The Declining Effectiveness of Dynamic Caching for General-Purpose
Microprocessors

Douglas C. Buger, James R. Goodman, Alain Kagi

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street, Madison,i$@onsin 53706 USA
galil eo@s.w sc. edu

Abstract formance increase for single-chip microprocessors is 80%
(roughly 5% pemontl). Extrapolating this rate ten years
into the future suggests single-processor performance of
roughly 30,000 Spec-marks by the year 2005.
While it is not unthinkable that such processing power

d Might be achieved in this time frame, the authors believe
that other limitations on performance are likely to eyeer
that render the achievement of such raw processing power
irrelevant. The design of a memory system capable of sat-
isfying such voracious processors will become one of the

The computational power of commodity general-pur-
pose micoprocessors is racing to truly amazing levels. As
peak levels of performance rise, the building of memory
systems that can keep pace becomesasingly poblem-
atic. \e claim that in addition to the latency associate
with waiting for operands, the bandwidth of the memory
system, especially that ass the chip boundarywill
become a mgressively geater limit to high performance.
After describing the cuent state of mi@solutions aimed : -)
at alleviating the memory bottleneck, this paper postulates K€Y téchnical challenges facing system designeespug-
that dynamic caches themselves use memory inefficientl}“'ate that processors will eventually be designed to be just
and will impede attempts to solve the memooplem. \& fast enough so that they can consume operands as fast as

present an analysis of several important algorithms, which the memory system can produce them. Curreritig
shows that in@asing levels of integration will noesult ~ OPPOSIte is true: the memory system is designed to keep up

in computational equirements outstripping off-chip band- with the processoPerformance of the system will then be

width needs, theby peserving the memory bottleneck. |2gely determined by (1) how fettively the on-chip
We then pesent esults fom two sets of simulations, which MemMory is able to maintain operands, minimizing the fre-
measued both the efficiency with which cemt caching ~ duéncy of ofchip access, and (2) the rate at which the
techniques use memory (generally less than 20%), andeXternal memory system can supply operands.

how well (or poorly) cachesduce traffic to main memory ~_Presentlythe most serious concern with memory sup-
(cache sizes up to 2000 times worse than optimas). W plied from of-chip is latency: the increasing clock rate of

then discuss how two classes of techniques, (i) decouplingMeBiNg processors and the ability to issue multiple
memory operations ém computation, and (i) explicit Instructions per cycle means that even the fastéshagd

compiler management of the memory hiehgr provide access is growing to scores or even hundreds of instruction
better long-term solutions to lowering aograms mem- issue times. Much research in computer architecture today
ory latencies and bandwidthequirments. Finally we is focused on minimizing or tolerating this latentye

describe Galileo, a new pject that will attempt to jor anticipate that some of the techniques being researched

vide a long-term solution to the pernicious memory bottle- will be successful in eliminating at least aglarfraction of
neck. the latencySuch a success will then expose a deeper and

more fundamental limit: the raw bandwidth achievable
from outside the chip (or module).

It is our contention that the current memory system

The growing inability of current memory systems to model (dynamic caches sitting in between the processor
keep up with processor requests has significant ramifica-and lage, of-chip main memories) will be fundamentally
tions for the design of microprocessors in the next decadeincapable of supporting long-term solutions to either the
Baskett recently estimated [5] that the annual rate of per-latency or the bandwidth problems. In this papex sur-

vey current techniques being explored to tolerate latency

This work is supported in part by NSF Grant No. CCR-9207971 and an through prescient requests for needed data. In the context
unrestricted grant from Apple Computer Inc.

1 Introduction

of these techniques, we makey@aments as to why the can be moved across these pins is also increasing more
bandwidth bottleneck will eventually arise, and perform slowly, as are the bandwidths of indgtip connections.
an analysis of several algorithms that supports agu-ar Access times for DRAMs are diminishing more slowly
ment. W then present experimental evidence that bolstersthan are cycle times for CPUs, at the annual rate of 5-10%
our hypothesis, measuring both thdeefiveness with [1]. Jdointly, these factors produce the frequently-
which caches use their mempand the gap between the expounded-upomemory bottlenegkn which accesses to
bandwidth requirements of a cache and a-pp&mal main memoryin terms of processor cycles, become pro-
memory of the same size. gressively more expensive as the “5% months” pass.

The efective use of local (on-chip) memory will be
essential for alleviating the memory bottlenecke W 2.1 Characterizing memory delays

develop the notion ahemory efficienci84, 46], to mea- The execution of a task can be roughly decomposed
sure how successfully current microprocessors make Usgntq periods according to which component of the system
of their local memories (which are primarily cache mem- |imits the speed of execution.aMivide the task’ execu-
ory). We will use this measure to demonstrate that currenttion into being processobound and memory-bound A
microprocessors use their on-chip memory very poorly task is processdsound when the pipeline is not stalled
suggesting that alternative ways of managing the On‘Chipwaiting for an operand from memomnd memory-bound
memory may be far morefettive than cache memory when it is! A memory-bound phase of execution can be

e et e UbdVide] o perids of betency bounr banc-
q b width-bound Latency-bound describes a task that is

E{g:;d;;gaﬁ(tg?rgez;gjg f;ﬁl;rﬁw%r?:tfszﬁzzvgmeg';m stalled because a memory operation was not issuéd suf
b - Tina ' ciently ahead of the operasdfirst use. A task is band-

project dedicated to finding long term solutions to this idth-bound when it contains digient parallelism to

prob[e m, and propose an ad.vanced system that is the flrs\grevent stalling for a contention-free memory access, but
step in our search for a solution to the memory bottleneck.

. . : contention for memory increases the access latency
The reminder of our paper isgamized as follows:

Section2 describes the memory bottleneck in great detail €n0Ugh to cause a processor stall.
and presents guments supporting the formation of a .
long-term bandwidth bottleneck. Secti®rdiscusses cur- 2.2 Current solutions

rent caches in this context, describing why they have been Current methods for reducing stall time associated with
so0 successful and why we believe they will ultimately be main memory accesses fall into two broad categories: (i)
limited. Sectiord presents a couple of alternatives to the reducinglatency and (ii)tolerating latency

current memory system ganization, and introduces the Techniques for reducing the mean access latency for
architecture that we hypothesize may eliminate memory memory operands can be subdivided into two classes:
system limitations for ultra-fast processors. Sedion reducing thenumberof access penalties, and reducing the
draws final conclusions from this work and describes the lengthof the access penaltylemory access penalties can

direction in which our work is headed. be avoided by keeping live values (that will be referenced
more than once) physically close to the procesSaches
2 The memory bottleneck are the ubiquitous technique for doing so. By automati-

o) ~cally moving missing references into a local (i.e., on-chip)

As new fabrication technologies mature, feature sizesmemory a cache exploits temporal locality when another
decrease, reducing capacitance and permitting fast€feference to that word is issued la@y using cache lines
switching of gates. As the feature sizarops, the surface that are lager than a word, a cache implicitly performs
density of transistors increases @gr—2) . These trends transparent, speculative prefetching of the words around
have produced CPUs with ten million transistors and the missed address, attempting to exploit spatial locality
DRAMSs with 64 MB per chip. & efectively utilize these By increasing the size of an on- off-ohip cache, more
processors, designers have been moving more and mor#ve values can be simultaneously held near the progessor
high-speed memory onto the processor chip, memory thateducing the number of requests issued to main memory
can efectively use the tremendous intra-chip bandwidths Techniques that improve a cachéiit ratio (e.g., higher
available.

Unfortunately not all physical trends follow these 1. another definition for processor bound: if doubling the clock cycle
curves. OfFchip bandwidth grows slowlyas packaging time doubles the execution time of a phase of computation, it is proces-
technology matures. The cost per pin is dropping far moresorbound.

slowly than the cost per transistdihe rate at which data 2. Alternatively a phase is bandwidth-bound if providing more memory
bandwidth would eliminate processor stalling.

associativity and better replacement policies) tend toin instructions issued and code size [7, 28, 35]. Chen et al.
reduce the number of main memory requests. While [10] examined the trade{fsf between prefetching data
caches are commonly thought of as latency-reducing unitsdirectly into the cache and prefetching into a prefetch
local memories in general, and caches in partichiave buffer. The lack of run-time knowledge can also be an
also been identified [19] as a way of reducing the band-impediment to purely software techniques. Some promis-
width requirements. raffic to the next lower level of the ing approaches use hybrid hardware/software techniques,
memory hierarchy is reduced by the cache servicing somassuing limited instructions that provide hints to the
fraction of the requests at the higher level. prefetch hardware 1. Chen and Baer [9] studied soft-
Techniques for reducing the actual main memory ware and hardware prefetching schemes in the context of a
latency include faster interconnects, more levels &f of multiprocessor and proposed a hybrid approach combin-
chip caches, and reduced access times for DRAMSs [26, 49ing software and hardware schemes.
37]. Bus clock speeds and data widths are increasing.
Page-mode DRAMs reduce the access latency to multiple2.3 The bandwidth bottleneck

adjacent memory references [33]. Decreasing feature sizes e pelieve that these substantidbet to reduce laten-
are driving down DRAM cycle times, by 5-10% [1] per cjes of contention-free memory references will ultimately
year be successful, even for less regular non-scientific codes.
Techniques for tolerating latency have been widely The relative success of thisf@t will result in the expo-
studied, and there is still considerable ongoing research ingyre of a more fundamental limit to performance, the
this area. W partition these techniques into two classes: memory bandwidth bottleneckwd factors will drive this
scheduling and prefetching. Scheduling attempts to over- exposure. Increasingly faster program execution, with pro-
lap @ memory access with other useful instructions, gressijvely fewer stalls waiting for operands, will eventu-
exploiting available instruction-level parallelism. gjly reach the point where requests to memory are issued
Prefetching techniques, conversefyovide non-binding faster than they can be handled. Also, techniques used to
hints to the memory system that attempt to bring immi- yequce memory latencies, such as speculative loads and
nently referenced data closer to the processor prefetches, will trade increased bandwidth consumption
In order for memory accesses to be scheduled so thator |ower latencyhastening the point at which congestion
useful work may be performed in parallel, memory opera- jn the memory system becomes severe. Providinfi suf
tions must be non-blocking. Lockup-free caches [29] cient of-chip and memory bandwidth to supply a high-
allow multiple memory requests to be outstanding, and speed future processor with a poorly functioning on-chip
compilers attempt to place as many instructions as needeghemory will not be a costHefctive solution. ¥ now
between a non'blocking load and the first use of its result.show that neither the |atency reduction nor the |atency tol-

The issuing non-blocking loads can be thought of as a firsterance techniques already discussed will prevent programs
step toward decoupling memory accesses from computafrom becoming bandwidth-bound.

tion. Gharachorloo, Gupta and Hennessy [18] have
explored the use of dynamically scheduled processors t02.3.1 Reducing memory access latency
hide memory latencies. While their exploration was per- Reducing the physical time needed for a main memory
formed in the context of shared-memory multiprocessors, 4¢cess can increase the bandwidth to main merkiony-
some of their conclusions are more broadly applicable. gyer DRAM access times are dropping much more slowly

Prefetching techniques consist of both hardware andihap those of CPU clocks—on the order of 5-10% per year
software prefetches. Hardware prefetching typically uses [39, 14, 1]. The rate of increase of processor pins is much
dynamic stride detection to perform run-time calculation gjg\wer than that of transistor densiffithough there are
of prefetch addresses to be issued [3, 15, 16]. The oversjgnificant breakthroughs in packaging technology on the
heads of hardware prefetching are the cost for the addiyorizon, the issues of reliabilitpowey and cost will pre-
tional hardware, and the limited ability of the dynamic yent pins from sustaining growth commensurate with the
units to perform any prefetching other than through arraysyate of transistor increase. The speed of light is also a fun-
with linear strides. A dferent form of hardware prefetch- yamental limit to the amount by whichfehip access
ing consists of stream Hafs [27, 36]. Chen and Baer [8] |atencies can be reduced. The union of these trends and
evaluated the &ictiveness of lockup-free caches and |imjts indicates that physical increases irf-cifip band-
hardware prefetching, and proposed a hybrid schemeyigth are unlikely to match increases in processing capa-
based on a combination of these approaches. bility, particularly for when cost is accounted.

Software prefetching is much more flexible than hard-
ware prefetching, having the advantage of compile-time 2.3.2 Reducing frequency of memory accesses
knowledge, but pays the price of software overhead, both Increasing levels of integration will permit substantial

Algorithm Memory Computation Memory traffic Ft):f%isggg/
MM O(N?) O(N3) O (N2/./9) N
Stencil O (N2 O (N?) O (N%/./9 NG
FFT O(N) O (Nlog,N) O (Nlog,N/log,S) log, f
Sort O(N) O (Nlog,N) O (Nlog,N/l0g,S) log, f

Table 1: Application growth rates [30]

increases in on-chip memoryt is possible that such keeps the amount of computation constant. If the on-chip
increases will reduce memory fiiafrequirements enough memory is increased, less memory ficafis required,

so that many algorithms that were formerly memory- allowing the program to complete in less time. An increase
bound become processoound. More local memory will in the on-chip memory (which is of si& by a factor off

enaple gregter reuse of operands, which will redgce .thewould increaser by Jf, which would reduce the léhip
traffic to main memory required by the program. This will

raise the ratio of Computation to memoryﬁmf traffic by O(,\ﬁ) . Ther9f0re, the execution will still be
Over time (measured in months or years), technological bandwidth-bound if the processor speed is also increased

advances will permit faster processing and a higher band+by a factor of./f. The rate of increase in processor speed
width across the chip boundaifhe ratio of the two quan- need be proportional only to the square root of the rate of
tities is the processing capability per unit dfctip trafic increase of local memory size for the program to remain

?lf[.e to. tebchnglqg;ﬁatl) advdancez.t,:stséjhme :]hat So.m?hcolnlfubandwidth-bound.Tablel shows such derivations for the
ation 1S bandwidth-bound, and that the change in the 1a erfollowing algorithms: TMM (tiled matrix multiply), Sten-

ratio as time progresses is less than the change in the ratio. . : X .
i . : cil (an algorithm operating on & xN matrix, which

of computation to memory tfa (due to more on-chip . .

memory). The increased amount of computation maderepeated_ly updates each element W'th a weighted ;um of

possible by the increase of on-chip memory will then out- N€ighboring elements), FFT (aN-point fast Fourier

strip the rate at which the processor is getting faster (periransform), and Sort (mge sort). The right-most column

unit of memory trafc), and the bandwidth-bound compu- depicts the change in the ratio of computation to required

tation becomes processbound. Converselyif the pro- ~ memory trafic for each application, & is increased by a

cessor speed increases at digeht rate to ensure that it factor of f. If this quantity grows faster than the process-

can always handle the increased availability of on-chip ing speed ass increases, a computation will eventually

operands, then the computation will remain bandwidth- yecome processtiound. Howeverthe minimum rate of

bound-)] processing speed increase necessary to maintain the band-
Naively, one would expect the processing requirements yigth pottleneck of a computation is certainly less than

to eventually overwhelm the bandwidth limitations, since eyisting rates of processor improvement. Increasing the

for many algorithms the computation grows faster than do 5cal memory will thereforeot solve the bandwidth prob-
the memory requirements. For example, the conventional|gy,.

algorithm of matrix multiply (multiplying twoNx N

matrices) has total memory requirements that grow as2.3.3 Tolerating latency

O (N?) , while computation grows a3 (N3) . Lockup-free, or non-blocking, caches are an important
This simplistic agument is misleading. Consider the device for tolerating memory access latencies. While non-

conventional matrix multiplication, using a tiled algorithm blocking caches make feasible the elimination of one

where tiles are of siz& «N. It is easily shown [22, 32] source of memory latency (stall on every miss), they may

that the trdfic between the on- and fethip memory is create another source of latency: contention in the memory

proportional to2N3/T +N2. Assume that the processor is
sufficiently fast for the algorithm implemented to take full 1 Whether external caches count as local memory depends on whether

d f th hi di the metric of interest is tréid across the processor pins orficaéeen at
advantage of the on-chip memomgolding N constant main memory

system. The current solutions being proposed to tolerate3.1 Why caches?

memory latencies, described in Secti?, allow memory Caches have become so prevalent primarily because
lopera'qons to be overlapped with oth.er' instructions, they are transparent; they generallfeofvisible, and
including other memory references. This increases thegometimes substantial, performance improvement while

bandwidth load on the memory system by trying to move requiring no support from the compilgsrogrammeror

the same number of requests across the chip boundary ina | .
shorter time q P y architecturet Caches take advantage of both temporal and

Optimizations that better tolerate memory latencies, in spatial locality They can satisfy multiple references to the

addition to increasing the density of memory requests, fre-SaMe word, and perform implicit prefetching by imple-

guentlyincreasethe total bandwidth requirement of a pro- I;naenmtlrz]gr:tl)ocil;;Ziﬁ:lt(tahi:oasrter%?grtehnilsqs vr;/]c;:g ;anyor
gram, trading greater bandwidth needs for reduced Y y

latencies. Prefetches can increase bandwidth requirementsThey have also been extenswely_ studied, and are conse-
duently very well understood oliminous papers examin-

particularly when they are issued too eally evicting) . o -
needed data in the cache that would have been used befor@2 block sizes, ?SSOC'at'V't'e.S’ replacer_n_ent. policies,
the prefetched data was needed. Prefetched data may als\6rtual v.ersus.physwgl addressing, and unification versus
be evicted from the cache by another reference before it issepa_lrann of instruction and data caches have appeared in
actually used, forcing it to be re-fetched. A more severe the literature [41, 42).
bandwidth increase occurs with speculative prefetches an% 2 Evaluating local memory efficiency
speculative loads. When the compiler has an ficserit '
number of instructions within a basic block to hide the Caching as a technique has also been so successful
memory latencythe prefetch or load may Hiéted [39] because it is &ctive at reducing latency penalties and
across a branch, becoming speculative. Speculative memmemory system bandwidth. Given the rate at which mem-
ory operations that turn out to be unnecessary will therebyOry penalties are increasing, howeveis becoming pro-
increase the total bandwidth requirement of a program. ~ gressively more important to use the available amount of
Latency tolerating techniques will generally only local memory as well as possible. In this section we char-
increase the bandwidth load on the memory system, notacterize how well a given local memory (cache) is used.
reduce it. V@ have shown that for at least four algorithms, ~ We define theefficiencyof a given memory to be the
increasing the on-chip memory to reduce the averageadverage fraction of the memory that holds “live” data [34,
memory operation latency witlot eliminate a bandwidth ~ 46] at any point in the execution of the program. A frame
bottleneck over time. Whave also described qualitatively in the cache is defined to bree if its contents will be read
why decreasing the total memory bandwidth requirements,again before they are written; i.e, a blacKifetime
by reducing the number offe¢hip accesses, will not out- extends from its first write until the last time it is read.
strip the increased bandwidth requirements due to faster We have modified Dinerolll [21] and used Shade [12],
processors. This leads us to conclude that memory band2 tracing tool from Sun, to produce measurements of a
width will emege as a major new limitation to system per- caches eficiency Live time is considered to be the time
formance as the fraction of uncongested miss latenciePetween a store and a read hit, or two consecutive read
that stall the processor diminishes. Current techniques willhits. \e measured “liveness” on the granularity both of
not alleviate, but will more likely exacerbate, the pending individual words and of cache blocks, which were

situation. assumed to be 16 bytes (with 4-byte words) for the pur-
poses of this studyWe varied cache sizes, simulating
3 Evaluating the efficacy of caches cache sizes of all powers of two between 4KB and 2MB,

) o) _ inclusively. We simulated caches with set associativities of
Caches are becoming almost ubiquitous in the micro-1 2 and 4. The experiments were run on the following
processor industryEvery major general-purpose, COM- penchmarks: buk, compress, eqgntott, g++, sy2aod
modity processor recently announced has an on-chipgwm256. Buk is a NAS [4] kernel that implements bucket
cache. The community of scientific machine designers hasggrt. G++ is release 2.6.0 of the Gnu C++ compiteyen-
traditionally been reluctant to use caches, and many of thegrated the assembly code of the preprocessed CPU module
canonical scientific supercomputers used no caches at aljt 53 multiprocessor simulatoand was run with full opti-
[40]. Said designers are increasingly being forced to mijzation enabled. Compress, eqntott, swm256, and su2cor

design machines with caches, howeves cost/perfor- 4re all from the Spec92 [50] suite. Compress and egntott
mance curves increasingly mandate the use of general-

puUrpose processors.

1. This is not to say that such support has never been provided; it is sim-
ply not required for correctness.

(a) Word-level granularity (b) Block-level granularity

1.00 1.00
0.90 — A puk - 0.90
e O - compress
0.80 A — % — — % — oot L 0.80
Y v g++
0.70 4 ———O— g L 0.70
—~O0----- O -~ swm2s6 /;\ N
0.60 4 S L 0.60
5‘ 5‘ Q7 / \ \
@ o '
kS kS [00
= =
i w 0.40
L 0.30
- 0.20
L 0.10
0.00
4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Size of cache Size of cache

Figure 1. Efficiency measurements

were run with the default inputs. Su2cor was run with a slight exceptions. & present the gfiency numbers for 4-
short input, and swm256 was run with the default input for way associative caches onlyg present the most optimistic

20 iterations. All benchmarks were traced on Sun Sparcs—esults. In order to establish that the loficedncies were
tation 10 workstations, and compiled witld3 - nf | at due to poor use of the cache, and not cold-start or dead-
using GCC version 2.6.0. The “mflat” option compiles data (at program termination)fefts, we measured the
code without using the 8RC register windows. Using dead time before a fransfirst and after a fran®last ref-
register windows would have hidden a fraction of the erence. Those quantities were appropriately negligible,
addresses produced by the benchmark code from our tracendicating that the programs were fizi€ntly long-run-

as instructions from traps on window overflows and ning to prevent endpointfetts from biasing our results.
underflows are not output by Shade. The libraries we used What is surprising about these numbers is not the
were unavoidably compiled with register windows, and shapes of these curves but the scales; fiweeicies tend
therefore generated some addresses that were not includeith remain under 20% for cache sizes that are much smaller

in our trace. than the data set size of the applications. The word-level
Figurel plots the measuredfiefency of 4-way set- efficiency numbers are even worse; they tend to be lower
associative caches for sizes from 4KB to 2MB. Fidi(e than 10% for caches smaller than the applications’ data

depicts diciencies calculated by ddrentiating between sets. The ratio between the block- and word-levidieh-
live and dead words within blocks, and Figa(b) shows cies gives a rough idea of what percentage of the words in
cache difciencies examining blocks rather than individual the block are actually used. Codes that access data struc-
words (e.g., the period in between two referencesterdif tures linearlyand with a stride of one, will tend to produce
ent words in the same line would be considered live). Forsimilar eficiencies for the two experiments; this is clearly
the most part, our simulations follow a predictable trend. demonstrated by the numbers for swm256, the one array-
Caches substantially smaller than the data set size (and/oflominated code depicted. In general, the word-leviel ef
the working set size) of the traced application show poor ciencies should always be less than block-levitien-
efficiency, as loaded lines are evicted after few uses andcies, since if any word in a block is live, block-level runs
the cache thrashes. fiefency improves with increasing count the whole block as live. The one data point where
cache size, peaking at the point when the working set, andhis relation does not hold is swm256 with a 2MB cache.
occasionally the entire data set, fits in the cache. The block-level dfciency is lower than the word-level
The numbers obtained by varying set associativity did efficiency here because of the way liveness is calculated
not deviate substantially from the results already pre- for blocks; a store marks everything in the block as dead.
sented. Higher set associativities tended to produceln this particular case, blocks that contained multiple live
slightly better diciencies, although we observed a few words were declared dead in the block-level calculation,

enough that the block-levelfefiency was driven under as not to bias our results in favorrefopt . Based on the

the word-level dfciency. number of cache misses, we calculated the total amount of
Although the diciencies for the layer caches tend to data moved in between the cache and main menidy

be high compared to those for the smaller caches, these areere forced to ignore write-back tfiaf since our memory

uninteresting data points because of the close correspontraffic numbers were calculated from the miss rates of the

dence between the t@r cache sizes and the applications’ caches.

data sets. Our benchmarks were the limiting factor at this Figure2 graphs the total memory ftfiaf (program 1/0)

point, and were we to perform runs on muclgéarappli- generated for the ddrent cache models. The fiiaf in

cations, the diciencies for 256KB-1MB caches would be megabytes, is presented as a function of cache size for

as low as the small cachefieencies displayed in compress, g++, eqntott, and swm256. The results for buk

Figurel. The two benchmarks that support this claim are are similar to those for egntott, as they both perform heavy

swm256 and buk, both of which haveger data sets than sorting, and are not presented here. As with tfieiericy

the other benchmarks. Swm256 has a data set of abouéxperiments shown in Figule we consider only the

4M, and buk$ is roughly 6MB. Both programs display cache sizes that are substantially smaller than the data set

efficiencies of under 5% for ane megabyte cache. As sizes, roughly 128KB and smalldp be interesting, but

with the other benchmarks,fiefency rises precipitously we present the lger numbers for completeness.

when the cache is didiently laige to hold the working For compressy- opt reduces the bandwidth generated

set, which for these two benchmarks is about 2MB. Buk over that of botH r u- 1 andl r u- 4 by roughly a factor

and swm256 éitiencies for a 4MB cache decline from of 5.N- opt does a much better job of keeping the heavily

those of a 2MB cache (the 4MB results were not graphed).accessed parts of the 64KB hash table resident in the local

Even when the cache size is closest to the working-setmemory The bandwidth for g++ is similarly reduced by a

size, the highest word-levelfieiencies were just above factor between 2 and 3. G++ is characterized bygeJar

50%, which is a poor best-case utilization. chaotically accessed data set, portions of which display
moderate temporal localitydence there is no sharp drop-
3.3 Reducing memory bandwidth off in bandwidth requirements for any sizes or models, just

The existence of such lowfiefencies for interesting & gradual lessening of memory frafs more and more of
workloads demonstrates that the potential exists for muchthe data set fits in the local memoBgntott and swm256
better use of local memory than a cache. Given ourdemonstrate a similar pattern: small local loops or work-
hypothesis that memory bandwidth will become a critical INg Sets cause thrashing foru-1 andl r u- 4, but not
limitation, we ran a series of experiments designed to meafor n- opt. Once the local memory is $iafently lage,
sure the gap between the memoryficafienerated by a the lack of lage-scale temporal Iopallty in these codes
cache and that generated by an unreasonably well-man{SOme in eqntott and virtually none in swm256) camses
aged local memory opt andl r u to perform similarly _

The latter memory unit, to which we will refer as Smalin- opt memories reduce the memory fiafo
opt , is simulated as a fully-associative (level-one) cache Surprisingly low levels, particularly when compared
that has a block size of one word. The replacement policy2gdainst the size of drr u- 4 cache necessary to produce
usesM N [6], in which dead cache blocks are always vic- an equivalent amount of tfaf. Example comparisons are
timized. If every block in the cache is live, the cache block Shown by the dotted lines in FiguzeThe quotients of the
that will be referenced farthest in the future is chosen as d I U- 4 size divided by the- opt size for the examples
victim. This policy is calledn- opt (nearoptimal) shown are approximately 2000, 60, 250, and 130, for (a),
becauseM N is not optimal; in some cases it is preferable (b). (c), and (d), respectivelfhese examples corroborate
to evict a clean block that will be referenced soprather ~ the poor diciency shown in Sectio8.2.
than a dirty block that will be referenced later [23]. Since The relative flatness of the- opt curves shows that
M N assumes a perfect oracle, howewed is unlikely to for memory that is managed very well, surprisingly small
be realized in the near future, opt is a suficient bound ~ @mounts will greatly reduce the memory fi@fAlthough
for our study n- opt represents an unrealizable point, the memory size

To obtain these results, we used Shade [12] to generat@lifferentials needed to generate the same amountﬁxﬁtrgf
an address trace in an appropriate format. The traces wer@€ SO Iag;e that less aggressive schemes should provide
then fed to Cheetah [51], with which we computed miss Substantially bettensed memory
ratios for both the- opt model and a normal (L1) cache,
using a least-recently-used replacement policy with set3-4 Why not data caches?
associativities of 1 and 4 (u-1 andl r u- 4). The Iru The results in Sectiod.2 demonstrate that data caches
block sizes were 16 bytes.a/¢hose a smaller line size so use memory inditiently (lowering their dective size)

Total program 1/0O (megabytes)

Total program 1/0 (megabytes)

300

275

250

225

200

175

150

125

100

75

50

25

0

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

(8) compress (b) g++

A
i —A 42— Djrect:M apped I
4 — OO0 4way Set Associative L
— OO0 Near-Optimal

3 0 L
=

- _% -
g

- \E/ L
Q

-1 E’ -
(]

i 5 L
B
ko]

_ = -
32 128 512 2K 8K 32K 128K 512K 2M 8M 32 128 512 2K 8K 32K 128K 512K 2M 8M
Size of cache (bytes) Size of cache (bytes)

(c) egntott (d) swm256
y y L
. g -
- _% -
g L
1 E
Q -
J 5 L
<)
- Q -
B
k] L
8 [
32 128 512 2K 8K 32K 128K 512K 2M 8M 32 128 512 2K 8K 32K 128K 512K 2M 8M
Size of cache (bytes) Size of cache (bytes)

Figure 2. Memory bandwidth differentials

1200

1100

1000

900

800

700

600

500

400

300

200

100

1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

when a program does not fit entirely in the cache. mable partitioning of a single unit. As more and more par-
Section3.3 showed that neaptimally managed local allelism is exploited by future systems, careful scheduling
memory generates the same amount of memorfjctias will become even more of a necessity than it is tpdag
caches that are from one to three orders of magnitudethe nondeterminacy of todaytaches will become prohib-
larger (even without prefetching, etc.). In a bandwidth- itively expensive.

bound system, where thefesftiveness of local memory Finally, theallocation of frames on a cache miss may
must be maximized in order to minimize memoryficaf drastically reduce cachefiefency when heavy prefetch-
data caches perform extremely poorly ing is performed. Emptyallocated memory may be a

It is precisely the generality of current caches that will major contributor to increased bandwidth load and poor
limit their effectiveness for future microprocessors. Their utilization of memory particularly in a bandwidth-bound
transparency comes at a cost; preventing the system fronsystem. Allowing slots to be allocated when datarns
treating them as a resource to be carefully managed. Botimay serve as an important optimization, but this is far
programmer knowledge and compile-time information are beyond the capabilities of current caches, and introduces
unavailable to caches, which are currently incapable of difficult new problems.
using such information anywagache agganizations are In terms of software support needed (none) and hard-
fixed, limited to one replacement policywhich can ware complexity current caches are quite inexpensive.
severely degrade performance in cases where the policy iShe performance gap between caches and more complex,
ill-suited for the reference stream. They have limited asso-expensive memory structures, howevsrgrowing along
ciativity, generating conflicts when substantial numbers of with the memory access penalfys this division grows,

dead frames exist in the cache. The block size is fixed, the cost of more complicated memory structures will
preventing requests for er blocks (incurring extra become increasingly justifiable.

misses) when there is more spatial localggd smaller

blocks (consuming unnecessary bandwidth) when there is# Long-term solutions

less or none. The tag storage is certainly not negligible 15 work is part of project that we cadialileo. The
(and is not considered in our studies presented above). Th%0a| of our project is to identify long-term, technology-
fixed binding of addresses to data in the cache preventgy i en impediments to performance, and propose solu-
any sort of partitioning scheme to be performed on the yjons | this vein, we are attempting to determine what

cache. , _ . techniques hold the best promise for providing a long-term
Although the aforementioned problems are limiting, o)y tion to the memory bottleneck. In this section, we dis-

performance using the current caching model will quickly . ss two techniques that we feel hold promise, and then

deteriorate once the memory access penalty grows Severﬁropose an architectural philosoptpased on these two

enough to merit aggressive usage of the techniquesgcnniques, that will be our projestirst point of evalua-
described in SectioR.2. Caches are ill-suited toward sup- 4.

porting latency-tolerating techniques such as prefetches
and speculative loading. Multiple outstanding requests cang 1 Decoupling
frequently return out of orde€aches have no concept of

ordering, and may allow returning requests to evict one 20 h hieved in th .
another Some dbrts to perform heavy prefetching into a » 47] have not achieved success in the mainstream com-

cache have met with success [35], but thekmtefrelied mercial market, the philosophy of decoupling memory

on extremely regular codes with detailed and specific anal_opggiathns frc()jm computatlop l's becoming mcrEasmgIr)]/
yses that would be di€ult to generalize. These regular visible In modern commercial processors, such as the

codes would be quite easy to manage in software without aPowerPC [48] and the MIPS TFP [24].
cache, given the appropriate hardware support. Decoupled architectures have several fundamental

When massive prefetching is performed, the current advantages. They ilmplicitly .provide aggressive latency
and future working sets may conflict. Proposals in the lit- tolerance, and permit much higher performance of the exe-

erature have suggested providing separate units, one t§Ut€ Unit thr%ugh t:e use of c:uiues and renaming. The
contain the current working set and the other to fill simul- 2CC€SS unit has the potential for optimizing memory

taneously with prefetched datal[114]. Physically parti- ~ 2CCESSES, t_his will_be furthe_r discussed in Seg_tiaq
tioning the memory optimizes for a particular workload These architectures can be viewed as a generalization of

size, and will generally be inferior to a logical, program- vector processing; they lend themselves well to such com-
putations. V& believe that they hold the potential for simi-

larly high scalar code performance.

1. Subblocking is an attempt to deal with this problem, but is only a par- One of the well-known penalties to which decoupled
tial solution.

Although explicitly decoupled architectures [43, 44,

architectures are susceptible are loss-of-decoupling eventswould be moved in and out of these units by the compiler
[43] (LODs). These events are due to data and/or controlaccording to their access patterns. Having software control
dependencies that would also cause traditional processorsf the replacement algorithm, with the added benefit of
to incur lage penalties, particularly when the memory compile-time information, could prove extremelyfeef

access latency is very ¢@. They also provide an easy tive. Much more precise scheduling would be possible, as
point for optimization: memory latencies are sealy at the access time for data residing in such a unit would be

LODs. Decoupled architectures, howevenake no deterministict Conflict misses would not occua shorter
attempt to conserve the bandwidth to the memory systemicycle time would be possible due to the absence of hit/

we address this issue also in Sectidh miss detection logic, and thefettive memory size would
o be greater due to the absence of tag storage.
4.2 Explicit memory management Caches, as previously discussed, do not lend them-

The evidence presented in this paper suggests thaselves well toward latency tolerance optimizations.
caches make very irfifient use of a given amount of Prefetched data (a future working set) can collide with the
memory We claim that: (i) memory bandwidth will even- present working set in a cache, exacerbating the latency
tually become a critically limiting factoi(ii) caches do problem rather than solving it. A stronggament support-
very poorly in minimizing trdfc loads on the memory ing explicitly-managed units is the fact that the compiler
system, and (iii) caches will cause performance téesuf could logically partition the memory so as to prevent con-
greatly in the presence of memory latency reduction tech-flicts between current and future working sets of data.
niques. In this section we explore some alternatives to Software-managed local memory does have several
simple caches for the upper levels of the memory hierar-drawbacks, howeveiThe most severe shortcoming is the
chy. possibility of multiple copies of the same datum simulta-

Our view is that compilers, over time, will gradually be neously residing in diérent locations. It is unlikely that
given greater responsibilities for managing the upper lev- this disambiguation problem will ever be solved, unless
els of the memory hierarchystate-of-the-art compilers programming models evolve to support a solution. One
perform sophisticated program analyses, which is usuallydirection that holds promise for increasing the classes of
thrown away once the code is generated, making itvariables that can be managed explicitly is run-time dis-
unavailable to the run-time system. In many cases, theambiguation [13, 17, 25]. Other disadvantages of explicit
hardware is forced to re-create these analyses for both cormemory management include tremendous overheads for
rectness and better performance [45]. Substantial work hagask switching, and increased instruction counts (both
been done that tries to enable the compiler to circumventcode size and dynamic path length).
the cache, performing analyses to work against the hard-
ware [1, 53, 52]. 4.3 A long-term proposal

Several levels of compiler control are possible for the |ncreasing levels of integration and improvements in
local memory hierarchyThe compiler could issue hints packaging technology will eventually yield chips and/or
(flavors) along with the memory operations, specifying multi-chip modules that have hundreds of millions of
whether to move data into a specific level of the cache orgates. System designers will have the option of adding as
bypass the cache entirely (for data that will only be read ormuch processing capability as the memory system can
written once in a long while). These techniques would sypport; that is, any additional processing power would go
improve the difciency of the cache, by preventing the ynutilized. The rate at which the memory system can sup-
replacement of other data that might still be live with data ply operands, in turn, will be determined by-ciiip traf-
that will soon be dead [1]. fic.

By mapping diferent portions of the address space into The processor appears to be infinitely fast if adding
different cache-like memory units, the compiler could more processing capability has néeef on program exe-
place classes of data into units whose hardware policiescution time. The point at which this situation will béeef
were most suitable for the access pattern of a particulartjvely reached is fast approachinge\afigue that systems
class. Diferent hardware units could havefelient capac- designed under these constraints will always be band-
ities, access times, associativities, replacement policies, ofyidth-bound, as designers will add more processing capa-
even block sizes. Some of these units could reside closepjlity if memory bandwidth is going unused.
to the datapath than the level one cache [2]. Off-chip accesses in these systems will be so expensive

A longerterm option is to provide local memory units that physically separating the processor and memory by a
in addition to the caches; units that are completely man-

aged by t_he compileBuch units CO_U|d rEdgce both latency ; , yetter term for such a memory might be “deterministic-access mem-
(better hit rates) and memory fiaf considerably Data ory”.

10

chip boundary will be counterproductive. Rathat sys-

operands and the rate at which the memory system can

tem memory should be coupled on-chip with a processor supply them. Present designs are addressing this trend by

We expect that feature sizes will be so small thatgelar

introducing one or two levels of on-chip cache. While this

portion of on-chip real estate will be dedicated to denseon-chip memory déctively reduces memory access

memory These levels of integration will allow all system

latency the delay incurred when it is necessary to do of

memory to be moved on-chip, changing the view of the chip is high. As a consequence, processors extrapolated

system from processaentric to memory-centric.

from current designs will be more and more frequently

If more memory is required for a system, then more of stalled waiting for operands.
these homogeneous processor/memory modules will be We have agued that this problem can be alleviated by

added. This will allow the system to leveragédscades

making efective use of the on-chip memory and by maxi-

of parallel processor research. Each module will be mizing the efectiveness of dfchip bandwidth. W

responsible for processing what is in its own local mem-

ory; processing on 6thip memory will be invoked

explored the concept ofiemory efficiengyo evaluate the
effectiveness of memory in reducing needed bandwidth.

remotely rather than having the data brought locally and We then showed through simulation that cache memories
processed. W note that many in the research community do not use local memoryfifiently.

would describe this as coarse-grain dataflow

Most processor stalls occur today because thehib

The processing units on this module will be composed requests experience latenddk wide variety of latency
of a decoupled architecture. The access unit, in addition toreduction and latency tolerance techniques are being
being responsible for gathering operands to feed to theinvestigated, and some show great promise of reducing or

execute unit, will also manage a wide, rich memory hierar-

chy that will allow it tremendous flexibility in scheduling
memory operations. This will permit it to optimize both

eliminating stalls from failure to request operanddi-suf
ciently far in advance.
Many algorithms have greater computational require-

on-chip memory scheduling and remote accesses. Whemments than memory requirements. The naive implication
making remote operations, the access units of this systenof this fact is that computational requirements will outstrip

would therefore greatly resemble hardware protocol pro-

cessors from some current multiprocessor proje@m{T

the bandwidth requirements given afsigntly lage on-
chip memory We demonstrated that this assumption is

pest and FLASH) [38, 31], although they would be much false by analyzing the B€Ehip memory accesses of block-
more integrated, and would function at a considerably ing algorithms, demonstrating that as the cache grows

lower level.

larger, allowing an increase in the blocking fagttine

We also expect that the programming model and com-computation ability grows at a faster rate than the increase

piler technology will evolve to support a “data-pushing”

in the block size. Thus it is reasonable to conclude that

model, rather than a request/response model (which mayfuture processors will become increasingly memory-
remain the worst-case default). Rather than sendingbound even if the raw processing speed increases only lin-
requests for remote operands, an access unit would besarly with cache memory size.

responsible forsendingdata from its local memory that

We have proposed two techniques to address the limita-

was needed by other access units. It would also be resportions envisioned by the present trends: decoupled access/

sible for receiving and genizing data it needed from
remote access units.

execution and explicit memory management. Decoupling
memory accesses from computations minimizes the fre-

This model blurs the distinction between uniprocessors quency of stalls due to memory lateneypd provides an
and multiprocessors, and between distinct processor chip€fficient way for overlapping memory operations. Decou-

and memory chips. While radical and not yet well-defined,

this system would minimize thefethip traffic, the speed
of which is limited by the speed of light. The bandwidth
bottleneck will disappearost in the tremendously wide
paths of on-chip memorizatency will be as overlapped as
the programs permit, completely decoupled, with little
uncertainty in the high-speed memory hierar€ddgmpu-
tation would then be truly limited only by the pace of tech-
nological advance.

5 Conclusions

pling, or other techniques for prefetching-coliip oper-
ands, will efectively solve the dfchip latency problem,
enabling computational speed improvements until the
more fundamental limit of &ichip bandwidth is reached.
Explicit management of the on-chip memory permits
more eficient use of memornyEliminating the cache for
most memory accesses permits the compiler to control the
use of memory rather than trying to anticipate what the
cache might do. Prefetching, in particulaan be per-
formed much more &ictively if the compiler can fully
control which operands will be on-chip and which will be
off. In addition, the predictability resulting from explicit

Todays technolog|call trends pomt. to a _N|den|ng 9ap fetching, even in the presence of some variability fa of
between the rate at which a processing unit can consume

11

chip access time, makes scheduling of on-chip operationg9]
far more efiective.

Successors to current architectures must be limited in
their innovation due to compatibility expectations and
other forms of market inertia. While this is undoubtedly [10]
the correct approach for development of processors that
depend on commercial success for their exploration, it is
important to keep in mind the longerm efect of current
trends. This work is the initial result of a new project,
Galileo, which is focused on the long-term implications of [11]
changing technology and how current trends wifectf
architecture. The results here are only examples, but dem-
onstrate how focusing on long-term limits may lead us in
new directions, or at least help in evaluating current pro- [12]
posals in terms of their long-term potential.

Acknowledgments

We would like to thank Babak Falsafi, Stefanos Kax- [13]
iras, Subbarao Palacharla, Jim Smith, antl TVijayku-
mar for their helpful discussions. In addition, we thank
Babak and Steve Reinhardt for their CPU module code
that we used as an input to the g++ benchmark.

[14]

References
[1]

[15]

Santoshs. Abraham, Rabik. Sugumar B.R. Rau, and
Rajiv Gupta. Predictability of Load/Store Instruction
Latencies. IrProceedings of the 26th International Sympo-
sium on Micoarchitectue, pages 139-152, December
1993.

ToddM. Austin, T N. Vijaykumar and Gurinda&. Sohi.
Knapsack: A Zero-Cycle Memory Hierarchy Component.
Technical Report 189, Computer Sciences Department,
University of Wsconsin-Madison, November 1993.
Jean-Loup Baer andiéin-Fu Chen. An Eéctive On-Chip
Preloading Scheme to Reduce Data Access Penalty
Proceedings of Supssmputing '91 pages 176-186,
November 1991.

David Bailey John Barton, Thomas Lasinski, and Horst
Simon. The NAS Parallel Benchmarkschnical Report
RNR-91-002 Revision 2, NASA Ames Research Center
August 1991.

Forest Baskett. Keynote addrelgernational Symposium
on Shaed Memory MultippcessingApril 1991.

L. A. Belady A Study of Replacement Algorithms for a
Virtual-Storage ComputelBM Systems Journab(2):78—
101, 1966.

David Callahan, Ken Kennedsnd Allan Porterfield. Soft-
ware Prefetching. IRroceedings of the Fourth Symposium
on Architectural Support for Rigramming Languages and
Operating Systemgages 40-52, April 1991.

Tien-Fu Chen and Jean-Loup Ba&educing Memory
Latency via Non-blocking and Prefetching Cache®rim
ceedings of the Fifth Symposium orhtectural Support
for Programming Languages and Operating Systems
pages 51-61, October 1992.

[16]

(2]
[17]

[3]

[4] [18]

[5]
[6]

[19]

7] [20]

(8] 21]

12

Tien-Fu Chen and Jean-Loup BaérPerformance Study
of Software and Hardware Data Prefetching Schemes. In
Proceedings of the 21th Annual International Symposium
on Computer Ashitectue, pages 223-232, April 1994.
William Y. Chen, ScotA. Mahlke, Pohud&. Chang, and
Wem mei WHwu. Data Access Microarchitectures for
Superscalar Processors with Compiesisted Data
Prefetching. IrProceedings of the 24th International Sym-
posium on Miapnarchitectue, pages 69-73, November
1991.

Tzi-cker Chiueh. Sunder: A Programmable Hardware
Prefetch Architecture for Numerical Loops. Rroceed-
ings of Supeomputing '94 pages 488-497, November
1994.

Bob Cmelik and David Keppel. Shade: A Fast Instruction-
Set Simulator for Execution Profiling. Iroceedings of
the 1994 ACM SIGMETRICS Cordace on Measer
ments and Modeling of Computer Systepagies 128—-137,
May 1994.

Peter Dahl and Matthew O’Keefe. Reducing Memangf-T

fic with CRegs. InProceedings of the 27th International
Symposium on Mioarchitectue, November 1994.

Stefanos Damianakis, Kai Li, and Anne Rogers. An Analy-
sis of a Combined Hardware-Software Mechanism for
Speculative Loads.€ethnical Report TR-455-94, Prince-
ton University April 1994.

John WC. Fu and Janal. Patel. Data Prefetching in
Multiprocessor ¥ctor Cache Memories. Proceedings of
the 18th Annual International Symposium on Computer
Architectue, pages 54—63, May 1991.

John WC. Fu, JanaK. Patel, and Boh. Janssens. Stride
Directed Prefetching in Scalar ProcessoProceedings of
the 25th International Symposium on Miarchitectue,
pages 102-110, December 1992.

David M. Gallaghey William Y. Chen, ScotA. Mahlke,
JohnC. Gyllenhaal, and ¥h mei WHwu. Dynamic
Memory Disambiguation Using the Memory Conflict
Buffer. In Proceedings of the 6th Symposium onohiec-
tural Support for Pogramming Languages and Operating
Systemspages 183-193, October 1994.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy
Hiding Memory Latency using Dynamic Scheduling in
Shared-Memory Multiprocessors. Rroceedings of the
19th Annual International Symposium on ComputehAr
tectur, pages 22-33, May 1992.

JameR. Goodman. Using Cache Memory Reduce Pro-
cessoiMemory Traffic. In Proceedings of the 10th Annual
International Symposium on Computechitectue, pages
124-131, June 1983.

JameR. Goodman, Jian-tu Hsieh, Koujuch Liou,
AndrewR. Pleszkun, M. Schechter and Honestg.
Young. PIPE: A VLSI Decoupled Architecture. Rro-
ceedings of the 12th Annual International Symposium on
Computer Achitectue, pages 20-27, June 1985.

Mark D. Hill, JamesR. Larus, AlvinR. Lebeck,
Madhusudhan dlluri, and DavidA. Wood. Wsconsin
Architectural Researchobl Set. Computer Achitectue
News 21(4):8-10, August 1993.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Jia-Wei Hong and HT. Kung. I/O Complexity: the Red-
Blue Pebble Game. IRroceedings of the 13th Symposium
on Theory of Computingages 326—-333, May 1981.

L. P Horwitz, R.M. Karp, R.E. Miller, and A.Winograd.
Index Register AllocationJournal of the ACM13(1):43—
61, January 1966.

Peter ¥an-Tek Hsu. Designing the TFP Microprocessor
IEEE Micro, 14(2):23-33, April 1994.

AndrewS. Huang, Gert Slaventyyrand Joh#Paul Shen.
Speculative Disambiguation: A Compilatioechnique for
Dynamic Memory Disambiguation. IRroceedings of the
21th Annual International Symposium on ComputehAr
tectur, pages 200-210, April 1994.

Fred Jones. A New Era of Fast Dynamic RANSEE
Spectrum?29(10):43—49, October 1992.

NormanP. Jouppi. Improving Direct-Mapped Cache Per-
formance by the Addition of a Small Fully-Associative
Cache and Prefetch Bafs. In Proceedings of the 17th
Annual International Symposium on Computechitec-
ture, pages 364-373, May 1990.

AlexanderC. Klaiber and Henri. Levy. An Architecture
for Software-Controlled Data Prefetching. Pmoceedings
of the 18th Annual International Symposium on Computer
Architectue, pages 43-53, May 1991.

David Kroft. Lockup-Free Instruction Fetch/Prefetch
Cache QOganization. InProceedings of the 8th Annual
International Symposium on Computechitectue, pages
81-87, May 1981.

H.T. Kung. Memory Requirements for Balanced Com-
puter Architectures. IProceedings of the 13th Annual
International Symposium on Computechitectue, pages
49-54, June 1986.

Jefrey Kuskin etal. The Stanford FLASH Multiprocessor
In Proceedings of the 21th Annual International Sympo-
sium on Computer A&hitectue, pages 302-313, April
1994.

MonicaS. Lam, Edwar&. Rothbeg, and MichaeE.
Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. IfProceedings of the Fourth Sympo-
sium on Achitectural Support for Rigramming Lan-
guages and Operating Systemages 63—74, April 1991.
SallyA. McKee and Wliam A. Wulf. Access Ordering
and Memory-Conscious Cache Utilization.Rroceedings
of the First International Symposium on High-Perfor-
mance Computer Ahitectue, January 1994.

Geofrey D. McNiven and Edwar®. Davidson. Analysis
for Memory Referencing Behavior For Design of Local
Memories. InProceedings of the 15th Annual Interna-
tional Symposium on Computerchitectue, pages 56—63,
May 1988.

ToddC. Mowry, MonicaS. Lam, and Anoop Gupta.
Design and Evaluation of a Compiler Algorithm for
Prefetching. InProceedings of the Fifth Symposium on
Architectural Support for Rigramming Languages and
Operating Systempages 62—73, October 1992.
Subbarao Palacharla andR.Kessler Evaluating Stream
Buffers as a Secondary Cache Replacemenkrdeeed-
ings of the 21th Annual International Symposium on Com-

13

[37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

puter Achitectue, pages 24-33, April 1994.

Rambus IncArchitectural OverviewMountain Wfew, Cal-
ifornia, 1992.

SteverK. Reinhardt, Jamds. Larus, and David\. Wood.
Tempest and yiphoon: UseiLevel Shared Memoryln
Proceedings of the 21th Annual International Symposium
on Computer Athitectue, pages 24—33, April 1994.

Anne Rogers and Kai Li. Software Support for Speculative
Loads. InProceedings of the Fifth Symposium oohec-
tural Support for Pogramming Languages and Operating
Systemgspages 38-50, October 1992.

RichardM. Russel. The CR%A1 Computer SystenCom-
munications of the ACM21(1):63-72, January 1978.
AlanJay Smith. Cache Memorie€omputing Surveys
14(3):473-530, September 1982.

AlanJay Smith. Bibliography and Readings on CPU
Cache Memories and Relatedplcs. Computer Achitec-
ture News 14(1):22—-42, January 1986.

Jame<£. Smith. Decoupled Access/Execute Computer
Architectures. InProceedings of the 9th Annual Interna-
tional Symposium on Computerchitectue, pages 12—
119, April 1982.

Jame<£. Smith. Decoupled Access/Execute Computer
Architectures. ACM Transactions on Computer Systems
2(4):289-308, November 1984.

Jame<£. Smith. Invited talk.21th Annual International
Symposium on Computerchitectue, April 1994.

Jame<E. Smith. Private Communication. September 1994.
Jame<£. Smith etal. The ZS-1 Central Processbr Pro-
ceedings of the Second Symposium arhifectural Sup-
port for Pngramming Languages and Operating Systems
pages 199-204, October 1987.

Jame<£. Smith and Shlomo ®iss. PowerPC 601 and
Alpha 21064: A @ale of Wo RISCs.IEEE Computer
27(6):46-58, June 1994.

IEEE Computer SocietylEEE Standard for High-Band-
width Memory Interface Based on SCI Signalirerfinol-
ogy (RamLink). Draft 1.00 IEEE P1596.4-199X,
December 1993.

Standard Performance Evaluation Corporati@PEC
Newsletter Fairfax, \irginia, December 1991.

RabinA. Sugumar and Santosh Abraham. Hfcient
Simulation of Caches under Optimal Replacement with
Applications to Miss Characterization. Rroceedings of
the 1993 ACM SIGMETRICS Cordace on Measer
ments and Modeling of Computer Systepages 24-35,
May 1993.

Olivier Temam, Elan®. Granston, and WMam Jalby To
Copy or Not to Copy: A Compileihe Technique for
Assessing When Copying Should be Used to Eliminate
Cache Conflicts. IfProceedings of Supswsmputing '93
pages 410419, November 1993.

MichaelE. Wolf and MonicaS. Lam. A Data Locality
Optimizing Algorithm. InProceedings of the 1991 Confer-
ence on Rsgramming Language Design and Implementa-
tion, pages 30—44, June 1991.

