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1 Introduction

This paper describes Non-Uniform Cache Access (NUCA) designs, which solve the on-chip wire delay
problem for future large integrated caches. These designs embed a network into the cache itself, allowing
data to migrate within the cache, clustering the working set in the cache region nearest to the processor.

Today’s high performance processors incorporate large level-two (L2) caches on the processor die. The
IBM Power5 will contain a 1.92MB L2 cache, the HP PA-8700 will contain 2.25MB of unified on-chip
cache [5], and the Intel Itanium2 will contain 6MB of on-chip L3 cache. These sizes will continue to
increase as the bandwidth demands on the package grow, and as smaller technologies permit more bits per
����� [6]. In future technologies, large on-chip caches with a single, discrete hit latency will be undesirable,
due to increasing global wire delays across the chip [1, 10]. Data residing in the part of a large cache close
to the processor could be accessed much faster than data that reside physically farther from the processor.
The closest bank in a 16-megabyte, on-chip L2 cache built in a 50-nanometer process technology could be
accessed in 4 cycles, while an access to the farthest bank might take 47 cycles. The bulk of the access time
will involve routing to and from the banks, not the bank accesses themselves.

Figure 1 shows the types of organizations that we explore in this paper, listing the number of banks and the
average access times, assuming 16MB caches modeled with a 50nm technology. The numbers superimposed
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on the cache banks show the latency of a single contentionless request. The average loaded access times are
derived from performance simulations that use the unloaded latency as the access time but which include
port and channel contention.

We call a traditional cache a Uniform Cache Architecture (UCA), shown in Figure 1a. Although we
support aggressive sub-banking, our models indicate that this cache would perform poorly due to internal
wire delays and restricted numbers of ports. Figure 1b shows a traditional, but aggressively banked multi-
level cache (L2 and L3), called ML-UCA. Inclusion is enforced, so a line in the smaller level implies two
copies in the cache, consuming extra space. Figure 1c shows a cache that supports non-uniform access to
the different banks without the inclusion overhead of ML-UCA. The mapping of data into banks is statically
determined, based on the block index, and thus can reside in only one bank of the cache. Each bank uses
a private, two-way, pipelined transmission channel to service requests. We call this statically mapped, non-
uniform cache S-NUCA-1.

When the delay to route a signal across a cache is significant, increasing the number of banks can improve
performance. However, private per-bank channels, used in S-NUCA-1, heavily restrict the number of banks
that can be implemented, since the private channel wires add significant area overhead if the number of
banks is large. To circumvent that limitation, we propose a static NUCA design with a two-dimensional
switched network instead of private per-bank channels, permitting a larger number of smaller, faster banks.
This organization, called S-NUCA-2, is shown in Figure 1d.

Even with an aggressive multi-banked design, performance may still be improved by exploiting the fact
that accessing closer banks is faster than accessing farther banks. By permitting data to be mapped to one of
many banks within the cache, and to migrate among them, a cache can be automatically managed in such a
way that most requests are serviced by the fastest banks. Using the switched network, data can be gradually
promoted to faster banks as they are frequently used. We call this dynamic non-uniform cache D-NUCA,
which is depicted in Figure 1e.

2 Statically Mapped NUCA Caches

2.1 Experimental Methodology

To evaluate the effects of different cache organizations on system performance, we used Cacti 3.0 [14] to
derive the access times for caches, and extended the sim-alpha simulator [3] which models the Alpha
21264 in detail to simulate different cache organizations. For the rest of this paper, we assume a constant
L2 cache area and vary the technology generation to scale cache capacity within that area, using the ITRS
Roadmap [13] predictions. The benchmarks used in our study include six SPEC2000 floating-point bench-
marks, six SPEC2000 integer benchmarks, three scientific applications from the NAS suite, and Sphinx,
a speech recognition application. For each benchmark we simulated the sequence of instructions which
capture the core repetitive phase of the program, determined by plotting the L2 miss rates over one execu-
tion of each benchmark, and choosing the smallest subsequence that captured the recurrent behavior of the
benchmark.
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Technology L2 Num. Banks Unloaded Avg. Loaded Avg. IPC
(nm) Size UCA SNUCA1 SNUCA2 UCA SNUCA1 SNUCA2 UCA SNUCA1 SNUCA2 UCA SNUCA1 SNUCA2

130 2MB 1 16 16 13 10 8 68 10 10 0.41 0.55 0.55
100 4MB 1 32 32 18 15 10 91 15 12 0.39 0.57 0.58
70 8MB 1 32 32 26 19 18 144 19 20 0.34 0.63 0.62
50 16MB 1 32 32 41 29 21 255 30 24 0.26 0.62 0.65

Table 1: Statically mapped NUCA performance

2.2 UCA Caches

Table 1 shows the parameters and achieved instructions per cycle (IPC) of the three statically mapped cache
organizations: UCA, S-NUCA-1, and S-NUCA-2. In Table 1, the unloaded latency is the average access
time (in cycles) assuming uniform bank access distribution and no contention. The loaded latency is obtained
by averaging the actual L2 cache access time–including contention–across all the benchmarks. Contention
can include both bank contention, when a request must stall because the needed bank is busy, and channel
contention, when the bank is free but the routing path to the bank is busy. The table shows the best cache
configuration for each capacity along with the harmonic mean IPC across all the benchmarks.

In the UCA cache, the unloaded access latencies are sufficiently high that contention is a serious problem.
Multiported cells are a poor solution for overlapping accesses in large caches, as increases in area will
expand loaded access times significantly. Table 1 shows that, despite the aggressive cache pipelining, the
loaded latency grows significantly as the cache size increases. The best overall cache size is 2MB; for larger
caches, the continued reduction in L2 misses does not overcome the increases in latency. While the UCA
organization is inappropriate for large, wire-dominated caches, it serves as a baseline for measuring the
performance improvement of more sophisticated cache organizations.

2.3 Static NUCA Caches (S-NUCA-1, S-NUCA-2)

Multiple banks can mitigate the performance losses arising from worst-case uniform access latency, if each
bank can be accessed at different speeds, proportional to the distance of the bank from the cache controller.
Data are statically mapped into banks, with the low-order bits of the index determining the bank. Each bank
we simulate is four-way set associative. These static, non-uniform cache architectures (S-NUCA) have two
advantages over the UCA organization. First, accesses to banks closer to the cache controller incur lower
latency. Second, accesses to different banks may proceed in parallel, reducing contention.

As shown in Figure 2a, each addressable bank in the S-NUCA-1 organization has two private, per-bank
128-bit channels, one going in each direction. Such a design is used in the IBM Power4 level-2 cache. We
used Cacti 3.0 along with the more aggressive repeater and scaled wire model of Agarwal et al. for the
address and data busses to and from the banks [1]. Since banks have private channels, each bank can be
accessed independently. While smaller banks would provide more concurrency and a greater fidelity of non-
uniform access, the numerous per-bank channels add area overhead to the array that constrains the number
of banks. Table 1 shows that, unlike UCA, the average IPC increases as the cache sizes increases until 8
MB. At 16MB, the cross-cache routing delays required by the cache causes the hit latencies to overwhelm
the performance benefit of the reduced misses. After 4MB, the optimal number of banks does not increase
further, due to the area overhead of the per-bank channels, making each bank larger and slower as the cache
size increases. This constraint prevents the S-NUCA-1 organization from exploiting the potential access
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Figure 2: S-NUCA Caches

fidelity of small, fast banks.
Figure 2b shows an organization that removes most of the wires resulting from per-bank channels. This

organization, called S-NUCA-2, embeds a lightweight, wormhole-routed 2-D mesh with point-to-point
links in the cache, placing simple switches at each bank. Each link has two separate 128-bit channels for
bidirectional routing. We used the delays from a detailed circuit simulator in our cycle-accurate model of
the switched network for our performance evaluation.

As shown in Table 1, for 4MB and larger caches, the unloaded latencies are smaller than those for
S-NUCA-1. The switched network speeds up cache accesses because it consumes less area than the private,
per-bank channels, resulting in a smaller array and faster access to all banks (at 50nm, a factor of 4 lower).
Furthermore, the loaded latencies of the S-NUCA-2 are always lower than the S-NUCA-1, providing a
10% IPC improvement for a 16MB cache.

3 Dynamic NUCA Implementations

In this section, we show how to exploit future cache access non-uniformity by placing frequently accessed
data in closer banks and less important–yet still cached–data in farther banks. We evaluate a number of
hardware policies that migrate data among the banks. For these policies, we answer three important ques-
tions about the management of data in the cache: (1) mapping: how the data are mapped to the banks, and
in which banks a datum can reside, (2) search: how the set of possible locations are searched to find a line,
(3) movement: under what conditions the data should be migrated from one bank to another.

3.1 Logical to Physical Cache Mapping

A large number of banks provides substantial flexibility for mapping lines to banks. At one extreme is
the S-NUCA strategy, mapping a line of data to a single statically determined bank. At the other extreme,
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a line could be mapped into any cache bank. While the latter approach maximizes placement flexibility,
the overhead of locating the line may be too large. We explore an intermediate solution called spread sets
in which the multibanked cache is treated as a set-associative structure, each set is spread across multiple
banks, and each bank holds one (or more) “ways” of the set. The collection of banks used to implement
this associativity is called a bank set and the number of banks in the set corresponds to the associativity.
The primary distinction between this organization and a traditional set-associative cache is that the different
associative ways have different access latencies.

In this paper, we evaluate one methods of allocating banks to bank sets and ways, called simple mapping.
With the simple mapping, each column of banks in the cache becomes a bank set, and all banks within that
column comprise the set-associative ways. The two drawbacks of this scheme are that the number of rows
may not correspond to the number of desired ways in each bank set, and that latencies to access all bank sets
are not the same. Detailed descriptions of two other mapping policies are presented in other work [9].

3.2 Locating Cached Lines

A distributed cache array, in which the tags are distributed with the banks, creates two new challenges. First,
many banks may need to be searched to find a line on a cache hit. Second, if the line is not in the cache, the
slowest bank determines the time necessary to resolve that the request is a miss. Thus, the miss resolution
time grows as the number of banks in the bank set increases.

Searching for a line among a bank set can be done with two distinct policies. The first is incremental
search, in which the banks are searched in order starting from the closest bank until the requested line is
found or a miss occurs in the last bank. The second policy is called multicast search, in which the requested
address is multicast to some or all of the banks in the requested bank set. However, both policies cannot
deal with the above two challenges at the same time.

To further reduce both the number of bank lookups and the miss resolution time, we applied the idea of the
partial tag comparison proposed by Kessler et al. [8]. The D-NUCA policy using partial tag comparisons,
which we call smart search, stores the partial tag bits into a smart search array located in the cache controller.
We evaluated two smart search policies: ss-performance and ss-energy. In the ss-performance policy, the
cache array and the smart search array are searched in parallel, and if no matches occur in the smart search
array, miss processing commences early. In the ss-energy policy, the partial tag comparison is used to reduce
the number of banks that are searched upon a miss. To hide the delay to access smart search array (4 to 6
cycles), the cache controller searches the first cache bank in parallel with the smart search array.

3.3 Dynamic Movement of Lines

Since the goal of the dynamic NUCA approach is to maximize the number of hits in the closest banks, a
desirable policy would be to make the closest bank hold the MRU line, second closest hold second most-
recently used, etc. The problem with that approach is that most accesses would result in heavy movement
of lines among banks. We use generational promotion [4] to balance the increased contention and power
consumption of copying with the benefits expected from bank set ordering. When a hit occurs to a cache
line, it is swapped with the line in the bank that is the next closest to the cache controller. Heavily used lines
will thus migrate toward close banks, whereas infrequently used lines will be demoted into farther banks.

A D-NUCA policy must determine the placement of an incoming block resulting from a cache miss. A
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Configuration Technology L2 Num. Loaded IPC Miss Bank Tag Search
(nm) Size Banks Avg. Rate Accesses Bits Array
130 2MB 16 8.4 0.57 0.23 73M - —

Base D-NUCA 100 4MB 32 10.0 0.63 0.19 72M - —
70 8MB 128 15.2 0.67 0.15 138M - —
50 16MB 256 18.3 0.71 0.11 266M - —

SS-energy + shared bank 50 16MB 256 19.2 0.75 0.11 47M 6 216KB
Upper bound 50 16MB 256 3.0 0.83 0.114 — - —

Upper bound + SS-performance 50 16MB 256 3.0 0.89 0.114 — 7 224KB

Table 2: D-NUCA performance

replacement may be loaded close to the processor, displacing an important existing block. The replacement
may be loaded in a distant bank, in which case an important new block would require several accesses
before it is eventually migrated to the fastest banks. Another policy decision involves what to do with a
victim upon a replacement; the two polices we evaluated were one in which the victim is evicted from the
cache (a zero-copy policy), and one in which the victim is moved to a lower-priority bank, replacing a less
important line farther from the controller (one-copy policy).

4 Performance Evaluation

4.1 Policy Exploration

The first four rows of Table 2 shows the performance of the baseline D-NUCA configuration, which uses the
simple mapping, multicast search, tail insertion, and single-bank promotion upon each hit. As the capacities
increase with the smaller technologies, from 2MB to 16MB, the IPC gains over the best of the S-NUCA
grows from 4% to 9%.

The next three rows of Table 2 shows the efficacy of the smart search policy at improving IPC and
reducing bank accesses. With the SS-energy policy, a reduction of 85% of the bank lookups can be achieved,
with a 6% IPC gain over the base D-NUCA configuration. Coupling the SS-energy policy with the shared
mapping, tail insertion, and single-bank promotion upon each hit results in the best policy we examined. We
call this policy the “best” D-NUCA policy, DN-best, since it balances high performance with a relatively
small number of bank accesses. An exploration of the policy space and a more rigorous analysis is presented
in [9]. The last two rows of Table 2 shows two upper bounds on IPC. The first upper bound row shows the
mean IPC that would result if all accesses hit in the closest bank with no contention. The second row shows
the same metric, but with early initiation of misses provided by the smart search array. The upper bound is
19% better than the DN-best policy.

4.2 Comparison to ML-UCA

Multi-level hierarchies permit a subset of frequently used data to migrate to a smaller, closer structure similar
to a D-NUCA cache, but at a coarser grain than individual banks. We compared the NUCA schemes with a
two-level hierarchy (L2 and L3), called ML-UCA. We modeled the L2/L3 hierarchy by assuming that both
levels were aggressively pipelined and banked UCA structures. We also assumed that the L3 had the same
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Technology L2/L3 Num. Unloaded Loaded ML-UCA DN-best
(nm) Size Banks Latency Latency IPC IPC
130 512KB/2MB 4/16 6/13 7.1/13.2 0.55 0.58
100 512KB/4MB 4/32 7/21 8.0/21.1 0.57 0.63
70 1MB/8MB 8/32 9/26 9.9/26.1 0.64 0.70
50 1MB/16MB 8/32 10/41 10.9/41.3 0.64 0.75

Table 3: Performance of an L2/L3 Hierarchy
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Figure 3: Performance summary of major cache organizations

size as the comparable NUCA cache, and chose the L2 size and L3 organization that maximized overall IPC.
The ML-UCA organization thus consumes more area than the single-level L2 caches, and has a greater total
capacity of bits. In addition, we assumed no additional routing penalty to get from the L2 to the L3 upon an
L2 miss, essentially assuming that the L2 and the L3 reside in the same space, making the multi-level model
optimistic.

Table 3 compares the IPC of the ideal two-level ML-UCA with a D-NUCA cache. In addition to the
optimistic ML-UCA assumptions listed above, we assumed that the two levels were searched in parallel
upon every access. The IPC of the two schemes is roughly comparable at 2MB, but diverges as the caches
grow larger. At 16MB, overall IPC is 17% higher with DN-best than with the ML-UCA, since many of
the applications have working sets greater than 2MB, incurring unnecessary misses, and some have working
sets smaller than 2MB, rendering the ML-UCA L2 too slow.

The two designs compared in this subsection are not the only points in the design space. For example,
one could view a simply-mapped D-NUCA as an � -level cache (where � is the bank associativity) that does
not force inclusion, and in which a line is migrated to the next highest level upon a hit, rather than the
highest. A D-NUCA cache could be designed to permit limited inclusion, supporting multiple copies within
a spread set. Alternatively, a ML-UCA in which the two (or more) levels were each organized as S-NUCA-2
designs, and in which inclusion was not enforced, would start to resemble a D-NUCA organization in which
lines could only be mapped to two places. However, our experiments with many D-NUCA policies indicate
that the ability to effectively adjust the size of the active working set, clustered near the processor, provides
better performance and performance stability than competing alternatives.
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4.3 Cache Design Comparison

Figure 3 shows how the various schemes perform across technology generations and thus cache sizes. The
IPC of art, with its small working set size, is shown in Figure 3a. Figure 3b shows the same information for
a benchmark (mcf) that has a larger-than-average working set size. Figure 3c shows the harmonic mean IPC
across all benchmarks.

First, the IPC improvements of D-NUCA over the other organizations grows as the cache grows larger.
The adaptive nature of the D-NUCA architecture permits consistently increased IPC with increased capacity,
even in the face of longer wire and on-chip communication delays. Second, the D-NUCA organization is
stable, in that it makes the largest cache size the best performer for twelve among sixteen applications we
examined. Figure 3a shows this disparity most clearly in that D-NUCA is the only organization for which
art showed improved IPC for caches larger than 4MB.

5 Summary and Conclusions

This work is the first to propose novel designs for large, wire-dominated on-chip caches, but significant prior
work has evaluated large cache designs. Kessler examined designs for multi-megabyte caches built with
discrete components [7]. Hallnor and Reinhardt [4] studied a fully associative software-managed design
for large on-chip L2 caches, but not did not consider non-uniform access times. Powell et al. evaluate the
balance between incremental searches of the sets to balance power and performance [12], as NUCA caches
do with multicast versus incremental policies, and as Kessler et al. did to optimize for speed [8]. Other
researchers examined using multiple banks for high bandwidth, just as this work did to reduce contention.
Sohi and Franklin [15] proposed interleaving banks to create ports, and also examined the port demand of
L2 cache on less powerful processors than today’s. Many researchers have also examined adaptive cache
policies, a concept which is inherent in the D-NUCA organization. A good example is Dahlgren et al., who
studied creative ways to avoid conflicts in direct-mapped on-chip caches by virtually binding regions of the
address space to portions of the cache [2].

Although this work is the first to propose cache designs specifically targeted at wire delay scalability,
non-uniform accesses have already started to appear in high performance cache designs [11]. This paper
proposes several new designs that treat the cache as a network of banks and facilitates non-uniform accesses
to different physical regions. We have shown that these non-uniform cache access (NUCA) architectures
achieve the following three goals:

� Low latency access: the best 16MB D-NUCA configuration, simulated with projected 50nm technol-
ogy parameters, demonstrated an average access time of 17 cycles at an 8 FO4 clock, which is a lower
absolute latency than conventional L2 caches.

� Technology scalability: Increasing wire delays will increase access times for traditional, uniform
access caches. The D-NUCA design scales much better with technology than conventional caches,
since most accesses are serviced by close banks, which can be kept numerous and small due to the
switched network.

� Performance stability: The ability of a D-NUCA cache to migrate data eliminates the trade-off be-
tween larger, slower caches for applications with large working sets and smaller, faster caches for
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applications that are less memory intensive.

� Flattening the memory hierarchy: The D-NUCA design outperforms multi-level caches built in an
equivalent area, since the multi-level cache has fixed partitions that are slower than an individual bank.
This D-NUCA result augurs a reversal of the trend of deepening memory hierarchies. We foresee future
memory hierarchies having two or at most three levels: a fast L1 tightly coupled to the processor, a
large on-chip NUCA L2, and perhaps an off-chip L3 that uses a memory device technology other
than SRAM. Future work will examine a further flattening of the entire cache hierarchy into a single
NUCA structure.

Maintaining coherence among multiple NUCA caches presents new challenges. A variant of the partial
tag compare scheme of Kessler et al. [8] may make distributed snooping economical. Emerging chip mul-
tiprocessors (CMP) architectures will likely benefit from the flexibility and scalability of NUCA memory
systems. A natural organization places multiple processors and an array of cache banks on a single die. As
the workload changes, NUCA cache banks can be dynamically partitioned and reallocated to different pro-
cessors. Since the banks are individually addressable, the memory system may be reconfigured to support
different programming models–such as streaming or vector workloads–by sending configuration commands
to individual banks.

Finally, while the emergence of non-uniform cache latencies creates difficulties for some traditional
optimization techniques, such as load-use speculation or compiler scheduling, we view the emergence of
non-uniform accesses as inevitable. Those optimization techniques must be augmented to handle the non-
uniformity where possible, or simply discarded where not.
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