
Use ECP, not ECC, for Hard Failures in Resistive Memories
Stuart Schechter, Gabriel H. Loh†, Karin Strauss, Doug Burger

Microsoft Research, Redmond, WA
†Georgia Institute of Technology, Atlanta, GA

{stus,kstrauss,dburger}@microsoft.com, loh@cc.gatech.edu

ABSTRACT
As leakage and other charge storage limitations begin to
impair the scalability of DRAM, non-volatile resistive mem-
ories are being developed as a potential replacement. Un-
fortunately, current error-correction techniques are poorly
suited to this emerging class of memory technologies. Un-
like DRAM, PCM and other resistive memories have wear
lifetimes, measured in writes, that are sufficiently short
to make cell failures common during a system’s lifetime.
However, resistive memories are much less susceptible to
transient faults than DRAM. The Hamming-based ECC
codes used in DRAM are designed to handle transient
faults with no effective lifetime limits, but ECC codes ap-
plied to resistive memories would wear out faster than the
cells they are designed to repair. This paper proposes
Error-Correcting Pointers (ECP), a new approach to er-
ror correction optimized for memories in which errors are
the result of permanent cell failures that occur, and are im-
mediately detectable, at write time. ECP corrects errors
by permanently encoding the locations of failed cells into
a table and assigning cells to replace them. ECP provides
longer lifetimes than previously proposed solutions with
equivalent overhead. Furthermore, as the variance in cell
lifetimes increases – a likely consequence of further pro-
cess scaling – ECP’s margin of improvement over existing
schemes also increases.

Categories and Subject Descriptors
B.3.4 [Hardware]: Memory Structures—Reliability, Test-
ing, Fault-Tolerance, Error-Checking

General Terms
Reliability

Keywords
Memory, Error Correction, Hard Failures, Resistive Mem-
ories, Phase-Change Memory

1. Introduction
The scaling of DRAM technology to smaller feature sizes
is in jeopardy, as physical limitations – particularly lim-
ited charge – may prevent DRAM scaling beyond 30nm [1,
12]. The small number of electrons that can be stored
on these shrinking capacitors, particularly in the pres-
ence of sub-threshold leakage, may limit further scaling.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

Resistive memories, which arrange atoms within a cell
and then measure the resistive drop through the atomic
arrangement, are promising as a potentially more scal-
able replacement for DRAM and Flash. These technolo-
gies include spin-torque-transfer magnetoresistive memory
(STT-MRAM), ferroelectric memory (FRAM), memris-
tors, and phase-change memories (PCM). Of these emerg-
ing technologies, PCM has received the most research at-
tention in the architecture literature [7, 11, 21, 22, 26, 27,
28], as it is closest to commercialization [18, 24].

Instead of representing information as the presence or
absence of electrical charge, PCM encodes bits in different
physical states of a chalcogenide material [2, 3, 4, 10, 14,
18, 20, 23]. Through the application of different program-
ming currents, the phase of the material can be melted and
then re-solidified into either a crystalline or amorphous
state, each with a distinct electrical resistance.

Since the state of the material is effectively a static con-
figuration of atoms, the material, once programmed, re-
tains its state for long periods of time. This characteristic
obviates the need for leakage control and refresh opera-
tions. PCM technology is predicted to scale well to smaller
feature sizes, with 9nm devices having been demonstrated.
While PCM is slower than DRAM to read (two to three
times) and considerably slower and more power intensive
to write [13], the write latency and power shrinks as PCM
cells scale down, since the total volume of phase-change
material per cell also decreases. Memory architectures
have been proposed to address PCM’s latency and power
issues to make PCM competitive with DRAM [13, 22, 28].

The major limitation of PCM as a DRAM replacement
is its limited write endurance. Next-generation PCM de-
signs can only endure 107 to 109 writes before the cell
permanently fails [1, 8]. In contrast, DRAM cells can be
written up to 1015 times before failure, which is effectively
unlimited. Additionally, the failure mode of PCM cells
more closely resembles Flash than DRAM. The heating
and cooling process required to write a cell, and the ex-
pansion and contraction that results, eventually cause the
heating element to detach from the chalcogenide. Detach-
ment of the heating element results in a “stuck-at” hard
fault that can be subsequently read but not rewritten. Un-
like charge-based DRAM, the material state of PCM cells
is not susceptible to particle-induced soft errors [15, 17,
29]. While resistive drift, resulting from gradual atomic
motion at high temperatures, can eventually lead to soft
errors, PCM cells are expected to hold their state for years
at typical operating temperatures.

Making PCM technology a viable DRAM replacement
will require mitigating wear-related failures through ar-
chitectural enhancements such as write buffers [13, 22],
compression schemes [26], wear-leveling mechanisms [21,

22, 26, 27, 28], error-correcting codes [27], or operating
system page remapping [11, 27, 28]. These techniques will
reduce the total write traffic, spread the writes more uni-
formly over the memory cells, and cope with failures after
they occur. An additional, highly effective technique that
can both alleviate wear and quickly detect failures is a
“read-write-read” pattern for write operations. Initially, a
read is performed from the row buffers or the PCM array
to access the prior value of the memory, which is bitwise
compared to the write data. The write is then performed,
with only the changed bits being written to the array. Sub-
sequently, a final read checks to ensure that the data were
correctly written. If the checking read returns an incorrect
result, the write operation may be reissued, or a correction
action must be taken.

The standard ECC implementations used in DRAM are
less than ideal given these three aspects of resistive mem-
ories: the strong need to reduce writes, the dominance
of hard failures, and the ability to identify failures at the
time of the write. Hamming-based ECC codes modify the
error-correction bits whenever any data in the protected
block change, resulting in high entropy that increases wear.
These codes face an unappealing choice when selecting the
region size; protecting a larger region induces more wear,
as the codes must be rewritten when any data in that re-
gion are changed. Protecting finer-grain regions reduces
the ECC bits’ wear but makes each page fail when enough
cells fail within any of the small protected regions. This
early failure problem can be exacerbated by cell lifetime
variation. Many of the previously proposed techniques as-
sume that all of the PCM memory cells have the same
write endurance, with each cell failing after exactly W
writes. In real systems, however, parametric variations
in the manufacturing process create a non-uniform distri-
bution of cell characteristics [5, 6, 19, 26]. As resistive
memories are scaled to smaller dimensions, lifetime vari-
ability may become more pronounced, making it crucial
for error-correcting schemes to handle numerous early cell
failures gracefully.

This paper proposes an alternative approach, Error-
Correcting Pointers (ECP), that works to minimize write
wear, handles permanent faults rather than soft errors,
and improves overall memory lifetime in the presence of
high parametric variation and corresponding early cell fail-
ures. Whereas error-correcting codes associate a number
of coded bits with each block of data bits, ECP encodes
and stores the addresses of failed cells and allocates addi-
tional cells to replace them. This ECP encoding scheme
can also correct failures in the correction cells themselves
without additional error-correcting schemes or cells.

ECP is also complementary to previously proposed ap-
proaches that reduce the number of writes to the PCM
(e.g., write combining), enabling those approaches to be
composed with ECP for additional longevity. As resistive
memories scale to smaller geometries, and the parametric
variations within them likely increase, ECP will better tol-
erate clustered errors without exacerbating wear-out, and
may be necessary to permit further device scaling.

As designers increase ECP entries, at some point the
extended lifetime obtained from additional ECP entries
reaches diminishing returns, since the rate of cell failures
grows over time. This paper evaluates two additional ap-
proaches to extend lifetime further. First, a layered ECP

approach provides small pointers for each row and a row
of larger pointers per page, balancing both the number
of pointers using a given overhead and the reach of each
pointer. Layered ECP is able to reduce lifetime over the
best-performing ECP organization with equivalent over-
head. Second, we observe that both ECP and layered
ECP eventually reach a point where adding more point-
ers provides less lifetime benefit than simply adding more
pages. We show how to obtain that point, and, thus for
a given correction scheme, demonstrate how to compute
the minimum storage needed to allow a memory size M to
be available for W writes, assuming a lifetime coefficient
of variance V . This result will permit memory vendors to
reason about the overhead and cost of supporting higher
variances for target capacities and lifetimes as resistive
memories are scaled to near-atomic dimensions.

2. Background
2.1 Phase-Change Memory Failure Model
While the longer access latencies and write power pose
some challenges, the limited write endurance of PCM may
prove to be the greatest obstacle to widespread adoption
of PCM as a DRAM replacement. Writing PCM requires
elevating the temperature of the phase-change material to
650 degrees Celsius. After enough write cycles (on the
order of 108), the mechanical stresses of repeated ther-
mal expansion and contraction cause the heating element
to separate from the phase-change material, rendering the
cell unmodifiable. Without any additional protection or
enhancements, this limited write endurance can render a
PCM memory useless in less than one month of opera-
tion [13]. The useful lifetime of PCM must be extended to
many years for it to be a practical main memory technol-
ogy. Because of good thermal insulation between cells, we
expect that cell failures will be independent and identically
distributed, and that cell lifetimes will follow a normal dis-
tribution in keeping with other sorts of parametric varia-
tion. Finally, while PCM cells’ values can decay (due to
atomic motion), resulting in soft errors, the refresh period
at typical operating temperatures is measured in years.
System designers must ensure that the ambient PCM tem-
peratures do not exceed a sustained level that will result
in soft errors not caught by an occasional (daily?) refresh
operation.

2.2 Error Correction
Error-correcting codes have been studied and applied in
a variety of contexts for decades. Single-error-correcting
(SEC) Hamming codes [9], which include commonly used
dual-error-detecting SECDED varieties, are best known
for providing error protection for DRAM as well as on-chip
structures such as caches [16]. Error codes are specified
as “(n,k)” where k bits of actual data are encoded into
n > k bits of redundant/protected data. For example,
Hamming introduced a (7,4) code that can correct a single
error and detect (but not correct) up to two errors by
appending the k=4 original data bits with three additional
error-correcting bits. The coding is generalizable to larger
blocks of data, such as the (72,64) code used to provide
SECDED protection on 64-bit DRAM data.

To provide multiple-bit error correction in PCMs, more
complex coding schemes may be considered. Polynomial-
based codes, such as Reed-Solomon, and Bose, Ray-Chaud-
huri, Hocquenghem (BCH) have already been employed

in Flash storage devices and optical media to deal with
multiple bit failures within a block. BCH has also been
proposed for correcting for PCM bit failures [27].

The Hamming Bound provides a theoretical lower limit
on the space overhead s in bits required to enable up to n
errors to be corrected while encoding d data bits.

Smin ≥

⌈
log2

n∑
e=0

(
d + n

e

)⌉

3. Error-Correcting Pointers
Traditional Error-Correcting Codes (ECC) store sufficient
information to derive the source of errors in locations un-
determined at encoding time, allowing them to correct soft
errors discovered when a block of data is read. Conversely,
Error-Correcting Pointers (ECP) directly store the address
of memory cells determined to have permanently failed
during the verification of a memory write. ECP operates
within each memory chip at the row level.

The ECPn scheme uses n correction pointers to specify
the addresses of failed cells, and pairs each pointer with
a replacement memory cell. Together, the pointer and
replacement cell form a correction entry.

Figure 1a illustrates the simplest ECP implementation,
ECP1, where a single correction entry corrects up to one
bit. The example uses a row with 512 data bits. When
no errors are present in the data, the correction pointer is
empty, the full bit is set to 0 (false). This indicates the
entry is inactive as there are no errors to correct. When
a bit fails, for example bit 2 in Figure 1a, the correction
entry is marked full (or active), the correction pointer is
set to point to bit 2, and the replacement cell now stores
the value that belongs in bit 2. Henceforth, when the
row is written, the value to be written to the failed cell
identified by the correction pointer is instead written to
the replacement cell. When the row is read, the value in
the replacement cell supersedes the value read from the
defective cell.

Generalizing ECP1 to an arbitrary number of entries
(ECPn) is illustrated in Figure 1b, using ECP5 as an
example. The full bit is now set only when all error-
correction entries are in use. Otherwise, the full bit is
set to 0 and the bits of the last correction entry (n− 1=4)
contain a unary-encoded counter denoting how many of
the other n− 1 correction entries (entry 0 to n− 2=3) are
active. In the illustration, the full bit is set to false (0) and
the two lowest order bits in entry 4 are set, indicating that
correction entries 0 and 1 are active. As before, the first
bit to fail (bit 2) is replaced by correction entry 0. The
availability of a second correction entry (entry 1) enables
us to correct a second failure (bit 509).

Errors in replacement cells are less likely to occur than
errors in the original data cells, as they do not begin to
wear until they are put into use to replace a failed cell.
ECP can still correct these errors. When two correction
entries point to the same cell, the correction entry at the
higher index takes precedence over the one with the lower
index, just as the correction entry at the lower-index takes
precedence over the failed bit in the data array. For exam-
ple in Figure 1c, the replacement cell in correction entry 0
has failed. To compensate for this, we activate correction
entry 1 and have it point to the same failed cell. The re-

placement cell in entry 1 supplants both the original failed
cell and the failed replacement cell in entry 0.

Precedence rules also make possible the correction of er-
rors in correction pointers. Such errors are even less likely
than errors in replacement cells, as these are written to
at most once (twice for the cells in entry n − 1 that are
also used to activate other cells). Almost all errors in the
pointers themselves will be cells that failed upon manu-
facture. An error in a correction pointer, as illustrated in
Figure 1d, effectively replaces a working cell with a work-
ing replacement cell, doing no harm but also failing to
repair the failure for which it was allocated (bit 2). We
thus allocate an additional correction entry to correct the
original failure of bit 2. Overall, two bits have failed and
two error-correction entries have been consumed.

ECP can correct errors both in data cells and in its
own data structures, while allocating only enough bits per
correction pointer to address data bits. ECPn can correct
any n cell failures, regardless of whether they are in data
cells or correction entries.1 Because the scheme works at
the cell level, it is equally effective for use in multi-level
cell (MLC) memories that store more than one bit per cell.

ECP requires 1 full bit, n replacement bits, and n point-
ers large enough to address the original data bits. Thus the
fractional space overhead S(ECPn) for a row with d = 512
data bits is:

S(ECPn) =
1 + n + n · dlog2 de

d
=

1 + n · (1 + dlog2 512e)
512

S(ECP6) =
1 + 6 · 10

512
=

61

512
= 11.9%

4. Experiments
Memory failure simulation presents special challenges, as
it is impractical to perfectly simulate the real operation of
a memory over a full lifetime or to simulate all possible
wear patterns. We make a number of simplifying assump-
tions in our simulation. First, we assume that existing
wear-leveling techniques (e.g., stop-gap [21], fine-grained
wear leveling [22]) already spread writes evenly over the
memory. Second, we assume that memory chips store data
in 512-bit rows, and that each contiguous block of memory
is spread over eight chips. Third, we assume that writes
modify a single region of bits randomly located within the
page. When evaluating competing schemes that divide
memory rows into smaller blocks, we assume that writes
that are narrower than a block touch only one block – max-
imizing the endurance of the competing schemes. Each
bit within the region modified by the write is assumed to
change value with probability 0.5.

For each scheme, our simulator lays out a full page of
memory and allocates a cell for each bit, including both
data bits and meta-data structures such as correction en-
tries. Wear-rates are then assigned to each cell based on
the calculated expected bit changes per page write. For
example, for a write modification width of 2 bytes to the
4096 byte page, the expected wear on each data bit would

1
The one extraordinarily rare exception to this rule occurs when a

failure activates a high-precedence correction entry, its replacement
cell fails, and no higher-precedence correction entry is available to
repair it. For example, such a failure could be caused if the full
bit is manufactured stuck at 1 (activating all correction entries)
and the replacement bit in the highest-precedence correction entry
fails.

0 1 1 0 … 1 0 0

511 510 509 508 3 2 1

0 0 0 0 0 0 1

8 7 6 5 3 2 1

0

4

0

0

1

 R

correction pointer

data cells replacement cell

1

correction entry

1

Full?

1

0

0 1 1 0 … 1 0 0

511 510 509 508 3 2 1

0 0 0 0 0 0 1

8 7 6 5 3 2 1

0

4

0

0

1

 R

1

0

Full? 4 3 2 1 0

0011 1

0

1 1 1 1 1 1 0

8 7 6 5 3 2 1

1

4

1

0

0

 R

0

0 1 1 0 … 1 0 0

511 510 509 508 3 2 1

0 0 0 0 0 0 1

8 7 6 5 3 2 1

0

4

0

0

1

 R

X

0

Full? 4 3 2 1 0

0011 1

0

0 0 0 0 0 0 1

8 7 6 5 3 2 1

0

4

0

0

1

 R

1

0 1 1 0 … 1 0 0

511 510 509 508 3 2 1

0 0 0 0 0 0 0

8 7 6 5 3 2 1

0

4

0

0

1

 R

1

0

Full? 4 3 2 1 0

0011 1

0

0 0 0 0 0 0 1

8 7 6 5 3 2 1

0

4

0

0

1

 R

1

(a) (b)

(c) (d)

Figure 1: Correction entries enable permanent replacement of failed memory cells. (a) A simple ECP1 scheme that corrects up to a
single bit error. The correction pointer specifies the location of a dead cell to be supplanted by the replacement cell. (b) The ECP5

scheme that corrects up to five failed cells. (c) A failure in the replacement cell can be handled by allocating an overriding correction
entry at the same address, and similarly (d) a rare cell fault within a correction pointer can harmlessly cause a still-operational cell
to be replaced by another working cell, requiring an additional correction entry to be allocated to replace the data cell that the
faulty correction entry was intended to replace.

be 0.5 · 2
4096

. The initial wear-rate for an unused replace-
ment bit would initially be set to 0.

Next, for each simulation run, the simulator assigns a
random lifetime to each cell using a normal distribution
with a mean of 108 bit-writes-until-fail and a variance of
0.25 (unless specified otherwise). Each cell’s expected re-
maining lifetime in page-writes-until-fail is calculated by
dividing the remaining bit-writes-until-fail by the cell’s
wear rate. The next bit to fail is identified by finding
the bit with the lowest page-writes-until-fail.

When a bit fails, the model determines whether the fail-
ure is terminal to the page and, if it isn’t, simulates the
action taken within the page to correct it. For example,
when a cell dies in the ECPn design, the cell that replaces
it begins to encounter wear.

We assume a memory architecture in which 4KB logical
pages are mapped to 4KB physical pages. When a physi-
cal page encounters an uncorrectable error, the page dies
and is mapped out by the OS. Each page death reduces
the size of the physical memory, which increases wear on
the remaining pages. In other words, when a physical
page dies there is one fewer page over which to spread the
wear placed on the logical memory. The surviving pages
will collectively absorb the wear that had previously been
incurred by the newly deceased page. We assume each
surviving page absorbs an equal amount of this increased
wear. We simulate the impact of dying pages by, upon
each page death, decreasing each of the survivors’ remain-
ing lifetimes by the fraction of the additional wear that
each will now incur.

We use the architectural parameters shown in Table 1.
For each configuration we simulate at least 2, 000 physi-

Page size 4KB (32768 bits)
Row size 32B (512 bits)
Rank 1
Chips per rank 8
Bit lines per chip x8
Mean cell lifetime 108

Lifetime variance 0.25

Table 1: Default architectural assumptions.

cal page lifetimes. We present results using the metric of
mean-writes-per-page.

5. Comparison to Existing Schemes
Today’s DRAM memories use single-error-correction (SEC)
Hamming codes. Eight memory chips with eight data
lines, providing a total of 64 data bits per bus cycle, are
paired with a ninth chip. SEC requires 7 additional bits
to correct 64 data bits, and so the eighth bit on the spare
chip allows for detection, but not correction, of a second
error (SECDED). As we assume all errors are detectable
following a write, the additional detection is of no value.

We assume that our schemes should have at most 12.5%
space overhead so that they, like SEC, fit in a ninth mem-
ory chip (for schemes that correct blocks spanning chips)
or in the equivalent overhead (for ECP and other row-
based schemes that operate on rows within a chip).

5.1 Schemes Compared

SEC64

SEC64 simulates the correction scheme in today’s DRAM.
It chunks memory into 64-bit blocks, each divided evenly
over eight chips, and corrects for up to one error in each
block. A second error within a block is terminal. For

0 1 1 0 … 1 1 0

255 254 3 2 1

0 0 0 0 0 1

7 6 5 3 2 1

0

4

1

0

repair pointer data cells (paired)

0

0

0 1 0 1 1 0

repair
patch

0 1

0 1

0 1

0 1

0 1

0 1

Repair
Pointer

Decoder

8

…

…

0 1 1 0 0 1 1 1 0 0 1 0 …

2 2 2 2
2

2 2 2 2 2 2

repaired data value

0

0

0

1

1

1

Figure 2: The “bit-fix” scheme proposed by Wilkerson et al.

all schemes, we assume that memory is deallocated at the
page level, and so a second error within a block will cause
the entire page to be deallocated. We simulate SEC64 by
assuming that each SEC bit within a block will change
with probability 0.5 any time one or more data bits are
written to the block. The space overhead of SEC64 is 7
bits per 64-bit block, or 10.9%.

Wilkerson4

The most closely related error-correcting scheme to ECP
was introduced by Wilkerson et al. for use in caches in
which certain cells may fail to operate correctly at desired
voltages [25]. Wilkerson’s “bit-fix” scheme, illustrated in
Figure 2, pairs up cells and provides an extra replace-
ment pair, called a repair patch. Whereas ECP directly
substitutes failed cells with replacement cells, Wilkerson’s
scheme locates replacement cells on the logical edge of the
data line, shifting as much of the row as necessary to fill
vacancies left by the failed cells. This seemingly small
architectural difference makes it difficult for Wilkerson’s
scheme to create entries that correct failures in other cor-
rection entries – the replacement cells are not themselves
addressable. Instead, each 10-bit correction entry (an 8-
bit pointer to select one of the 256 bit pairs, and the 2-bit
replacement pair) in the bit-fix scheme requires five dedi-
cated SECDED bits (not shown in the figure). In addition
to this 50% space overhead, these SECDED bits are a po-
tential source of wear failure, as their values change when-
ever the replacement bit in the correction entry changes.

To be an appropriate comparison with ECP, we ex-
tended Wilkerson’s scheme to target a PCM implementa-
tion of main memory, using state stored within each mem-
ory row. Specifically, we optimized Wilkerson’s scheme for
PCM by using 4-bit SEC within correction entries instead
of 5-bit SECDED; write-time error detection obviates the
need for the double-error detection. Although the SEC
code covers the entire 10-bit repair entry, it is only the re-
pair bits that will experience frequent modifications, and
so we strategically place these two bits within the 10-bit
entry so that the minimum number of SEC bits toggle on
updates to the repair patch.

In our implementation, Wilkerson’s scheme requires 1
full bit, and contains n entries each with 2 replacement
bits, 8 address bits, and 4 SEC bits. The 40% over-
head that SEC bits add to each entry limits Wilkerson

to four error-correction entries (Wilkerson4) within our
12.5% overhead constraint.

S(Wilkersonn) =
1 + n · (2 + 8 + 4)

512

S(Wilkerson4) =
1 + 4 · 14

512
=

57

512
= 11.1%

Pairing8

Ipek et al. recently introduced a hardware/software hybrid
scheme to tolerate block failures within a page [11]. Their
scheme assigns a parity bit to every 8-bit block, though the
scheme generalizes to blocks of arbitrary size (Pairingn).
A block dies when any bit within it, or its parity bit, fails.
Dead blocks are recognizable by their non-matching parity
bit. In the rare event that a second bit failure occurs at
the same time as the first, any non-dead bit within the
block (including the parity bit) may be flipped to ensure
a parity failure continues to be detectable. One parity bit
per eight data bits results in an overhead of exactly 12.5%.

When the first failed bit within a 4KB page causes a
block to die, the page is then paired with another page
that is selected to ensure that the set of failed block indices
do not intersect. In other words, if a block at index i is
dead in one page, it must not be dead in the other page.
If future failures cause this invariant to be violated, the
affected pages must be taken offline until new matches can
be identified for them. Ipek et al. show that the Pairing8

scheme is viable for up to 160 block failures in each page.
We treat the 161st block failure as terminal.

Perfect Code9
To address the primary limitation of SEC64 – the failure
of a page should two errors happen to fall within the same
64-bit block – we also evaluated a multi-bit scheme that
corrects errors over a larger block. Specifically, we con-
sider correction of multiple errors within a 512-bit block.
Rather than test a specific multi-error-correction scheme,
we test against the theoretical limit: a perfect n-error-
correcting code over the entire block. The number of code
bits S(Perfect Coden) required is dictated by the Ham-
ming Bound:

S(Perfect Coden) =

⌈
log2

∑n
e=0

(
512+n

e

)⌉
512

S(Perfect Code9) =

⌈
log2

∑9
e=0

(
512+9

e

)⌉
512

=
64

512
= 12.5%

To simulate Perfect Code9 we allocate 64 error-correct-
ing bits per 512-bit row, each of which changes value with
probability 0.5 any time one or more data bits are writ-
ten to the line. We simulate Perfect Code9 not because it
is realistic, but because it provides a theoretical limit on
traditional error-correcting schemes. In reality, decoding
multi-bit error-correction schemes is expensive and cor-
recting errors at the granularity of an entire block prevents
any critical-word-first optimization, as reads cannot com-
plete until the full line is read and errors decoded. The
alternative to off-memory-chip correction is to apply the
multi-bit error-correcting codes at the row level on the
memory chip, but doing so results in disproportionately
high, lifetime-limiting wear to the error-correcting bits.

Results

Table 2 summarizes the error-correction schemes evaluated
in this paper.

failures
failure survivable

overhead unit per unit

SEC64 10.9% 64b block 1
Pairing8 12.5% 4KB page 160

Wilkerson4 11.1% 512b row 4
Perfect Code9 12.5% 512b block 9

ECP6 11.9% 512b row 6

Table 2: Overheads for error-correction schemes in this paper.
Blocks span memory chips while rows are contiguous bits within
a single chip.

Figure 3 shows the fraction of pages that survive a given
number of page writes with a coefficient of variation of 0.25
in the mean cell lifetime and modified region widths of
128, 256 and 512 bits (equal to one physical row). Figure
4 fixes the modified region width to 512 bits and presents
these page-survival fractions for coefficients of variance of
0.2, 0.25, and 0.3 (Figure 3c and Figure 4b are the same).
Employing no correction results in the worst lifetimes. Al-
most all pages see one early fault and so this scheme’s
lifetime curve drops quite early and very sharply.

The relative endurance of Perfect Code9 is worst for
small modifications, as is illustrated in Figure 3a, and
best for wider modifications that cover the entire block
(Figure 3c). When modification widths are small, error-
correction bits receive more wear than data bits and so
the first bits to fail are likely to be the error-correction
bits themselves. The same effect would be seen in SEC64

for writes that modify regions smaller than 64 bits within
a 64-bit block, such as might occur when manipulating
strings. One might even see this effect in Pairing8 for
writes that modify regions smaller than eight bits of an
8-bit block, such as those from writes to a Bloom filter.

In the middle of the endurance curves are the SEC64

and Pairing8 schemes. As pages in the Pairing8 scheme
encounter their first bit error, they are paired with other
pages and so once all pages have encountered their first
bit error the number of available pages is cut in half. This
capacity reduction doubles the effective wear on each page
as there are half as many physical pages to spread the wear
placed on the logical memory space. The SEC64 scheme
suffers because the first occurrence of two errors within a
64-bit block is fatal.

The results for SEC64 differ from the SECDED results
reported in Ipek et al. [11]. Like us, they implement
Pairing8 under the assumption that writes are followed
by a verifying read. However, they compare to standard
SECDED, which must deallocate a page after the first er-
ror is detected and corrected, since standard SECDED
does not assume writes are re-read and verified. As a re-
sult, Ipek et al.’s standard implementation of SECDED
with no verifying reads performs closer to our simulations
of no error-correcting codes with verifying reads. When
we extend SECDED to model a verifying read after each
write, enabling deallocation only after the second error in
a region, SEC64 outperforms Pairing8 for lower coefficients

of variance. As the variance grows, the lifetime of Pairing8

improves relative to SEC64, eventually exceeding it.
Wilkerson et al.’s scheme differs from ECP primarily in

its use of a single-error-correction (SEC) Hamming code,
instead of precedence rules, to correct errors in its own
correction entries. Since the precedence rules incur no
bit storage overhead there is no reason not to implement
both. We thus enhance the Wilkerson4 scheme with ECP’s
precedence rules. We find that the benefits of these Ham-
ming codes over precedence rules alone are undetectable:
when we graphed ECP6 and Wilkerson6 (not shown), their
curves always overlapped completely; any difference in life-
time was so small as to be undetectable. Yet, Wilkerson et
al.’s scheme can store only four correction entries within
the 12.5% storage overhead constraint, whereas ECP can
store six. ECP6 outperforms the Wilkerson4 scheme with
similar storage overhead.

The ECP6 scheme corrects two thirds of the errors pos-
sible with a perfect multi-error-correction Hamming code
(Perfect Code9) under the same space constraint. When
the region of bits modified during a write is significantly
smaller than 512 bits, pages using ECP6 actually out-
live those using a perfect multi-error-correction Hamming
code. This advantage relative to a “perfect code” is pos-
sible because these write-modification widths cause Ham-
ming codes to suffer more wear than the bits they are
intended to correct (smaller average writes show larger
relative wear on ECC bits). In contrast, ECP’s correction
pointers suffer near-zero wear and ECP’s replacement bits
suffer only as much wear as the data bits they replace.

6. Intra-row Wear Leveling
The endurance of Perfect Code9 suffers when writes to a
block contain regions that are unmodified, as the correc-
tion bits suffer heavier wear than data bits and may fail
first. We could compensate for this shortcoming by level-
ing wear throughout the block’s data and correction cells.
While throughout this paper we assume that writes are
already wear-leveled across rows and pages, external wear-
leveling mechanisms can only level wear within externally
visible data cells; they cannot spread wear among the in-
ternal meta-data cells used for error-correction structures.

To address uneven wear between correction and data
cells, we could architect rows (or blocks) to periodically
rotate the positions of the logical row by a random off-
set to place them into different physical cells. This ro-
tation would spread the impact of wear on the logical
error-correction bits over all of the physical cells, presum-
ably making Perfect Code9 more competitive with ECP
for write modification widths that do not span a full block.

In the next experiment, we introduce such a rotating
wear leveler into Perfect Code9 and ECP6. The wear lev-
eler rotates all logical structures (except its own) around
random positions over a single set of physical cells, as
shown in Figure 5a. We do not track the number of writes
since the last rotation as doing so would incur additional
space overhead and wear; we instead assume a scheme ini-
tiates rotations at random intervals with a uniform proba-
bility at each write. For a mean cell lifetime of 108 bits, we
select a rotation probability of 10−4. Since the probability
that a given bit will change during a rotation is 0.5, the
expected wear induced by the wear-leveling on each bit is
0.5 ·10−4 bit-writes per write to the row. While infrequent

No correction Pairing8 SEC64 ECP6 Wilkerson4 Perfect_Code9

125,0,125

35,65,90

240,40,130 148,0,0 255,125,0

40,220,170

0 7 14 21

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

NoECC
ECP6
SEC64
Wilkerson4
Pairing8
PerfHamming9

(a) 128 bits

0 1 2 3 4 5 6 7 8 9 10

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

NoECC
ECP6
SEC64
Wilkerson4
Pairing8
PerfHamming9

(b) 256 bits

0 1 2 3 4 5 6 7

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

NoECC
ECP6
SEC64
Wilkerson4
Pairing8
PerfHamming9

(c) 512 bits

Figure 3: Page lifetimes in writes-per-page. A write of a 512-bit row may only modify a subset of the bits. The graphs assume
writes that span (a) 128, (b) 256, and (c) 512 bits. Each bit within the span of modification changes value with probability 0.5.

No correction Pairing8 SEC64 ECP6 Wilkerson4 Perfect_Code9

125,0,125

35,65,90

240,40,130 148,0,0 255,125,0

40,220,170

0 1 2 3 4 5 6 7

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

NoECC
ECP6
SEC64
Wilkerson4
Pairing8
PerfHamming9

(a) Cell lifetime variance = 0.2

0 1 2 3 4 5 6 7

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

NoECC
ECP6
SEC64
Wilkerson4
Pairing8
PerfHamming9

(b) Cell lifetime variance = 0.25

0 1 2 3 4 5 6 7

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

NoECC
ECP6
SEC64
Wilkerson4
Pairing8
PerfHamming9

(c) Cell lifetime variance = 0.3

Figure 4: Page lifetimes for various error-correction schemes for a row with 512 data bits, write width of 512 bits and various
variances: (a) 0.2, (b) 0.25, and (c) 0.3.

enough to minimize the probability of wear-failure within
this structure, the rotator is expected to visit each possi-
ble rotation approximately twenty times over a period of
108 writes to a 512-bit row.

For a row of m data and repair bits, the rotating wear
leveler requires dlog2me bits to represent the rotation po-
sition. ECP6 and Perfect Code9 use rows/blocks of 512
data bits and have overhead of at most 64 bits (12.5%),
and so 10 bits will be required to store the rotation posi-
tion. The very low frequency of wear-leveling ensures that
cell failures within the wear leveler itself are extremely
rare. Rather than correct for these outliers, we simply ac-
cept that a negligible fraction of pages will reach the end
of their lifetime as the result of a cell failure within a wear
leveler, and not after n failures within a row. This as-
sumption will not affect the experimental comparison, as
the same wear leveler is used for all architectures and so
a failure within the wear leveler is equally improbable for
each of them.

In addition to using the rotating wear leveler to spread
wear, we add an additional physical data cell to the space
that the wear leveler can address. Thus, at any given time

one cell is rotated out of use. This extra cell enables the
scheme to repair one additional failed cell. Figure 5b shows
a line using ECP5 where all five correction entries have
already been used up and a sixth error has been detected.
By rotating this final error out of use, this scheme tolerates
up to n+1 failures per block, though after the final failure
the wear leveler will be stuck in a single position until the
terminal failure occurs. This cessation of rotation is likely
to hasten the arrival of the terminal failure, as pointer bits
may no longer absorb their share of wear, but it provides
additional lifetime at the cost of only one extra bit.

Following a rotation, ECP implementations may need to
re-discover failed bits that had been located in a correction
pointer in the previous rotation, as ECP does not need to
store these locations explicitly to correct them.

In Figure 6 we present the comparative page lifetimes
for Perfect Code9 and ECP6, both equipped with rotat-
ing wear levelers. While wear-leveling significantly im-
proves the relative endurance of Perfect Code9 for smaller
write-modification regions, ECP dominates Perfect Code9
whenever the region of modified bits within a write does
not span the full block; even when the extra error-correct-

data cells

(a) (b)

…

extra
data cell correction

entries

full
rotate
offset

…

…

…
…

…

1

2

3

4

5

6th Error!

…

Figure 5: (a) The rotating wear leveler periodically rotates the entire PCM row including data and correction bits by a random
offset. (b) The inclusion of one extra data cell provides a slight increase in expected lifetime and enables the tolerance of one
additional bit failure. For ECPn, the first n failures are handled by the correction entries, and the n+1st is covered by rotating the
row such that the extra data bit aligns with the failed cell, although this comes at the cost that the wear leveler can no longer be
used.

ing-code wear can be spread out, the wear has a significant
impact on the overall block. ECP’s relative endurance ac-
tually improves when writes modify the whole block, as
wear to the data and replacement bits is now spread to
the address bits.

7. Comparison to Optimal ECP
A space-optimal version of ECP could store the locations
of failed cells using a more compact representation than
ECP. ECP does contain redundancy; for example, a two-
pointer ECP organization could correct bit 4 in entry 0 and
bit 5 in entry 1, or vice versa, resulting in two encodings
to correct the same two bit failures. Ignoring precedence
rules, ECPn has n! different representations of the same n
data bit failures (permutation of n error pointers).

An optimal replacement-cell scheme would ignore the
unlikely event of failures in the low-wear error-locating
mechanism, which is written to at most n times, and only
correct failures of data and replacement bits. The optimal
encoding only needs to identify failures in the d + n − 1
repairable cells experiencing wear: the d data cells and the
first n − 1 replacement cells (pointing to a defect in the
nth replacement cell would serve no purpose as there are
no cells to replace it). The number of combinations of 0
to n error locations in these d + n− 1 cells is:

n∑
e=0

(
d + n− 1

e

)
For a row size of 512 data bits (d = 512), a perfect

replacement-cell scheme using the smallest possible rep-
resentation of the failed bit locations would thus require
sufficient space to represent the error location combina-
tions above and to store the n replacement cells:

S(Perfect Replacementn) =
n +

⌈
log2

∑n
e=0

(
512+n−1

e

)⌉
512

Decoding such a scheme would require significantly more
overhead than decoding ECP; a naive approach would re-

quire multiple divisions. Since this scheme represents the
most storage-efficient pointing mechanism possible, it pro-
vides an important point of comparison to illustrate the
room for improvement in compressing ECP. Table 3 shows
the comparative storage overheads for schemes to correct
one to ten errors. The relative overhead of ECP increases
with the number of errors, since the number of redundant
representations grows as n!. The overhead is acceptably
small for most practical values of n.

8. Layering ECP
In the final experiment, we explore a multi-level ECP
scheme, which attempts to provide the best of having
many small restricted pointers and larger pointers that can
correct any fault in a region. The small row-level pointers
correct errors within a row, and the larger pointers can
correct errors throughout a 4KB page. This extension al-
locates an extra row of 15-bit correction entries for each
page – wide enough to correct any error in the page. These
page-level correction entries would be allocated for errors
within those rows that have exhausted their row-level cor-
rection entries.

We call this scheme Layered ECPn,m, which has n row-
level correction entries and m page-level correction entries.
Since the page-level correction entries consume one row of
physical memory cells, and the row width is a function of
the number of row-level correction entries, m is a function
of n. Figure 7 shows the organization of the original data
rows (with per-row ECP) along with the additional page-
level ECP entries (bottom row in the figure). Each row
contains one extra bit that indicates whether any page-
level entries have been allocated to correct errors in this
row (i.e., all of the row-level entries have already been acti-
vated and more errors need to be fixed). Reading/writing
of the row storing the page-level correction entries is only
needed when this bit is set.

Table 4 compares the endurance and space overhead of
ECPx with Layered ECPx−1,y (which includes the extra

No correction Pairing8 SEC64 ECP6 Wilkerson4 Perfect_Code9

125,0,125

35,65,90

240,40,130 148,0,0 255,125,0

40,220,170

0 8 16 24

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

ECP6-WL
PerfHamming9-WL

(a) 128 bits

0 4 8 12

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

ECP6-WL
PerfHamming9-WL

(b) 256 bits

0 2 4 6

writes to page (billions)

0

20

40

60

80

100

%
 p

ag
es

 s
ur

vi
vi

ng

ECP6-WL
PerfHamming9-WL

(c) 512 bits

Figure 6: The comparative endurance of Perfect Code9 and ECP6, using rotating wear leveling to spread wear evenly over both
data bits and correction structures. The graphs assume writes that span (a) 128, (b) 256, (c) 512 bits.

Percentage space overhead for correction of n errors

Errors correctable (n) 1 2 3 4 5 6 7 8 9 10
ECPn 2.1% 4.1% 6.0% 8.0% 10.0% 11.9% 13.9% 15.8% 17.8% 19.7%

Perfect Replacementn 2.1% 3.9% 5.5% 7.0% 8.6% 10.0% 11.3% 12.7% 14.1% 15.4%

Table 3: Space overheads to correct 1 to 10 errors, comparing ECP with a storage-optimal replacement-cell encoding.

row for page-level correction entries). At similar over-
heads, Layered ECPx−1,y has better relative endurance
than ECPx. However, the endurance gap narrows as the
number of entries grow, and Layered ECPx−1,y is more
complex to implement and may incur additional perfor-
mance and power overheads when accessing rows that re-
quire page-level correction.

9. Optimizing Memory for Correction
As resistive memories scale down to smaller geometries,
and frequent faults become more prevalent with higher
variation, it will be useful to determine how much over-
head, for a specified lifetime variance, will be required
to provide a desired capacity for a predetermined lifetime
(measured in writes). This capability will allow architects
to reason about cost and overheads for different failure
rates. We next formulate the problem and walk the reader
through the process of solving it.

Stated formally, we wish to build the smallest possi-
ble physical memory to store M bits of data (the effective
memory) while withstanding W writes to the memory sys-
tem (the effective lifetime).

The next step is to determine the survival function sn(w)
for ECPn: the fraction of memory with variation V sur-
viving after w total writes, which can be done with simu-
lations like those presented in this paper. Starting from m
bits of physical storage, the fraction of physical memory
available to store data after w writes, the fractional effec-
tive memory, is the product of the data fraction times the
survival function.

fn(m,w) = dn · sn(w)

Figure 8 shows this fractional effective memory function
plotted for ECP5 with variance 0.3.

The effective memory, the portion of the memory used
to store data bits and that has survived w writes, is simply
m times the fractional effective memory en(m,w):

en(m,w) = m · fn(m,w) = m · dn · sn(w)

Architects have two tools with which to scale up the
effective memory and lifetime to meet the target goals.
They can increase n, which increases the survival function
but also increases the ECP overhead, reducing the fraction
of memory used to store data. They can also increase the
size of the physical memory by a multiplier k (to a total
of km), for which we might wish to calculate the effective
memory en(km,W). This has two effects. First, the to-
tal amount memory is increased to km and so whatever
fractional memory remains after page deaths is increased
by a factor of k. Second, increasing the memory size by
a factor of k spreads wear over k times as much memory,
effectively dividing the wear by k. Thus, for a choice of n
and k, the effective memory at lifetime W, en(km,W), is
equal to:

en(km,W) = km · fn(m,
W

k
) = k · en(m,

W

k
)

The optimal configuration is thus the one that results
from finding the pair (n, k) with the smallest possible k
that meets our constraint M ≤ en(km,W).

10. Discussion
10.1 Hardware Implementation and Overheads
The implementation of ECP (and the derivative schemes)
can introduce additional delay in reading and writing the
PCM. For ECP1, the read operation needs the equivalent
of a 9-to-512 bit row-decoder (for a 512-bit data block)
to align the replacement bit with the dead cell being cor-
rected. Figure 9a illustrates the logic for ECP1. Instead

ECP

Number of errors tolerated 0 1 2 3 4 5 6 7 8 9 10

Space overhead 0 2.1% 4.1% 6.0% 8.0% 10.0% 11.9% 13.9% 15.8% 17.8% 19.7%
Writes before 5% capacity drop (109) 0 0.6 1.9 2.6 3.2 3.6 3.9 4.2 4.4 4.7 4.9
Writes before 50% capacity drop (109) 0 1.6 2.6 3.2 3.7 4.1 4.4 4.6 4.8 5.0 5.2

ECPL

Number of errors tolerated (row) 0 1 2 3 4 5 6 7 8 9
Number of errors tolerated (page) 32 32 33 33 34 35 35 36 37 37

Space overhead - 1.8% 3.7% 5.7% 7.7% 9.7% 11.7% 13.6% 15.6% 17.6% 19.6%
Writes before 5% capacity drop (109) - 2.6 3.5 4.1 4.4 4.8 5.0 5.2 5.4 5.6 5.7
Writes before 50% capacity drop (109) - 2.8 3.7 4.2 4.6 4.9 5.1 5.3 5.5 5.7 5.8

Table 4: Space-overhead-equivalent comparison of ECP and layered ECP (ECPL).

Data bits
Row-level

correction entries

Full bit
Bit to indicate if page-level correction is required for this row

Page-level correction entries

Figure 7: Hardware organization for layered ECP including
both row-level ECP and page-level ECP. Row-level correction
entries are applied after all reads. If the leftmost bit of the
row-to-be-read is set, a second row containing page-level cor-
rection entries must also be read and will contain at least one
entry that points within the row-to-be-read. All entries point-
ing within the row-to-be-read must be applied.

of explicitly storing the replacement value, we use a dif-
ferential encoding where the replacement bit conditionally
inverts the failed bit. If the failed bit is stuck at the wrong
value, then the replacement bit performs a correction by
inverting the bad data value. The row decoder also re-
quires an “enable” input such that all outputs are zero
when the corresponding ECP has not yet been allocated.

A 512-way decoder has a reasonably small latency; con-
sider that modern processors have branch prediction ta-
bles with thousands of entries that need to be accessed in
a single cycle and that these row-decoders only account
for a fraction of their overall access latencies. Further-
more, the access latency of the PCM array itself is already
slow enough that the addition of some extra combinatorial
logic will only have a minor effect on the final PCM access
latency as well as on overall system performance.

Figure 9b shows the hardware organization for ECP5;
the logic in the shaded box is detailed in Figure 9c. One
decoder per ECP entry is required. The chain of OR gates

Fr
ac

ti
o

n
al

 e
ff

ec
ti

ve
 m

em
o

ry

fn(m,w) w, fn(m,w)

1

Lifetime in units of wear (writes to memory)
w

Figure 8: The fractional effective memory function plotted for
ECP5 with coefficient of variance 0.3.

computes a prefix operation indicating whether any ECP
entries to the left (i.e., higher precedence) have been acti-
vated for this row. If a higher precedence entry exists, then
the multiplexer will pass the corresponding replacement
bit through to the right. At the end of the logic chain, if
any ECP entry was activated for this row, the OR chain
will evaluate to true and allow the highest-precedence re-
placement bit to pass through. If none of the row decoders
are activated for this row, then the final AND gate out-
puts a zero; the differential encoding interprets this to not
invert the corresponding data bit. Without the differential
encoding, all of the XOR gates in the right portion of Fig-
ure 9b would have to be replaced by muxes and additional
routing would be needed for the mux control inputs.

Although Figure 9c shows a linear chain of logic, for
large n, the circuits can be replaced with a log-depth par-
allel prefix circuit. The total gate delay overhead would
then be O(log d) for a d-way row decoder, O(logn) for a
log-depth version of the logic illustrated in Figure 9c, and
another O(1) for the final AND and XOR gates. The to-
tal overhead is O(logn + log d) which scales gracefully for
both the number of ECP entries used and the width of a
data block covered by each entry.

10.2 Orthogonality and Composability
The ECP scheme provides resilience to PCM cell failures
within a memory row, allowing many more writes before
the row is forcibly decommissioned. There have been sev-
eral other recent proposals that can extend the lifetime of
phase-change memories. Qureshi et al. proposed a hybrid

1 1 1 1 1 1 0

8 7 6 5 3 2 1

1

4

1

0 R

9-to-512
Row

Decoder

1 0 1 1 1 0 1 0 1 0

2 1 0 511 510 509 508 507 506 505

0

1

2

511

510

509

508

507

506

505

…

…

…

Error-Corrected Data Bits

Raw Uncorrected Data Bits ECP

1 0 0 1 1 0 1 0 1 0
…

1

(a)

0
1

R3 R4

0
1

R2

0
1

R1

0
1

R0

(c)

(b)

ECP4 ECP3 ECP2 ECP1 ECP0 1 0 … 0 1 0 1 1

…

Error-Corrected Data Bits

1 0 0 1 0 1 0
…

R
D

4

R
D

3

R
D

2

R
D

1

R
D

0

Figure 9: Hardware implementation for (a) ECP1, (b) ECP5,
and (c) a close-up of one row of logic for ECP5.

DRAM/PCM organization where a write-tolerant DRAM
buffer can act as a large write combining buffer (among
other optimizations) to condense many write commands
from the processor into a single bulk write operation to
the PCM [22]. The proposed ECP correction scheme does
not come into play until the final write operations are pre-
sented to the PCM chips themselves, therefore techniques
that reduce external write traffic before reaching the PCM
can be directly composed with ECP to further extend the
expected lifetime of PCM. These schemes do not compete
with ECP but rather they complement each other.

Existing PCM wear-leveling schemes modify the map-
ping of rows within memory [21, 22, 28] so that the writes
destined for frequently written rows are spread out over
time across all of the available rows. In this fashion, no sin-
gle row receives a disproportionately higher amount of the
write traffic. Although the writes are now uniformly dis-
tributed across rows, the writes within a row may still be
clustered. In the worst case, all of the writes may be des-
tined for only a single bit (e.g., a Boolean variable placed
in memory using cache line padding to prevent false shar-
ing). Each of the ECP and derivative schemes can be
applied in conjunction with any memory-wide wear level-
ing scheme so that non-uniform write patterns are both
evenly distributed across rows and tolerated within rows.

10.3 Transient Errors
The ECP approach assumes that soft errors are not a prob-
lem for phase-change memories; PCM cells are expected
to reliably maintain their state for years under typical op-

erating conditions. If transient faults occur with any rea-
sonable probability (e.g., operation in a high-temperature
environment or multi-level cells that are much more sensi-
tive to thermal drift), additional error correction beyond
ECP will be required, which brings back all of the prob-
lems associated with traditional ECC codes.

If transient errors are not spatially located, one way to
address them would be to layer a traditional error cor-
rection scheme (e.g. SEC64) on top of ECP, using wear
leveling to distribute the additional wear. The lower-level
ECP would do the heavy lifting of correcting for multiple
wear-induced failures while the SEC64 would correct for
up to one transient error. SEC64 adds a 7 bit modifica-
tion region (3.5 bit values are expected to flip) for each 64
bit block that is modified. If each modification spans all
64 bits of a modified block (32 bits are expected to flip),
then adding SEC64 will result in an 11% increase in wear,
spread over an additional 11% increase in storage bits.

11. Conclusions
The traditional approach for handling faults in main

memories (SECDED ECC) works well for correcting rare
transient faults, seen in DRAM, but not for correcting
multiple wear-induced cell failures. ECC codes over small
blocks cannot correct for multiple errors with reasonable
space overhead. Using multiple-error correction Hamming
codes over a larger block size reduces space overhead but,
when data is written in small chunks, writing the large er-
ror correction codes can become a source of wear–inducing
more errors.

Error-Correcting Pointers (ECP) function much better
than Hamming codes for correcting multiple wear-induced
hard faults. Like Hamming codes, ECP is able to effi-
ciently correct errors in both data and in the correction
structures themselves. Whereas Hamming codes must be
updated each time a block of data is written, causing addi-
tional wear, ECP adds wear only in the rare case in which
a new cell failure must be accounted for. The results show
that ECP provides close to ideal correction capabilities
and improved lifetime over previously proposed solutions
at equivalent overheads. What’s more, we provide with
ECP the mathematical tools with which optimally allo-
cate precious storage space between error-correction en-
tries and spare memory when building a memory system
to meet constraints of effective memory size, wear lifetime,
and cell lifetime variance.

Acknowledgments
We are indebted to David Molnar and Thomas Moscibroda
for their help in brainstorming and in providing feedback.
Ed Nightingale was invaluable in helping us to understand
prior work. We especially appreciate the insights of our
anonymous reviewers, whose comments inspired numer-
ous improvements. We are also thankful to Sean Eilert
from Numonyx for providing us information about PCM
architecture and failure models.

References

[1] Emerging research devices. In International
Technology Roadmap for Semiconductors, 2007.

[2] S. J. Ahn, Y. J. Song, C. W. Jeong, J. M. Shin,
Y. Fai, Y. N. Hwang, S. H. Lee, K. C. Ryoo, S. T.
Lee, J. H. Park, H. Horii, Y. H. Ha, J. H. Yi, B. J.
Kuh, G. H. Koh, G. T. Jeong, H. S. Jeong, K. Kim,

and B. I. Ryu. Highly manufacturable high density
phase change memory of 64Mb and beyond. In
International Electron Devices Meeting, 2004.

[3] G. Atwood and R. Bez. Current status of
chalcogenide phase change memory. In Device
Research Conference, 2005.

[4] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze,
M. Jagasivamani, E. C. Buda, F. Pellizzer, D. W.
Chow, A. Cabrini, G. Calvi, R. Faravelli, A. Fantini,
G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande.
A multi-level-cell bipolar-selected phase-change
memory. In International Solid-State Circuits
Conference, 2008.

[5] A. J. Bhavnagarwala, X. Tang, and J. D. Meindl.
The impact of intrinsic device fluctuations on CMOS
SRAM cell stability. IEEE Journal of Solid-State
Circuits, 36(4), Apr. 2001.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz,
A. Keshavarzi, and V. De. Parameter variation and
impact on circuits and microarchitecture. In
Proceedings of 40th Design Automation Conference,
June 2003.

[7] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A
hybrid PRAM and DRAM main memory system. In
Proceedings of 47th Design Automation Conference,
June 2009.

[8] R. Freitas and W. Wickle. Storage-class memory:
The next storage system technology. IBM Journal of
Research and Development, 52(4/5):439–447, 2008.

[9] R. Hamming. Error detecting and error correcting
codes. Bell System Technical Journal, 29(2), April
1950.

[10] H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. H. Baek,
S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim,
K. H. Lee, U.-I. Chung, and J. T. Moon. A novel cell
technology using N-doped GeSbTe films for phase
change RAM. In Symposium on VLSI Technology,
2003.

[11] E. Ipek, J. Condit, E. Nightingale, D. Burger, and
T. Moscibroda. Dynamically replicated memory:
Building resilient systems from unreliable nanoscale
memories. In To appear at The Fifteenth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2010), Mar. 2010.

[12] K. Kim. Technology for sub-50nm DRAM and
NAND flash manufacturing. In International
Electron Devices Meeting, 2005.

[13] B. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase-change memory as a scalable
DRAM alternative. In International Symposium on
Computer Architecture, June 2009.

[14] K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G.
Choi, H.-R. Oh, C.-S. Lee, H.-J. Kim, J.-M. Park,
Q. Wang, M.-H. Park, Y.-H. Ro, J.-Y. Choi, K.-S.
Kim, Y.-R. Kim, I.-C. Shin, K.-W. Lim, H.-K. Cho,
C.-H. Choi, W.-R. Chung, D.-E. Kim, Y.-J. Yoon,
K.-S. Yi, G.-T. Jeong, H.-S. Jeong, C.-K. Kwak,
C.-H. Kim, and K. Kim. A 90nm 1.8V 512Mb
diode-switch PRAM with 266 MB/s read
throughput. Journal of Solid-State Circuits, 43(1),
January 2008.

[15] T. May and W. Woods. Alpha-particle-induced soft

errors in dynamic memories. IEEE Transactions on
Electronic Devices, 26(2):2–9, 1979.

[16] C. McNairy and R. Bhatia. Montecito: A dual-core,
dual-thread itanium processor. IEEE Micro
Magazine, 25(2):10–20, March/April 2005.

[17] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The
soft error problem: An architectural perspective. In
Proceedings of 11th International Symposium on
High-Performance Computer Architecture, pages
243–247, San Francisco, CA, USA, February 2005.

[18] Numonyx. The basics of phase change memory
technology. In Numonyx White Paper, 2007.

[19] M. Orshansky, L. Milor, P. Chen, K. Keutzer, and
C. Hu. Impact of spatial intrachip gate length
variability on the performance of high-speed digital
circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21(5),
May 2002.

[20] F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim,
B. Johnson, M. Magistretti, T. Marangon,
A. Pirovano, R. Bez, and G. Atwood. A 90nm phase
change memory technology for stand-alone
non-volatile memory applications. In Symposium on
VLSI Circuits, 2006.

[21] M. K. Qureshi, M. Fraceschini, V. Srinivasan,
L. Lastras, B. Abali, and J. Karidis. Enhancing
lifetime and security of phase change memories via
start-gap wear leveling. In International Symposium
on Microarchitecture, December 2009.

[22] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system
using phase-change memory technology. In
International Symposium on Computer Architecture,
June 2009.

[23] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T.
Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga,
D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam.
Phase-change random access memory: A scalable
technology. IBM Journal of Research and
Development, 52(4/5), Jul/Sept 2008.

[24] Samsung. Samsung introduces the next generation
of nonvolatile memory - pram. In Samsung News
Release, Sept. 2006.

[25] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti,
M. Khellah, and S.-L. Lu. Trading off cache capacity
for reliability to enable low voltage operation. In
The 35th Annual International Symposium on
Computer Architecture, June 2008.

[26] W. Zhang and T. Li. Characterizing and mitigating
the impact of process variations on phase change
memory systems. In International Symposium on
Microarchitecture, December 2009.

[27] W. Zhang and T. Li. Exploring phase change
memory and 3d die-stacking for power/thermal
friendly, fast and durable memory architectures. In
International Conference on Parallel Architectures
and Compilation Techniques, Sept. 2009.

[28] P. Zhouand, B. Zhao, J. Yang, and Y. Zhang. A
durable and energy efficient main memory using
phase change memory technology. In International
Symposium on Computer Architecture, June 2009.

[29] J. F. Ziegler and G. R. Srinivasan. Terrestrial cosmic
rays and soft errors. IBM Journal of Research and
Development, 40(1), 1996.

