this paper, we assume adequate storage for all density vec-
tors under construction. In the following section, we also
assume infinite storage for recorded density vectors. We
address the impact of finite storage for these vectors in
Section 4.4.

4.3.  Results

In Figure 4, we show the memory channel utilization
and IPC for each benchmark across a variety of configura-
tions. The stacked bars represent memory channel utiliza-
tion, divided into three categories. From bottom to top,
these categories are demand miss traffic, useful prefetch
traffic, and useless prefetch traffic. The sum of the lower
two bars is the total useful traffic, and represents a nearly
constant number of bytes for each benchmark across all
configurations; the combined height of these bars varies
with performance because we plot utilization, rather than
absolute traffic. The line indicates performance in instruc-
tions per cycle (IPC), calibrated against the right axis.

At the left of each graph, the first two bars represent the
base system with no prefetching (no-pf) and a system that
uses the last local (per-region) density vector to choose
prefetches (ldv). The ldv policy, which includes none of
the srp optimizations, is similar to the Kumar and Wilker-
son scheme (although it is applied to larger L2 blocks here,
as opposed to the tiny L1 blocks of previous work [4]). The
third bar, srp, corresponds to the published scheduled
region prefetching scheme, with the two enhancements
described in Section 4.1. The results show large speedups
for srp compared to no-pf and ldv for the applications that
have spatial locality (art, equake, fma3d, mgrid, and
parser), and virtually no performance losses for other
applications. In contrast, unscheduled ldv prefetching
incurs small but noticeable performance losses on two
benchmarks (art and vpr), primarily due to the interference
of the prefetches with demand misses.

Only ammp and facerec show higher performance with
ldv than with srp, due to significantly higher prefetch
accuracies. This behavior can be understood by referring to
Figure 2. Although these applications exhibit some spatial
locality, the population-count statistic shows that this local-
ity is concentrated in a small fraction of the regions. In
addition, referring to the “L-Cor” line in Figure 2, this
locality is very strongly correlated with the region’s previ-
ous density vector. Thus the simple ldv scheme has a
prefetch accuracy of 83% for ammp and 89% for facerec,
versus 4% and 52% respectively for srp. This large
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improvement in accuracy, coupled with high absolute accu-
racy, overwhelms the benefit of srp’s scheduling and place-
ment optimizations for these two benchmarks.

The bus utilization bars in Figure 4 illustrate the issue
we seek to address: srp’s performance improvements come
at the expense of dramatic increases in memory traffic, par-
ticularly on the low-locality benchmarks for which
prefetching accuracy is poor. In the worst case, ammp, traf-
fic increases by over 800%. Due to srp’s channel schedul-
ing, even this dramatic traffic increase leads to a mere 2%
performance loss. No other benchmark loses performance
from srp. The goal of our filtering schemes is to minimize
this unnecessary traffic increase without impacting the per-
formance gain.

In the fourth bar from the left, labeled srp+ldv, we
show the result of filtering srp prefetching using the last

local density vector (see Equation 6 in Section 4.2). This
ldv filter successfully reduces traffic, eliminating 70% of
unnecessary prefetches. In addition, six of the nine bench-
marks perform within 5% of the unfiltered srp scheme.
Mgrid suffers the most from the ldv filter, slowing by 14%.
Figure 2 shows why: mgrid’s spatial locality is moderately
high, but is poorly predicted by a region’s previous density
vector. Thus the coverage of srp with the ldv filter is low,
reducing performance. The ldv filter gives srp+ldv the
same accuracy benefits on ammp and facerec as the
unscheduled ldv scheme, improving performance over srp
by 6% and 35%, respectively.

The or2 filter, described by Equation 7 in Section 4.2,
seeks to reduce further the performance gap between fil-
tered and unfiltered srp by prefetching any block in either
of the two previous local density vectors. The srp+or2 bar

Figure 4. Performance results
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in Figure 4 shows the result: it improves the performance
of mgrid by 15%, equake by 3%, and fma3d by 3% over
srp+ldv—bringing these three benchmarks within 2% of
the performance of unfiltered srp—with negligible perfor-
mance impact on the other benchmarks. While total traffic
increases significantly relative to no-pf for a few low-accu-
racy benchmarks (40% for bzip2 and 47% for vpr), the or2
filter still eliminates a significant number of srp’s useless
prefetches (a 52% reduction on average).

Our final filter, srp+gdv, exploits global rather than
local density-vector correlation by using the last global
density vector as a filter, as described in Equation 9 of
Section 4.2. Overall performance is similar to srp+ldv, and
slightly degraded relative to unfiltered srp and srp+or2.
However, the performance impact is not uniform across the
benchmarks: relative to srp+ldv, ammp and facerec
degrade significantly, while mgrid and fma3d improve.
These results are consistent with the L-Cor and G-Cor
measurements for these benchmarks in Figure 2. Equake
and art also improve slightly, in spite of having lower glo-
bal than local correlations in Figure 2; apparently the inac-
curacies of the gdv filter lead to more aggressive
prefetching, which tends to improve performance with srp.
The gdv filter also reduces traffic, though to a lesser extent
than the ldv and or2 filters, eliminating 30% of unneces-
sary prefetches on average. The key advantage of the gdv
filter is that it requires minimal storage: only one density
vector must be maintained in addition to those currently
under construction.

Table 1 summarizes our performance results, showing
the base non-prefetching IPCs for each benchmark and the
harmonic mean IPC over all benchmarks. We also show the
percentage change in IPC for srp, unfiltered and with the
ldv, or2, and gdv filters. We see that or2 has the best over-
all performance: slightly better than srp and srp+gdv, and
14% higher than srp+ldv. In addition, or2 produces signif-
icantly less traffic than srp, and is the only policy for which
there are no performance losses in any of our benchmarks.
Thus, given infinite density-vector storage, the or2 filter
provides the best balance between successful prefetches
and traffic increases.

4.4.  Effects of finite density vector storage

Our results thus far have assumed infinite storage for
recording density-vector history. To measure the impact of
finite storage, we simulated the performance of the or2
scheme using a four-way set-associative cache to store
completed density vectors. We analyze three cache sizes
that represent differing relationships between density-vec-
tor coverage and data-set sizes. The smallest cache has 2K
entries; including two density vectors per entry (as required
by the or2 filter) plus tag overhead for a 48-bit physical
address space, this cache requires approximately 39K bytes
of storage. With our region size of 4K bytes, this cache can
track the behavior of up to 8MB of memory. This coverage
is less than the data-set sizes of all our benchmarks except
bzip and art. The mid-size cache has 8K entries, requiring
153KB of storage and covering 32MB of memory—ade-
quate for all our benchmarks except equake, fma3d, and
mgrid. The largest cache has 32K entries, requiring 604K
of storage and covering 128MB of memory. At roughly
half the size of the L2 cache itself, this density-vector
cache size is impractical, but its coverage is greater than
the data set size for all our benchmarks.

We portray the results in the right-most two sets of bars
in Figure 4. Each group of three bars shows the bus utiliza-
tion and performance of the three density-vector cache
sizes, from smallest to largest. The groups differ in their
default policy for accesses that miss in the density-vector
cache. The first group, or2-def1, uses a filter of all 1s
(prefetch everything), while the second, or2-def0, uses a
filter of all 0s (prefetch nothing).

The smallest density-vector caches have significant
numbers of misses, so traffic and performance are largely
determined by the default policy: results are similar to
unfiltered srp for or2-def1, and to no-pf for or2-def0. As
the cache grows, traffic and performance converge toward
the infinite-storage or2 values. Unfortunately, this conver-
gence is not gradual: most benchmarks see little benefit
from filtering (i.e., traffic reduction from or2-def1, or per-
formance gain from or2-def0) until the density-vector
cache is capable of tracking the entire data set.

For equake, fma3d, and mgrid, or2-def0 fails to reach
the performance of infinite-storage or2 even with the larg-
est density-vector cache size due to conflict misses in the

amm bzi vpr art equ fac fma mgr par HM

No prefetching 1.69 1.58 0.78 0.47 0.52 1.08 1.74 1.11 1.16 0.92

SRP -1.7% 5.5% 0.8% 13.2% 125.4% 17.8% 31.1% 61.7% 25.1% 27.9%

LDV 3.8% 2.0% -3.5% -7.5% 69.4% 58.0% 19.9% 18.1% 18.8% 15.5%

SRP+OR2 4.6% 5.6% 2.2% 6.6% 121.0% 56.5% 29.5% 60.7% 23.4% 29.6%

SRP+GDV -2.6% 3.9% -1.5% 10.2% 119.8% 31.5% 31.1% 59.9% 21.0% 26.9%

Table 1: Performance effects of prefetching policies



density-vector cache. These conflicts are exacerbated by
the higher data-cache miss rate induced by the default no-
prefetching strategy, which leads to a dramatic increase in
density-vector cache accesses. In the most extreme case,
equake, using the or2-def0 policy rather than or2-def1
leads to a the density-vector cache has a 12 times higher
miss rate and 58 times more misses in the 32K-entry den-
sity-vector cache.

The impact of an overly small density-vector cache
might be reduced by using an adaptive scheme to select an
appropriate default policy dynamically; we leave this
enhancement for future work.

5.  Conclusions

The trade-off between speculative fetching to reduce
cache misses and the increase in traffic caused by mistaken
fetches is critical. In earlier work, we showed that aggres-
sive prefetching can be made profitable by using novel
mechanisms to avoid the overheads associated with bad
prefetches. We incorporated these mechanisms into sched-
uled region prefetching, a design that effectively addresses
memory-system stalls for applications with spatial locality.
However, in many cases, that design generated copious
amounts of unnecessary memory traffic. In this paper, we
show how to retain the considerable performance benefits
of scheduled region prefetching while removing the major-
ity of the unnecessary traffic produced.

First, we showed that many regions have significant
inter-epoch correlation. Then, for nine of the SPEC2000
benchmarks, we showed that we could reduce useless traf-
fic by 70%, while improving mean performance by 1.3%,
by adding the or2 filter in addition to scheduled region
prefetching. The benchmark with the worst performance
loss was art (6%,) while the benchmark with the biggest
gain was facerec (33%).

Unfortunately, the or2 scheme requires significant stor-
age to maintain two previous density vectors for each
memory region. Caching vectors for only a portion of the
memory space appears to have limited effectiveness. Given
this practical constraint, the gdv filter, which requires
maintaining only the last globally recorded density vector,
may be more attractive. This scheme provides overall per-
formance within 3% of the or2 filter, and reduces useless
traffic by 30% relative to unfiltered srp.

Memory-intensive benchmarks see one of three effects
from our additions to srp. First, if they have little locality,
our filters eliminate most of the useless prefetches. Second,
if they have locality, but have already been brought close to
the performance of a perfect level-two cache by srp, the fil-

tering does not improve performance, but may reduce traf-
fic. Finally, for applications that have locality and are still
slowed by L2 misses, the filtering may improve their per-
formance by eliminating bad prefetches, thus allowing
more good prefetches to complete.

In previous work, we showed how to eliminate the
memory performance gap—for most applications—if spa-
tial locality exists. The price was an enormous increase in
memory channel traffic. In this paper, we have shown how
to provide the same performance benefits without the traf-
fic explosion. The remaining—and extremely difficult—
challenge is to extend this prefetch architecture to issue
effective prefetches for those memory-intensive applica-
tions that have little spatial locality.
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