
Recent Extensions to the SimpleScalar Tool Suite

Doug Burger1 Todd M. Austin1 Stephen W. Keckler2

Abstract

Over the past eight years, the SimpleScalar Tool suite has
become the most widely used set of simulation tools in the
computer architecture research community. The authors have
recently completed an NSF-funded project to extend and im-
prove the SimpleScalar tools. In this paper, we describe the
extensions and improvements to the tools, which include the
capability to simulate more instruction sets, graphical support
for performance viewing, and more simulators that model dif-
ferent types of machines, including embedded systems, ISA-
specific systems, systems with operating systems, and multi-
processing systems.

1 Introduction

The SimpleScalar Tools [3] are currently one of the most
widely used tool sets in the computer architecture research
community. First released in 1996, their use has ex-
panded widely, benefiting from the open-source release of
the tools [1]. The tools are used for approximately half of
the papers in current-day architecture conferences (for exam-
ple, SimpleScalar was used in 58% of the papers appearing in
the 29th International Symposium on Computer Architecture)
and have been used to publish well over 500 papers during the
past four years. The tools are free to academic researchers.

SimpleScalar was never intended as a complete, “out of
the box” software package to be used as-is by researchers.
Rather, it is a simulationenvironment, with many features
useful for constructing simulators. These features include
a simulated target debugger, I/O checkpoints for repeatable
simulation from any point in a simulated program’s execu-
tion, a pipeline viewer, configuration files, toolchains ported
to the PISA architecture1, a statistics registration and han-
dling package, and a command-line argument handling pack-
age.

Undoubtedly, one of the most popular features of the tools
package is the set of architectural simulators that accompany
the tools, which researchers can use and modify to simulate
new ideas, so long as those ideas are compatible with at least
one of the simulators. The simulators model targets from a
very abstract level to a fairly detailed timing level.

1Dept. of EECS, University of Michigan.
2Dept. of Computer Sciences, The University of Texas at Austin.
1PISA stands for Portable Instruction Set Architecture. It closely resem-

bles MIPS with a few additions.

The most abstract of the simulators are (sim-fast and sim-
safe, which are both simply functional architectural simula-
tors. They execute the semantics of an instruction set, and can
thus simulate binaries, but have no notion of simulated time,
and do not model any underlying hardware. In a sense, they
are instruction-set emulators. The difference between thetwo
is that sim-safe performs various safety checks (e.g., align-
ment on loads) at the cost of some speed, whereassim-fast
dispenses with the checks to run as fast as possible.

The next more complex set of simulators gather microarchi-
tectural statistics, but still do not model timeper se. The two
most widely used aresim-cache andsim-bpred, which use the
instruction-set emulators to generate an on-the-fly instruction
trace, which is then fed into cache and branch prediction mod-
els, respectively. A common misconception about the Sim-
pleScalar simulators is that they are execution-driven, when
in fact all of them are dynamic trace driven. They use the
instruction-set emulators to generate a trace, which is then fed
into various microarchitectural modelers (ranging from sim-
ple cache models all the way up to full-blown timing models
of an entire processor). No traces written to disk or read from
disk, as they are always generated on the fly for each simula-
tion.

Finally, thesim-outorder simulator provides a detailed tim-
ing model of an out-of-order microprocessor, based on Sohi’s
Register Update Unit, or RUU [8]. Due to the difficulty of
building out-of-order processor simulators, many researchers
modify this simulator to evaluate their ideas. This simulator
is good for uniprocessor simulations, but is less ideal for mul-
tiprocessor simulations, which must be truly execution driven
to order the communication operations correctly. The issue
width of sim-outorder can be adjusted, as can the issue re-
strictions (i.e., in-order vs. out-of-order issue). Thus,this
single simulator can approximate a range of systems, from a
single-issue in-order scalar core to an aggressive out-of-order
8-wide superscalar core.

While these tools have been beneficial to the community,
there were many possible extensions that would benefit re-
searchers but that the maintainers of the tools did not have
the resources to add. In 1999, the National Science Foun-
dation funded a grant to the authors of this paper to extend
the utility, functionality, and portability of the SimpleScalar
tools. The grant came from NSF’s CADRE program (CISE
Advanced and Distributed Resources for Experimentation),
and it ran from 1999-2003. The grant was split across the
authors’ groups at the University of Michigan and The Uni-
versity of Texas at Austin. The goal was to make a number of



additions to the tools that would make them more useful to the
research community. Below, we describe the major additions
to the tools that were funded under this program.

2 Instruction Set Extensions

SimpleScalar version 3.0 supported two instruction-set front
ends. The first is named PISA (for Portable Instruction Set
Architecture). It is a close derivative of MIPS, with a few ad-
dressing modes removed, and extended to 64 bits to free up
space for instruction additions. Sim-outorder can model the
instructions as consuming 32 or 64 bits in memory, to approx-
imate how a conventional RISC ISA would behave while not
sacrificing the flexibility in the larger instructions.

The second supported ISA is the Alpha AXP instruction
set. The advantage to using Alpha is that optimized bina-
ries can be generated via Alpha compilers, and the perfor-
mance of simulated Alpha binaries on modified versions of
sim-outorder can be compared to actual performance of the
same binaries running on an Alpha workstation. Unfortu-
nately, since future processors implementing the Alpha in-
struction set have been discontinued, this capability has been
decreasing in importance. For the investment people have
made in porting and modifying the tool set to be long-lived,
it is important for the tools to emulate a subset of currently
active instruction sets. Thus, as a part of this work, we added
two major and active ISAs to the SimpleScalar framework:

2.1 The PowerPC ISA
One of the major remaining instruction sets, the PowerPC
ISA is used in many products, from embedded systems to Ap-
ple desktop computers. We have implemented the complete
PowerPC user-level instruction set and released it to exter-
nal researchers [7]. Like the other instruction sets, it consists
of a definition file that implements the ISA semantics, tools
for unpacking and loading PowerPC binaries, as well as in-
terfaces to the functional and timing simulators. Since the
floating-point support (with the condition registers) is expen-
sive to simulate, we provided for both native, direct execution
when simulating PowerPC binaries on a PowerPC host, as
well as slower simulation when simulating PowerPC binaries
on a different type of architecture.

2.2 The ARM ISA
ARM is extensively used in low-end, embedded systems. We
have added functional simulation for the ARM 7 instruction
set architecture, as well as the Floating Point Accelerator
(FPA) extensions. In addition to the ARM ISA emulation,
we have added some timing simulator support to accompany
this ISA. This support includes a validated SA-1 pipeline core
model, which permits researchers to simulate many popular
embedded system targets, such at Intel’s StrongARM SA-
1110 processor. We have also included a prototype of Intel’s
Xscale ARM processor in the distribution.

3 Graphical Viewers

Given the quantity of in-flight state in modern processors, it is
difficult to reason about the sources of bottlenecks in the mi-
croarchitecture. This difficulty is most pronounced in an ed-
ucational setting, when trying to explain the concept of over-
lapped operations. Consequently, we developed two separate
visualization engines that address this challenge at different
levels.

3.1 ss-viz
ss-viz is a high-level microarchitectural pipeline vi-
sualizer, and is available with documentation at
www.cs.utexas.edu/users/cart/code/ss-viz.tgz. ss-viz allows
the user to view on-line architectural and microarchitectural
state as the program runs, as well as dynamically generated
graphs that measure quantities like instructions per cycle,
cache miss rates, etc., as a function of time. We have
used this tool in a junior-level undergraduate architecture
class, to further their understanding of the dynamic flow of
microarchitectural state.

3.2 Graphical Pipeline Viewer
The other graphical viewer that we developed is GPV, the
Graphical Pipeline Viewer for SimpleScalar [9]. GPV per-
mits users to visualize the performance of programs on arbi-
trary pipeline configurations. The tool is based on the Perl/TK
graphical programming language, permitting the tools to run
on most popular platforms. GPV can display instruction
pipelining, resource usage, and memory access patterns. Re-
searchers at University of Michigan have successfully used
GPV to optimize cryptographic kernels for the Alpha 21264
microarchitecture, and researchers elsewhere have incorpo-
rated GPV into their computer architecture courses.

4 New Simulators

The simulator development features (such as statistic database
and I/O trace checkpointing), the instruction set front ends,
and the graphical visualizers are all “support” tools that fa-
cilitate custom development of new simulators. However,
since developing complete timing simulators is prohibitively
expensive for many researchers, and the timing simulators see
such wide use, it is important to keep them up to date. Conse-
quently, we have augmented the old simulators and provided
new simulators and simulation environments, described be-
low.

4.1 MASE
The first major simulation extension to the tools that we
describe is MASE, the MicroArchitectural Simulation En-
gine [6]. MASE is a novel performance modeling infras-
tructure for SimpleScalar that addresses a number of defi-
ciencies in the current detailed performance modeling sim-
ulator (sim-outorder). The new modeling infrastructure per-
mits arbitrary mispeculation/recovery suitable for analysis of



novel speculation mechanisms. In addition, the new simula-
tion infrastructure accurately models microarchitectural op-
eration through RTL-level (micro)functional simulation.This
support permits more accurate modeling of mispeculation and
data-dependent optimizations. In addition, this methodology
permits accurate modeling of multiprocessor race conditions.
Finally, the new modeling infrastructure incorporates an ex-
ecution checker component that simplifies the validation and
debugging of complex microarchitectural mechanisms. This
new environment is already being used successfully by aca-
demic researchers.

4.2 Sim-Alpha
One of the advantages of performance simulators such assim-
outorder is that they model the microarchitecture at a level
low enough to permit exploration of new microarchitectural
innovations, but at a level high enough that makes it relatively
easy for researchers to extend the simulators. The simulations
are also relatively fast (tens to hundreds of thousands of in-
structions per second), compared to detailed chip-level, RTL,
or circuit simulations. However, modeling at this level does
introduce some error compared to a simulator that precisely
models a chip.

For those researchers that wanted a more detailed (but more
difficult to extend) simulator, we built a simulator (creatively
called ’sim-alpha’) modeled on an Alpha 21264 processor
running in a real workstation (a Compaq DS-10L) [5]. Be-
cause it is modeled on an actual chip, it is possible to quan-
tify the error the simulator incurs on benchmarks compared
to those workloads running on an actual machine.

The validation against a real Alpha workstation (a DS-10L)
showed that, for a large suite of cache-resident microbench-
marks, the simulator was within an average of 2% of the ac-
tual alpha workstation. For SPEC2000 benchmarks, the er-
ror was larger due to memory and TLB effects: an average
of 6.6% on the SPECINT2000 benchmarks and 21.5% on the
SPECFP2000 benchmarks [4]. While the error is quantifiable,
the simulator has many more features specific to the 21264
microarchitecture that make it less easily extensible for new
ideas or modeling. However, implementing new ideas in both
simulators can permit researchers to see if performance ben-
efits from new ideas track across two quite distinct microar-
chitectures that support the same ISA (using the version of
sim-outorder with the Alpha ISA). The code is available at
www.cs.utexas.edu/users/cart/code/alphasim-1.0.tgz.

4.3 Memory Extensions
The original release of the SimpleScalar timing simulators
contained simple cache and TLB models that gave good esti-
mates of the effects of cache and TLB miss latencies. How-
ever, the memory hierarchies that could be simulated were
fairly rigid, and they did not model much of the lower-level,
underlying detail and complexity found in modern memory
systems.

To compensate, we developed a set of memory extensions,

that model both existing structures in more detail as well
as adding new structures not modeled in the original re-
lease [2]. The structures modeled in more detail include the
DRAM subsystem, which includes DRDRAM and SDRAM
models, as well as more detailed simulation of bus traffic
and contention. The code also supports an arbitrary topol-
ogy of caches, buses, and memories to be constructed from
command-line arguments.

The new structures include finite miss status holding registers
(MSHRs), permitting the user to specify how many misses
may be overlapped at each level of the memory hierarchy. In
addition, these are combining MSHRs; the number of com-
bined requests for a single cache line is also user-definable.
The extensions also implement a simple multi-level page ta-
ble, entries for which can be cached. The user can specify
whether caches are virtually or physically indexed or tagged,
and can have TLB accesses go in parallel with cache accesses
if necessary. The code supports hardware traversal of the page
table upon a TLB miss or page fault.

4.4 Operating System and Multiprocessor Simulation
Many benchmark suites such as SPECCPU2000 spend little
time in the operating system, consequently restricting simula-
tion to user-level only (as SimpleScalar does) adds little error.
However, to simulate more OS-intensive workloads, such as
commercial transaction processing, web serving, databaseac-
cesses, and many other multiprocessor workloads, full-system
simulation is necessary to obtain accurate results.

To provide full-system simulation capability using Sim-
pleScalar, we have merged an older version of the IBM Austin
Research Lab’s SimOS full-system simulator with the Pow-
erPC port of SimpleScalar. This version of SimOS pre-
dates the Mambo simulator described later in this special
issue. This merged tool enable users to simulate a full-
blown operating system (AIX version 4.1.3) running on Sim-
pleScalar timing simulators. We also adapted and merged
the SimpleMP tool, a shared-memory multiprocessor version
of SimpleScalar originally built by Ravi Rajwar at Wiscon-
sin, with SimOS. This tool permits simulation of full-blown
small-scale multiprocessors (in particular, chip multiproces-
sors), including both explicitly parallel (e.g. MPI) and mul-
tithreaded programs, running on an operating system, simu-
lating I/O, etc. Currently the tool runs only on AIX/PowerPC
and Linux/x86 systems.

5 Summary

SimpleScalar has proven to be a boon for many researchers,
particularly those that do not have the resources or staffpower
to develop complex simulation infrastructures internally. In
addition to research, many educators are now using it in
coursework.

It is our hope that the extensions and improvements described



in this paper will be useful to the community. The relentless
pace of technological change makes research tools difficultto
keep current. However, combining federally-funded efforts
with a collaborative, open source model and an easily exten-
sible environment makes it possible for many researchers to
perform widely varying studies from a single code base.

Acknowledgments

First, we gratefully acknowledge the National Science Foun-
dation’s support through grant number EIA-9975286. With-
out that support, these extensions and improvements to Sim-
pleScalar would not have been possible. Also, much of the
hard development work was done by our graduate students,
many of them listed in the technical references, whose excel-
lent efforts we happily acknowledge. Finally, we thank the
SimpleScalar user base, whose productive use of the tools has
made our efforts worthwhile.

References

[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling.IEEE Com-
puter, 35(2), February 2002.

[2] D. Burger, A. Kägi, and M. Hrishikesh. Memory hier-
archy extensions to the simplescalar tool set. Technical Re-
port TR-99-25, Department of Computer Sciences, University
of Texas at Austin, Austin, TX, December 1999.

[3] D. Burger and T. Austin. The simplescalar tool set ver-
sion 2.0. Technical Report 1342, Computer Sciences Depart-
ment, University of Wisconsin, Madison, WI, June 1997.

[4] R. Desikan, D. Burger, and S. Keckler. Measuring ex-
perimental error in microprocessor simulation. InProceed-
ings of the 28th Annual International Symposium on Com-
puter Architecture, pages 266–277, July 2001.

[5] R. Desikan, D. Burger, S. Keckler, and T. Austin. Sim-
alpha: a validated, execution-driven alpha 21264 simulator.
Technical Report TR-00-04, Department of Computer Sci-
ences, University of Texas at Austin, Austin, TX, February
2000.

[6] E. Larson, S. Chatterjee, and T. Austin. The mase mi-
croarchitecture simulation environment. InProceedings of
the 2001 International Symposium on Performance Analysis
of Systems and Software, June 2001.

[7] K. Sankaralingam, R. Nagarajan, S. Keckler, and
D. Burger. Simplescalar simulation of the powerpc instruc-
tion set architecture. Technical Report TR-01-23, Department
of Computer Sciences, University of Texas at Austin, Austin,
TX, February 2001.

[8] G. S. Sohi. Instruction issue logic for high-
performance, interruptible, multiple functional unit, pipelined
computers. IEEE Trans. Comput., 39(3):349–359, March
1990.

[9] C. Weaver, K. C. Barr, E. D. Marsman, D. Ernst, and
T. Austin. Performance analysis using pipeline visualization.
In Proceedings of the 2001 International Symposium on Per-
formance Analysis of Systems and Software, June 2001.


