Appears in the Proceedings of the 41°" International Symposium on Computer Architecture, 2014

General-Purpose Code Acceleration with Limited-Precision Analog Computation

Amir Yazdanbakhsh®
Arjang Hassibi*

Renée St. Amant*
Hadi Esmaeilzadeh®

*University of Texas at Austin
"University of Washington

stamant@cs.utexas.edu a.yazdanbakhsh@gatech.edu

hadi@cc.gatech.edu
Abstract

As improvements in per-transistor speed and energy effi-
ciency diminish, radical departures from conventional ap-
proaches are becoming critical to improving the performance
and energy efficiency of general-purpose processors. We
propose a solution—from circuit to compiler—that enables
general-purpose use of limited-precision, analog hardware
to accelerate “approximable” code—code that can tolerate
imprecise execution. We utilize an algorithmic transformation
that automatically converts approximable regions of code from
a von Neumann model to an “analog” neural model. We out-
line the challenges of taking an analog approach, including
restricted-range value encoding, limited precision in computa-
tion, circuit inaccuracies, noise, and constraints on supported
topologies. We address these limitations with a combination
of circuit techniques, a hardware/software interface, neural-
network training techniques, and compiler support. Analog
neural acceleration provides whole application speedup of
3.7x and energy savings of 6.3x with quality loss less than
10% for all except one benchmark. These results show that
using limited-precision analog circuits for code acceleration,
through a neural approach, is both feasible and beneficial
over a range of approximation-tolerant, emerging applica-
tions including financial analysis, signal processing, robotics,
3D gaming, compression, and image processing.

arjang@mail.utexas.edu

1. Introduction

Energy efficiency now fundamentally limits microproces-
sor performance gains. CMOS scaling no longer provides
gains in efficiency commensurate with transistor density in-
creases [16, 25]. As a result, both the semiconductor industry
and the research community are increasingly focused on spe-
cialized accelerators, which provide large gains in efficiency
and performance by restricting the workloads that benefit. The
community is facing an “iron triangle”; we can choose any
two of performance, efficiency, and generality at the expense
of the third. Before the effective end of Dennard scaling,
we improved all three consistently for decades. Solutions
that improve performance and efficiency, while retaining as
much generality as possible, are highly desirable, hence the
growing interest in GPGPUs and FPGAs. A growing body
of recent work [13, 17, 44, 2, 35, 8, 28, 38, 18, 51, 46] has
focused on approximation as a strategy for the iron triangle.
Many classes of applications can tolerate small errors in their
outputs with no discernible loss in QoR (Quality of Result).

Bradley Thwaites®
Doug Burger*

Jongse Park®
Luis Ceze'

SGeorgia Institute of Technology
fMicrosoft Research

jspark@gatech.edu bthwaites@gatech.edu

luisceze@cs.washington.edu dburger@microsoft.com

Many conventional techniques in energy-efficient computing
navigate a design space defined by the two dimensions of
performance and energy, and traditionally trade one for the
other. General-purpose approximate computing explores a

third dimension—that of error.
Many design alternatives become possible once precision

is relaxed. An obvious candidate is the use of analog circuits
for computation. However, computation in the analog domain
has several major challenges, even when small errors are per-
missible. First, analog circuits tend to be special purpose,
good for only specific operations. Second, the bit widths they
can accommodate are smaller than current floating-point stan-
dards (i.e. 32/64 bits), since the ranges must be represented
by physical voltage or current levels. Another consideration is
determining where the boundaries between digital and analog
computation lie. Using individual analog operations will not
be effective due to the overhead of A/D and D/A conversions.
Finally, effective storage of temporary analog results is chal-
lenging in current CMOS technologies. These limitations has
made it ineffective to design analog von Neumann processors

that can be programmed with conventional languages.
Despite these challenges, the potential performance and

energy gains from analog execution are highly attractive. An
important challenge is thus to architect designs where a signif-
icant portion of the computation can be run in the analog do-
main, while also addressing the issues of value range, domain
conversions, and relative error. Recent work on Neural Pro-
cessing Units (NPUs) may provide a possible approach [18].
NPU-enabled systems rely on an algorithmic transformation
that converts regions of approximable general-purpose code
into a neural representation (specifically, multi-layer percep-
trons) at compile time. At run-time, the processor invokes the
NPU instead of running the original code. NPUs have shown
large performance and efficiency gains, since they subsume
an entire code region (including all of the instruction fetch,
decode, etc., overheads). They have an added advantage in
that they convert many distinct code patterns into a common
representation that can be run on a single physical accelerator,
improving generality.

NPUs may be a good match for mixed-signal implementa-
tions for a number of reasons. First, prior research has shown
that neural networks can be implemented in analog domain
to solve classes of domain-specific problems, such as pattern
recognition [5, 47, 49, 32]. Second, the process of invok-
ing a neural network and returning a result defines a clean,



coarse-grained interface for D/A and A/D conversion. Third,
the compile-time training of the network permits any analog-
specific restrictions to be hidden from the programmer. The
programmer simply specifies which region of the code can
be approximated, without adding any neural-network-specific
information. Thus, no additional changes to the programming

model are necessary.
In this paper we evaluate an NPU design with mixed-signal

components and develop a compilation workflow for utilizing
the mixed-signal NPU for code acceleration. The goal of this
study is to investigate challenges and define potential solutions
to enable effective mixed-signal NPU execution. The objective
is to both bound application error to sufficiently low levels
and achieve worthwhile performance or efficiency gains for
general-purpose approximable code. This study makes the
following four findings:

1. Due to range limitations, it is necessary to limit the scope
of the analog execution to a single neuron; inter-neuron
communication should be in the digital domain.

2. Again due to range issues, there is an interplay between
the bit widths (inputs and weights) that neurons can use
and the number of inputs that they can process. We found
that the best design limited weights and inputs to eight bits,
while also restricting the number of inputs to each neuron
to eight. The input count limitation restricts the topological
space of feasible neural networks.

3. We found that using a customized continuous-discrete
learning method (CDLM) [10], which accounts for limited-
precision computation at training time, is necessary to re-
duce error due to analog range limitations.

4. Given the analog-imposed topology restrictions, we found
that using a Resilient Back Propagation (RPROP) [30] train-
ing algorithm can further reduce error over a conventional

backpropagation algorithm.
We found that exposing the analog limitations to the com-

piler allowed for the compensation of these shortcomings and
produced sufficiently accurate results. The latter three find-
ings were all used at training time; we trained networks at
compile time using 8-bit values, topologies restricted to eight
inputs per neuron, plus RPROP and CDLM for training. Using
these techniques together, we were able to bound error on all
applications but one to a 10% limit, which is commensurate
with entirely digital approximation techniques. The average
time required to compute a neural result was 3.3 x better than
a previous digital implementation with an additional energy
savings of 12.1x. The performance gains result in an average
full-application-level improvement of 3.7 and 23.3x in per-
formance and energy-delay product, respectively. This study
shows that using limited-precision analog circuits for code ac-
celeration, by converting regions of imperative code to neural
networks and exposing the circuit limitations to the compiler,
is both feasible and advantageous. While it may be possible
to move more of the accelerator architecture design into the
analog domain, the current mixed-signal design performs well

enough that only 3% and 46% additional improvements in
application-level energy consumption and performance are
possible with improved accelerator designs. However, improv-
ing the performance of the analog NPU may lead to higher
overall performance gains.

2. Overview and Background

Programming. We use a similar programming model as de-
scribed in [18] to enable programmers to mark error-tolerant
regions of code as candidates for transformation using a sim-
ple keyword, approximable. Explicit annotation of code for
approximation is a common practice in approximate program-
ming languages [45, 7]. A candidate region is an error-tolerant
function of any size, containing function calls, loops, and com-
plex control flow. Frequently executed functions provide a
greater opportunity for gains. In addition to error tolerance,
the candidate function must have well-defined inputs and out-
puts. That is, the number of inputs and outputs must be known
at compile time. Additionally, the code region must not read
any data other than its inputs, nor affect any data other than its
outputs. No major changes are necessary to the programming
language beyond adding the approximable keyword.

Exposing analog circuits to the compiler. Although an
analog accelerator presents the opportunity for gains in ef-
ficiency over a digital NPU, it suffers from reduced accuracy
and flexibility, which results in limitations on possible network
topologies and limited-precision computation, potentially re-
sulting in a decreased range of applications that can utilize
the acceleration. These shortcomings at the hardware level,
however, can be exposed as a high-level model and considered

in the training phase.
Four characteristics need to be exposed: (1) limited preci-

sion for input and output encoding, (2) limited precision for
encoding weights, (3) the behavior of the activation function
(sigmoid), (4) limited feasible neural topologies. Other low-
level circuit behavior such as response to noise can also be
exposed to the compiler. Section 5 describes this necessary
hardware/software interface in more detail.

Analog neural accelerator circuit design. To extract the
high-level model for the compiler and to be able to acceler-
ate execution, we design a mixed-signal neural hardware for
multilayer perceptrons. The accelerator must support a large
enough variety of neural network topologies to be useful over a
wide range of applications. As we will show, each applications
requires a different topology for the neural network that is re-
placing its approximable regions of code. Section 4 describes
a candidate A-NPU circuit design, and outlines the challenges
and tradeoffs present with an analog implementation.

Compiling for analog neural hardware. The compiler
aims to mimic approximable regions of code with neural net-
works that can be executable on the mixed-signal accelerator.
While considering the limitation of the analog hardware, the
compiler searches the topology space of the neural networks
and selects and trains a neural network to produce outputs



Profiling Path for

Il 1 ! Il '
i i i i !
Annotated | i o ! ! '
Source Code i T Training Data i Trained Neural i T
T | ! Collection i Network : ! 0
I I I
| A-NPU 1 ! 1 !
‘-‘ Circuit Design i i i T i Ge:;)r(iiion i
| ¢ ! Training Data . Custom Training | !
! ! | Algorithm for | !
| | I imited - ' |
| ' ¥ p—— !
Programmer ! A-NPU ; | Limited-Precision : 0 ‘ A-NPU
| High-Level Model | ! Analog Accelerator \ i !
1 1 ! I
—— Programming ——' Design ! ‘ Compilation '"— Acceleration —

Figure 1: Framework for using limited-precision analog computation to accelerate code written in conventional languages.

comparable to those produced by the original code segment.

1) Profile-driven training data collection. During a pro-
filing stage, the compiler runs the application with represen-
tative profiling inputs and collects the inputs and outputs to
the approximable code region. This step provides the training
data for the rest of the compilation workflow.

2) Training for a limited-precision A-NPU. This stage
is where our compilation workflow significantly deviates from
the framework presented in [18] that targets digital NPUs.
The compiler uses the collected training data to train a multi-
layer perceptron neural network, choosing a network topology,
i.e. the number of neurons and their connectivity, and taking
a gradient descent approach to find the synaptic weights of
the network while minimizing the error with respect to the
training data. This compilation stage does a neural topology
search to find the smallest neural network that (a) adheres to
the organization of the analog circuit and (b) delivers accept-
able accuracy at the application level. The network training
algorithm, which finds optimal synaptic weights, uses a combi-
nation of a resilient back propagation algorithm, RPROP [30],
that we found to outperform traditional back propagation for
restricted network topologies, and a continuous-discrete learn-
ing method, CDLM [10], that attempts to correct for error due
to limited-precision computation. Section 5 describes these
techniques that address analog limitations.

3) Code generation for hybrid analog-digital execution.
Similar to prior work [18], in the code generation phase, the
compiler replaces each instance of the original program code
with code that initiates a computation on the analog neural
accelerator. Similar ISA extensions are used to specify the
neural network topology, send input and weight values to the
A-NPU, and retrieve computed outputs from the A-NPU.

3. Analog Circuits for Neural Computation

This section describes how analog circuits can perform the
computation of neurons in multi-layer perceptrons, which
are widely used neural networks. We also discuss, at a high-
level, how limitations of the analog circuits manifest in the
computation. We explain how these restrictions are exposed
to the compilation framework. The next section presents a

concrete design for the analog neural accelerator.
As Figure 2a illustrates, each neuron in a multi-layer per-

ceptron takes in a set of inputs (x;) and performs a weighted
sum of those input values (}; x;w;). The weights (w;) are the
result of training the neural network on . After the summation

y= sigmoid(z(:l;z'u}l)) Yy~ Sigl[l()id(z(l(fﬂl)R(’U}i)))
6) 1)

Figure 2: One neuron and its conceptual analog circuit.

stage, which produces a linear combination of the weighted
inputs, the neuron applies a nonlinearity function, sigmoid, to

the result of summation.
Figure 2b depicts a conceptual analog circuit that performs

the three necessary operations of a neuron: (1) scaling inputs
by weight (x;w;), (2) summing the scaled inputs (}; x;w;), and
(3) applying the nonlinearity function (sigmoid). This con-
ceptual design first encodes the digital inputs (x;) as analog
current levels (I(x;)). Then, these current levels pass through
a set of variable resistances whose values (R(w;)) are set pro-
portional to the corresponding weights (w;). The voltage level
at the output of each resistance (I(x;)R(w;)), is proportional to
x;w;. These voltages are then converted to currents that can be
summed quickly according to Kirchhoff’s current law (KCL).
Analog circuits only operate linearly within a small range of
voltage and current levels, outside of which the transistors
enter saturation mode with IV characteristics similar in shape
to a non-linear sigmoid function. Thus, at the high level, the
non-linearity is naturally applied to the result of summation
when the final voltage reaches the analog-to-digital converter
(ADC). Compared to a digital implementation of a neuron,
which requires multipliers, adder trees and sigmoid lookup
tables, the analog implementation leverages the physical prop-
erties of the circuit elements and is orders of magnitude more
efficient. However, it operates in limited ranges and therefore
offers limited precision.

Analog-digital boundaries. The conceptual design in Fig-
ure 2b draws the analog-digital boundary at the level of an
algorithmic neuron. As we will discuss, the analog neural
accelerator will be a composition of these analog neural units
(ANUs). However, an alternative design, primarily optimizing
for efficiency, may lay out the entirety of a neural network
with only analog components, limiting the D-to-A and A-to-D
conversions to the inputs and outputs of the neural network



and not the individual neurons. The overhead of conversions
in the ANUs significantly limits the potential efficiency gains
of an analog approach toward neural computation. However,
there is a tradeoff between efficiency, reconfigurability (gener-
ality), and accuracy in analog neural hardware design. Pushing
more of the implementation into the analog domain gains ef-
ficiency at the expense of flexibility, limiting the scope of
supported network topologies and, consequently, limiting po-
tential network accuracy. The NPU approach targets code
approximation, rather than typical, simpler neural tasks, such
as recognition and prediction, and imposes higher accuracy
requirements. The main challenge is to manage this tradeoff to
achieve acceptable accuracy for code acceleration, while deliv-
ering higher performance and efficiency when analog neural

circuits are used for general-purpose code acceleration.
As prior work [18] has shown and we corroborate, regions

of code from different applications require different topolo-
gies of neural networks. While a holistically analog neural
hardware design with fixed-wire connections between neu-
rons may be efficient, it effectively provides a fixed topology
network, limiting the scope of applications that can benefit
from the neural accelerator, as the optimal network topology
varies with application. Additionally, routing analog signals
among neurons and the limited capability of analog circuits
for buffering signals negatively impacts accuracy and makes
the circuit susceptible to noise. In order to provide additional
flexibility, we set the digital-analog boundary in conjunction
with an algorithmic, sigmoid-activated neuron. where a set
of digital inputs and weights are converted to the analog do-
main for efficient computation, producing a digital output that
can be accurately routed to multiple consumers. We refer to
this basic computation unit as an analog neural unit, or ANU.
ANUs can be composed, in various physical configurations,
along with digital control and storage, to form a reconfigurable

mixed-signal NPU, or A-NPU.
One of the most prevalent limitations in analog design is

the bounded range of currents and voltages within which the
circuits can operate effectively. These range limitations restrict
the bit-width of input and weight values and the network
topologies that can be computed accurately and efficiently.
We expose these limitations to the compiler and our custom
training algorithm and compilation workflow considers these
restrictions when searching for optimal network topologies
and training neural networks. As we will show, one of the
insights from this work is that even with limited bit-width
(< 8), and a restricted neural topology, many general-purpose
approximate applications achieve acceptable accuracy and
significantly benefit from mixed-signal neural acceleration.

Value representation and bit-width limitations. One of
the fundamental design choices for an ANU is the bit-width
of inputs and weights. Increasing the number of bits results
in an exponential increase in the ADC and DAC energy dis-
sipation and can significantly limit the benefits from analog
acceleration. Furthermore, due to the fixed range of voltage

and current levels, increasing the number of bits translates to
quantizing this fixed value range to fine granularities that prac-
tical ADCs can not handle. In addition, the fine granularity
encoding makes the analog circuit significantly more suscepti-
ble to noise, thermal, voltage, current, and process variations.
In practice, these non-ideal effects can adversely affect the
final accuracy when more bit-width is used for weights and
inputs. We design our ANUSs such that the granularity of the
voltage and current levels used for information encoding is to
a large degree robust to variations and noise.

Topology restrictions. Another important design choice is
the number of inputs in the ANU. Similar to bit-width, in-
creasing the number of ANU inputs translates to encoding
a larger value range in a bounded voltage and current range,
which, as discussed, becomes impractical. There is a tradeoff
between accuracy and efficiency in choosing the number ANU
inputs. The larger the number of inputs, the larger the number
of multiply and add operations that can be done in parallel in
the analog domain, increasing efficiency. However, due to the
bounded range of voltage and currents, increasing the number
of inputs requires decreasing the number of bits for inputs and
weights. Through circuit-level simulations, we empirically
found that limiting the number of inputs to eight with 8-bit
inputs and weights strikes a balance between accuracy and
efficiency. A digital implementation does not impose such
restrictions on the number of inputs to the hardware neuron
and it can potentially compute arbitrary topologies of neural
networks. However, this unique ANU limitation restricts the
topology of the neural network that can run on the analog
accelerator. Our customized training algorithm and compi-
lation workflow takes into account this topology limitation
and produces neural networks that can be computed on our
mixed-signal accelerator.

Non-ideal sigmoid. The saturation behavior of the analog
circuit that leads to sigmoid-like behavior after the summation
stage represents an approximation of the ideal sigmoid. We
measure this behavior at the circuit level and expose it to the
compiler and the training algorithm.

4. Mixed-Signal Neural Accelerator (A-NPU)

This section describes a concrete ANU design and the mixed-
signal, neural accelerator, A-NPU.

4.1. ANU Circuit Design

Figure 3 illustrates the design of a single analog neuron (ANU).
The ANU performs the computation of one neuron, or y ~
sigmoid(Y;wix;). We place the analog-digital boundary at
the ANU level, with computation in the analog domain and
storage in the digital domain. Digital input and weight values
are represented in sign-magnitude form. In the figure, s,
and s,, represent the sign bits and w; and x; represent the
magnitude. Digital input values are converted to the analog
domain through current-steering DACs that translate digital
values to analog currents. Current-steering DACs are used for



Bl w0 [l w0 ] e G
¥ ¥

Current

Resistor
Ladder

W (lwnzal)

Current

Resistor
Ladderg R(l’LU() D

1\/ (lwowol)
Diff
Pair

I (womo)

I~ (wozo) L

vt (Z wlz'l) E_V? (Z wﬁi)

TRAMA
|~
1AW

Prp— (V (Z wlz,,))

Figure 3: A single analog neuron (ANU).
their speed and simplicity. In Figure 3, I(|x;|) is the analog
current that represents the magnitude of the input value, x;.
Digital weight values control resistor-string ladders that create
a variable resistance depending on the magnitude of each
weight (R(|w;])) . We use a standard resistor ladder thats
consists of a set of resistors connected to a tree-structured
set of switches. The digital weight bits control the switches,
adjusting the effective resistance, R(|w;|), seen by the input
current (I(|x;|)). These variable resistances scale the input
currents by the digital weight values, effectively multiplying
each input magnitude by its corresponding weight magnitude.
The output of the resistor ladder is a voltage: V(|wix;|) =
I(|x;]) x R(|w;i]). The resistor network requires 2" resistors
and approximately 2! switches, where m is the number of
digital weight bits. This resistor ladder design has been shown
to work well for m < 10. Our circuit simulations show that

only minimally sized switches are necessary.
V(|wixi|), as well as the XOR of the weight and input sign

bits, feed to a differential pair that converts voltage values
to two differential currents (I (w;x;), I~ (w;x;)) that capture
the sign of the weighted input. These differential currents
are proportional to the voltage applied to the differential pair,
V(Jwix|). If the voltage difference between the two gates is
kept small, the current-voltage relationship is linear, producing
I (wix;) = % +Aland I~ (wix;) = I”’f — Al Resistor ladder
values are chosen such that the gate voltage remains in the
range that produces linear outputs, and consequently a more
accurate final result. Based on the sign of the computation, a
switch steers either the current associated with a positive value
or the current associated with a negative value to a single wire
to be efficiently summed according to Kirchhoff’s current law.
The alternate current is steered to a second wire, retaining
differential operation at later design stages. Differential op-
eration combats environmental noise and increases gain, the
later being particularly important for mitigating the impact of

analog range challenges at later stages.
Resistors convert the resulting pair of differential currents

to voltages, V(¥ wix;) and V= (¥; w;x;), that represent the
weighted sum of the inputs to the ANU. These voltages are

[Config FIFO
Input FIFO

Row Selector

Weight Buffer
Weight Buffer
I
Weight Buffer
Weight Buffer

Column Selector

I!!I!IZ
Output FIFO

Figure 4: Mixed-signal neural accelerator, A-NPU. Only four of the
ANUSs are shown. Each ANU processes eight 8-bit inputs.

used as input to an additional amplification stage (implemented
as a current-mode differential amplifier with diode-connected
load). The goal of this amplification stage is to significantly
magnify the input voltage range of interest that maps to the
linear output region of the desired sigmoid function. Our
experiments show that neural networks are sensitive to the
steepness of this non-linear function, losing accuracy with
shallower, non-linear activation functions. This fact is rele-
vant for an analog implementation because steeper functions
increase range pressure in the analog domain, as a small range
of interest must be mapped to a much larger output range in
accordance with ADC input range requirements for accurate
conversion. We magnify this range of interest, choosing circuit
parameters that give the required gain, but also allowing for

saturation with inputs outside of this range.
The amplified voltage is used as input to an ADC that con-

verts the analog voltage to a digital value. We chose a flash
ADC design (named for its speed), which consists of a set
of reference voltages and comparators [1, 31]. The ADC re-
quires 2" comparators, where n is the number of digital output
bits. Flash ADC designs are capable of converting 8 bits at
a frequency on the order of one GHz. We require 2-3 mV
between ADC quantization levels for accurate operation and
noise tolerance. Typically, ADC reference voltages increase
linearly; however, we use a non-linearly increasing set of ref-
erence voltages to capture the behavior of a sigmoid function,
which also improves the accuracy of the analog sigmoid.

4.2. Reconfigurable Mixed-Signal A-NPU

We design a reconfigurable mixed-signal A-NPU that can per-
form the computation of a wide variety of neural topologies
since each requires a different topology. Figure 4 illustrates
the A-NPU design with some details omitted for clarity. The
figure shows four ANUs while the actual design has eight.
The A-NPU is a time-multiplexed architecture where the al-
gorithmic neurons are mapped to the ANUs based on a static
scheduling algorithm, which is loaded to the A-NPU before
invocation. The multi-layer perceptron consists of layers of
neurons, where the inputs of each layer are the outputs of
the previous layer. The ANU starts from the input layer and
performs the computations of the neurons layer by layer. The
Input Buffer always contains the inputs to the neurons, either




coming from the processor or from the previous layer com-
putation. The Output Buffer, which is a single entry buffer,
collects the outputs of the ANUs. When all of its columns are
computed, the results are pushed back to the Input Buffer to en-
able calculation of the next layer. The Row Selector determines
which entry of the input buffer will be fed to the ANUs. The
output of the ANUs will be written to a single-entry output
buffer. The Column Selector determines which column of the
output buffer will be written by the ANUs. These selectors are
FIFO buffers whose values are part of the preloaded A-NPU

configuration. All the buffers are digital SRAM structures.
Each ANU has eight inputs. As shown in Figure 4, each

A-NPU is augmented with a dedicated weight buffer, storing
the 8-bit weights. The weight buffers simultaneously feed the
weights to the ANUs. The weights and the order in which they
are fed to the ANUs are part of the A-NPU configuration. The
Input Buffer and Weight Buffers synchronously provide the inputs
and weights for the ANUs based on the pre-loaded order.

A-NPU configuration. During code generation, the com-
piler produces an A-NPU configuration that constitutes the
weights and the schedule. The static A-NPU scheduling al-
gorithm first assigns an order to the neurons of the neural
network, in which the neurons will be computed in the ANUs.
The scheduler then takes the following steps for each layer
of the neural network: (1) Assign each neuron to one of the
ANUs. (2) Assign an order to neurons. (3) Assign an or-
der to the weights. (4) Generate the order for inputs to feed
the ANUs. (5) Generate the order in which the outputs will
be written to the Output Buffer. The scheduler also assigns a
unique order for the inputs and outputs of the neural network
in which the core communicates data with the A-NPU.

4.3. Architectural interface for A-NPU

We adopt the same FIFO-based architectural interface through
which a digital NPU communicates with the processor [18].
The A-NPU is tightly integrated to the pipeline. The processor
only communicates with the ANUs through the Input, Output,
Config FIFOs. The processor ISA is extended with special in-
structions that can enqueue and dequeue data from these FIFOs
as shown in Figure 4. When a data value is queued/dequeued
to/from the Input/Output FIFO, the A-NPU converts the values
to the appropriate representation for the A-NPU/processor.

5. Compilation for Analog Acceleration

As Figure 1 illustrates, the compilation for A-NPU execution
consists of three stages: (1) profile-driven data collection, (2)
training for a limited-precision A-NPU, and (3) code genera-
tion for hybrid analog-digital execution. In the profile-driven
data collection stage, the compiler instruments the application
to collect the inputs and outputs of approximable functions.
The compiler then runs the application with representative
inputs and collects the inputs and their corresponding outputs.
These input-output pairs constitute the training data. Section 4
briefly discussed ISA extensions and code generation. While

compilation stages (1) and (3) are similar to the techniques pre-
sented for a digital implementation [18], the training phase is
unique to an analog approach, accounting for analog-imposed,
topology restrictions and adjusting weight selection to account
for limited-precision computation.

Hardware/software interface for exposing analog circuits
to the compiler. As we discussed in Section 3, we ex-
pose the following analog circuit restrictions to the compiler
through a hardware/software interface that captures the fol-
lowing circuit characteristics: (1) input bit-width limitations,
(2) weight bit-width limitations, (3) limited number of inputs
to each analog neuron (topology restriction), and (4) the non-
ideal shape of the analog sigmoid. The compiler internally
constructs a high-level model of the circuit based on these
limitations and uses this model during the neural topology
search and training with the goal of limiting the impact of
inaccuracies due to an analog implementation.

Training for limited bit widths and analog computation.
Traditional training algorithms for multi-layered perceptron
neural networks use a gradient descent approach to minimize
the average network error, over a set of training input-output
pairs, by backpropagating the output error through the net-
work and iteratively adjusting the weight values to minimize
that error. Traditional training techniques, however, that do
not consider limited-precision inputs, weights, and outputs
perform poorly when these values are saturated to adhere to
the bit-width requirements that are feasible for an implemen-
tation in the analog domain. Simply limiting weight values
during training is also detrimental to achieving quality outputs
because the algorithm does not have sufficient precision to

converge to a quality solution.
To incorporate bit-width limitations into the training al-

gorithm, we use a customized continuous-discrete learning
method (CDLM) [10]. This approach takes advantage of the
availability of full-precision computation at training time and
then adjusts slightly to optimize the network for errors due
to limited-precision values. In an initial phase, CDLM first
trains a fully-precise network according to a standard training
algorithm, such as backpropagation [43]. In a second phase,
it discretizes the input, weight, and output values according
the the exposed analog specification. The algorithm calcu-
lates the new error and backpropagates that error through the
fully-precise network using full-precision computation and
updates the weight values according to the algorithm also used
in stage 1. This process repeats, backpropagating the ’dis-
crete’ errors through a precise network. The original CDLM
training algorithm was developed to mitigate the impact of
limited-precision weights. We customize this algorithm by
incorporating the input bit-width limitation and the output
bit-width limitation in addition to limited weight values. Ad-
ditionally, this training scheme is advantageous for an analog
implementation because it is general enough to also make up
for errors that arise due to an analog implementation, such as a
non-ideal sigmoid function and any other analog non-ideality



that behaves consistently.
In essence, after one round of full-precision training, the

compiler models an analog-like version of the network. A
second, CDLM-based training pass adjusts for these analog-
imposed errors, enabling the inaccurate and limited A-NPU as
an option for a beneficial NPU implementation by maintaining
acceptable accuracy and generality.

Training with topology restrictions. In addition to deter-
mining weight values for a given network topology, the com-
piler searches the space of possible topologies to find an opti-
mal network for a given approximable code region. Conven-
tional multi-layered perceptron networks are fully connected,
i.e. the output of each neuron in one layer is routed to the input
of each neuron in the following layer. However, analog range
limitations restrict the number of inputs that can be computed
in a neuron (eight in our design). Consequently, network con-
nections must be limited, and in many cases, the network can

not be fully connected.
We impose the circuit restriction on the connectivity be-

tween the neurons during the topology search and we use a
simple algorithm guided by the mean-squared error of the
network to determine the best topology given the exposed
restriction. The error evaluation uses a typical cross-validation
approach: the compiler partitions the data collected during
profiling into a training set, 70% of the data, and a fest set, the
remaining 30%. The topology search algorithm trains many
different neural-network topologies using the training set and
chooses the one with the highest accuracy on the test set and
the lowest latency on the A-NPU hardware (prioritizing accu-
racy). The space of possible topologies is large, so we restrict
the search to neural networks with at most two hidden layers.
We also limit the number of neurons per hidden layer to pow-
ers of two up to 32. The numbers of neurons in the input and
output layers are predetermined based on the number of inputs

and outputs in the candidate function.
To further improve accuracy, and compensate for topology-

restricted networks, we utilize a Resilient Back Propagation
(RPROP) [30] training algorithm as the base training algorithm
in our CDLM framework. During training, instead of updating
the weight values based on the backpropagated error (as in
conventional backpropagation [43]), the RPROP algorithm
increases or decreases the weight values by a predefined value
based on the sign of the error. Our investigation showed that
RPROP significantly outperforms conventional backpropaga-
tion for the selected network topologies, requiring only half of
the number of training epochs as backpropagation to converge
on a quality solution. The main advantage of the application of
RPROP training to an analog approach to neural computing is
its robustness to the sigmoid function and topology restrictions
imposed by the analog design. Backpropagation, for example,
is extremely sensitive to the steepness of the sigmoid function,
and allowing for a variety of steepness levels in a fixed, analog
implementation is challenging. Additionally, backpropagation
performs poorly with a shallow sigmoid function. The require-

ment of a steep sigmoid function exacerbates analog range
challenges, possibly making the implementation infeasible.
RPROP tolerates a more shallow sigmoid activation steepness
and performs consistently utilizing a constant activation steep-
ness over all applications. Our RPROP-based, customized
CDLM training phase requires 5000 training epochs, with the
analog-based CDLM phase adding roughly 10% to the training
time of the baseline training algorithm.

6. Evaluations

Cycle-accurate simulation and energy modeling. We use
the MARSSx86 x86-64 cycle-accurate simulator [39] to model
the performance of the processor. The processor is modeled
after a single-core Intel Nehalem to evaluate the performance
benefits of A-NPU acceleration over an aggressive out-of-
order architecture!. We extended the simulator to include ISA-
level support for A-NPU queue and dequeue instructions. We
also augmented MARSSx86 with a cycle-accurate simulator
for our A-NPU design and an 8-bit, fixed-point D-NPU with
eight processing engines (PEs) as described in [18]. We use
GCC v4.7.3 with -03 to enable compiler optimization. The
baseline in our experiments is the benchmark run solely on the
processor without neural transformation. We use McPAT [33]
for processor energy estimations. We model the energy of an
8-bit, fixed-point D-NPU using results from McPAT, CACTI
6.5 [37], and [22] to estimate its energy. Both the D-NPU and
the processor operate at 3.4GHz at 0.9 V, while the A-NPU is
clocked at one third of the digital clock frequency, 1.1GHz at
1.2V, to achieve acceptable accuracy.

Circuit design for ANU. We built a detailed transistor-level
SPICE model of the analog neuron, ANU. We designed and
simulated the 8-bit, 8-input ANU in the Cadence Analog De-
sign Environment using predictive technology models at 45
nm [6]. We ran detailed Spectre SPICE simulations to under-
stand circuit behavior and measure ANU energy consumption.
We used CACTI to estimate the energy of the A-NPU buffers.
Evaluations consider all A-NPU components, both digital and
analog. For the analog parts, we used direct measurements
from the transistor-level SPICE simulations. For SRAM ac-
cesses, we used CACTI. We built an A-NPU cycle-accurate
simulator to evaluate the performance improvements. Similar
to McPAT, we combined simulation statistics with measure-
ments from SPICE and CACTI to calculate A-NPU energy. To
avoid biasing our study toward analog designs, all energy and
performance comparisons are to an 8-bit, fixed-point D-NPU
(8-bit inputs/weights/multiply-adders). For consistency with
the available McPAT model for the baseline processor, we

IProcessor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store
FUs: 1/1, ROB Entries: 128, Issue Queue Entries: 36, INT/FP Physical
Registers: 256/256, Branch Predictor: Tournament 48 KB, BTB Sets/Ways:
1024/4, RAS Entries: 64, Load/Store Queue Entries: 48/48, Dependence
Predictor: 4096-entry Bloom Filter, ITLB/DTLB Entries: 128/256 L1: 32
KB Instruction, 32 KB Data, Line Width: 64 bytes, 8-Way, Latency: 3 cycles
L2: 256 KB, Line Width: 64 bytes, 8-Way, Latency: 6 cycles L3: 2 MB,
Line Width 64 bytes, 16-Way, Latency: 27 cycles Memory Latency: 50 ns



Table 1: The evaluated benchmarks, characterization of each offloaded function, training data, and the trained neural network.

#of

#of . Fully S Fully
Benchmark Name Description Type Function ot tIiliE) x86-61.l Exaluationinput Training Input Set B eSOk Digital NN qnaloe) N.N Appllcanop Ercy Digital a2k
Loops elses |Instruction Set Topology MSE (8-bit) Metric Error
Calls s MSE Error
Mathematical Financial 4096 Data Point | 16384 Data Point
blackscholes model of a Analysis 5 0 5 309 from PARSEC from PARSEC 6->8->8>1 0.000011 0.00228 | Avg. Relative Error | 6.02% 10.2%
financial market v
Radix-2 Cooley- Signal 2048 Random 32768 Random
fit ey Ehell 2 0 0 34 |Floating Point  |Floating Point 1->4>4->2 | 000002 | 000194 | Avg.RelativeError | 2.75% | 4.1%
Tukey fast fourier |Processing
Numbers Numbers
Inverse kinematics 10000 (x,y) 10000 (x, )
inversek2j . Robotics 4 0 0 100 Random Random 2->8->2 0.000341 0.00467 Avg. Relative Error 6.2% 9.4%
for 2-joint arm " "
Coordinates Coordinates
. 10000 Random | 10000 Random
JEiapelc Pairs of 3D Pairs of 3D
jmeint intersection 3D Gaming 32 0 23 1,079 N N 18->32->8->2 | 0.05235 0.06729 Miss Rate 17.68% 19.7%
. Triangle Triangle
detection 5 4
Coordinates Coordinate
ipeg JPEG encoding Compression 3 4 0 1257 |220x200-Pixel |Three S12x512- ) 16 g 64| 0.0000156 | 0.0000325 Image Diff 5.48% 8.4%
Color Image Pixel Color Images
Machine 220x200-Pixel 50000 Pairs of
kmeans K-means clustering Learnin 1 0 0 26 Color Image Random (r, g, b) 6->8->4->1 0.00752 | 0.009589 Image Diff 3.21% 7.3%
& Values
sobel Sobel edge Image 3 2 1 gg  |220x200-Pbxel  fOne 512x512- 9->8->1 | 0000782 | 0.00405 Image Diff 389% | 5.2%
detector Processing Color Image Pixel Color Image
n N NN " o] ]
- 1 ] o H - o
Table 2: Area estimates for the analog neuron (ANU). 5 a - NG ® o o o
< B speedup
Sub-circuit Area . ~ ] M Energy Saving
m
)
8x8-bit DAC 3,096 T* - o
c
. . . ~
8 Resistor Ladder (8-bit weights) 4,096 T + 1 KQ (= 450T) E El < = ~
8 x Differential Pair 48T g = w ~ al
I-to-V Resistors 20KQ (=~ 30T) ‘g. 2 i
Differential Amplifier 244 T =
8-bit ADC 2550 T+ 1 KQ (=450 T) 1
Total ~ 10,964 T
0
*Transistor with width/length = 1 blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

used McPAT and CACTI to estimate D-NPU energy. Even
though we do not have a fabrication-ready layout for the de-
sign, in Table 2, we provide an estimate of the ANU area in
terms of number of transistors. T denotes a transistor with
,V:;Z’t’;l = 1. As shown, each ANU (which performs eight, 8-bit
analog multiply-adds in parallel followed by a sigmoid) re-
quires about 10,964 transistors. An equivalent digital neuron
that performs eight, 8-bit multiply-adds and a sigmoid would
require about 72,456 T from which 56,000 T are for the eight,
8-bit multiply-adds and 16,456 T for the sigmoid lookup. With
the same compute capability, the analog neuron requires 6.6 x
fewer transistors than its equivalent digital implementation.

Benchmarks. We use the benchmarks in [18] and add one
more, blackscholes. These benchmarks represent a diverse set
of application domains, including financial analysis, signal pro-
cessing, robotics, 3D gaming, compression, image processing.
Table 1 summarizes information about each benchmark: ap-
plication domain, target code, neural-network topology, train-
ing/test data and final application error levels for fully-digital
neural networks and analog neural networks using our cus-
tomized RPROP-based CDLM training algorithm. The neural
networks were trained using either typical program inputs,
such as sample images, or a limited number of random inputs.
Accuracy results are reported using an independent data set,
e.g, an input image that is different than the image used dur-
ing training. Each benchmark requires an application-specific
error metric, which is used in our evaluations. As shown in Ta-

Figure 5: A-NPU with 8 ANUs vs. D-NPU with 8 PEs.
ble 1, each application benefits from a different neural network
topology, so the ability to reconfigure the A-NPU is critical.

A-NPU vs 8-bit D-NPU. Figure 5 shows the average energy
improvement and speedup for one invocation of an A-NPU
over one invocation of an 8-bit D-NPU, where the A-NPU
is clocked at % the D-NPU frequency. On average, the A-
NPU is 12.1x more energy efficient and 3.3 faster than
the D-NPU. While consuming significantly less energy, the
A-NPU can perform 64 multiply-adds in parallel, while the
D-NPU can only perform eight. This energy-efficient, par-
allel computation explains why jpeg—with the largest neural
network (64— 16—8—64)—achieves the highest energy and
performance improvements, 82.2x and 15.2 %, respectively.
The larger the network, the higher the benefits from A-NPU.
Compared to a D-NPU, an A-NPU offers a higher level of par-
allelism with low energy cost that can potentially enable using
larger neural networks to replace more complicated code.

Whole application speedup and energy savings. Figure 6
shows the whole application speedup and energy savings when
the processor is augmented with an 8-bit, 8-PE D-NPU, our
8-ANU A-NPU, and an ideal NPU, which takes zero cycles
and consumes zero energy. Figure 6¢ shows the percentage of
dynamic instructions subsumed by the neural transformation
of the candidate code. The results show, following the Am-
dahl’s Law, that the larger the number of dynamic instructions
subsumed, the larger the benefits from neural acceleration.



14.0

Core + D-NPU
[ Core + A-NPU
Wl Core +Ideal

Application Speedup

blackscholes fft inversek2j jmeint  jpeg

kmeans sobel geomean

(a) Whole application speedup.

Ko<  ®w
No No
10 aNnm -

Core + D-NPU
I core + ANPU

5 Il Core + Ideal
5 8
7]
S n
© s
2 ©
> 6 N -
20 n
]
&
c 4 |
]
£ NR®
S ~" ]
S Hal
S ORNN ~
2 2R | |y - |
o - -
< e

blackscholes fft inversek2j jmeint  jpeg kmeans sobel geomean

(b) Whole application energy saving.

fft il j | jmeint | jpeg | kmeans | sobel

Percentage
Instructions 97.2% 67.4%| 95.9% (95.1%|56.3% | 29.7% |57.1%
Subsumed

(¢) % dynamic instructions subsumed.

Figure 6: Whole application speedup and energy saving with D-NPU,
A-NPU, and an Ideal NPU that consumes zero energy and takes zero
cycles for neural computation.

Geometric mean speedup and energy savings with an A-NPU
is 3.7x and 6.3 x respectively, which is 48% and 24% better
than an 8-bit, 8-PE NPU. Among the benchmarks, kmeans
sees slow down with D-NPU and A-NPU-based acceleration.
All benchmarks benefit in terms of energy. The speedup with
A-NPU acceleration ranges from 0.8 x to 24.5x. The energy
savings range from 1.3x to 51.2x.As the results show, the
savings with an A-NPU closely follows the ideal case, and,
in terms of “energy”’, there is little value in designing a more
sophisticated A-NPU. This result is due to the fact that the
energy cost of executing instructions in the von Neumann,
out-of-order pipeline is much higher than performing sim-
ple multiply-adds in the analog domain. Using physics laws
(Ohm’s law for multiplication and Kirchhoff’s law for summa-
tion) and analog properties of devices to perform computation
can lead to significant energy and performance benefits.

Application error. Table 3 shows the application-level er-
rors with a floating point D-NPU, A-NPU with ideal sigmoid
and our A-NPU which incorporates non-idealities of the ana-
log sigmoid. Except for jmeint, which shows error above 10%,
all of the applications show error less than or around 10%.
Application average error rates with the A-NPU range from

Table 3: Error with a floating point D-NPU, A-NPU with ideal sigmoid,
and A-NPU with non-ideal sigmoid.

blackscholes fft inversek2j | jmeint | jpeg |kmeans | sobel

;"’;;il';g Point 6.0% 2.7%| 6.2% |17.6%|5.4% | 3.2% |3.8%
A-NPU + Ideal 8.4% 3.0%| 8.1% |18.4%|6.6% | 6.1% |4.3%
Sigmoid

A-NPU 10.2% 4.1% | 9.4% |19.7%|8.4% | 7.3% |5.2%

100%
80%

60%

@0@ blackscholes
oop fft

+++ jmeint

. 000 inversek2j
20% ! AAA jpeg H
I . XXx kmeans

. WYy sobel
e e | e

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error

40% -

Percentage of Output Elements

Figure 7: CDF plot of application output error. A point (x,y) indicates
that y% of the output elements see error < x%.

4.1% to 10.2%. This quality-of-result loss is commensurate
with other work on quality trade-offs. Among digital hard-
ware approximation techniques, Truffle [17] and EnerJ [45]
shows similar error (3—10%) for some applications and much
greater error (above 80%) for others in a moderate configura-
tion. Green [3] has error rates below 1% for some applications
but greater than 20% for others. A case study [36] explores
manual optimizations of the x264 video encoder that trade
off 0.5-10% quality loss. As expected, the quality-of-results
degradation with an A-NPU is more than a floating point
D-NPU. However, the quality losses are commensurate with

digital approximate computing techniques.
To study the application-level quality loss in more detail,

Figure 7 illustrates the CDF (cumulative distribution function)
plot of final error for each element of application’s output.
Each benchmark’s output consists of a collection of elements—
an image consists of pixels; a vector consists of scalars; etc.
This CDF reveals the distribution of error among an applica-
tion’s output elements and shows that only a small fraction
of the output elements see large quality loss with analog ac-
celeration. The majority (80% to 100%) of each application’s
output elements have error less than 10% except for jmeint.

Exposing circuit limitations to the compiler. Figure 8
shows the effect of bit-width restrictions on application-level
error, assuming 8 inputs per neuron. As the results suggest,
exposing the bit-width limitations and the topology restric-
tions to the compiler enables our RPROP-based, customized
CDLM training algorithm to find and train neural networks
that can achieve accuracy levels commensurate with the digital
approximation techniques, using only eight bits of precision
for inputs, outputs, and weights, and eight inputs to the analog
neurons. Several applications show less than 10% error even
with fewer than eight bits. The results shows that there are
many applications that can significantly benefit from analog



[ O 4-bitI0

24%
blackscholes

18%

12% By

Application Level
Error
B
o
o
X

6%

5-bit 10 < 6-bit 10 £+ 7-bit 10 <> 8-bit IO |
80%

60%
inversek2j

49%

38%

26%

Weight Bandwidth

4 5 6 7 8

Weight Bandwidth Weight Bandwidth
_ 14% 15% 50%
g |
2 12% 13% 6, 38%
c = .
S L2 10% 10% B
® LW .
o
-y 8% 8%
o ]
< >

6% 5%

25%

18% | Ty

4 5 6 7 8 4
Weight Bandwidth

Weight Bandwidth

0%
6 7 8 4 5 6 7 8

Weight Bandwidth

Figure 8: Application error with limited bit-width analog neural computation.

0
< =]
10 ~ -
80% Offloading
85% Offloading
a 8 B 90% Offloading | |
5 B 80% Offloading
3 W 100% Offloading
Q
Q 6
0
H "!
. < ~
B 4 - -
2 -
a -
s ~
< o [ w_nm m ]
. BT T ||| i

blackscholes fft inversek2j jmeint  jpeg kmeans sobel geomean

(a) Total application speedup with limited A-NPU invocations.

N e *
“ =] ~
n k) -

10
80% Offloading
85% Offloading
8 B 90% Offloading
B 80% Offloading
W 100% Offloading
6
: <
< =]
<
4 | [ ]
2| n
o0 ~ H
~ o N N N
o L n | | - ~ o/ N ||
I III I I
. i

blackscholes fft inversek2j jmeint  jpeg

63 |

Energy Improvement
46

kmeans sobel geomean

(b) Total application energy saving for limited A-NPU invocations.

Figure 9: Speedup/energy saving with limited A-NPU invocations.

acceleration without significant output quality loss.

Limited analog acceleration. We examine the effects on
the benefits when, due to noise or pathological inputs, only
a fraction of the invocations are offloaded to the A-NPU. In
this case, the application falls back to the original code for
the remaining invocations. Figure 9 depicts the application
speedup and energy improvement when only 80%, 85%, 90%,

95%, and 100% of the invocations are offloaded to the A-NPU.

The results suggest that even limited analog accelerators can
provide significant energy and performance improvements.

7. Limitations and Considerations

Applicability. Not all applications can benefit from analog
acceleration; however, our work shows that there are many that
can. More rigorous optimization at the circuit level, as well as
broadening the scope off application coverage by continued
advancements at the neural transformation step, may provide

significant improvements in accuracy and generality.

Other design points. This study evaluates the performance
and energy improvements of an A-NPU assuming integration
with a modern, high-performance processor. If low-power
cores are used instead, we expect to see, and preliminary
results confirm, that the performance benefits of an A-NPU
increase, and that the energy benefits decrease.

Variability and noise. We designed the circuit with vari-
ability and noise as first-order concerns, and we made several
design decisions to mitigate them. We limit both the input and
weight bit widths, as well as the analog neuron input count
to eight to provide quantization margins for variation/noise.
We designed the sigmoid circuit one order of magnitude more
shallow than the digital implementation to provide additional
margins for variation and noise. We used a differential design,
which provides resilience to noise by representing a value by
the difference between two signals; as noise affects the pair
of nearby signals similarly, the difference between the sig-
nals remains intact and the computation correct. Conversion
to the digital domain after each analog neuron computation
enforces computation integrity and reduces variation/noise
susceptibility, while incurring energy and speed overheads.
As mentioned in Section 6, to further improve the quality of
the final result, we can refrain from A-NPU invocations and
fall back to the original code as needed. An online noise-
monitoring system could potentially limit the invocation of
the A-NPU to low-noise situations. Incorporating a quanti-
tative noise model into the training algorithm may improve
robustness to analog noise.

Training for variability. A neural approach to approximate
computing presents the opportunity to correct for certain types
of analog-imposed inaccuracy, such as process variation, non-
linearity, and other forms of non-ideality that are consistent for
executions on a particular A-NPU hardware instance for some
period of time. After an initial training phase that accounts for
the predictable, compiler-exposed analog limitations, a second
(shorter) training phase can adjust for hardware-specific non-
idealities, sending training inputs and outputs to the A-NPU
and adjusting network weights to minimize error. This correc-



tion technique is able to address inter and intra-chip process
variation and hardware-dependent, non-ideal analog behavior.

Smaller technology nodes. This work is the start of using
analog circuits for code acceleration. Providing benefits at
smaller nodes may require using larger transistors for analog
parts, trading off area for resilience. Energy-efficient perfor-
mance is growing in importance relative to area efficiency,
especially as CMOS scaling benefits continue to diminish.

8. Related Work

This research lies at the intersection of (a) general-purpose
approximate computing, (b) accelerators, (c) analog and digital
neural hardware, (d) neural-based code acceleration, (e) and
limited-precision learning. This work combines techniques
in all these areas to provide a compilation workflow and the
architecture/circuit design that enables code acceleration with
limited-precision mixed-signal neural hardware. In each area,
we discuss the key related work that inspired our work.

General-purpose approximate computing. Several stud-
ies have shown that diverse classes of applications are tolerant
to imprecise execution [20, 54, 34, 12, 45]. A growing body
of work has explored relaxing the abstraction of full accuracy
at the circuit and architecture level for gains in performance,
energy, and resource utilization [13, 17, 44, 2, 35, 8, 28, 38,
18, 51, 46]. These circuit and architecture studies, although
proven successful, are limited to purely digital techniques. We
explore how a mixed-signal, analog-digital approach can go
beyond what digital approximate techniques offer.

Accelerators. Research on accelerators seeks to synthesize
efficient circuits or FPGA configurations to accelerate general-
purpose code [41, 42, 11, 19, 29]. Similarly, static specializa-
tion has shown significant efficiency gains for irregular and
legacy code [52, 53]. More recently, configurable accelerators
have been proposed that allow the main CPU to offload cer-
tain code to a small, efficient structure [23, 24]. This paper
extends the prior work on digital accelerators with a new class
of mixed-signal, analog-digital accelerators.

Analog and digital neural hardware. There is an exten-
sive body of work on hardware implementations of neural net-
works both in digital [40, 15, 55] and analog [5, 47, 49, 32, 48].
Recent work has proposed higher-level abstractions for imple-
mentation of neural networks [27]. Other work has examined
fault-tolerant hardware neural networks [26, 50]. In particu-
lar, Temam [50] uses datasets from the UCI machine learning
repository [21] to explore fault tolerance of a hardware neural
network design. In contrast, our compilation, neural-network
selection/training framework, and architecture design aim at
applying neural networks to general-purpose code written in
familiar programming models and languages, not explicitly
written to utilize neural networks directly.

Neural-based code acceleration. A recent study [9] shows
that a number of applications can be manually reimplemented
with explicit use of various kinds of neural networks. That

study did not prescribe a programming workflow, nor a pre-
ferred hardware architecture. More recent work exposes ana-
log spiking neurons as primitive operators [4]. This work
devises a new programming model that allows programmers
to express digital signal-processing applications as a graph of
analog neurons and automatically maps the expressed graph
to a tiled analog, spiking-neural hardware. The work in [4] is
restricted to the domain of applications whose inputs are real-
world signals that should be encoded as pulses. Our approach
addresses the long-standing challenges of using analog com-
putation (programmability and generality) by not imposing
domain-specific limitations, and by providing analog circuitry
that is integrated with a conventional digital processor in a
way that does not require a new programming paradigm.

Limited-precision learning. The work in [14] provides a
complete survey of learning algorithms that consider limited
precision neural hardware implementation. We tried various al-
gorithms, but we found that CDLM [10] was the most effective.
More sophisticated limited-precision learning techniques can
improve the reported quality results in this paper and further
confirm the feasibility and effectiveness of the mixed-signal,
approach for neural-based code acceleration.

9. Conclusions

For decades, before the effective end of Dennard scaling, we
consistently improved performance and efficiency while main-
taining generality in general-purpose computing. As the bene-
fits from scaling diminish, the community is facing an iron tri-
angle; we can choose any two of performance, efficiency, and
generality at the expense of the third. Solutions that improve
performance and efficiency, while retaining as much generality
as possible, are growing in importance. Analog circuits inher-
ently trade accuracy for significant gains in energy-efficiency.
However, it is challenging to utilize them in a way that is both
programmable and generally useful. As this paper showed, the
neural transformation of general-purpose approximable code
provides an avenue for realizing the benefits of analog compu-
tation while targeting code written in conventional languages.
This work provided an end-to-end solution for utilizing ana-
log circuits for accelerating approximate applications, from
circuits to compiler design. The insights from this work show
that it is crucial to expose analog circuit characteristics to the
compilation and neural network training phases. The NPU
model offers a way to exploit analog efficiencies, despite their
challenges, for a wider range of applications than is typically
possible. Further, mixed-signal execution delivers much larger
savings for NPUs than digital. However, this study is not
conclusive. The full range of applications that can exploit
mixed-signal NPUs is still unknown, as is whether it will be
sufficiently large to drive adoption in high-volume micropro-
cessors. It is still an open question how developers might
reason about the acceptable level of error when an application
undergoes an approximate execution including analog accel-
eration. Finally, in a noisy, high-performance microprocessor



environment, it is unclear that an analog NPU would not be
adversely affected. However, the significant gains from A-
NPU acceleration and the diversity of the studied applications
suggest a potentially promising path forward.

Acknowledgments

This work was supported in part by gifts from Microsoft Re-
search and Google, NSF award CCF-1216611, and by C-FAR,
one of six centers of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.

References

[1]
[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]
[22]

(23]

P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford
University Press, 2002.

C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE TC, 2005.

W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in
PLDI, 2010.

B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous
real-world inputs can open up alternative accelerator designs,” in ISCA,
2013.

B. E. Boser, E. Séckinger, J. Bromley, Y. L. Cun, L. D. Jackel, and
S. Member, “An analog neural network processor with programmable
topology,” JSSC, 1991.

Y. Cao, “Predictive technology models,” 2013. Available:
//ptm.asu.edu

M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in OOP-
SLA, 2013.

L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC
architectures based on probabilistic CMOS (PCMOS) technology,” in
DATE, 2006.

T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti,
A. Nere, S. Qiu, M. Sebag, and O. Temam, “BenchNN: On the broad
potential application scope of hardware neural network accelerators,”
in IISWC, 2012.

F. Choudry, E. Fiesler, A. Choudry, and H. J. Caulfield, “A weight
discretization paradigm for optical neural networks,” in ICOE, 1990.
N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruc-
tion set customization,” in MICRO, 2004.

M. de Kruijf and K. Sankaralingam, “Exploring the synergy of emerg-
ing workloads and silicon reliability trends,” in SELSE, 2009.

M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architec-
tural framework for software recovery of hardware faults,” in ISCA,
2010.

S. Draghici, “On the capabilities of neural networks using limited
precision weights,” Elsevier NN, 2002.

H. Esmaeilzadeh, P. Saeedi, B. N. Araabi, C. Lucas, and S. M. Fakhraie,
“Neural network stream processing core (NnSP) for embedded systems,”
in ISCAS, 2006.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012.
H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in MICRO, 2012.
K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the computa-
tion gap between programmable processors and hardwired accelerators,”
in HPCA, 2009.

Y. Fang, H. Li, and X. Li, “A fault criticality evaluation framework of
digital systems for error tolerant video applications,” in ATS, 2011.

A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
Available: http://archive.ics.uci.edu/ml

S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
IEEE TC, 2011.

V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically special-
ized datapaths for energy efficient computing,” in HPCA, 2011.

http:

[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]
[35]

[36]
[37]

[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]
[55]

S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in MICRO, 2011.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward
dark silicon in servers,” IEEE Micro, 2011.

A. Hashmi, H. Berry, O. Temam, and M. Lipasti, “Automatic abstrac-
tion and fault tolerance in cortical microarchitectures,” in ISCA, 2011.
A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti, “A case for neuro-
morphic ISAs,” in ASPLOS, 2011.

R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999.

Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu, “Elastic cgras,” in
FPGA, 2013.

C. Igel and M. Hiisken, “Improving the RPROP learning algorithm,”
in NC, 2000.

D. A. Johns and K. Martin, Analog Integrated Circuit Design.
Wiley and Sons, Inc., 1997.

A. Joubert, B. Belhadj, O. Temam, and R. Héliot, “Hardware spiking
neurons design: Analog or digital?” in IJJCNN, 2012.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
2009.

X. Li and D. Yeung, “Exploiting soft computing for increased fault
tolerance,” in ASGI, 2006.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Sav-
ing dram refresh-power through critical data partitioning,” in ASPLOS,
2011.

S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of
service profiling,” in ICSE, 2010.

N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in MICRO, 2007.

S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochas-
tic processors,” in DATE, 2010.

A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system
simulator for x86 CPUs,” in DAC, 2011.

K. W. Przytula and V. K. P. Kumar, Eds., Parallel Digital Implementa-
tions of Neural Networks. Prentice Hall, 1993.

A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and
S. Eggers, “CHiMPS: A high-level compilation flow for hybrid CPU-
FPGA architectures,” in FPGA, 2008.

R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in MICRO, 1994.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. MIT Press,
1986.

M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
Self-tuning approximation for graphics engines,” in MICRO, 2013.

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general
low-power computation,” in PLDI, 2011.

A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in MICRO, 2013.

J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of
analog neural networks,” in IJJCNN, 2008.

R. St. Amant, D. A. Jiménez, and D. Burger, “Mixed-signal approxi-
mate computation: A neural predictor case study,” IEEE MICRO Top
Picks, vol. 29, no. 1, January/February 2009.

S. M. Tam, B. Gupta, H. A. Castro, and M. Holler, “Learning on an
analog VLSI neural network chip,” in SMC, 1990.

O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in ISCA, 2012.

S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Quality-programmable vector processors for ap-
proximate computing,” in MICRO, 2013.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reduc-
ing the energy of mature computations,” in ASPLOS, 2010.

G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, M. Taylor,
and S. Swanson, “QsCores: Trading dark silicon for scalable energy
efficiency with quasi-specific cores,” in MICRO, 2011.

V. Wong and M. Horowitz, “Soft error resilience of probabilistic infer-
ence applications,” in SELSE, 2006.

J. Zhu and P. Sutton, “FPGA implementations of neural networks: A
survey of a decade of progress,” in FPL, 2003.

John



