
1

The Declining Effectiveness of Dynamic Caching for General-Purpose
Microprocessors

Douglas C. Burger, James R. Goodman, Alain Kägi

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street, Madison, Wisconsin 53706 USA
galileo@cs.wisc.edu

Abstract
The computational power of commodity general-pur-

pose microprocessors is racing to truly amazing levels. As
peak levels of performance rise, the building of memory
systems that can keep pace becomes increasingly problem-
atic. We claim that in addition to the latency associated
with waiting for operands, the bandwidth of the memory
system, especially that across the chip boundary, will
become a progressively greater limit to high performance.
After describing the current state of microsolutions aimed
at alleviating the memory bottleneck, this paper postulates
that dynamic caches themselves use memory inefficiently
and will impede attempts to solve the memory problem. We
present an analysis of several important algorithms, which
shows that increasing levels of integration will not result
in computational requirements outstripping off-chip band-
width needs, thereby preserving the memory bottleneck.
We then present results from two sets of simulations, which
measured both the efficiency with which current caching
techniques use memory (generally less than 20%), and
how well (or poorly) caches reduce traffic to main memory
(cache sizes up to 2000 times worse than optimal). We
then discuss how two classes of techniques, (i) decoupling
memory operations from computation, and (ii) explicit
compiler management of the memory hierarchy, provide
better long-term solutions to lowering a program’s mem-
ory latencies and bandwidth requirements. Finally, we
describe Galileo, a new project that will attempt to pro-
vide a long-term solution to the pernicious memory bottle-
neck.

1 Introduction

 The growing inability of current memory systems to
keep up with processor requests has significant ramifica-
tions for the design of microprocessors in the next decade.
Baskett recently estimated [5] that the annual rate of per-

formance increase for single-chip microprocessors is 80%
(roughly 5% permonth). Extrapolating this rate ten years
into the future suggests single-processor performance of
roughly 30,000 Spec-marks by the year 2005.

While it is not unthinkable that such processing power
might be achieved in this time frame, the authors believe
that other limitations on performance are likely to emerge
that render the achievement of such raw processing power
irrelevant. The design of a memory system capable of sat-
isfying such voracious processors will become one of the
key technical challenges facing system designers. We pos-
tulate that processors will eventually be designed to be just
fast enough so that they can consume operands as fast as
the memory system can produce them. Currently, the
opposite is true: the memory system is designed to keep up
with the processor. Performance of the system will then be
largely determined by (1) how effectively the on-chip
memory is able to maintain operands, minimizing the fre-
quency of off-chip access, and (2) the rate at which the
external memory system can supply operands.

Presently, the most serious concern with memory sup-
plied from off-chip is latency: the increasing clock rate of
emerging processors and the ability to issue multiple
instructions per cycle means that even the fastest off-chip
access is growing to scores or even hundreds of instruction
issue times. Much research in computer architecture today
is focused on minimizing or tolerating this latency. We
anticipate that some of the techniques being researched
will be successful in eliminating at least a large fraction of
the latency. Such a success will then expose a deeper and
more fundamental limit: the raw bandwidth achievable
from outside the chip (or module).

It is our contention that the current memory system
model (dynamic caches sitting in between the processor
and large, off-chip main memories) will be fundamentally
incapable of supporting long-term solutions to either the
latency or the bandwidth problems. In this paper, we sur-
vey current techniques being explored to tolerate latency
through prescient requests for needed data. In the contextThis work is supported in part by NSF Grant No. CCR-9207971 and an

unrestricted grant from Apple Computer Inc.

2

of these techniques, we make arguments as to why the
bandwidth bottleneck will eventually arise, and perform
an analysis of several algorithms that supports our argu-
ment. We then present experimental evidence that bolsters
our hypothesis, measuring both the effectiveness with
which caches use their memory, and the gap between the
bandwidth requirements of a cache and a near-optimal
memory of the same size.

The effective use of local (on-chip) memory will be
essential for alleviating the memory bottleneck. We
develop the notion ofmemory efficiency [34, 46], to mea-
sure how successfully current microprocessors make use
of their local memories (which are primarily cache mem-
ory). We will use this measure to demonstrate that current
microprocessors use their on-chip memory very poorly,
suggesting that alternative ways of managing the on-chip
memory may be far more effective than cache memory.

Our presentation then turns to a discussion of several
techniques that we believe have much more potential for
providing extremely fast future processors with a suffi-
cient stream of operands. Finally, we introduceGalileo, a
project dedicated to finding long term solutions to this
problem, and propose an advanced system that is the first
step in our search for a solution to the memory bottleneck.

The reminder of our paper is organized as follows:
Section2 describes the memory bottleneck in great detail
and presents arguments supporting the formation of a
long-term bandwidth bottleneck. Section3 discusses cur-
rent caches in this context, describing why they have been
so successful and why we believe they will ultimately be
limited. Section4 presents a couple of alternatives to the
current memory system organization, and introduces the
architecture that we hypothesize may eliminate memory
system limitations for ultra-fast processors. Section5
draws final conclusions from this work and describes the
direction in which our work is headed.

2 The memory bottleneck

As new fabrication technologies mature, feature sizes
decrease, reducing capacitance and permitting faster
switching of gates. As the feature size drops, the surface

density of transistors increases as . These trends
have produced CPUs with ten million transistors and
DRAMs with 64 MB per chip. To effectively utilize these
processors, designers have been moving more and more
high-speed memory onto the processor chip, memory that
can effectively use the tremendous intra-chip bandwidths
available.

Unfortunately, not all physical trends follow these
curves. Off-chip bandwidth grows slowly, as packaging
technology matures. The cost per pin is dropping far more
slowly than the cost per transistor. The rate at which data

λ

O λ 2–()

can be moved across these pins is also increasing more
slowly, as are the bandwidths of inter-chip connections.
Access times for DRAMs are diminishing more slowly
than are cycle times for CPUs, at the annual rate of 5-10%
[1]. Jointly, these factors produce the frequently-
expounded-uponmemory bottleneck, in which accesses to
main memory, in terms of processor cycles, become pro-
gressively more expensive as the “5% months” pass.

2.1 Characterizing memory delays
The execution of a task can be roughly decomposed

into periods according to which component of the system
limits the speed of execution. We divide the task’s execu-
tion into beingprocessor-bound and memory-bound. A
task is processor-bound when the pipeline is not stalled
waiting for an operand from memory, and memory-bound

when it is.1 A memory-bound phase of execution can be
subdivided into periods of beinglatency-bound or band-
width-bound. Latency-bound describes a task that is
stalled because a memory operation was not issued suffi-
ciently ahead of the operand’s first use. A task is band-
width-bound when it contains sufficient parallelism to
prevent stalling for a contention-free memory access, but
contention for memory increases the access latency

enough to cause a processor stall.2

2.2 Current solutions
Current methods for reducing stall time associated with

main memory accesses fall into two broad categories: (i)
reducing latency, and (ii)tolerating latency.

Techniques for reducing the mean access latency for
memory operands can be subdivided into two classes:
reducing thenumber of access penalties, and reducing the
length of the access penalty. Memory access penalties can
be avoided by keeping live values (that will be referenced
more than once) physically close to the processor. Caches
are the ubiquitous technique for doing so. By automati-
cally moving missing references into a local (i.e., on-chip)
memory, a cache exploits temporal locality when another
reference to that word is issued later. By using cache lines
that are larger than a word, a cache implicitly performs
transparent, speculative prefetching of the words around
the missed address, attempting to exploit spatial locality.
By increasing the size of an on- or off-chip cache, more
live values can be simultaneously held near the processor,
reducing the number of requests issued to main memory.
Techniques that improve a cache’s hit ratio (e.g., higher

1. Another definition for processor bound: if doubling the clock cycle
time doubles the execution time of a phase of computation, it is proces-
sor-bound.
2. Alternatively, a phase is bandwidth-bound if providing more memory
bandwidth would eliminate processor stalling.

3

associativity and better replacement policies) tend to
reduce the number of main memory requests. While
caches are commonly thought of as latency-reducing units,
local memories in general, and caches in particular, have
also been identified [19] as a way of reducing the band-
width requirements. Traffic to the next lower level of the
memory hierarchy is reduced by the cache servicing some
fraction of the requests at the higher level.

Techniques for reducing the actual main memory
latency include faster interconnects, more levels of off-
chip caches, and reduced access times for DRAMs [26, 49,
37]. Bus clock speeds and data widths are increasing.
Page-mode DRAMs reduce the access latency to multiple
adjacent memory references [33]. Decreasing feature sizes
are driving down DRAM cycle times, by 5-10% [1] per
year.

Techniques for tolerating latency have been widely
studied, and there is still considerable ongoing research in
this area. We partition these techniques into two classes:
scheduling andprefetching. Scheduling attempts to over-
lap a memory access with other useful instructions,
exploiting available instruction-level parallelism.
Prefetching techniques, conversely, provide non-binding
hints to the memory system that attempt to bring immi-
nently referenced data closer to the processor.

In order for memory accesses to be scheduled so that
useful work may be performed in parallel, memory opera-
tions must be non-blocking. Lockup-free caches [29]
allow multiple memory requests to be outstanding, and
compilers attempt to place as many instructions as needed
between a non-blocking load and the first use of its result.
The issuing non-blocking loads can be thought of as a first
step toward decoupling memory accesses from computa-
tion. Gharachorloo, Gupta and Hennessy [18] have
explored the use of dynamically scheduled processors to
hide memory latencies. While their exploration was per-
formed in the context of shared-memory multiprocessors,
some of their conclusions are more broadly applicable.

Prefetching techniques consist of both hardware and
software prefetches. Hardware prefetching typically uses
dynamic stride detection to perform run-time calculation
of prefetch addresses to be issued [3, 15, 16]. The over-
heads of hardware prefetching are the cost for the addi-
tional hardware, and the limited ability of the dynamic
units to perform any prefetching other than through arrays
with linear strides. A different form of hardware prefetch-
ing consists of stream buffers [27, 36]. Chen and Baer [8]
evaluated the effectiveness of lockup-free caches and
hardware prefetching, and proposed a hybrid scheme
based on a combination of these approaches.

Software prefetching is much more flexible than hard-
ware prefetching, having the advantage of compile-time
knowledge, but pays the price of software overhead, both

in instructions issued and code size [7, 28, 35]. Chen et al.
[10] examined the trade-offs between prefetching data
directly into the cache and prefetching into a prefetch
buffer. The lack of run-time knowledge can also be an
impediment to purely software techniques. Some promis-
ing approaches use hybrid hardware/software techniques,
issuing limited instructions that provide hints to the
prefetch hardware [11]. Chen and Baer [9] studied soft-
ware and hardware prefetching schemes in the context of a
multiprocessor and proposed a hybrid approach combin-
ing software and hardware schemes.

2.3 The bandwidth bottleneck
We believe that these substantial efforts to reduce laten-

cies of contention-free memory references will ultimately
be successful, even for less regular non-scientific codes.
The relative success of this effort will result in the expo-
sure of a more fundamental limit to performance, the
memory bandwidth bottleneck. Two factors will drive this
exposure. Increasingly faster program execution, with pro-
gressively fewer stalls waiting for operands, will eventu-
ally reach the point where requests to memory are issued
faster than they can be handled. Also, techniques used to
reduce memory latencies, such as speculative loads and
prefetches, will trade increased bandwidth consumption
for lower latency, hastening the point at which congestion
in the memory system becomes severe. Providing suffi-
cient off-chip and memory bandwidth to supply a high-
speed future processor with a poorly functioning on-chip
memory will not be a cost-effective solution. We now
show that neither the latency reduction nor the latency tol-
erance techniques already discussed will prevent programs
from becoming bandwidth-bound.

2.3.1 Reducing memory access latency

Reducing the physical time needed for a main memory
access can increase the bandwidth to main memory. How-
ever, DRAM access times are dropping much more slowly
than those of CPU clocks—on the order of 5-10% per year
[39, 14, 1]. The rate of increase of processor pins is much
slower than that of transistor density. Although there are
significant breakthroughs in packaging technology on the
horizon, the issues of reliability, power, and cost will pre-
vent pins from sustaining growth commensurate with the
rate of transistor increase. The speed of light is also a fun-
damental limit to the amount by which off-chip access
latencies can be reduced. The union of these trends and
limits indicates that physical increases in off-chip band-
width are unlikely to match increases in processing capa-
bility, particularly for when cost is accounted.

2.3.2 Reducing frequency of memory accesses

Increasing levels of integration will permit substantial

4

Algorithm Memory Computation Memory traffic
Processing/
traffic ratio

TMM

Stencil

FFT

Sort

Table 1: Application growth rates [30]

O N 2() O N 3() O N 2 S⁄() f

O N 2() O N 2() O N 2 S⁄() f

O N() O N N2log() O N N2 S2log⁄log() f2log

O N() O N N2log() O N N2 S2log⁄log() f2log

increases in on-chip memory. It is possible that such
increases will reduce memory traffic requirements enough
so that many algorithms that were formerly memory-
bound become processor-bound. More local memory will
enable greater reuse of operands, which will reduce the
traffic to main memory required by the program. This will
raise the ratio of computation to memory traffic.

Over time (measured in months or years), technological
advances will permit faster processing and a higher band-
width across the chip boundary. The ratio of the two quan-
tities is the processing capability per unit of off-chip traffic
due to technological advances. Assume that some compu-
tation is bandwidth-bound, and that the change in the latter
ratio as time progresses is less than the change in the ratio
of computation to memory traffic (due to more on-chip
memory). The increased amount of computation made
possible by the increase of on-chip memory will then out-
strip the rate at which the processor is getting faster (per
unit of memory traffic), and the bandwidth-bound compu-
tation becomes processor-bound. Conversely, if the pro-
cessor speed increases at a sufficient rate to ensure that it
can always handle the increased availability of on-chip
operands, then the computation will remain bandwidth-
bound.

Naively, one would expect the processing requirements
to eventually overwhelm the bandwidth limitations, since
for many algorithms the computation grows faster than do
the memory requirements. For example, the conventional
algorithm of matrix multiply (multiplying two
matrices) has total memory requirements that grow as

, while computation grows as .
This simplistic argument is misleading. Consider the

conventional matrix multiplication, using a tiled algorithm
where tiles are of size . It is easily shown [22, 32]
that the traffic between the on- and off-chip memory is

proportional to . Assume that the processor is
sufficiently fast for the algorithm implemented to take full
advantage of the on-chip memory. Holding constant

N N×

O N 2() O N 3()

T N«

2N 3 T⁄ N 2+

N

keeps the amount of computation constant. If the on-chip
memory is increased, less memory traffic is required,
allowing the program to complete in less time. An increase
in the on-chip memory (which is of size) by a factor of

would increase by , which would reduce the off-chip

traffic by . Therefore, the execution will still be
bandwidth-bound if the processor speed is also increased

by a factor of . The rate of increase in processor speed
need be proportional only to the square root of the rate of
increase of local memory size for the program to remain

bandwidth-bound.1 Table1 shows such derivations for the
following algorithms: TMM (tiled matrix multiply), Sten-
cil (an algorithm operating on a matrix, which
repeatedly updates each element with a weighted sum of
neighboring elements), FFT (an -point fast Fourier
transform), and Sort (merge sort). The right-most column
depicts the change in the ratio of computation to required
memory traffic for each application, as is increased by a

factor of . If this quantity grows faster than the process-

ing speed as increases, a computation will eventually
become processor-bound. However, the minimum rate of
processing speed increase necessary to maintain the band-
width bottleneck of a computation is certainly less than
existing rates of processor improvement. Increasing the
local memory will thereforenot solve the bandwidth prob-
lem.

2.3.3 Tolerating latency

Lockup-free, or non-blocking, caches are an important
device for tolerating memory access latencies. While non-
blocking caches make feasible the elimination of one
source of memory latency (stall on every miss), they may
create another source of latency: contention in the memory

1. Whether external caches count as local memory depends on whether
the metric of interest is traffic across the processor pins or traffic seen at
main memory.

S f

T f

O f()

f

N N×

N

S

f

S

5

system. The current solutions being proposed to tolerate
memory latencies, described in Section2.2, allow memory
operations to be overlapped with other instructions,
including other memory references. This increases the
bandwidth load on the memory system by trying to move
the same number of requests across the chip boundary in a
shorter time.

Optimizations that better tolerate memory latencies, in
addition to increasing the density of memory requests, fre-
quentlyincrease the total bandwidth requirement of a pro-
gram, trading greater bandwidth needs for reduced
latencies. Prefetches can increase bandwidth requirements,
particularly when they are issued too early, by evicting
needed data in the cache that would have been used before
the prefetched data was needed. Prefetched data may also
be evicted from the cache by another reference before it is
actually used, forcing it to be re-fetched. A more severe
bandwidth increase occurs with speculative prefetches and
speculative loads. When the compiler has an insufficient
number of instructions within a basic block to hide the
memory latency, the prefetch or load may belifted [39]
across a branch, becoming speculative. Speculative mem-
ory operations that turn out to be unnecessary will thereby
increase the total bandwidth requirement of a program.

Latency tolerating techniques will generally only
increase the bandwidth load on the memory system, not
reduce it. We have shown that for at least four algorithms,
increasing the on-chip memory to reduce the average
memory operation latency willnot eliminate a bandwidth
bottleneck over time. We have also described qualitatively
why decreasing the total memory bandwidth requirements,
by reducing the number of off-chip accesses, will not out-
strip the increased bandwidth requirements due to faster
processors. This leads us to conclude that memory band-
width will emerge as a major new limitation to system per-
formance as the fraction of uncongested miss latencies
that stall the processor diminishes. Current techniques will
not alleviate, but will more likely exacerbate, the pending
situation.

3 Evaluating the efficacy of caches

Caches are becoming almost ubiquitous in the micro-
processor industry. Every major general-purpose, com-
modity processor recently announced has an on-chip
cache. The community of scientific machine designers has
traditionally been reluctant to use caches, and many of the
canonical scientific supercomputers used no caches at all
[40]. Said designers are increasingly being forced to
design machines with caches, however, as cost/perfor-
mance curves increasingly mandate the use of general-
purpose processors.

3.1 Why caches?
Caches have become so prevalent primarily because

they are transparent; they generally offer visible, and
sometimes substantial, performance improvement while
requiring no support from the compiler, programmer, or

architecture.1 Caches take advantage of both temporal and
spatial locality. They can satisfy multiple references to the
same word, and perform implicit prefetching by imple-
menting block sizes that are larger than one word. They
can thereby eliminate most references to main memory.
They have also been extensively studied, and are conse-
quently very well understood. Voluminous papers examin-
ing block sizes, associativities, replacement policies,
virtual versus physical addressing, and unification versus
separation of instruction and data caches have appeared in
the literature [41, 42].

3.2 Evaluating local memory efficiency
Caching as a technique has also been so successful

because it is effective at reducing latency penalties and
memory system bandwidth. Given the rate at which mem-
ory penalties are increasing, however, it is becoming pro-
gressively more important to use the available amount of
local memory as well as possible. In this section we char-
acterize how well a given local memory (cache) is used.

We define theefficiency of a given memory to be the
average fraction of the memory that holds “live” data [34,
46] at any point in the execution of the program. A frame
in the cache is defined to belive if its contents will be read
again before they are written; i.e, a block’s lifetime
extends from its first write until the last time it is read.

We have modified DineroIII [21] and used Shade [12],
a tracing tool from Sun, to produce measurements of a
cache’s efficiency. Live time is considered to be the time
between a store and a read hit, or two consecutive read
hits. We measured “liveness” on the granularity both of
individual words and of cache blocks, which were
assumed to be 16 bytes (with 4-byte words) for the pur-
poses of this study. We varied cache sizes, simulating
cache sizes of all powers of two between 4KB and 2MB,
inclusively. We simulated caches with set associativities of
1, 2, and 4. The experiments were run on the following
benchmarks: buk, compress, eqntott, g++, su2cor, and
swm256. Buk is a NAS [4] kernel that implements bucket
sort. G++ is release 2.6.0 of the Gnu C++ compiler. It gen-
erated the assembly code of the preprocessed CPU module
of a multiprocessor simulator, and was run with full opti-
mization enabled. Compress, eqntott, swm256, and su2cor
are all from the Spec92 [50] suite. Compress and eqntott

1. This is not to say that such support has never been provided; it is sim-
ply not required for correctness.

6

were run with the default inputs. Su2cor was run with a
short input, and swm256 was run with the default input for
20 iterations. All benchmarks were traced on Sun Sparcs-
tation 10 workstations, and compiled with-O3 -mflat
using GCC version 2.6.0. The “mflat” option compiles
code without using the SPARC register windows. Using
register windows would have hidden a fraction of the
addresses produced by the benchmark code from our trace,
as instructions from traps on window overflows and
underflows are not output by Shade. The libraries we used
were unavoidably compiled with register windows, and
therefore generated some addresses that were not included
in our trace.

Figure1 plots the measured efficiency of 4-way set-
associative caches for sizes from 4KB to 2MB. Figure1(a)
depicts efficiencies calculated by differentiating between
live and dead words within blocks, and Figure1(b) shows
cache efficiencies examining blocks rather than individual
words (e.g., the period in between two references to differ-
ent words in the same line would be considered live). For
the most part, our simulations follow a predictable trend.
Caches substantially smaller than the data set size (and/or
the working set size) of the traced application show poor
efficiency, as loaded lines are evicted after few uses and
the cache thrashes. Efficiency improves with increasing
cache size, peaking at the point when the working set, and
occasionally the entire data set, fits in the cache.

The numbers obtained by varying set associativity did
not deviate substantially from the results already pre-
sented. Higher set associativities tended to produce
slightly better efficiencies, although we observed a few

slight exceptions. We present the efficiency numbers for 4-
way associative caches only, to present the most optimistic
results. In order to establish that the low efficiencies were
due to poor use of the cache, and not cold-start or dead-
data (at program termination) effects, we measured the
dead time before a frame’s first and after a frame’s last ref-
erence. Those quantities were appropriately negligible,
indicating that the programs were sufficiently long-run-
ning to prevent endpoint effects from biasing our results.

What is surprising about these numbers is not the
shapes of these curves but the scales; the efficiencies tend
to remain under 20% for cache sizes that are much smaller
than the data set size of the applications. The word-level
efficiency numbers are even worse; they tend to be lower
than 10% for caches smaller than the applications’ data
sets. The ratio between the block- and word-level efficien-
cies gives a rough idea of what percentage of the words in
the block are actually used. Codes that access data struc-
tures linearly, and with a stride of one, will tend to produce
similar efficiencies for the two experiments; this is clearly
demonstrated by the numbers for swm256, the one array-
dominated code depicted. In general, the word-level effi-
ciencies should always be less than block-level efficien-
cies, since if any word in a block is live, block-level runs
count the whole block as live. The one data point where
this relation does not hold is swm256 with a 2MB cache.
The block-level efficiency is lower than the word-level
efficiency here because of the way liveness is calculated
for blocks; a store marks everything in the block as dead.
In this particular case, blocks that contained multiple live
words were declared dead in the block-level calculation,

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Size of cache

E
ff

ic
ie

nc
y

(a) Word-level granularity

buk

compress

eqntott

g++

su2cor

swm256

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Size of cache
E

ff
ic

ie
nc

y

(b) Block-level granularity

Figure 1. Efficiency measurements

7

enough that the block-level efficiency was driven under
the word-level efficiency.

Although the efficiencies for the larger caches tend to
be high compared to those for the smaller caches, these are
uninteresting data points because of the close correspon-
dence between the larger cache sizes and the applications’
data sets. Our benchmarks were the limiting factor at this
point, and were we to perform runs on much larger appli-
cations, the efficiencies for 256KB-1MB caches would be
as low as the small cache efficiencies displayed in
Figure1. The two benchmarks that support this claim are
swm256 and buk, both of which have larger data sets than
the other benchmarks. Swm256 has a data set of about
4M, and buk’s is roughly 6MB. Both programs display
efficiencies of under 5% for aone megabyte cache. As
with the other benchmarks, efficiency rises precipitously
when the cache is sufficiently large to hold the working
set, which for these two benchmarks is about 2MB. Buk
and swm256 efficiencies for a 4MB cache decline from
those of a 2MB cache (the 4MB results were not graphed).
Even when the cache size is closest to the working-set
size, the highest word-level efficiencies were just above
50%, which is a poor best-case utilization.

3.3 Reducing memory bandwidth
The existence of such low efficiencies for interesting

workloads demonstrates that the potential exists for much
better use of local memory than a cache. Given our
hypothesis that memory bandwidth will become a critical
limitation, we ran a series of experiments designed to mea-
sure the gap between the memory traffic generated by a
cache and that generated by an unreasonably well-man-
aged local memory.

The latter memory unit, to which we will refer asn-
opt, is simulated as a fully-associative (level-one) cache
that has a block size of one word. The replacement policy
usesMIN [6], in which dead cache blocks are always vic-
timized. If every block in the cache is live, the cache block
that will be referenced farthest in the future is chosen as a
victim. This policy is calledn-opt (near-optimal)
becauseMIN is not optimal; in some cases it is preferable
to evict a clean block that will be referenced sooner, rather
than a dirty block that will be referenced later [23]. Since
MIN assumes a perfect oracle, however, and is unlikely to
be realized in the near future,n-opt is a sufficient bound
for our study.

To obtain these results, we used Shade [12] to generate
an address trace in an appropriate format. The traces were
then fed to Cheetah [51], with which we computed miss
ratios for both then-opt model and a normal (L1) cache,
using a least-recently-used replacement policy with set
associativities of 1 and 4 (lru-1 andlru-4). The lru
block sizes were 16 bytes. We chose a smaller line size so

as not to bias our results in favor ofn-opt. Based on the
number of cache misses, we calculated the total amount of
data moved in between the cache and main memory. We
were forced to ignore write-back traffic, since our memory
traffic numbers were calculated from the miss rates of the
caches.

Figure2 graphs the total memory traffic (program I/O)
generated for the different cache models. The traffic, in
megabytes, is presented as a function of cache size for
compress, g++, eqntott, and swm256. The results for buk
are similar to those for eqntott, as they both perform heavy
sorting, and are not presented here. As with the efficiency
experiments shown in Figure1, we consider only the
cache sizes that are substantially smaller than the data set
sizes, roughly 128KB and smaller, to be interesting, but
we present the larger numbers for completeness.

For compress,n-opt reduces the bandwidth generated
over that of bothlru-1 andlru-4 by roughly a factor
of 5.N-opt does a much better job of keeping the heavily
accessed parts of the 64KB hash table resident in the local
memory. The bandwidth for g++ is similarly reduced by a
factor between 2 and 3. G++ is characterized by a large,
chaotically accessed data set, portions of which display
moderate temporal locality. Hence there is no sharp drop-
off in bandwidth requirements for any sizes or models, just
a gradual lessening of memory traffic as more and more of
the data set fits in the local memory. Eqntott and swm256
demonstrate a similar pattern: small local loops or work-
ing sets cause thrashing forlru-1 andlru-4, but not
for n-opt. Once the local memory is sufficiently large,
the lack of large-scale temporal locality in these codes
(some in eqntott and virtually none in swm256) causesn-
opt andlru to perform similarly.

 Smalln-opt memories reduce the memory traffic to
surprisingly low levels, particularly when compared
against the size of anlru-4 cache necessary to produce
an equivalent amount of traffic. Example comparisons are
shown by the dotted lines in Figure2. The quotients of the
lru-4 size divided by then-opt size for the examples
shown are approximately 2000, 60, 250, and 130, for (a),
(b), (c), and (d), respectively. These examples corroborate
the poor efficiency shown in Section3.2.

The relative flatness of then-opt curves shows that
for memory that is managed very well, surprisingly small
amounts will greatly reduce the memory traffic. Although
n-opt represents an unrealizable point, the memory size
differentials needed to generate the same amount of traffic
are so large that less aggressive schemes should provide
substantially better-used memory.

3.4 Why not data caches?
The results in Section3.2 demonstrate that data caches

use memory inefficiently (lowering their effective size)

8

0

25

50

75

100

125

150

175

200

225

250

275

300

32 128 512 2K 8K 32K 128K 512K 2M 8M

Size of cache (bytes)

T
ot

al
 p

ro
gr

am
 I

/O
 (

m
eg

ab
yt

es
)

(a) compress

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1000

1100

1200

32 128 512 2K 8K 32K 128K 512K 2M 8M

Size of cache (bytes)

T
ot

al
 p

ro
gr

am
 I

/O
 (

m
eg

ab
yt

es
)

(b) g++

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

32 128 512 2K 8K 32K 128K 512K 2M 8M

Size of cache (bytes)

T
ot

al
 p

ro
gr

am
 I

/O
 (

m
eg

ab
yt

es
)

(c) eqntott

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1000

1100

1200

1300

1400

1500

32 128 512 2K 8K 32K 128K 512K 2M 8M

Size of cache (bytes)

T
ot

al
 p

ro
gr

am
 I

/O
 (

m
eg

ab
yt

es
)

(d) swm256

Direct-Mapped

4-way Set Associative

Near-Optimal

Figure 2. Memory bandwidth differentials

9

when a program does not fit entirely in the cache.
Section3.3 showed that near-optimally managed local
memory generates the same amount of memory traffic as
caches that are from one to three orders of magnitude
larger (even without prefetching, etc.). In a bandwidth-
bound system, where the effectiveness of local memory
must be maximized in order to minimize memory traffic,
data caches perform extremely poorly.

It is precisely the generality of current caches that will
limit their effectiveness for future microprocessors. Their
transparency comes at a cost; preventing the system from
treating them as a resource to be carefully managed. Both
programmer knowledge and compile-time information are
unavailable to caches, which are currently incapable of
using such information anyway. Cache organizations are
fixed, limited to one replacement policy, which can
severely degrade performance in cases where the policy is
ill-suited for the reference stream. They have limited asso-
ciativity, generating conflicts when substantial numbers of

dead frames exist in the cache. The block size is fixed,1

preventing requests for larger blocks (incurring extra
misses) when there is more spatial locality, and smaller
blocks (consuming unnecessary bandwidth) when there is
less or none. The tag storage is certainly not negligible
(and is not considered in our studies presented above). The
fixed binding of addresses to data in the cache prevents
any sort of partitioning scheme to be performed on the
cache.

Although the aforementioned problems are limiting,
performance using the current caching model will quickly
deteriorate once the memory access penalty grows severe
enough to merit aggressive usage of the techniques
described in Section2.2. Caches are ill-suited toward sup-
porting latency-tolerating techniques such as prefetches
and speculative loading. Multiple outstanding requests can
frequently return out of order. Caches have no concept of
ordering, and may allow returning requests to evict one
another. Some efforts to perform heavy prefetching into a
cache have met with success [35], but these efforts relied
on extremely regular codes with detailed and specific anal-
yses that would be difficult to generalize. These regular
codes would be quite easy to manage in software without a
cache, given the appropriate hardware support.

When massive prefetching is performed, the current
and future working sets may conflict. Proposals in the lit-
erature have suggested providing separate units, one to
contain the current working set and the other to fill simul-
taneously with prefetched data [11, 14]. Physically parti-
tioning the memory optimizes for a particular workload
size, and will generally be inferior to a logical, program-

1. Subblocking is an attempt to deal with this problem, but is only a par-
tial solution.

mable partitioning of a single unit. As more and more par-
allelism is exploited by future systems, careful scheduling
will become even more of a necessity than it is today, and
the nondeterminacy of today’s caches will become prohib-
itively expensive.

Finally, theallocation of frames on a cache miss may
drastically reduce cache efficiency when heavy prefetch-
ing is performed. Empty, allocated memory may be a
major contributor to increased bandwidth load and poor
utilization of memory, particularly in a bandwidth-bound
system. Allowing slots to be allocated when datareturns
may serve as an important optimization, but this is far
beyond the capabilities of current caches, and introduces
difficult new problems.

 In terms of software support needed (none) and hard-
ware complexity, current caches are quite inexpensive.
The performance gap between caches and more complex,
expensive memory structures, however, is growing along
with the memory access penalty. As this division grows,
the cost of more complicated memory structures will
become increasingly justifiable.

4 Long-term solutions

This work is part of project that we callGalileo. The
goal of our project is to identify long-term, technology-
driven impediments to performance, and propose solu-
tions. In this vein, we are attempting to determine what
techniques hold the best promise for providing a long-term
solution to the memory bottleneck. In this section, we dis-
cuss two techniques that we feel hold promise, and then
propose an architectural philosophy, based on these two
techniques, that will be our project’s first point of evalua-
tion.

4.1 Decoupling
Although explicitly decoupled architectures [43, 44,

20, 47] have not achieved success in the mainstream com-
mercial market, the philosophy of decoupling memory
operations from computation is becoming increasingly
visible in modern commercial processors, such as the
PowerPC [48] and the MIPS TFP [24].

Decoupled architectures have several fundamental
advantages. They implicitly provide aggressive latency
tolerance, and permit much higher performance of the exe-
cute unit, through the use of queues and renaming. The
access unit has the potential for optimizing memory
accesses; this will be further discussed in Section4.3.
These architectures can be viewed as a generalization of
vector processing; they lend themselves well to such com-
putations. We believe that they hold the potential for simi-
larly high scalar code performance.

One of the well-known penalties to which decoupled

10

architectures are susceptible are loss-of-decoupling events
[43] (LODs). These events are due to data and/or control
dependencies that would also cause traditional processors
to incur large penalties, particularly when the memory
access latency is very large. They also provide an easy
point for optimization: memory latencies are seenonly at
LODs. Decoupled architectures, however, make no
attempt to conserve the bandwidth to the memory system;
we address this issue also in Section4.3.

4.2 Explicit memory management
The evidence presented in this paper suggests that

caches make very inefficient use of a given amount of
memory. We claim that: (i) memory bandwidth will even-
tually become a critically limiting factor, (ii) caches do
very poorly in minimizing traffic loads on the memory
system, and (iii) caches will cause performance to suffer
greatly in the presence of memory latency reduction tech-
niques. In this section we explore some alternatives to
simple caches for the upper levels of the memory hierar-
chy.

Our view is that compilers, over time, will gradually be
given greater responsibilities for managing the upper lev-
els of the memory hierarchy. State-of-the-art compilers
perform sophisticated program analyses, which is usually
thrown away once the code is generated, making it
unavailable to the run-time system. In many cases, the
hardware is forced to re-create these analyses for both cor-
rectness and better performance [45]. Substantial work has
been done that tries to enable the compiler to circumvent
the cache, performing analyses to work against the hard-
ware [1, 53, 52].

Several levels of compiler control are possible for the
local memory hierarchy. The compiler could issue hints
(flavors) along with the memory operations, specifying
whether to move data into a specific level of the cache or
bypass the cache entirely (for data that will only be read or
written once in a long while). These techniques would
improve the efficiency of the cache, by preventing the
replacement of other data that might still be live with data
that will soon be dead [1].

By mapping different portions of the address space into
different cache-like memory units, the compiler could
place classes of data into units whose hardware policies
were most suitable for the access pattern of a particular
class. Different hardware units could have different capac-
ities, access times, associativities, replacement policies, or
even block sizes. Some of these units could reside closer
to the datapath than the level one cache [2].

A longer-term option is to provide local memory units
in addition to the caches; units that are completely man-
aged by the compiler. Such units could reduce both latency
(better hit rates) and memory traffic considerably. Data

would be moved in and out of these units by the compiler,
according to their access patterns. Having software control
of the replacement algorithm, with the added benefit of
compile-time information, could prove extremely effec-
tive. Much more precise scheduling would be possible, as
the access time for data residing in such a unit would be

deterministic.1 Conflict misses would not occur, a shorter
cycle time would be possible due to the absence of hit/
miss detection logic, and the effective memory size would
be greater due to the absence of tag storage.

Caches, as previously discussed, do not lend them-
selves well toward latency tolerance optimizations.
Prefetched data (a future working set) can collide with the
present working set in a cache, exacerbating the latency
problem rather than solving it. A strong argument support-
ing explicitly-managed units is the fact that the compiler
could logically partition the memory so as to prevent con-
flicts between current and future working sets of data.

Software-managed local memory does have several
drawbacks, however. The most severe shortcoming is the
possibility of multiple copies of the same datum simulta-
neously residing in different locations. It is unlikely that
this disambiguation problem will ever be solved, unless
programming models evolve to support a solution. One
direction that holds promise for increasing the classes of
variables that can be managed explicitly is run-time dis-
ambiguation [13, 17, 25]. Other disadvantages of explicit
memory management include tremendous overheads for
task switching, and increased instruction counts (both
code size and dynamic path length).

4.3 A long-term proposal
Increasing levels of integration and improvements in

packaging technology will eventually yield chips and/or
multi-chip modules that have hundreds of millions of
gates. System designers will have the option of adding as
much processing capability as the memory system can
support; that is, any additional processing power would go
unutilized. The rate at which the memory system can sup-
ply operands, in turn, will be determined by off-chip traf-
fic.

The processor appears to be infinitely fast if adding
more processing capability has no effect on program exe-
cution time. The point at which this situation will be effec-
tively reached is fast approaching. We argue that systems
designed under these constraints will always be band-
width-bound, as designers will add more processing capa-
bility if memory bandwidth is going unused.

Off-chip accesses in these systems will be so expensive
that physically separating the processor and memory by a

1. A better term for such a memory might be “deterministic-access mem-
ory”.

11

chip boundary will be counterproductive. Rather, all sys-
tem memory should be coupled on-chip with a processor.
We expect that feature sizes will be so small that a large
portion of on-chip real estate will be dedicated to dense
memory. These levels of integration will allow all system
memory to be moved on-chip, changing the view of the
system from processor-centric to memory-centric.

If more memory is required for a system, then more of
these homogeneous processor/memory modules will be
added. This will allow the system to leverage off decades
of parallel processor research. Each module will be
responsible for processing what is in its own local mem-
ory; processing on off-chip memory will be invoked
remotely rather than having the data brought locally and
processed. We note that many in the research community
would describe this as coarse-grain dataflow.

 The processing units on this module will be composed
of a decoupled architecture. The access unit, in addition to
being responsible for gathering operands to feed to the
execute unit, will also manage a wide, rich memory hierar-
chy that will allow it tremendous flexibility in scheduling
memory operations. This will permit it to optimize both
on-chip memory scheduling and remote accesses. When
making remote operations, the access units of this system
would therefore greatly resemble hardware protocol pro-
cessors from some current multiprocessor projects (Tem-
pest and FLASH) [38, 31], although they would be much
more integrated, and would function at a considerably
lower level.

We also expect that the programming model and com-
piler technology will evolve to support a “data-pushing”
model, rather than a request/response model (which may
remain the worst-case default). Rather than sending
requests for remote operands, an access unit would be
responsible forsending data from its local memory that
was needed by other access units. It would also be respon-
sible for receiving and organizing data it needed from
remote access units.

This model blurs the distinction between uniprocessors
and multiprocessors, and between distinct processor chips
and memory chips. While radical and not yet well-defined,
this system would minimize the off-chip traffic, the speed
of which is limited by the speed of light. The bandwidth
bottleneck will disappear, lost in the tremendously wide
paths of on-chip memory. Latency will be as overlapped as
the programs permit, completely decoupled, with little
uncertainty in the high-speed memory hierarchy. Compu-
tation would then be truly limited only by the pace of tech-
nological advance.

5 Conclusions

Today’s technological trends point to a widening gap
between the rate at which a processing unit can consume

operands and the rate at which the memory system can
supply them. Present designs are addressing this trend by
introducing one or two levels of on-chip cache. While this
on-chip memory effectively reduces memory access
latency, the delay incurred when it is necessary to go off-
chip is high. As a consequence, processors extrapolated
from current designs will be more and more frequently
stalled waiting for operands.

We have argued that this problem can be alleviated by
making effective use of the on-chip memory and by maxi-
mizing the effectiveness of off-chip bandwidth. We
explored the concept ofmemory efficiency, to evaluate the
effectiveness of memory in reducing needed bandwidth.
We then showed through simulation that cache memories
do not use local memory efficiently.

Most processor stalls occur today because the off-chip
requests experience latency. A wide variety of latency
reduction and latency tolerance techniques are being
investigated, and some show great promise of reducing or
eliminating stalls from failure to request operands suffi-
ciently far in advance.

Many algorithms have greater computational require-
ments than memory requirements. The naive implication
of this fact is that computational requirements will outstrip
the bandwidth requirements given a sufficiently large on-
chip memory. We demonstrated that this assumption is
false by analyzing the off-chip memory accesses of block-
ing algorithms, demonstrating that as the cache grows
larger, allowing an increase in the blocking factor, the
computation ability grows at a faster rate than the increase
in the block size. Thus it is reasonable to conclude that
future processors will become increasingly memory-
bound even if the raw processing speed increases only lin-
early with cache memory size.

We have proposed two techniques to address the limita-
tions envisioned by the present trends: decoupled access/
execution and explicit memory management. Decoupling
memory accesses from computations minimizes the fre-
quency of stalls due to memory latency, and provides an
efficient way for overlapping memory operations. Decou-
pling, or other techniques for prefetching off-chip oper-
ands, will effectively solve the off-chip latency problem,
enabling computational speed improvements until the
more fundamental limit of off-chip bandwidth is reached.

Explicit management of the on-chip memory permits
more efficient use of memory. Eliminating the cache for
most memory accesses permits the compiler to control the
use of memory rather than trying to anticipate what the
cache might do. Prefetching, in particular, can be per-
formed much more effectively if the compiler can fully
control which operands will be on-chip and which will be
off. In addition, the predictability resulting from explicit
fetching, even in the presence of some variability in off-

12

chip access time, makes scheduling of on-chip operations
far more effective.

Successors to current architectures must be limited in
their innovation due to compatibility expectations and
other forms of market inertia. While this is undoubtedly
the correct approach for development of processors that
depend on commercial success for their exploration, it is
important to keep in mind the longer-term effect of current
trends. This work is the initial result of a new project,
Galileo, which is focused on the long-term implications of
changing technology and how current trends will affect
architecture. The results here are only examples, but dem-
onstrate how focusing on long-term limits may lead us in
new directions, or at least help in evaluating current pro-
posals in terms of their long-term potential.

Acknowledgments

We would like to thank Babak Falsafi, Stefanos Kax-
iras, Subbarao Palacharla, Jim Smith, and T. N. Vijayku-
mar for their helpful discussions. In addition, we thank
Babak and Steve Reinhardt for their CPU module code
that we used as an input to the g++ benchmark.

References
[1] SantoshG. Abraham, RabinA. Sugumar, B. R. Rau, and

Rajiv Gupta. Predictability of Load/Store Instruction
Latencies. InProceedings of the 26th International Sympo-
sium on Microarchitecture, pages 139–152, December
1993.

[2] ToddM. Austin, T. N. Vijaykumar, and GurindarS. Sohi.
Knapsack: A Zero-Cycle Memory Hierarchy Component.
Technical Report 1189, Computer Sciences Department,
University of Wisconsin-Madison, November 1993.

[3] Jean-Loup Baer and Tien-Fu Chen. An Effective On-Chip
Preloading Scheme to Reduce Data Access Penalty. In
Proceedings of Supercomputing ’91, pages 176–186,
November 1991.

[4] David Bailey, John Barton, Thomas Lasinski, and Horst
Simon. The NAS Parallel Benchmarks. Technical Report
RNR-91-002 Revision 2, NASA Ames Research Center,
August 1991.

[5] Forest Baskett. Keynote address.International Symposium
on Shared Memory Multiprocessing, April 1991.

[6] L. A. Belady. A Study of Replacement Algorithms for a
Virtual-Storage Computer. IBM Systems Journal, 5(2):78–
101, 1966.

[7] David Callahan, Ken Kennedy, and Allan Porterfield. Soft-
ware Prefetching. InProceedings of the Fourth Symposium
on Architectural Support for Programming Languages and
Operating Systems, pages 40–52, April 1991.

[8] Tien-Fu Chen and Jean-Loup Baer. Reducing Memory
Latency via Non-blocking and Prefetching Caches. InPro-
ceedings of the Fifth Symposium on Architectural Support
for Programming Languages and Operating Systems,
pages 51–61, October 1992.

[9] Tien-Fu Chen and Jean-Loup Baer. A Performance Study
of Software and Hardware Data Prefetching Schemes. In
Proceedings of the 21th Annual International Symposium
on Computer Architecture, pages 223–232, April 1994.

[10] William Y. Chen, ScottA. Mahlke, PohuaP. Chang, and
Wem mei W. Hwu. Data Access Microarchitectures for
Superscalar Processors with Compiler-Assisted Data
Prefetching. InProceedings of the 24th International Sym-
posium on Microarchitecture, pages 69–73, November
1991.

[11] Tzi-cker Chiueh. Sunder: A Programmable Hardware
Prefetch Architecture for Numerical Loops. InProceed-
ings of Supercomputing ’94, pages 488–497, November
1994.

[12] Bob Cmelik and David Keppel. Shade: A Fast Instruction-
Set Simulator for Execution Profiling. InProceedings of
the 1994 ACM SIGMETRICS Conference on Measure-
ments and Modeling of Computer Systems, pages 128–137,
May 1994.

[13] Peter Dahl and Matthew O’Keefe. Reducing Memory Traf-
fic with CRegs. InProceedings of the 27th International
Symposium on Microarchitecture, November 1994.

[14] Stefanos Damianakis, Kai Li, and Anne Rogers. An Analy-
sis of a Combined Hardware-Software Mechanism for
Speculative Loads. Technical Report TR-455-94, Prince-
ton University, April 1994.

[15] John W. C. Fu and JanakH. Patel. Data Prefetching in
Multiprocessor Vector Cache Memories. InProceedings of
the 18th Annual International Symposium on Computer
Architecture, pages 54–63, May 1991.

[16] John W. C. Fu, JanakH. Patel, and BobL. Janssens. Stride
Directed Prefetching in Scalar Processor. In Proceedings of
the 25th International Symposium on Microarchitecture,
pages 102–110, December 1992.

[17] DavidM. Gallagher, William Y. Chen, ScottA. Mahlke,
JohnC. Gyllenhaal, and Wen mei W. Hwu. Dynamic
Memory Disambiguation Using the Memory Conflict
Buffer. In Proceedings of the 6th Symposium on Architec-
tural Support for Programming Languages and Operating
Systems, pages 183–193, October 1994.

[18] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy.
Hiding Memory Latency using Dynamic Scheduling in
Shared-Memory Multiprocessors. InProceedings of the
19th Annual International Symposium on Computer Archi-
tecture, pages 22–33, May 1992.

[19] JamesR. Goodman. Using Cache Memory To Reduce Pro-
cessor-Memory Traffic. In Proceedings of the 10th Annual
International Symposium on Computer Architecture, pages
124–131, June 1983.

[20] JamesR. Goodman, Jian-tu Hsieh, Koujuch Liou,
AndrewR. Pleszkun, P. B. Schechter, and HonestyC.
Young. PIPE: A VLSI Decoupled Architecture. InPro-
ceedings of the 12th Annual International Symposium on
Computer Architecture, pages 20–27, June 1985.

[21] Mark D. Hill, JamesR. Larus, AlvinR. Lebeck,
Madhusudhan Talluri, and DavidA. Wood. Wisconsin
Architectural Research Tool Set. Computer Architecture
News, 21(4):8–10, August 1993.

13

[22] Jia-Wei Hong and H.T. Kung. I/O Complexity: the Red-
Blue Pebble Game. InProceedings of the 13th Symposium
on Theory of Computing, pages 326–333, May 1981.

[23] L. P. Horwitz, R.M. Karp, R.E. Miller, and A.Winograd.
Index Register Allocation.Journal of the ACM, 13(1):43–
61, January 1966.

[24] Peter Yan-Tek Hsu. Designing the TFP Microprocessor.
IEEE Micro, 14(2):23–33, April 1994.

[25] AndrewS. Huang, Gert Slavenburg, and JohnPaul Shen.
Speculative Disambiguation: A Compilation Technique for
Dynamic Memory Disambiguation. InProceedings of the
21th Annual International Symposium on Computer Archi-
tecture, pages 200–210, April 1994.

[26] Fred Jones. A New Era of Fast Dynamic RAMs.IEEE
Spectrum, 29(10):43–49, October 1992.

[27] NormanP. Jouppi. Improving Direct-Mapped Cache Per-
formance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers. In Proceedings of the 17th
Annual International Symposium on Computer Architec-
ture, pages 364–373, May 1990.

[28] AlexanderC. Klaiber and HenryM. Levy. An Architecture
for Software-Controlled Data Prefetching. InProceedings
of the 18th Annual International Symposium on Computer
Architecture, pages 43–53, May 1991.

[29] David Kroft. Lockup-Free Instruction Fetch/Prefetch
Cache Organization. InProceedings of the 8th Annual
International Symposium on Computer Architecture, pages
81–87, May 1981.

[30] H. T. Kung. Memory Requirements for Balanced Com-
puter Architectures. InProceedings of the 13th Annual
International Symposium on Computer Architecture, pages
49–54, June 1986.

[31] Jeffrey Kuskin etal. The Stanford FLASH Multiprocessor.
In Proceedings of the 21th Annual International Sympo-
sium on Computer Architecture, pages 302–313, April
1994.

[32] MonicaS. Lam, EdwardE. Rothberg, and MichaelE.
Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. InProceedings of the Fourth Sympo-
sium on Architectural Support for Programming Lan-
guages and Operating Systems, pages 63–74, April 1991.

[33] SallyA. McKee and William A. Wulf. Access Ordering
and Memory-Conscious Cache Utilization. InProceedings
of the First International Symposium on High-Perfor-
mance Computer Architecture, January 1994.

[34] Geoffrey D. McNiven and EdwardS. Davidson. Analysis
for Memory Referencing Behavior For Design of Local
Memories. InProceedings of the 15th Annual Interna-
tional Symposium on Computer Architecture, pages 56–63,
May 1988.

[35] ToddC. Mowry, MonicaS. Lam, and Anoop Gupta.
Design and Evaluation of a Compiler Algorithm for
Prefetching. InProceedings of the Fifth Symposium on
Architectural Support for Programming Languages and
Operating Systems, pages 62–73, October 1992.

[36] Subbarao Palacharla and R.E. Kessler. Evaluating Stream
Buffers as a Secondary Cache Replacement. InProceed-
ings of the 21th Annual International Symposium on Com-

puter Architecture, pages 24–33, April 1994.
[37] Rambus Inc.Architectural Overview, Mountain View, Cal-

ifornia, 1992.
[38] StevenK. Reinhardt, JamesL. Larus, and DavidA. Wood.

Tempest and Typhoon: User-Level Shared Memory. In
Proceedings of the 21th Annual International Symposium
on Computer Architecture, pages 24–33, April 1994.

[39] Anne Rogers and Kai Li. Software Support for Speculative
Loads. InProceedings of the Fifth Symposium on Architec-
tural Support for Programming Languages and Operating
Systems, pages 38–50, October 1992.

[40] RichardM. Russel. The CRAY-1 Computer System.Com-
munications of the ACM, 21(1):63–72, January 1978.

[41] Alan Jay Smith. Cache Memories.Computing Surveys,
14(3):473–530, September 1982.

[42] Alan Jay Smith. Bibliography and Readings on CPU
Cache Memories and Related Topics.Computer Architec-
ture News, 14(1):22–42, January 1986.

[43] JamesE. Smith. Decoupled Access/Execute Computer
Architectures. InProceedings of the 9th Annual Interna-
tional Symposium on Computer Architecture, pages 112–
119, April 1982.

[44] JamesE. Smith. Decoupled Access/Execute Computer
Architectures.ACM Transactions on Computer Systems,
2(4):289–308, November 1984.

[45] JamesE. Smith. Invited talk.21th Annual International
Symposium on Computer Architecture, April 1994.

[46] JamesE. Smith. Private Communication. September 1994.
[47] JamesE. Smith etal. The ZS-1 Central Processor. In Pro-

ceedings of the Second Symposium on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 199–204, October 1987.

[48] JamesE. Smith and Shlomo Weiss. PowerPC 601 and
Alpha 21064: A Tale of Two RISCs. IEEE Computer,
27(6):46–58, June 1994.

[49] IEEEComputer Society. IEEE Standard for High-Band-
width Memory Interface Based on SCI Signaling Technol-
ogy (RamLink). Draft 1.00 IEEE P1596.4-199X,
December 1993.

[50] Standard Performance Evaluation Corporation.SPEC
Newsletter, Fairfax, Virginia, December 1991.

[51] RabinA. Sugumar and SantoshG. Abraham. Efficient
Simulation of Caches under Optimal Replacement with
Applications to Miss Characterization. InProceedings of
the 1993 ACM SIGMETRICS Conference on Measure-
ments and Modeling of Computer Systems, pages 24–35,
May 1993.

[52] Olivier Temam, ElanaD. Granston, and William Jalby. To
Copy or Not to Copy: A Compile-Time Technique for
Assessing When Copying Should be Used to Eliminate
Cache Conflicts. InProceedings of Supercomputing ’93,
pages 410–419, November 1993.

[53] MichaelE. Wolf and MonicaS. Lam. A Data Locality
Optimizing Algorithm. InProceedings of the 1991 Confer-
ence on Programming Language Design and Implementa-
tion, pages 30–44, June 1991.

