Design and Analysis of Routed Inter-ALU Networks
for ILP Scalability and Performance

Vincent Ajay Singh* Karthikeyan Sankaralingam Stephen W. Keckler Doug Burger

Computer Architecture and Technology Laboratory
Department of Computer Sciences
*Department of Electrical and Computer Engineering
The University of Texas at Austin
cart @s. utexas. edu - www. cs. ut exas. edu/ users/cart

Abstract

Modern processors rely heavily on broadcast networks to bypass instruction results to
dependent instructions in the pipeline. However, as architectures get wider and pipelines
get deeper, broadcasting becomes more complex, slower, and more difficult to implement.
This complexity is compounded by shrinking feature size, as the communication speed de-
creases relative to transistor switching speeds. This paper examines the fundamentals
needs of bypass networks and proposes a method for classifying these Inter-ALU Networks
based on how operands are routed from producers to consumers. We then propose and eval-
uate at both the circuit and architectural level a fine grain point-to-point Routed Inter-ALU
Network (RIAN) that delivers the same instruction throughput as a full bypass network but
at higher speeds and using fewer wires.

1 Introduction

The most critical loop in pipelined processors enables data dependent instructions to execute in consecutive
cycles. In fact, the ALU execution delay plus the bypass latency to deliver the ALU output back to its input
often sets the cycle time of the machine. As shown in prior research [16, 3], increasing this path by even a single
cycle dramatically reduces instruction throughput rates. Most modern processors, including both superscalar
and VLIW architectures, use some form of broadcast to deliver instruction results to all places that a consumer
instruction could reside.

However, complexity and delay of bypass paths is increasing with modern processors and technologies [11].
Wider-issue machines with conventional broadcasting techniques incur a wire complexity growth proportional
to the square of the number of ALUs [2], thus contributing to both increased wiring area and larger fan-in at
the bypass targets. The fan-out from each source ALU increases roughly with the product of the pipeline depth
and width, as each ALU result must be routed to all possible places it could be used. Larger fan-out and fan-in
increases bypass delay as the both the capacitive load within the network and the multiplexor complexity at each

| Execution Model | Network Architecture | Router Control || Acronym || Examples

Point-to-point Multi-hop Dynamic PMD Parcerisa [12], Grid Proces-
sor [10]

Point-to-point Multi-hop Static PMS RAW [20]

Point-to-point Single-hop Dynamic PSD M-Machine [6], Multicluster [5]

Point-to-point Single-hop Static PSS degenerate case of PMS

Broadcast Multi-hop Dynamic BMD Alpha 21264 [8]

Broadcast Multi-hop Static BMS -

Broadcast Single-hop Dynamic BSD Superscalar [18]

Broadcast Single-hop Static BSS VLIW [4]

Table 1: A taxonomy of routed bypass networks

sink rises. Finally, increases in wiring resistance increase transmission latencies, particularly to pipeline stages
and ALUs that are far from the source ALU. Based on optimistic wiring overhead models, we estimate that the
shortest and longest bypass path delays for a future, ultra-wide 64-issue processor with a 10F04 clock cycle, are
1 and 8 cycles respectively. In contrast, in many conventional processor designs the worst case bypass delay is
small enough to be incorporated into the critical path and is a fraction of the clock cycle.

To reduce these delays and improve the scalability of broadcast bypass networks we propose and evaluate
a new class of Routed Inter-ALU Networks (RIANSs). In these networks, neighboring ALUs are connected
via direct links through lightweight routers, and communication between distant ALUs must make multiple
hops through the network. Instead of being broadcast, operands are routed from source to destination based
on a destination identifier encoded into each instruction. RIANSs reduce the fan-in and fan-out at each ALU, as
well as the potentially crippling wiring area overhead. Such a network significantly improves the bypass latency
between nearby ALUs but may increase the latency between distant ALUs that must traverse many hops through
the RIAN.

In general, bypass inter-ALU networks (IANs) can be classified according to (a) the number of target ALUs
to which a result is delivered, (b) the number of targets to which a given ALU is directly connected, and (c) when
the routing decision is made. While we present the full taxonomy of IANs in Section 2, the RIAN networks
we propose can be classified as a Point-to-point, Multi-hop, Dynamically routed networks, represented by the
acronym PMD. We evaluate the use of this network in statically scheduled architectures in which the source
and destination of each communication are determined at compile time. We first explore their utility in wide
clustered and non-clustered VLIW machines in which the targets and links can be identified at compile time, but
routing and arbitration is performed at run time.

We then examine this network strategy in an emerging architecture that supports static scheduling but dynamic
execution to tolerate run-time determined latencies. The key behind the applicability of point-to-point routing
in both architectures is that results inherently need to be sent only from the producer to the consumer, rather
than being broadcast to all ALUs. We show that scheduling algorithms are effective in placing producers and
consumers near one another, thus restricting the communication distance to a few hops in the common case.
Multi-hop point-to-point networks are efficient for these patterns of communication.

Section 2 describes the design space of inter-ALU networks, and discusses how they relate to prior bypass net-
work architectures. Section 3 examines circuit implementations of multi-hop switched networks and describes
mechanisms for reducing router overhead in this thin network. Section 4 explores the use of thin networks in
VLIW architectures, while Section 5 does the same for the dynamically executed Grid Processor architecture.

Finally, Section 6 provides summary and concluding remarks.

2 A Taxonomy of Inter-ALU Networks

Bypass networks are intended to provide fast paths between the outputs of ALUs and inputs to prior stages of
the pipeline downstream from the register file. Their prime effect on performance is to reduce or eliminate read-
after-write hazards and possible pipeline stalls that result from issuing back-to-back producer and consumer
instructions. In conventional processors, these have typically been implemented as broadcast networks where
essentially the output of every ALU is routed to the input of every other ALU.

These broadcast bypass networks are really a part of a broader class of Inter-ALU Networks (IANs) which can
be classified along three axes: (a) the execution model, (b) the network architecture, and (c) router control. The
execution model indicates whether the output of an ALU is to be broadcast by default to all ALUs, or whether
the target ALUs are specified explicitly prior to execution of the instruction and then routed point-to-point.
The network architecture indicates whether an operand is routed directly from the output of one ALU to the
input of another (single-hop), or whether it may pass through intermediate routers (multi-hop). Router control
indicates whether all of the routing decisions are made prior to execution of the ALU instruction producing
the data (static), or whether the routing decisions take place at runtime (dynamic). Note that these networks
differ dramatically from multiprocessor networks because the payload is a scalar value rather than a multi-word
message or cache line.

Table 1 lists the eight possible bypass network configurations and architectures which use them, with a 3-
letter acronym for each network criterion: {P,B}, {M,S}, {D,S}. Pipelined and superscalar architectures are
classified as BSD networks since operands are broadcast to all target ALUs, there are no intermediate routers,
and the routing does not commence until the ALU operation is complete. The clustering of the Alpha 21264, in
which operands are broadcast to both the local and remote cluster can be classified as BMD. Traditional VLIW
processors with a shared register file namespace broadcast data across the ALUs though statically scheduled
busses and is thus BSS.

As transistors have become faster and wires have become relatively slower, broadcast networks have become
less attractive due to long wire lengths and increasing wiring overhead for large connectivity networks. The
major challenge in such networks is to reduce the latency for communication to a level equaling or approaching
conventional bypass networks. The two components required to achieve this are: (a) the network interface must
be integrated into the pipeline so that operands are delivered directly to consuming ALUs and results are injected
into the network directly from ALU outputs, and (b) the latency to route through the network must be minimized.

Several architectures have proposed or implemented one of the family of point-to-point IANs to meet these
goals. The M-Machine is an example of a PSD network since destinations are specified statically and encoded
in an instruction while delivery occurs dynamically from the source cluster to the destination cluster. The
Multicluster architecture is also PSD as it dynamically routes operands on demand between two clusters in a
partitioned register file superscalar architecture. The MIT RAW processor includes a bypass routing network
which is integrated into the pipeline. The routing overhead is mitigated through a statically scheduled router
which eliminates the need for dynamic arbitration for the shared router and wire resources, thus rendering it a
PM S network. While this architecture achieved the per-hop latencies of a single cycle, their experience showed
that these latencies were too high to achieve sufficient ILP, in part because the components that communicate
are complete processors, rather than small ALUs, as found within a more conventional processor core [17].

Finally, a budding category of IANs is PM D — point-point, multi-hop, dynamically routed networks. Parcerisa,
et. al proposed a multi-hop routing network for clustered superscalar architectures with partitioned register
files, similar in principle to Multicluster [12]. The microarchitecture keeps track of the location of produc-

1-segment

Node 1 1
H LN -"

(a) Single-hop network (b) Multi-hop network

Figure 1. Single-hop and multi-hop networks of size 9. Only wires corresponding t o the top left node are shown
for (a).

ers/consumers and dynamically inserts instructions to transmit operands from a source to a destination cluster.
They evaluate small scale networks of up to 8 clusters using ring, mesh, and torus topologies.

In this paper, we focus on a different flavor of PMD networks in which the instruction dependencies are
expressed explicitly in the instruction encoding and the physical locations of the producing and consuming
instructions are known prior to execution. With this knowledge, bookkeeping hardware to dynamically track
instruction dependencies is not required, nor do instruction results need be broadcast to every ALU. We do
not restrict ourselves to statically scheduled architectures since dynamic behavior such as variable load/store
latencies must be tolerated at runtime. We examine large networks of up to 64 ALUs and explore a range of
topologies and connectivities.

3 Circuit modeling of Inter-ALU Networks

In this section we describe our modeling of inter-ALU networks explaining the following aspects — 1) the
technology models and circuit estimation tools, 2) conventional bypass networks and their different delay com-
ponents, and 3) the scalability of these networks. We propose point-to-point networks as an alternative when
large numbers of communicating nodes are required, with the communication being mostly amongst adjacent
nodes. The router design is crucial for network throughput in point-to-point networks, and we discuss a rout-
ing protocol and router design that hides this latency from the network. Finally we compare the performance
of multi-hop networks and single-hop networks. In the experiments described in this section, we examine the
generic class of switched multi-hop networks (which could be implemented as PMD, PMS, or BMD) and sin-
gle hop networks (which could be implemented as PSD, PSS, BSD, or BSS). The programming and execution
models respectively determine whether the communication is point-to-point/broadcast and whether the router
control is static/dynamic. We then address the tradeoffs between the two types of networks.

3.1 Technology modeling

We estimated circuit latencies using SPICE models derived from the 1999 International Technology Roadmap
for Semiconductors [14]. We estimated the wire delays assuming optimal buffer placement, with capacitance
numbers obtained using Space3D (a three dimensional field solver) [1]. Technology parameters for the wire
delay tool were based on the 2001 International Technology Roadmap for Semiconductors [15], using the 90nm
technology point scaled to 100nm. We refer to the wire delay obtained (represented in picoseconds per mm) as
tw.

For our analysis, we assume that the functional units producing and consuming values are laid out in a 2-

Wire delay 117 ps/mm
Node area 2.54M square microns, 1G\2

Network size (in nodes) 4 8 16 | 32 | 64
Fanin+Fanout delay (ps) | 100 | 150 | 175 | 210 | 240

Table 2: Network delay components at 100nm.
To another node ‘

f

o
o

o
o o o A Destinatior
Node
Source Nod oo

1 1
Fanout buffers Buffered wires Fanin tree

_?

Figure 2: Circuit for a bypass path.

dimensional rectangular array with a Manhattan routing scheme. We refer to these functional units as nodes. Al
distances are measured in segments, with 1 segment being the distance between adjacent nodes. The network
size (N) is the total number of nodes in the network. Figure 1 shows a single-hop and multi-hop inter-ALU
network of size 9.

In our experiments, the node consists of an ALU, an integer multiplier, an FPU, and a 64-entry register
file. All the functional units are 64 bits wide. The area and dimensions of these nodes are estimated using an
empirical area model [7]. Each node is a square 32K) on a side, occupying an area of 1GA2, where) is half the
channel length of a minimum sized transistor. The processing core of the Alpha 21264 in comparison occupies
an area of approximately 6G\2. Table 2 shows the wire delay and the node area obtained using our circuit tools
for 100nm technology.

3.2 Modeding conventional bypass networks

Conventional broadcast networks fall under the BSD class of networks. A general communication path used in
such bypass schemes is shown in Figure 2. No network topology decisions or routing protocol decisions are
reflected in this abstract model. As shown in the figure, there are three main components that contribute to the
bypass delay: the fan-out delay (ty,), the wire delay, and the fan-in delay (¢;). The total delay is given by the
following equation.

ts=trottp+nxty*xlxa @

The third term in the equation denotes the wire delay — product of the number of segments traversed (n),
wire delay per unit length (¢,,), length of a segment (1), and the wiring distance overhead «. The wiring distance
overhead is a factor used to incorporate the physical VLSI design constraints of wire routing. When the number
of tracks required to route the wires fits within the area occupied by the ALUs, a = 1, indicating no wiring
overhead. However, when the wires require extra area for routing, « indicates the ratio by which the length
of these wires increase, because of the excess area they must be routed over. This wiring overhead is strongly

% delay variation % delay variation

with distance with network size
60 — 100 —
X — e — X—r—m e . X
—a— 64 wide 1 :"" ““““ - — N
< - = 8wide 80 T L .
7] [S
L% z - . — - 16 segments
+ T 60+ ‘@ _.e- 8segments
5 o ‘\ﬁ\‘\‘ —-+- 4 segments
& 2 404 —-&- 2 segments
£ X —a— 1 segments
S 204
0 T T T 1 0 T T T]
012 4 8 12 16 0 16 32 48 64
Distance in segments Network size
(a) (b)

Figure 3: Percentage wire delay contribution to the total communication delay.

dependent on technology, ALU dimensions, data-path width, routing strategies and repeater placement and area.
For a 64-bit data-path assuming a wire pitch of 16\, our simple wiring area models, which do not account for any
repeater area overhead show that only single-hop networks of size greater than 32 incur any wiring overhead.
For a network of size 64, « = 2.05. All the multi-hop network configurations we examined have very low
fanouts (< 8) and hence incur no wiring overhead.

A layout corresponding to this circuit for a 3x3 single-hop network is shown in Figure 1a. Only the outbound
wires originating from the top left node are shown. The fanin and fanout delays correspond to the delays of
the destination multiplexors and the fanout buffers at the source respectively. These delays were obtained using
SPICE simulations for different network sizes and the values we obtained are shown in Table 2.

Delay analysis. In a single-hop network, large fan-out and fan-in delays are incurred once for every commu-
nication. Figure 3a shows the percentage contribution of the various components to the total communication
latency in networks with varying network sizes and distances traversed. For both 64 and 8-wide configurations,
the communication latency is evenly shared by the wire delay and the fan-out/fan-in delay for communication
over short distances. 57% and 44% of the delay is due to fanin and fanout for communication between adjacent
nodes one segment away. Hence, reducing the fanin+fanout contribution can have significant benefits for short
distance communications. On the other hand, wire delay dominates for long distance communications.

Figure 3b shows the percentage contribution of wire delay for communicating over different distances in
networks of different size. Note that as we increase the network size i.e. the total number of nodes in a network,
but keep the communication distance the same, the fanin+fanout delay increases logarithmically, but the wire
delay remains constant - hence the percentage contribution of wiredelay drops. As seen in the graph, for a
1-segment path the wire delay contribution drops from 53% to 43% when the network size changes from 8 to
64. On the other extreme for a 16-segment path (the longest path in the network), the wire delay contribution
drops marginally from 94% to 92%. Hence, architectures that incur frequent long-distance communications
among many nodes should stick to conventional single-hop networks because of the ease of design and better
performance.

Recall that in Figure 3a, we plotted the percentage contribution for fanin+fanout as the communication dis-

node

I Ce

Soul

o o
; Source node| Do—{>0— o o o o
router
Intermediate [>o— o o — Destination
router
oo

L 1 1 I 1 1
Router Fanout buffers Buffered wires Fanin tree Intermediate hops Router

Destination node

Figure 4: Circuit for a Multi-hop network.

tance varied and showed the results for 2 network sizes 64 and 8. This serves as the motivation for mutli-hop
networks which are well suited to architectures that exhibit frequent short distance communication.

3.3 Multi-hop Inter-ALU Network

Multi-hop networks are defined as those networks that require routing decisions to be made in between the source
and the destination nodes. The five parts of the delay for a multi-hop configuration are shown in Figure 4. They
are outgoing router delay(¢,;), fan-out delay, wire delay, fan-in delay, and the intermediate router delay(t.;).
The wire delay incurred here is identical to the wire delay seen in single-hop networks, and the fan-in and fan-
out delays are both dependent on the richness of the interconnect. However, the multi-hop network routes data
through multiple nodes, causing a router delay for every node that the data must pass through on the way to the
destination node, i.e. the number of hops (h). This can be seen in Figure 1b, which shows a possible topology
for a multi-hop network. The total delay is given by the following equation.

tar = (trs o +tpi+tp)xh+nxty xl 2

Since multi-hop networks typically have only a small number of connections between neighbors (relying
on multi-hop routing for non-local connections), they are well suited to architectures where communication is
predominantly between nearby ALUSs. It is crucial to optimize the routers since every communication beyond
the first hop requires a routing operation.

3.4 Router design

To overcome the challenges posed by technology scaling on large single hop networks, multi-hop networks are
an attractive alternative because of their fine grain control and low wiring overhead. The fan-out, wire delays,
and the fan-in delays are inherently serial and cannot be removed from the critical path. The router delay at
either end of a communication path is incurred because arbitration must be performed to avoid resource hazards.
We propose to use a lookahead scheme to hide the arbitration delay. In order to do this, two networks are
implemented. One for control and one for payload (the actual data operand). The control arrives in advance
of the payload, and reserves a path (if one will be available) for the payload, thereby taking the routing and
decision making logic off the critical path. If no path will be available (due to contention through the node) a
buffer slot is reserved for the incoming operand. This information is available a cycle in advance of the payload,
since the destination is encoded into the instruction itself and can be processed during the time taken to produce
the operand. With this advance knowledge, circuit techniques (such as domino logic) can be used to increase
the speed of the operand transmission. Peh et al. describe a similar latency-hiding approach for inter-chip
networks [13].

Incoming Data Incoming Control

Operands
Decoder/
Stalled Encoder =
Data @
Packets ; ¥ 2
 Operand Control Data g
' Pre-select 1
Fwd | Packets f.:
Data g
Q
! sl
Data Switch . ! o
| Control |Fwd | Stalled
| Flit Flit Flit N
! £
. Control Switch 4, °
Data flit S >
: &
1284

Control flit

Computation Node Router Logic

Figure 5: Router schematic

Advance knowledge of incoming operands also allows an efficient flow control mechanism. With knowledge
of how many open buffer slots are available and the communication latency to immediate producer nodes, a
simple throttling mechanism can be implemented. Assuming that one cycle is required to send an operand
from one node to the next, the throttling signal is asserted when a control flit arrives at a buffer having having
only two slots free on data arrival. The router requires one slot for the operand arriving on the next cycle
(the payload corresponding to the control signal), and one for the operand that could be sent while the throttle
signal is traveling back to the producing node. Once the producing node receives the throttle signal, it will
cease to transmit data until the stall signal is deasserted. Thus, in the common case, a producing node can send
the operand without the need to receive an acknowledgment, since it is guaranteed that storage space will be
available at the consumer node if there is contention on the routing path. Only in the uncommon case is any
backward information required.

Figure 5 shows the schematic of the router. The key component of the router is the Decoder/Encoder that
looks at control packets and steers them either to the control switch for forwarding to neighboring nodes, or sets
up the ALU datapath, to be ready to receive a value meant for this node, in the next router cycle. Stalled control
and data packets are written to separate buffers and a few cycles before they become full, nodes upstream are
throttled. When packets are forwarded, only a small forwarding delay is incurred, while a much larger packet
processing delay needs to paid for packets created by the ALU. The router circuit was modeled using our circuit
tools to determine these delays. The packet processing delay was 300ps, and the forwarding delay was 100ps in
our circuits at 100nm technology. Thus using this router, the multi-hop delay in Equation 2 is transformed as:

ta = (tpo+tpi) * h+nxty *l (3)

3.5 Delay analysisand implications

The delays for the two types of networks are represented using the delay equations built with the core circuit
components. Equating the two delays, we can define the cross-over point (n.): the number of hops at which
a multi-hop network outperforms a single-hop network as shown in Equation 4. We assume the router delay

64 wide network 16 wide network

20+ 20+
| ---®-- Sngle-hop, overhead = 2.05])
e Singlehog . —-— Sngl_ehop
2 154 —=a— Multi-hop 2 15 —=— Multi-hop
< 1 . < 1
o 1 o 1
% 1.0] % 1.0]
R R
T 05+ T 05+
0.0 T T T 1 0.0 v T T [T 1
0 1 2 3 4 0 1 2 3 4
Distancein segments Number of hops
() (b)

Figure 6: Wire delays in nanoseconds for full bypass and point to point networks. a) Network size of 64 ALU
nodes. b) Network size of 16 ALU nodes. Overheads estimated using wiring overhead model.

Crossover point

Wiring over head

Figure 7: Crossover point.

can be fully hidden, and hence does not figure in the equation. The crossover occurs when the fan-in/fan-out
overhead (accumulated over n hops) in a multi-hop network exceeds the single fan-in/fan-out delay of a full
broadcast single-hop network. The subscripts S and M are used to denote single-hop and multi-hop networks
respectively.

(tfos + trig)
(tw * (1 — @) + (ti,, +triy))

Figure 6 shows the variation of the wire delays with number of hops for multi-hop and single-hop networks.
For a 64 node array, assuming no extra wiring overhead (i.e. @ = 1), a multi-hop network has less latency when
communicating over one to two segment distances. For a 16 node network, n. shifts to a little less than 2. Using
our circuit models we calculated the delays for up to 16 segments; for a 14-segment trip, the multi-hop network
is only 30% slower than a full-bypass network, 25% faster for a 1-segment trip, and 5% faster for a 2-segment
trip. It is crucial to keep the more common short paths as fast as possible, while, in general, latencies along
less common paths are less important. Thus a multi-hop network will be favored if most of the communication
can be orchestrated among neighboring nodes. When the overhead is taken into account, a 64-wide single-hop
network never outperforms a multi-hop network as the dotted line has a higher slope, and larger y intercept, than
the solid line.

Figure 7 plots Equation 4 for three different single-hop network sizes using the fan-out, fan-in and wire delays
obtained from our circuit models. The sensitivity to wiring overhead is significant, as indicated by the asymptotic
nature of the curve. This graph is particularly important since our wiring area estimates are conservative (we do
not account for repeater placement area). As can be seen from the graph, if the wiring overhead of broadcast
networks resulted in @ = 1.25 for example, the crossover point is reasonable large — 5. If the insertion of
repeaters results in the wiring overhead exceeding 1.4, then multi-hop networks will always outperform single-
hop broadcast networks. Hence interconnect physical design issues are crucial and can have a significant impact
on the interconnect architecture.

(4)

Ne =

4 VLIW Architectures

In VLIW architectures, where the routing and arbitration is done at run time, the delay of the ALU bypass
network is a critical loop. As illustrated in the previous section, a choice has to be made about the network
architecture depending on the number of hops traveled in the common case. We examine the design space of
bypass networks in the context of unclustered VLIW architectures. In VLIW machines, the location of producer
and consumer instructions is known at compile time, and a multi-hop network can be used to route packets
from source nodes to destination nodes. Provided these are close to each other, a machine with a multi-hop
network can sustain higher instruction throughput than a single-hop broadcast network, since the execution of
data dependent operations in consecutive cycles is critical. In this section, we first describe our machine model
and configurations studied. We then describe our benchmark suite and the compilation tools used. To examine
the impact on future designs we examined very wide issue machines of width 16. We examined machine widths
of 4 and 8 to determine the applicability of multi-hop networks in current designs.

41 Machine modd

We model a VLIW machine where instructions are statically assigned to named functional units (nodes). The
compiler also generates the schedule for the execution order of the long instruction words. The individual
instructions in each instruction word are allowed to execute in any order and are independent. \We examine

10

Single—hop networks Multi—-hop networks
Sideal OWO M2o o O'X/\O/\‘é © 0
Sworst ZX Sf/grsx\m ¥
Figure 8: VLIW Interconnects.

multi-hop networks and single networks for bypassing values. When a single-hop network is used for bypass,
the values go directly from the source node to the destination node through dedicated paths. When a multi-hop
network is used, the values are dynamically routed through the network from the source to the destination. We
examine a family of single-hop full bypass networks: 1) S;4eq; - an ideal network where we set all wire delays
to the shortest delay path, 2) S,.q; - a realistic best case single-hop network where we scale wire delays between
nodes linearly with distance, and 3) Syorst - @ Worst case single-hop network, where we set all wire delays to
the longest delay path. Conventional bypass networks resemble Sy,ors:- VWe compare these single-hop networks
with two multi-hop networks, one with only short paths, the M2 network with wires between adjacent nodes,
and one with medium distance paths, the M4 network with wires to the nearest 4 neighbors. The diagrams
of the connectivity are shown in Figure 8. We simulated multi-hop networks with infinite bandwidth (infinite
wires and ports between connected nodes) to study the impact of contention. To bound the sensitivity to the
wiring overhead, we simulated single-hop networks with o = 1 and o = 2. We simulated 4-wide, 8-wide and
16-wide machine configurations. Furthermore, fanin/fanout contribution is accounted for in all networks when
determining the total delays.

The delays used in the simulations are derived from our circuit models and equations (1) and (3). For example,
the nodes in the M2 model and the closer nodes (1x distance away) in the M4 model would incur a total delay
of 320 ps (100 ps fan-in/out plus 220 ps to traverse one node.). The farther nodes in the M4 model would incur
a delay of 540 ps, as the wire distance is twice as much. The conventional bypass networks were simulated with
a equal to 1 and 2 in order to better understand the effect of wiring overhead. Additionally, all the simulations
were also run with infinite bandwidth (no contention for links) in order to see what percentage of the latency
was due to contention.

Our simulations assumed a processor executing at a 10FO4 clock at 100nm, making each router forwarding
delay 0.27 cycles (100 ps) and the time to simply traverse a node length wire (¢,,) 0.6 cycles (220 ps). It should
be noted that a real machine could not support arbitrary delays, as the circuits are synchronized to the ALU clock.
Accordingly, we assumed the routers would be clocked at 4X the ALU clock (quad-pumped) and rounded the
delays to the nearest quarter cycle.

4.2 Benchmarks

To evaluate the performance of these networks on realistic workloads, we selected a set of benchmarks from
the SPEC CINT2000, SPEC CFP2000, and three Mediabench [9] benchmarks — gzip, mcf, parser, ammp, art,
equake, dct, adpcm, and mpeg2encode. We also examined one in-house benchmark that performs radar signal-
processing where the computation is predominantly a 677-point complex FIR filter. The Trimaran tool set, which
targets the HPL Play-doh ISA [19] is used to compile these benchmarks. We use a custom built scheduler that

11

Latency (cycles) | Contention | # of
Config. [a=1] aa=2 (%) Hops
4-wide VLIW
Sideal 0.13 0.43 0 1
Sreal 0.36 0.81 0 1
Sworst | 0.79 1.69 0 1
M2 1.06 26.4 1.2
8-wide VLIW
Sideal 0.17 0.51 0 1
Sreal 0.78 1.59 0 1
Sworst | 2.38 4.62 0 1
M2 1.72 23.2 15
M4 1.69 20.7 1.2
16-wide VLIW
Sideal 0.17 0.52 0 1
Sreal 1.38 2.78 0 1
Sworst | 5.35 10.54 0 1
M2 2.36 13.9 2.1
M4 2.05 11.7 15

Table 3: Interconnect network performance on VLIW architectures. Latencies shown in processor cycles, at a
10FO4 clock cycle. The single-hop networks, S;gears Sreal, aNd Syworst have no contention since every pair of
ALUs is connected by a dedicated wire. Also, # of hops for them is 1.

is aware of all the delay paths in the architecture and optimizes the local critical path. We use a custom event-
driven simulator to model the micro-architecture. The performance simulator models an aggressive lookahead
resource reservation scheme implemented in our router. We assume that the data packet never catches up with
the control packet and there is no contention while transmitting the control packets. Hence we always pay only
the constant router forwarding delay (100ps) at every hop for the multi-hop network, and never incur the full
packet processing delay of 300ps. All benchmarks were forwarded five hundred million instructions, and then
simulated for two hundred million instructions.

4.3 Results

Routing Latency: Routing latency is the number of cycles between operand production and receipt at the
destination. When the source and destination nodes are the same, we assume direct bypass in the execution
cycle, and hence the routing latency is zero. This assumption makes the average latency shorter than the fastest
transmission path through the network. The routing latency for the different machine configurations is shown in
Columns 2 and 3 of Table 3. At width 4, the routed multi-hop network M2 is worse than the S,eq and Syorst
networks since the network size is only 4. At larger machine widths of 8 and 16, the routed multi-hop network
M4 has routing latencies within 120% (1.69 versus 0.78) and 50% (2.05 versus 1.38) of the S,..q; Network, and
is always better than the Sy,..s¢ Network. When we incorporate the wiring overhead of a = 2 for the single-hop
Srear ANA Syorst NEtWOrks, both the M2 and M4 networks are almost as good or better than them at all machine
widths.

Contention: We measure the percentage contribution of the delay due to contention by measuring the per-
centage difference between the routing latency on a real multi-hop network and an idealized multi-hop network
with infinite ports and wires between connected nodes. On this idealized network no delays are incurred due to

12

2.0+

1.54
8 _ . mm Sdeal
o = Seal
2 1.0 == Syorst
5 == Sreal (alpha=2)
< = Sworst (alpha=2)
054 M2
— M4
0.0-

4 & %

Figure 9: IPC averaged across the high IPC benchmarks dct, mpeg2encode and radar on VLIW machines.

resource hazards in the interconnect network. This percentage of latency due to contention is shown in Column
4. None of the single-hop networks have any contention, since they have a dedicated path between every pair
of ALUs. The M2 and M4 networks show roughly the same amount of contention, with the higher bandwidth
M4 network always showing slightly less contention as expected. This contention accounts for roughly 20%
of the latency for the 8-wide machine and is about 11% for the 16-wide machine, suggesting higher bandwidth
multi-hop networks could improve performance further.

Number of Hops. The number of hops taken to route operands from source to destination indicates the
effectiveness of the scheduler in placing producer-consumer pairs close together. For the conventional single-
hop networks, number of hops is always one, since there is a dedicated wire from every node to every other node.
As shown in Column 5 of Table 3, the average number of hops in the M2 and M4 networks is relatively low
(< 2.1) compared to the machine width, showing that the scheduler is effective in placing producer-consumer
pairs close together.

IPC: Figure 9 shows the IPCs averaged across only the high performance benchmarks for the 4-wide, 8-wide
and 16-wide configurations. Some benchmarks in our suite did not exhibit much improvement in performance
when the machine width is increased. These benchmarks are not included in Figure 9, which shows the IPCs
averaged across dct, mpeg2encode and radar. In these benchmarks, the performance with an idealized inter-
connect doubles when the machine width is increased by a factor of 4 as shown by the S;4eq; bar in the graph.
Multi-hop networks are effective at extracting a significant fraction of this idealized performance and are almost
as good or better than single-hop networks where wiring overhead is ignored. When we incorporate the wiring
overhead of single-hop networks (o = 2), the multi-hop networks are better at all machine widths. We also
examined clustered VLIW processors, where our results showed that a inter-cluster routed multi-hop network
connecting every N/4th node, with a full bypass intra-cluster network performed best, in an N-wide processor.

Figure 10 shows the performance of each of the individual benchmarks for 4, 8 and 16-wide machines. The
low IPC benchmarks show only little variation in performance as the machine width and interconnect network
are varied. Figure 11 shows the performance of the benchmarks, when the wiring overhead is accounted for,
by assuming « equal to 2. In these configurations the multi-hop networks always outperform the single-hop
configurations.

5 Grid Processor Architectures

Grid Processor Architectures (GPAS) use static placement but dynamically issue instructions. The goal in this
architecture is to extract high ILP, execute at a fast clock rate, and scale with technology. We use an array of

13

Width 4

B Sdeal
) I Seal
e I Sworst
M2
U Y U B S, D Y D Oy G T,
% Ty, T T, Ry e B, % Yoy 'k
% %, B T T Ny B &
< Q,) %
” o R, %
0
%
Width 8
I Sdeal
m Seal
8 3 Sworst
- M2
OoM4
% U, W B %9 % e b % R Y
% E Ry, B Ry Ty %,
() S, S So. % W
2 0 ‘F@ 0%00 > ?90
0,
%
Width 16
I Sideal
I Seal
8 = Sworst
- om2
Oom4
DY Y U B S D Y D S 9,
% 2, T 9, Sy e By % % 'k
%, (2 o §
% % %, ° % % %
@,)OO ®
%

14

Figure 10: IPC on VLIW machines: No wiring overhead for single-hop and multi-hop networks.

Width 4
2,
B Sdeal
O @ Seal
e I Sworst
14 M2
0,
Uy Y U B % D Y D By G T,
% P T O 9, S e By % % 'k
% Yy B o Ny U ©
% % %, %, > %
C,
%%
Width 8
2,
I Sdeal
o m Seal
o 3 Sworst
] oMm2
OoM4
X < < % S D el 4
%, 7, % % 90‘?4% e % e, 2, Ve,
® . 7 Vo
2
000'
%
Width 16
2,
I Sdeal
o m Seal
o 3 Sworst
] oMm2
OoM4
% Y U % S O O Yo, T
D, %, T % 4% %o Y %, .
® . 7 Vo
%
000'
%

Figure 11: IPC on VLIW machine: Wiring overhead a = 2 assumed for single-hop and multi-hop networks.

15

O @) @) O o Q @] @]
@4\ o 0 O
Triangle Mesh Star

Figure 12: Grid Interconnects.

ALUs with short paths among them, mapping compiler-generated hyperblocks to this array. Multi-hop networks
are ideally suited for this class of architectures where the primary goal is to avoid global communication and
extract performance from ALU chaining by mapping the critical path on the shortest physical path. Previous
work demonstrated the criticality of interconnect latency in GPAs [10]. This section contains a more detailed
analysis of the effect of latency and different network configurations on overall performance. Similar to the
VLIW machine model, we simulate a perfect lookahead reservation scheme, hiding the router processing delay
and incurring only the fanout/fanin forwarding delay of 0.25 cycles. Again, the 1 segment delay was 0.60 cycles,
and we simulate a 10F04 clock cycle.

5.1 Resultsand Discussion

We examine the same three parameters of performance as in the VLIW experiments. We examined a multitude
of different connection topologies on an 8x8 grid, shown in Figure 12. The networks range from very low fanout,
to moderately high fanout. The triangle network connects 3 neighbors together, a little similar to the VLIW M2
interconnect, while the moderately rich star network with a fanout of 8, connects the immediate 8 neighbors
together. For comparison we looked at the ideal, realistic and worst case single-hop networks similar to the
ones in the VLIW machines, scaled to an 8x8 ALU array. We examined wiring overhead factors of 1 and 2 to
determine the wiring area effect on the single-hop, high-bandwidth networks. We assumed all configurations to
have wires connecting the bottom of the grid to the top. In the express channel configurations (denoted by the
suffix E in the tables and graphs), this wire is laid out at a higher level of metal and is hence four times faster.
For an 8x8 grid, the express channels have a total delay of 1 cycle.

Routing Latency: Examining Table 4, we can see that the average routing latency in the grid network for the
ideal case (S;4eqr) IS the lowest among all the connectivities while the S,,ors: latency is the highest (although
the triangle configurations are pretty close to worst case). The realistic single-hop network S..q; with no wiring
overhead comes closest to the ideal, followed by the star network, the mesh network, and the triangle network,
in that order. It should be noted that the express channels make little difference to the average latency numbers
for the multi-hop networks.

When we take into account the wiring overhead for the single-hop networks (a = 2), the average latencies for
the Sideals Sreats @Nd Syorst Cases are now 0.75, 4.2, and 15.6 cycles respectively. The star network performs
best and is about 30% better than the S,..,; With the wiring overhead incorporated.

Contention: The amount of contention is closely related to the fan-out of the topologies. The star network has
the least contention, exhibiting 12% and 19% contention for the topologies with and without express channels
respectively, followed by the mesh network (with 27% contention for both with and without express channels)
and the triangle network (with 42.9% contention for both with and without express channels). This is to be

16

Interconnect Latency (cycles) | Cont Delay % | No. of hops
Sideal 0.25 0 1
Sreal 2.07 0 1
Sworst 7.85 0 1
Mesh 5.11 27 3.2
MeshE 5.06 27 3.1
Star 3.26 12.8 2.5
StarE 3.32 19.8 25
Triangle 7.8 42.9 2.8
TriangleE 7.84 42.9 2.8
Sideal(a = 2) 0.74 0 1
Sreat(@ = 2) 4.2 0 1
Sworst(a = 2) 15.58 0 1

Table 4: Communication latencies, number of hops, and contention percentages for different interconnects in
the Grid Processor. Area overhead factor equal to 1 and 2.

expected because, as the interconnect richness increases, the latency due to contention decreases, making the
star network the most efficient here.

Number of Hops: From Table 4, we see that the number of hops for the single-hop networks is again one,
since there is a dedicated path from every node to every other node. The number of hops for the multi-hop
topologies varies by topology, and is lowest in the star network (2.5 hops) and highest in the mesh network (3.2
hops). The triangle network averaged 2.8 hops. All the multi-hop networks exhibited very close average number
of hops for the with and without express channel cases. The fact that the mesh network has a higher average
number of hops but a lower average latency is simply due to the the higher contention of the triangle network.

IPC: The Sideal; Sreal» and Syorst topologies averaged 7.9, 4.9, and 1.5 respectively when wiring overhead
is ignored. The mesh, star, and triangle topologies averaged 3.1, 4.2, and 2.5 for the networks with express
channels and 3.1, 4.0, and 2.5 for the networks without express channels. These IPCs for all the benchmarks
are presented in Figures 13 and 14. They are split between the low and high IPC benchmarks for as equal to
1 and 2. In the figures we present simulations results when wiring overhead of o = 2 is incorporated for the
multi-hop networks and the single-hop networks. As expected, the S;4.q topology performs the best while the
Sworst topology performs the worst. Without wiring overhead, S...q; iS the next best topology followed by the
star network. However, when wiring overhead is included, the star networks outperform the S,.¢,; network and
the mesh and triangle are very close as well.

52 Summary

Table 5 shows the normalized average IPC achieved by each of the interconnects. All IPCs are normalized with
respect to the S;geq; Network. We see that the full broadcast single-hop network S,..q; achieves 63% of ideal
performance (this network directly corresponds to a broadcast network in dynamically scheduled superscalar
processors). The star with express channels which is a multi-hop routed network, with an order of magnitude
less bandwidth than the broadcast network achieves 56% of ideal performance. When the wiring overhead is
taken into account, the S,.q; network achieves only 46% of the ideal network, achieving 10% less than the

17

No wiring overhead

25
207 = Sdeal
M Seal
I Sworst
154 — B Mesh
g I MeshE
- = Sar
104 O SarE
[Triangle
5] I TriangleE
0 % o ©
%% 7 v % %@9
fo 2
/)OO
%

Wiring overhead = 2 assumed for single-hop and multi-hop networks.

251
20+ = Sdeal
I Seal
I Sworst
154 I Mesh
g B MeshE
- o Star
104 = SarE
[Triangle
5] O TriangleE
O,

Figure 13: IPC on Grid Processors (8x8 grid). High IPC benchmarks.

18

No wiring overhead

8‘
64 M Sideal
W Sreal
I Sworst
I I Mesh
g 4 B MeshE
- o Sar
O SarE
O Triangle
2 O TriangleE
0- & S & P 3,
OO /))9) % O)O/' % %,
2 0 S ?9@

Wiring overhead = 2 assumed for single-hop and multi-hop networks.

8ﬁ
64 M Sdeal
W Seal
I Sworst
I Mesh
L 4 = MeshE
- o Star
O SarkE
O Triangle
21 O TriangleE
0- 3 3 &
(A <
s /%) %
% %

Figure 14: IPC on Grid Processors (8x8 grid). Low IPC benchmarks.

19

Configuration | Efficiency
Sideal 1
Sreal 0.63
Sworst 0.3
Mesh 0.41
MeshE 0.42
Star 0.52
StarE 0.56
Triangle 0.35
TriangleE 0.34
Sideal (Ol = 2) 0.89
Sreat(a@ = 2) 0.46
Sworst(a = 2) 0.19

Table 5: Normalized average IPCs using different interconnects. All IPCs normalized to the ideal S;geq; NEtWOrk.

star network. The worst performing multi-hop network was the triangle without express channels. While this
interconnect performed moderately well in the low IPC benchmarks, when the parallelism is high, the triangle
interconnect becomes a bottleneck because the multi-hop network is constrained by its low bandwidth and
cannot deliver all of the operands that are being produced in time.

These performance trends indicate that multi-hop inter-ALU networks with an optimized router design, are
extremely effective, performing almost as well. as full broadcast networks. As the bandwidth and richness of
the interconnect is reduced, the low bandwidth becomes a bottleneck and programs with lots of parallelism, are
not efficiently executed.

6 Conclusion

Dramatic increases in on-chip real-estate has driven architectures to scale the number of execution units in search
of higher performance. However, traditional operand transmission networks that rely on broadcasting do not
scale well with the technology constraints of faster transistors and slower wires. In addition, wiring overheads
for broadcast networks scale poorly. In this paper, we have provided a taxonomy of Inter-ALU Networks (IANs)
that includes traditional routing networks as well as emerging classes of point-to-point operand networks. The
key components of these networks are their execution model (broadcast or point-to-point), their connectivity
(single-hop or multi-hop), and when routing decisions are made (dynamically or statically). We have proposed
a dynamically routed, point-to-point, multi-hop network, also called a routed inter-ALU network (RIAN) as a
communication architecture scalable to 10s of ALUSs.

In our circuit analysis, we showed that these multi-hop networks scale much better than broadcast networks
which suffer primarily from wire delays resulting from significantly larger area required to implement broadcast
networks. We designed and measured novel features of a router tailored to a fine grain RIAN including simple
topologies and lookahead routing prior to data arrival. With these mechanisms, our measurements show that
we can limit per-hop latency to less than 180ps in a 100nm technology. We applied these routing techniques
to a conventional VLIW architecture and a dynamic grid architecture and showed that operand broadcast is not
necessary and that existing scheduling algorithms are effective at placing producers and consumers close to one
another in such a network.

20

As a result, our results show equivalent overall performance to a much richer and expensive broadcast net-
work. If we were to impose the area (and therefore communication delay) penalty from the wires required
to implement the broadcast network, the RIAN would significantly outperform the broadcast network. A key
feature to the processor architectures which enabled our routing strategy is the knowledge of source and desti-
nation instruction locations and the optimization of them prior to instruction execution. While we used a static
compile-time scheduler to place instructions for minimizing communication distance, similar analysis could be
performed at runtime through trace generation or dynamic compilation techniques. For feasibility, however,
future work would have to demonstrate that the time required to generate a good schedule does not become a
bottleneck.

References

[1] Vikas Agarwal, Stephen W. Keckler, and Doug Burger. Scaling of microarchitectural structures in future process
technologies. Technical Report TR2000-02, Department of Computer Sciences, The University of Texas at Austin,
Austin, TX, February 2000.

[2] P.S. Ahuja, D. W. Clark, and A. Rogers. The performance impact of incomplete bypassing in processor pipelines. In
Proceedings of the 28th Annual International Symposium on Microarchitecture, pages 36—45, November 1995.

[3] Mary D. Brown, Jared Stark, and Yale N. Patt. Select-free instruction scheduling logic. In Proceedings of the 34th
Annual International Symposium on Microarchitecture, pages 204-213, December 2001.

[4] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth, and Paul K. Rodman. A VLIW architecture
for a trace scheduling compiler. IEEE Transactions on Computers, 37(8):967-979, August 1988.

[5] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic. The multicluster architecture: reducing cycle
time through partitioning. In Proceedings of the 30th International Symposium on Microarchitecture, pages 149-159,
December 1997.

[6] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew Chang, Yevgeny Gurevich, and
Whay S. Lee. The M-Machine Multicomputer. In Proceedings of the 28th International Symposium on Microarchi-
tecture, pages 146—-156, December 1995.

[7] S. Gupta, Stephen W. Keckler, and Doug .C. Burger. Technology independent area and delay estimations for micro-
processor building blocks. Technical Report TR-00-05, Department of Computer Sciences, The University of Texas
at Austin, Austin, TX, February 2001.

[8] Richard E. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24-36, March 1999.

[9] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench: A tool for evaluating and syn-
thesizing multimedia and communications systems. In Proceedings of 30th Annual International Symposium on
Microarchitecture, pages 330-335, December 1997.

[10] Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug C. Burger, and Stephen W. Keckler. A design space evalu-
ation of grid processor architectures. In Proceedings of the 34th Annual International Symposium on Microarchitec-
ture, pages 40-51, December 2001.

[11] S. Palacharla, N. P. Jouppi, and J. Smith. Complexity—effective superscalar processors. In Proceedings of the 24th
Annual International Symposium on Computer Architecture, pages 206-218, June 1997.

[12] Joan Manuel Parcerisa, Julio Sahuquillo, Antono Gonzalez, and José Duato. Efficient interconnects for clustered
microarchitectures. In Proceedings of the International Conference on Parallel Architectures and Compilation Tech-
niques, pages 291-300, September 2002.

[13] Li Shiuan Pehand William J. Dally. Flit-reservation flow control. In Proceedings of the 6th International Symposium
on High—Performance Computer Architecture, pages 73-84, January 2000.

21

[14] The National Technology Roadmap for Semiconductors. Semiconductor Industry Association, 1999.
[15] The International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2001.

[16] Eric Sprangle and Doug Carmean. Increasing processor performance by implementing deeper pipelines. In Proceed-
ings of the 29th International Symposium on Computer Archictecture, pages 25-34, May 2002.

[17] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Greenwald, Henry Hoff-
man, Paul Johnson, Walter Lee Jae-Wook Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker
Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal. The RAW microprocessor: A computational fabric
for software circuits and general-purpose programs. IEEE Micro, 22(2):25-35, March 2002.

[18] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM Journal Research and Develop-
ment, 11:25-33, January 1967.

[19] V.Kathail, M.Schlansker, and B.R.Rau. Hpl-pd architecture specification: Version 1.1. Technical Report HPL-93-
80(R.1), Hewlett-Packard Laboratories, February 2000.

[20] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew
Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman Amarsinghe, and Anant Agarwal. Baring it all to software:
RAW machines. IEEE Computer, 30(9):86-93, September 1997.

22

