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Abstract—Hyperscale datacenter providers have struggled to
balance the growing need for specialized hardware (efficiency)
with the economic benefits of homogeneity (manageability). In
this paper we propose a new cloud architecture that uses
reconfigurable logic to accelerate both network plane func-
tions and applications. This Configurable Cloud architecture
places a layer of reconfigurable logic (FPGAs) between the
network switches and the servers, enabling network flows to be
programmably transformed at line rate, enabling acceleration
of local applications running on the server, and enabling the
FPGAs to communicate directly, at datacenter scale, to harvest
remote FPGAs unused by their local servers. We deployed this
design over a production server bed, and show how it can be
used for both service acceleration (Web search ranking) and
network acceleration (encryption of data in transit at high-
speeds). This architecture is much more scalable than prior
work which used secondary rack-scale networks for inter-FPGA
communication. By coupling to the network plane, direct FPGA-
to-FPGA messages can be achieved at comparable latency to
previous work, without the secondary network. Additionally, the
scale of direct inter-FPGA messaging is much larger. The average
round-trip latencies observed in our measurements among 24,
1000, and 250,000 machines are under 3, 9, and 20 microseconds,
respectively. The Configurable Cloud architecture has been
deployed at hyperscale in Microsoft’s production datacenters
worldwide.

I. INTRODUCTION

Modern hyperscale datacenters have made huge strides with

improvements in networking, virtualization, energy efficiency,

and infrastructure management, but still have the same basic

structure as they have for years: individual servers with

multicore CPUs, DRAM, and local storage, connected by the

NIC through Ethernet switches to other servers. At hyperscale

(hundreds of thousands to millions of servers), there are signif-

icant benefits to maximizing homogeneity; workloads can be

migrated fungibly across the infrastructure, and management

is simplified, reducing costs and configuration errors.

Both the slowdown in CPU scaling and the ending of

Moore’s Law have resulted in a growing need for hard-

ware specialization to increase performance and efficiency.

However, placing specialized accelerators in a subset of a

hyperscale infrastructure’s servers reduces the highly desir-

able homogeneity. The question is mostly one of economics:

whether it is cost-effective to deploy an accelerator in every

new server, whether it is better to specialize a subset of

an infrastructure’s new servers and maintain an ever-growing

number of configurations, or whether it is most cost-effective

to do neither. Any specialized accelerator must be compatible

with the target workloads through its deployment lifetime (e.g.

six years: two years to design and deploy the accelerator and

four years of server deployment lifetime). This requirement

is a challenge given both the diversity of cloud workloads

and the rapid rate at which they change (weekly or monthly).

It is thus highly desirable that accelerators incorporated into

hyperscale servers be programmable, the two most common

examples being FPGAs and GPUs.

Both GPUs and FPGAs have been deployed in datacenter

infrastructure at reasonable scale without direct connectivity

between accelerators [1], [2], [3]. Our recent publication

described a medium-scale FPGA deployment in a production

datacenter to accelerate Bing web search ranking using multi-

ple directly-connected accelerators [4]. That design consisted

of a rack-scale fabric of 48 FPGAs connected by a secondary

network. While effective at accelerating search ranking, our

first architecture had several significant limitations:

• The secondary network (a 6x8 torus) required expensive

and complex cabling, and required awareness of the physical

location of machines.
• Failure handling of the torus required complex re-routing

of traffic to neighboring nodes, causing both performance loss

and isolation of nodes under certain failure patterns.
• The number of FPGAs that could communicate directly,

without going through software, was limited to a single rack

(i.e. 48 nodes).
• The fabric was a limited-scale “bolt on” accelerator, which

could accelerate applications but offered little for enhancing

the datacenter infrastructure, such as networking and storage

flows.

In this paper, we describe a new cloud-scale, FPGA-based

acceleration architecture, which we call the Configurable
Cloud, which eliminates all of the limitations listed above with

a single design. This architecture has been — and is being

— deployed in the majority of new servers in Microsoft’s

production datacenters across more than 15 countries and

5 continents. A Configurable Cloud allows the datapath of

cloud communication to be accelerated with programmable

hardware. This datapath can include networking flows, stor-

age flows, security operations, and distributed (multi-FPGA)

applications.

The key difference over previous work is that the accelera-978-1-5090-3508-3/16/$31.00 c© 2016 IEEE
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Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

tion hardware is tightly coupled with the datacenter network—

placing a layer of FPGAs between the servers’ NICs and

the Ethernet network switches. Figure 1b shows how the

accelerator fits into a host server. All network traffic is routed

through the FPGA, allowing it to accelerate high-bandwidth

network flows. An independent PCIe connection to the host

CPUs is also provided, allowing the FPGA to be used as a local

compute accelerator. The standard network switch and topol-

ogy removes the impact of failures on neighboring servers,

removes the need for non-standard cabling, and eliminates the

need to track the physical location of machines in each rack.
While placing FPGAs as a network-side “bump-in-the-wire”

solves many of the shortcomings of the torus topology, much

more is possible. By enabling the FPGAs to generate and

consume their own networking packets independent of the

hosts, each and every FPGA in the datacenter can reach

every other one (at a scale of hundreds of thousands) in

a small number of microseconds, without any intervening

software. This capability allows hosts to use remote FPGAs for

acceleration with low latency, improving the economics of the

accelerator deployment, as hosts running services that do not

use their local FPGAs can donate them to a global pool and

extract value which would otherwise be stranded. Moreover,

this design choice essentially turns the distributed FPGA

resources into an independent computer in the datacenter,

at the same scale as the servers, that physically shares the

network wires with software. Figure 1a shows a logical view

of this plane of computation.
This model offers significant flexibility. From the local

perspective, the FPGA is used as a compute or a network

accelerator. From the global perspective, the FPGAs can be

managed as a large-scale pool of resources, with acceleration

services mapped to remote FPGA resources. Ideally, servers

not using all of their local FPGA resources can donate

those resources to the global pool, while servers that need

additional resources can request the available resources on

remote servers. Failing nodes are removed from the pool

with replacements quickly added. As demand for a service

grows or shrinks, a global manager grows or shrinks the pools

correspondingly. Services are thus freed from having a fixed

ratio of CPU cores per FPGAs, and can instead allocate (or

purchase, in the case of IaaS) only the resources of each type

needed.

Space limitations prevent a complete description of the

management policies and mechanisms for the global resource

manager. Instead, this paper focuses first on the hardware

architecture necessary to treat remote FPGAs as available

resources for global acceleration pools. We describe the com-

munication protocols and mechanisms that allow nodes in

a remote acceleration service to connect, including a proto-

col called LTL (Lightweight Transport Layer) that supports

lightweight connections between pairs of FPGAs, with mostly

lossless transport and extremely low latency (small numbers

of microseconds). This protocol makes the datacenter-scale

remote FPGA resources appear closer than either a single local

SSD access or the time to get through the host’s networking

stack. Then, we describe an evaluation system of 5,760 servers

which we built and deployed as a precursor to hyperscale

production deployment. We measure the performance charac-

teristics of the system, using web search and network flow

encryption as examples. We show that significant gains in

efficiency are possible, and that this new architecture enables a

much broader and more robust architecture for the acceleration
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Fig. 2. Block diagram of the major components of the accelerator board.

of hyperscale datacenter services.

II. HARDWARE ARCHITECTURE

There are many constraints on the design of hardware

accelerators for the datacenter. Datacenter accelerators must

be highly manageable, which means having few variations

or versions. The environments must be largely homogeneous,

which means that the accelerators must provide value across a

plurality of the servers using it. Given services’ rate of change

and diversity in the datacenter, this requirement means that a

single design must provide positive value across an extremely

large, homogeneous deployment.

The solution to addressing the competing demands of ho-

mogeneity and specialization is to develop accelerator archi-

tectures which are programmable, such as FPGAs and GPUs.

These programmable architectures allow for hardware homo-

geneity while allowing fungibility via software for different

services. They must be highly flexible at the system level, in

addition to being programmable, to justify deployment across a

hyperscale infrastructure. The acceleration system we describe

is sufficiently flexible to cover three scenarios: local compute

acceleration (through PCIe), network acceleration, and global

application acceleration, through configuration as pools of

remotely accessible FPGAs. Local acceleration handles high-

value scenarios such as search ranking acceleration where

every server can benefit from having its own FPGA. Network

acceleration can support services such as intrusion detection,

deep packet inspection and network encryption which are

critical to IaaS (e.g. “rental” of cloud servers), and which have

such a huge diversity of customers that it makes it difficult to

justify local compute acceleration alone economically. Global

acceleration permits accelerators unused by their host servers

to be made available for large-scale applications, such as

machine learning. This decoupling of a 1:1 ratio of servers

to FPGAs is essential for breaking the “chicken and egg”

problem where accelerators cannot be added until enough

applications need them, but applications will not rely upon

the accelerators until they are present in the infrastructure.

By decoupling the servers and FPGAs, software services that

demand more FPGA capacity can harness spare FPGAs from

Fig. 3. Photograph of the manufactured board. The DDR channel is
implemented using discrete components. PCIe connectivity goes through a
mezzanine connector on the bottom side of the board (not shown).

other services that are slower to adopt (or do not require) the

accelerator fabric.

In addition to architectural requirements that provide suffi-

cient flexibility to justify scale production deployment, there

are also physical restrictions in current infrastructures that

must be overcome. These restrictions include strict power

limits, a small physical space in which to fit, resilience

to hardware failures, and tolerance to high temperatures.

For example, the accelerator architecture we describe is the

widely-used OpenCompute server that constrained power to

35W, the physical size to roughly a half-height half-length

PCIe expansion card (80mm x 140 mm), and tolerance to

an inlet air temperature of 70◦C at 160 lfm airflow. These

constraints make deployment of current GPUs impractical

except in special HPC SKUs, so we selected FPGAs as the

accelerator.

We designed the accelerator board as a standalone FPGA

board that is added to the PCIe expansion slot in a production

server SKU. Figure 2 shows a schematic of the board, and

Figure 3 shows a photograph of the board with major com-

ponents labeled. The FPGA is an Altera Stratix V D5, with

172.6K ALMs of programmable logic. The FPGA has one

4 GB DDR3-1600 DRAM channel, two independent PCIe Gen

3 x8 connections for an aggregate total of 16 GB/s in each

direction between the CPU and FPGA, and two independent

40 Gb Ethernet interfaces with standard QSFP+ connectors. A

256 Mb Flash chip holds the known-good golden image for the

FPGA that is loaded on power on, as well as one application

image.

To measure the power consumption limits of the entire

FPGA card (including DRAM, I/O channels, and PCIe), we

developed a power virus that exercises nearly all of the FPGA’s

interfaces, logic, and DSP blocks—while running the card in

a thermal chamber operating in worst-case conditions (peak

ambient temperature, high CPU load, and minimum airflow

due to a failed fan). Under these conditions, the card consumes

29.2W of power, which is well within the 32W TDP limits for

a card running in a single server in our datacenter, and below

the max electrical power draw limit of 35W.

The dual 40 Gb Ethernet interfaces on the board could allow

for a private FPGA network as was done in our previous
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Fig. 4. The Shell Architecture in a Single FPGA.

work [4], but this configuration also allows the FPGA to be

wired as a “bump-in-the-wire”, sitting between the network

interface card (NIC) and the top-of-rack switch (ToR). Rather

than cabling the standard NIC directly to the ToR, the NIC is

cabled to one port of the FPGA, and the other FPGA port is

cabled to the ToR, as we previously showed in Figure 1b.

Maintaining the discrete NIC in the system enables us

to leverage all of the existing network offload and packet

transport functionality hardened into the NIC. This simplifies

the minimum FPGA code required to deploy the FPGAs to

simple bypass logic. In addition, both FPGA resources and

PCIe bandwidth are preserved for acceleration functionality,

rather than being spent on implementing the NIC in soft logic.

Unlike [5], both the FPGA and NIC have separate connec-

tions to the host CPU via PCIe. This allows each to operate

independently at maximum bandwidth when the FPGA is

being used strictly as a local compute accelerator (with the

FPGA simply doing network bypass). This path also makes it

possible to use custom networking protocols that bypass the

NIC entirely when desired.

One potential drawback to the bump-in-the-wire architecture

is that an FPGA failure, such as loading a buggy application,

could cut off network traffic to the server, rendering the server

unreachable. However, unlike a torus or mesh network, failures

in the bump-in-the-wire architecture do not degrade any neigh-

boring FPGAs, making the overall system more resilient to

failures. In addition, most datacenter servers (including ours)

have a side-channel management path that exists to power

servers on and off. By policy, the known-good golden image

that loads on power up is rarely (if ever) overwritten, so power

cycling the server through the management port will bring

the FPGA back into a good configuration, making the server

reachable via the network once again.

A. Shell architecture

Within each FPGA, we use the partitioning and terminology

we defined in prior work [4] to separate the application logic

 ALMs MHz 
Role 55340 (32%) 175 
40G MAC/PHY (TOR) 9785 (6%) 313 
40G MAC/PHY (NIC) 13122 (8%) 313 
Network Bridge / Bypass 4685 (3%) 313 
DDR3 Memory Controller 13225 (8%) 200 
Elastic Router 3449 (2%) 156 
LTL Protocol Engine 11839 (7%) 156 
LTL Packet Switch 4815 (3%) - 
PCIe DMA Engine 6817 (4%) 250 
Other 8273 (5%) - 
Total Area Used 131350 (76%) - 
Total Area Available 172600 - 

Fig. 5. Area and frequency breakdown of production-deployed image with
remote acceleration support.

(Role) from the common I/O and board-specific logic (Shell)

used by accelerated services. Figure 4 gives an overview of

this architecture’s major shell components, focusing on the

network. In addition to the Ethernet MACs and PHYs, there

is an intra-FPGA message router called the Elastic Router

(ER) with virtual channel support for allowing multiple Roles

access to the network, and a Lightweight Transport Layer

(LTL) engine used for enabling inter-FPGA communication.

Both are described in detail in Section V.

The FPGA’s location as a bump-in-the-wire between the

network switch and host means that it must always pass

packets between the two network interfaces that it controls.

The shell implements a bridge to enable this functionality,

shown at the top of Figure 4. The shell provides a tap for

FPGA roles to inject, inspect, and alter the network traffic as

needed, such as when encrypting network flows, which we

describe in Section III.

Full FPGA reconfiguration briefly brings down this network

link, but in most cases applications are robust to brief network

outages. When network traffic cannot be paused even briefly,

partial reconfiguration permits packets to be passed through

even during reconfiguration of the role.

Figure 5 shows the area and clock frequency of the shell IP

components used in the production-deployed image. In total,

the design uses 44% of the FPGA to support all shell functions

and the necessary IP blocks to enable access to remote pools of

FPGAs (i.e., LTL and the Elastic Router). While a significant

fraction of the FPGA is consumed by a few major shell

components (especially the 40G PHY/MACs at 14% and the

DDR3 memory controller at 8%), enough space is left for

the role(s) to provide large speedups for key services, as we

show in Section III. Large shell components that are stable for

the long term are excellent candidates for hardening in future

generations of datacenter-optimized FPGAs.



B. Datacenter Deployment

To evaluate the system architecture and performance at

scale, we manufactured and deployed 5,760 servers containing

this accelerator architecture and placed it into a production dat-

acenter. All machines were configured with the shell described

above. The servers and FPGAs were stress tested using the

power virus workload on the FPGA and a standard burn-in test

for the server under real datacenter environmental conditions.

The servers all passed, and were approved for production use

in the datacenter.

We brought up a production Bing web search ranking

service on the servers, with 3,081 of these machines using the

FPGA for local compute acceleration, and the rest used for

other functions associated with web search. We mirrored live

traffic to the bed for one month, and monitored the health and

stability of the systems as well as the correctness of the ranking

service. After one month, two FPGAs had hard failures, one

with a persistently high rate of single event upset (SEU) errors

in the configuration logic, and the other with an unstable 40 Gb

network link to the NIC. A third failure of the 40 Gb link to the

TOR was found not to be an FPGA failure, and was resolved

by replacing a network cable. Given aggregate datacenter

failure rates, we deemed the FPGA-related hardware failures

to be acceptably low for production.

We also measured a low number of soft errors, which

were all correctable. Five machines failed to train to the full

Gen3 x8 speeds on the secondary PCIe link. There were

eight total DRAM calibration failures which were repaired

by reconfiguring the FPGA. The errors have since been traced

to a logical error in the DRAM interface rather than a hard

failure. Our shell scrubs the configuration state for soft errors

and reports any flipped bits. We measured an average rate

of one bit-flip in the configuration logic every 1025 machine

days. While the scrubbing logic often catches the flips before

functional failures occur, at least in one case there was a

role hang that was likely attributable to an SEU event. Since

the scrubbing logic completes roughly every 30 seconds, our

system recovers from hung roles automatically, and we use

ECC and other data integrity checks on critical interfaces, the

exposure of the ranking service to SEU events is low. Overall,

the hardware and interface stability of the system was deemed

suitable for scale production.

In the next sections, we show how this board/shell combi-

nation can support local application acceleration while simul-

taneously routing all of the server’s incoming and outgoing

network traffic. Following that, we show network acceleration,

and then acceleration of remote services.

III. LOCAL ACCELERATION

As we described earlier, it is important for an at-scale

datacenter accelerator to enhance local applications and in-

frastructure functions for different domains (e.g. web search

and IaaS). In this section we measure the performance of our

system on a large datacenter workload.
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Fig. 6. 99% Latency versus Throughput of ranking service queries running
on a single server, with and without FPGAs enabled.

A. Bing Search Page Ranking Acceleration

We describe Bing web search ranking acceleration as an

example of using the local FPGA to accelerate a large-scale

service. This example is useful both because Bing search is

a large datacenter workload, and since we had described its

acceleration in depth on the Catapult v1 platform [4]. At a

high level, most web search ranking algorithms behave sim-

ilarly; query-specific features are generated from documents,

processed, and then passed to a machine learned model to

determine how relevant the document is to the query.

Unlike in [4], we implement only a subset of the feature

calculations (typically the most expensive ones), and nei-

ther compute post-processed synthetic features nor run the

machine-learning portion of search ranking on the FPGAs.

We do implement two classes of features on the FPGA. The

first is the traditional finite state machines used in many search

engines (e.g. “count the number of occurrences of query term

two”). The second is a proprietary set of features generated

by a complex dynamic programming engine.

We implemented the selected features in a Feature Func-
tional Unit (FFU), and the Dynamic Programming Features in

a separate DPF unit. Both the FFU and DPF units were built

into a shell that also had support for execution using remote

accelerators, namely the ER and LTL blocks as described

in Section V. This FPGA image also, of course, includes

the network bridge for NIC-TOR communication, so all the

server’s network traffic is passing through the FPGA while

it is simultaneously accelerating document ranking. The pass-

through traffic and the search ranking acceleration have no

performance interaction.

We present results in a format similar to the Catapult

results to make direct comparisons simpler. We are running

this image on a full production bed consisting of thousands

of servers. In a production environment, it is infeasible to

simulate many different points of query load as there is

substantial infrastructure upstream that only produces requests

at the rate of arrivals. To produce a smooth distribution with

repeatable results, we used a single-box test with a stream
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of 200,000 queries, and varied the arrival rate of requests to

measure query latency versus throughput. Figure 6 shows the

results; the curves shown are the measured latencies of the

99% slowest queries at each given level of throughput. Both

axes show normalized results.

We have normalized both the target production latency and

typical average throughput in software-only mode to 1.0. The

software is well tuned; it can achieve production targets for

throughput at the required 99th percentile latency. With the

single local FPGA, at the target 99th percentile latency, t he

throughput can be safely increased by 2.25x, which means

that fewer than half as many servers would be needed to

sustain the target throughput at the required latency. Even at

these higher loads, the FPGA remains underutilized, as the

software portion of ranking saturates the host server before

the FPGA is saturated. Having multiple servers drive fewer

FPGAs addresses the underutilization of the FPGAs, which is

the goal of our remote acceleration model.

Production Measurements: We have deployed the FPGA

accelerated ranking service into production datacenters at scale

and report end-to-end measurements below.

Figure 7 shows the performance of ranking service running

in two production datacenters over a five day period, one

with FPGAs enabled and one without (both datacenters are

of identical scale and configuration, with the exception of the

FPGAs). These results are from live production traffic, not on a

synthetic workload or mirrored traffic. The top two bars show

the normalized tail query latencies at the 99.9th percentile

(aggregated across all servers over a rolling time window),

while the bottom two bars show the corresponding query

loads received at each datacenter. As load varies throughout

the day, the queries executed in the software-only datacenter

experience a high rate of latency spikes, while the FPGA-

accelerated queries have much lower, tighter-bound latencies,

despite seeing much higher peak query loads.

Figure 8 plots the load versus latency over the same 5-day
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Fig. 8. Query 99.9% Latency vs. Offered Load.

period for the two datacenters. Given that these measurements

were performed on production datacenters and traffic, we were

unable to observe higher loads on the software datacenter

(vs. the FPGA-enabled datacenter) due to a dynamic load

balancing mechanism that caps the incoming traffic when tail

latencies begin exceeding acceptable thresholds. Because the

FPGA is able to process requests while keeping latencies low,

it is able to absorb more than twice the offered load, while

executing queries at a latency that never exceeds the software

datacenter at any load.

IV. NETWORK ACCELERATION

The bump-in-the-wire architecture was developed to enable

datacenter networking applications, the first of which is host-

to-host line rate encryption/decryption on a per flow basis. As

each packet passes from the NIC through the FPGA to the

ToR, its header is examined to determine if it is part of an

encrypted flow that was previously set up by software. If it

is, the software-provided encryption key is read from internal

FPGA SRAM or the FPGA-attached DRAM and is used to

encrypt or decrypt the packet. Thus, once the encrypted flows

are set up, there is no load on the CPUs to encrypt or decrypt

the packets; encryption occurs transparently from software’s

perspective, which sees all packets as unencrypted at the end

points.

The ability to offload encryption/decryption at network line

rates to the FPGA yields significant CPU savings. According

to Intel [6], its AES GCM-128 performance on Haswell is

1.26 cycles per byte for encrypt and decrypt each. Thus, at

a 2.4 GHz clock frequency, 40 Gb/s encryption/decryption

consumes roughly five cores. Different standards, such as

256b or CBC are, however, significantly slower. In addition,

there is sometimes a need for crypto hash functions, further

reducing performance. For example, AES-CBC-128-SHA1 is

needed for backward compatibility for some software stacks

and consumes at least fifteen cores to achieve 40 Gb/s full

duplex. Of course, consuming fifteen cores just for crypto is

impractical on a typical multi-core server, as there would be

that many fewer cores generating traffic. Even five cores of



savings is significant when every core can otherwise generate

revenue.

Our FPGA implementation supports full 40 Gb/s encryption

and decryption. The worst case half-duplex FPGA crypto

latency for AES-CBC-128-SHA1 is 11 μs for a 1500B packet,

from first flit to first flit. In software, based on the Intel num-

bers, it is approximately 4 μs. AES-CBC-SHA1 is, however,

especially difficult for hardware due to tight dependencies. For

example, AES-CBC requires processing 33 packets at a time

in our implementation, taking only 128b from a single packet

once every 33 cycles. GCM latency numbers are significantly

better for FPGA since a single packet can be processed with

no dependencies and thus can be perfectly pipelined.

The software performance numbers are Intel’s very best

numbers that do not account for the disturbance to the

core, such as effects on the cache if encryption/decryption is

blocked, which is often the case. Thus, the real-world benefits

of offloading crypto to the FPGA are greater than the numbers

presented above.

V. REMOTE ACCELERATION

In the previous section, we showed that the Configurable

Cloud acceleration architecture could support local functions,

both for Bing web search ranking acceleration and accelerating

networking/infrastructure functions, such as encryption of net-

work flows. However, to treat the acceleration hardware as a

global resource and to deploy services that consume more than

one FPGA (e.g. more aggressive web search ranking, large-

scale machine learning, and bioinformatics), communication

among FPGAs is crucial. Other systems provide explicit

connectivity through secondary networks or PCIe switches to

allow multi-FPGA solutions. Either solution, however, limits

the scale of connectivity. By having FPGAs communicate

directly through the datacenter Ethernet infrastructure, large

scale and low latency are both achieved. However, these

communication channels have several requirements:

• They cannot go through software protocol stacks on the

CPU due to their long latencies.
• They must be resilient to failures and dropped packets, but

should drop packets rarely.
• They should not consume significant FPGA resources.

The rest of this section describes the FPGA implementation

that supports cross-datacenter, inter-FPGA communication and

meets the above requirements. There are two major functions

that must be implemented on the FPGA: the inter-FPGA com-

munication engine and the intra-FPGA router that coordinates

the various flows of traffic on the FPGA among the network,

PCIe, DRAM, and the application roles. We describe each

below.

A. Lightweight Transport Layer

We call the inter-FPGA network protocol LTL, for

Lightweight Transport Layer. This protocol, like previous

work [7], uses UDP for frame encapsulation and IP for

routing packets across the datacenter network. Low-latency

communication demands infrequent packet drops and infre-

quent packet reorders. By using “lossless” traffic classes

provided in datacenter switches and provisioned for traffic like

RDMA and FCoE, we avoid most packet drops and reorders.

Separating out such traffic to their own classes also protects

the datacenter’s baseline TCP traffic. Since the FPGAs are

so tightly coupled to the network, they can react quickly and

efficiently to congestion notification and back off when needed

to reduce packets dropped from incast patterns.

Figure 9 gives a block diagram of the LTL protocol engine

used to support the inter-FPGA network protocol. At the

endpoints, the LTL protocol engine uses an ordered, reliable

connection-based interface with statically allocated, persistent

connections, realized using send and receive connection tables.

The static allocation and persistence (until they are deallo-

cated, of course) reduces latency for inter-FPGA and inter-

service messaging, since once established they can communi-

cate with low latency. Reliable messaging also reduces pro-

tocol latency. Although datacenter networks are already fairly

reliable, LTL provides a strong reliability guarantee via an

ACK/NACK based retransmission scheme. Outgoing packets

are buffered and tracked in an unacknowledged frame queue

until their receipt is acknowledged by the receiver (see Ack

Generation and Ack Receiver in Figure 9). Timeouts trigger

retransmission of unACKed packets. In some cases, such as

when packet reordering is detected, NACKs are used to request

timely retransmission of particular packets without waiting

for a timeout. Timeouts can also be used to identify failing

nodes quickly, if ultra-fast reprovisioning of a replacement is

critical to the higher-level service. The exact timeout value is

configurable, and is currently set to 50 μsec.

Datacenter networks handle multiple traffic classes and

protocols, some of which expect near-lossless behavior. FP-

GAs routing traffic between the server’s NIC and TOR, as

a bump-in-the-wire, must not interfere with the expected

behavior of these various traffic classes. To that end, the LTL

Protocol Engine shown in Figure 4 allows roles to send and

receive packets from the network without affecting–and while

supporting–existing datacenter protocols.

To achieve both requirements, the tap supports per-flow

congestion management, traffic class based flow control, and

bandwidth limiting via random early drops. It also performs

basic packet classification and buffering to map packets to

classes. Our LTL implementation is capable of generating

and responding to Priority Flow Control [8] frames to pause

traffic on lossless traffic classes. LTL also implements the

DC-QCN[9] end-to-end congestion control scheme. In com-

bination, these features allow the FPGA to safely insert and

remove packets from the network without disrupting existing

flows and without host-side support.

We measured the end-to-end round-trip latency to go from

one FPGA to another, where both FPGAs are attached to

the same TOR to be 2.88 μs. This delay is comparable to

the average latencies in our Catapult v1 system [4], where

nearest neighbor (1-hop) communication had a round-trip

latency of approximately 1 μs. However, worst-case round-trip
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communication in the torus requires 7 μsec, slower than LTL.

These latencies are also comparable to RDMA read latencies

that we measured on the same types of systems. A complete

evaluation follows in section V-C.

B. Elastic Router
The Elastic Router is an on-chip, input-buffered crossbar

switch designed to support efficient communication between

multiple endpoints on an FPGA across multiple virtual chan-

nels (VCs). This section describes the architectural and mi-

croarchitectural specifications of ER, its design rationales, and

how it integrates with other components.
The Elastic Router was developed to support intra-FPGA

communication between Roles on the same FPGA and inter-

FPGA communication between Roles running on other FPGAs

through the Lightweight Transport Layer. In an example

single-role deployment, the ER is instantiated with 4 ports: (1)

PCIe DMA, (2) Role, (3) DRAM, and (4) Remote (to LTL).

The design can be fully parameterized in the number of ports,

virtual channels, flit and phit sizes, and buffer capacities.

Any endpoint can send a message through the ER to any

other port including itself as U-turns are supported. In addition,

multiple ERs can be composed to form a larger on-chip

network topology, e.g., a ring or a 2-D mesh.

The ER supports multiple virtual channels, virtualizing the

physical links between input and output ports. The ER employs

credit-based flow control, one credit per flit, and is an input-

buffered switch. Unlike a conventional router that allocates a

static number of flits per VC, the ER supports an elastic policy



that allows a pool of credits to be shared among multiple

VCs, which is effective in reducing the aggregate flit buffering

requirements.

The LTL and ER blocks are crucial for allowing FPGAs

to (1) be organized into multi-FPGA services, and (2) to be

remotely managed for use as a remote accelerator when not

in use by their host. The area consumed is 7% for LTL and

2% for ER (Figure 5.) While not insubstantial, services using

only their single local FPGA can choose to deploy a shell

version without the LTL block. Services needing a multi-

FPGA accelerator or services not using their local FPGA (to

make it available for global use) should deploy shell versions

with the LTL block.

With this communication protocol, it is now possible to

manage the datacenter’s accelerator resources as a global pool.

The next sections provide an overview of LTL performance,

describe an example service running remotely, and give a brief

overview of how hardware services are managed.

C. LTL Communication Evaluation

Our datacenter network is organized into three tiers. At

the bottom tier (L0), each top-of-rack (TOR) switch connects

directly to 24 hosts. The next tier of switches (L1) form

pods of 960 machines. The final layer (L2) connects multiple

pods together that can connect more than a quarter million of

machines. Each layer of the hierarchy introduces more over-

subscription such that the node-to-node bandwidth is greatest

between nodes that share a L0 switch and least between pairs

connected via L2.

Figure 10 shows LTL round-trip latency results for FPGAs

connected through the different datacenter network tiers de-

scribed above, namely L0, L1, and L2. For each tier, lines

represent average latency while the shaded areas capture the

range of latencies observed up to the 99.9th percentile. Note

that the x-axis is logarithmic. Results were obtained through

cycle-level measurements across multiple sender-receiver pairs

and capture idle LTL round-trip latency from the moment the

header of a packet is generated in LTL until the corresponding

ACK for that packet is received in LTL. For each tier we also

include sample latency distributions from individual runs. As a

point of comparison, we also show results from our previously

published 6x8 torus network [4] that is, however, limited to

48 FPGAs. Note that even though we generated LTL traffic at

a very low rate to obtain representative idle latencies, L1 and

L2 results are inevitably affected by other datacenter traffic

that is potentially flowing through the same switches.

Average round-trip latency for FPGAs on the same TOR

(L0) is 2.88 μs. L0 distributions were consistently very tight

across all runs with the 99.9th percentile at 2.9 μs. L1 average

latency is 7.72 μs with a 99.9th percentile latency of 8.24 μs

indicating a tight distribution for the majority of L1 traffic.

However, in this case there is also a small tail of outliers—

possibly packets that got stuck behind other traffic going

through the same L1 switch—that encounter up to roughly

half a microsecond of additional latency. L2 average latency

is 18.71 μs with a 99.9th percentile of 22.38 μs. Even though

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5

La
te

nc
y 

(n
or

m
al

ize
d 

to
 9

9.
9t

h 
pe

rc
en

til
e 

ta
rg

et
)

Throughput (normalized)

Software
Local FPGA
Remote FPGA

Fig. 11. Latencies of software ranking, locally accelerated ranking, and
remotely accelerated ranking. All data are normalized to software 99.9th
percentile latency target.

L2 latencies and distributions can vary significantly, as is

highlighted by the two example L2 histograms, it is worth

noting that L2 latency never exceeded 23.5 μs in any of our

experiments. The higher L2 latency variability and noise does

not come as a surprise as L2 switches can connect up to

hundreds of thousands of hosts. In addition to oversubscription

effects, which can become much more pronounced at this

level, L2 latencies can be affected by several other factors

that range from physical distance and cabling to transient

background traffic from other workloads and even L2 switch

internal implementation details, such as multi-pathing and

ASIC organization.

Compared to LTL, our previous 6x8 torus, which employs

a separate physical inter-FPGA network, offers comparable

round-trip latencies at low FPGA counts. However, commu-

nication is strictly limited to groups of 48 FPGAs and the

separate dedicated inter-FPGA network can be expensive and

complex to cable and maintain. Similarly, failure handling

in the torus can be quite challenging and impact latency as

packets need to be dynamically rerouted around a faulty FPGA

at the cost of extra network hops and latency. LTL on the other

hand shares the existing datacenter networking infrastructure

allowing access to hundreds of thousands of hosts/FPGAs in

a fixed number of hops. Failure handling also becomes much

simpler in this case as there is an abundance of spare accessible

nodes/FPGAs.

D. Remote Acceleration Evaluation

To study the end-to-end impact of accelerating production-

level applications using remote FPGAs, we evaluate the search

ranking accelerator from Section III running remotely over the

network via LTL. Figure 11 shows the throughput of a single

accelerator when accessed remotely compared to the software

and locally attached accelerator. The data are all normalized

to the 99.9th percentile latency target of ranking running in

software mode. The data show that over a range of throughput

targets, the latency overhead of remote accesses is minimal.
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The impact on the host server while serving remote requests

is minimal, because the FPGA directly handles the network

and processing load. The host sees no increase in CPU or

memory utilization, and only a small increase in overall power

draw. Thus, FPGA-enabled servers can safely donate their

FPGA to the global pool of hardware resources with minimal

impact on software performance. One concern when sharing

the FPGA with remote services is that network bandwidth

can be reduced by the remote service. To prevent issues, LTL

implements bandwidth limiting to prevent the FPGA from

exceeding a configurable bandwidth limit.

E. Oversubscription Evaluation

One key motivation behind enabling remote hardware ser-

vices is that the resource requirements for the hardware fabric

rarely map 1:1 with the resource needs for the software fabric.

Some services will need more FPGAs than the number of

servers. Other services will have unused FPGA resources

which can be made available to other services. Because the

accelerators communicate directly rather than through the

CPU, a service borrowing an FPGA can do so with minimal

impact to the performance of the host server.

To evaluate the impact of remote service oversubscription,

we deployed a small pool of latency-sensitive Deep Neural

Network (DNN) accelerators shared by multiple software

clients in a production datacenter. To stress the system, each

software client sends synthetic traffic to the DNN pool at a rate

several times higher than the expected throughput per client

in deployment. We increased the ratio of software clients to

accelerators (by removing FPGAs from the pool) to measure

the impact on latency due to oversubscription.

Figure 12 shows the average, 95th and 99th percentile re-

quest latencies as the ratio of clients to FPGAs (oversubscrip-

tion) increases. These figures plot end-to-end request latencies,

measuring the time between when a request is enqueued to

the work queue and when its response is received from the

accelerator. To expose the latencies more clearly, these results

do not include end-to-end service and software latencies as the

ranking data in Figure 11 do. In the no oversubscription (1 to
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1) case, remotely accessing the service adds 1% additional

latency to each request on average, 4.7% additional latency

at the 95th percentile, and 32% at the 99th percentile. As

expected, contention and queuing delay increases as oversub-

scription increases. Eventually, the FPGA reaches its peak

throughput and saturates, causing latencies to spike due to

rapidly increasing queue depths. In this particular case study,

each individual FPGA has sufficient throughput to sustain 2-

2.5 software clients (operating at very high rates several times

the expected throughput in production) before latencies begin

to spike prohibitively. This shows that conservatively half to

two-thirds of the FPGAs can be freed up for other functions.

F. Hardware-as-a-Service Model

While a complete overview of the management of our

hardware fabric is beyond the scope of this paper, we pro-

vide a short overview of the Hardware-as-a-Service (HaaS)

platform here. HaaS manages FPGAs in a manner similar

to Yarn [10] and other job schedulers. Figure 13 shows a

few services running under the HaaS model. A logically

centralized Resource Manager (RM) tracks FPGA resources

throughout the datacenter. The RM provides simple APIs for

higher-level Service Managers (SM) to easily manage FPGA-

based hardware Components through a lease-based model.

Each Component is an instance of a hardware service made

up of one or more FPGAs and a set of constraints (locality,

bandwidth, etc.). SMs manage service-level tasks such as load

balancing, inter-component connectivity, and failure handling

by requesting and releasing Component leases through RM.

A SM provides pointers to the hardware service to one or

more end users to take advantage of the hardware acceleration.

An FPGA Manager (FM) runs on each node to provide

configuration and status monitoring for the system.

VI. RELATED WORK

There are many possible options for incorporating accelera-

tors into large-scale systems, including the type of accelerator,

how it interfaces with the CPUs, and how the accelerators can



communicate with one another. Below we describe a taxonomy

that uses those three categories.

1) CPU-Accelerator memory integration. The closer the inte-

gration with the CPU, the finer-grain the problem that can be

beneficially offloaded to the accelerator. Possibilities include:

• (C) - Coherent accelerators, where data movement is han-

dled by a memory coherence protocol.
• (I) - I/O level, where data movement is done via DMA

transfers, and
• (N) - Network level, where data movement is done via

Ethernet (or other) packets.
2) Accelerator connectivity scale. The scale at which accel-

erators can directly communicate without CPU intervention.

Possibilities include:

• (S) Single server / single appliance (i.e. CPU management is

required to communicate with accelerators on other servers)
• (R) Rack level
• (D) Datacenter scale

3) Accelerator type. Possibilities include:

• (F) FPGAs
• (G) GPUs
• (A) ASICs

In this section we describe a subset of previously proposed

datacenter or server accelerators, organized by this taxonomy,

with an emphasis on FPGA-based accelerators. While most

designs fit into one category, our proposed design could fit

into two. Our accelerator could fit as an ISF design when

doing local acceleration since there are no additional FPGAs

(and hence no inter-FPGA connectivity) within the same

server. However, the design is an NDF design when doing

network acceleration since connected FPGAs (including the

local one) can all be accessed via Ethernet packets. LTL ties

together local acceleration and network acceleration scenarios,

so altogether we view it as an NDF architecture. All of the

systems that we survey below fall into other categories.

NSF: Network/Single/FPGA: The announced Mellanox

hybrid NIC [5] enables one to build a bump-in-the-wire archi-

tecture where the FPGA is in-line with the NIC, although there

has not been a published large-scale deployment of the Mel-

lanox hardware. Other FPGA boards, such as NetFPGA [11],

high-speed trading appliances, and network appliances are

specifically designed to augment or replace standard network

interface cards for specific applications. While these can each

be considered bump-in-the wire architectures, there is little to

no communication between or aggregation of accelerators. As

such, they are limited to problem sizes that fit on within a

single accelerator or appliance.

In addition to commercial network acceleration designs,

there has been considerable research into FPGA-based bump-

in-the-wire architectures. For example, FPGA-accelerated

Memcached designs lend themselves naturally to directly

attaching FPGA to the network [12], [13], [14], [15] and

programming the FPGA to handle requests some directly from

the network without software interference.

IRF: IO/Rack/FPGA: Catapult v1 is an IRF system,

where FPGAs are connected by a dedicated network at rack

scale [4] accessible through PCIe.

The scale of that communication is limited to a single

rack, which similarly limits the scope of acceleration services

that can be supported. In addition, these 2D torus network

topologies suffer from resiliency challenges since the failure

of one node affects neighboring nodes.

The newer version of Novo-G, called Novo-G# [16] also

falls into this category with a three-dimensional 4x4x4 torus.

Another such system is the Cray XD-1 [17], which places up to

six FPGAs in a single chassis. These FPGAs attach directly to

the dedicated rack-scale RapidArray network, which is distinct

from the Ethernet network that connects multiple racks of up

to 12 chassis. Another example is Maxwell [18], which also

provides rack-scale direct FPGA-to-FPGA communication.

ISF: IO/Single/FPGA: The Baidu SDA [3], Novo-

G [19], Maxeler MPC [20], Convey HC-2 [21], BeeCube

BEE4 [22], and SRC MAPStation [23] are all large or multi-

FPGA appliances, many with high connectivity between FP-

GAs within the appliance, but the CPU manages communica-

tion beyond a single box.

ISFG: IO/Zero/FPGA+GPU: The QP [24] system is

designed to handle larger HPC-style problems with a large

number of FPGAs and GPUs. However, all communication

between accelerators has to be managed by the CPU, which

increases the latency of inter-FPGA communication and limits

the scale of problems that can be profitably accelerated by

multiple FPGAs.

CSF: Coherent/Single/FPGA: Pulling the FPGA into

the coherence domain of the CPU improves the granularity

of communication between the accelerator and CPU, and

can increase the scope of applications that can be profitably

offloaded to the accelerator. One of the most prominent

examples is IBM, who is shipping Power8 [25] systems with

a coherent accelerator interface called CAPI [26]. Researchers

have demonstrated several applications on CAPI such as

bioinformatics [27] and large matrix processing [28].

Intel’s hybrid CPU/FPGA [29] is another example. FPGA

boards that included Intel FSB [30], QPI [31], or coherent

HyperTransport [32], [33] are also included. While coherence

helps within a limited scope, it does not scale across servers,

and hence does not significantly differ on a datacenter scale

from I/O integrated accelerators, as the CPU manages all

FPGA-to-FPGA communication.

ISG: IO/Single/GPU: GPUs are to-date the most suc-

cessful architecture for accelerating CPU-based systems. Mul-

tiple GPUs are commonly used for large problems, and

the addition of technologies like NVLink [34] have enabled

multiple GPUs to talk directly. However, the scale of NVLink

is still limited to a single box, and there is no integration

of GPUs with the network, so the scale of GPU acceleration

achievable without CPU intervention is still relatively small.

Some compelling recent work looked at using GPUs to offer

DNNs as a service in the datacenter [35], with a subset of the

datacenter’s servers containing GPUs, and in a disaggregated

design, servers with low-end CPUs feeding many GPUs in a

single box. In all configurations, the GPU was accessed by the



CPU over PCIe, and all inter-GPU communication occurred

within a single server.

ISA: IO/Single/ASIC: ASICs, whether in the form of

stand-alone accelerators or as custom blocks integrated into

conventional CPUs, are another approach that has worked well

in client systems and for some server infrastructure functions.

However, the general-purpose nature and rapid pace of change

of applications makes single-function ASICs challenging to

deploy at scale. Counterexamples may be crypto or compres-

sion blocks; however, the economics at scale of doing crypto

and compression in soft vs. hard logic are not yet clear. In

the long term, we expect that some acceleration functions–

particularly for system offload functions–will first be imple-

mented on FPGAs, and then after long-term stability of that

function has been demonstrated, the function could be moved

into hardened logic. Machine learning is one application that

is sufficiently important to justify as a domain-specific ASIC

at scale. One such example is the DianNao family of deep

learning accelerators [36].

Other taxonomies: Fahmy and Vipin create a service

taxonomy based on how FPGAs are exposed to external

customers from a datacenter environment [37]. The remote

acceleration model that we propose in this paper focuses not

on whom the accelerators are exposed to, but the architecture,

deployment, and performance of services on a global pool

of accelerators. The remote acceleration model can support

all three models proposed by Fahmy and Vipin, including

Vendor Acceleration, Accelerators as a Service, and Fabric

as a Service.

Finally, while other promising programmable accelerator

architectures exist, such as MPPAs and CGRAs, none have

reached the level of commercial viability and availability to

be ready for production datacenters.

VII. CONCLUSIONS

The slowing of Moore’s Law, coupled with the massive and

growing scale of datacenter infrastructure, makes specialized

accelerators extremely important. The most important problem

to solve is in the design of scalable accelerators, which are

economically viable across a large infrastructure, as opposed to

accelerators that enhance a specialized small or medium-scale

deployment of machines. What has made research in this space

challenging is the large number of possible design options,

spanning the type of accelerator (FPGAs, GPUs, ASICs), their

location in the infrastructure (coherent, PCIe space, or network

path), and their scale (how many can communicate directly

with one another).

This paper described Configurable Clouds, a datacenter-

scale acceleration architecture, based on FPGAs, that is both

scalable and flexible. By putting in FPGA cards both in I/O

space as well as between a server’s NIC and the local switch,

the FPGA can serve as both a network accelerator and local

compute accelerator. By enabling the FPGA to talk directly

to the network switch, each FPGA can communicate directly

with every other FPGA in the datacenter, over the network,

without any CPU software. This flexibility enables ganging

together groups of FPGAs into service pools, a concept we

call Hardware as a Service (HaaS). We demonstrate a reliable

communication protocol for inter-FPGA communication that

achieves comparable latency to prior state of the art, while

scaling to hundreds of thousands of nodes.

The architecture was demonstrated successfully across mul-

tiple datacenter scenarios: use as a local offload engine (for

accelerating Bing web search), a local network acceleration

engine (for network crypto), and as a remote acceleration

service for web search. With the Configurable Clouds design,

reconfigurable logic becomes a first-class resource in the data-

center, and over time may even be running more computational

work than the datacenter’s CPUs. There will still, of course,

be a role for GPUs and ASICs, which can augment a subset of

servers with capabilities to accelerate specific workloads. This

reconfigurable acceleration plane, however, will be pervasive,

offering large-scale gains in capabilities and enabling rapid

evolution of datacenter protocols. In addition to being a

compute accelerator, we anticipate that it will drive evolution

of the datacenter architecture in the near future, including

network protocols, storage stacks, and physical organization

of components.

The Catapult v2 architecture has already been deployed

at hyperscale and is how most new Microsoft data center

servers are configured. The FPGAs accelerate both compute

workloads, such as Bing web search ranking, and Azure

infrastructure workloads, such as software-defined networks

and network crypto.
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