
1

Doug Burger

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

dburger@cs.wisc.edu

This work is supported in part by NSF PYI Award CCR-9157366, NSF
Grant MIP-9225097, NSF Grant CCR-9207971, an unrestricted grant
from Apple Computer, Inc., and donations from Thinking Machines Cor-
poration, Xerox Corporation, and Digital Equipment Corporation. Our
Thinking Machines CM-5 was purchased through NSF Institutional
Infrastructure Grant No. CDA-9024618, with matching funding from the
University of Wisconsin Graduate School.

Sanjay Mehta

Department of Chemical Engineering
University of Wisconsin-Madison

1415 Engineering Drive
Madison, Wisconsin 53706 USA

sanjaym@cae.wisc.edu

Parallelizing Appbt for a Shared-Memory Multiprocessor

Abstract
The NAS Parallel Benchmarks are a collection of sim-

plified computational fluid dynamic (CFD) applications.
We have rewritten and parallelized Appbt—a CFD appli-
cation that uses the solution of a block-tridiagonal sys-
tem—to run efficiently on shared-memory multiprocessors.
We tested our algorithm through simulation on the Wis-
consin Wind Tunnel. We tested our code on two major
types of shared-memory multiprocessors, one using a
dirNNB directory protocol and one using the Scalable

Coherent Interface cache-coherence protocol. We simu-
lated the code with these protocols for machines ranging
from 1 to 128 processors. We found that our paralleliza-
tion methodology worked well for up to 128 processors,
and will apparently scale to even larger systems. Further
study is required to confirm this hypothesis, however.

1 Introduction

NASA developed the NAS Parallel Benchmarks [3] for
the performance evaluation of highly-parallel computers.
These benchmarks consist of a set of kernels, and three
computational fluid dynamic (CFD) applications. The
benchmark designers stripped these codes of the complex-
ities of a real CFD computation, leaving behind the core of
the algorithm and the data movement and sharing that a
true CFD application would contain. These applications
thus mimic the way that actual large-scale CFD codes
would behave on a real machine, without containing so
much complexity that they are difficult to analyze or
expensive to simulate.

We selected one of these benchmarks—Appbt (which
stands forapplication with block-tridiagonal solution)—

to port to the Wisconsin Wind Tunnel [7]. WWT is a vir-
tual prototyping system, which allows fast execution-
driven simulation of a shared-memory multiprocessor run-
ning real scientific codes. Because of WWT’s speed and
flexibility, we were able to run our parallelized Appbt on a
wide range of simulated machines.

The pseudo-application problem requires the steady-
state solution of a set of nonlinear coupled partial differen-
tial equations—for a given set of boundary and initial con-
ditions—on a 3-D rectangular region. Our implementation
decomposes the spatial domain into a number of smaller
ones and assigns a spatial region to each processor. The
solution is divided into two separate stages. In the first
stage, sharing occurs with neighboring points only in each
dimension. There are no spatial dependencies in the first
solution stage; all points depend on the neighboring values
calculated during the previous time step. The second stage
of the solution contains sharing along axes in each dimen-
sion. These dependencies are unidirectional at all times
(although directions change 6 times per iteration). We use
a software pipelining technique to speed execution during
the second stage of the solution algorithm, since there are
spatial dependencies along each dimensional axis.

To test the scalability and performance of our solution,
we simulated execution of Appbt on three different types
of shared-memory machines:dirNNB [2], a full bitmap

directory protocol, and the Scalable Coherent Interface [1,
5], both with and without its pairwise sharing option on.
The sizes of these simulated machines ranged from 1 to
128 processors, and we used both processor and memory-
constrained scaling techniques [9] to evaluate scalability.

2 The Appbt algorithm

This section briefly describes both the problem and the
solution in mathematical terms. For a more complete
description, both textual and formal, the reader is referred
to the NAS report [3].

2

2.1 Problem description
The simulated problem (in physical terms) represents

the laws of conservation of mass, momentum, and energy
applied to a fluid medium in motion. These laws are repre-
sented by the Navier-Stokes equations. The fluid region of
interest may be the air element flowing past the wings of a
spacecraft, or it may represent the hot gasses emerging
from its engine. The time-dependent solution for the tem-
perature, pressure, and velocity is desired at various points
in the spatial domain. For performance evaluation of the
algorithm, we are not interested in the actual physical
problem. The simplified application can be reduced to a
set of five coupled nonlinear partial differential equations,
shown in Equation1. These equations are associated with
the Dirchlet type of boundary conditions, Equation2, and
initial conditions, given by Equation3.
The state equations:

(1)

with the boundary conditions:

(2)

and the initial conditions:

(3)

The variable represents a vector of five components,
i.e.

(4)

 E, F, G, T, V, and W are the known functions of the
state vector and its spatial derivatives. Each of them is
also a vector with five components. Equation1 represents
the most general form of governing equation, which can
describe many kinds of physical phenomena with appro-
priate initial and boundary conditions.

The solution of the problem requires the evaluation of
the state vector at various points in the domain for each
time step. Equation1 is explicit in the time derivative,
meaning that the value of the state vector at any time can
be calculated in terms of the initial data. For the simulated
problem, a polynomial type of solution containing up to
the fourth power of the spatial variables is described. The
forcing function H in Equation1 is chosen such that the
polynomial solution satisfies the state equations along
with the boundary and initial data. Initial conditions for
the interior points of the domain are obtained from the
boundary conditions using transfinite, trilinear interpola-
tion. For this particular problem, the domain of applica-

τ∂
∂u

ξ∂
∂

E u()
η∂
∂

F u()
ζ∂

∂
G u()

ξ∂
∂

T u uξ,()
η∂
∂

V u uη,()
ζ∂

∂
W u uζ,() H u uξ uη uζ, , ,()

+

+ + +

τ ξ η ζ, , ,() Dτ D×∈

,

+ +=

B u uξ uη uζ, , ,() u
B τ ξ η ζ, , ,()

τ ξ η ζ, , ,() Dτ D∂×∈

,=

u u
0 τ ξ η ζ, , ,()

ξ η ζ, ,() D for τ,∈
,

0

=

=
u

u u
1

u
2

u
3

u
4

u
5, , , ,

T
=

u

u

tion, , is a unit cube, which is symmetrical in all three
spatial dimensions. Whatever computations are needed for
one dimension can be easily extended to the other two
dimensions.

2.2 Numerical solution
The approach followed here can best be described as a

pseudo-time marching scheme with a spatial discretization
procedure based on finite-difference approximation. A
fourth-order numerical dissipation term is included to sup-
press high-frequency modes and allow the solution to con-
verge to a steady state.

Time differencing is carried out using a first-order-
accurate, Euler implicit scheme:

(5)

Expressions for the first derivative terms in Equation5 are
substituted from Equation1. The resulting equation is

non-linear in .

(6)

Using Taylor series expansion, the equation can be lin-
earized without losing any temporal accuracy of difference
scheme, i.e.

(7)

where is the Jacobian matrix of size .
Similar to Equation7, expressions for other difference

terms can be substituted, which will involve other Jaco-
bian matrices (e.g. B, C, N, S, Q, etc.). All of them are

 block matrices. After completing these lineariza-

tions, we obtain the following explicit equation in :

(8)

The fourth-order derivative terms in the above equation
are the dissipation terms and may depend on the nature of
spatial discretization used. All the spatial derivative terms
can be discretized by using difference formulas on a mesh
of uniform increments () in the three coordinate

directions; two-point central difference for the first deriva-
tives, three-point difference for the second derivatives and
five-point for the fourth-order terms. After substitutions

D

∆u
n ∆τ ∆u

n∂ t∂⁄() ∆τ u
n∂ t∂⁄() O ∆τ2

()

where ∆u
n

+ +

u
n 1+

u
n

–

=

=

∆u
n

∆u
n ∆τ

ξ∂
∂ ∆E

n ∆T
n

+

η∂
∂ ∆F

n ∆V
n

+

ζ∂
∂ ∆G

n ∆W
n

+

+ +

∆τ
ξ∂

∂
E

n
T

n
+

η∂
∂

F
n

V
n

+

ζ∂
∂

G
n

W
n

+

+

+ ∆τH
°

+

+

=

∆E
n

A
n

u()∆u
n

O ∆τ2
()+=

A u() E∂ u∂⁄() 5 5×

5 5×

∆u
n

I ∆τ
ξ∂

∂A
n

ξ2

2

∂

∂ N
n

η∂
∂B

n

η2

2

∂

∂ Q
n

ζ∂
∂C

n

ζ2

2

∂

∂ S
n

+ + ++ +–
î

∆u
n

∆τ
ξ∂

∂
E

n
T

n
+

η∂
∂

F
n

V
n

+

ζ∂
∂

G
n

W
n

+

++

∆τε hξ
4

ξ4

4

∂

∂ u
n

hη
4

η4

4

∂

∂ u
n

hζ
4

ζ4

4

∂

∂ u
n

++

–

∆τH°+

=

hξ hη hζ, ,

3

are made for these spatial derivatives, the original system
of differential equations reduces to a large system of alge-
braic equations. Such a large system is difficult to handle.
For the solution in Appbt, an algorithm called ‘Beam-
Warming’ is used to reduce this system to three factors
(see Equation9). These are then sequentially solved using
forward elimination and backward substitution (Gaussian
elimination). The final equation written below is expressed
in terms of derivatives, rather than differences, for clarity.

(9)

(everything on the right-hand side of Equation8 is repre-
sented by RHS in Equation9 and Equation10.

(10)

The above equation is solved for the vector , which

represents the last two terms on the left-hand side of
Equation9. Equation10 can be symbolically represented
as , where , the coefficient matrix, corresponds
to the term in the curly brackets of Equation10. The sub-
stitution of the difference formulas for the derivatives in
the above equation reduces it to a block-tridiagonal matrix
with each block of dimension . The system of equa-
tions is solved and the solution obtained is used as the
right-hand side for the next factor, Equation11. This pro-
cess is again repeated (see Equation12), which produces

. This result can be used to obtain the state vector at
the next timestep in accordance with Equation13.

(11)

(12)

I ∆τ
ξ∂

∂A
n

ξ2

2

∂

∂ N
n

+–
î

I ∆τ
η∂

∂B
n

η2

2

∂

∂ Q
n

+–
î

I ∆τ
ζ∂

∂C
n

ζ2

2

∂

∂ S
n

+–
î

××

∆u
n

RHS=

I ∆τ
ξ∂

∂A
n

ξ2

2

∂

∂ N
n

+–
î

∆u1 RHS=

∆u1

Ax b= A

5 5×

∆u
n

I ∆τ
η∂

∂B
n

η2

2

∂

∂ Q
n

+–
î

∆u2 ∆u1=

I ∆τ
ζ∂

∂C
n

ζ2

2

∂

∂ S
n

+–
î

∆u
n ∆u2=

(13)

where is the discretized spatial domain.

3 Parallelization algorithm

The Appbt code consists of seven main routines:jacx,
jacy, jacz, btridx, btridy, btridz, andrhs. The
first three compute the block-tridiagonal system for a
sweep in each dimension, and the second three solve the
block-tridiagonal systems computed in each of the jac rou-
tines using Gaussian elimination. Therhs routine com-
putes the right hand side of the equation (see Equation9).
A skeleton of the main routines and barriers is shown in
Figure1.

Thejac routines depend only on the values calculated
during the previous timestep, and thus there are no spatial
dependencies for the current timestep. However, since
everything is essentially a loop-carried dependence, the
only parallelism to be extracted is spatial.

We therefore decomposed the data spatially, assigning
an equal number of internal points to each processor for
computation. Since the “sweeps” through the data occur
separately in each dimension, assigning contiguous sec-
tions of the original main array to each processors would
have resulted in heavy communication for any two of the
three dimensional sweeps in thejac routines, so we
remapped the arrays. The domain was divided into sub-
cubes (one per processor), and the arrays were remapped
so that all points belonging to a subcube were contiguous
in each array. The domain therefore consists of P sub-
cubes, where P is the number of processors, and each data
array consist of P discrete sections. Each section contains
all of the points belonging to a processor’s subcube.

u
n 1+

i j k, , u
n

i j k, , ∆u
n

i j k, ,+ for,= i j k, ,() Dh∈

Dh

Figure 2. Spatial domain decomposition

8x8x8 = 512 points

P=8 processors,
4x4x4 = 64 points
per processor

P=1 processor

Figure 1. Skeleton code for Appbt

for i = 1 to #iterations do
 jacx()
 btridx()

 BARRIER
 jacy()
 btridy()
 BARRIER
 jacz()

 btridz()
 BARRIER
 rhs()
 BARRIER
end do

4

Figure2 illustrates such a decomposition, where equally-
sized subcubes of points are assigned one each to eight
processors. All communication for thejac phases of the
program occurs only on the faces of the subcubes; interior
points are used by the owning processor only.

In the second main phase of the program, comprised of
thebtrid routines, there are spatial dependencies within
the current iteration. Each of these routines each have two
phases: forward elimination and back substitution. Each
routine “sweeps” through all of the points in a different
dimension, with dependencies existing only in that dimen-
sion for the routine in question. Dependencies are back-
ward during the forward elimination phase, and forward
during the back substitution phase.

For example, inbtridx, the sweep occurs in the x-
dimension. For the forward elimination phase, each point
(x, y, z) depends on the (x-1, y, z) just computed. When all
the (x, y, z) have been computed, the back-substitution
phase begins, and all (x, y, z) depend on the (x+1, y, z) just

computed. Naively, this would only enable of the
processors to be working at once.

To maximize the available parallelism, we imple-
mented a software pipelining technique, in which a shared
counter is associated with each axis in the direction of the
current dimensional sweep. If the number of points in a
processor’s subcube is (the corresponding dimen-
sions are x, y, z) with the sweep occurring in the x dimen-
sion, the processor has subaxes to compute, each one
of them points long. When the counter for a subaxis is
incremented, the next processor along that axis computes
its section of that access, and increments the counter when

P
2 3⁄

i j k××

j k×
i

complete. When the forward elimination phase completes
for an axis, the same process is performed in reverse, with
the processors computing the backward substitution and
decrementing each counter as they complete the substitu-
tion for each subaxis. This technique is depicted in
Figure3, where 6 processors are each operating on a dif-
ferent axis, and thus are all operating concurrently.

4 Simulation methodology

Our simulation testbed was the Wisconsin Wind Tunnel
[7], which is a parallel discrete-event simulator that runs
on a Thinking Machines CM-5. WWT combines direct
execution with low-overhead simulator traps, enabling
simulation of codes approaching the size of real parallel
programs.

The original Appbt code obtained from NASA was a
serial version written in FORTRAN. Since WWT does not
currently support FORTRAN libraries, we were obliged to
convert the Appbt source to C before parallelizing it. We
used the Bell Labsf2c translator for this purpose. The
output of this translator is not intended to be human-read-
able, so we recoded the application by hand to make the
code more understandable.f2c converts multidimen-
sional FORTRAN arrays into one-dimensional C arrays,
so we converted all of the array offsets into macros to
improve their readability. The FORTRAN version allo-
cated all memory statically, so the C version also statically
allocates some hardcoded maximal problem size, out of
which the experimenter can run equally-sized or smaller
data sets. All of the FORTRAN library calls had to be
translated by hand.

NAS provided automatic checking of results in the
benchmark code for two problem sizes: and

 cubes, running for 60 iterations each. Since
the simulation time of Appbt with the point
data set is prohibitively long, we checked our implementa-
tion for computational correctness at each stage with the

 check.
We first verified that the translated C code executed

correctly on a uniprocessor (A DECstation 3100 running
Ultrix 4.3). We then implemented a uniprocessor version
of the parallelized code, in which a loop tested the paral-
lelism with each iteration representing a different proces-
sor. Finally, we ported the implementation to WWT, and
implemented all barriers, locks, shared-memory alloca-
tion, etc., using the PARMACS macro package.

Although the parallelization algorithm assigns single
contiguous regions of the data arrays to the points associ-
ated with each processor, the page placement algorithm
that WWT uses assigns shared pages to processors round-
robin. This means that uncached data that are supposed to
be local to the “owning” processor will force remote

12 12 12××
60 60 60××

60 60 60××

12 12 12××

Figure 3. Software pipelining of FE & BS routines

0 0 1 0

Sweeping axis

P[0,0,0]

P[0,1,0]

P[0,2,0]

P[1,0,0]

P[1,1,0]

P[1,2,0]

= Finished
= In progress
= Not yet started

a 6-processor system (a 2 x 1 x 3
A 4 x 2 x 9 problem, mapped to

2 1 2 2

grid). Counter values for the above
example are:

5

accesses to load the data into the cache, thus preventing
the attainment of the optimal possible performance under
this parallelization scheme.

5 Demonstrative results

This section describes some simple experiments that
evaluate the effectiveness of our parallelization algorithm.
Our simulations all ran for 20 iterations (the default is 60).
We also assumed a 1MB cache (with 64-byte blocks) per

node. The interconnection network was not modelled; we
assumed constant message latencies of 100 cycles. All
subsequent descriptions of machine behavior refer to the
simulated target machine and not the host CM-5.

Figure 4 shows speedups for three different systems;
one running the dirNNB cache-coherence protocol, and

two running variants of the Scalable Coherent Interface [1,
5] cache-coherence protocol. All experiments in this graph
were run with a point data set.24 24 24××

Figure 4. Constant data set speedups

0

16

32

48

64

80

96

112

128

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of processors

S
pe

ed
up

Ideal

DirNNB

SCI + PS

SCI

Figure 5. Constant execution time distributions

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128

Number of processors

E
xe

cu
tio

n
tim

e
di

st
rib

ut
io

n
(%

)

Barriers

Write Faults

Read Misses

Computation

Figure 6. Scaled data set slowdowns

1

2

3

4

0 16 32 48 64 80 96 112 128

Number of processors

S
lo

w
do

w
n

SCI + PS

DirNNB

Figure 7. Scaled execution time distributions

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

1 2 4 8 16 32 64 128

Number of processors

E
xe

cu
tio

n
tim

e
(m

ill
io

ns
 o

f c
yc

le
s)

Barriers

Write Faults

Read Misses

Computation

6

dirNNB [2] is a full-bitmap directory protocol in
which the home location of each cache block contains one
bit for each processor in the system, to keep track of
shared copies of the block. When a processor requests an
exclusive copy of the block, an invalidation message is
sent to each processor which owns a copy. Although this
protocol is quite simple, the memory requirements quickly
become prohibitively large as the number of processors
increases (e.g. 128 bits per cache line in a 128-processor
system).

The other two speedup lines shown in Figure4 repre-
sent the Scalable Coherent Interface (SCI) base protocol
[1, 5], running with and without one particular optional
optimization calledpairwise sharing. SCI is also an inval-
idation-based protocol, but it has constant memory over-
head per cache line as the system size grows. SCI
accomplishes this by maintaining the sharing nodes as a
distributed linked list, in which all list pointers reside in
the caches rather than main memory. The SCI pairwise-
sharing option makes two-node sharing more efficient
when the data in the line are written, maintaining the list
when it would otherwise be broken down. The penalty for
this optimization is sometimes having extra remote trans-
actions when a third sharer joins the list.

Due to memory limitations on the CM-5, the smallest
runs we were able to compete with the data
set assumed 4 processors. The largest runs assumed 128
processors. The speedups are calculated using the 4-pro-
cessor runs as the base case, assuming speedups of 4 for

those over a uniprocessor run.1 The serial initialization
portion of each execution was not included in the speedup
calculations, since this roughly constant quantity becomes
proportionally much larger as the overall running time is
greatly reduced by exploiting parallelism.

All three protocols exhibit similar speedups, with the
SCI runs coming very close to or exceeding the speedups
of the dirNNB runs. The parallel efficiency (speedup/
number of processors) remains high up to 64 processors, at
about 80%. At 128 processors, however, the parallel effi-
ciency drops to between 60% and 70%. This is not due to
fundamental limitations in the parallelization algorithm,
but to the increased quantity of required sharing. Since the
data set size is held constant as the number of processors
grows, the proportion of each processor’s data that is
shared also grows, from 54% of the points in the 32-pro-
cessor case to 87% of the points in the 128-processor case.
We were unable to experiment with larger data sets, how-
ever, due to memory limitations on our CM-5 (primarily
for runs with few processors).

1. This is actually a pessimistic assumption because of super-linear cache
effects. The 4-processor run would probably have a speedup of greater
than 4 because of the small total cache in a 1-processor system.

24 24 24××

Since we assumed 1MB caches per processor for all
runs, we see a super-linear speedup for 8- and 16-proces-
sor runs. This is because the performance gains from the
added SRAM in the system outstrips the performance
losses due to parallelization overhead. Once the entire data
set fits in the system cache, however, this effect no longer
affects larger systems. The large ratio of cache to data set
size may be unrealistic for larger data sets, but this miti-
gates the negative effects of WWT’s round-robin page
allocation. (The round-robin allocation eliminates the ben-
efit of our having mapped contiguous portions of the
shared arrays to individual processors).

Figure5 depicts the decomposition of the parallel exe-
cution time into the time spent in barriers, write faults,
read misses, and computation, as the number of processors
is increased from 4 to 128. The cache-coherence protocol
used for these results was SCI with pairwise sharing
turned on. The large number of read misses for the 4- and
8-processor runs are due to the smaller amount of cache in
the system (4 and 8 MB, respectively), since the total size
for the problem is approximately 9.5 MB.
The write faults and read misses for 16 processors and
higher are mainly due to coherence misses. This explains
why the cache misses increase again for the larger sys-
tems, since the percentage of the data that is shared grows
with the system size when the data set size is held con-
stant. Barrier overhead is the main contributor to the
diminishing parallel efficiency. We attribute the growing
increase in barrier overhead to the increased proportion of
communication. More communication causes increased
variance in subroutine execution times, increasing load
imbalance and thus the average waiting time at each bar-
rier.

One interesting phenomenon we observed was that per-
formance of the larger runs was initially extremely poor
for dirNNB. Having all of the software pipelining
counters allocated contiguously resulted in all of them
being allocated on one page. Since WWT assigns fractions
of global shared memory at a page granularity, one node
became responsible for all of the shared counters. This
caused massive contention at the memory directory for
that node, with over three orders of magnitude more
accesses at than the other directories. By padding the
counter data structure so that each node owned approxi-
mately the same number of counters, the directory conten-
tion vanished and overall execution time was cut by as
much as 50%. SCI without pairwise sharing showed some
directory contention, but not enough to seriously inflate
execution time. With pairwise sharing, very few requests
needed to be sent to the counter directory at all (this is an
artifact of the large caches we assumed, however). All
results presented in this report assume padded counter
structures.

24 24 24××

7

We performed another set of experiments to try and
negate the performance deterioration in large systems due
to insufficiently large data sets. Instead of holding the
problem size constant, as in Figure4 and Figure5, we
used a form ofmemory-constrained scaling [9]. In this
scaling strategy we kept the number of points constant per
processor, scaling the total data set size linearly with the
number of processors. Each processor was assigned a

 subcube of points. Since the Appbt algorithm is
 (in this example is), the computation

time does not explode with the increased data set sizes. As
with the previous experiments, we discounted the serial
initialization phase of the program when computing exe-
cution times and slowdowns.

Figure6 shows the slowdowns for memory-constrained
runs ofdirNNB and SCI (with pairwise sharing on), as the
system size and data sets are scaled. The slowdown is sim-
ply calculated as follows:

(14)

where is the number of processors, is the execution

time of the run with 1 processor, and is the execution

time of the run with processors.

This graph clearly shows a high initial overhead for
scaling up to 32 processors, which levels off once the
problem and system size exceed a hundred or so.dirNNB

outperforms SCI slightly for the medium-size systems, but
their performance converges for the largest run that we
were able to do.

Figure7 shows the absolute execution times for the
SCI experiments depicted in Figure6. The time spent for
computation increases proportionally to the log of the
number of processors. The increasing number of read
misses and write faults is due to the greater percentage of
processor subcubes that have shared faces—and therefore
a higher percentage of shared points—in larger systems.
20% of the processor subcube faces are shared in a 4-node
machine, whereas 66% of the subcube faces are shared in
a 128-node machine.

The barrier time for these experiments increases simi-
larly to the constant data set experiments. The percentage
of total time that processors spend waiting at a barrier
increases quickly up to 64 nodes, and then begins to level
off as the variance in load imbalances ceases to grow sub-
stantially. This levelling-off is the biggest single reason for
the flattening of the slowdown curve in Figure6. Had we
mapped the “owned” pages to the appropriate owning pro-
cessor, we predict that the execution time would level off
almost completely and would eventually show no increase
as the number of processors increased further. This predic-
tion discounts network latencies and contention, which

6 6 6××
O N() N P 216×

SlowdownP

TP

T1
------=

P T1

TP

P

would likely both increase with larger systems.

6 Future Work

The Appbt results presented in this report are for only
the basic parallelized algorithm, with naive data placement
and unaggressive optimization. We have undertaken sev-
eral more aggressive implementation efforts, one of which
is complete. These include:
• A version using SCI as the base protocol, extended

with some of the more aggressive SCI options [6].
This work is underway.

• A Tempest-interface-compatible [8] version that
implements two step-wise improvements: one that
usingsignal & wait rather than shared counters
during the solution routines, and one that uses an
application-specific update protocol instead of the
default library invalidate protocol. Both protocol
extensions were written specifically for Appbt. This
implementation is complete, and results have
appeared in the literature [4].

• A variant of the Tempest code where one address-
space per node is multithreaded using Solaris kernel
threads and a home-grown user-level thread package
(Cyklos). Threads overlap communication with com-
putation by switching on remote cache misses and
synchronization points. This work is underway.

Results from these optimized implementations will appear
in a subsequent publication. We also plan to run these
codes on larger simulated machines.

7 Summary

This report has described Appbt, one of the NAS Paral-
lel Benchmarks. We have given a brief description of the
problem, followed by a more detailed description of the
method we used to parallelize this code for a shared-mem-
ory multiprocessor.

We have also presented some demonstrative results,
which used the Wisconsin Wind Tunnel to simulate the
execution of our parallelized code on several shared-mem-
ory multiprocessors. We showed that—for both adirNNB
machine and two versions of an SCI machine—the scal-
ability of the code up to 128-processor machines was quite
good. We also showed that the algorithm scaled well when
the problem size was scaled along with the machine.

Finally, we presented a list of optimizations that should
permit even more efficient scaling and execution on
shared-memory or hybrid shared-memory machines.
These optimizations will be evaluated in the near future.

Acknowledgments

The authors thank Profs. Mark Hill, Sangtae Kim, and

8

Mary Vernon, who taught the computational science class
out of which this work grew. We also thank Profs. David
Wood and Jim Goodman for supporting this work, and
finally Babak Falsafi and Alain Kägi for their generous
assistance.

References

[1] Scalable Coherent Interface (SCI). ANSI/IEEE Std 1596-
1992, August 1993.

[2] Anant Agarwal, Richard Simoni, Mark Horowitz, and John
Hennessy. An Evaluation of Directory Schemes for Cache
Coherence. InProceedings of the 15th Annual Interna-
tional Symposium on Computer Architecture, pages 280–
289, 1988.

[3] David Bailey, John Barton, Thomas Lasinski, and Horst
Simon. The NAS Parallel Benchmarks. Technical Report
RNR-91-002 Revision 2, NASA Ames Research Center,
August 1991.

[4] Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis
Schoinas, MarkD. Hill, James Larus, Anne Rogers, and
David Wood. Application-Specific Protocols for User-
Level Shared Memory. In Proceedings of Supercomputing
’94, pages 380–389, November 1994.

[5] DavidV. James, AnthonyT. Laundrie, Stein Gjessing, and
GurindarS. Sohi. Scalable Coherent Interface.IEEE Com-
puter, 23(6):74–77, June 1990.

[6] Alain Kägi, Nagi Aboulenein, DouglasC. Burger, and
JamesR. Goodman. Techniques for Reducing the Over-
heads of Shared-Memory Multiprocessing. InProceedings
of the 9th International Conference on Supercomputing,
July 1995.

[7] StevenK. Reinhardt, MarkD. Hill, JamesR. Larus,
Alvin R. Lebeck, JamesC. Lewis, and DavidA. Wood.
The Wisconsin Wind Tunnel: Virtual Prototyping of Paral-
lel Computers. InProceedings of the 1993 ACM SIGMET-
RICS Conference on Measurements and Modeling of
Computer Systems, pages 48–60, May 1993.

[8] StevenK. Reinhardt, JamesL. Larus, and DavidA. Wood.
Tempest and Typhoon: User-Level Shared Memory. In
Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 24–33, April 1994.

[9] JaswinderPal Singh, JohnL. Hennessy, and Anoop Gupta.
Scaling Parallel Programs for Multiprocessors: Methodol-
ogy and Examples.IEEE Computer, 26(7):42–50, July
1993.

Appendix A

The original Appbt FORTRAN code was written by
Sisira Weeratunga at NASA Ames Research Center.
NASA requires that you obtain a NAS license to get the
original FORTRAN version of the code. However, NASA
has given us permission to freely redistribute our “signifi-
cantly changed” code. The C version of the serial Appbt
code is available via ftp at the following location:

ftp.cs.wisc.edu

/wwt/Benchmarks/nas/nas.serial.tar.Z

The parallelized C version of the code, which assumes the
presence of the PARMACS macro package, is available at:

ftp.cs.wisc.edu
/wwt/Benchmarks/sc94/appbt/src/nas.paral-

lel.tar.Z

