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Abstract—In this paper, we address the severe performance gap caused by high processor clock rates and slow DRAM accesses. We
show that, even with an aggressive, next-generation memory system using four Direct Rambus channels and an integrated one-
megabyte level-two cache, a processor still spends over half its time stalling for L2 misses. Our experimental analysis begins with an
effort to tune our baseline memory system aggressively: incorporating optimizations to reduce DRAM row buffer misses, reordering
miss accesses to reduce queuing delay, and adjusting the L2 block size to match each channel organization. We show that there is a
large gap between the block sizes at which performance is best and at which miss rate is minimized. Using those results, we evaluate a
hardware prefetch unit integrated with the L2 cache and memory controllers. By issuing prefetches only when the Rambus channels
are idle, prioritizing them to maximize DRAM row buffer hits, and giving them low replacement priority, we achieve a 65 percent
speedup across 10 of the 26 SPEC2000 benchmarks, without degrading the performance of the others. With eight Rambus channels,
these 10 benchmarks improve to within 10 percent of the performance of a perfect L2 cache.

Index Terms—Prefetching, caches, memory bandwidth, spatial locality, memory system design, Rambus DRAM.

1 INTRODUCTION

CONTINUED improvements in processor performance and,
in particular, sharp increases in clock frequencies are
placing increasing pressure on the memory hierarchy.
Modern system designers employ a wide range of techni-
ques to reduce or tolerate memory-system delays, including
dynamic scheduling, speculation, and multithreading in the
processing core; multiple levels of caches, nonblocking
accesses, and prefetching in the cache hierarchy; and
banking, interleaving, access scheduling, and high-speed
interconnects in main memory.

In spite of these optimizations, the time spent in the
memory system remains substantial. In Fig. 1, we depict the
performance of the SPEC CPU2000 benchmarks for a
simulated 1.6GHz, 4-way issue, out-of-order core with
64KB split level-one caches; a four-way, 1MB on-chip level-
two cache; and a Direct Rambus memory system with four
1.6GB/s channels. (We describe our target system in more
detail in Section 3) Let IRealz Ipe»rfgctLQ, and Ipwfecmjgm be the
instructions per cycle of each benchmark assuming the
described memory system, the described L1 caches with a
perfect L2 cache, and a perfect memory system (perfect L1
cache), respectively. The three sections of each bar, from
bottom to top, represent Irc.i, Iperfecir2, and Ipeyfecidiem- BY
taking the harmonic mean of these values across our
benchmarks and ComPUting IPerfectﬂJem - IReal/IPerfect]\Jem/
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we obtain the fraction of performance lost due to an
imperfect memory sys’tem.l Similarly, the fraction of
performance lost due to an imperfect L2 cache—the fraction
of time spent waiting for L2 cache misses—is given by
Iperfectzo — Ireat/Iperfectro. (In Fig. 1, the benchmarks are
ordered according to this metric.) The difference between
these values is the fraction of time spent waiting for data to
be fetched into the L1 caches from the L2. For the SPEC
CPU2000 benchmarks, our system spends 61 percent of its
time servicing L2 misses, 11 percent of its time servicing L1
misses, and only 28 percent of its time performing useful
computation.

Since over half of our system’s execution time is spent
servicing L2 cache misses, the interface between the L2
cache and DRAM is a prime candidate for optimization.
Unfortunately, diverse applications have highly variable
memory system behaviors. For example, art has a high L2
stall fraction (73 percent) because it suffers almost 15 million
L2 misses during the 200-million-instruction sample we ran,
saturating the memory controller request bandwidth. At the
other extreme, our 200M-instruction sample of facerec is
latency bound, not bandwidth bound: It spends 64 percent
of its time waiting for only 1.2 million DRAM accesses.

These varied behaviors imply that memory-system
optimizations that improve performance for some applica-
tions may penalize others. For example, prefetching may
improve the performance of a latency-bound application,
but will decrease the performance of a bandwidth-bound
application by consuming scarce bandwidth and increasing
queuing delays [4]. Conversely, reordering memory refer-
ences to increase DRAM bandwidth [5], [13], [20], [21], [24]
may not help latency-bound applications, which rarely

1. This equation is equivalent to (CPIgeca — CPIperjectrrem,)/CPIReat,
where C'Ply is the cycles per instruction for system X.
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Fig. 1. Processor performance for SPEC2000.

issue concurrent memory accesses—and may even hurt
performance by increasing latency.

In this paper, we describe techniques to reduce level-two
miss latencies for memory-intensive applications that are
not bandwidth bound. These techniques complement the
current trend in newer DRAM architectures, which provide
increased bandwidth without corresponding reductions in
latency [7]. The techniques that we evaluate, in addition to
improving the performance of latency-bound applications,
avoid significant performance degradation for bandwidth-
intensive applications.

Our primary contribution is a proposed prefetching
engine specifically designed for level-two cache prefetching
on a Direct Rambus memory system. The prefetch engine
utilizes scheduled region prefetching, in which blocks spatially
near the addresses of recent demand misses are prefetched
into the L2 cache only when the memory channel would
otherwise be idle. We show that the prefetch engine improves
memory system performance substantially (11 percent to
145 percent) for 10 of the 26 benchmarks we study. We see
smaller improvements for the remaining benchmarks,
limited by lower prefetch accuracies, a lack of available
memory bandwidth, or few L2 misses. Our prefetch engine is
unintrusive: With four memory channels, all benchmarks
show improvements with the prefetching. With eight
memory channels and larger cache blocks, some benchmarks
show slight performance drops, but the mean eight-channel
improvement across the suite is 9 percent overall and
29 percent for the 10 benchmarks with high spatial locality.

Three mechanisms minimize the potential negative
aspects of aggressive prefetching: prefetching data only on
idle memory-channel cycles, scheduling prefetches to max-
imize hit rates in both the L2 cache and the DRAM row
buffers, and placing the prefetches in a low-priority position
in the cache sets, reducing the impact of cache pollution.

The remainder of the paper begins with a brief
description of near-future memory systems in Section 2.
In Section 3, we show how address mappings and miss
scheduling may be tuned to improve the memory system.
In Section 4, we study the impact of block size, memory
bandwidth, and address mapping on performance. In
Section 5, using the results from Section 3 and Section 4 to
set our baseline, we describe and evaluate our scheduled
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region prefetching engine. We discuss related work in
Section 6 and draw our conclusions in Section 7.

2 HIGH-PERFORMANCE MEMORY SYSTEMS

The two most important trends affecting the design of high-
performance memory systems are integration and direct
DRAM interfaces. Imminent transistor budgets permit both
megabyte-plus level-two caches and DRAM memory
controllers on the same die as the processor core, leaving
only the actual DRAM devices off chip. Highly banked
DRAM systems, such as double-data-rate synchronous
DRAM (DDR SDRAM) and Direct Rambus DRAM
(DRDRAM), allow heavy pipelining of bank accesses and
data transmission. While the system we simulate in this
work models DRDRAM channels and devices, the techni-
ques we describe herein are applicable to other aggressive
memory systems, such as DDR SDRAM, as well.

2.1 On-Chip Memory Hierarchy

Since level-one cache sizes are constrained primarily by
cycle times and are unlikely to exceed 64KB [1], level-two
caches are coming to dominate on-chip real estate. These
caches tend to favor capacity over access time, so their size
is constrained only by chip area. As a result, on-chip L2
caches of over a megabyte have been announced and
multimegabyte caches will follow. These larger caches, with
more sets, are less susceptible to pollution, making more
aggressive prefetching feasible.

The coupling of high-performance CPUs and high-
bandwidth memory devices (such as Direct Rambus) makes
the system bus interconnecting the CPU and the memory
controller both a bandwidth and a latency bottleneck [7].
With sufficient area available, high-performance systems
will benefit from integrating the memory controller with the
processor die, in addition to the L2 cache. That integration
eliminates the system-bus bottleneck and enables high-
performance systems built from an integrated CPU and a
handful of directly connected DRAM devices. At least two
high-performance chips—the Sun UltraSPARC-III and

2. Intel CPUs currently maintain their memory controllers on a separate
chip. This organization allows greater product differentiation among
multiple system vendors—an issue of less concern to Sun and Compagq.
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Fig. 2. Rambus shared sense-amp organization.

Compaq 21364—are following this route.” In this study, we
are exploiting that integration in two ways. First, the higher
available bandwidth again allows more aggressive pre-
fetching. Second, we can consider closer communication
between the L2 cache and memory controller so that L2
prefetching can be influenced by the state of the memory
system—such as which DRAM rows are open and which
channels are idle—contained in the controller.

2.2 Direct Rambus Architecture

Direct Rambus (DRDRAM) [6] systems obtain high band-
width from a single DRAM device using aggressive
signaling technology. Data are transferred across a 16-bit
data bus on both edges of a 400-MHz clock, providing a
peak transfer rate of 1.6 Gbytes per second. DRDRAMs
employ two techniques to maximize the actual transfer rate
that can be sustained on the data bus. First, each DRDRAM
device has multiple banks, allowing pipelining and inter-
leaving of accesses to different banks. Second, commands
are sent to the DRAM devices over two independent control
buses (a 3-bit row bus and a 5-bit column bus). Splitting the
control buses allows the memory controller to send
commands to independent banks concurrently, facilitating
greater overlap of operations than would be possible with a
single control bus. In this paper, we focus on the 256-Mbit
Rambus device, the most recent for which specifications are
available. This device contains 32 banks of 1 megabyte each.
Each bank contains 512 rows of 2 kilobytes per row. The
smallest addressable unit in a row is a dualoct, which is
16 bytes.

A full Direct Rambus access involves up to three
commands on the command buses: precharge (PRER),
activate (ACT), and, finally, read (RD) or write (WR). The
PRER command, sent on the row bus, precharges the bank
to be accessed, as well as releasing the bank’s sense
amplifiers and clearing their data. Once the bank is
precharged, an ACT command on the row bus reads the
desired row into the sense-amp array (also called the row
buffer or open page). Once the needed row is in the row
buffer, the bank can accept RD or WR commands on the
column bus for each dualoct that must be read or written.?

RD and WR commands can be issued immediately if the
correct row is held open in the row buffers. Open-row
policies hold the most recently accessed row in the row
buffer. If the next request falls within that row, then only

3. Most DRAM device protocols transfer write data along with the
column address, but defer the read data transfer to accommodate the access
latency. In contrast, DRDRAM data transfer timing is similar for both reads
and writes, simplifying control of the bus pipeline and leading to higher bus
utilization.

RD or WR commands need be sent on the column bus. If a
row buffer miss occurs, then the full PRER, ACT, and
RD/WR sequence must be issued. Closed-page policies,
which are better for access patterns with little spatial
locality, release the row buffer after an access, requiring
only the ACT-RD/WR sequence upon the next access.

A single, contentionless dualoct access that misses in the
row buffer will incur 77.5 ns on the 800-40 256-Mbit
DRDRAM device. PRER requires 20 ns, ACT requires
17.5 ns, RD or WR requires 30 ns, and data transfer requires
10 ns (eight 16-bit transfers at 1.25 ns per transfer). An
access to a precharged bank therefore requires 57.5 ns and a
page hit requires only 40 ns.

A row miss occurs when the last and current requests
access different rows within a bank. The DRDRAM
architecture incurs additional misses due to sense-amp
sharing among banks. As shown in Fig. 2, row buffers are
split in two and each half-row buffer is shared by two
banks; the upper half of bank n’s row buffer is the same as
the lower half of bank 1 + 1’s row buffer. This organization
permits twice the banks for the same number of sense-
amps, but imposes the restriction that only one of a pair of
adjacent banks may be active at any time. An access to
bank 1 will thus flush the row buffers of banks 0 and 2 if
they are active, even if the previous access to bank 1
involved the same row.

3 BAsic MEMORY SYSTEM PARAMETERS

In this section, we measure the effects of address mappings
and demand miss ordering, exploring the extent to which
we can improve memory system performance without
changing the cache or channel parameters. We show that,
by remapping the DRAM bank ordering, we can increase
the number of row buffer hits by 51 percent on average,
causing a 16 percent overall increase in performance across
our benchmark suite. We also show that a DRAM-aware
miss scheduling policy improves overall performance an
additional 6 percent. These optimizations form the baseline
that we use in the subsequent sections.

3.1 Experimental Methodology

We simulated our target systems with an Alpha-ISA
derivative of the SimpleScalar tools [3]. We extended the
tools with a memory system simulator that models
contention at all buses, finite numbers of MSHRs (Miss
Status Holding Registers [16]), and Direct Rambus memory
channels and devices in detail [6].
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TABLE 1
Microarchitectural Simulation Parameters

Front end

L1 Instruction cache

64KB, 2-way, 64B blocks, 1-cycle hit

Branch predictor

16K-entry local/global hybrid

Branch target buffer

2-way, 256 entry

Execution core
Clock, issue width 1.6 GHz, 4-way issue
Issue window/reorder buffer (RUU) [ 64 entries
Load/store queue 64 entries

Functional units

Same latencies as 21264

Memory system

L1 Data cache

64KB, 2-way, 64B blocks, 3-cycle hit

L2 cache 1MB, 4-way, 64B blocks, 12-cycle hit
MSHRS 8 per cache

L1/L2 bus 128 bits

DRDRAM 256MB with 800MHz channels

Although the SimpleScalar microarchitecture is based on
the Register Update Unit [27]—a microarchitectural struc-
ture that merges the reorder buffer, physical register file,
and issue window—we chose the rest of the parameters to
match the Compaq Alpha 21364 [12] as closely as possible,
shown in Table 1. In addition, our target system uses
multiple DRDRAM channels in a simply interleaved
fashion, i.e.,, n physical channels are treated as a single
logical channel of n times the width. We selected the
1.6GHz clock rate as it is both near the maximum clock rate
announced for current and near-future products and
because it is exactly twice the effective frequency of the
DRDRAM channels.

We evaluated our simulated systems using the 26 SPEC
CPU2000 benchmarks compiled with recent Compaq
compilers (C V5.9-008 and Fortran V5.3-915).* We simulated
a 200-million-instruction sample of each benchmark run-
ning the reference data set after 20, 40, or 60 billion
instructions of execution. We verified that cold-start misses
did not impact our results significantly by simulating our
baseline configuration assuming that all cold-start accesses
are hits. This assumption changed IPCs by 1 percent or less
on each benchmark.

The memory system behavior of the SPEC2000 bench-
marks varies significantly across the suite, so presenting
mean results of all benchmarks would obscure important
behavioral differences. We divide the 26 benchmarks into
four categories: C-cpu, C-local, C-nolocal, and C-bw.
The C-cpu class contains those benchmarks that miss
infrequently in the level-two cache and are thus bounded by
CPU throughput or L1 misses. We place all the benchmarks
that incur fewer than 0.75 L2 misses per thousand
instructions with a 1IMB L2 cache into C-cpu. Those
benchmarks include crafty, eon, gzip, gcc, perlbmk, sixtrack,
and vortex. Note that these correspond to the rightmost
seven benchmarks in Fig. 1. In C-bw, we include the
benchmarks that have such high L2 miss rates that the

4. We used the “peak” compiler options from the Compag-submitted
SPEC results, except that we omitted the profile-feedback step. Further-
more, we did not use the “-xtaso-short” option that defaults to 32-bit (rather
than 64-bit) pointers.

Rambus channels have little free bandwidth. Only art falls
into that category. In C-1local, we list the benchmarks that
show high spatial locality, which includes any benchmark
not in the previous two classes that has an optimal block
size (for our base system to be described later) of at least
512 bytes: applu, equake, facerec, gap, mesa, mgrid, parser, swim,
and wupwise. We also include fma3d in this category,
although its performance-optimal block size is 256 bytes.
The rest of the benchmarks, which exhibit frequent L2
misses, are not bandwidth-bound, and have performance-
optimal block sizes of 256 bytes or less, fall into the
C-nolocal category. Those are ammp, apsi, bzip2, galgel,
lucas, mcf, and twolf.

In Table 2, we summarize the memory system behavior
of the four benchmark classes on our base system (including
the optimizations described in Sections 3.2 and 3.3). The
first two columns show the number of L2 misses per
thousand instructions and their mean latency. The next four
columns characterize the behavior of the DRDRAM sub-
system. The DRDRAM service time reflects the column
access time plus precharge and row activation time, if
required. These initial measurements reflect our base
64-byte block size. The final two columns indicate, as the
block size is increased up to 8K bytes, the block sizes that
maximize performance and minimize miss rate, respec-
tively (referred to as the performance point and pollution
point in Section 4.1). The C-cpu benchmarks, naturally,
incur a low number of L2 misses. These infrequent misses
experience little queuing delay at the DRAM controller, but
have a higher service time since many of them are row-
buffer misses. The C-local benchmarks have high miss
rates due to the 64-byte blocks in this simulated base case,
but show substantially reduced miss rates at larger block
sizes. Their DRAM service time—and, hence, L2 miss
latency—is low because the spatial locality in these bench-
marks translates into a high row-buffer hit rate. The
C-nolocal benchmarks show the highest miss latencies
due to both queuing delay and the poorest locality in the
DRAM row buffers. The C-bw benchmark shows the
highest miss rate, leading to the largest queuing delays,
though with the best row-buffer hit rate and lowest DRAM
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TABLE 2
Memory System Comparison of Four Benchmark Classes
Category L2 misses DRDRAM measurements Block size

per thousand | average | queuing service | data bus |[row buffer| best fewest

instructions latency delay time utilization [ hit rate perf. misses
C-cpu 0.32 110.1 3.3 82.9 1.0% 0.684 128B 512B
C-local 11.61 104.9 12.0 72.0 21.4% 0.869 1KB 8KB
C-nolocal 22.71 150.8 30.1 99.7 18.0% 0.415 128B 1KB
C-bw 73.59 138.5 57.6 67.9 61.4% 0.938 64B 8KB
Overall 14.37 121.7 17.0 83.3 16.4% 0.682 128B 2KB

service time. However, due to limited bandwidth, this
locality does not translate into better performance at larger
block sizes as it does for the C-1ocal benchmarks.

3.2 Address Mapping

In all DRAM architectures, the best performance is obtained
by maximizing the number of row-buffer hits while
minimizing the number of bank conflicts. Both these
numbers are strongly influenced by the manner in which
physical processor addresses are mapped to the channel,
device, bank, and row coordinates of the Rambus memory
space. Optimizing this mapping improves performance on
our benchmarks by 16 percent on average, with improve-
ments for several benchmarks above 40 percent.

In Fig. 3a, we depict a standard address mapping. The
horizontal bar represents the physical address, with the
high-order bits to the left. The bar is segmented to indicate
how fields of the address determine the corresponding
Rambus device, bank, and row.

Starting at the right end, the low-order four bits of the
physical address are unused since they correspond to
offsets within a dualoct. In our simply interleaved memory
system, the memory controller treats the physical channels
as a single wide logical channel, so an n-channel system
contains n times wider rows and fetches n dualocts per
access. Thus, the next least-significant bits correspond to the
channel index. In our base system with four channels and
64-byte blocks, these channel bits are part of the cache block
offset.

The remainder of the address mapping is designed to
leverage spatial locality across cache-block accesses. As
physical addresses increase, adjacent blocks are first
mapped contiguously into a single DRAM row (to increase
the probability of a row-buffer hit), then are striped across
devices and banks (to reduce the probability of a bank
conflict). Finally, the highest-order bits are used as the row
index.

<— cache tag : cache index

In Table 3, we show the row buffer hit and miss rates for
our scheduling policies. The standard address mapping
provides a reasonable row-buffer hit rate on read accesses
(50 percent on average), but achieves a mere 26 percent hit
rate on writebacks. This difference is due to an anomalous
interaction between the cache indexing function and the
address mapping scheme. For a 1IMB cache, the set index is
formed from the lower 18 bits (log, (1MB/4)) of the address.
Each of the blocks that map to a given cache set will be
identical in these low-order bits and will vary only in the
upper bits. With the mapping shown in Fig. 3a, these blocks
will map to different rows of the same bank in a system
with only one device per channel, guaranteeing a bank
conflict between a miss and its associated writeback. With
two devices per channel, the blocks are interleaved across a
pair of banks (as indicated by the vertical line in the figure),
giving a 50 percent conflict probability.

One previously described solution is to exchange some
of the row and column index bits in the mapping [35], [31].
If the bank and row are largely determined by the cache
index, then the writeback will go from being a likely bank
conflict to a likely row-buffer hit. However, by placing
noncontiguous addresses in a single row, spatial locality is
reduced.

Our solution, shown in Fig. 3b, XORs the initial device
and bank index values with the lower bits of the row
address to generate the final device and bank indices. This
mapping retains the contiguous-address striping properties
of the base mapping, but “randomizes” the bank ordering,
distributing the blocks that map to a given cache set evenly
across the banks. Zhang et al. [33] independently devel-
oped, and thoroughly analyzed, a similar scheme. As a final
Rambus-specific twist, we move the low-order bank index
bit to the most-significant position. This change stripes
addresses across all the even banks successively, then

—>

| row (9) | bank[4] F bank[3:0] [dev

ice (0-5)] column (7) [channel (2)] unused (4) |

(a)

| row (9)

10) | column (7) [channel (2)] unused (4) |

| initial device/bank (5-

v—l (b)
_>| bank[0] | bank[4:1] [device (0-5)]

Fig. 3. Mapping physical addresses to Rambus coordinates.
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TABLE 3
Effect of Mapping Change on Row Buffer Hit Rates and Performance
Simple mapping XOR mapping
IPC Row Buffer Hit Rate IPC Row Buffer Hit Rate
Reads Writes Overall Reads Writes Overall
C-cpu 1.686 0.585 0.213 0.540 1.695 0.705 0.418 0.684
C-local 0.712 0.516 0.339 0.467 0.941 0.898 0.799 0.869
C-nolocal 0.390 0.358 0.139 0.293 0.430 0.477 0.271 0.414
C-bw 0.388 0.888 0.627 0.866 0.468 0.958 0.757 0.940
Mean 0.630 0.500 0.255 0.448 0.733 0.719 0.532 0.682
TABLE 4
Effect of Scheduling on Performance (IPC)
in-order in-order row row+col
open-page | closed-page | scheduling | scheduling |

C-cpu 1.695 1.672 1.695 1.697

C-local 0.941 0.514 0.943 0.969

C-nolocal 0.430 0.268 0.453 0.475

C-bw 0.468 0.115 0.469 0.477

Mean 0.733 0.418 0.753 0.779

across all the odd banks, reducing the likelihood of an
adjacent buffer-sharing conflict (see Section 2.2).

As a result, we achieve a row-buffer hit rate of 72 percent
for read accesses and 53 percent for writebacks. This final
address mapping, which will be used for the remainder of
our studies, improves performance by 16 percent on
average and considerably more for four benchmarks:
66 percent for applu, 49 percent for fma3d, 43 percent for
swim, and 39 percent for facerec.

3.3 Row Buffering and Scheduling Policies

In advanced DRAM architectures, accesses to independent
banks may be carried out concurrently to provide increased
bandwidth. Direct Rambus provides a large number of
banks per device to maximize the potential for concurrency.
The extent to which a system can exploit this feature for
higher performance is a function of both the number of
concurrent memory accesses that can be scheduled and the
memory controller’s ability to overlap these accesses. In this
section, we examine the effect of the memory controller’s
scheduling policy on application performance in our base-
line system. The scheduling policy represents a trade-off
between implementation complexity and performance.
DRAM access scheduling has been examined previously
in the context of vector and streaming applications [5], [13],
[20] ,[21], [24], but not on the broader class of benchmarks
studied in this work.

With an open-page policy, a memory access that hits in
an open row buffer requires no row-bus commands, while a
row-buffer miss requires two: a precharge and an activate.
In a closed-page policy, every access requires a single
activate command on the row buffer. In any case, one
column-bus command (RD or WR) is needed for each
dualoct transferred.”

5. The precharge required by the closed-page policy can be piggybacked
on the RD or WR.

The simplest scheduler we examine, used for the address
mapping study in the previous section, handles requests in
strict first-come, first-served order. Command packets are
issued as quickly as possible without allowing packets from
a later request to bypass those of an earlier request. This
simple algorithm achieves overlap between requests due to
the inherent pipelining of the Direct Rambus interface: Row
commands from one request can overlap the column
commands of the previous request, which in turn can
overlap the data transfer of an earlier access.

Using this scheduler, we investigated the performance
impact of open-page vs. closed-page policies (Section 2.2).
As shown in the first two columns of Table 4, the benefit of
the row-bulffer hits afforded by the open-page policy more
than compensates for the added latency of precharging a
bank on a row-buffer miss. The baseline experiments used
for the remainder of the paper assume an open-page policy.

The efficiency of this simple scheduler is limited by
Rambus interpacket timing constraints. For example, pre-
charge and activate commands for a given row must be
separated by four bus cycles; row-bus commands to the
same device must also be separated by four cycles. There is
also a fixed delay (dependent on the device speed) between
an activate command and a column-bus RD or WR to the
activated row. Because the scheduler only considers a single
packet per bus, the bus idle time induced by these
constraints cannot be hidden.

To increase bus efficiency, a more advanced scheduler
would attempt to issue a packet associated with a later
request if the next packet needed by the oldest request
cannot issue. Our more aggressive scheduler implementa-
tion maintains a queue of pending memory requests in the
order they are received. The size of this queue is bounded
by the maximum number of outstanding L2 accesses plus
the writeback buffer depth. Each queue entry tracks the
next command packet required to advance the correspond-
ing request. When a command bus becomes idle, the



LIN ET AL.: DESIGNING A MODERN MEMORY HIERARCHY WITH HARDWARE PREFETCHING

A B C
A
Desired performance curve
Performance
Point ‘_7\
\ Performance curve
Pollution \\ , Miss ratio curve
Point
A
>

Small block size

Fig. 4. lllustration of performance and pollution points.

scheduler scans the queue, issuing the first packet it finds
for that bus that meets the Rambus interpacket timing
constraints. To prevent a row buffer from thrashing among
multiple rows, the scheduler will only consider the first
request that requires a particular buffer.

We consider two aggressive schedulers which use this
basic strategy; their performance is depicted in Table 4. The
first schedules only the row bus; column-bus commands
(dualoct reads and writes) are issued in order as in the
simple scheduler. This technique allows interleaving of
precharge and activate commands, but prevents a request’s
column data access from being delayed by that of a later
request. This policy increases the harmonic-mean IPC by
2.7 percent over the simple scheduler. Most of the benefit is
concentrated in a few benchmarks: galgel, lucas, and mcf
improve by over 6 percent; apsi, vortex, and bzip improve
between 2 percent and 4 percent. No other benchmark
achieves more than 0.6 percent improvement and the
median speedup is a mere 0.2 percent. The key factor that
limits the benefit of scheduling is that many of the
benchmarks do not have enough concurrent DRAM
accesses to permit significant interleaving.

Our second and most aggressive scheduler reorders
packets on both the row and column buses, trading the
potential for an occasional increase in request latency for
more efficient column-bus utilization. The harmonic-mean
IPC improves an additional 3.5 percent, a net 6.3 percent
improvement over the simple scheduler. The benefits are
somewhat more widespread, with 11 benchmarks seeing an
improvement of 3 percent or more. Three benchmarks (apsi,
lucas, and mcf) improve 5 percent or more relative to the
row-bus scheduler. Unlike the row-bus-only scheduler, it is
possible for this aggressive scheduler to degrade perfor-
mance relative to the in-order scheduler; however, only eon
suffers a negligible (0.1 percent) slowdown. This aggressive
scheduling policy will be used as the baseline policy for the
remainder of this paper.

4 TRADE-OFFS IN EXPLOITING SPATIAL LOCALITY

In this section, we examine the L2 cache and memory
channel organization, exploring the trade-offs between
spatial locality and pollution versus bandwidth and
memory channel contention. Many of the SPEC2000 bench-
marks have significant spatial locality that they are unable
to exploit due to memory channel contention. We show in

Large block size

this section that the block size that minimizes their miss
rates is much larger than the block size that maximizes their
performance. We use those results to motivate the prefetch-
ing engine described in Section 5.

4.1 Block Size, Contention, and Pollution

Increasing a cache’s block size—generating large, contig-
uous transfers between the cache and DRAM—is a simple
way to exploit additional memory system bandwidth. If an
application has sufficient spatial locality, larger blocks will
reduce the miss rate as well. Of course, large cache blocks
can also degrade performance. For a given memory
bandwidth, larger fetches can cause bandwidth contention,
i.e., increased queuing delays. Larger blocks may also cause
cache pollution because a cache of fixed size holds fewer
unique blocks.

As L2 capacities grow, the corresponding growth in the
number of blocks will reduce the effects of cache pollution.
Larger L2 caches may also reduce bandwidth contention
since the overall miss rate will be lower. Large L2 caches
may thus benefit from larger block sizes, given sufficient
memory bandwidth and spatial locality.

For any cache, as the block size is increased, the effects of
bandwidth contention will eventually overwhelm any
reduction in miss rate. We define this transition—at which
bandwidth contention overcomes the benefits from reduced
miss rates—as the performance point: the block size at which
performance is highest. As the block size is increased
further, cache pollution will eventually overwhelm spatial
locality. We define this transition as the pollution point: the
block size at which the miss rate is lowest. While the general
effects of pollution and contention are well-known, this
work is the first, to our knowledge, to formalize and name
these inflection points. Furthermore, these points have not
previously been quantified for systems in which a sub-
stantial fraction of the memory hierarchy is on chip.

Fig. 4 illustrates these points abstractly. In region A of the
figure, larger blocks (farther to the right on the x-axis)
improve the miss rate, which provides a performance gain
that overcomes the performance drop due to increased
channel contention, causing overall performance to rise. In
region B, the miss ratio continues to drop with larger blocks,
but performance also deteriorates due to increased conten-
tion. The performance point resides at the boundary
between regions A and B. Finally, in region C, pollution
causes the miss rate to begin to increase with larger blocks,
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causing a sharper drop in performance than in region B.
The pollution point resides at the boundary between
regions B and C. The top gray line indicates the potential
performance gain if spatial locality could be exploited
without incurring bandwidth contention—the effect we
seek to achieve with the scheduled region prefetching
technique described in Section 5.

In Table 5, we show the pollution and performance
points for our benchmarks assuming four DRDRAM
channels, providing 6.4 GB/s peak bandwidth. The bench-
marks are arranged by category, as discussed in Section 3.1.
For each benchmark, the table gives the IPC and L2 misses
per thousand instructions across a range of block sizes. The
performance and pollution points are in boldface.

The most important result in Table 5 is that the pollution
points are at block sizes much larger than typical L2 block
sizes (e.g., 64 bytes in the Alpha 21264), averaging 2KB.
Nearly half of the benchmarks show pollution points at
8KB, which was the maximum block size we measured
(larger blocks would have exceeded the virtual page size of
our target machine). After computing the harmonic mean of
the IPCs at each block size, we find that the mean
performance point resides at 128-byte blocks. While the
performance points all reside in the smaller block sizes
(generally 64 to 256 bytes), the pollution points are widely
scattered across the benchmarks, depending on the amount
of spatial locality in the application. The goal of our
prefetching scheme is to exploit the spatial locality in the
benchmarks that have that locality without degrading the
applications whose pollution points reside at 64 or 128 byte
blocks. For example, five of the C-1ocal benchmarks have
performance points at block sizes larger than 256 bytes, but
all of the benchmarks in C-bw and C-nolocal have
performance points between 64 and 256 bytes.

Furthermore, the miss rates at the pollution points are
significantly lower than at the performance points: more
than a factor of two for half of the benchmarks, and more
than tenfold for seven of them. The differences in
performance (IPC) at the pollution and performance points
are significant, but less pronounced than the miss rate
differences at those same points.

For benchmarks that have low L2 miss rates, the gap
between the pollution and performance points makes little
difference to overall performance since misses are infre-
quent. For the rest of the benchmarks, however, an
opportunity clearly exists to improve performance beyond
the performance point since there is additional spatial
locality that can be exploited before reaching the pollution
point. The key to improving performance is to exploit this
locality without incurring the bandwidth contention in-
duced by larger fetch sizes.

4.2 Channel Width

Emerging systems contain a varied number of Rambus
channels. Systems based on the Intel Pentium 4 processor
currently contain one or two channels, depending on the
price/performance target. The Alpha 21364, however, will
contain up to a maximum of eight channels, managed by
two controllers.

Higher-bandwidth systems reduce contention, allowing
larger blocks to be fetched with overhead similar to smaller
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blocks on a narrower channel. In Table 6, we show the effect
of the number of physical channels on performance at
various block sizes. In these experiments, we held the total
number of DRDRAM devices in the memory system
constant, resulting in fewer devices per channel as the
number of channels was increased. The numbers shown in
the table are the harmonic mean of the IPC measured for all
of the SPEC2000 benchmarks at each block size and channel
width.

As the number of channels increases, the performance
point (shown in bold) also increases; the reduced impact of
contention means that larger blocks can be fetched. The
performance point across channel widths is surprisingly
regular: For two or more channels, the best block size
always occurs at 32 bytes (two dualocts) per channel. Thus,
for a four-channel system, the performance point resides at
128-byte blocks.

Our data show that the best overall performance is
obtained using a block size of 1 KB—given a 32-channel
(51.2 GB/s) memory system. This result indicates that our
1 MB cache is sufficiently large to mitigate the impact of
pollution on average (though some individual benchmarks
do suffer). Given sufficient bandwidth, then, large block
sizes can effectively exploit spatial locality. However,
achieving this bandwidth is prohibitively expensive for
next-generation systems. The scheduled region prefetching
technique described in the following section exploits this
locality without inducing bandwidth contention, requiring
less aggregate memory bandwidth and thus providing a
more cost-effective solution.

5 IMPROVING PERFORMANCE WITH SCHEDULED
REGION PREFETCHING

The four-channel, 64-byte block baseline with the XORed
bank mapping recoups some of the performance lost due to
off-chip memory accesses. In this section, we propose
improving memory system performance further using
scheduled region prefetching. On a demand miss, blocks in
an aligned region surrounding the miss that are not already
in the cache are prefetched [28]. For example, a cache with
64-byte blocks and 4KB regions would fetch the 64-byte
block upon a miss and then prefetch any of the 63 other
blocks in the surrounding 4KB region not already resident
in the cache. A key feature of our scheme is that, to avoid
contention with demand misses, we issue prefetches only
when the Rambus channels are otherwise idle.

We depict our prefetch controller in Fig. 5. The prefetch
queue maintains a list of n region entries. Each entry
corresponds to an aligned memory region and contains a bit
vector representing the cache blocks within the region. A bit
in the vector is set if the corresponding block is not in the
cache and thus is a candidate for prefetching.

When a demand miss occurs in a region that does not
match an entry in the prefetch queue, a new entry
corresponding to the accessed region replaces an existing
queue entry. The prefetch prioritizer selects a queue entry
for prefetching; within a region, candidate blocks are
fetched in linear order starting with the block after the
demand miss and wrapping around. The selected prefetch
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TABLE 5
Pollution vs. Performance Points
Block size
Benchmark Metric 64 128 256 512 1024 | 2048 | 4096 | 8192
crafty IPC 2.00( 2.00( 2.00| 1.99] 195 1.82 1.53| 0.89
Miss/Kinst 0.12 0.10 0.10 0.12 0.16 0.23 027 0.38
eon IPC 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96
Miss/Kinst 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gcc IPC 0.94 0.94 0.95 0.94 0.90 0.80 0.64 0.43
Miss/Kinst 0.69 0.47 0.33 0.27 0.32 0.37 0.43 0.49
gzip IPC 1.63 1.64 1.64 1.64 1.64 1.64 1.64 1.64
Miss/Kinst 0.19 0.09 0.05 0.02 0.01 0.01 0.00 0.00
perlbmk IPC 2.29 2.30 2.31 2.30 2.27 2.16 1.84 1.27
Miss/Kinst 0.18 0.12 0.09 0.07 0.06 0.08 0.10 0.14
sixtrack IPC 2.14 2.16 2.16 2.15 2.16 2.16 2.16 2.16
Miss/Kinst 0.35 0.24 0.17| 0.11 0.06 0.03 0.02 0.01
vortex IPC 1.86 1.87 1.86 1.81 1.64 1.17 0.63 0.32
Miss/Kinst 0.71 0.65 0.65 0.72 0.84 1.04 1.22 1.29
C-cpu mean IPC 1.70 1.70 1.70 1.69 1.64 1.49 1.18 0.78
Miss/Kinst 0.32 0.24 0.20 0.19 0.21 0.25 0.29 0.33
applu IPC 0.57| 0.80| 0.92| 0.97| 1.06| 1.14] 1.11 1.09
Miss/Kinst|| 16.49 8.30 4.19| 2.12 1.06 0.53 0271 0.13
equake IPC 0.53 0.71 0.80 0.87 0.90 0.90 0.89 0.88
Miss/Kinst|| 27.43| 13.84 6.99 3.53 1.79 0.91 0.46 0.24
facerec IPC 1.15 1.34 1.36 1.35 1.39 1.41 1.42 1.41
Miss/Kinst 6.03 4.50 2.62 1.31 0.66 0.33 0.17] 0.08
fma3d IPC 0.84 0.89 0.92 0.86 0.84 0.84 0.82 0.80
Miss/Kinst|| 27.05| 15.15 8.24 4.50 2.26 1.14 0.59 0.31
gap IPC 1.53 1.65 1.71 1.75 1.76 1.76 1.75 1.73
Miss/Kinst 1.45 0.72 0.36 0.18 0.09 0.05 0.02 0.01
mesa IPC 217 2.32 2.38 2.38 2.23 1.40 0.80 0.53
Miss/Kinst 0.80 0.41 0.23 0.18 0.31 0.63 0.67] 0.52
mgrid IPC 1.30 1.61 1.81 1.82 1.76 1.66 1.58 1.57
Miss/Kinst 7.06 3.63 1.93 1.08 0.60 0.31 0.17] 0.08
parser IPC 1.24 1.38 1.44 1.44 1.41 1.31 1.11 0.77
Miss/Kinst 2.75 1.46 0.82 0.50 0.36 0.30 0.30 0.33
swim IPC 0.70 0.94 1.05 1.12 1.12 1.06 0.93 0.78
Miss/Kinst|| 24.69| 12.38 6.23 3.16 1.63 0.89 0.52 0.33
wupwise IPC 1.97 2.16 2.28 2.28 2.19 2.18 2.18 2.18
Miss/Kinst 2.37 1.31 0.78 0.51 0.35 0.18 0.09 0.05
C-local mean IPC 0.97 1.19 1.28 1.31 1.31 1.26 1.13 0.98
Miss/Kinst|| 11.61 6.17 3.24 1.71 0.91 0.53 0.33 0.21
ammp IPC 1.08 1.03 0.94 0.74 0.44 0.21 0.16 0.11
Miss/Kinst 9.22 7.19 5.63 5.06 5.13 5.84 3.80| 2.78
apsi IPC 0.87 0.90 0.91 0.81 0.64 0.45 0.07 0.02
Miss/Kinst|| 10.23 6.08 3.95| 292 2.41 2.15 9.58| 16.34
bzip2 IPC 1.06 1.05 0.96 0.68 0.39 0.22 0.11 0.05
Miss/Kinst 3.42 3.21 3.63 4.40 5.03 4.93 510 5.51
galgel IPC 1.51 1.71 1.77 1.74 1.56 0.85 0.10 0.04
Miss/Kinst 3.59| 210 1.35 0.96 0.78 1.24 7.44 9.70
lucas IPC 0.35 0.39 0.42 0.31 0.17 0.09 0.04 0.02
Miss/Kinst|| 27.81| 19.07| 14.70| 12.47| 11.51| 11.70| 12.24| 12.95
mcf IPC 0.12 0.13 0.12 0.08 0.04 0.02 0.01 0.01
Miss/Kinst|| 115.67| 95.18| 71.74| 61.29| 61.13| 65.48| 65.85| 64.39
twolf IPC 0.95 0.97 0.98 0.94 0.79 0.51 0.24 0.11
Miss/Kinst 3.66 3.13 2.77| 242 220 221 2.58| 284
vpr IPC 0.83 0.80 0.71 0.51 0.29 0.14 0.06 0.03
Miss/Kinst 8.09 8.33 8.89 9.47 9.921 10.61| 11.52| 12.80
C-nolocal mean | IPC 0.47| 0.49 0.46| 0.34 0.20] 0.10 0.05| 0.02
Miss/Kinst|| 22.71| 18.04| 14.08| 12.37| 12.26| 13.02| 14.76| 15.91
art IPC 0.48 0.36 0.30 0.30 0.30 0.28 0.27 0.27
Miss/Kinst|| 73.59| 65.11| 43.04| 21.54| 10.78 5.40 2.71 1.36
C-bw mean IPC 0.48 0.36 0.30 0.30 0.30 0.28 0.27 0.27
Miss/Kinst|| 73.59| 65.11| 43.04| 21.54| 10.78 5.40 2.71 1.36
Overall mean IPC 0.78 0.82 0.80 0.68 0.47 0.27 0.14 0.07
Miss/Kinst|| 14.37| 10.49 7.29 5.34 4.59| 4.48 4.85 512
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TABLE 6
Block Size vs. Channel Numbers
# channels
Block size 1 2 4 8 16 32
64 0.499 | 0.671 0.779 | 0.803 | 0.803 | 0.803
128 0.426 | 0.655 | 0.821 0.861 0.881 0.881
256 0.327 | 0.554 | 0.801 0.929 | 0.963 | 0.976
512 0.231 0.416 | 0.677 | 0.919 | 1.015 | 1.035
1024 0.140 | 0.264 | 0.468 | 0.742 | 0.976 | 1.059

block is provided to the access prioritizer, which forwards it
to the Rambus controller only when there are no demand
misses or writebacks pending. Channel contention thus
occurs only when a demand miss arrives while a prefetch is
in progress.

Sections 5.1-5.3 describe enhancing a scheduled region
prefetching scheme by controlling the replacement priority
of prefetches, improving scheduling in the prefetch prior-
itizer, and optimizing the region size and the depth of the
prefetch queue. Section 5.4 summarizes the performance of
the enhanced scheme. Sections 5.5-5.8 analyze the scheme’s
bandwidth utilization, its performance with varying cache
sizes and DRAM latencies, and its interaction with software
prefetching.

5.1 Insertion Policy
When prefetching directly into the L2 cache, the likelihood
of pollution is high if the prefetch accuracy is low. In this
section, we describe how to mitigate that pollution for low
prefetch accuracies by assigning a lower replacement
priority to prefetched data than to demand-miss blocks.

Our simulated 4-way set-associative cache uses the
common least-recently-used (LRU) replacement policy. A
block may be loaded into the cache with one of four
priorities: most-recently-used (MRU), second-most-recently-
used (SMRU), second-least-recently-used (SLRU), and LRU.
Normally, blocks are loaded into the MRU position. By
loading prefetches into a lower-priority slot, we restrict the
amount of referenced data that prefetches can displace. For
example, if prefetches are loaded with LRU priority, they
can displace at most one quarter of the referenced data in
the cache.

In the left half of Table 7, we depict the arithmetic mean of
the prefetch accuracies for our four classes of benchmarks,

prefetch | L2 cache P A
queue controller <> to L1 cache
’ ! i
prefetch access —>|:|
prioritizer prioritizer MSHRs
7y
: |
bank .
state ”|  Rambus controller :
Rambus channel >

Fig. 5. Prefetching memory controller.

shown as the region prefetches are loaded into differing
points on the replacement priority chain. In the right half
of Table 7, we show the harmonic mean of IPC values for
each benchmark class. In these experiments, we simulated
4KB prefetch regions with two entries per queue, 64-byte
blocks, and four DRDRAM channels.

In general, the prefetch accuracy diminishes as pre-
fetches are placed lower in the LRU chain because a
prefetch is more likely to be evicted before it is referenced.
However, many of the benchmarks display higher prefetch
accuracies at SECMRU than MRU. This anomaly is due to
the varying number of prefetches for the different insertion
priorities. SECMRU placement incurs less pollution and the
reduced number of misses generates significantly fewer
total prefetches, which may in turn improve accuracy.
However, most of the benchmarks show consistent drops in
accuracy when prefetches are reduced in priority to
SECLRU and all but two of the benchmarks show further
accuracy reductions when prefetches are loaded at LRU
priority.

For the C-local benchmarks, the prefetch accuracy
decrease from SECLRU to LRU causes a drop in perfor-
mance. However, since most of the C-1local benchmarks
quickly reference their prefetches, the impact is minor. For
the C-nolocal benchmarks, relative performance is raised
significantly (67 percent) as the prefetches are moved to
LRU priority from MRU since the pollution effects are
mitigated—the C-nolocal benchmarks display prefetch
accuracies of only a few percent.

While replacement prioritization does not help bench-
marks with high prefetch accuracies (C-local) signifi-
cantly, it mitigates the adverse pollution impact of
prefetching on the other benchmarks, just as scheduling
mitigates the bandwidth impact. We assume LRU place-
ment for the rest of the experiments in this paper.

5.2 Prefetch Scheduling

Although the prefetch insertion policy diminishes the
effects of cache pollution, simple aggressive prefetching
can consume copious amounts of bandwidth, interfering
with the handling of latency-critical misses. Table 8 shows
the effects of various prefetch scheduling policies on L2 miss
rate, L2 miss latency, and IPC. Miss latency is measured as
the time spent returning an L2 miss, not the load-use delay
for a load that misses in the L2 cache. The first column of
results shows our base system (1IMB, 4-way L2 cache with
64-byte blocks, XOR mapping, aggressive miss scheduling,
and four DRDRAM channels) with no prefetching, labeled
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TABLE 7
Effect of Prefetch Insertion Policy on Performance
Accuracy IPC
MRU SECMRU | SECLRU LRU MRU SECMRU | SECLRU LRU
C-cpu 33.1% 32.2% 30.1% 25.2% 1.28 1.45 1.53 1.57
C-local 61.6% 62.6% 62.8% 58.1% 1.37 1.45 1.47 1.43
C-nolocal 3.1% 3.2% 3.1% 2.6% 0.06 0.08 0.09 0.10
C-bw 48.4% 48.0% 47.4% 46.7% 0.29 0.30 0.30 0.32
Mean 35.4% 35.6% 35.0% 31.7% 0.18 0.23 0.26 0.27

“base.” The next five columns correspond to region
prefetching with various prefetch scheduling policies.

In the second column, labeled “none,” we add prefetch-
ing of 4KB regions, but do not schedule prefetches
specially—all the prefetches generated by a miss will be
issued before any subsequent demand miss. Unscheduled
region prefetching avoids a substantial number of misses:
the L2 miss rate is reduced from 36.4 percent to just
10.9 percent. Despite the sharp reduction in miss rate,
contention increases the miss latencies dramatically. The
(arithmetic) mean L2 miss latency, across all benchmarks,
rises more than sevenfold, from 122 cycles to 890 cycles, due
to contention caused by the substantial number of pre-
fetches. Although the C-local benchmarks benefit from
unscheduled prefetching in spite of the latency increase,
overall performance drops significantly.

This large increase in channel contention can be avoided
by issuing prefetch accesses only when the Rambus channel
would otherwise be idle. When the Rambus controller is
ready for an access, it signals an access prioritizer circuit,
which forwards any pending L2 demand misses before it
will forward a prefetch request from the prefetch queue, as
depicted in Fig. 5.

Our simplest prefetch prioritizer uses a FIFO policy for
issuing prefetches and for replacing regions. The oldest

prefetch region in the queue has the highest priority for
issuing requests to the Rambus channels and is also the
region that is replaced when a demand miss adds another
region to the queue. Results for this scheme are shown in
the “fifo” column of Table 8.

Comparing scheduled to unscheduled prefetching, we
see miss rates increase slightly because some prefetches will
be displaced from the prefetch queue before they can be
issued. However, most of the miss-rate reduction relative to
the nonprefetching base case remains. Furthermore, in stark
contrast to unscheduled prefetching, scheduled prefetching
incurs only a small increase in mean L2 miss latency. The
result is an across-the-board performance improvement.
The C-local benchmarks show a mean 62 percent
performance improvement—higher than that of unsched-
uled prefetching, despite a larger demand miss rate. More
importantly, this prefetch scheme is unintrusive: Due to the
combination of LRU priority insertion and channel schedul-
ing, no benchmark shows a performance drop when
prefetching is added to the base system. Across the entire
SPEC2000 suite, performance shows a mean 24 percent
increase with the addition of FIFO region prefetching.

We can further improve our prefetching scheme by
taking into account not only the idle/busy status of the
Rambus channel, but also the expected utility of the

TABLE 8

Comparison of Prefetch Policies
base | none | fifo | lifo |lifo+iru| 'O+
+bank
C-cpu Miss rate [ 12.9% | 2.6%| 3.1%]| 2.9%| 2.9%]| 2.9%
Miss lat. | 110.1| 596.3| 119.0| 119.6| 119.6| 117.9
IPC 1.697| 1.566| 1.715] 1.718 1.719 1.720
C-nolocal | Miss rate | 35.0% | 23.6% [26.0% |25.8% | 25.6% | 25.5%
Miss lat. | 150.8|1718.9| 159.7| 159.5| 160.3| 158.5
IPC 0.475| 0.096| 0.544| 0.551| 0.553| 0.555
C-local Miss rate | 52.5% | 6.2%[12.0%|11.8%| 11.9%| 11.8%
Miss lat. | 104.9| 442.4| 109.7| 109.3| 107.5| 108.7
IPC 0.969| 1.433| 1.572| 1.580| 1.604| 1.595
C-bw Miss rate | 50.3% | 14.3% |47.6% |47.6% | 47.9%| 48.1%
Miss lat. | 138.4| 780.4| 139.1]| 139.6 138.2 139.1
IPC 0.477| 0.319| 0.537| 0.536| 0.541| 0.537
Mean Miss rate | 36.4% | 10.9% [ 15.3%[15.1% | 15.0%| 15.0%
Miss lat. | 121.7| 889.6| 128.7| 128.7| 128.2| 127.7
IPC 0.779] 0.265] 0.963| 0.971 0.977| 0.977
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TABLE 9
Performance with Varied Queue Entries
1 2 4 8 16 32
C-cpu 1.718 1.720 1.718 1.718 1.716 1.717
C-local 1.587 1.595 1.596 1.595 1.595 1.595
C-nolocal 0.553 0.555 0.550 0.544 0.538 0.534
C-bw 0.536 0.537 0.539 0.538 0.539 0.538
Mean 0.974 0.977 0.972 0.966 0.960 0.956

prefetch request and the state of the Rambus banks. These
optimizations fall into three categories: prefetch region
prioritization, prefetch region replacement, and bank-aware
scheduling.

When large prefetch regions are used on an application
with limited available bandwidth, prefetch regions are
typically replaced before all of the associated prefetches are
completed. The FIFO policy can then cause the system to
spend most of its time prefetching from “stale” regions,
while regions associated with more recent misses languish
at the tail of the queue. We address this issue by changing to
a LIFO algorithm for prefetching in which the highest-
priority region is the one that was added to the queue most
recently. We couple this with an LRU prioritization
algorithm that moves queued regions back to the highest-
priority position when a demand miss occurs within that
region and replaces regions from the tail of the queue when
it is full.

Finally, the row-buffer hit rate of prefetches can be
improved by giving highest priority to regions that map to
open Rambus rows. Prefetch requests will generate pre-
charge or activate commands only if there are no pending
prefetches to open rows. This optimization makes the row-
buffer hit rate for prefetch requests nearly 100 percent and
reduces the total number of row-buffer misses by 9 percent.

These optimizations, labeled “lifo” in column six of
Table 8, “lifo+lru” in column seven, and “lifo+lru+bank” in
column eight, improve the performance across all the
applications, reducing the average miss rate by 0.3 percent,
with an associated one-cycle reduction in miss latency over
the “fifo” policy. The mean performance improvement,
across all applications, increases to 25.3 percent.

5.3 Region and Queue Sizes

In addition to prefetch scheduling and prioritization, we
experimented with various region prefetch-queue sizes. In
Table 9, we show the harmonic mean IPC for each of the
benchmark classes as the number of prefetch queue entries
(each corresponding to one region) is varied from 1 to 32.
These experiments were run using 4KB regions and
included all of the scheduling optimizations described in
the previous subsection. We were surprised that the
number of regions at which performance was highest was
so consistent across the benchmark classes and so low, at
two to four regions. The C-local benchmarks are
insensitive to the number of queue entries past two since
the larger queue sizes do not end up producing substan-
tially more prefetches. On the other hand, the low prefetch

accuracy of the C-nolocal benchmarks favors keeping the
queue size to a minimum.

In Table 10, we show the changes in performance for
region prefetching with two queue entries for each bench-
mark class as the region size is varied from 1KB to 4KB.
Performance increases for all classes as the region size is
increased. We did not measure regions beyond 4KB since a
region size larger than the virtual page size is not mean-
ingful when using physical addresses. Given the consis-
tency of these two results, all subsequent performance
results using prefetching assume 4KB regions and two
entries per prefetch queue, LIFO prefetching, LRU region
upgrades, and scheduled prefetches.

To compare against previously published solutions, we
also experimented with an unaligned prefetching scheme,
in which the N blocks following the miss block are
considered as prefetch candidates (rather than the N blocks
in the surrounding aligned region), as proposed by
Dahlgren et al. [8]. While the two schemes show similar
performance improvements for small values of N, the
aligned region scheme is superior for sufficiently large
values of N since the utility of prefetching the preceding
block eventually exceeds the utility of prefetching the Nth
succeeding block as more blocks are prefetched. The
aligned scheme has the additional benefits of eliminating
virtual page crossings (as long as the region size is less than
or equal to the page size) and a slightly simpler representa-
tion in the prefetch queue.

5.4 Performance Summary

Though scheduled region prefetching provides a mean
performance increase over the entire SPEC suite, the
benefits are concentrated in a subset of the benchmarks.
In Fig. 6, we show detailed performance results for the
10 benchmarks in C-local. The leftmost bar for each
benchmark is stacked, showing the IPC values for three
targets. The 64-byte block, four-channel experiments with

TABLE 10

Prefetch Region Size Effect on Performance

1K 2K 4K
C-cpu 1.718 1.718 1.720
C-local 1.523 1.572 1.595
C-nolocal 0.550 0.554 0.555
C-bw 0.528 0.533 0.537
Mean 0.961 0.972 0.977
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Fig. 6. Overall performance of tuned scheduled region prefetching.

the standard bank mapping is represented by the white bar,
the XOR mapping improvement is represented by the
middle, light gray bar, and region prefetching is repre-
sented by the top, dark gray bar. The second bar in each
cluster shows the performance of 8-channel runs with a
256-byte block size (which is the performance point for
eight channels) in light gray and the same system with
region prefetching in dark gray. The rightmost bar in each
cluster shows the IPC obtained by a perfect L2 cache.

On the 4-channel system, the address mapping tuning
provides a mean 24 percent speedup for C-local. Adding
prefetching results in an additional 65 percent speedup. For
eight of the 10 benchmarks, the 4-channel prefetching
experiments outperform the 8-channel system with no
prefetching. The 8-channel, 256-byte block experiments
with region prefetching show the highest attained perfor-
mance, however, with a mean speedup of 90 percent over
the tuned, 4-channel base case for the benchmarks depicted
in Fig. 6 and a 30 percent speedup across all the bench-
marks. The 8-channel system with 256-byte blocks and
region prefetching comes within 10 percent of perfect
L2 cache performance for eight of the 10 C-1local bench-
marks, as well as within 10 percent of a perfect L2 cache for
the mean across these benchmarks.

5.5 Effect on Rambus Channel Utilization

The region prefetching scheme increases traffic on the
memory channel for all of the benchmarks we studied. We
quantify this effect by measuring the utilization of the data
channels, which is simply the fraction of cycles during
which data are transmitted. We show the channel utiliza-

TABLE 11
Effect of Channel Policies on Utilization

simple |aggressive | prefetch
C-cpu 1.0% 1.0% 12.6%
C-local 15.6% 21.4% 46.5%
C-nolocal 15.3% 18.0% 66.2%
C-bw 50.4% 61.4% 80.5%
Mean 12.9% 16.4% 44.7%

mgrid parser swim  wupwise

tions for the four benchmark classes in Table 11, for a
4-channel system with 4KB, 2-entry region prefetching.

The first two columns of Table 11 show the channel
utilization without prefetching for our simplest configura-
tion (simple address mapping and in-order Rambus
scheduling) and our more aggressive baseline (XOR
address mapping and aggressive Rambus scheduling).
The more aggressive system sees increased channel utiliza-
tion: A more efficient system reduces execution time,
resulting in an increased utilization as the same amount
of data is moved across the channels in less time. Region
prefetching, shown in the third column, increases the
channel utilization substantially. The benchmarks with
spatial locality (all in C-local and some in C-bw) show
a two-fold increase in utilization, which is partially due to
spurious prefetches and partially due to reduced execution
time. The C-cpu benchmarks show a relatively large but
absolutely small increase in utilization, from 1 percent to
12.6 percent. They do not incur sufficient misses for even
the aggressive prefetching to keep the channels busy.
Finally, the C-nolocal benchmarks bear the brunt of the
useless prefetches. Since their prefetch accuracies are so
low, 97 percent (on average) of the prefetches result in extra
traffic, causing a large increase from 18.2 percent utilization
to 66.0 percent.

Since the prefetches are only issued on otherwise idle
cycles, the performance impact from these increases in
channel contention are uniformly outweighed by the
benefits of the prefetching. However, these increases could
have negative implications in a multiprocessor system,
where bandwidth is a more critical resource. The other
major concern for these utilization increases is a corre-
sponding increase in power consumption. If power con-
sumption or other considerations require limiting useless
bandwidth consumption, counters could measure prefetch
accuracy online and throttle the prefetch engine if the
accuracy is sufficiently low. Similar adaptive prefetch
schemes have shown great effectiveness in previous work
[8]. In related work, we have shown that simple hardware
heuristics can greatly reduce superfluous prefetches and,
thus, bandwidth consumed, without losing much of the
benefits gained by region prefetching [19].
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Fig. 7. Effect of cache size on region prefetching.

5.6 Implications of Multimegabyte Caches

Thus far we have simulated only 1MB level-two caches.
On-chip L2 cache sizes will doubtless grow in subsequent
generations. We simulated the tuned baseline organization
and the best region prefetching policy with caches of two,
four, eight, and 16 megabytes. We display the results
graphically for each benchmark category in Fig. 7. For the
baseline system, the resulting speedups over a 1IMB cache
were 5 percent, 19 percent, 36 percent, and 45 percent,
respectively. The performance improvement from prefetch-
ing remains remarkably stable across these cache sizes:
25-28 percent at all sizes except 2MB, where an anomalous
interaction with our address mapping (Section 3.2) on
several benchmarks degrades their base performance,
enabling a 32 percent improvement from prefetching.

The effect of larger caches varied substantially across the
benchmarks, breaking roughly into three categories:

1. The benchmarks in C-cpu incur few L2 misses at
IMB and thus benefit neither from prefetching nor
from larger caches.

2. Most of the benchmarks for which we see large
improvements from prefetching benefit significantly
less from increases in cache sizes. The 1MB cache is
sufficiently large to capture the largest temporal
working sets and the prefetching exploits the
remaining spatial locality. For all of the C-local
benchmarks except facerec, the performance of the
1MB cache with prefetching is higher than the 16MB
cache without prefetching.

3. Eight of the SPEC applications have working sets
larger than IMB, but do not have sufficient spatial
locality or available bandwidth for scheduled region
prefetching to perform well. Some of these working
sets reside at 2MB (bzip2, galgel), between 2MB and
4MB (ammp, art, vpr), and near 8MB (ammp, facerec,
mcf). These eight benchmarks are the only ones for
which increasing the cache size beyond 1MB
provides greater improvement than scheduled re-
gion prefetching.

5.7 Sensitivity to DRAM Latencies

We performed further experiments to measure the effects of
varied DRAM latencies on the effectiveness of region
prefetching. In addition to the 40-800 DRDRAM part (40ns
latency at 800 MHz data transfer rate) that we simulated

C-bw Mean

throughout this paper, we also measured our prefetch
performance on published 50-800 part parameters and a
hypothetical 34-800 part (obtained using published 45-
600 cycle latencies without adjusting the cycle time). If we
were to hold the DRAM latencies constant, these latencies
would correspond to processors running at 1.3 GHz and
2.0 GHz, respectively.

We show the effect of varied latencies upon the
prefetching gains in Table 12, which contains the mean
IPC across all benchmarks for our tuned baseline and the
best 4-channel region prefetching policy. We find that,
although the prefetching gains improve slightly as the
DRAM latencies grow longer, they are relatively insensitive
to the processor clock/DRAM speed ratio. For the slower
1.3 GHz clock (which is 18 percent slower than the base
1.6 GHz clock), the mean gain from prefetching, across all
benchmarks, was reduced from 25 percent to 24 percent. A
25 percent longer DRAM latency translated into a half-
percent improvement in the gain from prefetching.

Larger on-chip caches are a certainty over the next few
generations and lower memory latencies are possible.
Although this combination would help to reduce the
impact of L2 stalls, we have shown that the scheduled
region prefetching is relatively insensitive to both larger
caches and faster DRAM parts. Region prefetching will thus
likely reduce L2 stall time dramatically in future systems,
without degrading the performance of applications that
have poor spatial locality.

5.8 Interaction with Software Prefetching

It is possible that software prefetching could exploit much
of the same regularity that the region prefetching engine
exploits. To study the interaction of region prefetching with
compiler-driven software prefetching, we modified our
simulator to use the software prefetch instructions inserted

TABLE 12
Effect of DRAM Latencies on Prefetching
800_34|800_40|800_50
Baseline | 0.809 | 0.779 [ 0.752
Prefetch | 1.004 | 0.977 | 0.947
Speedup| 1.241 | 1.254 | 1.259
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TABLE 13
Interaction of Hardware and Software Prefetching
base HW sSwW SWovh | SW+HW
C-cpu 1.697 1.720 1.698 1.695 1.721
C-local 0.969 1.595 1.043 0.952 1.580
C-nolocal [ 0.475 0.555 0.474 0.471 0.552
C-bw 0.477 0.537 0.471 0.467 0.536
Mean 0.779 0.977 0.795 0.770 0.972

by the Compaq compiler. (In prior sections, we have
ignored software prefetches by having the simulator

discard these instructions as they are fetched.)
We show a summary of software prefetching efficacy in

Table 13. The five columns of results, from left to right,
contain mean IPCs for the 4-channel optimized baseline, the
best region prefetching scheme, the harmonic mean IPC for
software prefetching running on the baseline, the baseline
plus the overhead of software prefetches (incurring the
issue bandwidth but not the prefetches themselves), and the

region prefetching and software prefetching together.

We found that, on the base system, only a few bench-
marks benefit significantly from software prefetching: The
performance of mgrid, swim, and wupwise improved by
30 percent, 43 percent, and 12 percent, respectively. The
overhead of issuing prefetches decreased performance on
galgel by 13 percent. For the other benchmarks, performance
with software prefetching was within 2 percent of running
without. We confirmed this behavior by running two
versions of each executable natively on a 667-MHz Alpha
21264 system: one unmodified and one with all prefetches
replaced by NOPs. Results were similar: mgrid, swim, and
wupwise improved (by 36 percent, 23 percent, and 14 per-
cent, respectively), and galgel declined slightly (by 1 per-
cent). The native runs also showed small benefits on apsi
(5 percent) and lucas (5 percent), but, otherwise, the
performance gain was within 3 percent across the two
versions.

As seen in Table 13, the benefits of software prefetching
are largely subsumed by region prefetching. With region
prefetching enabled, none of the benchmarks improved
noticeably with the addition of software prefetching
(2 percent at most). Galgel again dropped by 10 percent.
Interestingly, software prefetching decreased performance
on mgrid and swim by 6 percent and 3 percent, respectively,
in spite of its benefits when no region prefetching was
present. Not only does region prefetching subsume the
benefits of software prefetching on these benchmarks, it
makes them run so efficiently that the overhead of issuing
software prefetch instructions has a detrimental impact.

These results represent only one specific compiler and
prefetching algorithm, of course; in the long run, we
anticipate synergy in being able to schedule compiler-
generated prefetches along with hardware-generated region
prefetches, or other prefetch types, on the memory channel.

6 RELATED WORK

We first evaluated the region prefetching scheme in
previously published work [18]. This paper extends that
work with a more complete analysis of the data, the
addition of aggressive scheduling of demand fetches on the
DRDRAM channels, a comparison of scheduled region
prefetching against software prefetching, and an evaluation
of the performance impact of varied numbers of active
regions in the prefetch queue. We were surprised to learn
that two regions outperformed the larger numbers (16)
simulated in previous work.

The ability of large cache blocks to decrease miss ratios
and the associated bandwidth trade-off that causes perfor-
mance to peak at much smaller block sizes are well-known
[23], [25]. Using smaller blocks but prefetching additional
sequential or neighboring blocks on a miss is a common
approach to circumventing this trade-off. Gindele first
proposed tagged prefetch, in which the next block is
prefetched when the fetched block is accessed [11]. Smith
analyzed Gindele’s scheme and other simple sequential
prefetching schemes [26]. Dahlgren et al. generalized the
sequential prefetching scheme to prefetch N blocks upon a
miss, in the context of fine-grained, cache-coherent shared-
memory multiprocessors. They extended their scheme with
an adaptive mechanism, which reduced N (to as low as
zero) when prefetches were ineffective and increased N so
long as the prefetch accuracy stayed above a predefined
threshold. Without the adaptive scheme, they saw that the
number of cache blocks at which performance was highest
was prefetching one block. Their adaptive scheme played a
role similar to the set of techniques that we evaluated to
reduce the overhead of superfluous prefetches.

Several techniques seek to reduce both memory traffic
and cache pollution by fetching multiple blocks only when
the extra blocks are expected to be useful. This expectation
may be based on profile information [10], [30], hardware
detection of strided accesses [22] or spatial locality [14], [17],
[30], compiler annotation of load instructions [28], or
software binding of contiguous related lines into a prefetch
group [34]. In the software binding scheme, the software
(i.e., the compiler or programmer) marks groups of related,
contiguous memory lines using additional memory state
bits. A miss to any line in such a group causes the memory
controller to prefetch all succeeding lines within the group.
We note that our scheme requires neither software support
nor additional memory bits; as a result, it is much less
discriminating in what to prefetch.



16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

Optimal offline algorithms for fetching a set of non-
contiguous words [29] or a variable-sized aligned block [30]
on each miss provide bounds on these techniques. Pollution
may also be reduced by prefetching into separate buffers
[15], [28].

Our work limits prefetching by prioritizing memory
channel usage, reducing bandwidth contention directly and
pollution indirectly. Driscoll et al. [9], [10] similarly cancel
ongoing prefetches on a demand miss. However, their
rationale appears to be that the miss indicates that the
current prefetch candidates are useless and they discard
them rather than resuming prefetching after the miss is
handled. Przybylski [23] analyzed cancellations of ongoing
demand fetches (after the critical word had returned) on a
subsequent miss, but found that performance was reduced,
most likely because the original block was not written into
the cache. Our scheduling technique is independent of the
scheme used to generate prefetch addresses; determining
the combined benefit of scheduling and more conservative
prefetching techniques [10], [14], [17], [22], [30] is an area of
future research. Our results also show that, in a large
secondary cache, controlling the replacement priority of
prefetched data appears sufficient to limit the displacement
of useful referenced data.

Prefetch reordering to exploit DRAM row buffers was
previously explored by Zhang and McKee [32]. They
interleave the demand miss stream and several strided
prefetch streams—generated using a reference prediction
table [2]—dynamically in the memory controller. They
assume a nonintegrated memory controller and a single
Direct Rambus channel, leading them to use a relatively
conservative prefetch scheme. We show that near-future
systems with large caches, integrated memory controllers,
and multiple Rambus channels can profitably prefetch more
aggressively. Zhang and McKee saw little benefit from
prioritizing demand misses above prefetches. With our
more aggressive prefetching, we found that allowing
demand misses to bypass prefetches is critical for avoiding
bandwidth contention.

Several researchers have proposed memory controllers
for vector or vector-like systems that interleave access
streams to better exploit row-buffer locality and hide
precharge and activation latencies [5], [13], [20], [21], [24].
Vector/streaming memory accesses are typically band-
width bound, may have little spatial locality, and expose
numerous nonspeculative accesses to schedule, making
aggressive reordering both possible and beneficial. In
contrast, in a general-purpose environment, latency may
be more critical than bandwidth, cache-block accesses
provide inherent spatial locality, and there are fewer
simultaneous nonspeculative accesses to schedule. A
flexible system intended to run both types of codes well
should incorporate mechanisms for both region prefetching
and efficient streaming.

7 CONCLUSIONS

Even the integration of megabyte caches and fast Rambus
channels on the processor die is insufficient to compensate
for the penalties associated with going off-chip for data.
Across the 26 SPEC2000 benchmarks, L2 misses account for
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60 percent of overall performance on a system with four
Direct Rambus channels. More aggressive processing cores
will only serve to widen that gap.

We have measured several techniques for reducing the
effect of L2 miss latencies. Tuning DRAM address map-
pings to reduce row-buffer misses and bank conflicts—
considering both read and writeback accesses—provides
significant benefits. Aggressive scheduling of demand
misses provides incremental gains. These optimizations
served as our baseline. Large block sizes can further
improve performance on benchmarks with spatial locality,
but fail to provide an overall performance gain unless much
wider channels are used to provide higher DRAM
bandwidth.

We proposed and evaluated a prefetch architecture,
integrated with the on-chip L2 cache and memory con-
trollers, that aggressively prefetches large regions of data on
demand misses. By scheduling these prefetches only during
idle cycles on the Rambus channel, inserting them into the
cache with low replacement priority, and prioritizing them
to take advantage of the DRAM organization, we improve
performance significantly on 10 of the 26 SPEC benchmarks
without adversely affecting the others.

To address the problem for the other benchmarks that
stall frequently for off-chip accesses, we must discover
other methods for driving the prefetch queue besides region
prefetching, effectively making the prefetch controller
programmable on a per-application basis. Other future
work that will broaden the classes of applications that
benefit from integrated prefetch controllers includes eval-
uating the effects of more sophisticated channel organiza-
tions: For example, treating single, wide channels as
multiple narrow, complex interleaved channels, and/or
dynamically switching between the two organizations.
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