
Implementation and Evaluation of a Dynamically
Routed Processor Operand Network

Paul Gratz∗, Karthikeyan Sankaralingam†, Heather Hanson∗, Premkishore Shivakumar†
Robert McDonald†, Stephen W. Keckler†, and Doug Burger†

∗ Department of Electrical and Computer Engineering, The University of Texas at Austin
† Department of Computer Sciences, The University of Texas at Austin

cartel@cs.utexas.edu

Abstract— Microarchitecturally integrated on-chip networks,
or micronets, are candidates to replace busses for processor
component interconnect in future processor designs. For mi-
cronets, tight coupling between processor microarchitecture and
network architecture is one of the keys to improving processor
performance. This paper presents the design, implementation and
evaluation of the TRIPS operand network (OPN). The TRIPS
OPN is a 5x5, dynamically routed, 2D mesh micronet that
is integrated into the TRIPS microprocessor core. The TRIPS
OPN is used for operand passing, register file I/O, and primary
memory system I/O. We discuss in detail the OPN design,
including the unique features that arise from its integration with
the processor core, such as its connection to the execution unit’s
wakeup pipeline and its in flight mis-speculated traffic removal.
We then evaluate the performance of the network under synthetic
and realistic loads. Finally, we assess the processor performance
implications of OPN design decisions with respect to the end-to-
end latency of OPN packets and the OPN’s bandwidth.

I. INTRODUCTION

As process technologies continue to descend into the deep
sub-micron range, wire delay and design complexity become
limiting factors for current microprocessor designs [1]. In
current processor microarchitectures, data and control are
conveyed on specialized busses and other ad-hoc interconnect.
Some processor designs incorporate extra pipeline stages to ac-
commodate the wire delay global wires require [2]. Wire rout-
ing and electrical design of these specialized busses increases
in complexity with smaller process technologies. Micronets,
or microarchitecturally integrated on-chip networks, provide a
solution to this design challenge by offering an alternative to
bus-based interconnects that are scalable and have reasonable
design complexity.

On-chip networks enjoy a scaling advantage relative to
busses since network wire lengths between adjacent routers
can be kept short and unidirectional. On-chip networks also
enable better pipelining of data between nodes and greater
aggregate bandwidth than busses. Finally, design complexity
is bounded since a router is designed once and replicated for
use wherever needed.

Micronets, a type of on-chip network, are integrated with the
microarchitecture of their host processors to improve system
performance. For example a micronet may be tightly integrated
with a processor’s pipeline to reduce packet generation latency,
by taking advantage of information available before the full
data payload has been computed. Micronets can also be used

Fig. 1. TRIPS chip plot with operand networks highlighted.

to implement, in a distributed fashion, higher level protocols
that are centralized in more traditional architectures, such as
instruction commit.

In this paper we discuss and evaluate the design and
implementation of one such micronet, the TRIPS prototype
processor’s operand network (OPN). Figure 1 shows a plot of
the TRIPS prototype processor chip, which was fabricated in
a 130nm ASIC process. On the right side of the figure are the
two processors, each with its own separate operand network,
as indicated by the superimposed diagram. Each processor’s
OPN is a 5x5 dynamically routed 2D mesh network with 140-
bit links. The OPN connects a total of 25 distributed execution,
register file, and data cache tiles. Each tile is replicated and
interacts only with neighboring tiles via the OPN and other
control networks. The OPN subsumes the role of several
traditional microprocessor interconnect busses, including the
operand bypass network, register file read and write interface,
and the L1 memory system bus.

We describe our experience in implementing the OPN

in a 130nm process technology as a part of the TRIPS
prototype processor and include a discussion of timing and
area costs of the network. We also explore the latency and
bandwidth of the OPN under statistical loads common in the
networking literature as well as realistic loads extracted from
TRIPS program execution. Finally, we examine trade-offs in
OPN implementation, including the sensitivity of processor
performance to network latency and bandwidth.

The remainder of this paper is organized as follows. Sec-
tion II describes related work in micronets. Section III in-
troduces the TRIPS processor microarchitecture. Section IV
describes the design and implementation of the TRIPS OPN,
highlighting where the OPN is different from typical on-chip
networks. Section V presents an evaluation of the network’s
performance under different loads and explores the sensitivity
of processor performance to OPN latency and bandwidth.
Section VI concludes and discusses future work in micronets.

II. RELATED WORK

The first operand bypass network was introduced with the
IBM System 360/model 91 to avoid delaying the sequential
execution of dependent instructions [3]. This bypass network
employed a simple broadcast bus (common data bus) that
linked each ALU output to each ALU input. Thus an in-
struction can receive an operand directly from a preceding
instruction’s output without the delay of passing it through
the register file.

The development of deeply pipelined superscalar architec-
tures drove increases in the complexity and latency of bypass
networks. Deeper pipelines increased the number of stages
in which an instruction could produce a result or consume
an operand. Wider pipelines increase the bypass bus network
complexity quadratically with the number of ALUs because of
the full connectivity between ALU outputs and ALU inputs.
This N2 scaling rate is not viable beyond a small number of
ALUs. The Multiscalar processor architecture used partition-
ing of the ALUs and register file into separate components
connected by a ring to reduce operand delivery complexity [4].
Similarly, the Alpha 21264 architecture divided its four integer
ALUs into two clusters to reduce the complexity of its
bypass network [5]. Operands produced within one cluster are
available for use in the same cluster in the next cycle, but they
must pay a single cycle penalty to be used in the other cluster.

Other machines have sought to reduce communication la-
tency between processors through cross-processor register-to-
register communication. The M-Machine employed an on-chip
cluster switch to connect the register bypass networks for three
processors; an instruction writing to a remote register injects
its result into the switch, which delivers the data to a waiting
instruction on a remote processor [6]. The MIT RAW proces-
sor took this strategy further, by using a 4x4 mesh network
to interconnect its processor tiles between execution units [7].
The integration of the RAW network into the local bypass
network of each execution unit reduced the latency of operand
passing between units to three cycles. One interesting feature
of RAW is that network routing arbitration and ordering are

statically determined. While this strategy simplifies the routers,
a compiler or programmer must generate a routing program
that executes concurrently with the application program. In
addition to the statically routed network, RAW also imple-
mented dynamically routed networks for load/store traffic. The
TRIPS OPN is also integrated directly with the execution unit.
However, to allow for out-of-order instruction execution and
uncertain memory delays, the OPN routers are dynamic. We
also employed additional routing optimizations to reduce the
per-hop latency to one cycle.

The Monsoon processor was a dataflow architecture that
used a custom switched interconnection network to provide
similar capabilities as the TRIPS OPN [8]. The WaveScalar
processor has a similar philosophy and execution model as
TRIPS, but uses a hierarchy of interconnection networks to
pass operands between processing elements [9]. Operands are
broadcast within the eight processing elements making up one
domain. Operands pass through a crossbar switch to travel
between the four domains that make up a cluster. Operands
traveling to another cluster traverse a 2D mesh network similar
to the TRIPS OPN.

Taylor, et al. [10] and Sankaralingam, et al. [11] both
present useful taxonomies of operand networks. Taylor cat-
egorizes operand networks based on whether the assignment,
transport, and ordering are each either static or dynamic. In
their terms, the TRIPS OPN has statically assigned operations
that are dynamically transported and ordered. Sankaralingam
categorizes operand networks based on network organization
(point-to-point vs. broadcast), network architecture (single hop
vs. multi-hop), and router control (static vs. dynamic). By
this taxonomy, the TRIPS OPN is a point-to-point, multi-hop
network with dynamic router control.

Pinkston and Shin [12] use data from the 2003 International
Technology Roadmap for Semiconductors (ITRS-2003) [13]
to demonstrate how trends in semiconductor technology are
leading to partitioned microsystem architectures. They provide
a taxonomy that categorizes microsystem architectures based
on how they are partitioned, with the insight that the trend
toward partitioned architectures is driving the adoption of on-
chip networks. By this taxonomy TRIPS processor core is
physically partitioned in a compiler-visible form.

Dally and Towles [14] proposed a 2D torus network as a
replacement for general on-chip interconnect, but not specifi-
cally for operand networks. They claim that on-chip network
modularity would shorten the design time and reduce the
wire routing complexity. Our experience bears this out, as the
design, implementation, timing optimization, and verification
of the TRIPS OPN were all straightforward. On-chip routed
networks have also been proposed for use in SoCs (system-on-
a-chip) such as in CLICHE [15], in which a 2D mesh network
is proposed to interconnect a heterogeneous array of IP blocks.

III. TRIPS PROCESSOR OVERVIEW

TRIPS is a distributed processor consisting of multiple
tiles connected via multiple micronets. Figure 2 shows a
tile-level diagram of the processor with its OPN links. The

Fig. 2. Block diagram of the TRIPS processor core with tiles and OPN
network connections.

processor contains five types of tiles: execution tiles (ET)
which contain ALUs and reservation stations, register tiles
(RT) which each contain a fraction of the processor register
file, data tiles (DT) which each contain a fraction of the level-1
data cache, instruction tiles (IT) which each contain a fraction
of the level-1 instruction cache, and a global control tile (GT)
which orchestrates instruction fetch, execution and commit. In
addition, the processor contains several control networks for
implementing protocols such as instruction fetch, completion,
and commit in a distributed fashion. Tiles communicate di-
rectly only with their nearest neighbors to keep wires short
and mitigate the effect of wire delay.

ISA and execution model: TRIPS is an explicit datagraph
execution (EDGE) architecture, an instruction set architecture
with two key features: (1) the hardware fetches, executes, and
commits blocks of instructions, rather than individual instruc-
tions, in an atomic fashion; and (2) within a block, instructions
send their results directly to other instructions waiting to
execute, rather than communicating through a common register
file [16]. The compiler is responsible for constructing blocks,
which can contain up to 128 instructions. Since basic blocks
typically contain only a handful of instructions, the TRIPS
compiler uses techniques such as predication, loop unrolling,
and function inlining to create large hyperblocks. After hyper-
block formation, a scheduler maps the block onto the fixed
array of 16 execution units, with up to 8 instructions per ET.
The scheduler is aware of the topology of the ETs and attempts
to minimize the distance between dependent instructions along
the program’s critical path. The scheduler determines where an
instruction will execute and encodes this in the program binary,
but the hardware executes instructions in dataflow order based
on when an individual instruction’s operands arrive.

Block execution: Processing a TRIPS block requires four
phases: fetch, execute, complete, and commit. To fetch a
block, the GT transmits a fetch request to each of the ITs
using the TRIPS global dispatch network (GDN). Each IT
then retrieves a portion of the block (32 instructions) from
its instruction cache bank and delivers them to pre-allocated
reservation stations in the ETs and RTs. An instruction waits
in its reservation station until all of its operands have arrived
before it can execute. Block execution is instigated by special

register read instructions that fetch block inputs from the
RTs and deliver them to waiting instructions via the OPN.
Instructions within the block then execute in dataflow order.
Load and store instructions compute their addresses in the ETs,
which are then transmitted to one of the DTs to access the data
cache. Addresses are interleaved across the DTs on cache-line
boundaries (64 bytes). Register outputs are transmitted back
to the RTs where they wait in write queues before updating
the architecturally persistent register file banks.

When all of the RTs and DTs have received all of the
register writes and stores for the block, they communicate this
to the GT via the global control network (GCN). When the
GT receives completion notification from all DTs and RTs, the
block is complete. If the block has not caused any exceptions,
the GT signals to the DTs and RTs that the block can commit.
The DTs then update the cache with the store values from the
store buffers and the RTs update the register file banks with
the contents of the write queues. When all of the state of
the block has committed, a new block may be mapped into
its place for execution. The TRIPS processor allows up to 8
blocks in-flight and executing simultaneously, with 1 being
non-speculative and 7 being speculative. Complete details of
the TRIPS microarchitecture and can be found in [17].

During block execution, the TRIPS operand network (OPN)
has the responsibility for delivering operands among the tiles.
The TRIPS instruction formats contain target fields indicating
to which consumer instructions a producer sends its values. At
runtime, the hardware resolves those targets into coordinates to
be used for network routing. An operand passed from producer
to consumer on the same ET can be bypassed directly without
delay, but operands passed between instructions on different
tiles must traverse a portion of the OPN. The TRIPS execution
model is inherently dynamic and data driven, meaning that
operand arrival drives instruction execution, even if operands
are delayed by unexpected or unknown memory latencies.
Because of the data driven nature of execution and because
multiple blocks execute simultaneously, the OPN must dy-
namically route the operand across the processor.

IV. OPN DESIGN AND IMPLEMENTATION

The operand network (OPN) is designed to deliver operands
among the TRIPS processor tiles with minimum latency. While
tight integration of the network into the processor core reduces
the network interface latency, two primary aspects of the
TRIPS processor architecture simplify the router design and
reduce routing latency. First, because of the block execution
model, reservation stations for all operand network packets
are pre-allocated, guaranteeing that all OPN messages can be
consumed at the targets. Second, all OPN messages are of
fixed length, one flit broken into header and payload phits.

A. OPN Design Details

The OPN is a 5x5 2D routed mesh network as shown
in Figure 2. Flow control is on/off based, meaning that the
receiver tells the transmitter when there is enough buffer space
available to send another flit. Packets are routed through the

Control phit Data phit
Field bits Field bits

Valid 1 Valid 1
Type (LD/ST/etc.) 4 Type (normal/null/exception) 2
Block ID 3 Data operation (access width) 3
Dest. node 6 Data payload 64
Dest. instruction 5 LD/ST Address 40
Source node 6
Source instruction 5

TABLE I

BREAKDOWN OF BITS FOR OPN CONTROL AND DATA PHITS.

network in Y-X dimension-order with one cycle taken per hop.
A packet arriving at a router is buffered in an input FIFO
prior to being launched onward towards its destination. Due to
dimension-order routing and the guarantee of consumption of
messages, the OPN is deadlock free without requiring virtual
channels. The absence of virtual channels reduces arbitration
delay and speeds routing.

Each operand network message consists of a control phit
and a data phit. The control phit is 30 bits and encodes OPN
source and destination node coordinates, along with identifiers
to indicate which instruction to select and wakeup in the target
ET. The data phit is 110 bits, with room for a 64-bit data
operand, a 40-bit address for store operations, and 6 bits for
status flags. Table I shows a breakdown of all of the bits in
the data and control phits.

The data phit always trails the control phit by one cycle
in the network. The OPN supports different physical wires
for the control and data phit so one can think of each OPN
message consisting of one flit split into a 30-bit control phit
and a 110-bit data phit. Because of the distinct control and
data wires, two OPN messages with the same source and
destination can proceed through the network separated by
a single cycle. The data phit of the first message and the
control phit of the second are on the wires between the same
two routers at the same time. Upon arrival at the destination
tile, the data phit may bypass the input FIFO and be used
directly, depending on operation readiness. This arrangement
is similar to flit-reservation flow control, although here the
control phit contains some payload information and does not
race ahead of the data phit [18]. In all, the OPN has a
peak injection bandwidth of 175 GB/sec when all nodes are
injecting packets every cycle at its designed frequency of
400MHz. The network’s bisection bandwidth is 70 GB/sec
measured horizontally or vertically across the middle of the
OPN.

Figure 3 shows a high-level block diagram of the OPN
router. The OPN router has five inputs and five outputs, one
for each ordinal direction (N, S, E and W) and one for the
local tile’s input and output. The ordinal directions inputs each
have two four entry deep FIFOs, one 30 bits wide for control
phits and one 110 bits wide for data phits. The local input
has no FIFO buffer. The control and data phits of the OPN

Fig. 3. OPN router microarchitecture.

packet have separate 4x4 crossbars. All arbitration and routing
is done on the control phit, in round-robin fashion among all
incoming directions. The data phit follows one cycle behind
the control phit in lock step, using the arbitration decision
from its control phit.

B. OPN/Processor Integration

ET/OPN datapath: Figure 4 shows the operand network
datapath between the ALUs in two adjacent ETs. The in-
struction selection logic and the output latch of the ALU are
both connected directly to the OPN’s local input port, while
the instruction wakeup logic and bypass network are both
connected to the OPN’s local output. The steps below describe
the use of the OPN to bypass data between the ALUs.

• Cycle 0: Instruction wakeup/select on ET 0
– ET0 selects a ready instruction and sends it to the

ALU.
– ET0 recognizes that the instruction target is on ET1

and creates the control phit.
• Cycle 1: Instruction execution on ET0

– ET0 executes the instruction on the ALU.
– ET0 delivers the control phit to router FIFO of ET1.

• Cycle 2: Instruction wakeup/select on ET1
– ET0 delivers the data phit to ET1, bypassing the

FIFO and depositing the data in a pipeline latch.
– ET1 wakes up and selects the instruction depending

on the data from ET0.
• Cycle 3: Instruction execution ET1

– ET1 selects the data bypassed from the network and
executes the instruction.

The early wakeup, implemented by delivering the control
phit in advance of the data phit, overlaps instruction pipeline

Fig. 4. Operand datapath between two neighboring ETs.

control with operand data delivery. This optimization reduces
the remote bypass time by a cycle (to one cycle) and improves
performance by approximately 11% relative to a design where
the wakeup occurs when the data arrives. In addition, the
separation of the control and data phits onto separate networks
with shared arbitration and routing eliminates arbitration for
the data phit and reduces network contention relative to a
network that sends the header and payload on the same wires
in successive cycles. This optimization is inexpensive in an
on-chip network due to the high wire density.

The OPN employs round-robin arbitration among all of the
inputs, including the local input. If the network is under load
and chooses not to accept the control phit, the launching node
captures the control phit and later the data phit in a local
output buffer. The ET will stall if the instruction selected for
execution needs the OPN and the ET output buffer is already
full. However, an instruction that needs only to deliver its
result to another instruction on the same ET does not stall
due to OPN input contention. While OPN contention can delay
instruction execution on the critical path of program execution,
the scheduler is effective at placing instructions to mitigate
the distance that operands must travel and the contention they
encounter.

Selective OPN message invalidation: Because the TRIPS
execution model uses both instruction predication and branch
prediction, some of the operand messages are actually spec-
ulative. On a branch misprediction or a block commit, the
processor must flush all in-flight state for the block, including
state in any of the OPN’s routers. The protocol must selectively
flush only those messages in the routers that belong to the
flushed block. The GT starts the flush process by multicasting
a flush message to all of the processor tiles using the global
control network (GCN). This message starts at the GT and
propagates across the GCN within 10 cycles. The GCN
message contains a block mask indicating which blocks are
to be flushed. Tiles that receive the GCN flush packet instruct
their routers to invalidate from their FIFOs any OPN messages
with block-identifiers matching the flushed block mask. As
the invalidated packets reach the head of the associated FIFOs

Component % Router Area % E-Tile Area
Router input FIFOs 74.6% 7.9%

Router crossbar 20.3% 2.1%
Router arbiter logic 5.1% 0.5%

Total for single router – 10.6%

TABLE II

AREA OCCUPIED BY THE COMPONENTS OF AN OPN ROUTER.

they are removed. While we chose to implement the FIFOs
using shift registers to simplify invalidation, the protocol could
also be implemented for circular buffer FIFOs. A collapsing
FIFO that immediately eliminates flushed messages could
further improve network utilization, but we found that the
performance improvement did not outweigh the increased
design complexity. In practice, very few messages are actually
flushed.

C. Area and Timing

The TRIPS processor is manufactured using a 130nm IBM
ASIC technology and returned from the foundry in September
2006. Each OPN router occupies approximately 0.25mm2,
which is similar in size to a 64-bit integer multiplier. Table II
shows a breakdown of the area consumed by the components
of an OPN router. The router FIFOs dominate the area in
part because of the width and depth of the FIFOs. Each
router includes a total of 2.2 kilobits of storage, implemented
using standard cell flip-flops rather than generated memory
or register arrays. Utilizing shift FIFOs added some area
overhead due to extra multiplexors. We considered using the
library generated SRAMs instead of flip-flops, but the area
overhead turned out to be greater given the small size of each
FIFO.

A single OPN router takes up approximately 10% of the
ET’s area and 14% of a processor core. While this area
is significant, the alternative of a broadcast bypass network
across all 25 tiles would consume considerable area and is not
feasible. We could have reduced router area by approximately

Component Latency % Path
Control Phit Path

Read from instruction buffer 290ps 13%
Control phit generation 620ps 27%
ET0 router arbitration 420ps 19%
ET0 OPN output mux 90ps 4%

ET1 OPN FIFO muxing and setup time 710ps 31%
Latch setup + clock skew 200ps 9%

Total 2.26ns –
Data Phit Path

Read from output latch 110ps 7%
Data phit generation 520ps 32%

ET0 OPN output mux 130ps 8%
ET1 router muxing/bypass 300ps 19%

ET1 operand buffer muxing/setup 360ps 22%
Latch setup + clock skew 200ps 12%

Total 1.62ns –

TABLE III

CRITICAL PATH TIMING FOR OPN CONTROL AND DATA PHIT.

1/3 by sharing the FIFO entries and wires for the control and
data phits. However, the improved OPN bandwidth and overall
processor performance justifies the additional area.

We performed static timing analysis on the TRIPS design
using Synopsys Primetime to identify and evaluate critical
paths. Table III shows the delay for the different elements
of the OPN control and data critical paths, matching the
datapath of Figure 4. We report delays using a nominal process
corner, which we obtained by scaling our worst-case process
corner delays by a factor of 2/3. A significant fraction of
the clock cycle time is devoted to overheads such as flip-flop
read and setup times as well as clock uncertainty (skew and
jitter). A custom design would likely be able to drive these
overheads down. On the logic path, the control phit is much
more constrained than the data phit due to router arbitration
delay. We were a little surprised by the delay associated
with creating the control phit, which involves decoding and
encoding. This path could be improved by performing the
decoding and encoding in a previous cycle and storing the
control phit with the instruction before execution. We found
that wire delay was small in our 130nm process given the
relatively short transmission distances. Balancing router delay
and wire delay may be more challenging in future process
technologies.

D. Design Optimizations

We considered a number of OPN enhancements but chose
not to implement them in the prototype to simplify the design.
One instance where performance can be improved is when an
instruction must deliver its result to multiple consumers. The
TRIPS ISA allows an instruction to specify up to 4 consumers,
and in the current implementation, the same value is injected in
the network once for each consumer. Multicast in the network
would automatically replicate a single message in the routers
at optimal bifurcation points. This capability would reduce
overall network contention and latency while increasing ET

execution bandwidth, as ETs would spend less time blocking
for message injection. Another optimization would give net-
work priority to those OPN messages identified to be on the
program’s critical path. We have also considered improving
network bandwidth by replicating the operand network by
replicating the routers and wires. We examine this optimization
further in Section V-E. Finally, the area and delay of our design
was affected by the characteristics of the underlying ASIC
library. While the trade-offs may be somewhat different with
a full-custom design, our results are relevant because not all
on-chip networked systems will be implemented using full-
custom silicon. Our results indicate that such ASIC designs
would benefit from new ASIC cells, such as small but dense
memory arrays and FIFOs.

V. OPN EVALUATION

In this section, we evaluate the behavior of the OPN on
statistical and realistic network workloads, using our operand
network simulator to model the OPN hardware. We char-
acterize the operand network message workload and show
that injection is not distributed evenly across the nodes, due
to the TRIPS execution model and scheduler optimizations.
Finally, we examine the sensitivity of program performance
and operand network latency to OPN bandwidth and latency
parameters.

A. Methodology

The OPN simulator is a custom network simulator config-
ured with the operand network design parameters. It can inject
messages using different traffic patterns, including random and
bit-reversal, with variable injection rates. It can also accept
a network trace file that specifies source nodes, destination
nodes, and injection timestamps. We obtained realistic work-
load traces from an abstract TRIPS processor performance
estimator (tsim-cyc), which runs compiled TRIPS programs.
This simulator models TRIPS block execution at a high
level, but employs a simple analytical performance model
without accurate OPN contention estimation. Nonetheless, this
simulator matches performance of the logic design of TRIPS
to within 25%. The high simulation speed of tsim-cyc allows
us to obtain traces for long running programs. However, the
message injection times only approximate those that will be
seen in hardware. For more detailed analysis, we also used
our low-level simulator (tsim-proc) which accurately models
all aspects of a TRIPS processor core, including network
contention. This simulator has been validated for accuracy
against the TRIPS RTL and hardware. Unfortunately, the speed
of this simulator prevents analysis of large programs.

Our realistic workloads include programs from the
EEMBC [19] and SPEC2000 [20] benchmark suites. The 30
EEMBC benchmarks are small enough to run to completion
on both tsim-cyc and tsim-proc. The 19 SPEC CPU2000
benchmarks were run with the Minne-SPEC [21] reduced input
set, but were still too long-running for tsim-proc. The SPEC
benchmarks were run to completion (50 million cycles for the
shortest benchmark), or for 300 million cycles after program

Fig. 5. Offered vs accepted rate for random and bit-reversal traffic.

Fig. 6. Offered rate vs average latency for random and bit-reversal traffic.

warmup. The traces include 2–70 million operand messages,
depending on the benchmark.

B. Synthetic Statistical Loads

Interconnection networks are typically evaluated by exam-
ining their performance on stochastically generated loads. Two
common loads are bit-reversal and uniform random traffic.
In bit-reversal, each node exchanges packets with a node on
the opposite side of the network. The random traffic model
randomly chooses source and destination pairs from among all
the TRIPS core tiles. Both traffic models inject packets at a
uniform random distributed rate. Figure 5 shows the offered vs.
accepted rate for both of these types of traffic. The offered rate
is the rate at which packets are generated, while the accepted
rate is the throughput of the network. In these diagrams,
the offered and accepted rates are shown as a percentage of
the peak injection bandwidth. The accepted rate tracks the
offered rate for bit-reversal traffic up to 33%, from there the
accepted rate continues to increase, finally leveling off at 44%.
For random traffic the accepted bandwidth tracks the offered
bandwidth up to approximately 46% before leveling off to a
maximum of 47%. These are typical curves for this type of
2D mesh network.

Figure 6 shows the average measured packet latency in

��

��

��

��

��

���

���

���

���

�
	
	

�

��

�

�

�
��

�
�
�

�

�
��
���

�
�
�
�
�
�

�
�

�
�
�

	
�
�

	
�

�

	
�
���

�
�
�
�

��
���

�
�

�
�	

��
�
��

�
�
���

�

�

�

�
�

�
�
�

�
�
�
��
�
�

�
��
�
��
�
��

�
	�
�

�
��
��

�
�
�

Fig. 7. Average offered rates in SPEC CPU2000 benchmark traces.

cycles for increasing offered rate. The average latency for bit-
reversal traffic gradually increases from around 5 to 8 cycles
for offered rates of 1% to 32%. The latency then increases
exponentially as the network becomes saturated. Similarly
for random traffic the latency increases from about 4 to 7
cycles for offered rates from 1% to 40% before increasing
dramatically. This diagram shows that 32% and 40% are the
saturation offered rates for bit-reversal and random traffic
respectively.

C. OPN Traffic Trace Analysis

Our earlier work examining the OCN [22] showed that real
benchmark generated traffic in on-chip networks would not
be modeled well by traditional synthetic loads. We perform a
similar analysis for the OPN using network traces generated
from tsim-cyc and characterize the network workload.

Variation in application offered rate: Figure 7 shows the
average offered rate for various SPEC CPU2000 benchmark
traces generated from tsim-cyc. For each application’s trace,
we derived the offered rate by dividing the number of total
messages by the product of the cycle count and the number
of injecting nodes (25 for the 5x5 network). While the offered
rates vary widely, from under 1% for twolf to almost
14% for mcf, the average offered rate is well below the
saturation threshold range of 30-40% for bit-reversal and
uniform random. The magnitude of the offered rates correlate
to the degree of ILP that the TRIPS compiler has exposed to
the processor. A benchmark with more exposed ILP will have
more operations occurring simultaneously and will therefore
generate more operands each cycle than a benchmark that has
long dependency chains and lower ILP.

Average packet hop distance: Figure 8 shows the average
number of hops, or router traversals, from source to destination
for OPN packets from various SPEC CPU2000 benchmark
traces. These values are generated by averaging the Manhattan
distance from source to destination for each packet in the trace
of each benchmark. Because the OPN is a single cycle per hop
network, this distance also represents a best case routing delay
for each packet in the absence of any network contention.

�

��

�

��

�

��

!

�
	
	

�

��

�

�

�
��

�
�
�

�

�
��
���

�
�
�
�
�
�

�
�

�
�
�

	
�
�

	
�

�

	
�
���

�
�
�
�

��
���

�
�

�
�	

��
�
��

�
�
���

�

�

�

�
�

�
�
�

�
�
�
��
�
�

�
�
�
�

Fig. 8. Average number of hops from source to destination for various SPEC
CPU2000 benchmarks.

�

�

�

!

�

�
�

�
!

�

��

��

��

���

���

"������#

$���

%

&

'� '�

'� '!

'� '
'� '(

'� ') '��
'��

'�� '�!
'��

'�

*�

*�

*�

*!

+

$�

$�
$�

$!

Fig. 9. Offered rates for SPEC CPU2000 benchmarks broken down by
sources.

The figure shows that average hop distance for all bench-
marks is 2.13. There is little variance from one benchmark
to the next. In TRIPS, instructions are statically mapped on
particular nodes; the TRIPS compiler tries to map instructions
as close as possible to the source of their operands, be that the
register file or data cache for register reads or memory loads,
or other E tiles producing their operands directly. Offsetting
this, the compiler must ensure that the instructions are evenly
distributed across the execution resources to ensure minimal
resource contention.

Variation in offered rate by source: While the overall
average offered rate of the OPN is low, that metric does not
accurately capture hot spots in the network. Figure 9 shows
the average offered rate for each individual OPN node as a
percentage of the peak offered rate of one message per cycle,

Fig. 10. Link utilization for mesa SPEC CPU2000 benchmark.

averaged across all SPEC CPU2000 benchmarks. The X-Y
plane of the graph matches the layout of the 5x5 operand
network and the different shades highlight the different tile
types. The per-tile offered rates vary widely, from a low of
2.6% for E15 in the lower right to a high of 16.7% for E0 at the
upper left. The disposition of offered rates reflects the TRIPS
compiler’s instruction placement optimizations that attempt
to minimize operand routing distance. Thus, instructions are
preferentially placed near the register file and data cache tiles
to reduce block input and output latency. Our analysis shows
that even though average offered rate is low, applications can
easily create network injection hot spots that may approach
local saturation, producing higher than expected transmission
latencies. The compiler schedules instructions to more evenly
distribute the network traffic; however such optimizations must
be balanced against the effect of increasing the average source
to destination hop count.

Variation in link utilization: Hot spots also form when
many messages must pass through the same link. Figure 10
labels each OPN link with the link occupancy percentage for
the mesa SPEC CPU2000 benchmark. We choose to show
the data for one benchmark instead of averaging across all
of them because of the variance across the benchmarks. The
southbound link between E4 and E8 has a high utilization of
41% and many other links are in the 15%–20% range. High
link utilizations will have a disproportionately large effect
on latency because of congestion and limits the performance
improvement available through virtual channel flow control.
Our experience shows that other benchmarks place a maximum
load of only 5-10% on any link.

Traffic burstiness: In addition to load variability across
applications and network nodes, offered traffic can vary over

Fig. 11. Distribution of offered rates measured as a percentage of packets
injected at a given offered rate.

time. TRIPS naturally has traffic bursts because a block
begins execution through the injection of many register values
from the top of the network. To measure this burstiness,
we examined the trace at 1000 cycle intervals, counted the
number of messages in each interval, and computed the
offered rate for the interval. Figure 11 shows a histogram
of the offered rates for two SPEC CPU2000 benchmarks,
mcf and mgrid. The X-axis shows the histogram buckets
at 1% intervals, while the Y-axis shows the fraction of all
messages that fall into each bucket. The figure shows that mcf
has a relatively stable offered rate centering around 29% for
most packets, meaning that the network is evenly loaded over
time. Conversely, mgrid shows more diversity in its offered
rates with significant numbers of packets clustered around
20%, 34% and 38%. Based on these results we conclude that
the traffic of mgrid has more bursts than that of mcf, and
likely has spikes in latency for critical operands traversing
the network. Such bursts may motivate lightweight network
designs that tolerate and spread traffic in response to varying
loads.

D. Network Simulator-based Analysis

To examine how the network performs under load, we
applied the traces to the OPN trace-driven simulator. The in-
herent weakness of trace-driven network simulation is the lack
of a feedback loop between the network simulation and trace
generation. In the real TRIPS processor, network congestion
will throttle instruction execution, in turn throttling the offered
rate. To bound this difference, for each message we tracked
the instruction block to which it belongs and ensures that
messages from only eight consecutive blocks are considered
for injection at any one time. These eight correspond to the
one non-speculative and seven speculative blocks that can
execute simultaneously. This approach represents a reasonable
compromise that keeps the processor and network simulators
separate. The lack of intra-block throttling places some excess
stress on the network, giving additional insight on the load if
the network were ideal and non-contented.

��

��

��

!�

��

 �

��

�
	
	

�

��

�

�

�
��

�
�
�

�

�
��
���

�
�
�
�
�
�

�
�

�
�
�

	
�
�

	
�

�

	
�
���

�
�
�
�

��
���

�
�

�
�	

��
�
��

�
�
���

�

�

�

�
�

�
�
�

�
�
�
��
�
�

��������

�
��
�
��
�
��

�
	�

�

�

�

�

�

��

��

��

��

��

�
�
�
��
�

"������#$��� ,���-��

Fig. 12. Offered rates and latencies for SPEC CPU2000 benchmarks from
the OPN network simulator.

�

�

�

�

�

��

��

��

�
�
��	

�
�
�

�
������

�

�
������

�

�
������

�

�
�
��
�
�
��
�

�
�

�
�

�
�

�
�
�
��
��
�

�
��	

-

�
�

�
�
�
.
�
�
�
�

�
�
-
��
��
�

�
/

�
�

�
�
-
�
�
-
�
�

�
��.
�
��
�

�
/

�
�

��
���
��
�

����
�

��
�
��-

�
�

�������
�

	
�
����

�
�

�

�

�
����

�

-
���
.
�
�

�
�
	
�
�
�
�

��
��
��
�
�

��
�
��
��
�
�
�

�

�
�
�
�
�

��
��
�
�
�
�

��
�
��
�

��

��
�
�

�
���
��
�
�

0
�
�
��
�
�

���������

�
�
�
��
�

1������#2����#3�	������ $2,#3�	������

Fig. 13. EEMBC benchmark latency from the high-level tsim-cyc traces
versus the detailed processor model tsim-proc.

Offered rate and latency: Figure 12 shows the average
offered rate and latency for the SPEC CPU2000 on the OPN
simulator. Compared to the results in Figure 7, the offered rates
are significantly lower because of the block-level throttling.
The benchmarks that had the highest offered rates show
offered rates that are reduced by as much as two thirds.

The right bar for each benchmark shows the average mes-
sage latency for each benchmark. In general, benchmarks
with higher offered rates show higher average latencies, but
certain benchmarks show the reverse. For example, mcf has
the highest offered rate at 5.1% while it has a fairly average
latency of about 10 cycles. Conversely mgrid has a fairly
average offered rate of around 3% but the highest average
latency at 15.5 cycles. This dichotomy can be attributed to the
burstiness in the traffic and high utilization of particularly hot
links. The OPN simulator shows that the average latencies are
high, ranging from 6 to 15 cycles. Although throttling will
prevent actual OPN latencies from reaching these levels, the
measured latencies highlight where OPN network performance
improvement has a direct affect on processor performance.

Network throttling: To examine the impact of throttling on
latency, we used the cycle-level simulator tsim-proc. Because
tsim-proc is approximately 300 times slower than the tsim-

Fig. 14. Comparison of baseline OPN versus an OPN without the early
wakeup and an OPN that consumes two cycles per hop.

cyc simulator we used to generate traces, we chose the shorter
EEMBC 2.0 suite of embedded system benchmarks. Figure 13
shows the average latencies of OPN packets as measured in
both tsim-proc and the OPN network trace driven simulator.
While the network simulator shows an average latency of 7
cycles, tsim-proc shows only 2.25 cycle, again due to throttling
from instruction dependences in the program. This can be a
little deceiving because throttling manifests as stalls in the
execution tiles (ETs) rather than in the network. Thus for
network research, trace-based simulation still provides good
insight into network behavior, but one must take care when
analyzing system performance based on network performance.

E. Operand Network Sensitivity Studies

Packet End-To-End Latency: The TRIPS prototype is
designed to support one-cycle communication latency between
adjacent ETs. Speculative injection of the operand message
header, early wakeup of the consumer, and bypassing directly
from the network input limit the latency of operand network
transmission. Each additional hop in the network costs only
one cycle. To examine the sensitivity of performance to
latency, we simulated two alternate designs. The first emulates
an architecture that does not have early wakeup and thus
requires one additional cycle for every operand transmis-
sion. The second emulates a two-cycle-per-hop network to
model slower routers and wires. Figure 14 compares the
IPC (instructions-per-clock) of the TRIPS processor core for
the different design points. Without early wakeup, processor
performance drops by about 11%; a two-cycle per hop network
decreases IPC by 20%. Thus performance of TRIPS is quite
sensitive to OPN latency.

Bandwidth: A simple way to improve the performance
of a network is to increase its bandwidth. Typically one
would increase the bit-width of the network’s interfaces to
decrease the number of flits per message, network occupancy,
and message injection and extraction latency. Because the
OPN already has single-flit packets, increasing the link-width
will not affect network occupancy or processor performance.
Another way to improve the performance of a network is to

�

�

�

�

�

��

��

��

��

��

�
	
	

�

��

�

�

�
��

�
�
�

�

�
��
���

�
�
�
�
�
�

�
�

�
�
�

	
�
�

	
�

�

	
�
���

�
�
�
�

��
���

�
�

�
�	

��
�
��

�
�
���

�

�

�

�
�

�
�
�

�
�
�
��
�
�

�
�
	�
�
�
�

�#-������ �#-������ !#-������ �#-������ 4����

Fig. 15. Average packet latency for SPEC CPU2000 benchmarks with 1, 2,
3 and 4 OPN networks.

decrease the network diameter by using higher-radix routers
and a more highly interconnected topology. This approach is
not a good fit for the OPN for two reasons. First, increasing
the radix of the routers increases the logical complexity of
the routers, possibly to the point of becoming the TRIPS
core’s critical timing path. Second, as shown in figure 8 the
average hop distance for packets on the OPN is just over 2,
so increasing the network’s order would not decrease the end-
to-end latency of a large fraction of the injected messages.
Slowing down the clock or pipelining the routers in order to
achieve timing would mitigate any gains.

As an alternative, we investigated replicating the network
links and routers as a means to increase the effective band-
width of the network and reduce contention. We simulate a
simple scheme in which nodes inject packets into each network
in a round-robin fashion. If a network is blocked due to
congestion, the injecting node skips it until the congestion
is alleviated. Figure 15 shows the average packet latency from
the OPN trace simulator for the SPEC CPU2000 benchmarks
with 1 (the current OPN configuration), 2, 3 and 4 networks
interconnecting the nodes of the OPN. The expected latency
without contention is shown as “Ideal”. The biggest improve-
ment in latency occurs between 1 and 2 networks, almost
halving the average latency. However, replication comes at a
cost of doubling the area consumed by the network.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the design, implementation,
and evaluation of the TRIPS OPN. The TRIPS OPN is a
micronet that interconnects the functional units within the
TRIPS processor core. The OPN replaces an operand bypass
bus and primary memory system interconnect in a technology
scalable manner. The tight integration between the OPN and
the processor core elements enables fast operand bypassing
across distributed ALUs, providing opportunity for greater
instruction-level concurrency. Our implementation and fabrica-
tion shows that such a network is feasible in terms of area and
delay, and that the network design provides good performance
for the traffic provided by real applications.

We used synthetic benchmarks along with static traces
generated from SPEC CPU2000 traffic to evaluate the per-
formance of the OPN micronet under different loads. We
found that the offered traffic varied widely across multiple
applications and across different processor tiles; stochastic
workloads are not representative of such real workloads. Our
experiments confirm the expectation that distributed processor
performance is quite sensitive to network latency, as just one
additional cycle per hop results in a 20% drop in performance.
Increasing the link width in bits does not help this network
since the messages already consist of only one flit. Replicating
the network to improve bandwidth and reduce latency is
promising as increasing the wire count in on-chip networks
is not prohibitively expensive. However, network router area
(particularly router buffers) is not insignificant and these costs
must be balanced with network performance benefits.

We expect that fine-grained networks will increase in
importance, initially as memory oriented networks for chip
multiprocessors and SoCs, but ultimately in support of finer
grained communication and synchronization. Further research
is needed to re-examine standard multichip interconnection
network architectures with respect to the constraints and op-
portunities of on-chip networks. In addition to network latency
and area, we expect network power, efficiency, and quality of
service to be critical. We also expect micronets to provide
new opportunities in other aspects of distributed system and
processor design. As an example, we are currently examining
how micronet flow control can help reduce area overheads of
distributed memory ordering hardware.

REFERENCES

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock Rate
Versus IPC: The End of the Road for Conventional Microarchitectures,”
in 27th International Symposium on Computer Architecture (ISCA),
2000, pp. 248–259.

[2] E. Sprangle and D. Carmean, “Increasing Processor Performance by
Implementing Deeper Pipelines,” in 30th International Symposium on
Computer Architecture (ISCA), 2002, pp. 25–34.

[3] R. Tomasulo, “An Efficient Algorithm for Exploring Multiple Arithmetic
Units,” IBM Journal of Research and Development, vol. 11, no. 1, pp.
25–33, Jan. 1967.

[4] S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “The Anatomy
of the Register File in a Multiscalar Processor,” in 27th ACM/IEEE
International Symposium on Microarchitecture (MICRO), 1994, pp. 181–
190.

[5] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24–36, 1999.

[6] S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Chang, and
W. S. Lee, “Exploiting Fine-grain Thread Level Parallelism on the MIT
Multi-ALU Processor,” in 25th International Symposium on Computer
Architecture (ISCA), 1998, pp. 306–317.

[7] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring It All to Software: RAW Machines,” IEEE Computer, vol. 30,
no. 9, pp. 86–93, September 1997.

[8] C. F. Joerg and G. A. Boughton, “The Monsoon Interconnection Net-
work,” in IEEE International Conference on Computer Design (ICCD),
1991, pp. 156–159.

[9] S. Swanson, A. Putnam, M. Mercaldi, K. Michelson, A. Petersen,
A. Schwerin, M. Oskin, and S. Eggers, “Area-Performance Trade-offs
in Tiled Dataflow Architectures,” in 33rd International Symposium on
Computer Architecture (ISCA), 2006, pp. 314–326.

[10] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar
Operand Networks: On-Chip Interconnect for ILP in Partitioned Archi-
tecture,” in 9th International Symposium on High-Performance Com-
puter Architecture (HPCA), 2003, pp. 341–353.

[11] K. Sankaralingam, V. A. Singh, S. W. Keckler, and D. Burger, “Routed
Inter-ALU Networks for ILP Scalability and Performance,” in IEEE
International Conference on Computer Design (ICCD), 2003, pp. 170–
177.

[12] T. M. Pinkston and J. Shin, “Trends toward on-chip networked microsys-
tems,” Int. J. High Performance Computing and Networking, vol. 3,
no. 1, pp. 3–18, 2005.

[13] “International technology roadmap for semiconduc-
tors (ITRS), 2003 edition.” [Online]. Available:
http://public.itrs.net/Files/2003ITRS/Home2003.htm

[14] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Inter-
connection Networks,” in 38th Design Automation Conference (DAC),
2001, pp. 684–689.

[15] S. Kumar, A. Jantsch, M. Millberg, J. Öberg, J.-P. Soininen, M. Forsell,
K. Tiensyrjä, and A. Hemani, “A Network on Chip Architecture and
Design Methodology,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2002, pp. 117–124.

[16] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team, “Scaling to the End of Silicon with EDGE Architectures,”
IEEE Computer, vol. 37, no. 7, pp. 44–55, July 2004.

[17] K. Sankaralingam, R. Nagarajan, P. Gratz, R. Desikan, D. Gulati,
H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan,
S. Sharif, P. Shivakumar, W. Yoder, R. McDonald, S. Keckler, and
D. Burger, “The Distributed Microarchitecture of the TRIPS Prototype
Processor,” in 39th ACM/IEEE International Symposium on Microarchi-
tecture (MICRO), 2006.

[18] L.-S. Peh and W. J. Dally, “Flit-Reservation Flow Control,” in 6th
International Symposium on High-Performance Computer Architecture
(HPCA), 2000, pp. 73–84.

[19] A. R. Weiss, “The Standardization of Embedded Benchmarking: Pitfalls
and Opportunities,” in IEEE International Conference on Computer
Design (ICCD), 1999, pp. 492–498.

[20] J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium,” IEEE Computer, vol. 33, no. 7, pp. 28–35, 2000.

[21] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A New SPEC Bench-
mark Workload for Simulation-Based Computer Architecture Research,”
Computer Architecture Letters, vol. 1, 2002.

[22] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger,
“Implementation and Evaluation of On-Chip Network Architectures,”
in IEEE International Conference on Computer Design (ICCD), 2006.

