Skirting Amdahl’ s Law: Using SPSD Execution with Optical Inteconnects

Doug Buger and James R. Goodman

Computer Sciences Department

University of Wisconsin-Madison
1210 West Dayton Street

Madison, Wsconsin 53706 USA

galileo@cs.wisc.edu
http://www.cs.wisc.edu/~galileo

Abstract

Optical inteconnects mvide nev parllel processing
opportunities though in&pensive lwadcasts high-band-
width, point-to-point connections. Howes, the poblems
of flow contol and huffering inhibit cureent paallel archi-
tectues fom efectively &ploiting the advantges of opti-
cal interconnects. W popose using anxecution model,
called Single Rsgram, Single Data stam (SPSD) to
exploit inexpensive optical lmadcasts and educe the
serial overheads of pallel programs. W& describe one
possible implementation of du@ system (DataScalar),
and discuss how futarsystems can be designed to better
exploit optical inteconnects.

1 Introduction

From the architect’ perspectie, optical interconnects pro-
vide a n& and interesting set of opportunities for design-
ing multiprocessor systems. Intrinsically high bandwidth,
potentially lawv latencies, and the “free space” nature of
optical interconnects all pvide nev opportunities for
both e/olutionary and reolutionary changes in multipro-
cessor architectures.

Optical technologies lva yet to mege into the main-
stream, hevever, and hae so &r failed to supplant electri-
cally-based interconnects as the technology of choice for
multiprocessor interconnects. This is historically due to a
lag in the leel of available optical technology compared
to the electrical equalent. More recent]yhowvever, cost

This work was supported in part by NSF Grant CCR-9207971, an unre-
stricted grant from the Intel Research Council, and equipment donations
from Sun Microsystems.

Copyright 1996 IEEE. A ersion of this paper as published in the Pro-
ceedings of the 3rd International Conference on MabsParallel Pro-
cessing Using Optical Interconencts, Octol¥396, Lahaina, Heaii,
USA. Personal use of this material is permittedwEler, permission to
reprint/republish this material for aghtising or promotional purposes or
for creating ne collective works for resale or redisttittion to serers or
lists, or to reuse ancopyrighted component of thisark in other vorks,
must be obtained from the IEEE. Contact: Mana@epyrights and Per-
missions, |IEEE Service Cente#45 Hoes Lane,.®. Box 1331, Piscat-
away, NJ 08855-1331, USA .elephone: + Intl. 908-562-3966.

and utility constraints he eclipsed the optical technol-
ogy’s rapid adsnces. Ewlutionary impraements are
insufficient to avercome the long history and tremendous
investment in electrical transmission media.

To succeed, optical technologies must demonstrate not
just superiority but a major adance eer the dominant
technologies thehope to replace. The computer industry
has takn its place among the ¢gst industries in the
world, while still continuing to produce rapid adhces
across a wide range of technologies. The semiconductor
business is lge and well financed, with a history of
progress so rapid and consistent that it is hazardous to pre-
dict when progress may sloThe massie resourcesvail-
able for the adsncement of dominant technologies—
benefiting from economies of scale—present an enormous
challenge to annew technology no matter hev superior
it may appearCore memory systems continued to sur-
vive—and gen grav—years after thewere predicted to
be supplanted with semiconductor RAM technology

Though optical déces are likly to see increased use
in long-haul netwrks, it is not apparent that theffer a
clear benefit to carentional massely parallel machines.
These machines already depend on high-bandwidth com-
munication to eploit fine-grained parallelism. Thehave
been well studied, and dramatic impements are not
likely to be achieed by the elimination of a single bottle-
neck. W will discuss the tev major classifications of par-
allel computers—shared-memory multiprocessors and
multicomputers—shaeing that no single impr@ment in
the interconnect is Iy to proaside dramatic impree-
ment. Thus optical interconnects are uelykto become
ubiquitous in today corwventional MPPs.

Networks that pruide high-bandwidth, M-lateny
communication between arbitrary nodes are critical to the
success of masaly parallel computers. Rabandwidth
alone is not sticient, havever. Even if netwrk band-
width were increased arbitrarjlpther bottlenecks euld
soon emage, precluding substantial performaneéng. In
bus-based snooping cache systems, fan®le, all com-
munications are broadcast, and each such communication
requires processing avery node, including a memory

lookup. Thus processing at each nodengrtinearly with tion [7]. This eecution model \&s deised for our pro-
the number of processors in the system. posedDATASCALAR architecture [3], which tgets future

A major limitation of parallel computing is the chal- uniprocessor programs running on a small number of pro-
lenge of balancing theavkload. The wailability of twenty cessors. The SPSDxexution model w&s dewed from the
processors does not automatically translate into a speedullassive Memory Machine wark of the early 1980s [8]. &/
of twenty even if the code can be readily parallelized. It believe that theDATASCALAR concepts are anxeellent
may be that some parts talonger to compute than others, match for the small fraction of lge-scale parallel pro-
or may be unpredictable, so that mafithe processors are grams that is difcult or impossible to parallelize. More
idle much of the time, aiting for others to finish their efficient execution of this serialized fraction will reduce the
assigned wrk. Systems may ka hot spots[15] both in fraction of execution time that it requires, thus increasing
processors and in memorwhere progress is impeded the scalability of the program.
because a computation, or access to a particular memory The rest of this paper is ganized as folles: in
location, is requiredxe&essvely. Section2 we present anvervien of multiprocessor archi-

Hot spots are particularly troublesome in broadcast net-tectures, and discusswmptical interconnects may inter-
works. A free-space optical interconnection refwcan act with each class of multiprocessors ¥so discuss the
achiere extremely high bandwidth because manodes pitfalls that preent these architectures from realizing sig-
can be simultaneously broadcasting ateayvhigh rate. nificant benefits from the use of optics. In SecBowe
Unfortunately if a single node must respond to a signifi- describe the SPSDxecution model, and discussvhat
cant portion of the messages being broadcast, it can be rapray be applied to massily parallel systems. In Sectidn
idly swamped. It must therefore Vvesome mechanism for we engge in speculation as to Wooptics and parallel
throttling the sources of the data, a procedurenknas architectures may interact in the future. Finalip
flow contol. This problem emeges as a major limitation of Section5 we prowide a summary of our ideas.
free-space optical interconnectionswhio throttle sending
nodes that areverloading a particular recar without 2 Interaction of M PP architectures and optics
interfering with communications among other nodes.

Another limit to the successful implementation of mas- There are tw major catgories of multiprocessor architec-
sively parallel systems (hundreds or thousands of procestyres that hee emeged aver the years. In this section, we
sors) is serialized code within applications. AmdahBw discuss he each catgory may or may not benefit 5|gn|f|-
states that a the speedup of a program is limited by theantly from optical (as opposed to electrical) interconnects.
reciprocal of the serial portion of the progranor lexam-

ple, a program for which 95% of its code can be parallel-2. 1 Shared-memory multiprocessors

ized will hare a speedup of only 2@en if the non-serial

portion of the code is performed in zero time. Although The first shared-memory multiprocessors, in which all

optical interconnects may enablery lage systems to be memory lies equidistant fromvery processonwere what

constructed, this serial’erhead must be considered. are commonly called “dancehall” architectures. Tivere
Thus the waailability of a high bandwidth, le-lateny 5o named because all processors were located on one side

network (such as might bevailable using free-space opti- of a general interconnect, while all memory modules

cal interconnect) cannot be much better utilized byeon asided on the other (an eight-process@neple is shan

tional MPPs. Architectures that carxpeit the high i Figure1). Examples of these machines include the IBM

bandwidth capability without ing to pravide elaborate GE-11 [1], the NYU Ultracomputer [10], and the IBM RP3

flow control are the best hope for inclusion of optical inter- 17,

connect technologyrhis paper prades an gample of a This oganization had the admtage of a high-band-

novel architecture thatxloits the unique features of opti- \yidth interconnect with uniform latepcto all memory

cal interconnects to reduce serigetheads within a paral- making the machines easy to program. Thevdezk to

lel program. _Our assumption is that microproc_essors Will these architectures is the long lateimcurred by treers-

continue their xponential performance gath, with the jng the multistage interconnect. Placing caches at the pro-

conseguence that communication becomes velgtmuch cessor side of the interconnect can reduce theage

more epensve in future systems. Because computation in memory lateng, but introduces the well-kvan cache

such systems will be cheap compared to communicationcgherence problem, which is fitilt to sole for such

we propose to perform serial code redundantlyvatye architectures. In addition, hot spot contention in the mem-

node, broadcasting all operands needed for that code on thgry system can bexeemely disruptie.

optical interconnect. An optical interconnect cannot hope to boost perfor-

~We call our proposedxecution model Single-Program, mance substantially pend what it is with the already
Single-Data stream (SPSDXtending Flynn$ classifica-

|

|

|

N N
=lz|z|=|z|=|=|E

\/| N
|
|

(N/2)log,N switches

Figure 1. Dancehall architectures Figure 3. Multicomputer Example

large bandwidths of multistage neirks. Furthermore, and neither theus interbce nor the cache tag ports could
with processor caches to cutwibon memory lateng the sustain a linear gvath in trafic.

optical netvork would incur the same scalability problems Thus, we see thatven the best optical interconnects do
as with the bs-based system described kelo not provide a cure-all for shared-memory multiprocessor

Another class of shared-memory multiprocessor is thecommunication limitations, for either type of shared-mem-
bus-based, snooping cache machine (wevsiio example ory machine.
in Figure2). This architecture mo forms the llk of all
multiprocessor systems sold. In this architecture, the multi-2.2 Multicomputers
stage interconnection netvk is replaced by a singleib.

The broadcast capability of thesis eploited to sole the The incredible performance gvth rate of microproces-
cache coherence problem by assuring thiatyeprocessor sors, as well as the benefits of economies of scale, ha
monitors @ery memory operation,. Each processor can allowed the multicomputer to enge as the dominant scal-
then interene when necessary to assure that a single vie able multiprocessokVorkstation-like multicomputer nodes
of memory is maintained. provide lov-lateny access to a fraction of the system

As processor speedsveaincreased, feer processors memory (although the wvtiered memory model mak
can be placed on a singlasbbefore thels becomes satu- these machinesevy hard to program). Recentaanples of
rated. \éndors hee managed to place as ryaas thirty or multicomputers include the Thinking Machines CM-5
forty processors on a singlaib by pushing the electrical [14], the Intel Rragon [5], and the IBM SP-2[12]. eV
interface to its limit, bt this level of parallelism becomes shav a simple gample of a multicomputer architecture in
increasingly dificult as eer faster processors enger Figure3.

An optical crossbar or free-space interconnect could Multicomputers can pride either a message-passing
function much as an ultra high-bandwidthisb This is no interface, such as the SP-2, or a shared-memory actgrf
panacea for scalability ofus-based systems, wever. A implemented either with hardwe or softare sending
bus with infinite bandwidth and zero latgneould quickly inter-processor messages and g the illusion of
swamp the snooping mechanisms as more processors wershared memory (these systems are often called distdb
added. Because each memory operation must be monitoreshared-memory machines).
by every processoithe total processing requirement in the Not only are the microprocessorsf-tife-shelf, com-
system grwss as the square of the number of processorsmodity parts, bt increasingly the memory system, inter-

connect, and communication intecké are alsoxploiting have tightly-coupled processors and main memories (ren-
economies of scale. Thiadt is drving the use of softare dering remote communication morgpensve). For the
protocols, such as in the SequentNE3 [16], and the use purposes of this discussion, we will assume thatyepar-

of standards, such as the Scalable Coherencedogcifl] allel program can be decomposed (albeit at a fine grain)
in the Conex Exemplar [4]. into two modes: serial and parallel.

The emphasis on cost nexkit dificult for even an ideal We can impruoe both the serial portion of a parallel pro-
optical netvork to proside huge performanceams. In gram, and uniprocessor programs, with gecetion model
message-passing computers, the latehmough the actual that is analogous to the Single-Program, Multiple Data
network wires is typically a small fraction of the total net- stream (SPMD) xecution model identified by Darema-
work traversal time; most of the time is spent in the net- Rogerset al. in 1985 [6]. This recution model, which we
work interface at the sender and reegi In machines that call Single-Program, Single Data stream (SPSDs w
implement softw@re protocols, such as theisgbnsin derived from the Masse Memory Machine wrk from the
Typhoon [18] and Stanford FLASH [13], most of the mes- early 1980s [8]. In SPSD mode, each of the procesgers e
saging time is spent running the protocol handlerenkn cutes the entire program, reading and writirgo#ly the
hardware-based shared-memory int&é systems, such as same data (unl&k SPMD, in which each processor writes
SCl-based systems or the Stanford9M [15] machine, to different addresses).
the shared-memory protocol logic may be a bottleneck. SPSD &ecution was conceied to run onDATASCA-
While support could be added to increase the bandwidth o AR systems [3], which are small-scale systems that con-
the protocol engines, the increasing reliance on commaoditytain processors tightly coupled with main memoumyning
parts maks adding such support problematic.afkg an uniprocessor program©ATASCALAR architectures are
ideal optical netwrk achiing infinite bandwidth and zero optimized for eficient serial gecution with &ploitation of
lateny would not impre@e the performance dramatically coarsergrain parallelism when possibleoffan MPP with

for these machines. an optical netwrk, the goal of SPSDxecution is precisely

If the network interface problems were allated, a the cowerse: the program runs in parallel mode the major-
very lon-lateny optical netverk could possibly prade ity of the time, switching to SPSD to race through a serial
nearuniform access times to all of the memories in the sys-section of code.
tem, whether local or remote. This situatioowd be tran- Each node assumewigership of the portion of pisical
sitory at best, hwever. address space that it contains. When a node is operating in

As microprocessors becomeee faster long access SPSD mode, and issues a load to an operand thengt @
latencies for een local memories, as well as limited band- broadcasts that operand to the other nodes (singeathe
width off the processor die and on the systeuns, bwill all running the same code, th&o will eventually need
force the local memory progregsily closer to the CPU. that operand). When a node issues a load to an operand that
We beliee that this trend will culminate with a node’ a different node wns, the load stalls, if necessamtil the
local memory on the same die (or module) as the progessoneeded operand ares wer the optical netark, broadcast
exploiting the tremendously high bandwidth andwvlo by the avning node. Thiswnership/broadcast schemasv
lateng out of on-chip memory banks. calledESP by the Massie Memory Machine ark.

This design point will seevto male remote communi- To cut davn on interchip communication, and the
cation orders of magnitude morgpensve than local (on- latencies associated thesith, we replicate some of the
chip) communication, as theag between a local on-chip heavily-accessed pages across all nodes. Accesses to this
memory access and a remote memory accesgsgithis statically replicated data will complete locally onvery
gap will in turn male good speedups in masdy parallel node, not requiring a broadcast. Memory on each node is
systems een harder to obtain for codes that are not thus dvided into tw classesreplicated and communi-
“embarrassingly parallél. cated. A load to areplicated datum neger requires a broad-

It is therefore paramount that both sequential portions ofcast since it completes orvesy node, and a load to a
the code, including thefdfated communication, be adfief communicated datum alvays requires a broadcast, since it
cient as possible. It will also be critical that communication completes only on the node thatvrts that particular
during parallel phases be minimized or tolerated\®r-0 datum. Data may also be replicated dynamically; wevallo
lapping with computation; otherwise scalability will fasf each node to cache datareed by other nodes. A load to a

communicated datum that is found in all processor caches
3 Implementing SPSD execution is not broadcast.
In Figure4 we shav how loads and stores to replicated
Our proposal for reducing seriaverhead in parallel pro- versus communicated memory feif both CPUs issue a
grams eploits the &ct that computation will be signifi- 10ad and store to replicated memory (L1 and S1), which
cantly cheaper in future systems, particularly those thatcomplete on both nodes. Both CPUs also issue commands

Node 1 L2 Node 2
I CPUL | Broadcast | " U2 I
	network	
L1		L1 _\,
s1		s1
I I I X I		
[Memory Memory	[Memory Memory	l
(replicated) (communicated)		
U . L o e e e e e e — — = .

Figure 4. Replicated versus communicated main memory

L2 and S2, which are located in the communicated mem-an on-chip lookup. The operand is sent directly to the other
ory of node 1 onlyNode 1 broadcasts L2, which node 2 nodes, eliminating half of the communication delay by
receves and consumes. S2 completes at nodeutljsb requiring only one-a&y communication.

dropped at node 2. This “response-only” model also reduces ficaf
The rest of this section describes the threegcaites of (increasing déctive of-chip bandwidth) becausefefhip
benefits that the SPSD mode g€eution preides. requests are unneeded. Finagdll} interchip write trafic is

o eliminated under ESBtores (or write-backs of dirty cache
31 Requ&_st elimination th“?ugh ESP) lines) complete locally orvery node if their tayet address
The Massie Memory Machine (MMM) define&SP, the is contained within a replicated page. Stores or write-backs
notion of running the same program across multiple com-y5 5 communicated page occur only on tagiag node,
putational engines, broadcasting accessed local data to aljhich preseres consisterycsince that node holds the only
non-local processors. Mever, the MMM proposed con- copy in main memoryNote that there are no consistgnc

ventional, non-pipelined uniprocessors connected by a sinjssyes, becauseery node is running the same code.
gle global s, and was therefore unlidy to praside better

cost-performance than competing solutions. Furthermore3-2 Pipelined memory prefetching
the MMM was a fully synchronous architecture, in which Consider an access to a datum obtained through a pointer
all processors proceeded in lock-step, with one processomn corventional systems: (1) a request must be séathab
running slightly ahead of the others (tkad processor). In to memory (2) the pointer is returned, the processor com-
Figure5a we illustrate the highael design of the MMM. putes the address of the datum, (3) sends a request to mem-
In Figure5b we shw an example of the MMMS opera- ory, and (4) the operand is returned. This sequence requires
tion, in which processor 3mms the first four operands, so a total of four sequential chip-to-chip crossings. An ESP-
is the lead processor for the first four accesses. Processortfased systemould incur two sequential chip crossings at
owns operands fevthrough seen, so upon the fifth access, most: (1) the wner of the pointer broadcasts the address,
a lead change occurs and processor 2 becomes the leadall nodes compute the address of the datum, and then (2)
processar Finally, another lead change occurs on the the avner of the datum broadcasts the datum.
access to the eighth operand, and processor &hn ag An MPP running in SPSD mode can dee betterIf
becomes the lead processor both the pointer and datum reside on the same node—the
An MPP system running in SPSD mode ggjthe same owner can therefore read both withouaiting for an of
benefits from ESP as did the MMM proposal. The major chip access, pipelining the broadcast of both operands to
benefit in this case is reduced remote access latsince the other nodes. ®J/call the phenomenon of multiple con-
only one netwrk traversal is needed for a remote operand secutve accessealling on the same nodepelined mem-
(as opposed to wvfor the traditional request/response pair ory prefetching. Since each memory chip has an on-chip
or more if coherence protocol actions are required). Othemprocessar consecutie accessesalling on any memory
related benefits for SPSD are: (1) elimination of intercon- chip will cause memory prefetching. Anotheaywof visu-
nect request tré€, and (2) elimination of interconnect alizing memory prefetching is from the point of wief
write trafic. one node—from its perspeat it is the processor actually
Because each node runs the same program, a communperforming the serial phase of the program, and all other
cated operand can be sent to the other nodes as soon asfitsdes are simply memory—which can send it operands
address is resohd and the operand is fetched from the that it will need, before it hasven computed their
local memory The request part of the accessimes only addresses.

» system bus

A
»
»
»
»

(a) Design:

global address space

(b) Operation:

Reference string: wy, wy, ..., Wg
Locations: wsg, wg, w7 in machine 2

3 Wq Wy Waq W We Wg W7 Wg W . .
172 W3 T4 5 76 T T8 19 all others in machine 3
processors 2 W1 Wp W3 W4 W5 Wg Wy Wg

1 W1 Wy W3 Wy Wg Wg W7 Wg . X
. . o time at which processor

| 1 2 3456 7 8 91011121314 receivesaword

Figure 5. Design and operation of the ESP Massive Memory Machine (taken from [8])

Whenever the address of an operand depends on anotheB.3 New opportunities for parallelism
operand, and the twoperands reside on féifent nodes, an
inter-chip message is required. That communicatidecef
tively halts ag memory prefetching occurring wo that

When communication becomes relaty much more
expensve than computation, performing redundant compu-

' _ tation to &oid communication becomes more attnaeti
dependence chain onyanode. An gample can be seenin - gpgp yses redundant computation to reduce remote laten-
Figures: if eachw, , ; is dependent omy;, there are only jes \\ can also use SPSD ttrct nev forms of “mem-

two interchip latencies on the critical path (after accessing ory parallelism” that further reduce serial code.

w, and w;). To increase the performancaigs from For example, assume that a chained hash table is distrib-
memory prefetching, it is therefore desirable to maximize 04 across the phical memory of multiple nodes. &V

the number of consecué references on single nodese W oty the run-time storage allocator to placg ahained
refer t(_) the number of consemmrefe_rences to operanQS elements on the same node as the head of the chain.
on a single node assreak. A streak includes both repli- ggcqse this is code that is hard to -parallelize, we are run-
cated and communicated references. ning in SPSD mode. All nodes thus compute thexnafe

With an in-order issue processarbreak in a streak will o 5rray when performing a hash table lookup, insertion,
force the node to stall until another node broadcasts thg) qeletion.

needed operand. An out-of-order issue machine lends itself ggarial werhead is reduced by placing a *
particularly well to this model, leever, as multiple nodes
may simultaneously prefetch wo distinct dependence
chains if the instruction windw is suficiently lage. The
ideal case is where all nodes are memory prefetchiwg do

separate dependence chains that teatain locally without ary of the interening chain addresses @yk.

Memory prefetching does not require saiter support Marny other &les of such opportunities under SPSD
or re-compilation—running SPSD in a parallel system MaY eyist. kut are bgond the scope of this papéore detail
exploit spatial locality already inherent in reference .,n pe found elsehere 13].

streams. (Programs may benefit from re-compilation or
programmer tuning, of course, sincegkcit support could 3.4 SPSD and optical interconnects
increase erage streak length.) When streaks are greater
than aerage, the SPSD model benefits, since -cigy
latencies on the critical path are reduced.

locality
branch” around the hash table operation. When performing
insertions and deletions, only the node containing the chain
performs the operation, witho remote communication.

For a lookup, thewner broadcasts the result of the lookup,

The major drevback of the SPSD model is that it requires

broadcast of data to all nodes. This limits its appeal using
traditional electrical interconnects to a small number of
nodes. © be successful, the SPSD model requiresies-

sive broadcasts, which me&k it a good match for optics.
Since all nodes on a time-multigkd or vave-multiplexed
optical interconnect can seeyarhannel thg choose &ny,
but not all), broadcasts essentially come for freeithW/

However, SPSD vas originally ewisioned for aggresse
uniprocessor systems[2]. The success of such small-scale
systems might well produce much of the required support
on future microprocessors (e.g., queues faoffeing

electrical interconnects, SPSD is limited to small-scale sys-broadcasts and matching them with processor requests).

tems that also wa lov-overhead broadcasts (e.gyskes
and small rings).

Furthermore, the optical interconnect can multicast to

subsets of the nodes in an MRIRAd in &ct can simulta-
neously multicast diérent data to diérent subsets. This
capability may eentually prae useful for more creag
and flible ways of reducing communication, both in par-
allel and serial phases of the programecution.

The need for fla control is greatly mitigted with the
SPSD model. Since the processors are xdcating the

4 Lookinginto thefuture

Optical interconnects pvide a host of interesting opportu-
nities for the deelopment of future masaly parallel sys-
tems. Havever, economies of scale—coupled with
architectures balanced and tuned for electrical intercon-
nects—uwill force optics to demonstrate a quantum leap in
capability before their widespread adoption.

The SPSD xecution model is particularly appealing

same code, the number of communications depends not OBecause the computer appears to be werdional unipro-

the number of nodesubthe number of operands being
communicated. This number will gkomuch more shaly,

cessorWe ermwvision that a computer emplimg the SPSD
model will run programs notxelicitly written for it, with

since more nodes means more of the data can be replicateghe compiler disceering and eploiting the olvious paral-

In addition, hot spots are lessdl, because the single pro-
gram eecution efectively produces itswan flow control.

3.5 SPSD implementation issues

lelism of the program. ThBATASCALAR architecture can
easily switch between the ogmtional parallel (MIMD)
model and the SPSD modekpéoiting the compileris-
covered parallelism as appropriate, yet acinig very high
performance on the portions not easily parallelized. In

Because all operands for the serial phases must be preseatidition, with the help of the programmer (or a sophisti-

at every processerrunning in SPSD mode can only be
more eficient if most accesses can be found locaéguc-
ing the aerage local memory access latgntt is well
known, havever, that a lage majority of memory refer-

cated compiler) further optimizations are possible to cap-
ture opportunities for memory parallelism. The
DATASCALAR model appears promising for semiconduc-
tor-based technologies juster the horizon, when process-

ences tend to access a small minority of the memory locaing power is readily wailable where needed. it
tions. For this reason, cache memories—particularly those semiconductor interconnects, virver, the scalability is
specifically designed with this in mind—are often able to seriously limited by the requirement of broadcast, and in
reduce remote accesses, sometimes dramatically [2, 9fact we do not ersion DATASCALAR systems bgond

While static replication of small numbers of “hot pages”

twenty or so separate modules. These systems, of course,

can cut den substantially on remote accesses, dynamicmight be used as components imtarsystems. The oppor-
replication—achieed with cache memories—can reduce tunity for low-lateng, scalable broadcast using free-space

remote accessewven further Using caches to reduce the
number of broadcasts introduces the problem eapikng
caches across nodedrrespondent; the details of the solu-

optical interconnects promises the potential for much
larger systems. Hwe far such systems could bztended
before other dctors limit their scalability is a subject of

tion are bgond the scope of this paper and appear else-future research.

where [3].
Speculatrte execution also complicates this model.

For the SPSD model, adding more processors can be
effective for applications where the data setwgavithout

Speculatre code resulting from branch prediction can increases in computation. Problems that require more

either hold onto broadcasts until the branchgdaris
resolhed, or speculately broadcast communicated oper-

memory but do not require more computation, can be
accommodated by Iger numbers of modules. This model

ands with some sort of sophisticated tagging schemescales from the communications standpoint because the
Coarse-grain speculaé processors must guarantee that program &ecution inherently pnddes flav control that

large-scale speculag tasks issue the sameaywacross
nodes.
One dravback to using SPSDxecution in massely

limits the emegence of hot spots.
How far the SPSD model can scale depends on the
extent to which communications can be limited. The use of

parallel processors is the reliance on commaodity micropro-replicated data may result in one tooterders of magni-

cessors in such systems. It isfidiflt to justify architec-
tural changes to support a markas small as MPPs.

tude reduction in tr&t. Other optimizations are also pos-
sible.

5 Summary (8]

In this paper we hee presented anxecution model, [9]
adapted from an aggressiuniprocessor proposal, which
exploits the cheap broadcasting capability of optical net-
works to reduce sequential/erheads. Optical intercon-
nects will not become the communications method of [10]
choice unless tlyeare able to demonstrate clearly superior
capabilities. © do this, the architecture mustpéit the

unique opportunities that the technologfeos, not simply

settle for a highebandwidth communications newk. [11]
Novel architectures are needed todakdwantage of the
benefits diered by optical technologyVe hae demon- [12]

strated one such architecture aneegiaguments for wi

the DATASCALAR architecture is well matched for optical
networks in lage-scale, high-performance systems of the [13]
future.

Acknowledgments

The authors thank Allan Gottlieb for the opportunity to
present our vigpoints in this forum. W thank Leon
McCaughan for his discussions on optical technologies,[l4]
and the other members of the Galileo project, abies
Kaxiras and Alain Kagi, for their contritions to the ideas
presented in this paper

References

[1] John Beetem, Monty Denneau, and DoriWgarten. The [15]
GF11 Supercomputein ISCA12, pages 108-115.

[2] Doug Buger, JamefR. Goodman, and Alain Kagi. Mem-
ory Bandwidth Limitations of Future Microprocessors. In
Proceedings of the 23rd Annual International Symposium [16]

on Computer Architecture, pages 79-90, May 1996.

[3] Doug Buger, Stenos Kaxiras, and JamBs Goodman.
DataScalar Architectures and the SPS2diion Model.
Technical Report 1317, Computer Sciences Department,[17]
University of Wsconsin, Madison, WI, June 1996.

[4] Corvex Computer Corporation, Richardson,exas.
SPP1000 Systems Overview, 1994.

[5] Intel Corporation. Bragon E€chnical Summary Intel
Supercomputer Systemsvidion, 1993.

[6] F Darema-Rogers,.\A. Norton, and GF. Pfister Using a
Single-Program Multiple-Data Computation Model for
Parallel Execution of Scientific Applications. IBM
Research Report RC 11552,\mber 1985.

[7]1 Michaeld. Flynn. Some Computer @amizations and Their
Effectiveness. IEEE Transactions on Computers, C-
21:948-960, 1972.

(18]

Hector Garcia-Molina, Richardl Lipton, and Jacobo
Valdes. A Massie Memory Machinel EEE Transactions
on Computers, C-33(5):391-399, May 1984.

JameR. Goodman. Using Cache Memory Reduce Pro-
cessoiMemory Traffic. In Proceedings of the 10th Annual
International Symposium on Computer Architecture, pages
124-131, June 1983.

Allan Gottlieb, Ralph Grishman, Clyde Kruskal,
Kevin P. McAuliffe, Larry Rudolph, and Marc SniThe
NYU Ultracomputer—Designing an MIMD Shared Mem-
ory Parallel ComputerlEEE Transactions on Computers,
C-32(2):175-189, February 1983.

IEEE Computer Society Scalable Coherent
(SCI). ANSI/IEEE Std 1596-1992, August 1993.
Inc. International Busineddachines. IBM RISC System/
6000 Scalable P@WERparallel Systems: Command and
Technical Reference. Reference Manual, 1993. GC23-
3900-00.

Jefrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein,
Richard Simoni, Kurosh Gharachorloo, John Chapin,
David Nakahira, Joel BaxterMark Horawitz, Anoop
Gupta, Mendel Rosenblum, and John HennéBsyg Stan-
ford FLASH Multiprocessorin Proceedings of the 21st
Annual International Symposium on Computer Architec-
ture, pages 302-313, April 1994.

CharlesE. Leiserson, Zalt. Ahuhamdeh, Dad C. Dou-
glas, CarR. Fegnman, MahesiMN. Ganmukhi, Jéfey V.
Hill, W. Daniel Hillis, Bradlgy C. Kuszmaul, Magaret
A. St. Pierre, Daid S. Wells, MonicaC. Wong, Shav-Wen
Yang, and Robert Zak. The Netw« Architecture of the
Connection Machine CM-5. IRroceedings of the Fourth
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 272-285, June 1992.

Daniel Lenoski, James Laudono#tosh Gharachorloo,
Wolf-Dietrich Weber Anoop Gupta, John Hennessjark
Horowitz, and Monica Lam. The StanfordABH Multi-
processan EEE Computer, 25(3):63—-79, March 1992.

Tom Lovett and Russell Clapp. 8NG: A CC-NUMA
Computer System for the Commercial Metfdace. In
Proceedings of the 23rd Annual International Symposium

on Computer Architecture, pages 304-315, May 1996.

G.F. Pfister W. C. Brantlg, D. A. Geoge, SL. Harwy,
W.J. Kleinfelder K. P. McAuliffe, E.A. Melton, V. A.
Norton, and JWeiss. The IBM ResearclaRallel Processor
Prototype (RP3): Introduction and Architecture. Rro-
ceedings of the 1985 International Conference on Parallel
Processing, pages 764—771, August 1985.

StevenK. Reinhardt, Jamds. Larus, and Dad A. Wood.
Tempest and yphoon: Usetevel Shared Memoryln
Proceedings of the 21st Annual International Symposium

on Computer Architecture, pages 24—33, April 1994.

Intade

