
Sharing Speculation : A Mechanism for Low-Latency Access to
Falsely Shared Data

Rajagopalan Desikan
�

Jaehyuk Huh Doug Burger Stephen W. Keckler
�

Department of Electrical and Computer Engineering
Computer Architecture and Technology Laboratory

Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Department of Computer Sciences
Tech Report TR-03-05

The University of Texas at Austin

May 12, 2003

Abstract

False sharing of data is an important phenomenon affecting performance in shared memory multiprocessors. False
sharing results in unnecessary coherency overhead by causing invalidation of the shared cache line, and increasing
the latency of the load accessing the cache line. As microprocessors incorporate increasingly large caches with
large cache lines, false sharing will become more common, and unless methods are proposed to alleviate, can reduce
the performance of shared memory multiprocessors. In this report, we propose sharing speculation, a mechanism
to speculatively load values from cache lines that are falsely shared to reduce the latency of these loads, and later
validating the speculation when the coherence permissions are eventually granted. We give a specific example of our
proposed mechanism in the context of the Grid Processor, and show how the inherent data speculation mechanisms in
the Grid Processor lend themselves to the efficient implementation of sharing speculation.

1 Introduction

The shared memory paradigm is the programming model predominantly used in chip multiprocessors.
Shared memory results in a simpler programming model, and hence has emerged as the most popular choice
for multiprocessor systems. Chip multiprocessors are an emerging class of systems that are expected to use
this programming model. The availability of a large number of transistors in these systems also facilitates
fabrication of large, high bandwidth on-chip caches with large cache lines. Large cache lines usually in-
crease spatial locality, and hence the hit ratio, thus resulting in fewer bus transactions. However, they also
result in the co-location of unrelated data in the same line that might be used by different processors. This
phenomenon is called false sharing, because even though the cache line is shared between processors, the
individual data elements are not actually shared by the processors [7]. False sharing results in unnecessary
coherence traffic and longer latency to data in the shared line.

Researchers have proposed methods to reduce false sharing in multiprocessor systems [6, 5, 2, 9]. How-
ever, false sharing cannot be completely eliminated, as different programs have different sharing granu-
larities, that cannot always match the cache line size. In this report, we propose sharing speculation, a
mechanism to load falsely shared data from cache speculatively while initiating the coherence mechanism
in parallel, in order to reduce the latency of access to falsely shared data. Using sharing speculation, a cache
can speculate on shared data and and service a read request assuming it is falsely shared. When the false
sharing is resolved, the cache can validate or invalidate the speculation depending on the outcome of the
coherence operation. Depending on the cost to recover from data value mis-speculation, sharing speculation
can result in substantial speedup for applications that exhibit significant false sharing. Using confidence
predictors, sharing speculation can also be tuned for each application.

2 False Sharing and Sharing Speculation

The granularity of data storage in caches is a cache line. Cache lines are normally much larger than the size
of data accessed by processors. This mismatch in size can result in data accessed by different processors to
reside in the same cache line, resulting in what is called false sharing [7]. False sharing results in processors
invalidating and loading entire cache lines, even though they modify only a part of the cache line.

False sharing can degrade performance in two ways. First, false sharing results in a large number of
unnecessary coherence messages. Second, loads to falsely shared data are unnecessarily stalled till the
cache line is in a valid state. A number of techniques have been proposed to reduce false sharing. In this
report we propose sharing speculation, a mechanism to load falsely shared data from the cache speculatively
while initiating the coherence mechanism in parallel. When the coherence operation completes, the data are
checked to see if there is false sharing and an appropriate message is sent to the processor either validating
or invalidating the original load. Sharing speculation, when successful, will mitigate coherence latencies but
not reduce the number of coherence messages in the system.

Sharing speculation is a form of data value speculation, where the cache speculates on the value of
a load to an invalid line. When the cache receives a load for which there is a valid tag match but the
line is in the invalid state, it sends the data back to the processor but marks it as speculative. The cache
also simultaneously initiates coherence operations to bring the line to one of the valid states. When the
cache line is updated, the cache checks the new value of the loaded data with the previous value. If the
value is the same (as will happen in the case of false sharing), the cache sends a message to the processor
validating the speculation. If the data value changes after the coherence operation, the cache sends the
correct non-speculative value to the processor. The processor then initiates recovery from incorrect data
value speculation. A flow chart depicting sharing speculation is shown in Figure 1.

The benefits of sharing speculation will depend upon both the cost of data value mis-speculation recovery

1

Processor P1 initiates load to
a shared cache line

invalid. Speculates on the
data and sends the data in
the line to the processor.
Initiates coherence operation.

Coherence operation
completes.

Has
data value
 changed?

Cache initiates recovery Cache validates speculation

Cache finds the line to be

Figure 1: Flow chart depicting sharing speculation

and the amount of false sharing exhibited by an application. Using confidence predictors in each cache line,
we can vary the amount of speculation during run time in order to obtain optimal performance for each
application. Sharing speculation can also be greatly aided if the processor supports a light weight data
speculation recovery mechanism. One such mechanism, that has been proposed for the Grid Processor
Architectures, is selective re-execution. We describe this mechanism in the next section.

3 Sharing Speculation in the Grid Processor

Grid Processor Architectures (GPA) are a family of architectures that was designed to scale to high perfor-
mance in future, wire dominated technologies [10]. In a GPA, instructions are statically scheduled by the
compiler onto a two-dimensional array of ALUs but are dynamically issued and execute in dataflow fashion.

In a GPA, blocks of instructions are fetched as a single unit, mapped on the ALUs in the processor, and
after execution, are retired in a single atomic operation. The block of instructions has a single entry point at
the top, no internal loops, and possibly multiple exit points. The data within a block consists of block inputs,
block temporaries, and block outputs. Within the grid processor, a mapped instruction fires when all of its
input operands arrive at the node and forwards its result to the consumer(s) of the instruction. The compiler
explicitly encodes the physical destinations of an instruction’s result in the opcode of the instruction. Thus,
operands are delivered point-to-point within the grid, rather than being broadcast to all ALUs.

2

The data flow execution in the GPA facilitates a low cost data value speculation mechanism called selec-
tive re-execution. The selective re-execution protocol enables simple, distributed selective re-execution,
which is a light-weight mechanism for recovering from data value mis-speculation. The selective re-
execution protocol in the GPA is proposed as a general mechanism for different types of data value specula-
tion. Hence, it can be easily used for implementing sharing speculation.

The GPA uses a versioning system to support selective re-execution. The versioning system allows
multiple waves of speculation to traverse the GPA concurrently. Each operand in the GPA has a version
number and a commit bit associated with it. Multiple copies of an operand have different version numbers
and it is guaranteed that the non-speculative value of an operand will have the highest version number. The
non-speculative value of an operand also has the commit bit set. Instructions fire speculatively as soon as
they receive all their input operands. If any of the input operands is speculative, then the instruction result is
also speculative. When an instruction receives all the non-speculative values of its input, it forwards a non-
speculative value of its result to all the consumers. The version numbers and the commit bits enable only
version numbers and commit bits to be forwarded inside the grid, when the speculation is correct, instead
of actual data values. Hence, to implement sharing speculation, the caches or the MSHRs [8] in the system
would need logic to use the selective re-execution mechanism implemented in the GPA, to inject speculative
values into the processor. It is worth noting that if mis-speculation recovery overhead is sufficiently low, as
in the GPA, then it is always better to speculate, since waiting for speculation confirmation costs the same
as waiting for the value.

4 Potential Benefit of Sharing Speculation

In this section, we use a multiprocessor simulator to evaluate the amount of false sharing present in six
benchmarks taken from various scientific application suites. We simulated four shared-memory benchmarks,
barnes, mdcask, ocean, and sppm and two MPI-based benchmarks, lu and smg2k. Our simulated chip
multiprocessor is an extension to the SIMOS system [11]. The processor model in the simulator uses sim-
outorder, an out-of-order simulator that is part of the simplescalar suite [1]. The system uses a MESI
coherence protocol and runs AIX version 4.3.1. We used an 8 processor configuration, with 1 MB level-2
(L2) cache for each processor.

Figure 2 shows the breakdown of L2 cache misses across all the processors in the system for each bench-
mark. We classify the misses into two broad categories, misses due to invalid coherence state (coherence
misses) and other misses, that includes cold, capacity, and conflict misses. Within the coherence misses
category, we sub-classify the data into false coherence misses and true coherence misses. False coherence
misses have the same data value before and after the coherence operation, and true coherence misses have
different data value after the completion of the coherence operation. Note that higher fraction of false co-
herence misses results in a larger benefit due to sharing speculation.

We see from Figure 2 that for a number of benchmarks, a large fraction of coherence misses is false
coherence misses. barnes, lu, and smg2k all have a significant fraction of false coherence misses and hence
can have significant improvement in performance with sharing speculation. ocean has very few coherence
misses and mdcask and sppm have a larger fraction of true coherence misses. These benchmarks may
not benefit significantly from sharing speculation. However, using confidence predictors and selective re-
execution, we can ensure that sharing speculation does not hurt performance for these benchmarks.

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

barnes lu mdcask ocean smg2k sppm

P
er

ce
n

ta
g

e
o

f
L

2
M

is
se

s

False Coherence Misses True Coherence Misses Other Misses

Figure 2: Breakdown of L2 Misses

5 Related Work

False sharing has been recognized as a problem by researchers for a long time. Kadiyala et al. did an
architecture independent analysis of false sharing to define a precise, universally accepted definition of false
sharing [6]. The authors state that a line is falsely shared if the sets of processors accessing the different
words in the line are proper subsets of the set of processors accessing the line, and the level of false sharing is
determined by this difference. The paper gives a mathematical measure of false sharing using the number of
references to a cache line and to words inside that line by different processors. The authors use a trace driven
multiprocessor simulator to evaluate their proposed measures for different cache line sizes and different
memory coherence policy and run single and multi-word simulations concurrently to determine if a memory
reference was normal, benefited from prefetching due to multi-word cache line, was a false sharing induced
miss, or was a true or cold miss. Using a set of synthetic benchmarks, the authors measure the number of
bytes transferred as a function of their false sharing measure, and conclude that their mathematical model
gives a relatively accurate measure of false sharing.

A number of researchers have looked at the coherence overhead due to false sharing [3, 4]. Researchers
have also focused on program restructuring techniques to reduce false sharing [5]. Chow et al. propose a
runtime scheduling technique for eliminating false sharing in parallel loops [2]. More recently, modified
sectored caches have been proposed to reduce false sharing in multiprocessors [9]. All these methods focus
on increasing performance by reducing cache misses due to false sharing. However, due to the different

4

sharing patterns of applications, false sharing cannot be completely eliminated. Our proposed coherence
speculation addresses a completely different aspect of performance degradation due to false sharing, and
attempts to reduce the performance penalty due to false sharing, rather than eliminating it. Hence, coher-
ence speculation can work in conjunction with false sharing miss reduction techniques and provide further
improvements in performance.

6 Conclusions

In this report we have proposed a new form of speculation called sharing speculation, to provide low latency
access to falsely shared data. Sharing speculation can result in significant improvement in performance for
applications that show significant false sharing. When implemented on processors with support for data
value speculation and low data mis-speculation recovery cost, sharing speculation can provide improvement
in performance at no extra cost. Using multiprocessor simulations, we have shown there is significant false
sharing in benchmarks, and hence there is potential for large improvement is performance with sharing
speculation. Future work will involve implementing sharing speculation in a multiprocessor simulator and
evaluating its performance benefits.

References

[1] Doug Burger and Todd M. Austin. The simplescalar tool set version 2.0. Technical Report 1342, Department of
Computer Sciences, University of Wisconsin-Madison, June 1997.

[2] J.-H. Chow and V. Sarkar. False sharing elimination by selection of runtime scheduling parameters. In Proceed-
ings of the 26th International Conference on Parallel Processing, pages 396–403, Aug 1997.

[3] Susan J. Eggers and Randy H. Katz. A characterization of sharing in parallel programs and its application
to coherency protocol evaluation. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, ISCA 88, pages 373–382, May 1988.

[4] Anoop Gupta and Wolf-Dietrich Weber. Cache invalidations patterns in shared-memory multiprocessors. IEEE
Transactions on Computers, 41(7):794–810, July 1992.

[5] Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing on shared memory multiprocessors through
compile time data transformations. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 179–188, Santa Barbara, CA, 1995.

[6] Murali Kadiyala and Laxmi N. Bhuyan. A dynamic cache sub-block design to reduce false sharing. Technical
Report TR95-010, Texas A&M University, 1995.

[7] Vivek Khera, Richard P. LaRowe Jr, and Carla S. Ellis. An architecture-independent analysis of false sharing.
Technical Report DUKE–TR–1993–13, Duke University, 1993.

[8] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the Eighth Interna-
tional Symposium on Computer Architecture, pages 81–87, May 1981.

[9] Kuang-Chih Liu and Chung-Ta King. On the effectiveness of sectored caches in reducing false sharing misses. In
Proceedings of the International Conference on Parallel and Distributed Systems, ICPADS ’97, pages 352–359,
Dec 1997.

[10] Ramdas Nagarajan, Karthikeyan Sankaralingam, Doug Burger, and Stephen W. Keckler. A design space evalua-
tion of grid processor architectures. In Proceedings of the 34th International Symposium on Microarchitecture,
MICRO-34, December 2001.

[11] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoo p Gupta. Complete computer system simu-
lation: The SimOS approach. IEEE parallel and distributed technology: systems and application s, 3(4):34–43,
Winter 1995.

5

