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Abstract
Growing on-chip wire delays are motivating architectural features
that expose on-chip communication to the compiler. EDGE archi-
tectures are one example of communication-exposed microarchi-
tectures in which the compiler forms dataflow graphs that specify
how the microarchitecture maps instructions onto a distributed ex-
ecution substrate. This paper describes a compiler scheduling al-
gorithm calledspatial path schedulingthat factors in previously
fixed locations - called anchor points - for each placement. This al-
gorithm extends easily to different spatial topologies. Weaugment
this basic algorithm with three heuristics: (1) local and global ALU
and network link contention modeling, (2) global critical path es-
timates, and (3) dependence chain path reservation. We use simu-
lated annealing to explore possible performance improvements and
to motivate the augmented heuristics and their weighting functions.
We show that the spatial path scheduling algorithm augmented
with these three heuristics achieves a 21% average performance
improvement over the best prior algorithm and comes within an
average of 5% of the annealed performance for our benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—optimization, compilers

General Terms Algorithm, Performance

Keywords Instruction scheduling, path scheduling, simulated an-
nealing, EDGE architecture

1. Introduction
Growing on-chip wire delays will make communication a growing
and significant factor in future microprocessor design. Therecent
decline of frequency scaling implies that most future performance
gains will come from increased exploitation of concurrency. These
two trends work in opposition, however, because it is becoming
more difficult to exploit concurrency as communication overheads�This work is supported by DARPA F33615-03-C-4106, NSF EIA-
0303609, NSF ITR CCR-0085792, NSF CCR-0311829, DARPA
NBCH30390004, NSF CCF-0429859 and IBM. Any opinions, find-
ings and conclusions are the authors’ and do not necessarilyreflect those of
the sponsors.
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increase. One approach researchers are pursuing is the explicit or
implicit exposure of on-chip communication to the software. The
most popular current approach, chip multiprocessors (CMPs), re-
quires the programmer or compiler to explicitly specify concur-
rency and either the communication or synchronization.

Alternatives include Explicit Dataflow Graph Execution (EDGE)
architectures, which aim to exploit fine-grained concurrency within
a single thread. EDGE architectures break a program into a se-
quence of multi-instruction blocks that must each commit atomi-
cally. Within each block, the ISA explicitly encodes instructions’
dependences in a statically constructed dataflow graph and their ex-
ecution placement in a distributed substrate. This encoding enables
out-of-order execution with lower per-instruction energyover-
heads, as no renaming, associative issue, or multi-ported register
files are required to execute instructions within a block.

A key resultant challenge is how to map EDGE dataflow graphs
onto a hardware substrate to minimize the effects of communica-
tion latencies while taking advantage of the available concurrency.
In the TRIPS prototype EDGE architecture, the compiler assigns
instruction numbers that determine placement on the ALU sub-
strate. The TRIPS prototype microarchitecture contains a four-by-
four array of arithmetic units, each one holding up to eight instruc-
tions from a 128-instruction block. The microarchitectureplaces
each instruction according to its statically assigned number within
the block (ranging from 0 to 127). When assigning these numbers,
the scheduler attempts to balance communication, by placing de-
pendent instructions in proximity, and concurrency, by placing in-
dependent instructions on different functional units.

To exploit instruction-level parallelism, the TRIPS microarchi-
tecture implements out-of-order execution. By assigning IDs to in-
structions, the TRIPS schedulerstatically places(SP) each instruc-
tion on the array of ALUs, and the hardwaredynamically issues
(DI) instructions when their operands are ready. SPDI differs from
the VLIW approach, which uses static placement and static issue,
and the out-of-order superscalar approach, which uses dynamic
placement and dynamic issue. The schedulers in this paper place
instructions, but do not determine issue order. The SPDI execution
model creates challenges for the scheduler since it must statically
estimate dynamic resource conflicts and critical paths.

This paper describes an algorithm calledspatial path scheduling
(SPS) that reasons explicitly about path routing distanceswhen
mapping a dataflow graph to the ALU topology. The algorithm also
exploits the fact that some locations are known or partiallyknown
even before the first instruction is in place. For example, a chain
of dependent instructions must follow a path on the chip thatis
in part determined by the physical locations of the registers and
cache banks. Figure 1 shows these initial locations in the TRIPS
prototype microarchitecture, which has four register banks above
the top row of the four-by-four ALU array, and a column of four
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Figure 1. 4�4 TRIPS Processor

data cache banks to the left of the array. For example, a set of
dependent instructions that reads a register in bank 1, computes an
intermediate value, and stores that value in data cache bank2, must
traverse at least 5 operand network links, as shown by the dotted
path in Figure 1.

The basic SPS algorithm computes criticality based on routing
distances using all knownanchor points, i.e., fixed positions for
operations in the block, such as register accesses. We augment
this basic SPS algorithm with heuristics to model contention on
the ALUs and network links, estimate inter-block (global) critical
paths, and provide lookahead for planning path routes basedon the
number and location of instructions on the path.

We compare SPS with a previously published greedy list
scheduling algorithm for TRIPS (GRST) [17] using a cycle-
accurate, validated simulator with hand-optimized kernels drawn
from SPEC2000, EEMBC, Livermore Loops, MediaBench, and C
libraries. The basic SPS algorithm improves performance by14%
on average and up to 46% over GRST, the previous best algorithm.

Unfortunately, finding ideal schedules for comparisons is com-
putationally intractable. We thus use simulated annealing[12]
to approximate ideal schedules. Because our evaluation function
is full simulation of the program, which is prohibitively time-
consuming if unconstrained, we show how to further prune thean-
nealed search space. We use information from the annealed sched-
ules to motivate and weight heuristics that we add to SPS. The
resulting algorithm improves performance by 7% over the basic
SPS algorithm and 21% over GRST. This scheduler is on average
within 5% of the annealed schedules.

By exploiting anchor points, SPS easily generalizes to manydif-
ferent topologies. One simply provides the microarchitecture and
topology in an abstract form; i.e., location, number, and spatial
relationship of microarchitectural resources such as PEs,caches,
and register files. While this paper demonstrates SPS’s effective-
ness for the TRIPS ISA and microarchitecture, we believe it is
applicable to schedulers for other partitioned architectures such
as WaveScalar [23], and may be useful for clustered VLIWs and
RAW [14, 25].

2. Background
This section explains the basic TRIPS architecture, the instruction
scheduling problem, and the previous best scheduler.

2.1 TRIPS Architecture and Scheduling Problem

Figure 1 shows a TRIPS microarchitecture, instantiated as a4�4
array of ALUs. Each ALU has eight issue slots per block, for a
maximum of 128 instructions per block. The processor maps each
block onto the substrate, executes it as a unit, and unmaps the block

after it produces all of its outputs (up to 32 stores, up to 32 register
writes, and a single branch decision). The register reads and writes
are not included in the 128-instruction count, but are part of the
block header. Mapping a block onto the array has a fixed per-block
cost, and thus the blocks must be mostly full of useful instructions
to maximize performance. The microarchitecture supports specula-
tion via next-block prediction, allowing up to eight blocksin flight.
Other work describes the architecture in more detail [4] andde-
scribes how the compiler produces correct blocks that meet the
maximum number of instructions, maximum number of dynamic
load/stores, and register banking constraints [22].

The instruction scheduler maps a dataflow graph that encodes
the dependences among instructions onto 128slots that represent
the (4�4) ALU array and eight reservation stations per ALU.
(ALUs have a total of 64 reservation stations; eight instructions for
each of eight potentially in-flight blocks.) The scheduler encodes
the instructions intarget form, which specifies the physical loca-
tion and operand position of each consuming instruction in the pro-
ducing instruction. The 64-entry reservation station at each ALU
is out-of-order and issues at most one instruction per cycle, select-
ing the oldestready instruction. An instruction is ready after all of
its operands arrive. Instructions that produce values internal to a
block need not access memory or registers. Each hop between ad-
jacent ALUs, register banks, and cache banks adds one cycle to the
routing latency, and the deterministic Y-X routing function routes
north/south to the correct row and then east/west to the correct col-
umn. As with a conventional architecture, the registers’ names ex-
actly specify their physical location in a bank. When a new block is
mapped to the array, the microarchitecture injects all register reads
into the array, routing their values to the dependent instructions in
the block. The microarchitecture routes operands for register writes
to the appropriate register bank when the value is produced.

2.2 Greedy scheduling for TRIPS

A static local scheduling algorithm considers the instructions I
in a block, which may be a basic block or a predicated hyper-
block that obeys the TRIPS architectural constraints. It builds a
directed acyclic dataflow graph (DFG) that describes the depen-
dences among instructions. The scheduling problem for TRIPS dif-
fers from the scheduling problem for static issue architectures be-
cause it is legal to place any of a block’s 128 instructions into any of
the 128 positions in a block. The goal of the scheduler, however, is
to minimize the completion time of the block by exploiting instruc-
tion level parallelism, minimizing static routing latencybetween
pairs of dependent instructions, and minimizing dynamic latencies,
such as contention, whenever possible.

Figure 2 shows agreedylist scheduling algorithm for TRIPS
(GRST) [17]. GRST uses a ready set consisting of instructions



Input: I - instructions in a block,G - array of ALUs
output: A - a mappingI ! G

1: S += fjg, 8 j 2 I with no or only register inputs (ready set)
2: S = top down criticality sort(S)
3: for i = most critical instruction in sorted listS do
4: bestCost= 0; bestSlot= none
5: issueSlots= find legal instructionslots(i)
6: for all slot in issueSlotsdo
7: issue(i; slot) = ready(i, slot) + ALU Contention(i, slot)
8: pCost(i, slot) = complete(i, slot) +

lookahead(i, slot) * 0.5
9: bestCost= min(bestCost, pCost(i, slot))

10: bestSlot= node forbestCost
11: end for
12: A += schedule(i, bestSlot)
13: I = I - fig
14: S += fjg, 8j 2 I with all parents2 A
15: S = top down criticality sort(S)
16: end for

Figure 2. GRST: The Greedy List Scheduling Algorithm

whose inputs have already been scheduled. It initializes the ready
set to instructions with no inputs (i.e., constant-generating instruc-
tions) or with only register inputs. Like a VLIW list scheduler, it
sorts the instructions in a top-down fashion, putting instructions
with the smallest depth in the DFG into the ready set first. It pri-
oritizes instructions to schedule based on their depth fromthe root
instructions in the DFG, and then based on their height from the
leaf instructions in the DFG. The depth and height calculations in-
clude delays for multicycle instructions and communication laten-
cies, such as those to the register and cache banks.

To schedule instructioni, GRST computes the unscheduled is-
sue slots. For each of these slots, it estimates thereadytime fori on
an ALU by determining wheni’s operands will be available (line
7). The ready time includes the routing delay of the operand(s) to
the ALU from other ALUs. Previous work [17] augments GRST
with heuristics to guide its placement decisions. We use this aug-
mented version as a baseline, and refer to it as GRST. The following
heuristics guide GRST placement decisions:

Critical path ordering (C) and reordering (R): GRST prioritizes
instructions along the critical path first by sorting the instruc-
tions based on the maximum depth of any of their descendents
in the DFG and then by their height in the DFG. The scheduler
recomputes the critical path after each instruction placement
(this step includes inter-ALU latency costs between scheduled
instructions) and re-prioritizes the instructions in the ready set.

Load balancing (B): GRST estimatescompletion timebased on
its estimates of the issue and completion time of other instruc-
tions on the same ALU (lines 7 & 8). It places an instruction in
the slot that minimizes its completion time, avoiding schedul-
ing independent instructions that may issue at the same timeon
the same ALU.

Data cache locality (L): GRST assumes loads and stores hit in the
L1 data cache and are equally likely to go to any cache bank.
To reduce latency and contention, it places load instructions
and their consumers close to the data cache banks by inserting
a non-executable pseudo-instruction between the load and its
consumers in the DFG. It places the pseudo-instruction in the
cache and models a one-hop latency to it from the left side of
the ALU array.

Register output (O): To place instructions that produce register
outputs close to the register file, GRST prevents other instruc-

tions from occupying these slots by penalizing instructions that
do not lead to register-producing instructions.

The register output heuristic attempts to place instructions that pro-
duce register outputs along a balanced path that ends at the register
file. It uses a fairlyad hocweighting function to balance paths for
register outputs, by adding the followinglookaheadpenalty (line
8) to an instruction’s placement cost:lookahead = rowDistane=graphDistane+ graphDistane=rowDistane
whererowDistanceis the number of rows from the register bank
(minimum 1), andgraphDistanceis the number of instructions
in the DFG between this instruction and a write instruction.This
function is minimized whengraphDistanceequalsrowDistance,
which pushes instructions that produce register outputs asfar from
the register file as their dataflow distance from the registerwrite.
This optimization improves performance because placing register
output instructions near the register banks is important. However, it
is insufficient for a wider array of spatial constraints.

Unfortunately, in the actual TRIPS implementation there are
more constraints on the scheduler. For example, the TRIPS proto-
type breaks up the centralized register file and data cache modeled
in the previous simulation study [17] into four discrete banks, as
shown in Figure 1. Prior work showed that the GRST algorithm
achieved close to ideal, communication-free performance [17].
This earlier study was limited because it used binary rewriting of
Itanium binaries, modeled the microarchitecture at a higher level
than the actual implementation, and did not model all costs,in-
cluding partitioned register bank access. The increased simulation
detail puts more pressure on the scheduler, creating a renewed gap
between an ideal schedule and the output of GRST. Closing this
gap and finding a general algorithm to handle an arbitrary setof
spatial constraints were key motivations for the SPS algorithm.

3. Simulated Annealing
Computing optimal schedules to understand the performancepo-
tential for scheduling is unfortunately NP-complete. Evenfor a sin-
gle full block, exhaustive evaluation requires 128! possible sched-
ules and is impractical. Worse, an optimal schedule would consider
global information, since multiple in-flight blocks may interfere
with one another, for a total search space of 128!b combinations,
whereb is the number of blocks in the program. Simulated anneal-
ing provides a method for finding good solutions in a large search
space in tractable time.

Simulated annealing is a probabilistic method that approximates
a global optimum in a large search space by searching for good
solutions, but occasionally using worse alternatives to avoid be-
coming trapped in local minima. The problem must be expressed
in terms of a set of possible states, an objective function E(s) that
evaluates theenergyof a particular states, a transition function that
moves from the current states with energye to a neighbor states’
with energye’, an annealing planner1 that decreases a global time-
varying parameter, T, and a function P(T,e, e’) that represents the
probability of transitioning froms to s’.
3.1 Instruction scheduling with simulated annealing

Since any static cost function is imperfectly correlated with per-
formance, we use a software simulator for the objective function
E(s). The set of possible states consists of all legal mappings of in-
structions to physical locations. A transition from the current state

1 The simulated annealing literature calls the planner the annealing sched-
uler, but that term is overloaded here.



Input: initial placement of instructions
output: the best placement of instructions by simulated annealing

1: T = init temperature
2: while temperature is higher than freeze temperaturedo
3: while equilibrium not reacheddo
4: Select a critical block
5: Select latency type proportionately based on the distribu-

tion of delay types in the chosen block
6: if lateny type == alu ontention then
7: Move one instruction away from the node or exchange

with another instruction on another node
8: else iflateny type == network ontention then
9: Move one instruction whose operand passes this link

to a different but nearby location
10: else iflateny type == route delay then
11: Find the instruction causing the routing delay
12: Move it closer to its children
13: end if
14: ost = Computecost usesimulator(plaement)
15: if ost < last ost then
16: Accept the placement
17: if ost < best ost then
18: Savebestplacement(plaement)
19: end if
20: else
21: Accept or reject based on probability equation of tem-

perature
22: end if
23: end while
24: T = T * ooling rate
25: plaement = Restorebestplacement()
26: end while

Figure 3. Guided Simulated Annealing

to a neighbor state involves swapping the locations of pairsof in-
structions or moving instructions to empty slots. The number of
instructions the annealer statistically favors moving at each itera-
tion is proportional to the temperature. After the annealerswaps or
moves instructions to form a new schedule, it measures the cycle
count of the application with the new schedule. If the resultbeats
the previous schedule, the annealer accepts the new schedule. If
the result is worse, the annealer accepts it based on the following
probabilistic function:

rand< e�(newCost�oldCost)�ConstantoldCost�temp
whererand is a random number between 0 and 1,newCostandold-
Costare the cycle times of the new and current schedules, respec-
tively, andtempis the temperature, which is scaled by thecooling
rateeach time the system reaches equilibrium. The cooling rate de-
termines how the temperature decreases as annealing proceeds. We
use a constant factor.

3.2 Guided simulated annealing

While simulated annealing is designed to prune large searchspaces,
our lengthy evaluation function makes it too time consuming(days
to months) to search the space blindly. We therefore move only in-
structions that contribute cycles to the program’s critical path. To
find the critical path, we use a tool calledtsim-ritial [18] that
implements Fields et al.’s critical path modeling methodology [7].
This tool captures a dynamic event trace from the processor simu-
lator, builds the program dependence graph, and emits critical path
information such as the number of cycles each instruction and block
contribute to the critical path through the program. It alsodivides
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Figure 4. Guided versus Unguided Annealing on memset

these contributions into different delay types: ALU contention, link
contention, and operand network routing delay. We use this infor-
mation to combine random and guided transitions, as illustrated in
Figure 3. For all results, we start with the best compiled schedule
and low to moderate temperatures.

As a case study, Figure 4 compares guided versus unguided sim-
ulated annealing for a hand-coded version ofmemsetfrom the C
libraries. The GRST algorithm requires 102,326 cycles to execute.
We carefully hand-scheduled its inner loop and produced a ver-
sion that executes in 82,416 cycles. We then used this version as
the starting point for simulated annealing. Figure 4 plots the per-
formance in simulated cycles (y-axis) of the current best sched-
ule against the number of evaluation function iterations (x-axis) for
guided and unguided annealing. Guided annealing drops the cycle
counts much more quickly than with fully random perturbations,
making intermediate results with guided annealing more useful to
detect better opportunities for scheduling.

4. Spatial Path Scheduling
This section describes basic SPS, and the next section showshow
we refine SPS with the insights from simulated annealing.

A key deficiency of GRST is that it does not consider all of
the potentialanchorpoints on a path. Ananchor is an instruction
whose placement is constrained because it accesses a known spatial
location: a register bank for a read or write, a cache bank fora
load or store, the global control tile for a branch, or a specific
execution tile for an instruction the scheduler has alreadyplaced.
Consider a pathi1 : : : ia where ia is an anchor point. For all
paths in a legal DFG, the leaf instructions must be anchor points
(stores, branches, or register writes); otherwise the pathis dead.
Intermediate instructions may also be anchor points. For example,
at line 8 in Figure 6, the cost of placing the current instructionij , where1 � j < a, at some positionp depends not only oni1 : : : ij�1 (the instructions scheduled so far) but on the position
of the anchor pointia. The basic SPS algorithm computes the cost
of the entire path for each potential position ofij , and selects the
position forij that minimizes this cost. This capability allows the
scheduler to place instructions in any order, whether theirparents
are scheduled or not. Each scheduled instruction then becomes an
anchor point, and the algorithm naturally adapts to factor in the cost
of routing operands to and from that instruction.

Consider scheduling the DFG in Figure 5(a) on a simplified4�4�1 ALU array. The path in this example starts at register bank
2, ends at register bank 1, and has four intervening instructions.
GRST produces the schedule in Figure 5(b) with a network routing



Figure 5. Path Scheduling Example

latency of nine cycles because it does not use anchors, penalizes
instructions on paths leading to registers, and breaks tiesto the
right-hand side to minimize unnecessary ALU contention closer to
the caches. Using the basic SPS algorithm yields the better schedule
in Figure 5(c) with seven cycles of routing latency. To obtain
the ideal five cycle latency schedule for a4�4�1 ALU array in
Figure 5(d) the scheduler must consider thevolumeof instructions
between the anchor points as well as the anchors (described in
Section 5.4). Figure 5(e) shows the ideal schedule on a TRIPS
prototype4�4�8 array.

4.1 Basic SPS algorithm

We define theopen listto contain candidate instructions to schedule
next. Since an instruction may occupy any slot, it is legal toinclude
all unplaced instructions in the open list. However, to reduce com-
pilation time, we restrict the list to unplaced instructions with no
inputs or at least one scheduled parent. This restriction should not
reduce the scheduler’s effectiveness because SPS evaluates the en-
tire path and its anchors when computing an instruction’s criticality
and best location. In contrast to the ready set in GRST and other list
schedulers, the SPS open list does not require that both parents of
an instruction be placed before considering it for scheduling.

For each instructioni in the open list, SPS computes the set of
all legal physical locations. For each locationslot, SPS computes
a placement costassociated with placingi at slot, as shown in
Figure 6, keeping track of the minimum costslot (lines 9-10). SPS
schedules the instructioni in S whose lowest placement cost is the
highest of the lowest placement costs across all instructions in the
open list (i.e., we choose the maximum of the minimums). It then
adds any missing children of the scheduled instruction to the open
list. This process repeats until all instructions are scheduled.

The placement cost is the expected latency of the longest path in
the DFG that passes through instructioni, including both execution
and routing latencies. SPS uses the following formula to compute
placement cost (pCost):pCost(i; slot) = inputLateny + exeLateny (1)+ outputLateny
The inputLatencyis the maximum of each parent instructionp’s
completion time plus the communication delay fromp to i; i.e.,
the time when the last input operand arrives and the instruction is
ready to fire. TheexecLatencyis the number of cycles necessary to
executei with no contention. TheoutputLatencyis the maximum
expected number of cycles fromi to any output-producing leaf
instruction in the DFG. The cost of the path fromi to the latest
executing DFG leaf instruction is the sum of the execution latencies
of the instructions along that path plus static routing delays between
any anchor points on that path.

The algorithm selects the most critical instruction by choosing
the instruction whose lowest placement cost is the worst of all

instructions in the open list. Lines 9 and 10 in Figure 6 find the
minimum cost for each instruction, and lines 12 and 13 then select
the instruction with the maximum cost. This function subsumes
GRST critical path re-ordering by recomputing the criticalpath for
each instruction in the open list every iteration.

4.2 Anchor points with SPS

Previous algorithms require candidate instructions to have all par-
ents scheduled. SPS naturally accounts for routing latencies be-
tween all known anchor point instructions. In addition, each time
it places an instruction, that instruction becomes an anchor point.
Instructions can therefore be placed in any order and the scheduler
naturally incorporates the effects of each placement when placing
subsequent instructions.

Since effective addresses for loads and stores are not knownun-
til runtime, the scheduler cannot determine their target cache bank.
We estimate these latencies using the horizontal routing latency to
the cache banks but do not model the vertical routing latencysince
the cache bank is unknown. We support cache bank location hints,
but we currently only use them in hand-assembled code.

This algorithm will support any microarchitectural topology,
and will work well when known anchor points are provided to
the algorithm before placement. By identifying a greater number
of target banks for loads and stores, the compiler will enable the
scheduler to generate a superior placement.

Spatial path scheduling (SPS) thus reasons explicitly about path
anchor points when computing the cost of placing instructions,
which naturally encompasses four of the five heuristics fromGRST.
This basic SPS algorithm provides an average improvement of14%
over GRST, as described in Section 6. Simulated annealing results,
however, show an additional 12% improvement over the basic SPS
algorithm, and the next section introduces several heuristics to help
close this gap.

5. Extension heuristics to SPS
Analyzing annealed schedules reveals three key shortcomings of
the base SPS algorithm. First, it does not account for local or global
ALU or network link contention. Second, the critical path islocal to
a TRIPS block - it does not model global effects (i.e., late arriving
block inputs or critical block outputs) that may determine which
path is critical at runtime. Finally, it does not account forextra
routing delays required when the number of instructions between
two anchor points is greater than the instruction capacity of the
ALUs along that path.

To address these issues, we extend SPS with an improved load
balancing heuristic that approximates global (cross block) and lo-
cal (within a block) ALU and network link contention. We use the
annealed schedules to discover heuristics for approximating these
unknown resource conflicts. We augment the critical path calcu-



Input: I - instructions in a block,G - array of ALUs
output: A - a mappingI ! G

1: S = root nodes(I)
2: while S is not emptydo
3: inst = null; instCost= 0; instSlot= none
4: for all instructionsi in S do
5: issueSlots= find legal instructionslots(i)
6: iCost= 0; iSlot = none
7: for all slot in issueSlotsdo
8: pCost(i, slot) = inputLatency(i, slot) +

execLatency(i) + outputLatency(i, slot)
9: iCost= min(iCost, pCost(i, slot))

10: iSlot = slot with minimumiCost
11: end for
12: if iCost> instCostthen
13: inst = i; instCost= iCost; instSlot= iSlot
14: end if
15: end for
16: A += schedule(inst, instSlot)
17: I = I - finstg
18: S += get top nodes(I)
19: end while

Figure 6. Spatial Path Scheduling (SPS) Algorithm

lations with limited global information to account for critical de-
pendences between blocks. We use annealed schedules to discover
which inter-block dependences increase the critical path length and
what static calculations best approximate their importance. Finally,
we add a heuristic that explicitly reasons about the volume of in-
structions and issue slots on a path to anchor pointia. We tune
these heuristics with simulated annealing data, and show that they
are synergistic, providing total performance greater thanthe contri-
butions of each.

5.1 Static metrics

We mined data from the annealed schedules by calculating static
data about the annealed schedules, comparing that data to data
produced with various scheduler settings, and searching for cor-
relations. These correlations guide the SPS augmentationsby sug-
gesting appropriate weighting functions and revealing trends in an-
nealed path latencies. First, we use the critical path tool to deter-
mine which blocks contribute the most cycles to the criticalpath,
since those are the blocks most heavily optimized by simulated an-
nealing. For each critical block we derive data including the fol-
lowing:

1. Number of instructions
2. Available ILP
3. Maximum ALU utilization
4. Maximum link utilization
5. Longest static path length

The number of instructions, available ILP, and maximum ALU and
link utilization provide insights to weight ALU and link contention
metrics. To estimate available ILP, we divided the highest-latency
unscheduled path, including intrinsic delays, by the number of
instructions in the block. Comparing the highest latency path length
between annealed and scheduler-generated schedules guided both
how we weight latency and contention, and how we optimize loops.
In addition, we found the highest latency path between each input
and each of its dependent outputs to determine which paths were
more heavily optimized by the annealer.

5.2 Contention modeling

ALU contention: We provide a load balancing heuristic to penalize
scheduling instructioni on an ALU in which a previously sched-
uled independent instruction may cause a resource conflict.We add
this penalty to the placement cost ofi. This heuristic is similar to
the load balancing heuristic used in GRST, but we extend it toap-
proximate global effects and determine more precisely the set of
instructions that are likely to cause resource conflicts.

To alleviate local (intra-block) contention, we keep trackof
when instructions are expected to fire and penalize an instruction
by increasing its path length accordingly after detecting apotential
conflict. We allow a cycle of slack in either direction for theready
time to account for imperfect estimates.

Although intuitively it makes sense to place dependent instruc-
tions on the same ALU to minimize communication delays, an-
nealed schedules sometimes break up dependent paths to prevent
resource conflicts between different invocations of the same block
in a loop. The local contention metric does not handle these con-
flicts, so we introduced a global (inter-block) contention heuristic.
Initially, we added the sum of issue slots consumed by all instruc-
tions scheduled on the same ALU to the placement cost of an in-
struction on that ALU. Comparisons with annealing data revealed
that this simple metric was overly conservative. We improved this
optimization by eliminating penalties for instructions that cannot
conflict.

To avoid penalizing instructions unnecessarily, we identify
more cases in which two instructions on the same ALU cannot
cause a resource conflict. A local resource conflict clearly cannot
occur between dependent instructions, nor can one occur between
instructions on opposite predicate paths. A global resource conflict
occurs when instructions from different blocks are ready touse a
resource simultaneously. A global conflict cannot occur between
two dependent instructions that form a loop carried dependence
unless the successor instruction is on a predicated path. A global
conflict is more likely to occur due to this block’s immediatepre-
decessors or successors (even if they are a separate invocation of
the same block), and cannot occur between blocks that cannotbe
in flight simultaneously. We do not penalize an instruction if other
instructions on the same ALU meet these criteria and are therefore
unlikely to conflict.
Link contention: Estimating network link contention is less
straightforward than estimating ALU contention because each in-
struction may communicate with multiple other instructions and
consume multiple network links along each path. In addition, the
scheduler may not know statically which data cache bank a load or
store instruction will access and thus will not know which network
links it will use. To account for link contention without explic-
itly knowing each instruction’s link usage, the scheduler tracks the
number of cycles during which each link is busy for each block. The
link contention penalty for instructioni is the number of network
links i uses that are consumed for more cycles than a threshold. .
Weighting function: When comparing the schedules generated by
the SPS algorithm and by the annealer, we observe that two static
metrics are proportional to the size of the gap between annealed and
SPS performance (e.g., a more full block has a higher performance
gap):

1. The fullness of the block
2. The ratio of the most critical path to the average path

Full blocks are less affected by ALU utilization penalties because
the instructions are naturally distributed across the ALU array due
to lack of unused slots. Full blocks depend more on good link uti-
lization, however, because more instructions typically mean more
communication between instructions. Thus, we introduce a fullness
factor that we correlate directly with link contention and inversely



with ALU contention:

fullness = instructions / maxInstructions (2)

whereinstructionsis the number of instructions in the block under
consideration, andmaxInstructionsis 128 for the TRIPS prototype.

If a resource conflict occurs at runtime the annealer will eventu-
ally move the less critical instruction away to allow the more criti-
cal instruction to execute without conflict. To approximatethis be-
havior, when the scheduler considers placing instructionij on an
ALU with instructionik and the ratio of instructionik ’s placement
cost toij ’s exceeds a threshold, we increase the penalty to twice
the number of issue slots consumed byik. This moves less criti-
cal instructions that can afford extra latency to differentALUs. The
fullness factor described above will dampen this effect when the
block is full enough that it is not useful.

Finally, we augmented the global ALU contention and the net-
work link contention metrics by the criticality of the instruction,
observing that critical instructions should be optimized for commu-
nication latency while non-critical instructions should be optimized
for utilization. We calculate criticality as follows:

criticality = pathLength / criticalPathLength (3)

wherepathLengthis the length of the longest path through the DFG
that includes this instruction, andcriticalPathLengthis the length
of the longest path through the DFG. Because this factor varies
inversely with the importance of utilization penalties, weuse1 -
criticality as a factor for utilization.

Further comparisons with simulated annealing revealed that this
metric worked better for low concurrency blocks. A block with
high concurrency often has no clear critical path, yet utilization is
very important in optimizing these blocks because they haveabun-
dant available parallelism. We adjusted the criticality measurement
based on the concurrency in the block as follows:

criticality = (pathLength / criticalPathLength) / concurrency (4)

where concurrency is equal to the number of instructions in the
block divided by the latency of the highest-latency unscheduled
path through the block (i.e. IPC on an ideal machine). This modi-
fied metric significantly improved the effects of utilization in highly
concurrent benchmarks. Thus, the final utilization penaltycan be
described as follows:utilPenalty = loalALUCntn (5)+globalALUCntn � (1� fullness) � (1� ritiality)+globalLinkCntn � fullness � (1� ritiality)
Local ALU contention (localALUCntn) is not scaled because it is
more precise - we estimate it based on the exact expected execution
time. Using these weighting functions improves performance by an
additional 3% compared to SPS without them.

5.3 Global register prioritization

Optimizing the longest path through the block is not always the best
decision, particularly in the presence of loops. The annealed sched-
ules showed that paths with register reads and writes were often
optimized differently than expected based only on local informa-
tion. To address this issue, we prioritize registers expected to arrive
late by increasing their path length. We first prioritized paths con-
taining loop-carried dependences before considering other paths by
significantly increasing their path length by a constant amount. We
analyzed the scheduled path length of the annealed results and the
SPS results and still found that certain paths were more heavily
optimized in the annealed schedules, even if those registeroutputs
were not loop-carried dependences.

In the presence of next-block prediction, a block can begin to
speculatively execute before previous blocks commit. As a result,

instructions that depend on registers from the previous block are
often a bottleneck. The paths most aggressively optimized in the
annealed schedules were sometimes those that formed the longest
path through multiple blocks. The lengths of paths in immediately
neighboring blocks affect the importance of register inputs and
outputs. By approximating a global critical path in the presence
of register dependences in loops SPS improved by an additional
4% compared to the previous results. The scheduler prioritizes as
follows:

1. Schedule smaller loops (measured in number of blocks) before
larger loops.

2. Schedule loop-carried dependences before other instructions.

3. Augment the placement cost function for each instructionwith
the length of the longest path through predecessor and successor
blocks with which it forms a register dependence.

The last heuristic approximates a global critical path by extending
the path through three blocks instead of one. Using profile informa-
tion would improve this optimization, but is left for futurework.

5.4 Path volume scheduling

As shown in Figure 5(d), SPS needs to consider the number
of instructions together with the distance between two anchors.
Given one source anchor,i1, and one destination anchor,ia, andi2 : : : ia�1, the minimum number of ALUs in which to schedulen
instructions isn/(issue slots per ALU) if all slots are free. During
scheduling, however, some issue slots may already be occupied.
The path volume heuristic attempts to find the best physical path
from i1 to ia.

To find the best path, the scheduler performs a depth first search
with iterative deepening[13] of possible paths to find the shortest
path from source to destination ALU that accommodates alln in-
structions. Iterative deepening attempts to solve a searchproblem
with a given depth bound. If it succeeds, it returns the result, and
if it fails, it increases the depth bound and repeats. The scheduler
initializes its depth bound to the minimum communication delay
between the source and destination ALUs, and increases it until it
finds a path with enough available instruction slots to accommo-
date alln instructions. The search returns the difference between
the number of links traversed in the solution path and the number of
links in the minimum latency path. We add this value to the path’s
latency. This lookahead value prevents the scheduler from unnec-
essarily penalizing locations along the best available path because
they are not on the path with the lowest minimum communication
delays. This heuristic is generalizable to any mapping intended to
minimize communication latencies.

5.5 Modified placement cost: Putting it all together

SPS combines the above heuristics to calculate a final placement
cost. This cost determines both which instruction to schedule next
and where to schedule it. The placement cost initially contains the
total known path length of the most critical path through instructionij , including all execution and communication latencies along that
path, as shown in Equation 1. We then add the result of local
and global contention modeling to the total placement cost.This
calculation estimates critical path delay due to resource conflicts
for the ALU in question, rather than just the path length through
a single block. We augment the input and output latencies with
global register prioritization costs. This prioritizes instructions that
have delayed inputs due to critical read instructions such that they
are scheduled first, making it more likely they will be placedin
their ideal spot. This step also helps determine which are the most
critical anchors. Finally, the volume optimization adds anintrinsic
delay to the total placement cost.



Revising Equation 1 (described in Section 4.1) with these
heuristics yields the following placement cost of instruction i at
locationslot:pCost(i; slot) = inputLateny + utilPenalty (6)+ exeLateny + outputLateny+ additionalRoutingCost
Here, inputLatencyandoutputLatencyinclude the global register
prioritization cost of block inputs (register reads) or block outputs
(register writes) along the longest path throughi. This informa-
tion percolates up the graph from the leaf instructions and down
the graph from the root instructions. TheutilPenalty is computed
with Equation 6. Finally,additionalRoutingCostreturns the num-
ber of additional routing cycles necessary between the mostcritical
upward anchor andslot, and betweenslot and the most critical
downward anchor. SPS calculates this revised placement cost for
each instruction at each legal location. If multiple anchorpoints
may be critical, then the algorithm will calculate this costfor mul-
tiple pairs of upward and downward anchor points.

5.6 Complexity

For a fixed-size ALU array, the time complexity of both basic SPS
and GRST is O(i2), where i is the number of instructions in the
block. Varying the number of functional units as well, GRST’s
complexity becomes O(i2 + i*n) wheren is the number of func-
tional units. SPS has O(n* i2) complexity because it considers each
location for each instruction at each step, whereas GRST only finds
the best location for the most critical instruction at each step. The
volume optimization adds abn term whereb is the branching factor
(constant). Reducing the impact of this factor would be relatively
simple with pruning, but doing so was unnecessary for the array
sizes considered so far.

6. Results
We tested SPS and its heuristics on a low-level simulator verified
within 5% on average of the TRIPS prototype RTL. This simulator
closely models delays in the TRIPS prototype including commu-
nication and contention delays within the array of ALUs and the
operand network.

We selected benchmarks with varying levels of concurrency
and memory behavior to find results applicable across a variety of
application domains. Because the simulator is prohibitively slow,
we report results for isolated kernels from SPEC2000, EEMBC,
Livermore Loops, MediaBench, and C libraries. We created the
SPEC kernels by profiling the SPEC2000 benchmarks and extract-
ing functions and loops that account for approximately 90% of the
program execution time. We used checkpointing to find appropriate
inputs to these functions, and modified the data set size so that the
kernels run in tractable time on the cycle-accurate simulator.

The scheduling problem is most interesting for blocks with
medium to high instruction counts. Dense blocks require some
subset of instructions to incur significant communication delays
traversing the ALU array. They also require careful balancing of
ALU and network link contention. When blocks are not full, block
overheads often dominate the critical path, making it hard to evalu-
ate the performance of the instruction scheduler. To provide dense
blocks, we focus on hand-coded versions of these benchmarks. SPS
improves over GRST by 21% on average on these benchmarks, and
up to 52%. Section 6.4 contains results using compiler-generated
code from the EEMBC suite. These blocks are not yet as full as the
hand-coded benchmarks, and thus are less sensitive to scheduling.
SPS still improves performance by 17% on average and up to 37%
over GRST, however.

6.1 Comparison with GRST

The baseline for all results is the GRST algorithm applied tothe
TRIPS prototype configuration. Column 1 in Table 1 provides the
IPC with GRST on the hand-coded microbenchmarks for reference.
The SPS algorithm provides a 14% improvement on average over
GRST on hand-optimized benchmarks, and the annealed results
show a 26% improvement over GRST.

The Livermore Loops kernels show lower performance im-
provements than other benchmarks because they make extensive
use of libraries that were not recompiled with different algorithms.
The annealed results all use a single set of libraries created with the
best scheduler on-hand at the time we began annealing. When we
recompile the libraries with SPS, we improve over simulatedan-
nealing. However, to preserve a fair comparison between scheduler
heuristics and annealed results, we exclude scheduling thelibraries
in these experiments.

6.2 Tuning SPS

The augmented SPS algorithm provides heuristics to addressglobal
interactions and lookahead. In isolation, the path volume,con-
tention modeling, and critical register prioritization heuristics each
provide less than 4% improvement over the basic SPS algorithm.
We present percent improvement using each of the heuristicsin
isolation in columns 4-6 of Table 1. The heuristics are synergistic,
combining to provide a 7% improvement. The path volume heuris-
tic, in particular, does not improve average performance over base
SPS without global register prioritization. The volume heuristic is
most beneficial when applied to critical global paths and their an-
chor points; global register prioritization reveals thesecritical an-
chor points. The contention heuristic also performs betterwith reg-
ister prioritization in place, because its weighting function is based
on instruction criticality.

Register prioritization using only loop-carried dependences per-
formed 3% better than the basic SPS algorithm with all other
heuristics in place. Adding additional register prioritization as de-
scribed in Section 5.3 was necessary for the full 7% performance
improvement.

Using the static metrics described in Section 5.1 to analyzethe
annealed results, we developed functions to restrict and weight the
effects of the contention heuristics. Using the number of instruc-
tions in the block, the available ILP, the critical path length through
the block, and the maximum ALU and link utilization was neces-
sary to achieve the best possible improvements in contention. With
all other heuristics in place, the initial contention optimization pro-
vided a 4% improvement over the original SPS algorithm. We see
the additional 3% (for a total 7% improvement) only when using
the contention heuristics described in Section 5.2.

Profiling could potentially improve global register prioritization
and global ALU contention significantly. Without a weightedcon-
trol flow graph, the scheduler uses loop nest depth to determine
which block is the most likely predecessor or successor to a given
block. We leave incorporating profile information for future work.

With all heuristics in place, the final scheduler improves over
the previous best algorithm by 21%, improves over the basic SPS
algorithm by 7%, and is within 5% of the annealed results.

6.3 Comparison to annealed results

We used the annealed results as a target point to analyze the qual-
ity of the scheduler’s placement choices. The annealed results pre-
sented here represent weeks to months of annealing time, with
many results converging, but they may be stuck in local minima.

The annealer we implemented is limited because it considers
only the blocks from a single source file (which is why libraries
are omitted). Currently, most of the benchmarks that we evaluate
are contained within a single file. For programs in multiple files,



% Percent cycle count improvement over GRST%
GRST Base Combined Annealed

Benchmark IPC SPS Contention Register Volume SPS Annealed IPC
EEMBC

a2time01hand 2.4 12.2 16.9 8.0 12.4 18.6 18.9 3.1
Spec2000 Microbenchmarks

ammp2 hand 2.7 7.2 13.3 30.5 9.3 35.0 36.8 4.4
art 1 hand 4.1 9.3 10.6 32.9 15.0 34.0 35.4 6.4
art 2 hand 2.8 32.4 41.3 46.8 26.9 48.6 52.2 5.9
art 3 hand 2.1 24.9 47.6 24.6 25.8 49.1 50.3 4.4
bzip2 1 hand 1.4 46.6 52.2 48.4 47.9 52.2 52.2 3.0
equake1 hand 2.4 0.2 -4.3 1.4 0.9 6.8 10.4 2.7
gzip 1 hand 0.6 26.1 19.0 25.0 27.0 14.6 49.7 1.3
gzip 2 hand 3.9 -1.6 3.2 -1.5 -2.9 11.5 13.1 4.6
matrix 1 hand 2.9 1.8 3.2 4.6 5.4 8.3 19.6 3.7
parser1 hand 1.2 46.6 42.5 44.4 42.2 49.7 49.4 2.4
transposeGMTI hand 2.9 25.3 29.6 26.2 24.3 29.9 33.7 4.4
vadd hand 5.0 5.0 7.7 4.7 5.1 8.7 18.2 6.2

Livermore Loop Kernels
cfar hand 1.6 10.7 9.5 12.5 10.3 15.6 16.4 1.9
conv hand 4.8 -2.0 0.6 11.3 -7.3 10.0 19.0 6.0
ct hand 3.7 14.5 14.5 19.6 12.2 13.9 18.9 4.6
db hand 0.5 7.9 9.1 9.1 8.2 8.8 10.1 0.6
genalghand 1.2 10.0 12.3 13.0 12.4 16.8 16.8 1.5
pm hand 1.7 7.8 10.1 9.5 9.8 13.5 14.7 2.0
qr hand 1.3 3.1 3.2 3.4 2.8 3.3 3.7 1.4
svd hand 1.0 4.5 4.5 4.4 4.8 5.1 5.2 1.1

C libraries
memchrhand 1.1 20.7 27.6 23.5 25.6 28.2 37.8 1.8
memcpyhand 2.8 12.2 27.4 22.6 11.5 21.8 32.4 4.2
memsethand 3.0 33.0 32.0 23.0 24.3 34.0 39.7 5.0
strcmphand 2.2 9.5 8.6 7.3 12.1 15.8 24.5 3.0

MediaBench
shahand 0.9 12.8 14.3 15.0 14.4 15.6 18.4 1.1
Average 14.6 17.6 18.1 14.6 21.9 26.8

Table 1. Percent improvement in cycle count of hand-coded benchmarks over GRST.

we chose the one that contributed the most cycles to the program’s
critical path. For all other input files, we used a consistentset of
schedules for the other files. In most cases, the functions inthe an-
nealed file consumed the majority of the critical path cycles. The
Livermore Loops are an exception. They consist of multiple source
files and use library calls extensively. Since we anneal onlyone
file, we do not see as much improvement on them: 3% to 19% ver-
sus 10% to 52% for the other benchmarks. Compiling the annealed
files together with libraries scheduled by SPS sometimes signifi-
cantly improves or degrades the results. This result occursbecause
instructions from blocks in libraries may execute simultaneously
with instructions from the annealed source file. Applying the an-
nealer again would adapt the schedule to alleviate any resource
conflicts that occur.

Some of the memory-intensive benchmarks such as vadd and
matrix 1 show a significant gap between the best scheduler and the
annealed results. In some cases, the annealer will produce asched-
ule that SPS can never achieve without help from the compiler. In
these benchmarks, loads and stores representing array accesses are
regular and consistently map to one or more cache banks. The an-
nealer places critical loads and their consumers in the appropriate
location based on their cache bank. The cache banks use a simple
round robin address mapping, and thus if the compiler knows the
base address and array dimensions, it can also predict the load/store
cache bank. We have experimented with array base address align-
ment and compiler-inserted cache bank hints for predictable loads,
and these results match the annealer’s for vadd and matrix1.

The memset hand-coded benchmark provides cache bank hints,
which allows the best SPS schedule to come closer to the annealed
results (5%, compared to 10% and 11% for vadd and matrix1,
respectively). Most other hand-coded benchmarks do not provide
these hints, and none of the compiler-generated benchmarksuse
them.

Annealed performance on gzip1 is 35% better than the fully
augmented SPS schedule. This unusual result is due to the depen-
dence predictor in the TRIPS prototype. TRIPS allows speculative
execution of memory operations and initiates a pipeline flush after
detecting a dependence violation. The TRIPS implementation uses
dependence prediction to help prevent these expensive flushes. For
a set period after a load causes a dependence violation, it will con-
servatively wait for all prior stores before executing. Forgzip 1,
when minimizing latency and contention the scheduler enables a
dependent load to issue before its corresponding store, triggering
a pipeline flush, initiating conservative memory ordering,and de-
grading performance. This particular performance anomalywould
be solved with a more accurate dependence predictor and is beyond
the scope of the scheduler.

6.4 Cross Validation

Because the heuristics were driven by data from the hand-coded
schedules that we annealed, we ran the same set of tests on the
EEMBC benchmark suite using compiler-generated code to see
how well the heuristics perform on new benchmarks. We ran allof
the EEMBC benchmarks except the consumer benchmarks cjpeg
and djpeg, which took too long to simulate. Table 2 shows these re-



% Percent cycle count improvement over GRST %
GRST Base Combined SPS

Benchmark IPC SPS Contention Register Volume SPS IPC
Automotive

a2time01 0.8 7.4 8.2 6.5 6.2 9.7 0.9
aifftr01 1.1 17.3 20.2 17.9 19.7 19.2 1.4
aifirf01 0.9 9.6 12.1 9.5 9.8 12.1 1.0
aiifft01 1.1 18.2 20.4 18.0 20.5 22.1 1.4
basefp01 0.8 7.5 9.3 7.7 5.7 11.1 0.9
bitmnp01 1.3 10.5 14.6 11.9 13.5 16.0 1.5
cacheb01 0.7 8.4 8.0 7.6 10.0 8.3 0.7
canrdr01 0.8 13.6 17.5 13.4 17.8 17.3 1.0
idctrn01 1.4 11.0 12.6 12.3 11.2 16.2 1.7
iirflt01 0.7 5.7 7.7 7.9 6.4 10.9 0.8
matrix01 0.9 12.5 14.8 11.7 13.2 12.9 1.0
pntrch01 0.8 8.5 13.1 7.2 8.4 11.3 0.9
puwmod01 0.8 13.5 17.4 13.8 18.1 17.3 1.0
rspeed01 0.8 12.2 15.9 12.1 16.0 16.1 1.0
tblook01 0.8 11.3 13.3 10.1 12.3 14.4 0.9

Networking
ospf 0.9 14.9 15.4 12.2 15.3 16.8 1.1
pktflow 1.0 13.3 12.8 11.5 13.7 18.8 1.3
routelookup 0.9 17.4 17.8 14.6 18.6 19.5 1.1

Office
bezier01 1.1 13.0 16.3 12.9 16.8 17.3 1.3
dither01 1.5 18.5 19.6 23.9 17.4 21.8 2.2
rotate01 1.1 16.5 18.6 18.8 19.6 20.2 1.4
text01 0.8 15.8 16.5 17.6 19.3 17.9 1.0

Telecom
autcor00 1.2 8.3 9.2 11.0 7.5 10.6 1.4
conven00 1.8 16.1 16.0 14.7 16.4 13.7 2.1
fbital00 1.2 34.2 35.3 35.0 35.9 37.2 1.9
fft00 2.1 10.7 22.2 18.9 18.8 34.5 3.2
viterb00 0.9 28.1 36.4 41.8 37.3 36.5 1.4
Average 13.9 16.3 14.8 15.8 17.8

Table 2. Percent improvement in cycle count of compiler generated code for EEMBC over GRST.

sults. The compiler does not yet produce blocks that are as tightly-
packed as the blocks in the hand-coded benchmarks. The average
dynamic number of instructions fetched per block fetched is45%
larger for the hand-coded benchmarks. Because the resulting blocks
have proportionally more block overhead, placement has a smaller
impact on their performance. Still, the SPS algorithm improves
13% over GRST for the compiler-generated EEMBC benchmarks,
and with all heuristics in place SPS improves 17% over GRST.

We tested the algorithm with and without the annealing-inspired
heuristics on the compiler-generated codes. The contention heuris-
tics produce a 2% improvement, and global register prioritization
produces a 3% improvement. The heuristics are slightly lesssyn-
ergistic than on the hand-coded benchmarks, but still improve and
apply to this wider set of applications.

7. Related work
This section compares the TRIPS scheduling problem and solution
to the scheduling problems and solutions for other architectures that
usestaticspatial and/or temporal compile-time scheduling. We also
compare spatial instruction scheduling to ASIC and FPGA place
and route algorithms.

7.1 Greedy list scheduling for TRIPS

The path scheduling algorithm described here naturally subsumes
the heuristics in the prior scheduling work for TRIPS [17], and
substantially improves performance. GRST uses a list scheduling
approach augmented with heuristics that account for data cache and
register accesses, load balancing, and critical path prioritization. Its

ability to identify and optimize the critical path is limited, however,
because it does not account for routing delays between anchor
points along a path, take global effects into account, or choose
the next instruction to schedule by directly comparing placement
costs. The GRST study used binary rewriting and a higher-level
simulator with simplifications such as a shared register fileand a
unified L1 cache, which substantially dampened the influenceof
the scheduling algorithms.

7.2 Static scheduling

Classic VLIW schedulers focus solely on minimizing the depen-
dence height of the final schedule. At runtime, instructionsthat do
not fire must still check their predicate before subsequent instruc-
tions can execute due to the static issue execution model [6,8].
These approaches thus schedule the critical path bottom up and
do not consider registers or other physical processor layout con-
straints.

The most closely related static (compiler) scheduling problem
is the one posed by architectures such as partitioned VLIW [9, 10,
11, 19, 21, 26] and RAW [14, 25], which both consider register
resource constraints and layout. Ozer et al. solve the scheduling
part of VLIW cluster assignment first with a later phase performing
register assignment based on the cluster assignment of dependent
instructions [19]. Ozer et al. also find that placing critical paths
in the same cluster is best in a VLIW compiler. Another VLIW
example is the CARS approach, which is similar to Ozer et al. but
performs register allocation concurrently with scheduling and has
lower algorithmic complexity [10]. The typically modest number



of VLIW partitions and unlimited instructions per partition impose
a different structure on VLIW schedulers. In particular, the paths
are shorter and less constrained compared with TRIPS scheduling
problem.

RAW’s execution model is essentially a 2D VLIW with in-
dependent sequencers [14, 25]. Lee et al. introduce a convergent
scheduler that is similar to the simulated annealing scheduler, but
explores the space in a model-driven way rather than accepting ran-
dom poor placements occasionally. The convergent scheduler deals
with the complexity of the 2-D scheduling problem by computing
an ALU preference for each instruction for a selection of schedul-
ing heuristics. These preferences are weighted to determine the fi-
nal schedule. Because of the static-issue execution model,paral-
lelism is favored over latency.

7.3 Simulated annealing

Because most problems in compiler optimization are NP-complete,
researchers on compiler optimizations and scheduling are increas-
ingly turning to machine learning and statistical techniques such as
simulated annealing [12, 2] to find better heuristics. Sweany and
Beaty apply simulated annealing to scheduling straight-line (a sin-
gle basic block) code for the Alpha 21164, which is 4-way issue,
and evaluate the schedules with a static metric: the reduction in
the schedule length. Their test suite consists of small blocks (e.g.,
20–40 instructions on average). The TRIPS scheduling problem is
more complex and requires guidance for simulated annealingto ef-
ficiently search the much larger space.

Swanson et al. suggest a real-time, on-line simulated annealing
approach to optimize reconfigurable hardware dynamically [24].
They suggest that dynamically reorganizing instructions would al-
low the configuration to adjust to changing program behavior, and
to route computation around defective hardware.

Moss et al. [16] use exhaustive search for small basic blocks
(on the order of ten instructions) in a supervised learning approach
that generates heuristics for a basic block scheduler for the Alpha.
Exhaustive evaluation is too expensive for even a single block for
TRIPS, but we do consider global effects with simulated annealing.
Because the TRIPS prototype is more sensitive to scheduling, we
consider the entire program (versus individual basic blocks in iso-
lation), and we evaluate schedules using simulated cycles (versus
statically).

Betz and Rose present Versatile Place and Route (VPR) [3], a
placement and routing tool for FPGA research that uses simulated
annealing for placement. Because latencies and resource conflicts
are known for place and route, the algorithm can use an easy to
evaluate static cost function as the objective function forsimulated
annealing. Because runtime latencies and resource conflicts exist
with dynamic issue, a static cost function is not sufficient.

7.4 Dynamic scheduling

The TRIPS architecture combines dataflow execution within a
block by forwarding temporary values directly from producers to
consumers and out-of-order speculation across blocks by using se-
quential memory semantics and register communication between
blocks, together with commit and rollback logic.

Compilers for classic dataflow machines performed no static
scheduling [1, 5]. These machines dynamically schedule instruc-
tions as the dynamic dataflow graph unfolds. They sidestep se-
quential memory semantics by relying on a functional program-
ming model in which programs could only ever produce exactly
one input to an operand. The WaveScalar [23] dataflow architecture
breaks the program up into dataflow waves to preserve sequential
memory semantics. These waves have constraints, but are notas
resource constrained as TRIPS blocks.

Mercaldi et al. present a static instruction placement perfor-
mance model for WaveScalar and analyze its correlation withactual
performance [15]. A similar static cost function is not sufficient for
simulated annealing in our setting because we attempt to findnear-
optimal schedules and use them to discover the appropriate heuris-
tics. Using a static cost function for simulated annealing would not
be useful for discovering heuristics, and without perfect correlation
to real performance it would not be useful for exploring the perfor-
mance upper bound. A static metric with good correlation could be
used to guide annealing, however, or to work in combination with
the perfect evaluation function to reduce annealing time, which is a
direction for future work.

7.5 ASIC and FPGA place and route

Spatial instruction scheduling is similar to place and route because
both problems involve mapping a graph of operations onto a two
dimensional substrate under a set of constraints. When evaluating
place and route decisions, however, the latency and resource con-
flicts are known statically. Spatial instruction scheduling for a dy-
namic issue machine like TRIPS or WaveScalar presents new chal-
lenges because resource conflicts can only be determined proba-
bilistically.

Paulin and Knight present Force-Directed Scheduling for ASIC
synthesis [20], an algorithm that bears some similarities to SPS.
The space is constrained in different ways, however. SPS considers
dynamic issue orders with probabilistic contention modeling. Its
heuristics map a graph onto a predefined topology, while an ASIC
scheduler manipulates many variables including the hardware con-
figuration. An ASIC scheduler is guided by external constraints in-
cluding area and power budget, whereas a spatial instruction sched-
uler operates under no equivalent restrictions.

8. Conclusions
Spatial Path Scheduling is designed to map DFGs of instructions to
a distributed, potentially irregular compute substrate. It improves
over list scheduling by explicitly modeling instruction placement
for all instructions on a path. We extended the base SPS algorithm
with three heuristics: a contention heuristic that captures the run-
time and global effects of contention in the ALUs and network-
ing links; a critical register prioritization heuristic that accounts for
inter-block dependences; and a path volume heuristic that plans out
potential routes for long paths in a DFG and avoids overly con-
strained local minima. The combined SPS algorithm achieveda
21% speedup over the best previous algorithm for this architec-
ture. The SPS algorithm intrinsically captures and augments the
heuristics from GRST while providing flexibility to adapt tonew
topologies and constraints.

We also implemented a simulated annealing scheduler that uses
program criticality information for faster convergence. The simu-
lated annealer perturbs schedules periodically in an attempt to avoid
finding itself in local minima. Although the annealer does not nec-
essarily generate optimal schedules, the schedules it produces upon
convergence were typically close to the best schedules it produced
across many different starting points. We used them to tune the
SPS heuristics, achieving average performance within 5% ofthe
annealed results.

This performance bound, however, only applies to generating
the best schedule for a fixed set of instructions. More opportuni-
ties for performance improvement remain if the scheduler can col-
lude with other compiler phases to generate graphs that are more
amenable to better scheduling. Three examples of this effect are
register allocation, fanout tree insertion, and hyperblock formation.
Since allocated registers serve as pre-schedule anchor points, al-
locating registers to minimize critical path lengths can improve
performance significantly, as we have seen in a few hand-tuned



examples. Fanout trees for distributing produced values tomany
consumers in a block can have many different topologies, each of
which will provide a different set of opportunities or coststo the
scheduler. Finally, the hyperblock formation algorithm inthe com-
piler attempts to fill blocks as close to 128 instructions as possible
to minimize per-block overheads. However, it may be that in some
cases, overly full blocks constrain the scheduler too much,and that
better performance may be possible if the hyperblock generator
leaves space in those blocks to provide flexibility to the scheduler.
Coupling the scheduler to these compiler phases is a focus ofour
current research efforts.
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