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Abstract?

The inceasing power of commodity nigrocessaos is forcing
system designserto povide moe compl& and &pensive memory
hierarchies. A potentially leeaper and betteperforming alterna-
tive in the long run is to inggate the pocessor and main memory
on the same die or module this paperwe pppose an ahitec-
ture (DATASCALAR) and an gecution model (SPSD) that permit
efficient xecution of unipscessor ppgrams acoss multiple inte-
grated pocessor/memory modulese\Wen describe four feats
of this poposal that permit impwved performanceESP @ins
memory prefetchingresult communicatignand hybrid parallel
execution Finally, we pesent gamples and measements, whit
give eidence that edcfeatue will improve performance on futer
systems that have vergpensive dfchip communication.

1 Introduction

Modern microprocessorsxigibit very high levels of perfor-
mance, which nertheless continue to increasgenentially [1].
These CPUs require a memory system that caviggmperands
both very quickly and at aery high rate. Current memory systems
therefore emplp a deep hierarghwith comple features, to pro-
vide high performance at acceptable cost. These memory system
generally hae split level one instruction and data caches, and may
have two levels of cache on the CPU die itself [2]. In addition to
having two or three leels of caches of diérent sizes, with diér-
ing line sizes and associaties, these caches are generally
lockup-free [20], allaving multiple misses to be outstanding at all
levels.

Even with such aggres& memory hierarchies, ivaver, mod-

ern processors spend much of their time stalling for needed oper-

ands, both instructions and data [4]. This situation is elylito be
rectified, gven the continuing increases in processor performance,

increases of main memory sizes, and increases in the disparin{0

between processor and memoygle times [5]. Memory lateryc
tolerance/reduction techniques—such as non-blocking caches [20
11], hardvare and softare prefetching [6, 8, 7, 14, 19, 22], multi-
threading [21, 27], and out-of-ordexezution [32, 30]—may
reduce memory-related processor stalls untdilable memory
bandwidth is saturated. A recent studywséd that aggressely
lateng/-tolerant processorswe fully half of their memory stall
times to limited dfchip bandwidth [4].

Although scaling up cache sizeyéds of cache, and cache
complity ad infinitummay be one &y to leep the memory sys-
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tem balanced with processor performance, tightly coupling the
processor with main memory mayeatually proe to be a more
cost-efective solution. Intgrating main memory onto the same
multi-chip module (and perhapsvemtually onto the CPU die
itself), senes to reduce both high memory latgrand memory
bandwidth limitations. May of the other techniques, carsely
trade memory access latgnoff for memory bandwidth, ner
reducing both simultaneously

Current trends in processor design indicate that more and more
of the chip will be deoted to memoryindeed, a huge portion of a
modern microprocessor chip is dedicated to the top of the memory
hierarcly: the rgisters and one or twevels of cache. Assuming
this trend continues, and as thepdgbetween on-chip andfathip
memory lateng grows, it may become desirable to igtate the
entire memory on-chip, leang off-chip accesses for references
that are treated more ékpage dults than cache misses. The on-
chip memory may en include high-density memorguch as
DRAM. Such processor/memory igmation may permit a less-
comple, more cost-déctive memory hierarghof equvalent per-
formance to the current model, though it will impose rigid con-
straints on memory size. Extending the memory system becomes
problematic. V& partition programs for such systems into three
gatgories:

The programs data set fits in on-chip DRAM, not requiring
ary external memory other than disk or other long-lagenc
memory

.

The prograns data set is lger than the on-chip memaotyut
a “dumb” of-chip memory system (similar to those of today)
can support reasonable processor performance,

The prograns working set is so lge that the processor
spends much of its timeaiting for of-chip accesses.

This paper is tgreted at the third cajery, proposing a system
execute a coventional single-processor progranut ln which
each main memory chip contains a procesqrograms data set
Is spread across these gmated processor/memory modules. All
processors run the same program, broadcasting operands yhat the
own to the other processors when needed, and performiyng an
tasks that can be accomplished entirely on-chip withduthop
communication. This paper does not attempt a thorough, quantita-
tive evaluation, lt rather outlines a tget system, pointing out
some of the potential adatages wer a comentional design.

In Section2, we describe thBATASCALAR proposal, listing
the four major adantages it hasver traditional architectures, and
describing hw each adantage imprees performance. In
Section3, we discuss implementation issues associated with these
types of systems. In Sectidnwe present a series of preliminary
experiments and analyses that attempt to quantify the potential of
the four majoDATASCALAR adwantages. Finallyin Sectiorb, we



list other research fefrts related to processor/memory ontation,
present future directions, and conclude.

2 DataScalar architecturesand SPSD

Given that each gton of main memory is tightly inggated
with a processomeav opportunities arise for achieg high per-
formance. & are proposing toxploit the fact that all verds in
main memory h& an on-chip processosolutions that require
explicit parallelism are unacceptable—our goal is thesting
serial programs should run without recompilation, and certainly
without being revritten. If this goal is achieed, nev programs and
compilers may of coursexploit further opportunities posed by
this novel architecture.

Our solution is anxecution model for uniprocessor programs
(an etension of Flynrs classification [12]) that is analogous to the
Single-Program, Multiple Data strearBRVD) execution model
identified by Darema-Rogem al. in 1985 [9]. This recution
model, which we call Single-Program, Single Data stresisD),
was inspired by the Mass® Memory Machine wark from the
early 1980s [15]. I'8PSD, each of one or more processors runs the
same program, reading and writiegactly the same data (unlike
SPMD, in which each processor writes tofelient addresses).

A DATASCALAR system implementSPSD by hasing one or

both MOPs. Both CPUs also issue loads to L2 and S2, which are
located in the communicated memory of MOP-1 omiOP-1
broadcasts L2, which MOP-2 reees and consumes. S2 com-
pletes at MOP-1,t is dropped at MOP-2.

The rest of this section describes the fourgates of benefits
that theDATASCALAR architecture prnades.

2.1 ESP gains

The Massie Memory Machine (MMM) definecESP, the
notion of running the same program across multiple computational
engines, broadcasting accessed local data to all non-local proces-
sors. Havever, the MMM proposed camntional, non-pipelined
uniprocessors connected by a single glohal land \as therefore
unlikely to pravide better cost-performance than competing solu-
tions. Furthermore, the MMM as a fully synchronous architec-
ture, in which all processors proceeded in lock-step, with one
processor running slightly ahead of the others|@he processor).

In Figure3a we illustrate the high¥el design of the MMM. In
Figure3b we shw an ekample of the MMMS operation, in which
processor 3wns the first four operands, so is the lead processor
for the first four accesses. Processowa®operands fasthrough
seven, so upon the fifth accesdgead change occurs and processor

2 becomes the lead procesdeinally, another lead change occurs

more intgrated processor/memory modules (henceforth called on the access to the eighth operand, and processorai ag

MOPs, for Memory On Processor) run the same program, each
MOP assuming wnership of the pysical address space that it
contains. When a MOP issues a load to an operand thanst @
broadcasts that operand to the other MOPs (singeatfeeall run-
ning the same program, théoo will eventually need that oper-
and). When a MOP issues a load to an operand thafesedif
MOP owns, the load stalls, if necessamtil the needed operand
arrives from the neterk, broadcast by thewming MOP This
ownership/broadcast schemeasv calledESP by the Massie
Memory Machine wrk.

We assume that 8€hip communication will be compareadily
more &pensve in future systems (alternegly, we assume that
computation will become less and less of a limitatiomycing
every load to be broadcastowld therefore be a major dvhack.

becomes the lead processor

DATASCALAR systems enj the same benefits from ESP as
did the MMM proposal. Major benefits are (1) reduced remote
access laten (2) elimination of request trfat, and (3) elimina-
tion of write trafic. Because each MOP runs the same program, a
communicated operand can be sent to the other MOPs the instant
its address is resad and it is fetched from the on-chip memory
The request part of the accesgoines only an on-chip lookup.
The operand is sent directly to the other MOPs, eliminating half of
the communication delay by requiring only onaywcommunica-
tion. This “response-only” model also reducesficafincreasing
effective of-chip bandwidth) because fethip requests are
unneeded. Finallyall interchip write trdfc is eliminated under
ESP Stores (or write-backs of dirty cache lines) complete locally

We propose replicating the frequently-accessed portions of theon every MOP if thg fall in a replicated page. Stores or write-

address space both dynamically and staticatlycut devn on
inter-chip communication. &t static replication, we duplicate the
most hewily-accessed pages on each M@&cesses to which will
complete locally on\ery MOR therefore not requiring a broad-
cast. Memory on each MOP is thusgided into tw classestepli-
cated and communicated. A load to areplicated datum neer
requires a broadcast since it completes\waryeMOR and a load
to a communicated datum alvays requires a broadcast, since it
completes only on the MOP thatvos that particular datum.oF
dynamic replication, we ale each node to cache datareed by

other MOPs. A load to a communicated datum that is found in all
processor caches is not broadcast. This introduces some interestin(g0

consisteng issues that we will discuss later in this paper
Figurel shavs a system-kel comparison betweenBATAS-

CALAR system and a future system that has some on-chip memor

but still has a lage of-chip main memoryAlthough the replicated

and communicated portions of main memory are depicted as sepa.

rate units, the are only logically distinct. The caches are not
shawn in this figure. Figur@ shavs hav loads and stores to repli-
cated ersus communicated memoryfdif both CPUs issue a load

and store to replicated memory (L1 and S1), which complete on

1. For the purposes of this stydwe hae assumed a partitioning at the
page leel, and thus this distinctionomld be made in the page table. Other
schemes are possible.

backs to a communicated page occur only on theirg MOR
which presergs consistencsince that MOP holds the only gop
in main memory Note that there are no consistgnissues,
becausevery MOP runs the same program.

Since both the MMM an@®ATASCALAR systems implement
ESR they both enjg these benefits of BEhip lateny and trafic
reduction. The nd two subsections describe aafages that are
unique to thédATASCALAR model.

2.2 Memory prefetching

Consider an access to a datum obtained through a pdimter
nventional systems, a request must be sdnthap to memory

the pointer is returned, the processor computes the address of the
datum, sends a request to memamyd the operand is returned.

Yrhis sequence requires a total of four chip-to-chip crossings. An

ESP-based systemowld incur two chip crossings at most: the
owner of the pointer broadcasts the address, all nodes compute the
address of the datum, and then ther of the datum broadcasts
the datum.

An ESP-based system suchDasTASCALAR can do gen bet-
ter, hawever, if both the pointer and datum reside on the same
MOP—the aovner can therefore read both withoutiting for an
off-chip access, pipelining the broadcast of both operands to the
other MOPs. W call the phenomenon of multiple consegiti
accessesfling on the same MORemory prefetching. Since each
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Figure 2. Replicated versus communicated main memory
memory chip has an on-chip processmmsecutie accessesali- The streak length does notwalys indicate the benefits of

ing onany memory chip will cause memory prefetching. Another prefetching. Br example, consider a program fragment that adds

way of visualizing memory prefetching is from the point ofawie  vectorA to vectorB, where all the elements &freside on MOX

of one MOP—from its perspeut, it is the processaand all other and the elements & reside on MOPY. If the code fetches alter-

MOPs are simply memory—which can send it operands that it will nately one element from, then one element frof, the streak

need, before it hawen computed their addresses. length will be \ery short. Processors that dynamically reorder
instructions could easily race along in parallel, with proceXsor

Whenever an operand depends on another operand, anddhe tw aking the lead fetching the elements e€torA while processoy
reside on dferent MOPS, an intethip communication is  takes the lead in fetching the elements eétorB.

required, eectively halting ay memory prefetching occurring
down that dependence chain orydMOP. An example can be seen
in Figure3: if eachw; , ; is dependent om, , there are only ta
inter-chip latencies on the critical path (after accessingand
w, ). To increase the performancaigs from memory prefetching,
it is therefore desirable to maximize the number of consectei-

Memory prefetching does not require saite support or
recompilation—a DataScalar system maypleit spatial locality
already inherent in reference streams. (Programs may benefit from
recompilation or programmer tuning, of course, singgieit sup-
port could increasevarage streak length.) When streaks are
greater than\aerage, the DataScalar model benefits, since-inter

erences on single MOPs.eWefer to the number of consewveti chip latencies on the critical path are reduced. Memory prefetching
references to operands on a single MOP atreak. A streak does nothing to reduce bandwidth requirementsyeber, since
includes both replicated and communicated references. the operands must still be broadcast to all MOPs. Tkiesubsec-

With an in-order issue processarbreak in a streak will force  tion describes he DataScalar systems may reduce &P

the MOP to stall until another MOP broadcasts the needed oper-raffic.

and. An out-of-order issue machine lends itself particularly well to A
this model, havever, as multiple MOPs may prefetchwio several 2.3 Result communication

dependence chains if the instruction wiwdis suficiently lage. DATASCALAR systems benefit from both ESRigs and mem-
The ideal case is where all MOPs are memory prefetchingn do  ory prefetching without softare support, it we beliee that a sig-
separate dependence chains that tomtain locally nificant potential for additional impved performance can be
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Figure 3. Design and operation of the ESP Massive Memory Machine (taken from [15])

achieed with compiler and/or programmer support. Another
method of &ploiting the fct that gery memory chip contains a
processor isesult communication: when most or all of the oper-
ands for a computation are found locatip one MOPthey are not

some @&tractable parallelism,ut at least some phases that aohie
very poor speedup on cantional multiprocessors. These pro-
grams should benefit greatly fromDaTASCALAR architecture.
The issues associated with mik serial/parallel modexecution

broadcast: the result is computed locally only and broadcast to theare under imestigation.

other MOPs. If the result is to be written into the local communi-
cated store (and is not &y to be needed am soon), the result

store, and consequently the entire computation, can complete

locally without incurring ay off-chip traficl. For example, if the
program needed to sum an entire gremyd store the result in the
heap, haing the entire array and heap element in communicated
store on one MOP euld enable the entire summation to be per-
formed on-chip, including the final store. Subsequent accesses t
that heap elementauld be correct, since only thevoer would
access thealue from its communicated store and broadcast it. The
software support wuld be needed to place the entire array on the
same MOPand to hae the other MOPs bypass the code that is
only to be run on thevaning MOP

The run-time system can guarantee that certain data are allo

cated on the same node, or the compiler can assume that no su
guaranteexasts. Optimizations are possible in either case; we pro-
vide specific gamples in Sectiod.3.

2.4 Exploiting coar se-grain parallelism

Although ourDATASCALAR proposal focuses on running uni-
processor codes fefiently, a system with a processor on each
memory chip is ale facto multiprocessorNothing precludes a
DATASCALAR system from xecuting comentional parallel pro-
grams in a corentional vay. In fact, aDATASCALAR system can
switch between serial (ESP) modes andveational parallel
modes, gploiting easily-identifiable, coarse-grain parallelism
when it ists, and running more or less serialized cofleiefitly
when parallelism is hard to find. The result communication con-
cept described in Sectiéh3 is one manifestation ofteacting
parallelism from a traditional serial program. Marograms hae

1. In fact, the other nodesownld only compute the result, then thrdt
away!

3 DataScalar implementation issues

Because wery operand must be present atrg processorthe
DATASCALAR scheme can only hope to succeed if most accesses
can be found locallyAt first glance, this wuld seem to be an
impossible limitation, and these concerns cannot be easily dis-

c;nissed. In particulave see little hope that this technique can be

extended to lage numbers of MOPs. It is well kwa, havever,

that a lage majority of memory references tend to access a small
minority of the memory locations.oF this reason, cache memo-
ries—particularly those specifically designed with this in mind—
are often able to reduce remote accesses, sometimes dramatically
[16, 4]. The challenge is to identify that part of the data and repli-

cate it. ClearlyDATASCALAR must capture this locality in order

achiee the goal of minimal communicated data.

3.1 Dynamic Replication

Section2 suggested that data can be replicated both statically
and dynamically and discussed the static replication of data.
Dynamic replication can also be acled, lagely independent of
the static methods empled, though the benefits of theawneth-
ods are unlikly to be fully additre. Dynamic replication can be
achieved most easily by caching communicated data, turning it
temporarily into replicated data. In Figuteve shav an example
of how such a system might split data into replicated and commu-
nicated classes. Some pages in main memory areethaskrepli-
cated, and some are mackas communicated. Some lines in the
cache are from local communicated pages (ethds dynamically
replicated), some are from local replicated pages, and some are
caching communicated dataveed by other MOPs (also maidk
as dynamically replicated).

The designation of data as replicated must be made with some
care. In particularnt is necessary that communicated data be repli-
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Figure 4. An example DATASCALAR machine

cated simultaneously at all nodes. This dynamic replication; ho 3.2 Inter-chip Communication
ever, creates some of the classic problems of shared-memory

multiprocessors, requiring carefully defined cache- and memory- 0 Because of thc;e;ymmetric Eat‘ére Oc]; MTASC?I'-ARdmOdIel'
consisteny models. all communicated alues must be broadcast to all nodes. In gen-

eral, broadcast operations as@ensve, and clearly not scalable.
Because the system is runni8§SD, havever, mary of the In special circumstances, \wever, such as on a ring oub, thy
classic problems of memory consistgmio not occurThere is no may be accomplished with only minor additional cost, though reli-
problem, for @ample, with diferent nodes trying to update the able delery and error reae@ry are ingitably more complicated
same memory location with @#fent \alues. Care is required, for broadcast operations.
however, to assure that all nodes reaeiesery communicated Ring operations, such as those defined in the IEEE standard
datum eactly once. This can most easily be guaranteed by assur-Scalable Coherent Intexée (SCI) [17, 28] seem particularly well-
ing that all caches maintainactly the same set of communicated Suited for this kind of operation. On a ring, all operations are
data. Thg may of course he independent replacement policies ©obsered by all nodes on a ring if the sender is responsible for
regarding the replicated data—all nodeséaactly the same rep- ~ 'émoving its avn message. & ewision a ring interconnect
licated data and this is strictly a local decisionst-they must all because of the high-performance capability [26], iroadcast on

; ; ; ring is complicated by thadt that operands originating atfdif
?g:ﬁriﬁiggtggnes on what items are replicated and what must bé:m MOPs are recatd at other nodes in ifent orders. A simple

tag can sort out data to féifent addressesubthe issue becomes
The key notion is that all caches must nesthe same choices as  complicated when the same datum must be broadcast twice. Com-

to which communicated data teiet upon a replacement. Other- plications also arise whever certain data items must be rebroad-

wise, the wner of a communicated datum might find the datum in cast, or cancelled (due to full neik queues or speculad

its cache, and consequently refrain from broadcasting it.fardif ~ Proadcasts, respeesly). The straightforard solution is to eid

ent MOP that hadvicted the line containing that datumould broadcasting t_he same address a second time untll_all MQ@PEs ha

then neer receve the needed datum. Out-of-ordeeution could ~ 26CePted the first broadcast of the addreesal¥f gploring other

lead to memory operations occurring in dafiént orderwith a solutions as well, which use more sophisticated tagging of broad-

- . : L casts.
resulting diference in replacement decisionsr an access-based i hev how th hip | it |
replacement polic(such as least-recently-used), one solution is to tln 'f[;‘?L’:II:IeLl c‘;vf_e; v EW tke_lc_)rrll-c,vllpolgterccinnect might |nt$r-
force accesses to the same casghéo occur in program ordefror act wi € drchip netvork. 1he 7 contains a queue for
) . S broadcasts, which are obtained by irded logic snooping on the
a fill-based replacement pafi¢such as first-in-first-out), the cor-

di lution i ¢ | h memory lus. The intedice logic also inhibits the memory from
responding solution Is to foraeplacements to the same Set 10 genicing lewel-one cache misses and writebacks to non-local data.

occur in program orderSome first-leel caches use eandom When a read to a non-local line occurs, an entry is allocated in the
replacement policfor speed. So long as inclusion is maintained, Broadcast Satus Holding Register (BSHR), a structure similar to
these issues can be ignored for ait the lagest lwel of cache,  the MSHR proposed for lockup-free caches [20]. The majterdif
which will presumably use a replacement pplather than ran- ence between the MSHR and the BSHR is that entries may be allo-
dom. cated in the BSHR by broadcastsamg from the netwrk, before



the processor issues a request for that datum. When arketw mately including DRAM as well, until latencies forfahip
broadcast/processor request pair is matched, the BSHRrfisw  accesses become so long (rekatio instruction issue times) that

the data to the processor these accesses must be treated moeedége dults than cache
. i misses. Such trendsgare strongly for processor/memory igite-
3.3 Speculatve execution tion.
Fine-grain speculate eecution is nw appearing in most Corventional systems today typically consist of a single pro-
state-of-the-art processors, and a succe§s4mh SCALAR archi- cessor and a collection of memory chips, with costs often split
tecture must be compatible with out-of-ordereeution. Indeed, more or less equally between theotwA DATASCALAR system

much of the promise we see DATASCALAR is the opportunity would consist of a collection of identical chips each of which costs
for out-of-order gecution, permitting seeral MOPs to race ahead ~more than a comntional DRAM chip, bt less than a processor
simultaneously on dirent instruction sequences. Waver, spec- chip. Because such chipsuld have more memory than ceen-
ulation must be tightly controlled: the broadcast of data may well tional processor chips, thehould be able to aclvie the same per-

be a critical limitation of this model, and broadcast of data that formance with less échip bandwidth, and thereforewer pins.
goes unused will hinder performance in a bandwidth-limited sys- Much more verk is needed to characterize the communication and
tem. We note that broadcasting data and then squashing it opens ugomputation requirements of BATASCALAR system before
mary difficult problems for maintaining identical cache contents definitive cost/performance guments can be madeyththere is
across nodes. While benefits may be seen from judicious broadcastdequate reason to hope that such a system can be cost-ceenpetiti
of speculatie data, the problems introduced seem taersefor with more comentional systems of the future.

the apparent paybfWe expect, therefore, that speculation will be . )

restricted to local nodes’ fetching theiwio data, whether repli- 4 MeasuringDATASCALAR system benefits

cated or communicated, and queuing up the communicated data
for broadcast as soon as a specatkecution becomes non-
speculatie. We are gploring more aggresse speculatie com-
munication policies as well, h@ver.

In this section, we discuss the potential of thevipresly enu-

merated, gpected adantages of HATASCALAR system. Since a

full performance comparison between possible future systems is

beyond the scope of this papere restrict our discussion to a high-

3.4 Operating Systems Issues level comparison of ter system models: a centralized processor
with an on-chip cache andfathip main memory banksgevsus a

To the atent that an xecuting program is non-deterministic, pDATASCALAR system with small processors and caches on the
operating system code can beeuted in the same manner as user memory system chips themsesv

code. Synchronousxeeptions, such as for an unaligned address,
would be obsemd at slightly diferent times on diérent MOPs, 4.1 ESP gain

but would cause no special problems. wéwer, asynchronous - .
: s : ' The ESP broadcast model eliminates the need fechgd
events could potentially cause fiililty if they are not obserd at ! . .
b y y A Jequest trdfc and write trdfic. In Section3.2, we mentioned the

the same point by all processors. Consider the case in which " . 1
write causes a pagadfit. Since only one MOP actually performs a  2dditional cost of requiring broadcasts, which is dependent on the
interconnect used in future systems. In this subsection we restrict

write to communicated data—the other MOPs all simply discard ¢ i reducti
their result—only the wning MOP would obsere the pagedult. our o_cus totr C re u_ctlon._ )
If the other MOPs did not recognize the pagsitf the might pro- US|_ng e<ecu_t|on-dr_ven S|m_ulat|on, we measured the amount
ceed bgond the &ult point indefinitely While it is interesting to By Which of-chip trafic, both in terms of bytes and transactions,
consider such aaviation on the idea of an impreciseseption, the would_t_Je reduced by uSI_ng:HATASCALAR architecture instead of
problem can bewaided by making sure that all MOPsvkathe a traditional system design.e/éimulated fourteen of the SPEC95
same page table entries, and actually check«izepgtions oneery benchmarks [31] using the SlmpIechlar too.l set [3], Whlqh simu-
memory operation. Thus each MOBwid obsere this pagedult. lates processors assuming a MIP& likstruction set. The input

External interrupts, liéwise, must be injected into the system with Sizes used were theest input sets for all benchmarks. ew
care to assure that all processors ofesérem at the same point in ~ 'eéduced the number of iterations for some of the benchmarks, after

their execution. determining that the reduction did not qualitaly change the
results. V¢ assumed a 64-Kbyte, dwvay set associat unified,
3.5 Cost write-allocate, write-back on-chip cache. 64-Kbyte is consistent

with on-chip processor cache sizes at the time the SPEC95 bench-
marks were written.

Tablel shavs the reduction in intechip trafic resultant from
{ESP expressed in both bytes and transactions (we count a request/
response pair as bmransactions). The first column for each mea-
sure (bytes and transactions)wsidhe interchip trafic for a tradi-
tional system, as shm in Figurelal. The second column for each
measure shis hav much interchip trafic remains in @ATAS-
CALAR system (Figurdb), assuming no statically replicated data
(which would correspond to on-chip memory in the traditional sys-
tem). The third column for each measurevehdav much of the
original interchip trafic theDATASCALAR system still produces.
What we see is that the ESP model eliminates roughly 15% to 50%
of the intefMOP bytes transmitted, and from 52% to 75% of the

Modern computer systemsyem high-performance systems,
are becoming increasingly cost-sensitiThus the success of the
DATASCALAR approach may depend dely on its cost. Because
of the economies of scale, it is impossible to predict actual costs o
future systems without kmdedge of wlumes, which are often
largely unrelated to the fefctiveness of the architecture or the
quality of the design. ¥/ can only der the relatre costs of a
DATASCALAR system as compared to a eentional processor

It is our projection that with continuing aaivces, processors
will become ubiquitous, appearingiem on DRAM chips to mak
more efective use of pin bandwidth. 4 each succeeding
DRAM generation, the cost of an on-chip processor will become
smaller and in only a f& generations, a moderately high-perfor-
mance processor will be feasible at only a small incremental cost.
An increasing portion of modern processors igtied to memory
composing an increasingly sophisticated hienaftregisters and 1. Unlike Figurel, havever, we do not assume yon-chip memory other
levels of cache. \& ewision that this trend will continue, ulti-  than the cache.




Traffic(Mb ytes) Transactions (millions)
Benc hmark Total DataScalar Remaining Total DataScalar Remaining
tomcatv 1363 1150 84.4% 79.3 37.7 47.5%
swim 474 288 60.7% 27.6 9.5 34.2%
hydro2d 1182 794 67.1% 68.8 26.0 37.8%
mgrid 2371 1641 69.2% 138.0 53.7 39.0%
applu 588 363 61.7% 34.3 11.9 34.8%
m88ksim 41 35 85.7% 2.4 1.2 48.2%
turb3d 1539 920 59.8% 89.6 30.1 33.6%
gcc 1401 1129 80.5% 81.6 37.0 45.3%
compress 16 7 46.2% 1.0 0.3 26.2%
li 105 64 61.0% 6.1 2.1 34.3%
perl 1175 793 67.5% 68.4 26.0 38.0%
fpppp 15577 12992 83.4% 906.6 425.3 46.9%
waveb 1733 927 53.5% 100.9 30.4 30.1%
vortex 8971 7096 79.1% 523.6 232.5 44.4%

Table 1: ESP traffic reduction

individual transactions (because no requests are sent, the transac- The net four columns in &ble2 shav the distrilution of repli-
tion reduction will avays be 50% or greater). These results indi- cated pages among the fougsents. By comparing these with
cate that—for systems that spend much of their time stalled due tathe sizes of each gment (shan in Table3), the percentage of

limited memory bandwidth—implementing ESP may invarper- that sgment that is replicated can be calculated. This quantity is
formance or reduce system cost. Note that while these results areelevant because greater replication within grsent tends to
independent of the number of MOPs, and focus offidrefduc- increase streak length.

tion, they do not address the performance penalty associated with The riah ¢ | h K] hs of
requiring broadcasts to multiple nodese \Address this issue in e right-most four columns Stdhe aerage strea engths o
Section3.2. four different types of streaks for each benchmark. The first calcu-

lates streaks using all references to memay.,(all cache
misses). The second and third columns compute streak length
using only instruction and data references to mepmespectiely.
Finally, the right-most column sk the aerage number of con-
tiguous accesses to replicated pages in main merdery high
numbers of references to replicated pages wilered aerage
treak lengths (a streak ends when a reference accesses a commu-
icated page on a frent MOP than the pveus reference to a
communicated page. If communicated references occur rarely
streaks will tend to beery long).

The ESP model may guie for a cache write policother than
write-allocate, which seems to be an ill match for this model. Allo-
cating a cache line on a store that will neither be reathapon,
nor hare neighbors that will be soon read, will incur a needless
inter-chip broadcast. A better solutiorould be to hee such stores
bypass their caches, completing only at theimer (if their
address resided in communicated memory; stores to replicate
memory complete v@rywhere). Another alternag is to imple-
ment a write-alidate polig [18], in which allocations are per-
formed only when a load is issued to a line that is either not in the

cache or does not contain the neededdwj.e., its valid bit is not The arerage streak lengths irafle2 tend to be ery high for

set). instructions—woer 20 in &ery case. &t of this lage length is due
to the replication of t& pages, which is significant for most pro-

4.2 Memory prefetching grams (li, tomcatvm88ksim, turb3d, and fppppVeaarerage code

streaks in the hundreds or thousands, and each has from 1/3 to 1/2
of the code replicated across all MOPg)itRf the &planation for

the number of consecué references gatisfieq locally on one iha lage streaks, heever, is the high spatial locality generally
MOP—for a fourMOP system. These simulations also used the ¢4 .14 in code reference streams.

SimpleScalar tools and assumed an identical cache configuration

to that presented in Sectidrl. For each benchmark, we repli- Data reference streak lengths tend to meefathan the instruc-
cated 32 4-Kbyte pages on each node. 38lected the pages to tion streak lengths. Tlgaare lav (less than 3) for some of the float-
replicate by running the benchmarkyisg the number of accesses ing point codes (swim, applu, turb3d, mgrid, angdro2d).

to each page, sorting the pages by number of accesses, and chooslthough floating-point codes tend toveahigh spatial locality

ing the 32 most hedy-accessed pages.aMistributed the com- streaks are cut by interhgad accesses to arrays residing ofedif
municated pages among the nodes round-robin in blocks with sizesnt mopsé€g.,c[i] = a[i] + b[i]). Also, some of the spa-
ranging from 4 to 32 pages. The sizes of the digioh chunks tial locality is filtered out by the cache. The three other floating-
are shan for each benchmark in the first column able2. For point codes ha higher merage data streak lengths,wever,

each benchmark, we tried to maximize the diatitm block size ranging from about 6 to 33. The igtr codes tend to ha higher

(to improve streak length) while stilldeping it smaller than 1/4 of  data streak lengths than do the floating-point codes. The data
both the tgt and the lagest data (globals, heap, stackjreents. streak length for li is high because most of its data set is replicated.
This action preented either ggment from being completely con-  The others, hoever, do not hae lage fractions of their data set
tained on one MQPRmaking the streak length equal to the number replicated, and thehave arerage data streak lengths from about 3
of references.) to over 130.

In Table2 we shav experimental results that meassieeaks—



Dist. Replicated pages (128Kb) Average streak length
Benchmark .
size (Kb) || text | global | heap | stack || total text data repl.

tomcatv 32 22 6 2 2 42.3 | 31486.7 6.7 21.7
swim 32 7 24 0 1 2.1 60.2 2.1 1.0
hydro2d 32 25 5 0 2 1.7 176.9 1.6 1.1
mgrid 32 4 27 0 1 15 31.4 15 1.0
applu 32 23 8 0 1 2.6 43.3 2.6 1.0
m88ksim 64 16 10 5 1 157.3 859.2 69.1 16.2
turb3d 64 19 12 0 1 1.7 1541.6 1.6 1.1
gcc 256 25 1 0 6 7.4 23.9 45 1.2
compress 16 6 25 0 1 103.5 41.7 134.7 1.3
li 16 17 2 12 1 841.2 777.2 | 2027.1 | 208.4
perl 128 26 2 3 1 7.6 34.5 4.1 2.1
fpppp 64 27 4 0 1 165.6 755.9 33.7 3.7
waveb 64 17 14 0 1 6.4 171.6 5.9 1.7
vortex 128 27 2 1 2 5.5 21.0 2.9 1.9

Table 2: Streak measurements for a four-MOP system
Each row shows the experimental parameters for each benchmark, followed by the results. The first column contains the granularity at which
communicated data are distributed round-robin around the MOPs. The second through fifth columns show the number of pages from each seg-
ment that were replicated for each benchmark. The right-most four columns show the average streak lengths for all reads, all reads to code and
data, and reads to replicated memory, respectively.

Benchmark || text global | heap stack total

tomcatv 164 28 37 | 14418 | 14647
swim 169 | 14421 28 10 | 14628
hydro2d 216 8653 44 14 8927
mgrid 174 7492 25 10 7701
applu 249 | 32322 27 27 | 32625
m88ksim 283 128 481 9 901
turb3d 246 | 25386 39 11 | 25682
gcc 2129 259 1694 309 4391
compress 103 | 43089 24 7 | 43223
li 178 21 88 9 296
perl 529 76 | 25613 8 | 26226
fpppp 341 475 26 21 863
waveb 389 | 41852 37 11 | 42289
vortex 970 127 | 25870 12 | 26979

Table 3: Data set sizes (in Kbytes)
Each row shows the breakdown of data set size for a benchmark, in kilobytes. The data set is broken down into the code, global data, heap, and
stack segments. The right-most column displays the sum of the four components.

These results shothat e/en with caches filtering out spatial traditional approach), we carxmoit the intgrated processor/
locality, mary programs will be able to takadwantage of memory memory model. Unfortunatelthis approach cannot be done trans-
prefetching.DATASCALAR MOPs can run ahead of the others, parently {.e,, without plicit software support) in ATASCA-

finding multiple needed operands and instructions localhd LAR system. When all operands needed for a computation are
sending them to the other MOPs early—sometimes before thelocated on a single MQPnNly the result need be broadcast (or
other MOPs hee resoled the needed addresses. stored). Optimizations are also possible when a majority of the
operands needed for a computation reside on one bl®Rot all.
4.3 Result communication It is here that th&PSD model becomes genuinely féifent from
SI SD: different MOPs may be folaing different paths ofyecu-
Although memory prefetching and the ES&#ng are compati- tion and issuing diérent instructions, Wt are still running the
ble with eisting software, thg do not aggreseely exploit the same program andosking on the same data stream.
notion of haing a processor coupled withhexy memory chip. By To allow different behaior on diferent nodes, the processors

moving the processing to the operands, instead of vécsav(the need an instruction that generatesatue (or a condition code),



which signifies whether ag@n address resides locallyhis \alue

For insertions and deletions, nd-chip trafic occursat all, since

could be used either as a branch condition or to support predicatedhe result is written into the local communicated store of the

execution, allaving different MOPs to erage in diferent beheior
based on whether or not a datum is found on-chip.

The compiler perhaps with programmer support, may compile
for three diferent cases:

1. Operands for a computation are spread across multiple
MOPs, with non-disambiguable dependences among them.
2. The operands are on multiple MOPst the operands on one
of them are not needed to resoihe others.
3. All the operands can be guaranteed to reside on one MOP

In case 1, the compiler does nothing, letting the systeentr®
transparent ESPxecution. In case 2, the operands on atl dne
MOP may be broadcast, the one MOP performs the computation

owner. Note that while a caentional system may find part of the
hash table on the processtirtese optimizations \ahys hold true
for theentiretable, since there is a participating processorare
memory chip.

Mary other &amples, both ne ones and those dva from the
realm of shared-memory parallel processingisteand can be
exploited, gven the appropriate Vel of programmer or compiler
support. The xent to which compilers can identify opportunities
for exploiting result communicatiomithout programmer support
is unclear at present, Wwever.

5 Conclusion

In this paper we he presented a system# organization and

and broadcasts the result to the other MOPs. This action reduce§Xecution model for future systems thavéprocessors and mem-

both trafic (the operands on the computing MOP are not sent) and
computation (on the other MOPSs). If alwe on the computing
MOP is needed by another MOP to regcdw address, this scheme

ory coupled tightly together—BATASCALAR architecture that
runs the Single-Program, Single Data streawcetion model.
This proposal tarets neaseamlessx@ansion of highly-intgrated

fails, so the compiler must guarantee that this situation does nogystems, and is intended to benefit future systems that are limited

occur

Disambiguating such dependencies at compile time is hard at

best and impossible atonst. A simpler solution may be to guaran-
tee that all of the operands needed for a computation reside on th
same MOPWe can gtend the virtual memory system to use cer-
tain bits of an address and a hash function to determine on whic
MOP it should place a g&n communicated page.eAtan then
extend the run-time storage allocator to accept an address an

return a pointer to allocated memory which resides on the samé’

MOP as the gen address. Coupled with loader support, related
data structures may then be guaranteedigi en the same MQP
or at least in the same MGRirtual address sphere.

For brevity, we discuss only tovexamples bele of haw these
techniques may be useditlmary others gist.

Summing an array: in case 1 abe, all MOPs containing ele-
ments of an array broadcast the elements thatihie. Each MOP
sums the entire arraj\n example of case 2 occurs if the MOP that
owns the first array element did not broadcast the other elements i
owns; instead, anMOP that did notwn the first element oawuld

broadcast its elementaitonot perform the summation. The first-

element MOP computes the sum, and broadcasts the result to a

MOPs. In case 3, the arrayould be either linkd to or dynami-
cally allocated on the same MOFhe other MOPs wauld branch
around the summation and reeeithe broadcasted sum. Other

by off-chip communicationg.g., those that hae a lage disparity
between the cost of an on-chip memory accessus that of an
off-chip access. Wbreak the potential benefits of this modetdo

jento four major catgories, and discuss them along with the disad-

vantages of this architecture.eWhen discuss some of the issues

hassociated with implementing this type of system. Finalé/pro-

vide measurements and discussion that indicate that there is indeed

(Potential in the four benefit cateries—ESP gins, memory

refetching, result communication, angbhid parallel &ecution.

Mary of our ideas were inspired by the MassiMemory
Machine proposal, from which we obtained the concept of ESP
[15]. Other research fefrts are gamining the running of unipro-
cessor programs muchster by using multiple program counters;
the Multiscalar group at &consin [13, 29] is onexample. This is
a complementary project, Wever, since we focus on the part of
the system that isxéernal to the processoraffter processors sim-
ply make our case stronger). Other projects are looking at proces-
sor/memory intgration, such as the IRAM project at Beldy

i24], the PPRAM project at yushu Unversity [23], and wrk at

Sun Microsystems [25]. Also, Mitsubishi hasveilwped a multi-
ﬁnedia processor prototype igtated with on-chip DRAM [10].

This work is part of an ongoing researctioef. We are in the
process of bilding a detailed simulation infrastructure takiate
DATASCALAR systems. W are also identifying compiler algo-

techniques from parallel processing, such as partial-sum reducithms and languagexensions that support theteaction of par-

tions, could also be successful.

Manipulating a chained hash table: in case 1, lookups, inser-
tions, and deletions all require iff%OP communication. In case
2, when performing a lookup, tfaf can be reduced by foildng
an indvidual chain as long as the chain is local. After felltg its

local section of a chain, that MOP broadcasts only the pointer that

points to the subsequent element (which it does wa),oso that
the nat MOP may bgin to follow the chain. A benefit is only
realized here when multiple consegatielements in the chain
reside on the same MO case 3 (shwn in Figureb), chain ele-

allelism from SPSD (such as result communication).eWare
working to improe theDATASCALAR architecture itself—by sup-
porting speculation more aggreasy, improving static replication
(perhaps on the Vel of objects or wrds), supporting coarse-
grained dynamic replication (such as page promotion/demotion),
and identifying techniques to maximize streak length.

The DATASCALAR architecture s originally conceed to
permit system memoryxpansion in future systems that had inte-
grated processors and memadrkie goal vas to be able to run uni-
processor programs fighently and seamlesslyeven given the

ments are allocated in a heap page that resides on the same MOgtesence of multiple processors on the memory chips. It is possible
as the head of the chain (using the run-time storage allocator modthat the major benefit dDATASCALAR will be the ability to
ification described alve). Wth this guarantee, the compiler can exploit parallelism in codes that were not traditionally thought of
generate code that is bypassed by MOPs that do not contain thas candidates for parallel processindicient serial gecution, a
chain in their communicated store. When performing a lookup, the seamlessdllback case, and the notion of “memory parallelism”
owner can race den the chain without waiting for an of-chip may enable leels of performance much than either current unipro-
access, and broadcast the result of the lookup to the other MOPscessors or parallel processors aghialone.
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Figure 5. Operating on a fully-distributed chained hash table
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