Memory-Centric Architectures. Why and Perhaps What

Doug Buger and James R. Goodman

Computer Sciences Department
University of Wsconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706 USA

{dbur ger, goodman} @s. wi sc. edu

Relative to computation, the costs of communication in computer systems aingvath each ne generation of tech-
nology: This trend applies to both communication within the processor chip and communication between the processor and
the rest of the system. Communication within the processor véirgganore &pensve as the RC (resisg-capacitie)
delays of the on-chip wires scale poorly compared to the processor clock and transistor switching speeds. Communication
off of the processor chip gns more gpensve as long memory latencies and limited bandwidth (across the meosry b
and the processor package) inhibit performamiesy

Long communication delays between system resources force the partitioning of resources, which should do as much
work as possible within each partition, communicating with remote resources infreg@asntgmmunication latencies
climb, the atent to which resources must be partitioned wilwgamrrespondinglyWe view partitioning as occurring in
four stages: computation, instruction fetch, contralfland memoryThe first partitioning to occur on-chip has been func-
tional unit clusters (as in the DEC Alpha 21264 and other proposed architectures). Although the actual computation is par-
titioned, instruction fetch and control Wloremain centralized. The Multiscalar architecture (and subsequevedtibers,
such as the trace processor) partition the instruction fetching as well, while retaining a single legafatdotrol. Chip
multiprocessor architectures (such as the Stanford Hydra)diakilution one step furthgpartitioning the control fiw.

These partitioning models all assume that the computational core is centralized, isolated from the systemTimemory
fourth partitioning in this conceptual framerk is memoryin which each of the partitioned unitwas” a fraction of the
systems plysical memorylt is this level of partitioning that we gue is the right model for the longerm future, where
performance will be dominated by communicatioerheads.

Distributing processors togens of memory necessitates partitioning the problem and decomposing the data to the par-
titioned regions. Both can be hard to do well statically; some codes lend themsehll to one or both, while others are not
amenable to static analysis. If the problem partitioning does not match the data decomprsitimelyepoor program
performance will result. When both problems cannot satisfily be addressed staticallye propose to partition the pro-
gram dynamically based on thesgim data decomposition. It is this concept that forms the basis of what we call memory-
centric architectures.

We have proposed tev such architectures; DataScalar and DDataScalar architectures use maslgiredundant com-
putation to imprge communication performance. In a DataScalar architectuysjgah memory is dided into distinct
regions, each of which is coupled with a procesatiprocessorsxecute the same program (asynchronously), performing
all of the prograns computation redundantlfFurthermore, all communication consists of sends; wiegre processor
reads an operand from its local memadryproadcasts that operand to all other processors. No processovahssrals a
remote request for data; all non-local data it needs are broadcast lmnthrs of those data. Thus all communication is one
way; remote writes are wer sent (since all processors generate all staikees). Furthermore, inddual processors may
run ahead on data dependences found lqahlig efectively prefetching dan that dependence chain for the other proces-
sors. Our simulation results sha®% to 100% performance imp@ments on a foumode DataScalar system running
SPEC95.

The second memory-centric architecture that we describe here is calledddDynamic Data Threads. In a DDT
machine, the memory is distuted among multiple processors, as with a DataScalar architeciticmnbputation along a
local dependence chain occurs uniquely at one node. When a data dependence spans nodes, thesteouateerés
broadcast to all processors, and the intermediate instructions are squashed at all praceps®os #he wning processor
that executed them. Three techniques can benefit dynamic data thceaytstation updating (described abee); control
updating, in which a processor ahead of the others sends a point at which the others should resumewpatds$ftru-
lation throttling, in which processors speculatensiomultiple pathonly on data the find locally (interprocessor depen-
dences thus throttle speculation). DDT architectures can benefit from other support, such as static and runaime softw
support, tagged instructions, and memory system supponvi@@ja finergrain naming and migration of data than the
granularity of a page).

Increasing communication costs will force microprocedsmed systems to be more and more partitionedagie
that this partitioning mustventually include the system mempand that for codes that are hard to analyze statithéy
problem partitioning will be done dynamicallyased on the data decompositiore ¥l such architecturesemory-cen-
tric, and describe tav(DataScalar and DDT) that aneotutionary first steps in this uncaentional direction.

