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Abstract

Despite large caches, main-memory access latencies still cause significant
performance losses in many applications. Numerous hardware and soft-
ware prefetching schemes have been proposed to tolerate these latencies.
Software prefetching typically provides better prefetch accuracy than hard-
ware, but is limited by prefetch instruction overheads and the compiler’s
limited ability to schedule prefetches sufficiently far in advance to cover
level-two cache miss latencies. Hardware prefetching can be effective at
hiding these large latencies, but generates many useless prefetches and
consumes considerable memory bandwidth. In this paper, we propose a
cooperative hardware-software prefetching scheme called Guided Region
Prefetching (GRP), which uses compiler-generated hints encoded in load in-
structions to regulate an aggressive hardware prefetching engine. We com-
pare GRP against a sophisticated pure hardware stride prefetcher and a
scheduled region prefetching (SRP) engine. SRP and GRP show the best
performance, with respective 22% and 21% gains over no prefetching, but
SRP incurs 180% extra memory traffic—nearly tripling bandwidth require-
ments. GRP achieves performance close to SRP, but with a mere eighth of
the extra prefetching traffic, a 23% increase over no prefetching. The GRP
hardware-software collaboration thus combines the accuracy of compiler-
based program analysis with the performance potential of aggressive hard-
ware prefetching, bringing the performance gap versus a perfect L2 cache
under 20%.

1 Introduction
Modern out-of-order processors can tolerate latencies for multi-
cycle level-one cache hits, and many of the level-one cache misses
that result in level-two hits [42]. However, the hundreds of cy-
cles that result from DRAM accesses cannot be tolerated, thus
causing significant performance degradations. For the SPEC2000
benchmarks running on a modern, high-performance microproces-
sor, over half of the time is spent stalling for loads that miss in the
level-two cache [28]. We observe similar results in our simulations
for a subset of SPEC2000 benchmarks and Sphinx, a speech recog-
nition application [27]. Figure 1 compares the performance of a
system with a realistic memory hierarchy versus one with a perfect
L1 cache and one with a perfect L2 cache, in the leftmost stacked
bar for each benchmark. The benchmarks are sorted by the size of
the gap between a realistic system and one with a perfect L2 cache,
a geometric mean performance gap of 33.7%. As a summary of
our results, we also show the performance afforded by the traffic-
efficient GRP L2 prefetching scheme, displayed as the rightmost
bar for each benchmark.

To tolerate these latencies, researchers have proposed a large
number of both software and hardware prefetching schemes. Each
of these two classes of prefetch solutions have distinct advantages
and drawbacks. Pure software prefetching is typically highly ac-
curate, but incurs runtime overhead and cannot issue prefetches
sufficiently far in advance of a load to hide main memory access

latencies [28]. Hardware only schemes can prefetch spatial re-
gions [10, 11, 22, 34, 38], pointer chains [14, 21, 35], or recur-
ring patterns [26]. While these schemes can hide much of the main
memory access time, they can also consume substantial amounts
of memory bandwidth. This additional traffic need not degrade
uniprocessor performance, but it increases power consumption, and
will likely degrade performance on multiprocessors. Since off-chip
bandwidth will be the dominant limiter of scalability for future chip
multiprocessors (CMPs) [20], prefetch schemes that consume band-
width inefficiently will not be practical. While some schemes throt-
tle prefetching when the accuracy drops below a threshold, they
then miss opportunities for issuing useful prefetches [16].

In this paper, we propose a cooperative hardware/software
prefetch framework called Guided Region Prefetching (GRP). In
GRP, sophisticated compiler analysis is used to produce a rich set
of load hints, including the presence or absence of spatial locality,
pointer structures, or indirect array accesses. A runtime hardware
engine, triggered by L2 cache misses, generates prefetches based
on the compiler’s hints. GRP thus benefits from compiler analysis
of application reference patterns, but—unlike traditional software
prefetching—the compiler is not required to generate or schedule
individual prefetch addresses. Because the hardware generates the
prefetches, it can run far ahead of the missing references. Because
the compiler guides it, the hardware need not struggle to deduce
future references with complex pattern matching on prior accesses
stored in large tables.

Using previously proposed techniques [28], the GRP hard-
ware prefetching engine keeps uniprocessor bus contention low by
prefetching only when the memory bus is otherwise idle, and keeps
cache pollution low by loading prefetches into the LRU set of the
L2 cache. Without compiler support, this prefetching hardware is
effective at improving performance, but consumes copious band-
width. Through GRP, the compiler informs the hardware of applica-
tion reference patterns, enabling the hardware to prefetch only when
it is likely to be effective. We evaluate compiler hints that mark
loads with the following hints: spatial–prefetch the spatial region
around a load; size–how many lines to fetch on a spatial reference;
pointer–prefetch by following the pointer in the load’s cache line;
recursive–prefetch this pointer data structure recursively. For size
hints, the compiler can encode a variable-size region that specifies
how much to prefetch based on enclosing loop bounds, instead of
using a fixed value. The compiler also generates indirect prefetch-
ing instructions which trigger prefetching a set of references using
an indirection array.

This cooperative GRP hardware/software interface improves the
high performance of the previously proposed scheduled region
prefetching (SRP) [28] by over 10% on two of the SPEC2000
benchmarks, and match the performance of SRP on the rest. Ta-
ble 1 shows a summary of the GRP results using the geometric
mean. We show GRP both with (GRP/Var) and without (GRP/Fix)
variable-size region prefetching. Without prefetching, the mean
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Figure 1: Processor performance

traffic Performance gap
Speedup increase from perfect L2

No prefetching 1 1 33.72
Stride prefetching 1.147 1.09 23.99

SRP 1.226 2.80 18.75
GRP/Fix 1.216 1.62 19.42
GRP/Var 1.212 1.23 19.69

Table 1: Summary of prefetching performance and traffic

performance across the benchmark suite is 33.7% lower than a per-
fect level-two cache. Stride prefetching (using the Sherwood et al.
design [38]) provides a 15% speedup over no prefetching. SRP,
which uses no compiler analysis, outperforms stride prefetching by
7%, but consumes excessive memory bandwidth, a 180% increase
over a system with no prefetching. GRP provides near-equivalent
performance to SRP but with substantially less traffic, an increase
of only 23% over the not prefetching. This reduction in traffic saves
power and is more amenable to multiprocessor systems, where ad-
ditional traffic can directly affect performance. Both SRP and GRP
still incur a 19% gap versus a perfect L2.

We review related work in Section 2, showing that much of it
does not pursue a balance between aggressive prefetching and ef-
ficient use of memory bandwidth. Section 3 describes the hard-
ware used for the GRP hardware prefetching engine, and how it
uses the hints. Section 4 describes the compiler analysis in detail.
Section 5 evaluates the degree to which a GRP engine can bring the
performance of most benchmarks close to that of a perfect L2 cache
while keeping memory traffic increases small. Section 5 also com-
pares the performance of GRP to that of stride prefetching [38]. We
conclude in Section 6 that GRP eliminates main memory accesses
as a source of performance loss for all but four of the SPEC2000
benchmarks and sphinx. Of those four, one simply requires more
memory bandwidth, and can benefit from more sophisticated soft-
ware/hardware cooperation.

2 Related Work
In this section, we focus on the most pertinent aspects of the large
body of literature on software and hardware data prefetching, along
with the small number of previously proposed hybrid schemes.

Software prefetching relies on non-binding prefetch instructions
that bring the indicated block of memory into the cache, much like

a load instruction. Conceptually, the latency of a given load in-
struction is hidden by inserting a prefetch with the same effective
address into the instruction stream sufficiently far in advance of the
load. Because the compiler only inserts prefetches for known (or
very likely) loads, software prefetch accuracy is typically high. In
practice, the compiler faces two key challenges in data prefetching:
selection and scheduling.

Because prefetch instructions occupy instruction cache space,
pipeline slots, and data cache ports, the compiler must select a sub-
set of the loads for which to generate prefetches. Accurate compile-
time identification of the loads that will cause cache misses at run-
time is complex, requiring both knowledge of hardware parame-
ters (cache block size, capacity, and associativity) and sophisticated
code analysis (e.g., to determine the volume of other data accessed
between references to a particular block) [7, 17, 33, 45].

The compiler also faces the difficult challenge of issuing the
prefetches sufficiently early to hide the memory latency, but not so
early that useful data are needlessly evicted. To find that point, the
compiler must estimate cache miss latencies and run-time instruc-
tion execution rates [25]. The compiler is further constrained in that
it cannot schedule a prefetch until it can compute the effective ad-
dress. While this constraint is not significant for arrays [6, 33], it
limits compiler-based greedy pointer prefetching [5, 30, 36]. Jump
pointers bypass this limitation by identifying records several links
ahead in the structure, but require much more sophisticated anal-
ysis, dynamic updates, and the addition of a jump pointer to each
object [5, 30, 36]. Other approaches prefetch pointer arguments
at call sites [29], and decouple prefetches from the main program
using a separate thread context [13, 24, 31].

The converse approach is hardware-only prefetching, in which
the hardware predicts prefetch addresses by observing a program’s
runtime behavior. Since prefetches do not not incur overhead in the
processor itself, the hardware need not be as selective about issuing
prefetch operations. Recent work shows that simple dynamic prior-
itization techniques eliminates memory bandwidth contention and
cache pollution problems [28]. However, unlike the compiler, the
hardware has no direct knowledge of future memory references;
the key challenge in hardware-based prefetching is determining a
reasonable set of predicted addresses to use as prefetch targets.
Hardware prefetching thus suffers relative to software prefetching
in both accuracy (because the predictions may be wrong) and cov-
erage (because some addresses may require the compiler’s scope to



predict).
Many hardware prefetchers exploit only spatial locality,

prefetching one or more subsequent blocks on a cache miss [15,
22, 40]. More sophisticated schemes detect non-unit strided ac-
cess patterns, such as Chen and Baer’s reference prediction table
(RPT) [10] and Palacharla and Kessler’s strided stream buffers [34].
Other approaches exploit pointer-based access sequences, as with
correlation-based and Markov prefetching [1, 9, 21], or a broader
class of patterns, using dead block information [26]. Another
approach involves decoupling the data structure traversal from
the computation, using specialized pointer-traversal hardware [35]
or dedicated pre-execution hardware [2]. Researchers have also
proposed memory-side prefetching to reduce latencies between
prefetches [19, 41, 46].

Most pertinent to this work are two previous papers. First,
predictor-directed stream buffering, proposed by Sherwood et
al. [38], unifies strided stream buffers and Markov prefetching into
a single, consistent hardware prefetching framework. In Section 5,
we compare the GRP scheme to the strided stream buffers scheme
only, since the Markov predictor consumes too much state to be
practical. Second, Cooksey et al. [14] propose a stateless approach
to pointer prefetching, foregoing explicit identification of pointer
traversal patterns and simply prefetching any referenced memory
value that could be reasonably interpreted as a memory address.
Our hardware schemes are also stateless. We find that for our
benchmarks, GRP with spatial hints usually performs better or the
same as pointer prediction with or without pointer hints.

In the end, all hardware schemes are forced to trade coverage
for accuracy (or vice versa), and focus either only on structured
access patterns which can be predicted with high accuracy (forgoing
coverage of less structured access patterns), or consume significant
amounts of bandwidth with incorrect prefetches in an attempt to
cover less-structured references.

The relative strengths and weaknesses of hardware and soft-
ware prefetching are complementary and thus suggest a combined
hardware/software approach. An ideal scheme would exploit the
compiler’s knowledge of future reference patterns, and use a low-
overhead channel to convey this information to a hardware prefetch-
ing engine, which could then generate and schedule appropriate
prefetches based on dynamic information regarding cache miss
events and resource availability.

The limited previous work in this area has either exploited
prefetching for restricted classes of access patterns, or provided an
interface that is overly general and complex. On the conservative
side, Gornish and Veidenbaum [18] let software select the number
of contiguous blocks to prefetch upon a miss, whereas Chen and
Baer [11, 12] use the compiler to supply address and stride infor-
mation to augment a reference prediction table. Skeppstedt and
Dubois use a trap handler to trigger prefetching using similar in-
formation [39]. Karlsson et al. [23] use prefetch arrays to enable
a hardware engine to perform a generalized variant of greedy and
jump-pointer prefetching. Zhang and Torrellas [47] use the com-
piler to mark blocks in memory as belonging to contiguous spatially
local regions or containing indirection pointers. Their scheme re-
quires additional bits in main memory and significant support in the
memory controller. Finally, fully programmable prefetch engines
provide flexibility but require significant memory system support
and have not yet demonstrated that the required compiler support is
realistic [41, 43, 46].

GRP combines the advantages of both software and hardware
prefetching in a scheme that is simple yet effective. It conveys
sophisticated compiler analysis by associating a range of hints
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with loads, which an aggressive, simple, and general hardware
prefetcher uses only when necessary. Thus, the pertinent compiler
analysis is communicated to the hardware without requiring exten-
sive static lookahead, software guarantees, or high instruction over-
head. In the subsequent sections, we describe first the hardware
engine, then the software hints and analysis necessary for the hard-
ware to balance prefetch coverage and accuracy.

3 Hardware Prefetching Engine
The GRP hardware prefetching engine builds on the scheduled re-
gion prefetching design by Lin et al. [28]. We extend the original
design with two capabilities. First, we add support for aggressive
prefetching of pointer-based data structures. Second, we add the
ability to prefetch indirect array references under software control.

3.1 Scheduled Region Prefetching

Scheduled region prefetching (SRP) aggressively exploits spatial
locality by attempting to prefetch large (4 KB) memory regions
on each L2 cache miss [28]. The two negative effects of aggres-
sive prefetching—memory bus contention and cache pollution—are
addressed directly by reducing the priority of prefetches in mem-
ory bus request scheduling and in replacement decisions, respec-
tively. Unlike most prefetching schemes, which must maintain
high prefetch accuracy to avoid degrading performance, SRP can
identify and access prefetch candidates liberally without degrading
uniprocessor performance.

Figure 2 shows the memory system with the SRP engine that
forms the experimental baseline. The access prioritizer is the cen-
tral component of the SRP prefetching engine. It forwards requests
to the memory controller whenever the controller indicates that the
memory channels are idle. The prioritizer forwards prefetch re-
quests only when there are no outstanding demand misses from the
L2 cache. Demand misses thus encounter contention only from
prefetches the memory controller has already issued, and not from
prefetch candidates buffered in the prefetch queue. The miss status
holding registers (MSHRs) track all outstanding accesses, regard-
less of type.

On an L2 cache miss, the prefetching engine allocates a new
entry in the prefetch queue representing the aligned memory region
containing the accessed block. Each prefetch queue entry contains
the base address of the region, a bit vector indicating the prefetch
candidate blocks in the region, and an index field which identifies
the next block within the region to prefetch. On the first miss to a
region, the engine initializes the bit vector to identify the blocks not
already present in the L2 cache, and sets the index field to indicate



the next prefetch candidate block after the miss block. It adds these
new entries to the head of the queue, giving them priority over older,
and thus typically less relevant, entries. The queue is a fixed size
(32 in these experiments), and old entries fall off the bottom. On a
miss to a region already in the queue, it clears the bit corresponding
to the miss block, sets the index field to the next prefetch candidate
block after the new miss block, and moves the prefetch bit vector
entry to the head of the queue. In this work, we use a base region
size of 4 KB and a cache block size of 64 bytes, resulting in a 64-bit
vector and a 6-bit index field. Once the controller prefetches all the
candidates, it deallocates the entry.

Although the access prioritizer practically eliminates perfor-
mance loss from useless prefetches due to bandwidth contention,
prefetching can still pollute the cache by generating a heavy
prefetch stream. We address this issue by placing prefetched data
in the lowest priority position of the replacement scheme. The con-
troller puts prefetched data in the LRU position of the pertinent
cache set, and moves a block to the MRU position only if it is
referenced explicitly by the CPU. As a result, useless prefetches
in an � -way associative cache can displace at most one � th of the
useful data in the cache. (We use a 4-way set associative cache in
our experiments.) The drawback is that the controller occasionally
replaces potentially useful prefetches before they are referenced;
however, previous work [28] shows this effect to be insignificant.
As a final optimization, the queue issues prefetches first to those
DRAM banks that already have the needed page open.

Scheduled region prefetching is highly effective at exploiting
spatial locality to improve performance [28]. However, it has two
shortcomings addressed by GRP. First, SRP does not provide any
direct support for non-spatial reference patterns. We add a pure
hardware pointer prefetching mechanism to address this issue (see
Section 3.2). We also add an indirect array scheme that requires
compiler support (see Section 3.3). However, for the SPEC bench-
marks, we find that spatial prefetching works as well as pointer
schemes—even for pointer-intensive benchmarks—because of the
regular layout programmers use and memory allocation patterns
for pointer data structures. Second, SRP can produce copious
amounts of excess memory traffic. Although this useless traffic
does not reduce uniprocessor performance due to SRP’s prioriti-
zation techniques, it consumes energy, can cause contention from
useful prefetches, and may reduce performance in a multiprocessor
environment. We thus use compiler hints for spatial and pointer ac-
cesses to gain both low bandwidth and high accuracy. We describe
the GRP hardware modifications and hints below in Section 3.3,
and the compiler analysis itself in Section 4.

3.2 Hardware Prefetching of Pointer-Based Structures

As discussed in Section 2, hardware prefetching for pointer-based
structures is challenging. Instead of using complex hardware to rec-
ognize pointer traversal patterns or store pointer correlations, the
base GRP pointer prefetching scheme greedily generates a prefetch
for any fetched value that falls within the ranges of legitimate heap
memory addresses. The GRP implementation performs a simple
base-and-bounds check using the start and end addresses of the
heap. In the Alpha ISA, pointers are aligned 8-byte entities; thus
the engine must check only eight values out of each 64-byte cache
block.1

Once the controller identifies a datum as a possible pointer value,

1Cooksey et al. [14] describe a similar but more efficient pointer
test using bit masks, and apply it to prefetching in the more chal-
lenging IA32 environment.

recursive
code in loop spatial indirect pointer pointer size

a[i] � �
a[b[i]] � �� p; p+=c �
p 	 f �
p = p 	 next �

Table 2: Compiler Hints for Representative References in Loops

it translates the virtual address to a physical address and forwards
the address to the SRP prefetch queue, which allocates a region-
style entry for the prefetch. Because these pointer dereferences fre-
quently do not exhibit spatial locality, it sets only two bits in the en-
try’s prefetch bit vector, indicating the block containing the prefetch
address and its immediate successor (which prefetches data struc-
tures that span two cache blocks). We generalize this mechanism to
chase recursive pointers by scanning prefetched lines for addresses
and generating additional prefetches.

3.3 GRP: Incorporating Compiler Prefetch Hints

This section describes the compiler hints used by GRP to improve
the precision of L2 spatial and pointer prefetching.

The GRP compiler annotates load instructions with hints predict-
ing whether spatial or pointer-based prefetches will be useful. In
this study, the compiler conveys the hints with unused Alpha VAX-
format floating point load opcodes. The memory system propagates
the load’s hint bits through the memory hierarchy with any result-
ing request. Table 2 presents the five hints and shows typical rep-
resentative code snippets for each. We summarize the changes to
the hardware for each hint below, and then describe the pointers,
recursive pointers, and the indirection hardware in more detail.


 A spatial hint indicates that a reference is likely to exhibit
spatial locality. GRP initiates a spatial prefetch only when the
L2 miss is marked spatial.


 A size hint combined with a loop upper bound indicates how
many cache lines prefetch.


 An indirect hint indicates that the program is using an array to
index a second array. On an indirect L2 miss, GRP generates
sets of prefetches based on the base address and the index
values.


 A pointer hint indicates that the reference is to a structure
that contains one or more other pointers that the program is
likely to follow. If the reference is an L2 miss, GRP scans
the returned block for pointer values and generates prefetches
only for those values.


 A recursive pointer hint indicates not only that the reference is
to a structure that contains other pointers, but that the program
recursively follows these pointers. On a recursive pointer L2
miss, GRP scans the returned data for pointer values, gener-
ates prefetches for these addresses, and continues generating
prefetches on the subsequent � levels into the recursive data
structure. (We use ���� in our experiments.)



3.3.1 GRP for Pointer and Recursive Pointer References

GRP uses the same mechanism for pointer and recursive pointer
hints. However, GRP applies the mechanism only to a pointer hint
miss, and GRP applies it repeatedly to the resulting prefetched lines
for recursive pointer hints.

We implement GRP for pointer and recursive pointer hints by
adding a three-bit counter to both the L2 MSHRs and prefetch
queue entries to control pointer and recursive pointer prefetching
uniformly. GRP initializes the counter on the L2 miss: for pointers,
it sets the value to one, and for recursive pointers, it sets the value
to six. Thus the only difference between a pointer and recursive
pointer prefetching is their initial counter value.

When GRP fetches a pointer hinted missing line, it starts the
pointer prefetching engine on the returned line. The engine checks
the counter. If it is zero, it stops queuing prefetches. Otherwise, it
decrements the counter, and queues prefetches for pointers in the
returned line. We prefetch two cache blocks for each pointer based
on our statistics that the typical structure size in SPEC benchmarks
is less than 64 bytes (one L2 cache block in our configuration). Two
blocks are sufficient to cover structure alignment. The engine thus
terminates after one level for pointers and six levels for recursive
prefetching.2

3.3.2 GRP for Variable-Size Region Prefetching

GRP by default prefetches the same fixed region size as SRP. If
the spatial reuse of a reference does not span the default region
size, prefetching wastes bandwidth. We enhanced GRP to allow
the compiler to control region sizes for references in singly nested
loops. The compiler computes the loop upper bound for the primary
induction variable and conveys the bound to the hardware using a
special instruction. The compiler encodes a coefficient for each
spatial reference in the loop. On a miss, the prefetch engine uses
this bound and the coefficient to calculate the region size as loop
bound ��� coefficient value.

3.3.3 GRP for Indirect Array References

Two of the benchmarks from the SPEC2000 suite (vpr and bzip2)
incur a significant number of misses due to indirect array references
of the form a[b[i]]. References to a are not amenable to spatial
prefetching unless the b[i] values are clustered, which cannot be
determined statically. Pointer prefetching for these references is
ineffective since the desired addresses are computed, not contained
in the memory as pointers. A specialized extension to GRP targets
these patterns. A single indirect prefetch instruction conveys both
a base address (&a[0]), an element size (sizeof(a[0])), and
an index array address (&b[i]) to the prefetching engine. The
prefetch engine reads the cache block containing &b[i] and, for
each word in the block, generates a prefetch address by adding the
scaled value to &a[0]. GRP then forwards these addresses to the
prefetch queue, as in the pointer prefetching scheme. Currently,
we assume the index array element size (sizeof(b[0])) is 4,
which is typical on most systems, although the element size could
be included in the instruction if necessary.

This scheme is distinct from the mechanisms proposed in this pa-
per because the information is encoded as a separate instruction, not
a hint on an existing load. Although the introduction of an explicit
prefetch instruction adds overhead, the number of such instructions
is small, and each one generates up to 16 prefetches (one for each
index within a cache block of the indirection array). An alternate

2For mcf, we terminate recursion after three levels to make sim-
ulation tractable.

implementation could use a single instruction prior to a loop nest to
set the base address, and an additional hint bit on the b[i] loads
to trigger the indirect prefetches. This approach would reduce exe-
cution overhead at the cost of limiting an application to prefetching
one single indirection array concurrently per base address/indirect
hint pair.

4 Compiler Analysis Framework
This section describes the analyses for the five classes of hints (spa-
tial, size, indirect, pointer, recursive pointer) that guide the L2
prefetching engine. We implement these analyses in the Scale com-
piler and use it to generate these hints automatically for both C and
Fortran codes.

4.1 Spatial Locality Analysis for Arrays

In GRP, the compiler predicts which misses truly have spatial lo-
cality, examining arrays in Fortran or C, and spatial pointer ac-
cesses to structures in C. The compiler uses locality analysis to
mark references with the spatial hint annotation, and the compiler
back-end augments the special load instruction with a spatial hint.
The prefetch engine then only prefetches misses with marked spa-
tial references and does not prefetch misses without spatial marks.
We describe our array analysis and then spatial pointer analysis.

We augment prior work that statically detects spatial locality by
extending dependence testing [32, 44]. Dependence testing first
finds induction variables and then detects when the spatial dimen-
sion (the row in C, the column in Fortran) is accessed as a function
of the index variable, and whether it is the inner or outer nesting
level. The dependence testing detects locality only for affine sub-
scription expressions, i.e., linear functions of loop induction vari-
ables. Our approach marks references with either inner or outer
loop spatial locality. The typical array reference with spatial local-
ity is accessed in its spatial dimension in an innermost loop. For
example, we mark a(i,j) in Figure 3, assuming column-major For-
tran storage. The compiler also marks arrays with spatial locality
that crosses larger distances within a deep nest or between two nests
(inter-nest reuse). We use the level 2 cache size as our upper bound
on the distance of the spatial reuse we mark, assuming that the level-
2 cache has sufficient set associativity to avoid conflict misses and
exploit the reuse.

If the compiler determines the loop bounds and step sizes, it can
compute the reuse distances accurately at compile time. For ar-
rays with spatial intra- and inter-nest locality, it computes the reuse
distances. It marks all array references with spatial locality with
a known distance less than the level 2 cache size. When the com-
piler does not know the reuse distances statically due to symbolic
loop bounds and uncertain executions paths, it estimates the reuse
distance based on the nesting level of the loop. The compiler is
conservative when reuse distance is unknown; we mark a reference
as spatial only if its spatial reuse is in the innermost enclosing loop.

The above analysis works well for Fortran arrays and heap arrays
in C if the array elements are referenced as subscript expressions.
We handle heap arrays in C using the same analysis. In Figure 4, buf
is a heap array with type T**. In addition to detecting the obvious
spatial reuse of ������� ����� ��� when � is an loop induction variable, the
compiler is able to find the spatial reuse of ������� ��� � ! � �#"$�%� when
! and � are constants.

4.2 Spatial Locality Analysis for Pointer Dereferences

To prefetch pointer references that show spatial locality, as illus-
trated in Figure 5, the compiler performs loop induction variable



i n t e g e r a [N] [ M] , B[N]
do j = 1 , m

do i = 1 , n
. . . a ( i , j ) . . .
. . . c ( b ( i ) , j ) ) . . .

Figure 3: Fortran Array

T &'& buf ;
. . .
buf = malloc ( . . . ) ;
. . .
buf [ i ] = malloc ( . . . ) ;
. . .
f o r ( i = 0 ; i ( m; i ++)

fo r ( j = 0 ; j ( n ; j ++)
. . . buf [ i ] [ j ] . . .

Figure 4: C Heap Array

T & p , & s ;
. . .
f o r ( ; p ( s ; p += c ) )

/ & i f T i s a p r imary type & /
. . . & p . . . ;
/ & i f T i s a s t r u c t u r e & /
. . . p*,+ f . . . ;-

Figure 5: C Induction Pointer

s t r u c t t )
T f ;
s t r u c t t & nex t ;-

s t r u c t t & a ;

wh i l e ( . . . ) )
. . . a *.+ f . . . ;
a = a *,+ nex t ;
. . .-

Figure 6: C Recursive Pointer

g e n e r a t e s p a t i a l h i n t s ( ))
/ & r e c o g n i z e i n d u c t i o n v a r i a b l e s i n c l u d i n g p o i n t e r s & /
i n d u c t i o n v a r i a b l e r e c o g n i t i o n ( ) ;
/ & perform dependence t e s t i n g & /
d e p e n d e n c e t e s t i n g ( ) ;

fo r ( each loop ) )
/ & g e n e r a t e b a s i c s p a t i a l h i n t s & /
fo r ( each memory r e f e r e n c e r in the loop ) )

i f ( r i s an a r r a y r e f e r e n c e ) )
i f ( r has s p a t i a l r euse in the e n c l o s i n g inne rmos t loop )

mark r s p a t i a l ;
e l s e )

compute the reuse d i s t a n c e fo r r i f a p p l i c a b l e ;
i f ( r euse d i s t a n c e ( t he l e v e l 2 cache s i z e )

mark r s p a t i a l ;-/-
i f ( r i s an loop i n d u c t i o n p o i n t e r )

mark r s p a t i a l ;-
/ & p r o p a g a t e s p a t i a l h i n t s fo r loop i n d u c t i o n p o i n t e r s & /
do )

fo r ( each memory r e f e r e n c e r ) )
i f ( r i s a loop i n d u c t i o n p o i n t e r )

mark & r as s p a t i a l ;
e l s e i f ( r i s a *,+ f && a i s marked as s p a t i a l ) )

mark a *0+ f as s p a t i a l ;--
whi le ( no new h i n t s g e n e r a t e d ) ;--

Figure 7: Algorithm generating spatial hints

recognition on pointers that are repeatedly incremented by a con-
stant. The type T in Figure 4 and Figure 5 does not have to be
a primary type. We treat pointer p as a special integer, and insert
spatial hints for �21 or 1 	3� , if constant c is small. This paper’s
analysis on L2 cache misses shows almost all spatial reuses in C
code are covered by regular spatially local array references along
with the cases in Figure 4 and Figure 5.

Figure 7 summarizes the algorithm used for generating spatial
hints for both arrays and spatial pointer accesses. The first part of
the algorithm inserts the spatial hints for arrays and loop induction
pointers, and the second part propagates spatial hints to the uses of
loop induction pointers. This algorithm is intra-procedural and flow
insensitive, and it marks only references enclosed in loops.

4.3 Indirect Analysis

The compiler also detects and marks indirect array accesses, such
as 4�5��05��76%8��96 in Figure 3. In particular, it looks for the access pattern
in the form of !�5�: � �05��76/"�;�6 where : and ; are constants, and �
is a loop induction variable. Dependence testing detects the spatial
reuse on �05��76 in the standard way. We add a simple analysis that
detects when a sequentially accessed array is used as an index into
another array ( 4 in this example), and generates an indirect prefetch
instruction using the address of �05��76 and the base address of array

g e n e r a t e p o i n t e r h i n t s ( ))
fo r ( each f i e l d a c c e s s ) )

i f ( a p o i n t e r f i e l d from the same s t r u c t u r e
i s acces sed in the same loop )

mark the f i e l d a c c e s s as p o i n t e r ;
i f ( the f i e l d a c c e s s upda te s a r e c u r r e n t p o i n t e r )

mark the f i e l d a c c e s s as r e c u r s i v e p o i n t e r ;-
fo r ( each a r r a y r e f e r e n c e marked as s p a t i a l

- )
i f ( the r e f e r e n c e p o i n t s to a heap a r r a y )

mark the r e f e r e n c e as p o i n t e r ;--
Figure 8: Algorithm generating pointer and recursive pointer hints

4 , as described in Section 3.3.

4.4 Variable-Size Region Analysis

The compiler detects and marks array references within singly
nested loops for variable-size region prefetching. For an array ac-
cess with a pattern of !�5�� � ��"<4=6 and an array element size of ; ,
the compiler encodes � � ; into a three-bit value > such that >?�A@
and B'C is closest to � � ; . We reserve the encoding value 7 for fixed-
size region prefetching. The compiler marks the upper bound of
the loop induction variable � . The two hints are used to control the
region size as described in Section 3.3.

4.5 Pointer and Recursive Pointer Analysis

As with spatial locality, the compiler can improve the accuracy of
hardware-based pointer prefetching by restricting it to misses on a
load to a field from a structure that contains a pointer or recursive
field. We mark a field reference as pointer if a pointer field from
the same structure is accessed in the same loop. We mark a pointer
update to be recursive if it updates itself in a loop with an object
of the same data type. For example, in Figure 6, ! is updated with
its next field which points to a structure of the same type struct t.
This idiom analysis simply identifies pointer updates in a loop that
use a field with the same type and marks them as recursive pointer
updates.

We mark pointer accesses with the spatial hint for references to
arrays of pointers. For example, Figure 4 shows an array refer-
ence buf � �D� , whose access pattern results in a spatial hint from the
compiler. Furthermore, each buf � �D� points to a heap array, so the
compiler marks it with the pointer hint as well. GRP will then use
the address to prefetch the pointed-to array.

The algorithm to generate pointer and recursive pointer reference
hints is shown in Figure 8. It is complementary to the spatial mark-
ing algorithm for pointers shown in Figure 7.
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Figure 9: Performance gains from pointer prefetching

Benchmark mem insts spatial pointer recursive ratio(%) indirect
164.gzip 1873 433 268 0 37.1 9
168.wupwise 507 152 0 0 30.0 0
171.swim 250 115 0 0 46.0 0
172.mgrid 314 232 0 0 73.9 3
173.applu 1491 858 0 0 57.5 0
175.vpr 4230 1001 682 74 33.8 84
177.mesa 26777 4532 4419 76 32.8 9
179.art 1016 732 278 0 77.6 0
181.mcf 845 168 287 201 60.8 0
183.equake 1679 597 473 0 51.3 7
186.crafty 11702 1994 736 0 21.6 5
188.ammp 6271 1043 1158 0 33.2 5
197.parser 4090 915 932 1263 70.2 2
254.gap 29781 5102 11243 0 52.6 36
256.bzip2 698 279 59 0 48.3 14
300.twolf 12397 2080 2577 1398 45.1 38
301.apsi 3225 1001 0 0 31.0 0
sphinx 6335 2211 1129 364 46.8 106

Table 3: Number of compiler hints for each benchmark

5 Experimental Evaluation
In this section, we compare the performance benefits of SRP, GRP,
and unified stride prefetching for the SPEC CPU2000 benchmarks,
and one additional benchmark. We demonstrate that GRP provides
a compelling balance between higher performance and increased
memory traffic among the three prefetching techniques. We demon-
strate the effectiveness of the compiler generated size information,
and the sensitivity of our results to the compiler’s heuristic for com-
puting the useful distance of spatial locality. We conclude with a
discussion of the characteristics of the remaining benchmarks for
which GRP does not eliminate main memory accesses as a signifi-
cant loss of performance.

5.1 Experimental Methodology

The Scale compiler infrastructure inserts the prefetch hints [3]. It
performs a number of scalar optimizations such as constant propa-
gation and common subexpression elimination. It compiles C and
Fortran 77 code to Alpha assembly code, with the memory hints an-
notated as comments. We then post-process the annotated assembly
code to generate binaries containing compiler-hinted instructions.

We simulate program binaries on a version of sim-outorder [4]
with scheduled region prefetching (SRP) [28] added to the simula-
tor. We added the GRP hardware pointer prefetching mechanisms,
and modified the simulator to accept compiler hints and schedule
prefetches accordingly if the binaries contain the hints. We use the

Alpha-ISA and configure the simulator as a 1.6 GHZ, 4-way issue,
64-entry RUU (reorder buffer), out-of-order core with 64K 2-way
split level one caches and a unified 4-way 1MB level 2 cache. This
cache hierarchy is combined with an effective 800-Mhz, 4-channel
Rambus memory system. The L1 and L2 latencies are 3 and 12
cycles 3, respectively. Each cache contains 8 MSHRs. For SRP, the
prefetching queue size is 32 and uses LIFO scheduling. The stride
predictor [38] uses a 4-way history table with 1K entries. There are
8 entries in each of 8 streaming buffers sharing the history table.
Finally, we use the SimPoint [37] tool set to select a representative
starting point beyond the program’s initialization phase. We simu-
late for 200M instructions from that point.

We use the 17 SPEC CPU2000 C and Fortran benchmarks that
the Scale infrastructure is able to compile correctly, plus Sphinx, a
speech recognition application [27]. Table 3 lists these benchmarks,
along with statistics on memory instructions and the number and
type of compiler hints generated. The second column contains the
total number of static memory reference instructions. Columns 3
to 5 show the number of instructions the compiler marks as spatial,
pointer, and recursive. (Note that the compiler can mark an instruc-
tion both spatial and pointer.) Column 6 lists the fraction of static
memory operations with hints, and Column 7 shows the static num-
ber of indirect prefetch instructions. We do not present the results
for crafty in subsequent results because its L2 miss rate is negligible
(0.4%).

5.2 Comparison of Stride Prefetching, SRP, and GRP

In this section, we first present the effects of both hardware pointer
and recursive pointer prefetching. We show that explicit pointer
prefetching is generally subsumed by aggressive spatial prefetching
(SRP or GRP). We then compare stride prefetching with SRP and
GRP. GRP uses all the compiler analysis including variable region
sizes. The end of this section compares variable and fixed region
sizes, and finds variable sizes decrease bandwidth requirements for
3 programs.

We apply pointer prefetching alone to all benchmarks, which un-
surprisingly has little effect on the Fortran benchmarks. Eight C
benchmarks show a significant performance improvement, notably
a 48.3% boost for equake, a 15.9% increase for mcf, and a 14.4%

3We mistakenly put 1 and 16 in our published version. But they
do not affect our conclusions.
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Figure 10: Performance gains from region prefetching and stride prefetching for integer benchmarks

improvement for sphinx as shown in Figure 9. For equake, the
performance gain is not from the pointer structure traversal as ex-
pected. It stems instead from prefetching arrays of pointers from the
heap arrays. Similarly, in mcf, the performance gain comes from a
loop which sequentially resets a field in each object in a heap array.
Pointer prefetching happens to prefetch the objects accessed later.
Pointer prefetching outperforms SRP only for twolf and sphinx, by
2%. In all other cases, SRP performs much better than pointer or
recursive prefetching. Applying SRP and pointer prefetching to-
gether gives little benefit and sometimes degrades the performance
due to much higher bandwidth consumption, which can result in
fewer successful prefetches. GRP with pointer and recursive hints
shows performance gains similar to SRP for the seven benchmarks,
but with lower average memory traffic .

Figure 10 and Figure 11 show the performance of SRP, GRP, and
stride prefetching for integer and floating point benchmarks respec-
tively. In most cases and on average, SRP and GRP both perform
better than stride prefetching. For 10 benchmarks, SRP improves
performance to within 10% of a perfect L2. For swim, GRP per-
forms over 10% better than SRP due to its lower traffic. Due to the
indirect prefetching, GRP is 4% faster than SRP for bzip2. It also
outperforms SRP for art and ammp. For gzip, mcf, parser, and gap,
the IPC of GRP is at least 2% less than that of SRP. A typical reason
is that the compiler misses locality outside of loops.

Although we detect indirect references in 11 benchmarks, indi-
rect prefetching shows significant speedups for only vpr and bzip2.
For vpr, the indirect references show high spatial locality. SRP thus
performs as well as GRP, but with 50% additional traffic. bzip2 is
one of the benchmarks where SRP does not perform well. With in-
direct prefetching, the gap from a perfect L2 is reduced to 12.5%
from 15.9%, with only 15% of the memory traffic of SRP.

In terms of both performance and memory traffic, GRP using a
variable region size (GRP/Var) and a fixed region size (GRP/Fix)
only differ in three benchmarks, mesa, bzip2, and sphinx. Table 4
shows that for mesa and bzip2, both strategies deliver roughly the
same performance while GRP/Var results in much less traffic than
GRP/Fix, as we discuss in Section 5.3. For sphinx, GRP/Var has
5.8% lower performance than GRP/Fix, but benefits from an 82%
traffic reduction. The compiler cannot guarantee that there is spa-
tial locality, so it chooses small prefetch regions, and misses some
opportunities.

GRP Traffic Region Size Distribution
Var Fix 2 4 8 64

mesa 1.11 6.55 90.3 9.5 0.1 0.1
bzip2 1.47 4.97 76.8 22.4 0.0 0.8
sphinx 2.09 11.66 82.9 1.0 16.1 0.0

Table 4: GRP/Var versus GRP/Fix

5.3 Prefetching Accuracy, Coverage, and Memory Traffic

Although SRP and GRP provide comparable performance, SRP
consumes much more bandwidth than does GRP. Figure 12 shows
the normalized memory traffic for the three prefetch schemes. SRP
increases memory traffic from 2% to a factor of 25.5 times over no
prefetching. GRP generates a mean of only 23.0% additional traffic
compared to no prefetching, versus an SRP increase of 180%. GRP
eliminates over 20% of the total memory traffic for ten of the sev-
enteen benchmarks compared to SRP, and over 50% for six bench-
marks. The traffic for stride prefetching is 11% less than GRP, but
stride prefetching only achieves 69% of the performance improve-
ment that GRP does.

Compared to GRP/Fix, GRP (GRP/Var) cuts memory traffic sig-
nificantly for three benchmarks while showing the same traffic for
the others. Table 4 lists the three benchmarks and their traffic in-
crease compared to no prefetching in columns one through three.
The subsequent four columns show the distribution of prefetching
requests by the region sizes (no regions of 16 or 32 blocks are pro-
duced). We observe that GRP/Var only prefetches one additional
block (region size = 2) in most cases due to the poor spatial locality
of these references.

Table 5 shows both prefetching accuracies and coverage for the
three prefetching techniques that we implemented. We use the per-
centage reduction in L2 misses as a metric for coverage. On aver-
age, SRP provides the best coverage and the worst accuracy. Stride
prefetching trades the lowest coverage with the highest accuracy.
GRP obtains the best of both worlds: an accuracy that is closer to
stride prefetching, but coverage closer to that of SRP.

Since the normalized traffic in Figure 12 does not reflect the
absolute bandwidth consumption of each benchmark, we also list
the actual memory traffic, in bytes, of each benchmark in Table 5.
On average, SRP consumes 99.8% more memory bandwidth over
the no-prefetching system. GRP and stride prefetching produce a
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Figure 11: Performance gains from region prefetching and stride prefetching for floating-point benchmarks
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Figure 12: Normalized traffic

Benchmark Base Stride SRP GRP
Miss Rate Traffic Coverage Accuracy Traffic Coverage Accuracy Traffic Coverage Accuracy Traffic

mesa 9.3 51k 60.9 93.2 53K 29.3 0.8 1305K 43.5 70.1 56K
apsi 25.0 85K 79.2 99.8 85K 96.4 95.8 86K 88.8 97.6 84K
gzip 25.3 182K 65.2 99.8 183K 76.3 94.4 192K 0.0 91.2 182K
gap 46.8 179K 66.7 99.6 179K 97.6 86.3 202K 52.8 99.3 179K
ammp 15.3 594K -7.8 23.1 982K -7.8 0.9 8340K 0.7 27.5 665K
wupwise 73.1 486K 42.5 75.4 553K 96.3 60.2 788K 96.2 61.6 772K
mgrid 43.9 504K 77.9 89.9 544K 87.5 80.7 597K 85.6 81.7 589K
vpr 40.2 730K 15.9 85.5 749K 86.3 27.6 2820K 76.4 49.4 1399K
twolf 12.6 1125K 0.0 27.3 1167K 15.9 4.2 17878K 3.2 28.7 1575K
bzip2 22.4 1163K 8.4 85.7 1186K 27.2 5.3 11255K 37.1 51.6 1713K
parser 33.4 1450K 67.4 75.0 1756K 77.5 44.7 2804K 56.0 82.5 1625K
mcf 61.6 43901K 51.0 80.5 49284K 24.7 53.9 65263K 5.4 51.1 52656K
sphinx 65.9 1208K 12.6 27.3 1449K 42.8 4.7 14429K 21.7 20 2521K
applu 58.0 2578K 62.6 95.7 2631K 96.9 89.0 2810K 96.9 89.2 2806K
equake 59.8 3628K 75.6 99.2 3649K 96.3 86.9 4127K 95.2 95.3 3790K
art 44.4 20229K 17.3 99.7 21189K 8.6 40.6 28632K 20.9 78.0 23031K
swim 57.8 7861K 34.6 70.8 8966K 67.3 65.2 10249K 68.2 96.5 8021K

average 40.9 5057K 42.9 78.1 5565K 59.9 49.5 10105K 49.9 68.9 5981K

Table 5: Prefetching accuracy, coverage and memory traffic



Benchmark GRP Performance Gap (%) L2 Miss Causes Ratio (%)
171.swim 38.32 transpose array access 92.08
179.art 56.07 bandwidth 24.26

transpose heap array access 35.92
181.mcf 63.94 tree traversal 60.70
188.ammp 15.18 linked list traversal 88.64
256.bzip2 15.89 indirect array reference 49.68
300.twolf 22.40 linked list and random pointers 35.37
sphinx 31.28 hash table lookup 28.79

Table 6: Level 2 miss characteristics

18.3% and 10.1% increase in memory requests, respectively.

5.4 Compiler Sensitivity

We explored the sensitivity of our results to the compiler policy by
implementing both more and less aggressive variants of the scheme
described in Section 4. The more aggressive policy marks a refer-
ence as spatial even its reuse distance is greater than the L2 cache
size. The more conservative scheme marks a reference as spatial
only when its reuse sits in the innermost loop. Compared to our
default GRP policy, the aggressive policy degrades performance by
2% overall and increases traffic by an additional 5%. The conser-
vative scheme shows little effect on memory traffic compared with
GRP, but causes moderate performance losses across four bench-
marks: applu, art, equake, and apsi, and reduces performance by
an average of 5% across the benchmark suite.

5.5 Remaining L2 Misses

Seven of the benchmarks show a gap of greater than 15% between
SRP and a perfect L2. We list them in Table 6 with a description of
the key causes of the misses, obtained by analyzing the source.

With its more accurate prefetching, coupled with indirect ac-
cesses and pointer prefetching, GRP is able to bring bzip2 and
ammp under 15%. Swim has a low IPC due to pathological array
conflicts. We can prevent that benchmark from being memory-
bound by manually applying loop distribution and loop permuta-
tion [8]. We observe that art is bandwidth bound. While GRP re-
duces traffic and increases performance over SRP by 10.7%, the
performance gap is still large. Larger caches and wider channels
improve art appreciably. For sphinx, the hash table lookup usu-
ally touches only a small number of adjacent hash slots in a short
loop. Prefetches occur simply too late to tolerate the latencies. Fi-
nally, mcf and twolf contain heavy traversals of short linked lists and
tree data structures, making them poor matches for the GRP pointer
prefetching or spatially-based schemes.

6 Conclusions and Future Work
Purely compiler-based prefetching techniques have difficulty man-
aging the large latencies of modern main memories. Previous work
shows that aggressive hardware prefetching addresses this issue ef-
fectively for applications with spatial locality, at the cost of poten-
tially significant increases in memory bandwidth. As the number of
processors per chip increases, this bandwidth will become increas-
ingly precious.

This paper shows that a cooperative approach between compiler-
based analysis and hardware-based aggressive prefetching provides
benefits comparable to aggressive hardware prefetching with much
lower traffic. Compiler techniques identify accesses that clearly
possess spatial locality. Rather than use this information to at-
tempt to schedule software prefetches—with the resulting compli-
cations of providing timely prefetches while minimizing instruction
overhead—our system simply passes this access-pattern informa-
tion to a hardware prefetching engine. The engine then generates
prefetches at the L2 cache with low overhead. Compared to pure

hardware prefetching, the compiler analysis saves bandwidth by
avoiding useless prefetches to addresses with little locality.

We also extend the hardware prefetching engine to address
pointer-based applications by aggressively prefetching any datum
that appears to be a pointer. As with spatial locality, we see sig-
nificant traffic benefits from having the compiler indicate pointer
and recursive-pointer loads. However, for the SPEC2000 bench-
marks, the aggressive spatial locality analysis subsumes the pointer
prefetches for most benchmarks, due to spatially local layouts of
pointer-connected objects. Even Sphinx, which we chose for its
sparse irregular pointer behavior, benefits very little from pointer
prefetching. It still remains to be seen whether this phenomenon
will dominate the benchmarks that other researchers have used to
show the importance of greedy pointer hardware prefetching [14].

With solely the spatial and indirect hints, the GRP com-
piler/hardware prefetch framework eliminates most L2-related
stalls across the SPEC2000 suite, with comparatively modest in-
creases in traffic. The remaining three benchmarks that are limited
by L2 memory system performance are either bandwidth bound
(art) or contain many irregular linked-lists and/or tree traversals
(mcf, twolf) where memory-side prefetching may help. For the
rest of the SPEC2000 suite, however, the GRP approach eliminates
physical memory accesses as a performance bottleneck while mak-
ing significantly more efficient use of the system bandwidth than
similarly aggressive prefetch engines.
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