A version of this paper appears in the 23rd International Symposium on Computer Architectyufie9day Reprinted by permission ofGM

Memory Bandwidth Limitations of Future Microprocessors
Doug Buger, James R. Goodman, and Alain K&agi

Computer Sciences Department
University of Wsconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706 USA
galileo@cs.wisc.edu - http://wwes.wisc.edu/~glileo

Abstr act techniques for reducing the frequgrand impact of cache misses.
These include lockup-free caches [28, 40], cache-conscious load
This paper mads the case that pin bandwidth will be a critical scheduling [1], hardere and softare prefetching [6, 7, 13, 14,
consideation for futue micoprocessos. W& show that many of 26, 32], stream ddfers [24, 33], speculat loads and&cution
the tetiniques used to tolate gowing memory latencies do so at [11, 35], and multithreading [30, 38].

the pense of in@ased bandwidthreguirements. Using a decom- It is our typothesis that the increasing use and success of
position of &ecution timgwe show that for modern quesscs lateng-tolerance techniques willkkpose memory bandwidth, not
that employ ggressive memory latency toterce tebniques, raw access latencies, as a more fundamental impediment to higher

wasted cycles due to infiofent bandwidth gnerlly exceed those performance. Increased latgndue to bandwidth constraints will
due to aw memory latencies. Given the importance of maximizing emege for four reasons:

memory bandwidth, we calculatdfective pin bandwidth then
estimate optimal &ctive pin bandwidth. ®/measw these quan-
tities by determining the amount by whigoth cabes and mini-
mal-traffic cades filter accesses to the lowerdés of the memory
hierarchy. We see that theris a gap that canxeeed two aders of

1. Continuing progress in processor design will increase the
issue rate of instructions. These adees include both archi-
tectural inneation (wider issue, speculedi execution, etc.)
and circuit adences @ster denser logic).

magnitude between the total memorgflic geneated by cakes 2. To the atent that latengtolerance techniques are successful,
and the minimal-affic cahes—implying that the potentiatists they will speed up the retirement rate of instructions, thus
to increase déctive pin bandwidth substantiall\e decompose requiring more memory operands per unit of time.

this traffic gap into four factas, and show thecontritute quite 3. Mary of the lateng-tolerance techniques increase the abso-
differently to taffic reduction for diferent benbmarks. W con- lute amount of memory tréid by fetching more data than are
clude that, in the short term, pin bandwidth limitations will mak needed. Thealso create contention in the memory system.
more comple on-tip cadies cost-déctive For example flexible 4. Packaging and testing costs, along withwpo and cooling

cadhes may allow individual applications thaose fom a ange
of cading policies. In the long term, we qulict that ofchip
accesses will be sxgensive that all system memory wélide on
one or moe piocessor hips.

considerations, will increasingly fatt costs—resulting in
slower, or more costlyincreases in défchip bandwidth than
in on-chip processing and memory

The factors enumerated al® will render memory band-
width—particularly pin bandwidth—a more critical arxpensve
resource than it is todagiven the comple interactions between
memory lateng and bandwidth, heever, it is difficult to deter-

cessor requests has significant ramifications for the design ofMine whether memory-related processor stalls are duewto ra
microprocessors in the xtedecade. &hnological trends ke memory lateng or increased lategdrom insuficient bandwidth.
produced a lare and graing gap between CPU speeds and Current metrics (such_asverage memory access tlme) (_Jlo not
DRAM speeds. The number of instructions that the processor can@ddress this issue. This paper therefore separsgesition time
issue during an access to main memory is alreadg l&xtrapo- into three catgories: processing time (wh_lch includes idle time
lating current trends suggests that soon a processor may be able {USed by lack of instructionvel parallelism [ILP]), memory

issue hundreds owven thousands of instructions while it fetches a 12t€ny stall time, and memory bandwidth stall time.
single datum into on-chip memory Assuming that a gwing percentage of lostycles are due to

Much research has focused on reducing or tolerating theseinsuﬂ‘icient pin bandwidth, the performance of future systems will

. increasingly be determined by (i) the rate at which tktereal
large memory access latencies. Researchems m@posed man memory system can supply operands, and (iiy Biectively on-

chip memory can retain operands for reuse. By retaining operands,

This work is supported in part by NSF Grant CCR-9207971, an unre- n-chio memor h ster nd other structur n
stricted grant from the Intel Research Council, an unrestricted grant from.O -chip memory (caches, gieters, a other structures) ca

the Apple Computer Adanced €chnology Group, and equipment dona- '“ﬁ?eﬁse éﬁptl\/e pIn ba?lqv;’:jdt?h By. m?asurlng thectent to t
tions from Sun Microsystems. whnich on-chip memaory shields the pINs Trom processor requests,

we can determine Romuch computational peer a gven package
Copyright 1996 (c) by Association for Computing Machiner/CA). Per- can support.

mission to cop and distrilute this document is hereby grantedvinled The miss rate prades a good estimate of tfiafreduction for
that this notice is retained on all copies and that copies are not altered. ~ simple caches. Since matechniques can trade increasedficaf

1 Introduction

The graving inability of memory systems takp up with pro-

for decreased latepdi.e., more cache hits), miss rate is not the
best measure of tifiégd reduction for more comptememory hierar-
chies. The use dfaffic ratios[18, 20]—the ratio of trdic belov a
cache to the tréit above it—provides a more accurate measure of
how on-chip memories changdesdtive of-chip bandwidth.

Improving the trafic ratio increases thefettive of-chip band-
width, improving performance in systems that stall frequently due
to limited pin bandwidth. \& propose a me metric, calledraffic
inefficiency which quantifies the opportunity for reduction in the
traffic ratio. We define trdfc inefficiengy as the ratio of tréit gen-
erated by a cache and some optimally-managed menibiy
quantity gves an upper bound on the achigle efective band-
width for a gven memory size, package, and program. By decom-
posing trafic inefficiengy into individual components, we can
identify where the opportunities lie for imptiag efective pin
bandwidth through tréit reduction.

Section2 of this paper both defines oweeution time decom-
position and gies a detailed justification for our claim that
lateng-tolerance techniques willxpose pin bandwidth con-
straints in future systems. In Secti®nwe present measurements
that decomposexecution time for an aggressi processor and a
range of latengtolerance techniqgues—shimg that bandwidth
stalls will indeed be significant for such processors. Sedtion
defines trdfc ratio and dective pin bandwidth. \& then present
measurements of tfaf ratios for a range of caches, and compute
their efective pin bandwidths. Sectidh defines and measures
traffic inefficiencies, computes an upper bound ofeative pin

bandwidth, and uses these results to propose and measure son

cache impreements. FinallySection6 concludes with a descrip-

tion of possible solutions (both short-term and long-term), related

work, and a summary of our main results.

2 Decomposing program execution time

As the performanceap between processors and main memory
increases, processors areelikto spend a greater percentage of
their time stalled, waiting for operands from memory¥he com-
plexity of both modern processors and modern memory hierar-
chies maks it dificult to identify precisely wh a processor is
stalling, or what limits its utilization (or IPC).

To understand where the time is spent in a comptecessaqr
we dvide eecution time into three caeries: processor timg
latency time andbandwidth timé* Processor time is the time in
which the processor is either fully utilized, or is only partially uti-
lized or stalled due to lack of ILRateny time is the number of
lost g/cles due to untolerated, intrinsic memory latencies. By
“intrinsic” we mean memory latencies in a contentionless system;

A. Latency reduction fp | fL | fg
Lockup-free caches ? 1 1
Intelligent load scheduling 1 ! 1
Hardware prefetching ? 1 1
Software prefetching 1 1 1
Speculative loads 1 1 1
Multithreading ? ! 1
Larger cache blocks ? 1 1

B. Processor trends fo | fL | fs
Faster clock speed 1 1 1
Wider-issue ! ? 1
Speculative (Multiscalar) ! ? 1
Multiprocessors/chip ! 1 1

C. Physical trends fp | fL | fg
Better packaging technology 1 1 1
Larger on-chip memories 1 ! !

Table 1: Estimated effects on execution divisions

completes in oneycle). Let T, be the gecution time of the pro-
gram assuming an infinitely-wide path in between eacH & the
memory hierarch °p,, f|, f; are computed as folis:

fo=Tp/T)
fL=T/T = (T, =-Tp)/T)
fg=Tg/T = (T=-T)/T ©)

This characterization ofxecution time can be cwerted easily
into CPI, if that is the metric of interest. These threegmates can
be brolen davn further to isolate indidual parts of the system.
This enables us to estimate more accurately the performance
impact of imperfect components in a comxpheodern processor—
the performance of which cannot be calculated directly froen-a
age memory laterycand miss rate.

Tablel presents predictions of Wwahe fraction of time lost to
bandwidth stalls will change for future machines. verg rov of
TableslA and 1B, we see that the normalized fraction of band-
width stalls is increasing. The technological auses listed in
Table1C will mitigate the relatie increases of bandwidth-related

latencies that could not be reduced by adding more bandwidth installs. Sectiong.1 and 2.2 xplain the trends that we present in

between leels of the memory hierarghBandwidth time is the
number of lost CPUycles due both to contention in the memory
system and to insfi€ient bandwidth betweenvwels of the hierar-
chy. This partitioning scheme is superior to usimgrage memory
access time, which neither separatesaacess lateydrom band-
width restrictions, nor translates directly into processor perfor-

TableslA and 1B. Section®.3 and 2.4 describe the ysical
trends listed in @blel1C. These latter tov subsections describe
why the plysical increases in fefctive memory bandwidth will be
insufiicient to satisfy the increased bandwidth needs of future pro-
Cessors.

mance (e.g., four simultaneous cache misses in a lockup-free2-1 Latency-reduction techniques

cache will appear as one cache miss Iateadhe processpbut
will be counted as four distinct misses when calculatveyame
memory access time).

Let Tp, T,, Ty be a partitioning of some prograsméxecution
time, T, spent in each of these three gares (processing,
lateny, and bandwidth, respeatily). Leti,, f, f; be these times
normalized toT. Let T, be the recution time of the program
assuming a perfect memory hierardhe., eery memory access

1. Our decomposition is similar to that used hyntdthannasis et al. to
measure cache performance ettor supercomputers [27].

Improved techniques for reducing and tolerating memory
lateny can increasé ;—the percentage ofxecution time spent
stalled due to institient memory bandwidth. Reduction of mem-
ory latengy overhead {|) aggraates bandwidth requirements for
two reasons. First, mgnof the techniques that reduce latenc
related stalls increase the total fimbetween main memory and
the processoiSecond, the reduction 6f increases the processor
bandwidth—the rate at which the processor consumes and pro-
duces operands—hby reducing totebeution time.

The combination of lockup-free caches [28, 40] and careful
scheduling of memory operations that arelljito miss [1, 16] is a

(a) Pin count increases (b) Performance increases per pin (c) Performance over pin bandwidth

1000 3.2+ 16+
21164 © R10000
PAB00Q R10000 1.0 SSparc2 © <]
Harpl 1.3 UIlraSparc8 o0
© R10000 ° 0.64 P6 O, N6
- - P6 PAB000 :
500 UltraSparc. €] 68060 Harp1oyitraSparc
Fo 21164 0.5 Ssparc2 0.40 °
berum ° §Haml o8040 58060
p i ~ 0254
2 - o 0.2 68040 Pentium @ BOéSB ° °
£ 250 e ’ 2
s 25 - 6%060 c R3000 S 0.6+ ° Pentium
ks} 80486 68040 © =3 68030 © c
5 e © ssparc2 9 008+ 68020 © 80486 & 01004 68000 68030 R0 PAB000
2 80386 68030 R3000 s (<] = o 68020 ©
E 1 e, e© { 0.084 °
z) 0.03— 80386 S
) [
-~ "68020 680000 = 0,040 80386
80286 0.01] 0.025-]
64— P e
68000 0.016]
- 0.005— 8086
8086 80286 0010 © 80286
4] 8086 ° °
° 6
32 T T T T T T T T T 0.002 T T T T T T T T T 1 0.00 T T T T T T T T T 1
1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997
Year Year Year

Figure 1. Physical microprocessor trends

method of hiding memory latencies. Although this technique doeslevel caches, thus increasing the miss rate, and therefore the total
not increase the amount of fiafto main memorylockup-free traffic.

caches wrsen bandwidth stalls by aling multiple memory The emegence of single-chip multiprocessorswid substan-
requests to issue—making queueing delays possible in the memtially increase the number of data loaded petec The increased

ory system. Furthermore, the presence of lockup-free caches willbandwidth results primarily from multiple concurrently-running

likely encourage more speculatiexecution. contets, hut also because of shared-cache interference. The pri-
Both softvare [6, 8, 26, 32] and hardwe [13, 14] prefetching mary barrier to the implementation of single-chip multiprocessors

techniques can increase frafto main memory They may will not be transistorailability but off-chip memory bandwidth.

prefetch data too earlycausing other references toict the If one processor loses performance due to limited pin bandwidth,

prefetched data from the cache before their usey Ty also then multiple processors on a chip will lose fnore performance

evict needed data from the cache before their use, causingran e for the same reason.

cache miss. Streanuffers [24, 33] prefetch unnecessary data at Finally, throughout the computer industthere is an increas-

the end of a stream. Thalso flsely identify streams, fetching ing software emphasis on visualization, graphics, and multimedia.

unnecessary data. Speculatiprefetching techniques—such as These codes tend tovealage data sets, with much floating-point

lifting loads abee conditional branches [35]—increase memory computation. Taditional caches are remarkably ieetive at

traffic when&er the speculation is incorrect. reducing the bandwidth requirements of these types of codes [5].
Multithreading increases processor throughput by switching to The increased use of this type of safter may thereforexacer-

a different thread when a long-latgnoperation occurs [30, 38]. bate bandwidth limitations.

Frequent switching of threads will increase interference in the . -

caches and TLB, heever, causing an increase in cache misses and 2-3 Physical limits

total trafic. Poorer cache performance—resulting from the The rate of increase of processor pins has traditionally been

increased size of the threads’ combinearking set—may déet much slever than that of transistor densitplthough lage

some or all of theans of_ the latenctolerance. _ _ increases in pin counts V& recently occurred—and significant
Finally, larger block sizes may decrease cache miss rates. Misspreakthroughs in packaging technology undoubtedly lie on the

rate impraement occurs until the coarser granularity of address horizon—the issues of reliabilitpower, and especially cost will

space ceerage (i.e., the reduced number of blocks in the cache)prevent pins from sustaining gath in numbers commensurate
overshadws the reduction in misses obtained by fetchingdear it the gravth rate of processor performance.

blocks. Een when lager blocks reduce the miss ratewiever, the Figurel shavs trends in pin, performance, and-cfip band-

increased trdic may cause bandwidth stalls that outweigh the width from 1978 to 1997. & compiled this data by hand, from

miss rate Impreements. both the processors’ original manuals and back issué4iab-
processor Report. All three y-aves use log scales. The xeaxuse a

2.2 Advanced processors linear scale.

Several factors other than latepeeduction techniques will Figurelaplots the number of pins per processor from 1978 to
increase the needed bandwidth across the processor moduld997- V¢ see from the dotted line that pin counts are increasing by
boundary These dctors include adinced processor design tech- aPout 16% per yeakore striking is the result in Figutb, which
niques and shifts in characteristic uniprocessmkioads. plots processor performa}r?cper pin \ersus time. The va perfor-

As processors getster they consume operands at a higher Mance Per pin is also increasingplosively, despite the rapid
rate. Rster processor clocks run programs in a shorter time, NCTEASE In pin count s in Flgurela. . - .
increasing dfchip bandwidth requirements. Other processor Packages anduses are designed to pite suficient of-chip

enhancements (such as widsue processors) also redugeai- bandwidth to each generation of processors. FigiGrewhich
tion time and increase needed bandwidth. plots the rav performance-to-package bandwidth ratrerctime—

Processors that rely hety on coarse-grained speculaiexe- shavs that performance increases are quickly outstripping the

cution to increase ILP—such as thés@onsin Multiscalar [39]—

increase memory tréié wheneer they must squash a task after an 1. Performance here is measured AXWIPS for the 680x0 and early
incorrect speculation. Multiple distinctecution units in such pro- ~ 80x86 processors, and issue width times clock rate for the others. These
cessors canxecute diferent parts of the instruction stream simul- two measures cannot be compared direttly are suffcient to viev 20-
taneously This &ecution may reduce locality in sharedywér year trends.

growth in rav peak package bandwidth. Tha-BO0O aberration
results from that processsrfack of on-chip caches, necessitating
an uncharacteristically lge package with a high clock rate.
Though feasible today from a cost standpoint, this designgjrate
is unlikely to persist gry far into the future (as discussed in
Section4.3).

Processors to date Ve succeeded ineeping a balance
between their data requirements awudilable memory bandwidth.
The cumulatre efect of the trends and limits described in this sec-
tion will make this balance increasingly harder to aghj@mecessi-
tating changes in theay memory systems are designed. These
changes will be especially important when we include the cost of
adding suicient bandwidth to future high-performance proces-
sors, since the costs of g@r packages gwsuperlinearly. Cost-
sensitve commodity systems will be particularly sengtio the
need for packages that cost too much.

The pin interfce is not necessarily the only point in the system
where a memory bandwidth bottleneck could arise. Although
bandwidth out of commodity DRAMSs is presently a concern, high-
bandwidth DRAM chips ha&e already appeared on the meirk
(extended data-out, enhanced, synchronous, and BaBDRAMS
[34]). DRAM banks are thus unky to become a long-term per-
formance bottleneck. The memonyshis the other possible bottle-
neck, particularly for bs-based symmetric multiprocessors
(SMPs). Wdening the bs is a viable solution, as is shifting to a
point-to-point netwrk if the hus becomes too great a bottleneck
for future SMPs. W believe that among the processor pings,b
and DRAM interice, continued increases in processor pin band-
width will be the hardest to sustain.

2.4 On-chip memory increases

Consider a future processto be designed as a falleon to a
current processoiSuppose for simplicity that the wmeprocessor
will have four times as mangates as the current processor

@

(b)

computation

@

processor

ops or bytes

@
—/blw

1984 87 90 93 96
year

[ops or bytes]/second

1984 87 90 93 96
year

Figure 2. Pr ocessing vs. band width ¢ hanges

Algorithm | Memory | Comp. (C) | Memory traffic (D) C/ID
™M O(N?) | O(N3) O(N3/./5) Jk
Stencil O(N2) O(N2) O(N2/ ./3) Jk
FFT O(N) | O(Nlog,N) | O(Nlog,N/log,S) | log,k
Sort O(N) | O(Nlog,N) | O(Nlog,N/log,S) | log,k

Table 2: Application gr owth rates

S, the sides of both matrices axeelements, and « N. Previous
work shaved [21, 29] that the trA€ between the on- andfathip
memories is proportional t&N3/L +N2. Assume that the proces-
sor is suficiently fast for the implemented algorithm to eafull
adwantage of the on-chip memomyolding N constant keps the
amount of computation constant. If the on-chip memory is
increased, the program generates lesshop trafic, allowing the
program (assuming a reasonabj@ to complete in less time. An

Assume that the area ratio between processor and on-chip memorincrease in the on-chip memory byaator of four veuld increase

is unchanged. Ho will the off-chip bandwidth requirements
change for this e chip?

Figure2 shavs the two opposing décts that increasing tech-
nology will hare upon the balance betweedn and fg. These
graphs are qualita® and do not represent real data. Fiae
shavs the graving gap between processor bandwidthofds con-
sumed per second) andf-chip bandwidth. This trend increases
fg at the &pense off .

Figure2b shavs the reduction in éfchip trafic that occurs as
on-chip memory size gves per year—enabling greater reuse of
operands. & a gven program and input, the amount of computa-
tion will remain constant, Wi the of-chip trafic will decrease.
This efect produces the oppositefeft of the technology cues
on Figure2a—f , grows at the gpense off ;.

The \ertical arravs in the graphs represent the quantity of each
trend at a gien yearlf the arrav marled (1) increaseaséter than
that marled (2), processors will tend to become more memory
bandwidth-bound. Carsely if (2) increases dster than (1),
memory limitations will become less of an issue for\aewgipro-
gram.

For mary algorithms the computation gvs faster than do the
memory requirements o example, the corentional algorithm of
matrix multiply (multiplying two N x N matrices) has total mem-
ory requirements that groas O(N?2), while computation gres as
O(N3). Intuitively, then, we might xpect the processing require-
ments gentually to @erwhelm the bandwidth limitations, increas-
ing f, and decreasingy.

We performed an analysis similar to Hong andnés 1/0
complity analysis [21] to she that this agument is misleading.
Consider the carentional matrix multiplication, using a tiled
algorithm where tiles are of size, the on-chip memory is of size

L by two, which would reduce the &tchip trafic by nearly half.
Therefore,fg will not decrease so long as thepgmarled by (1)
also increases by adtor of tvo.

For the future processor with four times as yngates, the pro-
cessing speed must increase only byaetdr of tw (i.e., the
square root of the increase in memory size) for the balance
betweenf, and f, to remain unchanged. Historicallgrocessor
speedup (een ignoring &ster technology) has been greater than
the square root of the transistor count.

Table2 shavs such deviations for the follaiing algorithms:
TMM (tiled matrix multiply), Stencil (an algorithm operating on a
N x N matrix, which repeatedly updates each element with a
weighted sum of neighboring elements), FFT Kgpoint fast Fou-
rier transform), and Sort (mge sort). The right-most column
depicts the change in the ratio of computation to required memory
traffic for each application, aS (on-chip memory size) increases
by a factor ofk. If this quantity gravs slawver than the processing
speed asS increases,f, will decline. W& belize that such
improvement in processing p@r is attainable, at least forveeal
more generations, and thatm(1) will continue to outpaceg (2)
in Figure2.

3 Measuring execution time decomposition

In this section we shwo that bandwidth stalls increase as pro-
cessors and memory hierarchies become more aggresith
lateny tolerance. W measure and decompose tkecation time
of six machines that va a range of lategetolerance mechanisms
in the processor and memory hierarch

Benchmarks | Number !Z)ata set Inputs
SPEC92 refs (M) [sizes (MB)

Compress 21.9 0.41 1000000 byte file

Dnasa2 181.0 0.18 FFT, MxM=128x64x64

Eqntott 221.1 1.63 int_pri_3.eqn

Espresso 22.3 0.04 m p4 only

Su2cor 163.4 1.53 in.short

Swm 50.6 0.93 180x180, 50 iter.

Tomcatv 104.2 3.67 256x256, 10 iter
SPEC95

Applu 383.7 32.38 33x33x33 grid, 2 iter.

Hydro2D 263.7 8.71 test data set, 1 iter.

Li 471.3 0.12 test.lsp

Perl 1280.8 25.70 jumbl e. pl

Su2cor 533.8 22.53 test data set

Swim 267.4 14.46 test data set

Vortex 1180.3 19.87 test data set

Table 3: Benchmark trace lengths and inputs

3.1 Methodology

Our benchmarks consist ofves from the SPEC92 suite [42]
and seen from the SPEC95 suite [43].e\¢elected the bench-
marks based on twfactors: whether thyeprovided a reasonable

SPEC92 SPEC95
L1 cache 128KB unified 64KB |, 64 KB D
Direct-mapped
On-chip, 1-cycle access
L1/L2 bus 128 bits wide
bus/proc clock: 1/3 bus/proc clock: 1/4
L2 cache 1MB 2MB

4-way set assoc.
Off-chip, 30 ns access
64 bits wide
bus/proc clock: 1/3 | bus/proc clock: 1/4
90 ns access
Infinite banks

L2/memory bus

Memory

Table 4: Memory system simulation parameters

Experiment A | B | C D | E | F
Processor in-order issue out-of-order issue
Branch pred. 8K 16K
Cache blocking lockup-free

L1/L2 blocks | 32/64 | 64/128 32/64

SPEC92 parameters / SPEC95 parameters

Speed (MHz) 300/400 300/600
RUU slots 16/64 64/128
L/S Q entries 8/32 32/64

Table 5: Processor simulation parameters

range of data set sizes and types of computation, and whether their
simulation times were tractable (or could be made so by reducingimplemented only one prefetching scheme: tagged prefetch [17].

input parameters, without aking the simulation results).

We assume that our blocking caches can still service hits when

The three intger SPEC92 programs that we used are Com- they are processing a miss.

press, Espresso, and Eqntott. The four floating-point-iensi
SPEC92 codes are Su2c8wm, Dmcaty and Dnasaz2 (tavof the
Dnasa7 krnels—the tw-dimensional FFT and the 4ay unrolled
matrix multiply). The three inteer SPEC95 codes are Li, Perl, and
Vortex. The four floating-point SPEC95 codes are Applu,
Hydro2d, Swim, and Su2coiMe present results for both the
SPEC92 and SPEC9&nsions of Su2cpand Swm (Swim), since
they are diferent \ersions with difierent inputs. @ble3 lists the

inputs that we used to generate the traces for each benchmark.

Table5 lists the six eperiments (called\-F) that we ran for
each benchmark. ExperimemsC use an in-order issue, fouay
superscalar processor with aottevel branch predictor and tw
load/store units. ExperimenBsF assume a processor that uses an
out-of-order issue mechanism based on thgidter Update Unit
(RUU) [41], with support for speculag loads. Experiment3 and
E are identical xcept thatE uses the tagged prefetching scheme
(as doesxperimentF).

It Taple5 shavs hav mary entries the branch prediction table

also lists both the number of memory references that we simulateohmds, as well as the cache block sizes, processor speed, number of

(in millions) and the data set sizes for each benchmark.

We used the SimpleScalar tool set [4] to measurexteudon
time of simulated processors that use a MIP&-iistruction set.
SimpleScalar usesecution-drven simulation to measure&eru-
tion time accuratelyit includes simulation of instruction fetching
and system calls. ®/added a more detailed, multi#¢ memory
hierarcly simulator that includes us contention. & list the
parameters for the simulated memory systemainld4. We made
the memory system slightly more aggressior the SPEC95 runs

by doubling the L2 cache size and splitting the L1 cache into sepa-

rate instruction and data caches. Ths-to-processor clock fre-

RUU entries, and the number of entries in the load/store queaie. W
assumed more aggressiprocessor parameters for the SPEC95
runs; thg are shan in Table5. Finally we assume that multi-
plexed data/address lines are used only on the main merasyy b
that all channels are bidirectional, that all memories return the crit-
ical word first, and that we ka an infinitely-deep writeuffer.

3.2 Decomposition results

Figure3 graphs gecution time normalized to the processing
time (T,) of experimentA, for each benchmark andperiment.

queng ratio is smaller for the SPEC95 runs because we simulateThe bars are split into processingcles, rav lateny stall g/cles,

faster processors for SPEC95—the absolute ¢peeds are the
same ordster for the SPEC95 runs.

To measuré,, f, f; (derived in Sectior?), we eecute three
simulations for eachxperiment. © obtainT,, we run a simula-
tion in which eery load and store hits in the L1 cache (oyde).
We measurd, by simulating a memory hierarglassuming infi-
nitely-wide paths between adjacentdks of the hierargh Finally,
we measurd by simulating the full memory system.

The lateng-tolerance techniques weauate here are the fol-

and limited bandwidth stallycles. The number atop each bar rep-
resents the fractions of the bars that are bandwidth gtadisc
Experiments andE shav reductions inf, due to the out-of-
order execution engine. The most aggressout-of-order proces-
sor) speeds up some benchmarks (Su2cor92, Swnu®2catv)
but not others. The SPEC95 benchmarksaslitile reduction in
execution time forF because the less-aggressprocessorsiE)
that we used for the SPEC95 runs assumegerdrase out-of-
order windev (64 RUU entries ersus 16 for the SPEC92 runs).

lowing: increased cache line sizes, the use of lockup-free cachesThis lager base winde captures much of theailable ILR leas-

out-of-order &ecution with speculate loads, and prefetching.eNV

ing little additional ILP for gperimentF to capture.

2.5

13
: I
E 20 BHos
< - f_B (limited biw stalls)
= 7
S 1.5 1 .30 08 _2 04
é . I 020 '0'102'2 oF . f_L (raw latency stalls)
0] .0001Q0 H I= H
5 - 000201 09 . f_P (compute time)
7} 1.0 []
N -00.0101 0710 .07 10
g ' 20 uf= 6 .6 H 15
S 0.5 [m 15 n
Z]
0.0-
ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
Compress Eqgntott Espresso SuZ2cor Swm Tomcatv
SPEC92 benchmarks
2.4 —
15 .15
: 0. .
£ 2.0 .19.19
pt 12 I I
9 1.6 T
= ,14 10 0 06 2
3 ul 0 01.00 B T i [T4 o
3 1.2 I 07.02 i 18.187 (1R
g = it
3 23
= 0.8+ | -5'5 .05.05.06 16 &
IS 10 []:.13.15 [.21 54
5 g == "
zZ 0.4+ -
0.0 X X
ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
Applu Hydro2d Li Perl Su2cor Swim Vortex
SPEC95 benchmarks
Figure 3. Effect of latency-reduction techniques
Exp. Compress Su2cor92 Tomcatv Applu Hydro2D Perl Swim95 Vortex
Stal fL fg fL fg fL fg fL fg fL fg f fg f fg f fg
A 46.8 32 || 246 26 || 30.0 21 || 109 | 15.0 || 294 | 118 - || 25.2 6.0 || 40.6 | 14.9
F 256 | 31.0 35 | 16.3 51 | 184 4.0 | 110 || 20.6 | 24.8 ||37.0 | 16.0 31| 241 || 56.1 | 16.7

Table 6: Comparing latency and bandwidth stalls for experiments A and F

Using lager block sizes has threefeafts: increasing both except Applu. The relation between latgrand bandwidth stalls
lateny and bandwidth stalls (Compress), reducing latestalls reverses when we simulate an aggnesdgilateng-tolerant proces-
but increasing bandwidth stalls (Su2cor92), or reducing both sor In experimentF, fg is greater tharf, for every benchmark
(Swm92 and ®mcatv). The performance impact correlates except for \ortex and Perl (andy is still significant for both, at
directly with the amount of spatial locality that the cache can 16.7% and 16% of totakecution time, respectly).
exploit for each program. Pvaling a lockup-free cacheC)
changes performanceeny little for all benchmarks; the small 4 Calculating effective pin bandwidth
reductions inf, are all nearly dset by corresponding increases in
fg. Lamger reductions irf, are visible when the out-of-order core
is added D) to the non-blocking caches.

Section3 shaved that stalls caused by infcient memory
bandwidth become significant as processors and memory hierar-
chies attempt to tolerate memory latencies more aguyedsDn-

The most important point that Figu8emales, havever, sup- chip memory plays a crucial role in reducind-ctip trafic [18].
ports the thesis of this paper: as the lagenecluction techniques This reduction increases thefegftive pin bandwidth, as seen by
are applied, the bandwidth limitationt;§ become more sere, the processorWhen pin bandwidth limits performance, it is
generally graving lamger than the stalls due towdateny (f,). important to quantify h@ much the on-chip memory increases
Table6 shavs hav the relation betweefy andfg; changes when effective pin bandwidth by reducing tfaf across the pins.
experimentF is compared tox@erimentA. The benchmarks we We therefore measure theaffic ratio of a range of caches,

list here are those that are not cache-bound (Espresso, Eqgntott, anghich allovs us to calculate fefctive pin bandwidth for a gén
Li). In experimentA, f, is greater tharfg for every benchmark processarHill and Smith proposed using tfiafratios to galuate

the extent to which a cache reducasshirafic [20]; we generalize
their metric to multiple on-chip \els of cache. ér a level i in the
memory hierarciy we obtain the data tféd ratio (R;) by dividing
the trafic between leelsi andi + 1 (D;) by the trafic between le-
elsi—1andi (D;_,):

R =Di/D;_; (4)

For simple caches with a write-through pyli& can be calcu-

Compress and Su2cor generate mordidrafith even a 64KB
cache than wuld a cacheless system. Compress repeatedly
accesses a hash table, so its memory reference stream contains lit-
tle spatial locality (a layer block size will consequently aste
bandwidth). Su2cor iteratewver seeral lage arrays, seral of
which conflict hesdily in its main routine until the cache size
reaches 64KB. In contrast to Su2cBwm has roughly the same
traffic ratio from 16KB to 1MB cache sizes. Swm iteratesro

lated directly from the cache miss rate, the number of issued loaddarge arrays, with a reference pattern that contains little locality
and stores, and the cache block size. A write-back cache decouplegnd no smallarking sets [36]. 8mcatv displays similar betiar.

the direct correlation between miss rate anditradtio. Miss rate
becomes a crude approximation of fiafatios for complicated
memory hierarchies: a lockup-free cache may combinentigses
with one response from memoprefetching increases tfiafmore
than it reduces the miss rate, future instruction sets xicidy
move data betweenvels of the memory hierarghand supporting
variable transfer sizes me it dificult to measure cache tfiaf
accurately with miss rate alone.

We use the tr&it ratio at each kel in the hierarch to calcu-
late the dective bandwidth to the mxé lower level of the hierar-
chy. By dwiding the bandwidth from ieel i + 1 of the memory
hierarcly by R;, we obtain theeffective bandwidth from level
i +1. By taking

E. = —pin (5)

wherek is the number of leels of on-chip caches, arg};, is the
pin bandwidth for the processor in question, we obEgjn, which
is the efective pin bandwidth seen by the processor

4.1 Simulation methodology

We used trace-drén simulation to measure memory fiafor
various cache sizes and configurationg W8ed QPT to generate
traces [19]. The traces contained data memory referemtamob
instructions. QPT handles doubles memory accesses by con-
secutvely issuing the tw adjacent single-ard addresses.

In general,R, ranges between 0.1 and 1.0 for caches that are not
overly lamge or small for a gen program.

Since the SPEC92 benchmarks’ data sets are rg#, liese
results are consemtive—malry of these programs run out of the
caches and techniques designed to tolerate long latenviteba
effect.

The generation of machines that these benchmarks were
designed to test did notV&on-chip caches lger than 64KB. W
therefore calculated the arithmetic mean of Hyefor all caches
with sizes greater than or equal to 64KB and less than the data set
size of each benchmark. The mean across all benchmaks w
0.51. While this estimate cannot be applied to arviddal pro-
gram/cache combination, it igif to say that for these benchmarks,
reasonably-sized on-chip caches reduce thfictfedm the proces-
sor by about half.

4.3 Extrapolating pin bandwidth r equirements

With our trafic ratios in hand, we o extrapolate pin grath
and processor performance, to see what sort of packages we will
likely need a decade hence. Figlise shavs the rate of gneth of
processor pins from 1978 to tod&ye see that the number of pins
on processors is increasing at about 16% per year (the dotted line
on Figurela plots this function).

If we conseratively assume a gveth rate of 60% in sustained
microprocessor performance—which has been less than the
growth rate for the past decade [2]—we can estimate future
increases in bandwidth requirements. Assuming that both of these
trends persist, and that on-chip fiafratios remain about the

We used the Dinerolll cache simulator [19] to perform our same; we see that in a decade the processor of 2006 véllaha
cache simulations. The simulations used the same benchmarkﬁackage with tw or three thousand pins. &v with this lage

(SPEC92 only) and inputs ship in Table3. We calculate trdic
ratios by running Dinero, andwililing the total treffc by the prod-
uct of the loads and stores issued and the load/store sital “T
traffic” in this case includes write-back tfiafbut not request traf-

fic (i.e., addresses). &\also flush the cache upon program comple-

tion, writing back all dirty data. ®/include these flushed write-

backs in our trdfc measurements. Our results contain only data

access, not instructions or TLB misses.

4.2 Measued traffic ratios

Table7 shavs trafic ratio measurements for a range of single-
level, direct-mapped, 32-byte-block, write-allocate, write-back
cache sizes. Wsav similar results for caches with higher associa-

package, the bandwidth requiremepes pin will be a factor of 25
greater than those of today

If processors are not to be limited byf-ohip bandwidth, at
least three possibilitiexst (for the processor of 2006):

« Industry may manage tauitd cost-efective, seeral-
thousand-pin packages cl@zkat seeral GHz.

¢ Industry may insteaduild a cost-dective package
with ten thousand pins and clock it between 0.5 and 1
GHz.

« Improved on-chip trdfc ratios increase ffctive pin
bandwidth more than thedo today—reducing the
need for such huge packages.

The third option listed alve is the least costlyio evaluate the

tivities. The “<<<” symbol indicates that the cache size in question potential for package size reduction-veri a fixed quantity of on-

is lamger than the benchmaskdata set size. &\consider this area
of the experiment space to be uninteresting, siRcwill always
approach 0 when the program runs out of the cache.

WhenR, = 1.0, a cache generatesaetly as much total tri€
to memory as wuld &ist with no cache. It is well kiven [20] that

small caches can generate morefigahan a cacheless reference

chip memory—the né section gperimentally measures an upper
bound on hev much efective pin bandwidths may be imped.

5 Improving effective pin bandwidth

We hae shevn that when a processor emygoaggressie

stream; &ble7 demonstrates this result with 1-4KB caches for lateng tolerance, it may spend much time stalled because of lim-
more than half of our benchmarks. If a block is replaced quickly ited memory bandwidth. In Sectidnwe quantified the amount by
after its first use—or if there is little spatial locality associated with which on-chip memory mitigtes this performance loss. In this

the access that caused the miss—the other sixven ssords
loaded with the 32-byte block are superfluous.

section, we calculate a rough upper bound éectfe pin band-
width by simulating caches that minimizé-ohip trafic.

Trace 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB | 256KB | 512KB 1MB 2MB
Compress 3.03 1.96 1.76 1.59 1.46 1.29 1.10 0.82 0.43 <<< <<< <<
Dnasa2 3.40 2.87 1.34 0.94 0.73 0.62 0.29 0.05 << << <<< <<<
Egntott 1.04 0.67 0.55 0.47 0.43 0.39 0.34 0.27 0.18 0.11 0.06 <<<
Espresso 1.43 0.68 0.39 0.20 0.08 0.01 << << << << <<< <<<
Su2cor 7.44 7.32 6.88 6.11 4.75 2.99 1.43 0.82 0.61 0.29 0.13 <<<
Swm 5.83 5.41 3.94 1.79 0.63 0.60 0.59 0.58 0.58 0.56 <<< <<<
Tomcatv 2.96 291 2.54 1.48 0.87 0.75 0.74 0.73 0.72 0.71 0.33 0.24

Table 7: Traffic ratios f or 32-byte block, direct-mapped cac hes

5.1 Traffic inefficiency

To evaluate what percentage of the possiblditraéduction a
cache achies, we measureaffic ineficiency—defined as the
ratio of trafic produced by the cache in question and thdidraf
produced by a perfectly-managed cache. Wl call this “perfect
memory” anMTI'C, for minimal-traffic cadhe

The trafic inefficiency for level i in the memory hierargh G; ,
is therefore:

D

- cache2 1
DMTC

Gi (6)
where D ., is the trafic generated by the cache atdki, and
Dyrc Is the trafic generated by aMITC of the same size andvid
as the cache.

A memory oganization with aG; = 1 is therefore perfectly
managed, in terms of memory fiafreduction. Lage \alues ofG;
indicate a memory ganization that generates much moreficaf
below it than is necessary

The trafic inefficieney of a cache allws us to compute an
upper bound on &fctive pin bandwidth. This upper bound is only

cache block that the processor will reference furthest in the future
(or a block that the processor willvez reference ain).

The m n policy is not optimal for write-back caches, since
there is an additional cost associated with replacing a dirty block.
Horwitz et al. proposed an algorithm to manage optimal replace-
ment in the presence of write-backs [22]e \khplemented only
the mi n algorithm, and not the optimal write-conscious Horwitz
algorithm. W believe that the disparity between theotg small,
and therefore not arth the additional compkéty of simulating
the Horwitz algorithm. The tr&€ inefficiencies presented in the
following section are therefore not minimaltkare neertheless
an aggresse bound.

We assumed write-back caches because, fVlad) a write-
back poliy will always generate less tfiafthan a write-through
policy. Them n policy will make the write bypass the cache if its
line will not be read before it is replacede\Also assumed a write-
validate polig [25], in which the cache block is allocated lwer
writing it with the store data. This pojiavill always generate less
traffic than allocate-on-write because both KieC's transfer and
address blocks are onerd.

We used QPT and Dinero to measig,,, for the cache traf-

valid if the processor model remains unchanged; it is possible tofic term of G. We wrote our wn two-pass simulatpiwhich also
change the memory reference stream and therefore further reducesed QPIgenerated traces, to perform tNEC simulation and

traffic.

Let OE,, be the upper bound onfedtive pin bandwidth.
Using trafic ratios and trdic inefficiencies, we can compute this
upper bound as folles:

()

A simpler expression for this bound is possible using thditraf
ratio of theMTI'C, but Equation/ uses terms for which we present
measurements in this paper

5.2 Measuring a minimal-traffic memory

If we consider only loads from main mempmeasuring an
MTC is straightforvard. A cache (discounting stores) generates the
minimum possible trét if it has the folleving characteristics:

« full associatity,

« the transfer size is equal to the requestize,

« it uses an optimal replacement pgliand

« suficiently low-priority loads can bypass the cache.

If we consider only reads, the optimal replacement patc
Beladys m n policy [3]. Theni n policy chooses the replacement
victim from a set (in this case the entire cache) \agtiag the

1. We assume requests of feuyte words for all &periments.
2. A bypass occurs when a miss hasneloreplacement priority than yn
thing else in its set (which is in this case the entire cache).

obtainDy,rc . The trafic measurements for both simulators include
the same components (e.g., write ficdfas did the trdic ratio
experiments.

5.3 Measuring traffic inefficiency

Table8 shavs that there is a wide disparity oélues forG
across the benchmarkseViissumed direct-mapped, 32-byte block
caches for thesexperiments. Bur of the benchmarks typically
have G greater than 20 and less than 100 (Compress, Egntott,
Espresso, and Su2cor)ven for lage caches. The other three—
Dnasa2, Swm, andomcatv—typically hae G between 2 and 10.
These three benchmarks are all scientific codes that display little
temporal locality thus the reference stream contains less opportu-
nity for optimization by a smarter cache. Theg&jump to & of
124 for Swm with a 1MB cache occurs becauseMR€ (being
fully associatie) is able contain the entire data set in the cache.
Conversely conflicts between lge data structures malkcaches
with associatiities of less than four (inclugtly) require a size of
4MB to contain the entire data set.

Overall, these numbers demonstrate that there is a significant
opportunity to increase fetctive pin bandwidth, between one and
two orders of magnitude, by making better use of the on-chip
memory We naw turn to determining whichattors contribte to
these lage qaps. Figurel shaws a log-log plot of trdic measure-
ments (in KB) ersus cache sizes, for three SPEC92 benchmarks.
For brevity, we include only Compress, Eqntott, and Swm, since
they are somehat representate of the other benchmarks. The top
six lines in each graph represent dynset-associate caches with
block sizes from 4B to 128B. The thick dotted line represents a
fully-associatve, m n-replacement cache that uses a write-allo-
cate, write-back polic The thick solid line represents the write-

Trace 1KB 2KB 4KB 8KB 16KB 32KB 64KB | 128KB | 256KB | 512KB 1MB 2MB
Compress 25.3 18.4 18.7 19.5 21.9 25.5 29.2 30.7 325 << << <<
Dnasa2 6.2 6.6 6.2 4.7 4.1 4.6 7.0 10.0 << <<< << <<
Eqgntott 56.3 38.7 34.5 35.8 49.7 94.4 100.5 94.1 72.7 47.7 28.6 <<
Espresso 18.2 18.8 26.3 40.4 82.2 28.9 << <<< <<< << <<< <<<
SuZ2cor 14.1 14.5 15.1 16.4 17.2 21.9 20.1 25.7 40.3 28.7 35.8 <<
swm 22.7 23.4 17.2 7.9 2.8 2.7 2.8 3.0 3.5 5.4 124.1 74.8
Tomcatv 6.4 6.6 6.2 3.9 2.3 2.0 2.0 2.0 21 2.4 1.6 3.7

Table 8: Traffic inefficiencies f or 32-byte block, direct-mapped cac hes
1077 — (a) Compress 1078 — (b) Eqgntott
1076 — 1077 —
$ 10 8 10764
2 Q
‘T 10M ® 1075
[= [
1073 - 1074 -
1072 T T T T T T | 1073
64 256 1K 4K 16K 64K 256K 1M 6
Cache and MTC size (bytes)
1077 —
1076 —
- T - - 128B blocks —
—mm— s 648 blocks 8 10754
—— —— —— —— 32Bblocks b
______ 16B blocks % 10M -
"""""" 8B blocks =
4B blocks
"""""" MTC with write-allocate 1073+
MTC with write-validate
1072 T T T T T T T T

64 256 1K 4K 16K 64K 256K 1M 4M
Cache and MTC size (bytes)

Figure 4. T otal traffic g enerated by diff erent cac he and MTC siz es

validate, write-backMTI'C that we used for all tri€ inefficiency

calculations. Lage gaps between a line and th&C line indicate

large trafic inefficiencies.
There are threeattors visible on Figuré that contrinte to

large gaps between cache aMIC traffic. The first is increased
block size. Compress has little spatial localgince most of its
accesses are to a hash tabley Arcrease in block size causes a
corresponding increase in tiiaf The same &ct is visible for
Eqgntott (to a lessex&nt), and for Swm when the cache sizes are
smaller than about 32KB. Swm st spatial locality for layer
caches because thetm words in lager blocks are used when the
block is not quickly replaced—when a smatinking set fits in the

recently shwed [45] that, for small caches, greater seldyti
about what is cached can significantly reduce memoryictraf
Table9 shavs hav each &ctor change& for one cache size per
benchmark. W set all cache sizes to 64KBcept for Espresso, to
which we assigned a cache size of 16KB (because of its small data

set). The wlues in the table shothe change in tr&€ inefficiengy

as eachdctor is toggled. 8ble10 lists the pairs ofxperiments

(Expl and Exp2) run to isolate indiual factors. The x@eriment

columns list the replacement pglicet associatity, block size (in

bytes), and write polic for each gperiment. V¢ measured the

traffic effects of block size for both LR andmni n-replacement

caches (eperiments Il and 1V). All gperiments (gcept for Exp2

cache. The seconddtor is associatity, which causes the lge

gap between caches and MEC for Swm at 1MB. The thirdaictor

contributing much to the cacherC traffic gap is the write-ali-
date polig, which causes the majority of thegfor Eqntott.

In addition to block size, associaty, and write-alidate, there

are two factors that enable adl'C to generate less tfaf than

caches. Thesadtors are cache bypassing and replacementypolic
(m n vs. LRJ). To better understand which of thesetbrs are

significant, we isolate and list four of thesetbrs in Bble9. We
did not isolate cache bypassing asetdr; havever, Tysonet al.

in experiment V) assumed a write-allocate, write-back golic

These &ctors are not independent. Our complete set of results
shaved that impreing one &ctor tends to diminish the magnitude
of anotherparticularly if the &ctors are laje. What is most signif-
icant about @ble9 is the lack of anone fctor that dominates the
others, across all benchmarks. Thetér that maés the lagest
consistent contrilition to trafic reduction, not surprisinglyis
reduction of block size. Our results do not consider requefittraf
which increases with smaller block sizes, and thus may be biased
in favor of smaller blocks.

Benc hmark Compress Dnasa7 Eqntott Espresso Su2cor Swm Tomcatv
Cache size 64KB 64KB 64KB 16KB 64KB 64KB 64KB
Associativity 1.8 -3.8 0.5 73.0 8.4 0.1 1.6
Replacement 12.0 8.4 31.0 3.9 4.6 0.3 0
Blocksize (cache) 25.0 2.7 47.0 68.0 14.0 0.3 1.3
Blocksize (MTC) 14.0 0.4 37.0 35 5.0 0.3 0.2
Write validate 1.2 1.2 31.0 1.0 1.2 1.3 0.7

Table 9: Inefficienc y gap f or diff erent optimizations

Repl. & write polic y, assoc., b k. size

Factor Expl

LRU, 1a, 32B, WA
LRU, fa, 32B, WA
LRU, 1a, 32B, WA
MIN, fa, 32B, WA

MIN, fa, 4B, WA

Exp2
LRU, fa, 32B, WA
MIN, fa, 32B, WA
LRU, 1a, 4B, WA
MIN, fa, 4B, WA
MIN, fa, 4B, WV

I. Associativity

Il. Replacement

II. BIk. size (cache)
IV. Blk. size (MTC)
V. Write validate

Table 10: Experimental parameter s for Table 9

Using the mi n replacement polic has surprisingly small
effect. This is because a better replacement ypdienefits only
codes that hae an intermediate amount of localiache replace-
ments occur infrequently for codes thavdauficient locality—

radical etension to the on-chip memory systems is tovalibe

compiler to manage some data allocation and/ement. Br

example, the kinds of analyses performed fdedive register
allocation might be readilyx¢éended to include otheaviables that
are stored in memory\e are currently westigating both hw

novel hardvare can be controlled by sofive, and he software
might tale adwantage of this opportunity

Another short-term solution increasindeetive of-chip band-
width is compression. Researcheryeh@roposed and/or imple-
mented schemes to use compression for data [9], addresses [12],
and code [10]. All of these schemes increasect#fe bandwidth
to memory at thexgense of somexéra hardvare on the CPU (and
at memoryin the case of the data and address compression).

A more radical technique than compression, which increases
effective of-chip bandwidth, is to lgn building computational

reducing the benefits of better replacement policies. Codes thatbility into the memory system. The processould then be able

have little temporal locality (such as Swm) hardly benefit from a
better replacement pojic These results shothat most bench-
marks can greatly reduce their total fimto memory but require
different sets of cache parameters per benchmark to do so.

The wide ariance in performance based on block size—for
systems which tolerate latgnand are at least partially limited by
insufficient memory bandwidth—indicates that machines of the
future will likely have programmable mechanisms to suppart-v
able block sizes. Allwing software-controlled transfer sizes will
permit each application to optimize its frafbased on its refer-
ence patterns—Ilge transfers to minimize requesteschead if
there is sufcient spatial localityand small transfers in the absence
of spatial locality This philosopk can be rtended to the other

to issue primitres more peerful than simple reads or writes, per-
haps gen method imocations with the appropriategamments. The
memory system wuld perform the computation locally and return
the result. The idea of “smart memory” is certainly not,r®it we
may be entering an era when it becomes cdetiafe.

A large percentage of todaytypical processor chip is already
devoted to on-chip memonyWhen enough transistors area:
able, a greater capacity on-chip will be more important than ha
ing all of the on-chip memory beast memory DRAMs may
initially appear on multi-chip modulesyubwill eventually also be
incorporated onto the CPU die itself, asvm@manugcturing pro-
cesses are deloped. V¢ are currentlywaluating the design space
for mixing DRAM and SRAM on-chip, determining the bestyw

cache parameters, and may become necessary as good use of Q- eploit the etremely high bandwidths attainable from on-chip
chip memory becomes essential to sustaining reasonable perforpramM banks.

mance.

6 Futuresolutionsand summary

Both limited of-chip bandwidth and gming relatve memory
access latencies V& the potential to seriously giede program
performance. Aggresg lateng-tolerance techniques must be
implemented with discretion, as thhave the potential to arsen

Looking further into the future, we eision a point at which
off-chip communication is soxpensve that all of the system
memory resides on the processor chip (or module). If a system
designer wishes to prime more memory than isailable on-chip,
another of these homogenous, processor/memory modules is
added. Ofchip accesses thus simply become communication with
another processoand accesses to remote dateehaore in com-

performance if memory bandwidth, not untolerated access laten-Mon with a pagesult than with a cache miss. Whether this point is

cies, is the primary bottleneck for avgin program. The potential
to overcompensate for latey¢olerance will be particularly acute
with future processors that rely wilg on speculation to achie
high performance.

A range of techniques for dealing with thewitag expense of
off-chip accessesxst—aba/e and bgond the brute force xpen-
sive solution of mying more bandwidth to the memory systene W
have shavn that the potentiabésts to use on-chip memory much

reached by migrating computational ability into the DRAM sys-
tem, or by migrating DRAM onto the processor (or both), the end
result is the same. Figubeshavs an @ample of such a system, in
which there is no “dumb” main memomnd cache banks are dis-
tributed among the on-chip DRAM bankseWelieve that this is
how future systems will be designed.

We are currently westigating an gecution model for such sys-
tems, for both uniprocessor and multiprocessorkivads. Gien

more efectively, greatly reducing the number of requests that must the limited on-chip memorymultiprocessors are clearly the

be made dfchip. Not surprisinglyno single technique enggd
for making better use of the on-chip memoFhis fact suggests

method of choice forxploiting programs with oldous parallel-
ism. For less-easily parallelized programs, sophisticatglorith

that future designers should consider on-chip memory systems thatechniques emplong some form of data-parallelism, or possibly

are more fleible, alloving the programmer or compiler to tune the

extensions to ESP as proposed for the Masbemory Machine

on-chip memory system parameters (such as block size). A morg15], might pravide competitie performance.

chip 0 chip 1

|
-]|_
I (I

chip 3

1

Board-level interconnect

chip 2

- Processor logic D SRAM cache . DRAM bank

Figure 5. A unified pr ocessor/DRAM system

6.1 Related work

A large wlume of wrk on caches appears in the literature,
though most has focused on reduction in latemgnoring the
memory bandwidth constraints. Smétclassic sumy [37] delin-

eated the fundamental issues concerning caches, including the

importance of memory bandwidth. Goodman recognized the
importance of a simple memory hieraycfor reducing memory
bandwidth, particularly in a multiprocessovgnnment [18]. Hill

and Smith subsequently measured the trafieloétween miss
ratio and trdfc ratio by \arying block and subblock sizes [20].
McNiven and Daidson looled at reducing tr8t between adja-
cent levels of the memory hierargH31]. Sugumar and Abraham
developed an ditient method for simulating caches using itfie
policy [44]. More recentlyTyson et alstudied vays to bypass the

cache with infrequently-referenced data, thereby reducing miss[2]
rates [45]. Huang and Shen studied minimal required bandwidths

for current processors [23]. Theonsidered only program-gener-
ated \alues, hwever, without quantifying actual program address
behaior.

6.2 Summary

This paper has shm that aggresgé implementations of
lateng/-tolerance techniques in future processors wipose
memory bandwidth, particularly pin bandwidth, as\sese perfor-
mance bottleneck. ®Vfirst sureyed a wide range of these tech-
niqgues and qualitately shaved that each one xacerbates
bandwidth limitations, either directly or indirectie also quali-
tatively analyzed technology trends, shiog that future technol-
ogy is likely to aggraate the bottleneck of the chip boundary
permit quantification of future bandwidth limitations, we decom-
posed gecution time into processingades, rav memory lateng
stall g/cles, and limited bandwidth stafaes. Using this decom-
position, we measured Wwobandwidth stalls increase, as proces-
sors tolerate memory latencies more aggvelsi For our
applications running on our most aggressprocessorwe sav
that the stall gcles due to bandwidthxeeeded latencstall g/cles
in all cases bt two. Excluding those benchmarks that fit comfort-
ably in the cache, the stalyaes due to bandwidth limitations
ranged from 11% to 31% of the programs’ toteé@ition time.
These measurementsviasignificant implications for the designs
of future processors. Theaalso call into question thealidity of
studies that assume a perfect memory system.

Given the increased importance of pin bandwidth as a precious

resource, we introduced the notionefiéctive pin bandwidth-the

pin bandwidth as seen by the processor when the on-chip cache

are considered. ¥ usedtraffic ratios to compute déctive pin
bandwidth, and measured these ratios for a range of programs and
cache sizes. Wfound that comparatly laige caches eliminated
about half of the processgenerated tréit for our small bench-
marks. Vi then introduced the notion wéffic ineficiency which
places an upper bound on the amount by which caches can reduce
traffic. This bound enabled us to compute the maximal theoretical
effective pin bandwidth for a gen cache and evkload. \\¢ mea-
sured this bound for a range of programs and cachesirghthat
effective pin bandwidth could in theory be increased by up o tw
orders of magnitude—through better management of on-chip
memory We decomposed thisag into indvidual factors, and used
these results tovaluate one and proposeveel schemes for
improving trafic ratios, thereby mitigting pin bandwidth limita-
tions. Finally we proposed a number of solutions that range from
the neaterm to the long-term. &/ hypothesize that all system
memory will ezentually be coupled with the processor on the die,
enabling leels of performanceaf bgond what we can achie

today

Acknowledgments

We thank the mgnpeople who gve us insightful comments on
both this vork and this paper: Mark Hill, Guri Sohi, fiid Wood,
Kazuaki Murakami, Alvy Lebeck, Ross Johnson, Mark Callaghan,
and Stednos Kaxiras. \& also thank @dd Austin for his &luable
assistance with the simulationvimonment. Finally we thank the
anorymous referees for theirxeemely detailed and helpful
reviews.

References

[1] SantoshG. Abraham, Rabid. Sugumar B.R. Rau, and Raji
Gupta. Predictability of Load/Store Instruction LatenciesPia-
ceedings of the 26th International Symposium onddichitecture,
pages 139-152, December 1993.

Forest Basktt. Keynote addressinternational Symposium on
Shaed Memory MultippcessingApril 1991.

L. A. Belady A Study of Replacement Algorithms for artval-
Storage ComputeiBM Systemsalirnal, 5(2):78-101, 1966.

Doug Buger and ©ddM. Austin. Ewaluating Future Microproces-
sors: the SimpleScalaio®l Set. Echnical Report 1308, Computer
Sciences Department, Weisity of Wsconsin, Madison, WI, April
1996.

DouglasC. Bumer, Alain Kagi, and JameR. Goodman. The
Declining Efectiveness of Dynamic Caching for General-Purpose
Microprocessors. dchnical Report 1261, Computer Sciences
Department, Uniersity of Wsconsin, Madison, WI, January 1995.
David Callahan, K¥n Kennedy and Allan Porterfield. Softave
Prefetching. InProceedings of thedurth Symposium on éritec-
tural Support for Pogramming Languges and Opeating Systems
pages 40-52, April 1991.

Tien-Fu Chen and Jean-Loup BaArPerformance Study of Soft-
ware and Hardere Data Prefetching Schemes.RAroceedings of
the 21st Annual International Symposium on Computehitec-
ture, pages 223-232, April 1994.

William Y. Chen, ScotA. Mahlke, Pohu@&. Chang, and h mei

W. Hwu. Data Access Microarchitectures for Superscalar Proces-
sors with CompileAssisted Data Prefetching. Rroceedings of the
24th International Symposium on Miarchitecture, pages 69-73,
November 1991.

Daniel Citron and Larry Rudolph. Creating aidé Bus Using
Caching Echniques. IfProceedings of theifst International Sym-
posium on High-Brformance Computer &hitecture, pages 90-99,
January 1995.

RobertP. Colwell, RobertP. Nix, JohnJ. O’'Donnell, Daid B. Pap-
worth, and BulK. Rodman. A VLIW Architecture for a réce
Scheduling Compilerin Proceedings of the Second Symposium on
Architectural Support for Pogramming Languges and Opeting
Systemspages 180-192, October 1987.

(3]

(3]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Stefanos Damianakis, Kai Li, and Anne Rogers. An Analysis of a
Combined Hardware-Softvare Mechanism for Speculati Loads.
Technical Report TR-455-94, Princeton Uity Princeton, NJ,
April 1994.

M. Farrens and APark. Dynamic Base Ryster Caching: A &ch-
nique for Reducing Address Busidth. Proceedings of the 18th
Annual International Symposium on ComputerchiXectue,
19(3):128-137, May 1991.

John WC. Fu and Janald. Patel. Data Prefetching in Multiproces-
sor \ector Cache Memories. IRroceedings of the 18th Annual
International Symposium on Computerciiitectue, pages 54—63,
May 1991.

John WC. Fu, Janakl. Patel, and Bolh.. Janssens. Stride Directed
Prefetching in Scalar Processbir Proceedings of the 25th Interna-
tional Symposium on Micarchitecture, pages 102-110, December
1992.

Hector Garcia-Molina, Richardl Lipton, and Jacoboales. A
Massve Memory MachinelEEE Transactions on ComputgrC-
33(5):391-399, May 1984.

Kourosh Gharachorloo, Anoop Gupta, and John Hennesding
Memory Lateng using Dynamic Scheduling in Shared-Memory
Multiprocessors. IrProceedings of the 19th Annual International
Symposium on Computerdhitecture, pages 22—-33, May 1992.
J.D. Gindele. Bufer Block Prefetching MethodBM Tech. Disclo-
sure Bull, 20(2):696-697, July 1977.

JamesR. Goodman. Using Cache Memoryp Reduce Processor
Memory Traffic. In Proceedings of the 10th Annual International
Symposium on Computerchitecture, pages 124-131, June 1983.
Mark D. Hill, JamesR. Larus, AlvinR. Lebeck, Madhusudharalf
luri, and Daid A. Wood. Wisconsin Architectural Researctodl
Set.Computer Achitectue Nevs, 21(4):8—-10, August 1993.

Mark D. Hill and AlanJay Smith. Experimental Biuation of On-
Chip Microprocessor Cache Memories.Rroceedings of the 11th
Annual International Symposium on Computechitectule, pages
158-166, June 1984,

Jia-Wei Hong and HT. Kung. I/O Complgity: the Red-Blue Peb-
ble Game. InProceedings of the 13th Symposium on Theory of
Computing pages 326-333, May 1981.

L. P Horwitz, R.M. Karp, R.E. Miller, and A.Winograd. Indg
Register Allocation. Journal of the £M, 13(1):43-61, January
1966.

Andrev S. Huang and Johr Shen. A Limit Study of Memory
Requirements Using alue Reuse Profiles. IRroceedings of the
28th International Symposium on Miarchitectue, pages 71-81,
December 1995.

NormanP. Jouppi. Impreing Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associaé Cache and Prefetch
Buffers. In Proceedings of the 17th Annual International Sympo-
sium on Computer Ahitectule, pages 364-373, May 1990.
NormanP. Jouppi. Cache Write Policies and PerformanceRrb:
ceedings of the 20th Annual International Symposium on Computer
Architectue, pages 191-201, May 1993.

AlexanderC. Klaiber and Henril. Levy. An Architecture for Soft-
ware-Controlled Data Prefetching. IRroceedings of the 18th
Annual International Symposium on ComputechXectule, pages
43-53, May 1991.

L. I. Kontothanassis, RA. SugumarG.J. Raanes, JE. Smith, and
M. L. Scott. Cache Performance iedfor Supercomputers. Fro-
ceedings of Supeomputing '94 pages 255-264, Nember 1994.
David Kroft. Lockup-Free Instruction Fetch/Prefetch Cachga®r
zation. InProceedings of the 8th Annual International Symposium
on Computer Athitecture, pages 81-87, May 1981.

MonicaS. Lam, EdwrdE. Rothbeg, and MichaeE. Wolf. The
Cache Performance and Optimizations of BémtlAlgorithms. In
Proceedings of thedarth Symposium on éhitectural Support for
Programming Languges and Opeting Systemspages 63-74,
April 1991.

James Laudon, Anoop Gupta, and Mark hidtp. Interleaing: A
Multithreading Echnique @rgeting Multiprocessors and dfksta-
tions. InProceedings of the 6th Symposium ochitectural Sup-

(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

port for Programming Languges and Opating Systems
volume6, pages 308-318, October 1994.

Geofrey D. McNiven and EdwardS. Dasidson. Analysis for Mem-
ory Referencing Beléor For Design of Local Memories. IRro-
ceedings of the 15th Annual International Symposium on Computer
Architecture, pages 56-63, May 1988.

ToddC. Mowry, MonicaS. Lam, and Anoop Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetching.Pnoceedings

of the Rfth Symposium on Ahitectural Support for Pogramming
Languaes and Opeating Systemspages 62—73, October 1992.
Subbarao &acharla and RE. Kessler Evaluating Stream Bédrs

as a Secondary Cache ReplacementPioceedings of the 21st
Annual International Symposium on ComputechXectule, pages
24-33, April 1994.

Betty Prince. Memory in thexbt lanelEEE Spectrum31(2):38-41,
February 1994.

Anne Rogers and Kai Li. Sofawe Support for Speculaé Loads.

In Proceedings of theifth Symposium on Ahitectuial Support for
Programming Languges and Opating Systemspages 38-50,
October 1992.

Edward Rothbey, JaswindePal Singh, and Anoop Gupta.dfking
Sets, Cache Sizes, and Node Granularity Issues fajet3cale
Multiprocessors. IrProceedings of the 20th Annual International
Symposium on Computerdhitecture, pages 14-25, June 1993.
Alan Jay Smith. Cache Memorie€omputing Surwes 14(3):473—
530, September 1982.

BurtonJ. Smith. Architecture and Applications of the HEP Multi-
processor Computer System. Real-Tme Signal Pocessing |V
pages 241-248, 1981.

Guri Sohi, ScotE. Breach, and.N. Vijaykumar Multiscalar Pro-
cessors. IrProceedings of the 22nd Annual International Sympo-
sium on Computer &hitectue, pages 414-425, June 1995.

Guri Sohi and Manoj Franklin. High-Performance Data Memory
Systems for Superscalar ProcessorsPioceedings of thedarth
Symposium on &hitectual Support for Pegramming Languges
and Opeating Systemgages 53-62, April 1991.

GurindarS. Sohi. Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined ComputdEsEE
Transactions on Computgr39(3):349-359, March 1990.

Standard Performance &uation CorporationSPEC Nesletter
Fairfax, Mrginia, December 1991.

Standard Performance &uation CorporationSPEC Nwsletter
Fairfax, Mrginia, September 1995.

RabinA. Sugumar and Santosh Abraham. Hfcient Simulation of
Caches under Optimal Replacement with Applications to Miss
Characterization. IProceedings of the 1993CM SIGMETRICS
Confeence on Measements and Modeling of Computer Systems
pages 24-35, May 1993.

Gary Tyson, Matthes Farrens, John Matthes, and Andres Plesz-
kun. A Nev Approach to Cache ManagementPimceedings of the
28th International Symposium on Miarchitectue, pages 93-103,
December 1995.

