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Abstract

As processor issue widths increase, high-bandwidth parallel fetches across multiple branches will be necessary to
prevent Flynn’s bottleneck. In this paper, we show that by combining hyperblocks and exit predictors, high instruction
bandwidths can be achieved in a streamlined, simple design that requires only a third of the predictions of a conventional
predictor. Exit predictors identify the first branch in a hyperblock that will be taken with a single prediction, implicitly
predicting all previous branches in the hyperblock as not taken. Hyperblock-based exit predictors reduce the number
of predictions by 72%, while maintaining an average prediction accuracy of 94.7% (compared to 95.9% for the best
conventional predictor we measured, a PAs-gshare predictor). With this accuracy, a 250Kbit exit predictor achieves a
mean 3.9 misses per thousand instructions (MPKI), fetching 91 useful straight-line instructions per prediction, on average.
Since so many instructions are fetched with a single simple prediction, these predictors can be used for high frequencies,
run-ahead prediction, initial prediction in multi-stage schemes, instruction prefetching, or power reduction. We conclude
by showing that hyperblock exit predictors achieve higher accuracy than other high-bandwidth predictors at the same fetch
bandwidth, and that these predictors can be used to achieve high ILP on advanced architectures such as Grid Processors.

1 Introduction

Accurate branch prediction is essential for high performance in current-generation machines [33]. As clock rate

improvements begin to reach hard limits [34, 10], the resulting drive for improvements in instruction-level par-

allelism (ILP) will demand more from branch prediction technology. Moreover, to achieve significant increases

in ILP, large improvements in front-end bandwidth in general will be needed. Conventional front ends will be

challenged to provide that bandwidth in future clustered solutions, since they require that all branches be routed
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through a centralized predictor. In this paper, we propose a series of schemes that couples aggressive predi-

cation to a range of new exit predictors, permitting large sequential regions of code, which may be physically

distributed, to be predicted with a single predictor access.

Instruction predication converts control dependences to data dependences by merging multiple control flows

into a single control flow, guarding instructions in the merged flows with predicates. Predication has been shown

to improve branch prediction characteristics by removing hard-to-predict branches from the static schedule. A

hyperblock is a region of predicated code that has a single entry point and no internal control flow, but potentially

many branches that can exit the hyperblock.

Exit predictors were first proposed by Pnevmatikatos et al. [22] in the context of MultiScalar processors, and

subsequently refined by Jacobson et al. [12]. Exit predictors perform only one prediction for all branches in a

region of code (such as a MultiScalar task), predicting the first branch that will leave that region. By predicting

only the branch that will exit a hyperblock, our exit predictor makes only one prediction per hyperblock, which

may contain from tens to hundreds of instructions, with potentially tens of exit branches. Such a scheme, coupled

with a BTB, can reduce the number of explicit predictions that need to be made by up to an order of magnitude.

Such a scheme has the following compelling characteristics:

� Ultra-high instruction fetch bandwidth: For each predicted branch, more sequential instructions can be

fetched before taking action on the next predicted branch (an average of 91).

� Competitive prediction accuracy: Since fewer branches are predicted, there are fewer conflicts in a par-

ticular size predictor, as only one of the branches in each hyperblock actually gets predicted; all others

are implicitly predicted not taken. These exit predictors show accuracies superior to previously proposed

predictors of equivalent instruction bandwidths.

� Capability for distribution: Since the exit predictor only needs to predict the sequence number of a branch

in a hyperblock, it does not need to see the branch itself to make the subsequent prediction. Thus, in-
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struction fetch can be heavily distributed in a clustered architecture; a necessary capability for high-

performance future architectures such as highly clustered VLIW processors or Grid Processors.

� A simple, streamlined design: Since so many instructions can be fetched with a single prediction, the time

between required prediction points is increased. The front end can exploit this aspect by (1) eliminating

the need for complex overriding predictors, such as in EV6 [16] and EV8 [28], (2) predicting multiple

branches ahead, which suffer multi-porting speed penalties [29, 25], (3) employing a slower, but more

accurate, predictor [15], or (4) reducing the number of predictions to save power.

In this paper, we show that hyperblock-based exit predictors reduce the number of predictions made by 72%.

We sustain an average prediction accuracy of 94.7%. With this accuracy, a 250Kb exit predictor achieves a

mean 3.9 misses per thousand instructions (MPKI), fetching 91 useful straight-line instructions per prediction,

on average. We show that our exit predictor is superior to other multiple-branch predictors in terms of accuracy

at a given fetch bandwidth. We illustrate how exit predictors could be used in a VLIW processor front-end.

Furthermore, we show that tuned exit predictors can enable high IPCs on block-atomic architectures such as

Grid Processors.

We describe hyperblock construction issues, previous work on predication, and related work on multiple

branch predictors in Section 2. Section 3 describes exit predictors that we propose, both traditional ones and

perceptron-based. In section 4, we present a design space evaluation of exit predictors and also compare the

accuracy and bandwidth of exit predictors to some of the best branch predictors proposed earlier. Section 5

demonstrates how exit predictors could be used in two different architectures: a VLIW processor, and a Grid

processor. Finally, we draw conclusions in Section 6.
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2 Background and Related Work

Predication was first implemented as vector masks in the Cray-1 [27]. The predication of individual instructions

was first proposed by Allen et al. in 1983 [1], extended by Hsu and Davidson in 1986 [11], and first implemented

in the wide-issue Cydra 5 [24]. However, it was Mahlke et al. [19] who first developed the modern notion of a

hyperblock, which is the static abstraction that we use in this paper.

2.1 Hyperblock Construction

A hyperblock is a sequence of instructions, some predicated, that has no internal transfers of control. Hyper-

blocks have a single point of entry and may have multiple points of exit. Any exit through a branch instruction

(including predicated procedure calls) is called an early exit. If none of the early exits in a hyperblock is taken,

the control flow through the hyperblock is completely sequential. All early exits lead to the beginning of a new

hyperblock. A hyperblock can be constructed by if-conversion of control flow paths. Tail duplication and loop

peeling are further transformations applied to the hyperblock.

Large hyperblocks provide several benefits. First, by predicating hard-to-predict branches, predictability can

be improved by reducing pressure on the branch predictor. Second, if early exits are rare, the front end can

fetch across fewer taken branches, simplifying the design of a high-frequency high-bandwidth fetch unit. Third,

large hyperblocks present improved scheduling opportunities for the compiler. The two primary disadvantages

of large hyperblocks are a reduction of effective bandwidth because of the large number of useless instructions,

and an increased pressure on execution resources.

2.2 Interactions of Predication and Prediction

Much previous work has examined these hyperblock construction trade-offs in the context of VLIW proces-

sors. Most recently, Knies et al. examine the benefits of predication for predictability and performance in an

IA-64 implementation [5]. Knies et al. show that while if-conversion can potentially remove up to 29% of mis-
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predictions on an Itanium processor (for SPECint 2000), predication-improved prediction is unlikely to cause

significant performance gains. Our work differs in that our exit predictor/hyperblock combination has many

fewer predictions to make.

In the mid-1990’s, a series of papers examined the interaction of predication and branch prediction [18, 36, 4],

but none of these considered branch predictors that exploited the specific control behavior of the hyperblock to

improve front-end design. Mahlke et al. showed that if-conversion could reduce 27% of branches and 56% of

mispredictions across their benchmark suite [18]. Tyson compared different predictor and predication schemes,

showing up to 30% misprediction rate reductions for a number of predictors [36]. Chang et al. also studied the

interactions between predication and speculation, showing that predicating hard-to-predict branches only can

improve prediction accuracy for some benchmarks [4].

Other related work includes Simon et al., which incorporates a deterministic order of predicates into branch

predictor histories to improve prediction rates [32]. Havanki et al. studied the formation of non-linear regions

called Treegions that could take advantage of predication [9]. August et al. studied the interaction between

predication and other speculation [2]. Finally, Pnevmatikatos and Sohi [23] examined guarded (predicated)

instructions in a dynamically scheduled superscalar microarchitecture concluding that full guarding can reduce

mispredictions per thousand instructions to just under 4, but with a significant overhead of 33% more instructions

fetched. Our work, different from the above, exploits the structure of a hyperblock to provide a long sequence

of straight-line instructions with a single prediction.

2.3 Multiple Branch Predictors

Several predictors in the past have been designed to provide more than one basic block of instructions. Some of

the schemes achieve this goal by predicting multiple branches in a single cycle (multi-branch predictors). Others

make a single prediction for a few basic blocks of instructions (region predictors).

Yeh et al. [38], Seznec et al. [29] and Conte et al. [6] studied multi-branch predictors, structures that can
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fetch branch targets for multiple branches simultaneously. These predictors typically predict 2 or 3 targets at a

time. The front-end design becomes more complex in these schemes compared to that in an exit predictor, since

multiple targets have to be coalesced and sorted to fetch the correct instruction stream. Our work differs in that

we predict only one target for a large, predicated region, and so we need to fetch only a sequential stream of

instructions. In [28] and [37], multiple branches are predicted by maintaining as many saturating counters as

the fetch bandwidth required, in each entry of the prediction table. We believe that hyperblock-based predictors

do not require such a scheme since there are very few branches in the predicated code.

Region predictors attempt to predict, for a region of code, which branch will exit the region first. These

schemes, including those proposed in this paper, attempt to provide a higher fetch bandwidth with fewer pre-

dictions. These predictors were first proposed for MultiScalar processors [22] and were called Control Flow

Prediction Buffers (CFPBs). CFPBs typically limit the number of region exits to two, and CFPBs would predict

one of the targets as the region’s successor. Higher instruction bandwidth was observed, but prediction accuracies

were expected to decline as the number of exits from a region increase. The authors also mention that coupling

hyperblocks with control-flow prediction has potential to “enhance dynamic ILP”. In another scheme [7], the

authors predict one out of four possible paths in a tree-like subgraph of the control flow graph. The compiler has

to construct such trees, and this becomes complicated for higher tree depths.

Subsequent work by Jacobson et al. describes more aggressive region-based predictors [12] that could predict

up to four exits per region. Jacobson et al. proposed many of the techniques that we apply to hyperblocks in this

paper, including local exit predictors, global exit predictors, path-based exit predictors, folding of exit histories,

and hysteresis bits in the pattern history tables. They concluded that path-based task predictors were more

effective than exit-based task predictors. The results in this paper indicate that when hyperblocks are used with

exit predictors, the opposite is true: exit-based prediction outperforms path-based prediction. Another difference

is that since the exit predictors in our work do not predict the target until the exit is computed, they require no

block headers. The absence of block headers empowers hyperblock exit predictors to handle a much larger
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number of exits, limited only by hardware budget of the predictor.

Finally, we note that the goal of providing many straight-line instructions with a single prediction is similar to

that of trace caches in dynamic superscalar environments [26]. Prediction of exits for traces is more challenging

than for hyperblocks, since traces can change and thus use stale pattern history. Trace predictors [13] predict

the address of the next trace directly without predicting the exit, hence they need to store the addresses in the

predictor. Hyperblock exit predictors store only the exit numbers (which results in fewer storage bits) in the

predictor and use a branch target buffer to generate the target prediction.

3 Exit Predictor Design

In this section we describe hyperblock-based exit predictors in detail. We design exit predictors based on both

conventional schemes and neural techniques. Exit predictors based on conventional techniques have a simple

and scalable design, and can make fast predictions, with accuracies close to some of the best traditional branch

predictors. The perceptron-based exit predictor requires more time to make a single prediction, but provides

higher accuracy than other high-bandwidth exit predictors.

3.1 Exit Predictors for Hyperblocks

Figure 1a shows a diagram of an exit predictor, a global predictor based on conventional branch predictor designs

(the two-level approach proposed by Yeh and Patt [39]). The predictor produces a binary value that corresponds

to the first branch in the hyperblock that will be taken. The first level of the table (the history register) differs

from a traditional global history shift register by maintaining a history of exit numbers (the exit-based history)

for each hyperblock, instead of per-branch taken/not-taken bits. Figure 1b shows an example hyperblock with

five exits, each labeled with a three-bit binary identifier. Low-order bits of the hyperblock start address are

XOR-ed with the exit history register, as shown in Figure 1a, which then index the exit history table.

The exit history table maintains, for a given pattern, the last exit number that was taken from a hyperblock.
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e4 e3 e2 e1 e0

010101011001000

Exit-based global 

history register

Low-order hyperblock

address bits

010110011101101

+

add R1, R2, R3

beqz R1, L1  000

sub R2, R3, R4

bneqz R2, L2  001

preqz p1, R1

add R4, R1, R1 (p1)

call L3 (p1)  010

add R4, R1, R2

jmp L4 (p1)  011

beqz L1   100

001110 1
110001 0
000001 0
110011 1
001110 0
000011 0
000001 1
001110 0
001110 1
000101 1
000001 1
001110 0
010000 1
000111 0
001001 1
000001 1
000000 0

Predicted exit

Hysteresis bit

Exit history table Hyperblock at address 0xD0ED

enewe3 e2 e1 e0

011010101011001

Updated global exit history

shift register

(a) 2-level global exit predictor (b) Sample hyperblock and updated register

Figure 1: Exit predictor example

In our example, the exit history table also maintains one bit of hysteresis to prevent replacement of a frequently

taken exit with an infrequently taken one. The number of branches in a block that can be predicted is limited by

the number of bits provided in the exit history table (6 bits in our example). By contrast, the exit history register

uses only a few lower order bits of the exit.

Because the global history register can be longer than log � (size of history table), we split the

history into several parts and XOR them to produce the final index into the history table; this is called folding

of the history [12]. Before performing the XOR, each of these parts is shifted left by a few bits, if necessary, to

prevent exits from lining up, resulting in cancellations that cause heavy conflicts in the exit history table.

After the exit is predicted, we use both the predicted exit and the branch address to determine the target.

Lower-order hyperblock address bits are concatenated with lower order bits from the predicted exit and used as

an index to a branch target buffer, the BTB (not shown in the figure). The BTB gives the target address of the

branch i.e., the address of the next hyperblock.

Updates to the predictor are handled by replacing the exit in the history table entry (taking hysteresis into

account) with the actual taken exit if the prediction was incorrect. The predictors shift in a few lower order bits

of the exit into the first level exit history register. In the code example shown, the predicted exit is 3 (011), which
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is shifted onto the exit history shift register, as shown in Figure 1b.

This predictor organization has the following characteristics:

� A prediction that the �
���

branch will be taken implies that branches
�

through ���
�

will be not taken.

Thus multiple implicit predictions are made with a single prediction, putting less pressure on the predictor

state than a traditional per-branch predictor.

� Since the prediction generates the target of the hyperblock, the subsequent prediction can be started as

soon as the previous prediction is complete and the history register is speculatively updated. Predictions

can thus run ahead of the instruction fetch, similar to the Fetch Target Buffer [25]. Only one prediction is

made per hyperblock, which facilitates high-bandwidth fetching for wide-issue machines.

� A hyperblock exit predictor requires no structures beyond what is needed by a conventional predictor,

and it requires no ISA changes (assuming that predication is supported). The only restrictions are that

(1) hyperblocks do not have more exits than are supported in the exit history table, and that (2) every

hyperblock ends on a taken branch, for example, a “dummy jump” to the subsequent instruction. The

second restriction allows the predictor to determine the end of the block with no ISA support.

3.2 Hyperblock Exit Predictor Design Space

The design space for the 2-level exit predictors is huge. Parameters include the length of the exits, the length

of the history register, the amount of folding and shifting to get the index into the exit history table, the size

of the first and second level tables, and the amount of hysteresis in the exit history table. As described later,

we also explore tournament-style hybrid predictors that use a choice predictor to select from the result of two

component predictors. We find that tournament predictors are consistently more accurate than individual 2-level

exit predictors. Of course, the design space for tournament predictors is even more complex.

We reduced the search space by exploring some parameters individually while keeping the other parameters
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fixed. For example, the best values for the number of bits in the hysteresis and in the index to the local history

table were determined and fixed. We found these values to be largely independent of the other parameters. We

then used these results to explore other factors, such as the types of predictors and number and sizes of the exits.

Section 4 gives a description of several predictors that we explored and their accuracies.

3.3 A Perceptron-Based Exit Predictor

We evaluate a perceptron exit predictor that uses neural learning [3] to classify patterns of local and global

history as leading to one of several likely exit numbers. Perceptrons have been successfully used to predict

branch directions [15]. The perceptron exit predictor, takes more time to make a single exit prediction, but is

more accurate than the exit predictors previously described.

Perceptrons are vectors of small integer weights. The excitation of a perceptron is the dot-product of the

weights and a vector of bipolar inputs. For the exit predictor, we use a combination of global and local history as

inputs to an ordered set of a few perceptrons, called a multi-perceptron. Each perceptron in a multi-perceptron is

associated with an exit number. To make a prediction, the hyperblock address is used to select a multi-perceptron

from a table. The perceptron excitations are computed, and the exit number corresponding to the perceptron with

the highest excitation is used as the prediction.

To update the predictor, we use the global and local history patterns to adjust the weights of each perceptron

so that the perceptron corresponding to the correct exit number will yield a high excitation on that pattern and

all other exits will yield a low excitation on that pattern. If the correct exit number is not associated with any

perceptron, then it replaces the least-recently-used (LRU) exit number.

The dimensions in the design space for a perceptron exit predictor are global and local history length, num-

ber of bits for the weights, and number of low-order bits of exits to keep in the histories. We organize the

multi-perceptrons as 8 banks of 48 perceptrons each, so that an access to the table of multi-perceptrons reads 8

perceptrons in parallel. The perceptron excitation computation is implemented similarly to a high-speed mul-
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bench amm art bzi com equ gap go gzi hyd ijp m88 mcf mgr par swi tom tur two vor
# skipped (in billions) 3 1 1 6 4 1 0.5 7 1 0.1 1 1 1 1 1 1 1 1 1

# simulated (in billions) 1 1 1 1 1 1 0.1 1 1 0.1 1 1 1 1 1 1 1 1 1
# branches (in millions) — — 71.5 99.5 — 80.7 7.6 67.3 — 3.4 67.7 66.1 — 86.2 — — — 69.5 114.1

Table 1: Number of instructions and branches in benchmark simulations

tiplier, using a Wallace tree parallel adder to find the vector sum [15]. The update to the perceptron weights

is fast [15] and off the critical path for making a prediction, so its delay component is less significant. Using

CACTI 3.0 [31] and [8] we estimate the upper bound for the predictor delay to be 6.5 clock cycles.

Previous neural control-flow predictors are capable only of predicting whether a conditional branch is taken

or not. This perceptron exit predictor generalizes this capability to predict one out of several possible outcomes.

While we explore this capability for exit prediction, we note that this design is the first microarchitectural neural

predictor design that can be applied to other general prediction problems, such as indirect branch prediction and

value prediction.

4 Exit Predictor Evaluation

In this section we evaluate the exit predictors presented previously: exit predictors based on conventional tech-

niques and perceptron exit predictors.

We use the Trimaran research compiler [35] which targets the HPL Play-doh ISA [?]. Trimaran supports

profile-driven optimizations and predication. Our benchmark suite consists of 22 benchmarks: nine drawn from

SPEC95 (compress, go, ijpeg, m88ksim,hydro2d, mgrid, swim, tomcatv, and turb3d), ten from SPEC2000 (bzip2,

gap, gzip, mcf, parser, twolf, and vortex, ammp, art, equake) and three from the Mediabench [17] suite (adpcm,

dct, and mpeg2). We do not present other benchmarks from the SPEC suites because the Trimaran compilations

did not succeed with our configurations. We consider only the 11 SPECINT benchmarks for all the prediction

accuracy results.

In Table 1 we list the details of the program phases we simulated. The first row in the table shows the number
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of instructions we skip before simulating, determined using the length of initialization given by the Sim-Point

tool [30]. The second row shows the number of instructions we actually simulate. We simulated adpcm and dct

to completion, and mpeg to completion after skipping 1B instructions. Because of compilation and simulator

problems, we simulated only 100M instructions for ijpeg and go. Also we were forced to simulate gap and

vortex during their long initialization phases, which require 123.5 and 29 billion instructions, respectively. The

last row of Table 1 shows the number of dynamic branches encountered in the simulation window for each

integer benchmark.

For measuring exit prediction accuracies, we used a custom trace simulator that takes branch addresses and

targets from the Trimaran emulator for the phases we simulated, and compares exits and targets from the traces

with the predictions generated by the simulator.

4.1 Benchmark Characterization

In Table 2, we show the average hyperblock characteristics for each benchmark, and means over both integer

and the complete suite of benchmarks. The hyperblocks were generated with the default Trimaran hyperblock

formation parameters. The static sizes (second column) of the average hyperblock range from 22 instructions

(parser) to 336 instructions (swim). The dynamic sizes shown in column two of the table represent the number

of useful instructions actually executed in each hyperblock, on the average. This number does not include

instructions with false predicates or instructions in a hyperblock after the taken exit. Thus the dynamic sizes

represent the average number of useful instructions that are fetched with each correct exit prediction, since

only one prediction needs to be made per hyperblock. For all benchmarks, the predictor would thus need to

be accessed at most every other cycle on a 16-wide machine, since the average number of useful, straight-line

instructions typically exceeds 16. For many benchmarks the predictor would have ample opportunity to run

ahead. For instance, for ammp, a prediction would need to be made only every 7 cycles, on average, on a

16-wide issue machine.
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Benchmark Static Dynamic Mispredicated # Exits # Exits Predictions
Hyperblock Hyperblock Instructions Skipped Eliminated

adpcm 51.1 30.7 5.0 6.7 2.4 70.6%
ammp 132.1 121.6 6.5 6.4 4.2 80.6%

art 83.3 80.5 2.6 6.3 5.1 83.7%
bzip2 68.3 55.9 3.2 6.4 3.2 76.3%

compress 24.7 21.6 0.5 3.1 1.3 57.3%
dct 188.0 172.2 0.0 2.5 1.3 57.3%

equake 41.9 32.6 0.0 1.9 0.8 45.9%
gap 35.9 27.3 0.7 3.7 1.4 58.4%
go 29.2 23.7 0.9 4.9 1.3 55.8%

gzip 66.8 37.2 11.3 5.3 1.7 62.9%
hydro2d 213.1 201.8 8.0 8.3 6.9 87.4%

ijpeg 80.0 73.3 3.8 3.2 1.7 63.5%
m88ksim 48.2 40.1 3.6 3.8 2.2 69.0%

mcf 39.7 29.3 5.4 2.8 1.1 53.5%
mgrid 180.2 180.1 0.0 1.1 0.0 4.1%

mpeg2 102.5 89.5 8.1 4.3 2.3 70.1%
parser 21.8 16.4 2.1 2.6 0.9 47.6%
swim 336.0 334.6 1.2 6.7 5.7 85.0%

tomcatv 211.2 206.7 3.1 5.4 4.3 81.2%
turb3d 177.0 154.1 0.0 4.2 2.7 72.7%

twolf 61.5 48.9 4.1 4.5 2.7 73.1%
vortex 37.5 30.4 3.6 4.5 3.3 76.7%

MEAN 101.4 91.3 3.3 4.7 2.6 72.1%
MEAN-INT 46.7 36.7 3.5 4.4 1.9 65.6%

Table 2: Hyperblock and exit characteristics of benchmarks

The fourth column shows the average number of mispredicated instructions per block. The fifth column

shows the average number of exits per hyperblock which ranges from 1.1 for mgrid to 8.3 for hydro2d. The

sixth column shows the average number of not-taken branches before the block exit, which is exactly the number

of additional branches implicitly predicted as not taken by each exit prediction. Finally, the seventh column is

derived from the sixth, and shows the fraction of predictor accesses that are eliminated by using an exit predictor

instead of a conventional branch predictor. On average, across the suite, 72% of the predictor accesses of a

conventional predictor are eliminated (66% for integer benchmarks), which also reduces the need for hierarchical

predictors [14], makes a larger, more accurate predictor tractable, and reduces power consumed.

4.2 Design Space Exploration

We evaluated our exit predictor (based on conventional predictor design) over a wide range of design choices.

The three metrics we use in our evaluation are exit accuracy, which counts the fraction of predictions in which
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the exit predictor selects the hyperblock exit correctly, the predictor accuracy, which counts the fraction of all

branches that are correctly predicted, and the predictor efficiency, which measures the number of mispredictions

for each kilo-instructions executed (MPKI). The predictor efficiency directly correlates with performance lost

due to mispredictions; the EV8 designers estimated an approximate 4% performance loss per MPKI.

The primary design choice for the exit predictor is selecting the type of the predictor: global (global level-

1 and global level-2 tables), local (per-block level-1 and global level-2), tournament (local and global with a

choice predictor), or path-based as in [12]. For each of these predictor organizations, other parameters include,

a) length of the encoded exit, b) length of the exit history, and c) folding of history bits. We tuned all predictors

over a wide range of these parameters.

Table 3 shows the mean misprediction rates for several exit predictor designs. We fixed the size of all predic-

tors to be approximately 250 Kbits. This translates to a total of 32K entries in the second level table(s). Each

such entry has a 6-bit exit and one bit of hysteresis.

Most of the columns in table 3 are labeled Xm,n, where X indicates the predictor type: G for global, L for

local, P for path-based, and T for tournament. The encoded exit length in bits is denoted by m and history length

by n. Tournament predictors indicated by T have the same values of m and n for both the components. When the

number of history bits is greater than the number of entries in level-2, we do shifting and folding of the history

as described earlier.

In the table, best-exit refers to our current best exit predictor which is a 250Kb local-global tournament

predictor. In best-exit both the local and global components have a 14-bit history with the local predictor

using 2-bit exits and the global using 3-bit exits. The choice predictor uses a 12-bit global history to index into a

table of 3-bit saturating counters which choose one of local or global predictors. The best-exit tournament

predictor was selected as the best among 300 tuned tournament predictors which varied in history lengths, exit-

sizes and component predictor types (global, local, path-based and path-based as in [?]).

The column spec-updt is the same as best-exit with “simulated” delays and wrong path predictions
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bench L2,15 L4,15 L4,30 L4,15 G2,15 G3,30 G4,15 G4,30 P4,30 T2,14 T3,14 best spec perf
-noxor -exit updt -tour

bzip2 21.8 19.6 22.2 20.4 19.2 23.8 19.1 20.4 22 18.4 18.5 18.0 18.6 13.6
compr 19.2 18.7 19.0 18.6 16.3 16.5 16.4 16.9 16.1 15.5 15.9 15.2 15.3 10.8

gap 1.1 1.2 1.1 1.2 2.7 2.7 9.3 2.7 2.7 0.7 0.8 0.7 4.1 0.4
go 21.7 17.9 22.3 24.4 17.9 20.1 17.1 18.5 17.2 17.6 15.7 16.3 19.1 9.5

gzip 18.2 17.0 18.9 17.3 14.4 13.8 14.8 13.7 15.4 14.4 14.3 14.3 14.4 10.6
ijpeg 11.6 11.7 11.6 12.8 10.7 10.7 11.6 10.6 11.6 10.1 10.9 10.1 10.9 7.2

m88ksim 3.5 6.2 2.9 11.4 7.8 6.7 8.9 6.8 8.0 2.0 3.0 2.3 4.2 1.6
mcf 11.8 10.9 12.2 11.6 8.9 9.8 9.1 9.2 9.1 9.1 8.9 8.9 9.1 6.1

parser 5.7 6.6 5.8 8.4 6.2 6.4 7.3 7.9 6.6 4.8 5.3 4.8 5.9 3.0
twolf 25.7 22.3 26.5 25.8 18.9 20.1 20.7 19.5 19.5 17.5 16.4 17.1 18.9 12.2

vortex 0.8 0.6 0.6 2.2 0.9 0.7 0.6 0.6 0.7 0.3 0.2 0.2 0.7 0.2
MEAN 12.8 12.1 13.0 14.0 11.3 11.9 12.3 11.4 11.7 10.0 10.0 9.8 11.0 6.8

Table 3: Exit prediction accuracy

modeled in our trace-based simulator. We speculatively update the global and choice predictor history registers,

and also do a delayed update with random delay for all the prediction structures. Finally, perf-tour gives

an upper bound on the accuracy achievable by best-exit. It uses an “ideal” choice predictor, which always

makes the correct choice if either one of global or local give the correct prediction.

We make the following observations from the table. Global predictors are typically superior to local predictors

and folding longer histories tends to reduce accuracy for local exit predictors (L4,15 vs.L4,30), but increases it

for some global predictors(G4,15 vs. G4,30). XOR-ing with the address bits to reduce aliasing shows a big

difference in accuracy (L4,15 vs. L4,15-noxor). Some benchmarks benefit from local histories with shorter exit

encodings (such as L2,15), typically, but not always, those benchmarks with fewer exits per hyperblock (parser,

m88ksim). Those with more hyperblock exits typically benefit from more bits per exit (bzip2, gzip, vortex). Path

based predictors were in general worse than global predictors, but better than local. The tournament predictors

outperform the component predictors and performed best when local and global component predictors were

used with different exit encodings for local and global. We also observe that speculative updates causes less

than 2% reduction in accuracy. Finally, we note that a large gap exists between best-exit and perf-tour

for several benchmarks (bzip2, compress, gap, go, twolf), but future work will determine whether that gap exists

due to probabilistic coincidence or an insufficiently effective choice predictor.
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4.3 Comparison to Traditional Predictors

In this section we compare hyperblock-based exit predictors with some of the best predictors proposed previ-

ously. We make a comparison of both the accuracy and the bandwidth provided by exit predictors with other

predictors.

4.3.1 Accuracy Comparison

Since exit predictors explicitly predict fewer branches than branch predictors do, exit accuracies are not directly

comparable to prediction accuracies from conventional branch predictors. To compare them directly, we convert

exit accuracy into branch accuracy by counting each implicitly predicted not-taken branch before a hyperblock

exit as a correct prediction. For example, if the predictor correctly predicts exit 4, then we count four correct

branch predictions. When an exit predictor mispredicts, two cases are possible. First, if the taken exit is earlier

than the predicted exit, then we incur one misprediction (for incorrectly predicting the actual taken exit). Second,

if the predicted exit is not taken, we use a second exit prediction (which is available at the same time as the first)

so long as it indicates a later exit than the first incorrect prediction. If the second prediction is also incorrect, then

we predict that the hyperblock will fall through, and that none of the conditional or predicated branches will be

taken. Thus, in the worst case, the exit predictor can incur three mispredictions on a single hyperblock. For the

second prediction, the tournament exit predictor gives the prediction from the component that was not chosen

and the perceptron exit predictor gives the prediction from the perceptron with the second highest excitation.

With this metric, we compare the misprediction rates of the best-exit predictor with several other branch

predictors in figure 2. We present results for some of the best conventional predictors we measured. All predic-

tors were driven by the same instruction traces. Results are shown for the 11 SPECINT benchmarks we simu-

lated. We graph the accuracies of a gshare predictor, that takes 256Kbits [20], a PAs-gshare hybrid (284Kb) [20],

a perceptron branch predictor (256Kb) [15], the best-exit predictor (250Kb) described earlier and the per-

ceptron exit predictor (264Kb). We tuned the conventional predictors aggressively, simulating all possible (ad-
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dress, history) pairs for a fixed size for the tables and choosing the configuration with the best overall mean for

each predictor. For the PAs-gshare hybrid, we assumed “full gshare” for the gshare component (an equal number

of history and address bits).

For the perceptron branch predictor, we used the global/local hybrid of the perceptron predictor as described

in [15] and tuned for a 256 Kbits hardware budget. The best configuration for a 263 Kb perceptron exit predictor

uses 48 multi-perceptrons, 51 bits of global history and 20 bits of local history kept in a table of 1024 local

histories. Both global and local histories store the lowest three bits of exit numbers. The perceptron weights are

9-bit signed integers. Each multi-perceptron keeps 8 perceptrons, and each perceptron uses 3 bits to keep track

of the LRU exit number.

Our results show that the exit predictors attain accuracies close to the best conventional branch predictor ac-

curacies. The average misprediction rate of best-exit is 5.3% on the average. The best conventional branch

predictors we measured were the PAs-gshare hybrid and the perceptron branch predictor. PAs-gshare incurs an

average misprediction rate of 4.1% and perceptron incurs 3.7% across the 11 benchmarks. The tournament exit

predictor performs almost as good as PAs-gshare on 3 benchmarks (gap, m88ksim and vortex), but worse on

several others, notably compress and go. The results for the perceptron exit predictor show lower misprediction

rates compared to the best-exit predictor but on the average (4.7 %), is higher than that of PAs-gshare.

The rightmost set of bars represent the mean MPKI (predictor efficiency), which are directly related to the

misprediction rates, scaled only by block sizes. The exit predictor incurs 3.9 mispredictions per KI, the percep-

tron exit predictor incurs 3.5 MPKI, while PAs-gshare incurs 3 MPKI and the perceptron branch predictor incurs

2.7 MPKI.

Figure 3 shows how per-branch exit prediction accuracy of scaled best-exit compares to those of conven-

tional predictors as the size of the level-2 tables is varied. The total size taken by all the level-2 table entries is

plotted on the x-axis with the y-axis giving the mean misprediction rates. We compare three predictors: gshare,

PAs-gshare and exit (tournament). At all hardware budgets, PAs-gshare has the best prediction accuracy, while
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the tournament exit predictor performs almost as well as gshare. The curves start flattening out when we reach

large sizes, specifically around 1M bits for the exit predictor. We note that the exit predictors have almost one-

fourth of the number of entries at a given capacity than the conventional predictors, since the size of a second

level table entry is 7 bits (compared to 2 or 3 bits for the branch predictors). How much the exit length can be

reduced without a significant loss in accuracy, or severe limitations on hyperblock formation, is a topic for future

work.
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4.3.2 Bandwidth Comparison

In Figure 4, we compare three predictors capable of delivering multiple basic blocks with a single prediction: the

exit predictor best-exit, Yeh et al.’s [38] multiple branch predictor Y-MB and Seznec et al.’s [29] multiple

block-ahead branch predictor S-MB. We use the Gshare predictor to model Seznec’s block-ahead concept. The

exit predictor uses 250Kb of state while the other two predictors use 256Kb. We do not model tree-like multiple

branch predictors as described in [7] because that scheme cannot work with hyperblocks.

The x-axis in the graph shows the number of basic blocks fetched per prediction and the y-axis shows the

misprediction rates. The single point at a bandwidth of almost 3 basic blocks gives the misprediction rate of

best-exit, which is 5.3% on the average. Since the exit predictor makes just one prediction per hyperblock,

it cannot be configured to predict a fixed number of basic blocks per prediction. As shown, the Y-MB predictor

achieves accuracies close to the exit predictor when the bandwidth is 1 basic block, but is worse as the bandwidth

increases. Further, it should be noted that this scheme requires an exponential number of ports (with respect to

the number of basic blocks predicted) in the second level table. The S-MB gshare predictor performs better than

the exit predictor when the number of blocks is 1, but becomes worse thereafter. Also, S-MB requires as many

ports as the number of blocks to be fetched. In contrast, best-exit has only one port to each second level table

keeping the design simple and scalable.

4.4 Summary

The results described in this section show the following. Careful tuning of the predictors are required for supe-

rior performance. For predicated hyperblocks, a tournament exit predictor achieves a high prediction accuracy,

competitive with the best traditional predictors, while doing so at a very high bandwidth. A high-bandwidth

instruction memory, such as a distributed I-cache, when coupled with exit predictors enable the design of ag-

gressive front-ends demanded by high-ILP machines. The exit predictor offers several advantages: simple im-

plementation like conventional 2-level predictors, run-ahead prediction, fast instruction prefetching, and power
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savings through reduced predictor accesses. The extra time available between predictions can also be used by

slower predictors, such as the perceptron exit predictor to deliver higher prediction accuracy.

5 Performance Evaluation

In previous sections, we described exit predictors and showed how well they predicted control flow in typical

programs. In this section, we measure their effect on overall performance. We first describe their application

on the Grid Processor, a high-ILP core requiring a high-bandwidth instruction supply. We show that the fast

front-end enabled by exit predictors, coupled with a scalable substrate, provides the highest demonstrated IPCs

to-date. We then describe how exit predictors can be used in conventional VLIW processors, and compare their

performance against traditional branch predictors.

For both the GPA and VLIW machines, we use code schedules from Trimaran, compiled for an 8-wide VLIW

machine. We assume infinite register sets with no spills or restores. We model a memory hierarchy with 64KB

instruction cache and 64KB data caches, and 2MB secondary cache, but no page translation tables (TLBs). We

model speculative updates of branch predictors and recovery upon commits. We do not, however, model wrong

path pollution of the predictors and caches. We assume a BTB with 4K entries for address prediction. Finally,

we assume a perfect return address prediction.

5.1 Performance on GPA

Grid Processor Architectures (GPA) are an emerging family of technology-scalable architecture that use a fully

decentralized core and a block-atomic model of execution [21]. The execution core is composed of an array of

ALUs, each with several reservation stations that together provide a large distributed instruction window. Onto

this array, large blocks of statically scheduled instructions are mapped and executed in dynamic dataflow fashion.

To sustain a high instruction throughput, the distributed instruction window is backed by a fully partitioned

register file and distributed caches.
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The large instruction window of a GPA must be fed by an uninterrupted and high-bandwidth supply of in-

structions. Conventional predictors are a poor match for these distributed front ends. By predicting every branch,

they require the entire instruction fetch stream to be funneled through a single centralized unit. At future pro-

cess generations, the poor scalability of wire delays makes such centralized units—and instruction distribution

from these units to the ALUs—prohibitively slow. Exit predictors avoid this limitation because, they do not

need to see the actual branch itself to make a prediction, thus enabling the design of highly simplified and truly

distributed front-end architectures.

In the GPA, the instruction cache is distributed into several banks, one bank per row of the grid. The predicted

target address of the next hyperblock is broadcast to every I-cache bank. Each bank fetches and distributes

instructions scheduled in its associated row. The distributed I-cache enabled by exit predictors thus provides a

high-bandwidth supply of instructions to the execution core.

To measure the performance of exit predictors on the Grid Processor, we schedule the hyperblocks obtained

from Trimaran using a custom instruction scheduler. We simulate an 8x8 array of ALUs, each with 128 reser-

vation stations, providing an effective issue width of 64 instructions and a distributed instruction window of

8K instructions. The instruction cache is partitioned into eight 8KB, 2-way set associative banks with an ac-

cess latency of 2 cycles. We assume a 0.5 cycle ALU-to-ALU communication delay and oracular load/store

forwarding, in which loads are never held longer than necessary at the load/store queues. We assume that exit

mispredictions incur a penalty of 10 cycles.

Figure 5 compares the performance, measured in instructions-per-clock, of our 250Kb best-exit predictor

and the 263Kb perceptron exit predictor. We show results only for a subset of the benchmarks; other bench-

marks exhibit similar results. For each benchmark, we show three bars; the left-most and the right-most bars

represent realistic configurations of the best-exit predictor and the perceptron predictor. They are assumed

to have a latency of 3 and 6 cycles respectively, between successive predictions. The middle bar represents the

best-exit predictor but assumes a latency of 6 cycles. As shown in the figure, the GPA achieves an average
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Figure 6: Exit predictors on VLIW machines

instruction throughput of over 4 for the best-exit and over 5, when the perceptron predictor is used.

On most benchmarks, the performance as seen from the first two bars is largely insensitive to the latency

between successive predictions, when the best-exit predictor is used. Potential exists to exploit this latency-

tolerance in one of two ways. First, the additional latency could be used by a slower but more accurate exit

predictor, such as the perceptron predictor, resulting in improved performance. This behavior is evident in two

benchmarks: mpeg2 and turb3d. Second, a fast exit predictor such as the best-exit could run-ahead and

predict instruction addresses to prefetch, thus improving I-cache performance. We leave the latter experiment

for future work.

We notice that on some occasions (m88ksim and vortex), longer latencies between predictions can degrade

performance significantly even with superior prediction accuracies. On such instances, perhaps the best predic-

tion mechanism would be to use the fast best-exit predictor overridden by a slow perceptron, combining the

advantages of high accuracy and high bandwidth prediction. We also leave this study for future work.

5.2 Exit Predictors for VLIW Architectures

While the previous discussion demonstrated the performance of the exit predictor on a specific architecture, this

section shows how they can be used in conventional processors. Recall that by predicting which one of several
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branches will be taken, exit predictors implicitly predict the prior branches as not taken. We exploit this property

to develop a branch predictor for conventional processors.

When the exit predictor is presented with the current fetch address (fetchPC), the predicted exit number

and target address are saved in two registers. Successive instructions are fetched by adding a constant offset

to fetchPC. As instructions are fetched and pre-decoded, every branch that is fetched increments a counter,

pred ctr. When pred ctr reaches the saved(predicted) exit number, fetchPC is set to the predicted target

address and further fetches are initiated from this address. Meanwhile, the next prediction is made with the new

fetchPC. Similarly as branches are executed, a second counter, exec ctr, is incremented. When a taken

branch is encountered, the prediction tables are updated. A misprediction is flagged if the exec ctr does

not match the value in pred ctr. Notice that this approach does not require any changes to the ISA. It only

requires that the instruction stream be well demarcated into hyperblocks by appropriate branch instructions.

We implemented the above predictor based on the best-exit predictor for a VLIW machine, and compared

its performance with the PAs-gshare predictor. For this evaluation, we simulated the code schedules obtained

from Trimaran on a custom VLIW simulator. The VLIW machine that we compiled for and simulated had

separate 2-way set associative, 3-cycle, 64KB caches for instruction and data, and a 2-way, 13-cycle, 2MB

unified L2 cache. The arithmetic units were configured to have the same latencies as the Alpha 21264. We

provided the PAs-gshare with 284Kbits of state, and the best-exit with 250 Kbits. Branch mispredictions

incur a latency of 3 cycles on both the predictors.

Figure 6 shows the performance measured in IPC from using PAs-gshare and best-exit. The left bar

shows the IPC when PAs-gshare is used to predict every branch, while the right bar shows the IPC when the

exit predictor is used in place of the PAs-gshare. As shown, PAs-gshare performs better in every benchmark,

achieving improvements of over 10% for m88ksim, and 5.5% on average. This result is not surprising, since the

prediction accuracies as calculated in Section 4 were higher for the PAs-gshare predictor.

The small performance losses of best-exit, however, is coupled with significant reductions in the number
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of predictions, a potential power saving technique. Alternately, a run-ahead exit predictor can setup a pipeline

of fetch addresses that can be used to either directly fetch from or prefetch into instruction memory. Thus with

no changes to the ISA and only modest hardware additions, an effective high-bandwidth supply can be enabled

which can potentially overcome the performance losses due to reduced accuracies. We leave the evaluation of

these optimizations for future work.

6 Conclusions

As technology constraints force the move to wider-issue processors, significant demands will be placed on front-

end architectures. In particular, it is becoming increasingly difficult to fetch a steady stream of instructions at

modern clock rates. To meet these challenges, designers have already shown a willingness to sacrifice some

accuracy for simpler implementations [28]. In this paper, we have presented exit predictors as enabling tech-

nologies for future high bandwidth fetch engines.

We have shown that by applying exit prediction to large, predicated hyperblocks, dramatic improvements in

front-end bandwidth can be achieved at only small losses in accuracy compared to tuned modern predictors.

Averaged over our benchmark suite, hyperblock exit predictors can eliminate 72% of the predictions, and fetch

91 useful straight-line instructions, on average, per prediction. Such high-bandwidth predictions creates the

potential for further optimizations. The extra time allowed by exit predictors can be exploited to conserve

power, to enable slower and more accurate cascaded predictors, or to build fast prefetching engines and run-

ahead predictors. Furthermore, by predicting only the sequence number of the taken branch, exit predictors

avoid the need to see the branches themselves to make a prediction, which enables the design of high-bandwidth

distributed front-ends.

We found that the best hyperblock exit predictor configuration, based on conventional designs, was an EV6-

like tournament predictor, in which the local and global histories used a different balance between exit length

and number of exits in the history. This 250Kb exit predictor achieves a mean prediction accuracy of 94.7%,
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and incurs 3.9 MPKI on average across our integer benchmark suite. We showed that such accuracies, while

competitive with traditional predictors, are significantly higher than other high-bandwidth predictors at equiva-

lent fetch bandwidths. We evaluated a perceptron-based exit predictor that exploits the longer time available to

make predictions and offers higher overall accuracy of 95.3% (3.5 MPKI).

We quantified the performance improvements offered by our tuned exit predictors on Grid Processor Archi-

tectures. The high bandwidth offered by the exit predictors coupled with a distributed execution core provides

superior performance, sustaining mean throughputs of over 5 instructions per cycle. We also showed an appli-

cation of exit predictors to conventional VLIW machines.

The potential remains for further improvements in accuracy. With much larger hyperblocks and careful pred-

ication, it is possible that we might be able to remove many hard-to-predict branches and predict the hyperblock

exits more accurately. The interaction of hyperblock construction strategies and exit predictability is a promising

direction for future work.
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