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Abstract

Power is a particular problem with scaling memory dis-
ambiguation hardware to future out-of-order architectures,
since the detection of memory ordering violations requires
frequent associative searches of state that is proportional
to the instruction window size. This paper proposes a new
class of solutions that reduces the energy required to order
loads and stores properly by an order of magnitude, poten-
tially enabling processors to scale to window sizes of hun-
dreds or thousands of instructions.

1. Introduction

Recently, several researchers have proposed mechanisms
that enable issue windows to be scaled to hundreds or thou-
sands of instructions [1, 5, 6, 11]. In these machines, hard-
ware must perform dynamic memory disambiguation to
guarantee that a memory ordering violation does not oc-
cur. Given that these systems employ out-of-order mem-
ory issue, the memory ordering requirements are threefold.
First, the hardware must check each issued load to deter-
mine if an earlier (program order) in-flight store was issued
to the same physical address, and if so, use the value pro-
duced by the store. Second, each issued store must check
to see if a later (program order) load to the same physi-
cal address was previously issued, and if so, take correc-
tive action. Third, the hardware should ensure that loads and
stores reach the memory system in the order specified by the
memory consistency model. In many processors, the hard-
ware that implements the above requirements is called the
load/store queue (LSQ).

One disadvantage with current LSQ implementations is
that the detection of memory ordering violations requires
frequent searches of considerable state. In a typical LSQ im-
plementation, every in-flight memory instruction is stored
in the LSQ. Thus, as the number of instructions in-flight in-

creases, so does the number of entries that must be searched
in the LSQ to guarantee correct memory ordering. As we
show in the next section, simply reducing the size of tradi-
tional LSQ designs for future machines causes an unaccept-
able drop in performance, whereas not doing so incurs un-
acceptable LSQ access latencies and power consumption.
These traditional structures thus have the potential to be a
significant bottleneck for future systems.

To mitigate these LSQ bottlenecks we implement low-
overhead hash tables with Bloom filters [2], a structure in
which a load or a store address is hashed to a single bit.
If the bit is already set, there is a likely, but not a certain
address match with another load or store. If the bit is un-
set therecannotbe an address match with another load or
store. We use Bloom filters to extend LSQs in two ways.
First, withsearch filtering, each load and store indexes into
a location in the Bloom filter (BF) upon execution. If the in-
dexed bit is set in the BF, a possible match has occurred, and
the LSQ must be searched. If the indexed bit is clear, the bit
is then set in the BF, but the LSQ need not be searched.
This scheme reduces LSQ searches by 73-98% depending
on the machine configuration. (b) Second, withpartitioned
search filtering, multiple BFs each guard a different bank
of a banked LSQ. When a load or store is executed, all the
BFs are indexed in parallel. LSQ searches occur only in the
banks where the indexed bit in the BF is set. This policy re-
duces both the number of LSQ searches and the number of
banks that must be searched in a banked LSQ. On average,
we reduced the number of entries to be searched by 86%.

With these schemes, we show that the power and latency
for maintaining sequential memory semantics can be signif-
icantly reduced. This reduction alleviates a significant scal-
ability bottleneck to higher-performance architectures that
may otherwise require large LSQs.

2. Conventional Load/Store Queues

Traditional LSQ designs have been effective for current-
generation processors with limited number of instructions



in flight. However, these traditional methods face several
challenges when applied to high-ILP machines with large
instruction windows. In this section we describe the range
of organizations of memory disambiguation hardware and
then show experimentally why solutions proposed to date
are poor matches for future high-ILP architectures.

2.1. Historical Memory Ordering Hardware

Initially, simple sequential machines executed one in-
struction at a time and did not require hardware for en-
forcing the correct ordering of loads and stores. With the
advent of speculative, out-of-order issue architectures,the
buffering and ordering of in-flight memory operations be-
came necessary and commonplace. However, the functions
embodied in modern LSQ structures are the result of a se-
ries of several older innovations, described below.

Store Buffers: In early processors without caches, stores
were long-latency operations. Store buffers were imple-
mented to enable the overlap of computation with the
completion of the stores. More modern architectures, like
the Power 4, have separated the functionality of the store
buffers into pre-completion and post-commit buffers. The
pre-completion buffers, now commonly called store queues,
hold speculatively issued stores that have not yet commit-
ted. Post-commit buffers are a memory system optimization
that increases write bandwidth through write aggregation.
Both types of buffers, however, must ensure thatstore for-
wardingoccurs; when later load to the same address (hence-
forth called matching loads) are issued, they receive the
value of the store and not a stale value from the memory
system. Both types of store buffers must also ensure that
two stores to the same address (matching stores) are writ-
ten to memory in program order.

Load Buffers: Load buffers were initially proposed to
temporarily hold loads while older stores were complet-
ing, enabling later non-memory operations to proceed [15].
Later, more aggressive out-of-order processors permitted
loads to access the data cache speculatively, even with
older stores waiting to issue. The load queues then became
a structure used for detecting dependence violations, and
would initiate a pipeline flush if one of the older stores
turned out to match (em i.e., have the same address as) the
speculative load. Processors such as the Alpha 21264 and
Power4 also used the load queue to enforce the memory
consistency model, preventing two matching loads from is-
suing out of order in case a remote store was issued between
them.

2.2. LSQ Organization Strategies

We show a simplified datapath for an LSQ1 in Fig-
ure 2(a). The queues are divided into CAM and RAM ar-
rays. Memory addresses are kept in the CAMs. The RAM
array holds store data, load instruction targets, and other
meta-information for optimizations. An arriving memory
instruction must perform two operations:searchand en-
try. To search the LSQ, the operation searches the CAM ar-
ray for matching addresses. Matching operations are emit-
ted to the ordering logic, which determines whether a viola-
tion has occurred, or whether a value needs to be forwarded.

The majority of LSQ designs have beenage indexed, in
which memory operations are physically ordered by age.
They are entered into a specific row in the CAM and RAM
structures based on an age tag that is typically assigned at
the decode or map stage and is associated with every in-
struction. In addition to determining the slot into which a
memory operation should be entered, the age tags are used
to determine dependence violations and forwarding of store
data as well as flushing the correct operations when a branch
is found to be mispredicted. Since age-indexed LSQs act
as circular buffers, they must be logically centralized and
also fully associative, since any memory operation may
have to search all other operations in the LSQ. Although
fully associative structures are expensive in terms of latency
and power, age indexing permits simpler circuitry for allo-
cating entries, determining conflicts, committing stores in
program order, and quick partial flushes triggered by mis-
speculations.

Previous Solutions: Dynamically scheduled processors,
such as those described by Intel [4], IBM [8], AMD [10]
and Sun [14], use age-indexed LSQs. An LSQ slot is re-
served for each memory instruction at decode time, which
it fills upon issue. To reduce the occurrence of pipeline stalls
due to full LSQs, the queue sizes are designed to hold a sig-
nificant fraction of all in-flight instructions (two-thirdsto
four-fifths). For example, to support the 80-entry re-order
buffer in the Alpha 21264, the load and store buffers can
hold 32 entries each. Similarly, on the Intel Pentium 4, the
maximum number of in-flight instructions is 128, the load
buffer size is 48, and the store buffer size is 32.

An alternative strategy that can be used for organizing
the LSQs is to logically break down the full associative LSQ
into a set associative structure and use addresses to index
into the LSQ sets. The ARB [9] used in Multiscalar and the
ALAT in Itanium are examples of address-indexed LSQs.
This LSQ approach often reduces performance, because the
machine must stall on potential set conflicts (structural haz-
ards), since setsmustbe able to contain every in-flight ad-

1 Typically, separate structures are built for the load and store queues
but to simplify the explanation we illustrate a single queue.
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dress that needs to fit into them. Since most addresses are
unknown statically, in the worst case, all addresses might
map to one set. Furthermore, ordering and partial flushing
of data become problematic when instructions to be flushed
reside in different sets.

2.3. Conventional LSQ Scalability

In this section, analyze the scalability of conventional
LSQs. We measured two configurations: High ILP (or
HILP) which assumed an Alpha 21264-like configuration
with perfect branch prediction and dependence prediction,
and low ILP (LILP), the same organization with realistic
branch and dependence prediction. We found that for a 512-
instruction window processor, having load and store queues
with 128 entries was essentially equivalent as having infi-
nite queues. However, halving the queue sizes to 64 entries
caused a large 20% performance drop for the HILP config-
uration, and a 5% performance drop for the LILP config-
uration. This result indicates that large performance losses
will result if the processor is able to keep its window rel-
atively full. Performance losses will also result from hav-
ing centralized LSQs, since future distributed microarchi-
tectures will be unable to access a centralized structure effi-
ciently.

2.4. LSQ Optimization Opportunities

Current-generation LSQs check all memory references
for forwarding or ordering violations, since they are unable
to diffentiate memory operations that are likely to require
special handling from others that do not. Only a fraction of
memory operations match others in the LSQs, however, so
treating all memory operations as worst case is unnecessar-
ily pessimistic.

Figures 1(a) and 1(b) show the fraction of matching in-
flight memory references for varying window sizes with
the LILP and HILP configurations respectively. The frac-
tion of matching addresses is extremely small for a window
comparable to current processors. With an Alpha 21264-
like window of 80 instructions with a realistic front end,
fewer than 1% of memory instructions match. For the LILP
configuration, a 512-instruction window sees 3% matching
memory instructions. This rate remains essentially flat un-
til the 4096-instruction window, at which point the match-
ing instructions spike to nearly 8%. The HILP configura-
tion, which has a much higher effective utilization of the is-
sue window, has matching instructions exceeding 22% for a
512-entry window, which slowly grow to roughly 26% for
an 8192-entry window.

Two results are notable in Figure 1(b). First, while the
matching rates are close to two orders of magnitude greater
than current architectures, three-quarters of the addresses in
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Figure 1. Percentage of matching memory in-
structions

these enormous windows arenot matching, indicating the
potential for a four-fold reduction in the LSQ size and/or
energy. Second, the growth in matching instructions from
1K to 8K instruction windows is small, hinting that there
may be room for further instruction window growth before
the matching rate increases appreciably (an infinite window
will have a matching rate of close to 100%, of course).

Many of these matching instructions, however, are arti-
facts of the compilation and may be good candidates for re-
moval. A significant fraction (approximately 50%) of the
matching instructions are stack and global references. It is
likely that more intelligent stack allocation and improved
register allocation to remove spills and fills can eliminate
many of the matching stack references.

3. Search Filtering

Even though the number of matching instructions is very
low the LSQs are not optimized for this case. With some
simple filtering hardware the unmatching instructions can
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be filtered from accessing the LSQ, thus making LSQs ac-
cesses efficient in the common case.

3.1. BFP Design for Filtering LSQ Searches

A Bloom filter predictor (BFP) can be used to eliminate
unnecessary LSQ searches for many operations that will
not match other entries in the LSQ. The BFP maintains an
approximate and heavily encoded hardware record–as pro-
posed by Bloom [2]–of the addresses of all in-flight mem-
ory instructions. Instead of storing complete addresses and
employing associative searches like an LSQ, a BFP hashes
each address to some location. In one possible implemen-
tation, each hash bucket is a single bit, which an memory
instruction sets when it is loaded into the BFP and clears
when it is removed. Every in-flight memory address that
has been loaded into the LSQ is encoded into the BFP. If a
new hashed address finds a zero, it means that the address
is guaranteed not to match other instructions in the LSQ,
so the LSQ does not need to be searched. The instruction
then sets the bit and writes it back. If a set bit is found by
an address hashing into the BFP, it means either that the in-
struction matches an entry in the LSQ or a hash collision (a
false positive) has occurred. In either case, the LSQ must be
searched. The BFP is fast because it is simply a RAM ar-
ray with a small amount of state for each hash bucket. Pre-
viously, Bloom filters were used by Pier et al. [16] used for
early detection of cache misses.

The BFP evaluated in this section uses two Bloom fil-
ters: one for load addresses and another for store addresses,
each of which hasN locations and its own hash function.
An issuing memory instruction computes its hash and then
accesses the predictor of the opposite type (e.g. loads ac-
cess the store table and vice versa). To detect multiproces-
sor read ordering violations, another Bloom filter with in-
validation addresses is also checked by loads. In this paper,
we focus on uniprocessor issues and do not evaluate an in-
validation filter.

3.1.1. Deallocating BFP Entries The bit set by a partic-
ular instruction should be cleared when that instruction re-
tires, lest the BFP gradually fill up and become useless. But
if multiple addresses collide, unsetting the bits when one
of the instructions retires will lead to incorrect execution,
since a subsequent instruction to the same address might
avoid searching the LSQ even though a match was already
in flight. There are several possible solutions to this prob-
lem.

Counters: One solution uses up/down counters in each
hash location instead of single bits. The counters track the
number of instructions hashing into a particular location.
Upon instruction execution the counter at the indexed lo-
cation is incremented by one and upon commit the counter
is decremented by one. The counters can either be made

sufficiently large so as not to overflow, or they can take
some other corrective action using one of the techniques de-
scribed below when they overflow. The use of count-based
Bloom filters was previously proposed by Fan et al. [7].

Flash clear: An alternative approach to using up/down
counters is to clear all of the bits in the predictor on branch
mispredictions. A pipeline flush guarantees that no mem-
ory instructions are in flight and hence it is safe to reset all
the bits. The flash clearing method has the advantage of re-
quiring less area and complexity than the counters, but has
the disadvantage of increasing the false positive rate.

Hybrid solution: A third approach that mixes the previous
two involves freezing a counter when it overflows, so that
all addresses that hash to that set perform LSQ searches.
When the number of frozen hash buckets grows too large,
a pipeline flush can be initiated to bring down the matching
rate. Our results have shown that 3-bit counters are suffi-
cient for most table locations, for both load and store BFPs.

3.1.2. BFP Results Table 1 shows a sensitivity analysis
of the BFP false positives for a range of parameters, vary-
ing four factors: two predictor sizes which are one and
four times the size of each load and store queue, the two
hash functionsH0 andH1, flash and counter clearing, and
the three microarchitectural configurations used: the Alpha
21264, LILP, and HILP. The flash clearing results are not
applicable to HILP because they rely on branch mispredic-
tions, and HILP assumes a perfect predictor.

The first hash function,H0, uses the lower-order bits of
the address to index into the hash table, incurring zero de-
lay for hash function computation. The second hash func-
tion, H1, uses profiled heuristics to generate an index us-
ing the bits in the physical address that were most random
on a per-benchmark basis.H1 incurs a delay of one gate
level of logic (a 2-input XOR gate). As a lower bound, we
include the expected number of false positives that would
result, given the number of memory instructions in flight
for each benchmark, assuming uniform hash functions. The
rate of false positives is the arithmetic mean across the 19
benchmarks we used from the SPECCPU2000 suite.

As expected, the table shows that the number of false
positives decreases as the size of the BFP sizes increase
simply because of the reduced probability of conflicts. Flash
clearing increases the number of false positives significantly
over count clearing. The count clearing works quite effec-
tively, especially using theH1 hash function, showing less
than a 2% false positive increase over the probabilistic lower
bound. This result indicates that moderately sized BFPs are
able to differentiate between the majority of matching ad-
dresses and those that have no match in flight. BFPs are suf-
ficiently fast; the lookup delay of all table sizes presented
herein is less than one 8FO4 clock cycle at a 90nm technol-
ogy.
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Configuration Alpha 21264 LILP HILP
BFP Size 32 128 128 512 128 512

Hash Type Clearing MethodH0 Counter 93.7 (5.7) 97.8 (1.6) 88.7 (8.4) 95.1 (2.0) 63.2 (15.0) 73.3 (4.3)H1 Counter 95.5 (3.9) 98.0 (1.4) 91.3 (5.7) 95.0 (2.0) 67.5 (10.1) 73.4 (4.2)H0 Flash 39.5 (59.9) 50.2 (49.2) 66.1 (30.2) 71.1 (25.9) n/aH1 Flash 45.4 (54.0) 57.2 (42.2) 69.8 (27.2) 76.7 (20.4) n/a
Expected False Positives 2.8 1.0 5.7 1.7 9.6 2.8

Table 1. Percentage Activity Reduction and Percentage of False Posi tives (in brackets) for Various ILP Config-
urations and BFP Sizes
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Figure 2. Monolithic and Partitioned LSQ Or-
ganization

3.2. Partitioned BFP Search Filtering

BFPs prevent most non-matching addresses from incur-
ring expensive LSQ searches. In this section, we extend the
BFPs to reduce the cost of LSQ searches when they oc-
cur. A distributed BFP (or DBFP), shown in Figure 2(b),
is coupled with a physically partitioned but logically cen-
tralized LSQ. One DBFP bank is coupled with each LSQ
bank, and each DBFP bank contains only the hashed state
of those memory operations in its LSQ bank. Memory in-
structions are stored in the LSQ just as in previous sec-
tions, but an operation is hashed into the BFP bank associ-
ated with the physical LSQ bank into which it is entered in-

stead of a larger centralized BFP as in the previous section.
Before being hashed into the BFP bank, however, the ad-
dress’ hash is computed and used to search all DBFP banks,
which are accessed in parallel. The parallel lookup trades
up-front energy for a reduced number of associative LSQ
bank searches, for a net energy savings. Any bank that in-
curs a BFP “hit” (the counter is non-zero) indicates that its
LSQ bank must be associatively searched. All banks find-
ing address matches raise their match lines and the correct
ordering of the operation is then computed by the ordering
logic.

Depending on the LSQ implementation, the banking of
the LSQ may have latency advantages over a more phys-
ically centralized structure. If only a subset of the banks
must be searched consistently, then the power savings will
be significant in a large-window machine. Figure 3 presents
the distribution of number of banks that are searched on
each BFP hit (the non-filtered accesses) for both the HILP
and LILP configurations, varying the number of LSQ banks
from 4 to 16. The cumulative DBFP size was held at 512
entries for the different banking schemes. The results show
that a DBFP can reduce the number of entries searched on
a BFP hit appreciably. For the LILP configuration, 60% to
80% of the accesses result in the searching of only one bank.
For the HILP configuration, 80% of the searches use four or
fewer banks.

4. Conclusions

Conventional approaches for scaling memory disam-
biguation hardware for future processors are problematic.
Fully associative load/store queues that can handle all in-
flight memory operations will be too slow and consume too
much energy as reorder buffers grow. On the other hand,
our analysis shows that smaller structures, which flush or
stall on resource hazards, will incur significant performance
penalties. For example, in a 512-entry window machine, re-
ducing the load and store queues (LSQs) from 128 to 64 en-
tries each results in a 21% performance loss.

In this paper, we proposed a range of schemes that use
approximate hardware hashing with Bloom filters to im-
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Figure 3. Partitioned State Filtering for Banked LSQs and BF Ps

prove LSQ scalability. These schemes fall into two broad
categories:search filtering, reducing the number of expen-
sive associative LSQ searches, andstate filtering(described
in an earlier version [18]), in which some memory instruc-
tions are allocated into the LSQs and others are encoded in
the Bloom filters.

The search filtering results show that by placing a 4-
KB Bloom filter in front of an age-indexed, centralized
queue, 73% of all memory references can be prevented
from searching the LSQ, including 95% of all references
that do not actually have a match in the LSQ. By bank-
ing the age-indexed structure and shielding each bank with
its own Bloom filter, a small subset of banks are searched
on each memory access; for a 512-entry LSQ, only 20 en-
tries needed to be searched on average. The Bloom filters
can also be placed near partitioned cache banks, prevent-
ing a slow, centralized LSQ lookup in the common case of
no conflict.

Emerging Issues: As instruction windows grow to thou-
sands of instructions, hardware memory disambiguation
faces severe challenges. First, the number of operations in
flight with the same address will grow. Second, communi-
cation delays will force increased architectural partitioning,
rendering a centralized LSQ impractical. Third, the area oc-
cupied by the disambiguation hardware will grow forcing
designers to look for area-efficient implementations.

In the past year, several researchers have proposed some
solutions to the above problems. Park et al. [12] propose us-
ing the dependence predictor to filter searches to the store
queue. Cain and Lipasti [3] propose a value-based approach
to memory ordering that enables scalable load queues.
Roth [17] has proposed combining Bloom Filters, address-
partitioned store queues, and FIFO retirement queues to
construct a high-bandwidth load store unit.

We foresee several promising directions towards a com-

prehensive solution to the above problems. First, by im-
proving both dependence predictors and Bloom filter hash
functions, effective state filtering may make distributed,
area-efficient LSQ partitions coupled with cache partitions
feasible. Second, software can help by partitioning refer-
ences into classes preventing false conflicts as well, reduc-
ing in-flight address matches by renaming stack frames, and
perhaps even explicitly marking communicating store/load
pairs (as done in hardware by Moshovos and Sohi [13]).
These techniques could ultimately lead to the most area,
power and latency-efficient disambiguation hardware.

Memory disambiguation mechanisms are fundamental
for maintaining sequential memory semantics. Approxi-
mate hardware hashing with Bloom filters provides an ex-
citing new space of solutions for designing scalable and ef-
ficient disambiguation hardware. These structures may also
find use in other high-power parts of the microarchitecture,
such as highly associative TLBs, issue windows, down-
stream store queues, or other structures not yet invented.
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