
The SimpleScalar Tool Set, Version 2.0

*Contact: dburger@cs.wisc.edu
http://www.cs.wisc.edu/~mscalar/simplescalar.html

1

This work was initially supported by NSF Grants CCR-9303030, CCR-
9509589, and MIP-9505853, ONR Grant N00014-93-1-0465, a donation
from Intel Corp., and by U.S. Army Intelligence Center and Fort Hua-
chuca under Contract DABT63-95-C-0127 and ARPA order no. D346.
The current support for this work comes from a variety of sources, all of
to which we are indebted.

Doug Burger*

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

Todd M. Austin

MicroComputer Research Labs, JF3-359
Intel Corporation, 2111 NE 25th Avenue

Hillsboro, OR 97124 USA

University of Wisconsin-Madison Computer Sciences Department Technical Report #1342, June, 1997.

This report describes release 2.0 of the SimpleScalar tool set,
a suite of free, publicly available simulation tools that offer both
detailed and high-performance simulation of modern micropro-
cessors. The new release offers more tools and capabilities, pre-
compiled binaries, cleaner interfaces, better documentation,
easier installation, improved portability, and higher perfor-
mance. This report contains a complete description of the tool
set, including retrieval and installation instructions, a descrip-
tion of how to use the tools, a description of the target SimpleS-
calar architecture, and many details about the internals of the
tools and how to customize them. With this guide, the tool set can
be brought up and generating results in under an hour (on sup-
ported platforms).

1 Overview
Modern processors are incredibly complex marvels of engi-

neering that are becoming increasingly hard to evaluate. This
report describes the SimpleScalar tool set (release 2.0), which
performs fast, flexible, and accurate simulation of modern pro-
cessors that implement the SimpleScalar architecture (a close
derivative of the MIPS architecture [4]). The tool set takes bina-
ries compiled for the SimpleScalar architecture and simulates
their execution on one of several provided processor simulators.
We provide sets of precompiled binaries (including SPEC95),
plus a modified version of GNU GCC (with associated utilities)
that allows you to compile your own SimpleScalar test binaries
from FORTRAN or C code.

The advantages of the SimpleScalar tools are high flexibility ,
portability, extensibility, and performance. We include five exe-
cution-driven processor simulators in the release. They range
from an extremely fast functional simulator to a detailed, out-of-
order issue, superscalar processor simulator that supports non-
blocking caches and speculative execution.

The tool set is portable, requiring only that the GNU tools
may be installed on the host system. The tool set has been tested
extensively on many platforms (listed in Section2). The tool set
is easily extensible. We designed the instruction set to support

easy annotation of instructions, without requiring a retargeted
compiler for incremental changes. The instruction definition
method, along with the ported GNU tools, makes new simulators
easy to write, and the old ones even simpler to extend. Finally,
the simulators have been aggressively tuned for performance,
and can run codes approaching “real” sizes in tractable amounts
of time. On a 200-MHz Pentium Pro, the fastest, least detailed
simulator simulates about four million machine cycles per sec-
ond, whereas the most detailed processor simulator simulates
about 150,000 per second.

The current release (version 2.0) of the tools is a major
improvement over the previous release. Compared to version 1.0
[2], this release includes better documentation, enhanced perfor-
mance, compatibility with more platforms, precompiled SPEC95
SimpleScalar binaries, cleaner interfaces, two new processor
simulators, option and statistic management packages, a source-
level debugger (DLite!) and a tool to trace the out-of-order pipe-
line.

The rest of this document contains information about obtain-
ing, installing, running, using, and modifying the tool set. In
Section2 we provide a detailed procedure for downloading the
release, installing it, and getting it up and running. In Section3,
we describe the SimpleScalar architecture and details about the
target (simulated) system. In Section4, we describe the SimpleS-
calar processor simulators and discuss their internal workings. In
Section5, we describe two tools that enhance the utility of the
tool set: a pipeline tracer and a source-level debugger (for step-
ping through the program being simulated). In Section6, we pro-
vide the history of the tools’ development, describe current and
planned efforts to extend the tool set, and conclude. In
AppendixA and AppendixB contain detailed definitions of the
SimpleScalar instructions and system calls, respectively.

2 Installation and Use
The only restrictions on using and distributing the tool set are

that (1) the copyright notice must accompany all re-releases of
the tool set, and (2) third parties (i.e., you) are forbidden to place
any additional distribution restrictions on extensions to the tool
set that you release. The copyright notice can be found in the dis-
tribution directory as well as at the head of all simulator source
files. We have included the copyright here as well:

Copyright (C) 1994, 1995, 1996, 1997 by Todd M. Austin

2

This tool set is distributed “as is” in the hope that it will be
useful. The tool set comes with no warranty, and no author or
distributor accepts any responsibility for the consequences of its
use.

Everyone is granted permission to copy, modify and redistrib-
ute this tool set under the following conditions:

• This tool set is distributed for non-commercial use only.
Please contact the maintainer for restrictions applying to
commercial use of these tools.

• Permission is granted to anyone to make or distribute cop-
ies of this tool set, either as received or modified, in any
medium, provided that all copyright notices, permission and
nonwarranty notices are preserved, and that the distributor
grants the recipient permission for further redistribution as
permitted by this document.

• Permission is granted to distribute these tools in compiled
or executable form under the same conditions that apply for
source code, provided that either: (1) it is accompanied by
the corresponding machine-readable source code, or (2) it
is accompanied by a written offer, with no time limit, to give
anyone a machine-readable copy of the corresponding
source code in return for reimbursement of the cost of distri-
bution. This written offer must permit verbatim duplication
by anyone, or (3) it is distributed by someone who received
only the executable form, and is accompanied by a copy of
the written offer of source code that they received concur-
rently.

In other words, you are welcome to use, share and improve
these tools. You are forbidden to forbid anyone else to use, share
and improve what you give them.

2.1 Obtaining the tools
The tools can either be obtained through the World Wide

Web, or by conventional ftp. For example, to get the filesim-
plesim.tar.gz via the WWW, enter the URL:

ftp://ftp.cs.wisc.edu/sohi/Code/simplescalar/
simplesim.tar

and to obtain the same file with traditional ftp:

ftp ftp.cs.wisc.edu
user: anonymous
password: enter your e-mail address here
cd sohi/Code/simplescalar
get simplesim.tar

Note the “tar.gz” suffix: by requesting the file without the “.gz”
suffix, the ftp server uncompresses it automatically. To get the
compressed version, simply request the file with the “.gz” suffix.

The five distribution files in the directory (which are symbolic
links to the files containing the latest version of the tools) are:

• simplesim.tar.gz - contains the simulator sources, the
instruction set definition macros, and test program source
and binaries. The directory is 1 MB compressed and 4 MB
uncompressed. When the simulators are built, the directory
(including object files) will require 11 MB. This file is
required for installation of the tool set.

• simpleutils.tar.gz - contains the GNU binutils source (ver-
sion 2.5.2), retargeted to the SimpleScalar architecture.

These utilities are not required to run the simulators them-
selves, but is required to compile your own SimpleScalar
benchmark binaries (e.g. test programs other than the ones
we provide). The compressed file is 3 MB, the uncom-
pressed file is 14 MB, and the build requires 52 MB.

• simpletools.tar.gz - contains the retargeted GNU compiler
and library sources needed to build SimpleScalar bench-
mark binaries (GCC 2.6.3, glibc 1.0.9, and f2c), as well as
pre-built big- and little-endian versions of libc. This file is
needed only to build benchmarks, not to compile or run the
simulators. The tools are 11 MB compressed, 47 MB
uncompressed, and the full installation requires 70 MB.

• simplebench.big.tar.gz - contains a set of the SPEC95
benchmark binaries, compiled to the SimpleScalar architec-
ture running on a big-endian host. The binaries take under 5
MB compressed, and are 29 MB when uncompressed.

• simplebench.little.tar.gz - same as above, except that the
binaries were compiled to the SimpleScalar architecture
running on a little-endian host.

Once you have selected the appropriate files, place the down-
loaded files into the desired target directory. If you obtained the
files with the “.gz” suffix, run the GNU decompress utility (gun-
zip). The files should now have a “.tar” suffix. To remove the
directories from the archive:

tar xf filename.tar

If you download and unpack all files, release, you should have
the following subdirectories with following contents:

• simplesim-2.0 - the sources of the SimpleScalar processor
simulators, supporting scripts, and small test benchmarks. It
also holds precompiled binaries of the test benchmarks.

• binutils-2.5.2 - the GNU binary utilities code, ported to the
SimpleScalar architecture.

• ssbig-na-sstrix - the root directory for the tree in which the
big-endian SimpleScalar binary utilities and compiler tools
will be installed. The unpacked directories contain header
files and a pre-compiled copy of libc and a necessary object
file.

• sslittle-na-sstrix - same as above, except that this directory
holds the little-endian versions of the SimpleScalar utilities.

• gcc-2.6.3 - the GNU C compiler code, targeted toward the
SimpleScalar architecture.

• glibc-1.09- the GNU libraries code, ported to the SimpleS-
calar architecture.

• f2c-1994.09.27 - the 1994 release of AT&T Bell Labs’
FORTRAN to C translator code.

• spec95-big - precompiled SimpleScalar SPEC95 bench-
mark binaries (big-endian version).

• spec95-little - precompiled SimpleScalar SPEC95 bench-
mark binaries (little-endian version)

2.2 Installing and running Simplescalar
We depict a graphical overview of the tool set in Figure1.

Benchmarks written in FORTRAN are converted to C using Bell
Labs’ f2c converter. Both benchmarks written in C and those
converted from FORTRAN are compiled using the SimpleScalar

3

version of GCC, which generates SimpleScalar assembly. The
SimpleScalar assembler and loader, along with the necessary
ported libraries, produce SimpleScalar executables that can then
be fed directly into one of the provided simulators. (The simula-
tors themselves are compiled with the host platform’s native
compiler; any ANSI C compiler will do).

If you use the precompiled SPEC95 binaries or the precom-
piled test programs, all you have to install is the simulator source
itself. If you wish to compile your own benchmarks, you will
have to install and build the GCC tree and optionally (recom-
mended) the GNU binutils. If you wish to modify the support
libraries, you will have to install, modify, and build the glibc
source as well.

The SimpleScalar architecture, like the MIPS architecture [4],
supports both big-endian and little-endian executables. The tool
set supports compilation for either of these targets; the names for
the big-endian and little-endian architecture aressbig-na-sstrix
and sslittle-na-sstrix, respectively. You should use the target
endian-ness that matches your host platform; the simulators may
not work correctly if you force the compiler to provide cross-
endian support. To determine which endian your host uses, run
the endian program located in thesimplesim-2.0/ direc-
tory. For simplicity, the following instructions will assume a big-
endian installation. In the following instructions, we will refer to
the directory in which you are installing SimpleScalar as
$IDIR/.

The simulators come equipped with their own loader, and
thus you do not need to build the GNU binary utilities to run sim-
ulations. However, many of these utilities are useful, and we rec-
ommend that you install them. If desired, build the GNU binary
utilities1:

cd $IDIR/binutils-2.5.2
configure --host=$HOST --target=ssbig-na-

1. You must have GNU Make to do the majority of installations described
in this document. To check if you have the GNU version, execute “make -
v” or “gmake -v”. The GNU version understands this switch and displays
version information.

sstrix --with-gnu-as --with-gnu-ld --pre-
fix=$IDIR

make
make install

$HOST here is a “canonical configuration” string that represents
your host architecture and system (CPU-COMPANY-SYSTEM).
The string for a Sparcstation running SunOS would be sparc-sun-
sunos4.1.3, running Solaris: sparc-sun-solaris2, a 386 running
Solaris: i386-sun-solaris2.4, etc. A complete list of supported
$HOST strings resides in$IDIR/gcc-2.6.3/INSTALL.

This installation will create the needed directories in$IDIR
(these includebin/, lib/, include/, andman/). Once the
binutils have been built, build the simulators themselves. This is
necessary to do before building GCC, since one of the binaries is
needed for the cross-compiler build. You should edit$IDIR/
simplesim-2.0/Makefile to use the desired compile flags
(e.g., the correct optimization level). To use the GNU BFD
loader instead of the custom loader in the simulators, uncomment
-DBFD_LOADER in the Makefile. To build the simulators:

cd $IDIR/simplesim-2.0
make

If desired, build the compiler:

cd $IDIR/gcc-2.6.3
configure --host=$HOST --target=ssbig-na-

sstrix --with-gnu-as --with-gnu-ld --pre-
fix=$IDIR

make LANGUAGES=c
../simplesim-2.0/sim-safe ./enquire -f >!

float.h-cross
make install

We provide pre-built copies of the necessary libraries inssbig-
na-sstrix/lib/, so you do not need to build the code in
glibc-1.09, unless you change the library code. Building these
libraries is tricky, and we do not recommend it unless you have a
specific need to do so. In that event, to build the libraries:

cd $IDIR/glibc-1.09
configure --prefix=$IDIR/ssbig-na-sstrix

ssbig-na-sstrix

Simplescalar
GLD

FORTRAN C

SimpleScalar

Object files

SimpleScalar

SimpleScalar

SimpleScalar

SS libm.a

SS libF77.a

Host C compilerGCC

GAS

f2c

benchmark source

assembly

executables

SS libc.a

Simulator source
(e.g., sim-outorder.c)

Simulator

benchmark source

RESULTS

Figure 1. SimpleScalar tool set overview

Precompiled SS
binaries (test, SPEC95)

4

setenv CC $IDIR/bin/ssbig-na-sstrix-gcc
unsetenv TZ
unsetenv MACHINE
make
make install

Note that you must have already built the SimpleScalar simula-
tors to build this library, since the glibc build requires a compiled
simulator to test target machine-specific parameters such as
endian-ness.

If you have FORTRAN benchmarks, you will need to build
f2c:

cd $IDIR/f2c-1994.09.27
make
make install

The entire tool set should now be ready for use. We provide pre-
compiled test binaries (big- and little-endian) and their sources in
$IDIR/simplesim2.0/tests). To run a test:

cd $IDIR/simplesim-2.0
sim-safe tests/bin.big/test-math

The test should generate about a page of output, and will run very
quickly. The release has been ported to—and should run on—the
following systems:

- gcc/AIX 413/RS6000
- xlc/AIX 413/RS6000
- gcc/HPUX/PA-RISC
- gcc/SunOS 4.1.3/SPARC
- gcc/Linux 1.3/x86
- gcc/Solaris 2/SPARC
- gcc/Solaris 2/x86
- gcc/DEC Unix 3.2/Alpha
- c89/DEC Unix 3.2/Alpha
- gcc/FreeBSD 2.2/x86
- gcc/WindowsNT/x86

3 The Simplescalar architecture
The SimpleScalar architecture is derived from the MIPS-IV

ISA [4]. The tool suite defines both little-endian and big-endian
versions of the architecture to improve portability (the version
used on a given host machine is the one that matches the endian-
ness of the host). The semantics of the SimpleScalar ISA are a
superset of MIPS with the following notable differences and
additions:

• There are no architected delay slots: loads, stores, and con-
trol transfers do not execute the succeeding instruction.

• Loads and stores support two addressing modes—for all
data types—in addition to those found in the MIPS architec-
ture. These are: indexed (register+register), and auto-incre-
ment/decrement.

• A square-root instruction, which implements both single-
and double-precision floating point square roots.

• An extended 64-bit instruction encoding.

We list all SimpleScalar instructions in Figure2. We provide
a complete list of the instruction semantics (as implemented in
the simulator) in AppendixA. In Table1, we list the architected
registers in the SimpleScalar architecture, their hardware and
software names (which are recognized by the assembler), and a

description of each. Both the number and the semantics of the
registers are identical to those in the MIPS-IV ISA.

In Figure3, we depict the three instruction encodings of Sim-
pleScalar instructions:register, immediate, andjump formats. All
instructions are 64 bits in length.

The register format is used for computational instructions.
The immediate format supports the inclusion of a 16-bit constant.
The jump format supports specification of 24-bit jump targets.
The register fields are all 8 bits, to support extension of the archi-
tected registers to 256 integer and floating point registers. Each
instruction format has a fixed-location, 16-bit opcode field that
facilitates fast instruction decoding.

The annote field is a 16-bit field that can be modified post-
compile, with annotations to instructions in the assembly files.
The annotation interface is useful for synthesizing new instruc-
tions without having to change and recompile the assembler.
Annotations are attached to the opcode, and come in two flavors:
bit and field annotations. A bit annotation is written as follows:

lw/a $r6,4($r7)

The annotation in this example is /a. It specifies that the first bit
of the annotation field should be set. Bit annotations /a through /p
set bits 0 through 15, respectively. Field annotations are written
in the form:

lw/6:4(7) $r6,4($r7)

This annotation sets the specified 3-bit field (from bit 4 to bit 6
within the 16-bit annotation field) to the value 7.

System calls in SimpleScalar are managed by a proxy handler
(located insyscall.c) that intercepts system calls made by
the simulated binary, decodes the system call, copies the system
call arguments, makes the corresponding call to the host’s operat-
ing system, and then copies the results of the call into the simu-
lated program’s memory. If you are porting SimpleScalar to a
new platform, you will have to code the system call translation
from SimpleScalar to your host machine insyscall.c. A list
of all SimpleScalar system calls is provided in AppendixB.

SimpleScalar uses a 31-bit address space, and its virtual
memory is laid out as follows:

0x00000000 Unused
0x00400000 Start of text segment
0x10000000 Start of data segment
0x7fffc000 Stack base (grows down)

The top of the data segment (which includes init and bss) is held
in mem_brk_point. The areas below the text segment and
above the stack base are unused.

4 Simulator internals
In this section, we describe the functionality of the processor

simulators that accompany the tool set. We describe each of the
simulators, their functionality, command-line arguments, and
internal structures.

The compiler outputs binaries that are compatible with the
MIPS ECOFF object format. Library calls are handled with the
ported version of GNU GLIBC and POSIX-compliant Unix sys-
tem calls. The simulators currently execute only user-level code.
All SimpleScalar-related extensions to GCC are contained in the
config/ss subdirectory of the GCC source tree that comes

5

Hardware Name Software Name Description
$0 $zero zero-valued source/sink
$1 $at reserved by assembler
$2-$3 $v0-$v1 fn return result regs
$4-$7 $a0-$a3 fn argument value regs
$8-$15 $t0-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $k0-$k1 reserved by OS
$28 $gp global pointer
$29 $sp stack pointer
$30 $s8 saved regs, callee saved
$31 $ra return address reg
$hi $hi high result register
$lo $lo low result register
$f0-$f31 $f0-$f31 floating point registers
$fcc $fcc floating point condition code

Table 1: SimpleScalar ar chitecture register definitions

Register format:

Immediate format:

Jump format:

16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt

16-imm

6-unused 26-target

16-annote 16-opcode 8-rs 8-rt

16-annote 16-opcode

63 32 31 0

63 32 31 0

63 32 31 0

Figure 3. SimpleScalar ar chitecture instruction f ormats

j - jump
jal - jump and link
jr - jump register
jalr - jump and link register
beq - branch == 0
bne - branch != 0
blez - branch <= 0
bgtz - branch > 0
bltz - branch < 0
bgez - branch >= 0
bct - branch FCC TRUE
bcf - branch FCC FALSE

lb - load byte
lbu - load byte unsigned
lh - load half (short)
lhu - load half (short) unsigned
lw - load word
dlw - load double word
l.s - load single-precision FP
l.d - load double-precision FP
sb - store byte
sbu - store byte unsigned
sh - store half (short)
shu - store half (short) unsigned
sw - store word
dsw - store double word
s.s - store single-precision FP
s.d - store double-precision FP

add - integer add
addu - integer add unsigned
sub - integer subtract
subu - integer subtract unsigned
mult - integer multiply
multu - integer multiply unsigned
div - integer divide
divu - integer divide unsigned
and - logical AND
or - logical OR
xor - logical XOR
nor - logical NOR
sll - shift left logical
srl - shift right logical
sra - shift right arithmetic
slt - set less than
sltu - set less than unsigned

add.s - single-precision (SP) add
add.d - double-precision (DP) add
sub.s - SP subtract
sub.d - DP subtract
mult.s - SP multiply
mult.d - DP multiply
div.s - SP divide
div.d - DP divide
abs.s - SP absolute value
abs.d - DP absolute value
neg.s - SP negation
neg.d - DP negation
sqrt.s - SP square root
sqrt.d - DP square root
cvt - int., single, double conversion
c.s - SP compare
c.d - DP compare

nop - no operation
syscall - system call
break - declare program error

(C)
(reg+C) (with pre/post inc/dec)
(reg+reg) (with pre/post inc/dec)

Miscellaneous

Floating Point ArithmeticControl Load/Store Integer Arithmetic

addressing modes:

Figure 2. Summar y of SimpleScalar instructions

6

with the distribution.
The architecture is defined inss.def, which contains a

macro definition for each instruction in the instruction set. Each
macro defines the opcode, name, flags, operand sources and des-
tinations, and actions to be taken for a particular instruction.

The instruction actions (which appear as macros) that are
common to all simulators are defined inss.h. Those actions
that require different implementations in different simulators are
defined in each simulator code file.

When running a simulator, main() (defined inmain.c)
does all the initialization and loads the target binary into mem-
ory. The routine then callssim_main(), which is simulator-
specific, defined in each simulator code file. sim_main() pre-
decodes the entire text segment for faster simulation, and then
begins simulation from the target program entry point.

The following command-line arguments are available in all
simulators included with the release:

-h prints the simulator help message.
-d turn on the debug message.
-i start execution in the DLite! debugger (see

Section5.2). This option is not supported in
thesim-fast simulator.

-q terminate immediately (for use with -dump-
config).

-dumpconfig <file>
generate a configuration file saving the com-
mand-line parameters. Comments are per-
mitted in the config files, and begin with a #.

-config <file> read in and use a configuration file. These
files may reference other config files.

4.1 Functional simulation
The fastest, least detailed simulator (sim-fast) resides in

sim-fast.c. sim-fast does no time accounting, only func-
tional simulation—it executes each instruction serially, simulat-
ing no instructions in parallel.sim-fast is optimized for raw
speed, and assumes no cache, instruction checking, and has no
support for DLite!.

A separate version ofsim-fast, calledsim-safe, also performs
functional simulation, but checks for correct alignment and
access permissions for each memory reference. Although similar,
sim-fast and sim-safe are split (i.e., protection is not toggled
with a command-line argument in a merged simulator) to maxi-
mize performance. Neither of the simulators accept any addi-
tional command-line arguments. Both versions are very simple:
less than 300 lines of code—they therefore make good starting
points for understanding the internal workings of the simulators.
In addition to the simulator file, bothsim-fast andsim-safe use
the following code files (not including header files):main.c,
syscall.c, memory.c, regs.c, loader.c, ss.c,
endian.c, andmisc.c. sim-safe also usesdlite.c.

4.2 Cache simulation
The SimpleScalar distribution comes with two functional

cache simulators;sim-cache andsim-cheetah. Both use the file
cache.c, and they use sim-cache.c and sim-chee-
tah.c, respectively. These simulators are ideal for fast simula-
tion of caches if the effect of cache performance on execution

time is not needed.
sim-cache accepts the following arguments, in addition to the

universal arguments described in Section4:

-cache:dl1 <config> configures a level-one data cache.
-cache:dl2 <config> configures a level-two data cache.
-cache:il1 <config> configures a level-one instr. cache.
-cache:il2 <config> configures a level-two instr. cache.
-tlb:dtlb <config> configures the data TLB.
-tlb:itlb <config> configures the instruction TLB.
-flush <boolean> flush all caches on a system call;

(<boolean> = 0 | 1 | true | TRUE | false | FALSE).
-icompress remap SimpleScalar’s 64-bit

instructions to a 32-bit equivalent in
the simulation (i.e., model a
machine with 4-word instructions).

-pcstat <stat> generate a text-based profile, as
described in Section4.3.

The cache configuration (<config>) is formatted as follows:

<name>:<nsets>:<bsize>:<assoc>:<repl>

Each of these fields has the following meaning:

<name> cache name, must be unique.
<nsets> number of sets in the cache.
<bsize> block size (for TLBs, use the page size).
<assoc> associativity of the cache (power of two).
<repl> replacement policy (l | f | r), where

l = LRU, f = FIFO,r = random replacement.
The cache size is therefore the product of <nsets>, <bsize>, and
<assoc>. To have a unified level in the hierarchy, “point” the
instruction cache to the name of the data cache in the correspond-
ing level, as in the following example:

-cache:il1 il1:128:64:1:l
-cache:il2 dl2
-cache:dl1 dl1:256:32:1:l
-cache:dl2 ul2:1024:64:2:l

The defaults used insim-cache are as follows:

L1 instruction cache: il1:256:32:1:l (8 KB)
L1 data cache: dl1:256:32:1:l (8 KB)
L2 unified cache: ul2:1024:64:4:l (256 KB)
instruction TLB: itlb:16:4096:4:l (64 entries)
data TLB: dtlb:32:4096:4:l (128 entries)

sim-cheetah is based on work performed by Ragin Sugumar and
Santosh Abraham while they were at the University of Michigan.
It uses their Cheetah cache simulation engine [6] to generate sim-
ulation results for multiple cache configurations with a single
simulation. The Cheetah engine simulates fully associative
caches efficiently, as well as simulating a sometimes-optimal
replacement policy. This policy was called MIN by Belady [1],
although the simulator refers to it asopt. Opt uses future knowl-
edge to select a replacement; it chooses the block that will be ref-
erenced the furthest in the future (if at all). This policy is optimal
for read-only instruction streams. It is not optimal for write-back
caches because it may be more expensive to replace a block ref-
erenced further in the future if the block must be written back, as
opposed to a clean block referenced slightly less far in the future.

7

Horwitz et al. [3] formally described an optimal algorithm that
includes writes; however, only MIN is implemented in the simu-
lator.

We have included the Cheetah engine as a stand-alone library,
which is built and resides in thelibcheetah/ directory. sim-
cheetah accepts the following command-line arguments, in addi-
tion to those listed at the beginning of Section4:

-refs [inst | data | unified]

specify which reference stream to analyze.
-C [fa | sa | dm]

fully associative, set associative, or direct-
mapped cache.

-R [lru | opt] replacement policy.
-a <sets> log base 2 minimum bound on number of

sets to simulate simultaneously.
-b <sets> log base 2 maximum bound on set number.
-l <line> cache line size (in bytes).
-n <assoc> maximum associativity to analyze (in log

base 2).
-in <interval> cache size interval to report when simulating

fully associative caches.
-M <size> maximum cache size of interest.
-C <size> cache size for direct-mapped analyses.

Both of these simulators are ideal for performing high-level
cache studies that do not take access time of the caches into
account (e.g., studies that are concerned only with miss rates). To
measure the effect of cache organization upon the execution time
of real programs, however, the timing simulator described in
Section4.4 must be used.

4.3 Profiling
The distribution comes with a functional simulator that pro-

duces voluminous and varied profile information.sim-profile
can generate detailed profiles on instruction classes and
addresses, text symbols, memory accesses, branches, and data
segment symbols.

sim-profile takes the following command-line arguments,
which toggle the various profiling features:

-iclass instruction class profiling (e.g. ALU,
branch).

-iprof instruction profiling (e.g., bnez, addi).
-brprof branch class profiling (e.g., direct, calls, con-

ditional).
-amprof addr. mode profiling (e.g., displaced, R+R).
-segprof load/store segment profiling (e.g., data,

heap).
-tsymprof execution profile by text symbol (functions).
-dsymprof reference profile by data segment symbol.
-taddrprof execution profile by text address.
-all turn on all profiling listed above.

Three of the simulators (sim-profile, sim-cache, andsim-out-
order) support text segment profiles for statistical integer
counters. The supported counters include any added by users, so
long as they are correctly “registered” with the SimpleScalar
stats package included with the simulator code (see Section4.5).
To use the counter profiles, simply add the command-line flag:

-pcstat <stat>
where <stat> is the integer counter that you
wish to profile by text address.

To generate the statistics for the profile, follow the following
example:

sim-profile -pcstat sim_num_insn test-math >&!
test-math.out

objdump -dl test-math >! test-math.dis
textprof.pl test-math.dis test-math.out

sim_num_insn_by_pc

We show a segment of the text profile output in Figure4. Make
sure that “objdump” is the version created when compiling the
binutils. Also, the first line oftextprof.pl must be changed
to reflect your system’s path to Perl (which must be installed on
your system for you to use this script). As an aside, note that “-
taddrprof” is equivalent to “-pcstat sim_num_insn”.

4.4 Out-of-order processor timing simulation
The most complicated and detailed simulator in the distribu-

tion, by far, is sim-outorder (the main code file for which is
sim-outorder.c—about 3500 lines long). This simulator
supports out-of-order issue and execution, based on the Register
Update Unit [5]. The RUU scheme uses a reorder buffer to auto-
matically rename registers and hold the results of pending
instructions. Each cycle the reorder buffer retires completed
instructions in program order to the architected register file.

The processor’s memory system employs a load/store queue.
Store values are placed in the queue if the store is speculative.
Loads are dispatched to the memory system when the addresses
of all previous stores are known. Loads may be satisfied either by
the memory system or by an earlier store value residing in the
queue, if their addresses match. Speculative loads may generate
cache misses, but speculative TLB misses stall the pipeline until
the branch condition is known.

We depict the simulated pipeline ofsim-outorder in
Figure5. The main loop of the simulator, located in
sim_main(), is structured as follows:

ruu_init();
for (;;) {
ruu_commit();
ruu_writeback();
lsq_refresh();
ruu_issue();
ruu_dispatch();
ruu_fetch();

}

This loop is executed once for each target (simulated)
machine cycle. By walking the pipeline in reverse, inter-stage
latch synchronization can be handled correctly with only one
pass through each stage. When the target program terminates
with an exit() system call, the simulator performs a
longjmp() tomain() to generate the statistics.

The fetch stage of the pipeline is implemented in
ruu_fetch(). The fetch unit models the machine instruction
bandwidth, and takes the following inputs: the program counter,
the predictor state, and misprediction detection from the branch
execution unit(s). Each cycle, it fetches instructions from only
one I-cache line (and it blocks on an I-cache miss until the miss

8

completes). After fetching the instructions, it places them in the
dispatch queue, and probes the line predictor to obtain the correct
cache line to access in the next cycle.

The code for the dispatch stage of the pipeline resides in
ruu_dispatch(). This routine is where instruction decoding
and register renaming is performed. The function uses the
instructions in the input queue filled by the fetch stage, a pointer
to the active RUU, and the rename table. Once per cycle, the dis-
patcher takes as many instructions as possible (up to the dispatch
width of the target machine) from the fetch queue and places
them in the scheduler queue. This routine is the one in which
branch mispredictions are noted. (When a misprediction occurs,
the simulator uses speculative state buffers, which are managed
with a copy-on-write policy). The dispatch routine enters and
links instructions into the RUU and the load/store queue (LSQ),
as well as splitting memory operations into two separate instruc-
tions (the addition to compute the effective address and the mem-
ory operation itself).

The issue stage of the pipeline is contained in
ruu_issue() andlsq_refresh(). These routines model
instruction wakeup and issue to the functional units, tracking reg-
ister and memory dependences. Each cycle, the scheduling rou-
tines locate the instructions for which the register inputs are all
ready. The issue of ready loads is stalled if there is an earlier
store with an unresolved effective address in the load/store
queue. If the address of the earlier store matches that of the wait-
ing load, the store value is forwarded to the load. Otherwise, the

load is sent to the memory system.
The execute stage is also handled inruu_issue(). Each

cycle, the routine gets as many ready instructions as possible
from the scheduler queue (up to the issue width). The functional
units’ availability is also checked, and if they have available
access ports, the instructions are issued. Finally, the routine
schedules writeback events using the latency of the functional
units (memory operations probe the data cache to obtain the cor-
rect latency of the operation). Data TLB misses stall the issue of
the memory operation, are serviced in the commit stage of the
pipeline, and currently assume a fixed latency. The functional
units’ latencies are hardcoded in the definition of
fu_config[] in sim-outorder.c.

The writeback stage resides inruu_writeback(). Each
cycle it scans the event queue for instruction completions. When
it finds a completed instruction, it walks the dependence chain of
instruction outputs to mark instructions that are dependent on the
completed instruction. If a dependent instruction is waiting only
for that completion, the routine marks it as ready to be issued.
The writeback stage also detects branch mispredictions; when it
determines that a branch misprediction has occurred, it rolls the
state back to the checkpoint, discarding the erroneously issued
instructions.

ruu_commit() handles the instructions from the writeback
stage that are ready to commit. This routine does in-order com-
mitting of instructions, updating of the data caches (or memory)
with store values, and data TLB miss handling. The routine keeps

Figure 4. Sample output fr om te xt segment statistical pr ofile

00401a10: (13, 0.01): <strtod+220> addiu $a1[5],$zero[0],1
strtod.c:79
00401a18: (13, 0.01): <strtod+228> bc1f 00401a30 <strtod+240>
strtod.c:87
00401a20: : <strtod+230> addiu $s1[17],$s1[17],1
00401a28: : <strtod+238> j 00401a58 <strtod+268>
strtod.c:89
00401a30: (13, 0.01): <strtod+240> mul.d $f2,$f20,$f4
00401a38: (13, 0.01): <strtod+248> addiu $v0[2],$v1[3],-48
00401a40: (13, 0.01): <strtod+250> mtc1 $v0[2],$f0

{

{

{

executed
13 times

never
executed

Fetch

Mem

ExecSchedulerDispatch

Virtual memory

I-Cache

Memory

CommitWriteback

scheduler

D-TLBD-Cache

Figure 5. Pipeline f or sim-outor der

9

retiring instructions at the head of the RUU that are ready to
commit until the head instruction is one that is not ready. When
an instruction is committed, its result is placed into the archi-
tected register file, and the RUU/LSQ resources devoted to that
instruction are reclaimed.

sim-outorder runs about an order of magnitude slower than
sim-fast. In addition to the arguments listed at the beginning of
Section4, sim-outorder uses the following command-line argu-
ments:

Specifying the processor core

-fetch:ifqsize <size>
set the fetch width to be <size> instructions.
Must be a power of two. The default is 4.

-fetch:speed <ratio>
set the ratio of the front end speed relative to
the execution core (allowing <ratio> times as
many instructions to be fetched as decoded
per cycle).

-fetch:mplat <cycles>
set the branch misprediction latency. The
default is 3 cycles.

-decode:width <insts>
set the decode width to be <insts>, which
must be a power of two. The default is 4.

-issue:width <insts>
set the maximum issue width in a given
cycle. Must be a power of two. The default is
4.

-issue:inorder force the simulator to use in-order issue. The
default is false.

-issue:wrongpath
allow instructions to issue after a misspecu-
lation. The default is true.

-ruu:size <insts>
capacity of the RUU (in instructions). The
default is 16.

-lsq:size <insts>
capacity of the load/store queue (in instruc-
tions). The default is 8.

-res:ialu <num>
specify number of integer ALUs. The default
is 4.

-res:imult <num>
specify number of integer multipliers/divid-
ers. The default is 1.

-res:memports <num>
specify number of L1 cache ports. The
default is 2.

-res:fpalu <num>
specify number of floating point ALUs. The
default is 4.

-res: fpmult <num>
specify number of floating point multipliers/
dividers. The default is 1.

Specifying the memory hierarchy

All of the cache arguments and formats used insim-cache
(listed at the beginning of Section4.2) are also used insim-out-

order, with the following additions:

-cache:dl1lat <cycles>
specify the hit latency of the L1 data cache.
The default is 1 cycle.

-cache:d12lat <cycles>
specify the hit latency of the L2 data cache.
The default is 6 cycles.

-cache:il1lat <cycles>
specify the hit latency of the L1 instruction
cache. The default is 1 cycle.

-cache:il2lat <cycles>
specify the hit latency of the L2 instruction
cache. The default is 6 cycles.

-mem:lat <1st> <next>
specify main memory access latency (first,
rest). The defaults are 18 cycles and 2 cycles.

-mem:width <bytes>
specify width of memory bus in bytes. The
default is 8 bytes.

-tlb:lat <cycles>
specify latency (in cycles) to service a TLB
miss. The default is 30 cycles.

Specifying the branch predictor

Branch prediction is specified by choosing the following flag
with one of the six subsequent arguments. The default is a bimo-
dal predictor with 2048 entries.

-bpred <type>
nottaken always predict not taken.
taken always predict taken.
perfect perfect predictor.
bimod bimodal predictor, using a branch target

buffer (BTB) with 2-bit counters.
2lev 2-level adaptive predictor.
comb combined predictor (bimodal and 2-level

adaptive).

The predictor-specific arguments are listed below:

-bpred:bimod <size>
set the bimodal predictor table size to be
<size> entries.

-bpred:2lev <l1size> <l2size> <hist_size> <xor>
specify the 2-level adaptive predictor.
<l1size> specifies the number of entries in
the first-level table, <l2size> specifies the
number of entries in the second-level table,
<hist_size> specifies the history width, and
<xor> allows you to xor the history and the
address in the second level of the predictor.
This organization is depicted in Figure6. In
Table2 we show how these parameters cor-
respond to modern prediction schemes. The
default settings for the four parameters are 1,
1024, 8, and 0, respectively.

-bpred:comb <size>
set the meta-table size of the combined pre-
dictor to be <size> entries. The default is
1024.

10

predictor l1_size hist_size l2_size xor

GAg 1 W 2W 0

GAp 1 W >2W 0

PAg N W 2W 0

PAp N W 2N+W 0

gshare 1 W 2W 1

Table 2: Branch predictor parameters

-bpred:ras <size>
set the return stack size to <size> (0 entries
means to return stack). The default is 8.
entries.

-bpred:btb <sets> <assoc>
configure the BTB to have <sets> sets and an
associativity of <assoc>. The defaults are
512 sets and an associativity of 4.

-bpred:spec_update <stage>
allow speculative updates of the branch pre-
dictor in the decode or writeback stages
(<stage> = [ID|WB]). The default is non-
speculative updates in the commit stage.

Visualization

-pcstat <stat>
record statistic <stat> by text address;
described in Section4.3.

-ptrace <file> <range>
pipeline tracing, described in Section5.

4.5 Simulator code file descriptions
The following list describes the functionality of the C code

files in thesimplesim-2.0/ directory, which are used by all
of the simulators.

• bitmap.h: Contains support macros for performing bit-
map manipulation.

• bpred.[c,h]: Handles the creation, functionality, and
updates of the branch predictors.bpred_create(),
bpred_lookup(), andbpred_update() are the key
interface functions.

• cache.[c,h]: Contains general functions to support

multiple cache types (e.g., TLBs, instruction and data
caches). Uses a linked-list for tag comparisons in caches of
low associativity (less than or equal to four), and a hash
table for tag comparisons in higher-associativity caches.
The important interfaces arecache_create(),
cache_access(), cache_probe(),
cache_flush(), andcache_flush_addr().

• dlite.[c,h]: Contains the code for DLite!, the source-
level target program debugger.

• endian.[c,h]: Defines a few simple functions to deter-
mine byte- and word-order on the host and target platforms.

• eval.[c,h]: Contains code to evaluate expressions, used
in DLite!.

• eventq.[c,h]: Defines functions and macros to handle
ordered event queues (used for ordering writebacks). The
important interface functions areeventq_queue() and
eventq_service_events().

• loader.[c,h]: Loads the target program into memory,
sets up the segment sizes and addresses, sets up the initial
call stack, and obtains the target program entry point. The
interface isld_load_prog().

• main.c: Performs all initialization and launches the main
simulator function. The key functions are
sim_options(), sim_config(), sim_main(),
andsim_stats().

• memory.[c,h]: Contains functions for reading from,
writing to, initializing, and dumping the contents of the tar-
get main memory. Memory is implemented as a large flat
space, each portion of which is allocated on demand.
mem_access() is the important interface function.

• misc.[c,h]: Contains numerous useful support func-
tions, such asfatal(), panic(), warn(), info(),
debug(), getcore(), andelapsed_time().

• options.[c,h]: Contains the SimpleScalar options
package code, used to process command-line arguments
and/or option specifications from config files. Options are
registered with an option database (see the functions called
opt_reg_*()). opt_print_help() generates a help
listing, andopt_print_options() prints the current
options’ state.

• ptrace.[c,h]: Contains code to collect and produce
pipeline traces fromsim-outorder.

• range.[c,h]: Holds code that interprets program range
commands used in DLite!.

• regs.[c,h]: Contains functions to initialize the register
files and dump their contents.

• resource.[c,h]: Contains code to manage functional
unit resources, divided up into classes. The three defined
functions create the resource pools and busy tables
(res_create_pool()), return a resource from the spec-
ified pool if available (reg_get()), and dump the con-
tents of a pool (res_dump()).

• sim.h: Contains a few extern variable declarations and
function prototypes.

• stats.[c,h]: Contains routines to handle statistics mea-
suring target program behavior. As with the options pack-

Figure 6. 2-level adaptive predictor structure

branch
address

hist_size

l1size

l2size

branch
prediction

pattern
history

2-bit
predictors

11

age, counters are “registered” by type with an internal
database. Thestat_reg_*() routines register counters
of various types, andstat_reg_formula() allows you
to register expressions constructed of other statistics.
stat_print_stats() prints all registered statistics.
The statistics package also has facilities to measure distribu-
tions; stat_reg_dist() creates an array distribution,
stat_reg_sdist() creates a sparse array distribution,
andstat_add_sample() updates a distribution.

• ss.[c,h]: Defines macros to expedite the processing of
instructions, numerous constants needed across simulators,
and a function to print out individual instructions in a read-
able format.

• ss.def: Holds a list of macro calls (the macros are defined
in the simulators andss.h and ss.c), each of which
defines an instruction. The macro calls accept as arguments
the opcode, name of the instruction, sources, destinations,
actions to execute, and other information. This file serves as
the definition of the instruction set.

• symbol.[c,h]: Holds routines to handle program sym-
bol and line information (used in DLite!).

• syscall.[c,h]: Contains code that acts as the interface
between the SimpleScalar system calls (which are POSIX-
compliant) and the system calls on the host machine.

• sysprobe.c: Determines byte and word order on the host
platform, and generates appropriate compiler flags.

• version.h: Defines the version number and release date
of the distribution.

5 Utilities
In this section we describe the utilities that accompany the

SimpleScalar tool set; pipeline tracing and a source-level debug-
ger.

5.1 Out-of-order pipeline tracing
The tool set provides the ability to extract and view traces of

the out-of-order pipeline. Using the “-ptrace” option, a detailed
history of all instructions executed in a range may be saved to a
file. The information saved includes instruction fetch, retirement,
and stage transitions. The syntax of this command is as follows:

-ptrace <file> <start>:<end>
<file> is the file to which the trace will be
saved. <start> and <end> are the instruction
numbers at which the trace will be started
and stopped. If they are left blank, the trace
will start at the beginning and/or stop at the
end of the program, respectively.

For example:

-ptrace FOO.trc 100:500
trace from instructions 100 to 500, store the
trace in file FOO.src.

-ptrace FOO.trc :10000
trace from program beginning to instruction
10000.

-ptrace FOO.trc :
trace the entire program execution.

The traces may be viewed with thepipeview.pl Perl script,
which is provided in the simplesim-2.0 directory. (You will have
to update the first line ofpipeview.pl to have the correct path
to your local Perl binary, and you must have Perl installed on
your system).

pipeview.pl <ptrace_file>

We depict sample output from the pipetracer in Figure7.

5.2 The DLite! debugger
Release 2.0 of SimpleScalar includes a lightweight symbolic

debugger called DLite!, which runs with all simulators except for
sim-fast. DLite! allows you to step through thebenchmark target
code, not the simulator code. The debugger can be incorporated
into a simulator by adding only four function calls (which have
already been added to all simulators in the distribution). The
needed four function prototypes are indlite.h.

To use the debugger in a simulation, add the “-i” option
(which stands for interactive) to the simulator command line.
Below we list the set of commands that DLite! accepts.

Getting help and getting out:

help [string] print command reference.
version print DLite! version information.
quit exit simulator.
terminate generate statistics and exit simulator.

Running and setting breakpoints:

step execute next instruction and break.
cont [addr] continue execution (optionally continuing

starting at <addr>).
break <addr> set breakpoint at <addr>, returns <id> of

breakpoint.
dbreak <addr> [r,w,x]

set data breakpoint at <addr> for (r)ead,
(w)rite, and/or e(x)ecute, returns <id> of
breakpoint.

rbreak <range> [r,w,x]
set breakpoint at <range> for (r)ead, (w)rite,
and/or e(x)ecute, returns <id> of breakpoint.

breaks list active code and data breakpoints.
delete <id> delete breakpoint <id>.
clear clear all breakpoints (code and data).

Printing information:

print [modifiers] <expr>
print the value of <expr> using optional
modifiers.

display [modifiers] <expr>
display the value of <expr> using optional
modifiers.

option <string>print the value of option <string>.
options print the values of all options.
stat <string> print the value of a statistical variable.
stats print the values of all statistical variables.
whatis <expr> print the type of <expr>.
regs print all register contents.
iregs print all instruction register contents.

12

fpregs print all floating point register contents.
mstate [string] print machine-specific state.
dump <addr> [count]

dump memory at <addr> (optionally for
<count> words).

dis <addr> [count]
disassemble instructions at <addr> (option-
ally for <count> instructions).

symbols print the value of all program symbols.
tsymbols print the value of all program text symbols.
dsymbols print the value of all program data symbols.
symbol <string>

print the value of symbol <string>.

Legal arguments:
Arguments <addr>, <cnt>, <expr>, and <id> are any legal

expression:
<expr> ← <factor> +|- <expr>

<factor> ← <term> *|/ <factor>
<term> ← (<expr>)

| - <term> | <const> | <symbol> | <file:loc>
<symbol>← <literal> | <function name> | <register>
<literal> ← [0-9]+ | 0x[0-9,a-f]+ | 0[0-7]+
<register>← $r[0-31] | $f[0-31] | $pc | $fcc | $hi | $lo

Legal ranges:

<range> ← <address> | <instruction> | <cycle>
<address>← @<function name>:{+<literal>}
<instruction>← {<literal>}:{<literal>}
<cycle> ← #{<literal>}:{<literal>}

Omitting optional arguments to the left of the colon will default
to the smallest value permitted in that range. Omitting an
optional argument at the right of the colon will default to the
largest value permitted in that range.

Legal command modifiers:

b print a byte
h print a half (short)

w print a word (default)
t print in decimal format (default)
o print in octal format
x print in hex format
1 print in binary format
f print float
d print double
c print character
s print string

Examples of legal commands:

break main+8
break 0x400148
dbreak stdin w
dbreak sys_count wr
rbreak @main:+279
rbreak 2000:3500
rbreak #:100 cycle 0 to cycle 100
rbreak : entire execution

6 Summary
The SimpleScalar tool set was written by Todd Austin over

about one and a half years, between 1994 and 1996. He continues
to add improvements and updates. The ancestors of the tool set
date back to the mid to late 1980s, to tools written by Manoj
Franklin. At the time the tools were developed, both individuals
were research assistants at the University of Wisconsin-Madison
Computer Sciences Department, supervised by Professor Guri
Sohi. Scott Breach provided valuable assistance with the imple-
mentation of the proxy system calls. The first release was assem-
bled, debugged, and documented by Doug Burger, also a
research assistant at Wisconsin, who is the maintainer of the sec-
ond release as well. Kevin Skadron, currently at Princeton,
implemented many of the more recent branch prediction mecha-
nisms.

Many exciting extensions to SimpleScalar are both underway
and planned. Efforts have begun to extend the processor simula-

@ 610

gf = ‘0x0040d098: addiu r2, r4, -1’
gg = ‘0x0040d0a0: beq r3, r5, 0x30’

[IF]
gf
gg

[DA]
gb
gc
gd\
ge

[EX]
fy
fz
ga+

[WB]
fr\
fs
ft
fu

[CT]
fq

new cycle
indicator

new instruction
definitions

current pipeline
state

inst. being inst. being inst. inst. writing inst. retiring
fetched, or in
fetch queue

decoded, or
awaiting issue

executing results into
RUU, or
awaiting retire

results to
register file

pipeline event:
(misprediction
detected), see output
header for event defs

Figure 7. Example of sim-outorder pipetrace

13

tors to simulate multithreaded processors and multiprocessors. A
Linux port to SimpleScalar (enabling simulation of the OS on a
kernel with publicly available sources) is planned, using device-
level emulation and a user-level file system. Other plans include
extending the tool set to simulate ISAs other than SimpleScalar
and MIPS (Alpha and SPARC ISA support will be the first addi-
tions).

As they stand now, these tools provide researchers with a sim-
ulation infrastructure that is fast, flexible, and efficient. Changes
in both the target hardware and software may be made with min-
imal effort. We hope that you find these tools useful, and encour-
age you to contact us with ways that we can improve the release,
documentation, and the tools themselves.

References
[1] L. A. Belady. A Study of Replacement Algorithms for a

Virtual-Storage Computer. IBM Systems Journal, 5(2):78–
101, 1966.

[2] Doug Burger, ToddM. Austin, and Steven Bennett. Evalu-
ating Future Microprocessors: the SimpleScalar Tool Set.
Technical Report 1308, Computer Sciences Department,
University of Wisconsin, Madison, WI, July 1996.

[3] L. P. Horwitz, R.M. Karp, R.E. Miller, and A.Winograd.
Index Register Allocation.Journal of the ACM, 13(1):43–
61, January 1966.

[4] Charles Price.MIPS IV Instruction Set, revision 3.1. MIPS
Technologies, Inc., Mountain View, CA, January 1995.

[5] GurindarS. Sohi. Instruction Issue Logic for High-Perfor-
mance, Interruptible, Multiple Functional Unit, Pipelined
Computers.IEEE Transactions on Computers, 39(3):349–
359, March 1990.

[6] RabinA. Sugumar and SantoshG. Abraham. Efficient
Simulation of Caches under Optimal Replacement with
Applications to Miss Characterization. InProceedings of
the 1993 ACM Sigmetrics Conference on Measurements
and Modeling of Computer Systems, pages 24–35, May
1993.

A Instruction set definition
This appendix lists all SimpleScalar instructions with their

opcode, assembler format, and semantics. The semantics are
expressed as a C-style expression that uses the extended opera-
tors and operands described in Table3. Operands that are not
listed in Table3 refer to actual instruction fields described in
Figure3. For each instruction, the next PC value (NPC) defaults
to the current PC value plus eight (CPC+8) unless otherwise
specified.

A.1 Control instructions

J: Jump to absolute address.
Opcode: 0x01
Format: J target
Semantics: SET_NPC((CPC & 0xf0000000) | (TARGET<<2)))

JAL : Jump to absolute address and link.
Opcode: 0x02
Format: JAL target

Semantics: SET_NPC((CPC\&0xf0000000) | (TARGET<<2))
SET_GPR(31, CPC + 8))

JR: Jump to register address.
Opcode: 0x03
Format: JR rs
Semantics: TALIGN(GPR(RS))

SET_NPC(GPR(RS))

JALR : Jump to register address and link.
Opcode: 0x04
Format: JALR rs
Semantics: TALIGN(GPR(RS))

SET_GPR(RD, CPC + 8)
SET_NPC(GPR(RS))

BEQ: Branch if equal.
Opcode: 0x05
Format: BEQ rs,rt,offset
Semantics: if (GPR(RS) == GPR(RT))

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BNE: Branch if not equal.
Opcode: 0x06
Format: BEQ rs,rt,offset
Semantics: if (GPR(RS) != GPR(RT))

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BLEZ : Branch if less than or equal to zero.
Opcode: 0x07
Format: BLEZ rs,offset
Semantics: if (GPR(RS) <= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BGTZ : Branch if greater than zero.
Opcode: 0x08
Format: BGTZ rs,offset
Semantics: if (GPR(RS) > 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BLTZ : Branch if less than zero.
Opcode: 0x09
Format: BLTZ rs,offset
Semantics: if (GPR(RS) < 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BGEZ: Branch if greater than or equal to zero.
Opcode: 0x0a
Format: BGEZ rs,offset
Semantics: if (GPR(RS) >= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BC1F: Branch on floating point compare false.

14

Opcode: 0x0b
Format: BC1F offset
Semantics: if (!FCC)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BC1T: Branch on floating point compare true.
Opcode: 0x0c
Format: BC1T offset
Semantics: if (FCC)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

A.2 Load/store instructions

LB: Load byte signed, displaced addressing.
Opcode: 0x20
Format: LB rt,offset(rs) inc_dec
Semantics: SET_GPR(RT, READ_SIGNED_BYTE(GPR(RS)

+ OFFSET))

LB: Load byte signed, indexed addressing.
Opcode: 0xc0
Format: LB rt,(rs+rd) inc_dec

Semantics: SET_GPR(RT,
READ_SIGNED_BYTE(GPR(RS)+GPR(RD)))

LBU: Load byte unsigned, displaced addressing.
Opcode: 0x22
Format: LBU rt,offset(rs) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_BYTE(GPR(RS)+OFF-
SET))

LBU: Load byte unsigned, indexed addressing.
Opcode: 0xc1
Format: LBU rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_BYTE(GPR(RS)+GPR(RD)
))

LH: Load half signed, displaced addressing.
Opcode: 0x24
Format: LH rt,offset(rs) inc_dec
Semantics: SET_GPR(RT,

READ_SIGNED_HALF(GPR(RS)+OFFSET))

LH: Load half signed, indexed addressing.
Opcode: 0xc2

Operator/operand Semantics

FS same as field RS
FT same as field RT
FD same as field RD
UIMM IMM field unsigned-extended to word value
IMM IMM field sign-extended to word value
OFFSET IMM field sign-extended to word value
CPC PC value of executing instruction
NPC next PC value
SET_NPC(V) Set next PC to value V
GPR(N) General purpose register N
SET_GPR(N,V) Set general purpose register N to value V
FPR_F(N) Floating point register N single-precision value
SET_FPR_F(N,V) Set floating point register N to single-precision value V
FPR_D(N) Floating point register N double-precision value
SET_FPR_D(N,V) Set floating point register N to double-precision value V
FPR_L(N) Floating point register N literal word value
SET_FPR_L(N,V) Set floating point register N to literal word value V
HI High result register value
SET_HI(V) Set high result register to value V
LO Low result register value
SET_LO(V) Set low result register to value V
READ_SIGNED_BYTE(A) Read signed byte from address A
READ_UNSIGNED_BYTE(A) Read unsigned byte from address A
WRITE_BYTE(V,A) Write byte value V at address A
READ_SIGNED_HALF(A) Read signed half from address A
READ_UNSIGNED_HALF(A) Read unsigned half from address A
WRITE_HALF(V,A) Write half value V at address A
READ_WORD(A) Read word from address A
WRITE_WORD(V,A) Write word value V at address A
TALIGN(T) Check target T is aligned to 8 byte boundary
FPALIGN(N) Check register N is wholly divisible by 2
OVER(X,Y) Check for overflow when adding X to Y
UNDER(X,Y) Check for overflow when subtraction Y from X
DIV0(V) Check for division by zero error with divisor V

Table 3: Operator/operand semantics

15

Format: LH rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_SIGNED_HALF(GPR(RS)+GPR(RD)))

LHU: Load half unsigned, displaced addressing.
Opcode: 0x26
Format: LHU rt,offset(rs) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_HALF(GPR(RS)+OFF-
SET))

LHU: Load half unsigned, indexed addressing.
Opcode: 0xc3
Format: LHU rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_HALF(GPR(RS)+GPR(RD)
))

LW: Load word, displaced addressing.
Opcode: 0x28
Format: LW rt,offset(rs) inc_dec
Semantics: SET_GPR(RT, READ_WORD(GPR(RS)+OFF-

SET))

LW: Load word, indexed addressing.
Opcode: 0xc4
Format: LW rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_WORD(GPR(RS)+GPR(RD)))

DLW: Double load word, displaced addressing.
Opcode: 0x29
Format: DLW rt,offset(rs) inc_dec
Semantics: SET_GPR(RT, READ_WORD(GPR(RS)+OFF-

SET))
SET_GPR(RT+1,
READ_WORD(GPR(RS)+OFFSET+4))

DLW: Double load word, indexed addressing.
Opcode: 0xce
Format: DLW rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_WORD(GPR(RS)+GPR(RD)))
SET_GPR(RT+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

L.S: Load word into floating point register file,
displaced addressing.

Opcode: 0x2a
Format: L.S ft,offset(rs) inc_dec
Semantics: SET_FPR_L(FT, READ_WORD(GPR(RS)+OFF-

SET))

L.S: Load word into floating point register file,
indexed addressing.

Opcode: 0xc5
Format: L.S ft,(rs+rd) inc_dec
Semantics: SET_FPR_L(RT,

READ_WORD(GPR(RS)+GPR(RD)))

L.D: Load double word into floating point register
file, displaced addressing.

Opcode: 0x2b

Format: L.D ft,offset(rs) inc_dec
Semantics: SET_FPR_L(FT, READ_WORD(GPR(RS)+OFF-

SET))
SET_FPR_L(FT+1,
READ_WORD(GPR(RS)+OFFSET+4))

L.D: Load double word into floating point register
file, indexed addressing.

Opcode: 0xcf
Format: L.D ft,(rs+rd) inc_dec
Semantics: SET_FPR_L(RT,

READ_WORD(GPR(RS)+GPR(RD)))
SET_FPR_L(RT+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

LWL: Load word left, displaced addressing.
Opcode: 0x2c
Format: LWL offset(rs)
Semantics: Seess.def for a detailed description of this

instruction’s semantics. NOTE: LWL does not
support pre-/post- inc/dec.

LWR: Load word right, displaced addressing.
Opcode: 0x2d
Format: LWR offset(rs)
Semantics: Seess.def for a detailed description of this

instruction’s semantics. NOTE: LWR does not
support pre-/post- inc/dec.

SB: Store byte, displaced addressing.
Opcode: 0x30
Format: SB rt,offset(rs) inc_dec
Semantics: WRITE_BYTE(GPR(RT), GPR(RS)+OFFSET)

SB: Store byte, indexed addressing.
Opcode: 0xc6
Format: SB rt,(rs+rd) inc_dec
Semantics: WRITE_BYTE(GPR(RT), GPR(RS)+GPR(RD))

SH: Store half, displaced addressing.
Opcode: 0x32
Format: SH rt,offset(rs) inc_dec
Semantics: WRITE_HALF(GPR(RT), GPR(RS)+OFFSET)

SH: Store half, indexed addressing.
Opcode: 0xc7
Format: SH rt,(rs+rd) inc_dec
Semantics: WRITE_HALF(GPR(RT), GPR(RS)+GPR(RD))

SW: Store word, displaced addressing.
Opcode: 0x34
Format: SW rt,offset(rs) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+OFFSET)

SW: Store word, indexed addressing.
Opcode: 0xc8
Format: SW rt,(rs+rd) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+GPR(RD))

DSW: Double store word, displaced addressing.
Opcode: 0x35
Format: DSW rt,offset(rs) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+OFFSET)

16

WRITE_WORD(GPR(RT+1), GPR(RS)+OFF-
SET+4)

DSW: Double store word, indexed addressing.
Opcode: 0xd0
Format: DSW rt,(rs+rd) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+GPR(RD))

WRITE_WORD(GPR(RT+1),
GPR(RS)+GPR(RD)+4)

DSZ: Double store zero, displaced addressing.
Opcode: 0x38
Format: DSW rt,offset(rs) inc_dec
Semantics: WRITE_WORD(0, GPR(RS)+OFFSET)

WRITE_WORD(0, GPR(RS)+OFFSET+4)

DSZ: Double store zero, indexed addressing.
Opcode: 0xd1
Format: DSW rt,(rs+rd) inc_dec
Semantics: WRITE_WORD(0, GPR(RS)+GPR(RD))

WRITE_WORD(0, GPR(RS)+GPR(RD)+4)

S.S: Store word from floating point register file,
displaced addressing.

Opcode: 0x36
Format: S.S ft,offset(rs) inc_dec
Semantics: WRITE_WORD(FPR_L(FT), GPR(RS)+OFF-

SET)

S.S: Store word from floating point register file,
indexed addressing.

Opcode: 0xc9
Format: S.S ft,(rs+rd) inc_dec
Semantics: WRITE_WORD(FPR_L(FT),

GPR(RS)+GPR(RD))

S.D: Store double word from floating point regis-
ter file, displaced addressing.

Opcode: 0x37
Format: S.D ft,offset(rs) inc_dec
Semantics: WRITE_WORD(FPR_L(FT), GPR(RS)+OFF-

SET)
WRITE_WORD(FPR_L(FT+1), GPR(RS)+OFF-
SET+4)

S.D: Store double word from floating point regis-
ter file, indexed addressing.

Opcode: 0xd2
Format: S.D ft,(rs+rd) inc_dec
Semantics: WRITE_WORD(FPR_L(FT),

GPR(RS)+GPR(RD))
WRITE_WORD(FPR_L(FT+1),
GPR(RS)+GPR(RD)+4)

SWL: Store word left, displaced addressing.
Opcode: 0x39
Format: SWL rt,offset(rs)
Semantics: Seess.def for a detailed description of this

instruction’s semantics. NOTE: SWL does not
support pre-/post- inc/dec.

SWR: Store word right, displaced addressing.
Opcode: 0x3a

Format: SWR rt,offset(rs)
Semantics: Seess.def for a detailed description of this

instruction’s semantics. NOTE: SWR does not
support pre-/post- inc/dec.

A.3 Integer instructions

ADD: Add signed (with overflow check).
Opcode: 0x40
Format: ADD rd,rs,rt
Semantics: OVER(GPR(RT),GPR(RT))

SET_GPR(RD, GPR(RS) + GPR(RT))

ADDI: Add immediate signed (with overflow
check).

Opcode: 0x41
Format: ADDI rd,rs,rt
Semantics: OVER(GPR(RS),IMM)

SET_GPR(RT, GPR(RS) + IMM)

ADDU: Add unsigned (no overflow check).
Opcode: 0x42
Format: ADDU rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) + GPR(RT))

ADDIU: Add immediate unsigned (no overflow
check).

Opcode: 0x43
Format: ADDIU rd,rs,rt
Semantics: SET_GPR(RT, GPR(RS) + IMM)

SUB: Subtract signed (with underflow check).
Opcode: 0x44
Format: SUB rd,rs,rt
Semantics: UNDER(GPR(RS),GPR(RT))

SET_GPR(RD, GPR(RS) - GPR(RT))

SUBU: Subtract unsigned (without underflow
check).

Opcode: 0x45
Format: SUBU rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) - GPR(RT))

MULT: Multiply signed.
Opcode: 0x46
Format: MULT rs,rt
Semantics: SET_HI((RS * RT) / (1<<32))

SET_LO((RS * RT) % (1<<32))

MULTU: Multiply unsigned.
Opcode: 0x47
Format: MULTU rs,rt
Semantics: SET_HI(((unsigned)RS * (unsigned)RT)/(1<<32))

SET_LO(((unsigned)RS*(unsigned)RT) %
(1<<32))

DIV: Divide signed.
Opcode: 0x48
Format: DIV rs,rt
Semantics: DIV0(GPR(RT))

SET_LO(GPR(RS) / GPR(RT))
SET_HI(GPR(RS) % GPR(RT))

17

DIVU Divide unsigned.
Opcode: 0x49
Format: DIVU rs,rt
Semantics: DIV0(GPR(RT))

SET_LO((unsigned)GPR(RS)/
(unsigned)GPR(RT))
SET_HI((unsigned)GPR(RS)%(unsigned)GPR(R
T))

MFHI: Move from HI register.
Opcode: 0x4a
Format: MFHI rd
Semantics: SET_GPR(RD, HI)

MTHI: Move to HI register.
Opcode: 0x4b
Format: MTHI rs
Semantics: SET_HI(GPR(RS))

MFLO: Move from LO register.
Opcode: 0x4c
Format: MFLO rd
Semantics: SET_GPR(RD, LO)

MTLO: Move to LO register.
Opcode: 0x4d
Format: MTLO rs
Semantics: SET_LO(GPR(RS))

AND: Logical AND.
Opcode: 0x4e
Format: AND rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) & GPR(RT))

ANDI: Logical AND immediate.
Opcode: 0x4f
Format: ANDI rd,rt,imm
Semantics: SET_GPR(RT, GPR(RS) & UIMM)

OR: Logical OR.
Opcode: 0x50
Format: OR rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) | GPR(RT))

ORI: Logical OR immediate.
Opcode: 0x51
Format: ORI rd,rt,imm
Semantics: SET_GPR(RT, GPR(RS) | UIMM)

XOR: Logical XOR.
Opcode: 0x52
Format: XOR rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) ^ GPR(RT))

XORI: Logical XOR immediate.
Opcode: 0x53
Format: ORI rd,rt,uimm
Semantics: SET_GPR(RT, GPR(RS) ^ UIMM)

NOR: Logical NOR.
Opcode: 0x54
Format: NOR rd,rs,rt

Semantics: SET_GPR(RD, ~(GPR(RS) | GPR(RT)))

SLL: Shift left logical.
Opcode: 0x55
Format: SLL rd,rt,shamt
Semantics: SET_GPR(RD, GPR(RT) << SHAMT)

SLLV: Shift left logical variable.
Opcode: 0x56
Format: SLLV rd,rt,rs
Semantics: SET_GPR(RD, GPR(RT) << (GPR(RS) & 0x1f))

SRL: Shift right logical.
Opcode: 0x57
Format: SRL rd,rt,shamt
Semantics: SET_GPR(RD, GPR(RT) >> SHAMT)

SRLV: Shift right logical variable.
Opcode: 0x58
Format: SRLV rd,rt,rs
Semantics: SET_GPR(RD, GPR(RT) << (GPR(RS) & 0x1f))

SRA: Shift right arithmetic.
Opcode: 0x59
Format: SRA rd,rt,shamt
Semantics: SET_GPR(RD, SEX(GPR(RT) >> SHAMT, 31 -

SHAMT))

SRAV: Shift right arithmetic variable.
Opcode: 0x59
Format: SRAV rd,rt,rs
Semantics: SET_GPR(RD, SEX(GPR(RT) >> SHAMT, 31 -

(GPR(RD) & 0x1f)))

SLT: Set register if less than.
Opcode: 0x5b
Format: SLT rd,rs,rt
Semantics: SET_GPR(RD, (GPR(RS) < GPR(RT)) ? 1 : 0)

SLTI: Set register if less than immediate.
Opcode: 0x5c
Format: SLTI rd,rs,imm
Semantics: SET_GPR(RD, (GPR(RS) < IMM) ? 1 : 0)

SLTU: Set register if less than unsigned.
Opcode: 0x5d
Format: SLTU rd,rs,rt
Semantics: SET_GPR(RD,

((unsigned)GPR(RS)<(unsigned)GPR(RT)) ? 1 : 0)

SLTIU: Set register if less than unsigned immediate.
Opcode: 0x5d
Format: SLTIU rd,rs,imm
Semantics: SET_GPR(RD,

((unsigned)GPR(RS)<(unsigned)GPR(RT)) ? 1 : 0)

A.4 Floating-point instructions

ADD.S: Add floating point, single precision.
Opcode: 0x70
Format: ADD.S fd,fs,ft
Semantics: FPALIGN(FD)

18

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_F(FD, FPR_F(FS) + FPR_F(FT)))

ADD.D: Add floating point, double-precision.
Opcode: 0x71
Format: ADD.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_D(FD, FPR_D(FS) + FPR_D(FT)))

SUB.S: Subtract floating point, single precision.
Opcode: 0x72
Format: SUB.S fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_F(FD, FPR_F(FS) - FPR_F(FT)))

SUB.D: Subtract floating point, double precision.
Opcode: 0x73
Format: SUB.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_D(FD, FPR_D(FS) - FPR_D(FT)))

MUL.S: Multiply floating point, single precision.
Opcode: 0x74
Format: MUL.S fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_F(FD,FPR_F(FS)*FPR_F(FT)))

MUL.D: Multiply floating point, double precision.
Opcode: 0x75
Format: MUL.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_D(FD, FPR_D(FS) * FPR_D(FT)))

DIV.S: Divide floating point, single precision.
Opcode: 0x76
Format: DIV.S fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
DIV0(FPR_F(FT))
SET_FPR_F(FD, FPR_F(FS) / FPR_F(FT)))

DIV.D: Divide floating point, double precision.
Opcode: 0x77
Format: DIV.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
DIV0(FPR_D(FT))
SET_FPR_D(FD, FPR_D(FS) / FPR_D(FT)))

ABS.S: Absolute value, single precision.
Opcode: 0x78
Format: ABS.S fd,fs

Semantics: FPALIGN(FD)
FPALIGN(FS)
SET_FPR_F(FD, fabs((double)FPR_F(FS))))

ABS.D: Absolute value, double precision.
Opcode: 0x79
Format: ABS.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, fabs(FPR_D(FS))))

MOV.S: Move floating point value, single precision.
Opcode: 0x7a
Format: MOV.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD, FPR_F(FS))

MOV.D: Move floating point value, double precision.
Opcode: 0x7b
Format: MOV.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, FPR_D(FS))

NEG.S: Negate floating point value, single precision.
Opcode: 0x7c
Format: NEG.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD, -FPR_F(FS))

NEG.D: Negate floating point value, double preci-
sion.

Opcode: 0x7d
Format: NEG.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, -FPR_D(FS))

CVT.S.D: Convert double precision to single precision.
Opcode: 0x80
Format: CVT.S.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, -FPR_D(FS))

CVT.S.W: Convert integer to single precision.
Opcode: 0x81
Format: CVT.S.W fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD, (float)FPR_L(FS))

CVT.D.S: Convert single precision to double precision.
Opcode: 0x82
Format: CVT.D.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD,(double)FPR_F(FS))

CVT.D.W: Convert integer to double precision.
Opcode: 0x83
Format: CVT.D.W fd,fs

19

Semantics: FPALIGN(FD)
FPALIGN(FS)
SET_FPR_D(FD,(double)FPR_L(FS))

CVT.W.S: Convert single precision to integer.
Opcode: 0x84
Format: CVT.W.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_L(FD, (long)FPR_F(FS))

CVT.W.D: Convert double precision to integer.
Opcode: 0x85
Format: CVT.W.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_L(FD, (long)FPR_D(FS))

C.EQ.S: Test if equal, single precision.
Opcode: 0x90
Format: C.EQ.S fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_F(FS) == FPR_F(FT))

C.EQ.D: Test if equal, double precision.
Opcode: 0x91
Format: C.EQ.D fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_D(FS) == FPR_D(FT))

C.LT.S: Test if less than, single precision.
Opcode: 0x92
Format: C.LT.S fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_F(FS) < FPR_F(FT))

C.LT.D: Test if less than, double precision.
Opcode: 0x93
Format: C.LT.D fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_D(FS) < FPR_D(FT))

C.LE.S: Test if less than or equal, single precision.
Opcode: 0x94
Format: C.LE.S fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_F(FS) <= FPR_F(FT))

C.LE.D: Test if less than or equal, double precision.
Opcode: 0x95
Format: C.LE.D fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_D(FS) <= FPR_D(FT))

SQRT.S: Square root, single precision.
Opcode: 0x96
Format: SQRT.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD,sqrt((double)FPR_F(FS)))

SQRT.D: Square root, double precision.
Opcode: 0x97
Format: SQRT.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, sqrt(FPR_D(FS)))

A.5 Miscellaneous instructions

NOP: No operation.
Opcode: 0x00
Format: NOP
Semantics: None

SYSCALL : System call.
Opcode: 0xa0
Format: SYSCALL
Semantics: See AppendixB for details

BREAK : Declare a program error.
Opcode: 0xa1
Format: BREAK uimm
Semantics: Actions are simulator-dependent. Typically,

an error message is printed andabort() is
called.

LUI : Load upper immediate.
Opcode: 0xa2
Format: LUI uimm
Semantics: SET_GPR(RT, UIMM << 16)

MFC1: Move from floating point to integer register
file.

Opcode: 0xa3
Format: MFC1 rt,fs
Semantics: SET_GPR(RT, FPR_L(FS))

MTC1 : Move from integer to floating point register
file.

Opcode: 0xa5
Format: MTC1 rt,fs
Semantics: SET_FPR_L(FS, GPR(RT))

B System call definitions
This appendix lists all system calls supported by the simula-

tors with their system call code (syscode), interface specification,
and appropriate POSIX Unix reference. Systems calls are initi-
ated with the SYSCALL instruction. Prior to execution of a
SYSCALL instruction, register $v0 should be loaded with the
system call code. The arguments of the system call interface pro-
totype should be loaded into registers $a0 - $a3 in the order spec-
ified by the system call interface prototype,e.g., for:

read(int fd, char *buf, int nbyte),

0x03 is loaded into $v0, fd is loaded into $a0, buf into $a1, and
nbyte into $a2.

EXIT : Exit process.

20

Syscode: 0x01
Interface: void exit(int status);
Semantics: Seeexit(2).

READ: Read from file to buffer.
Syscode: 0x03
Interface: int read(int fd, char *buf, int nbyte);
Semantics: Seeread(2).

WRITE: Write from a buffer to a file.
Syscode: 0x04
Interface: int write(int fd, char *buf, int nbyte);
Semantics: Seewrite(2).

OPEN: Open a file.
Syscode: 0x05
Interface: int open(char *fname, int flags, int mode);
Semantics: Seeopen(2).

CLOSE: Close a file.
Syscode: 0x06
Interface: int close(int fd);
Semantics: Seeclose(2).

CREAT: Create a file.
Syscode: 0x08
Interface: int creat(char *fname, int mode);
Semantics: Seecreat(2).

UNLINK: Delete a file.
Syscode: 0x0a
Interface: int unlink(char *fname);
Semantics: Seeunlink(2).

CHDIR: Change process directory.
Syscode: 0x0c
Interface: int chdir(char *path);
Semantics: Seechdir(2).

CHMOD: Change file permissions.
Syscode: 0x0f
Interface: int chmod(int *fname, int mode);
Semantics: Seechmod(2).

CHOWN: Change file owner and group.
Syscode: 0x10
Interface: int chown(char *fname, int owner, int group);
Semantics: Seechown(2).

BRK: Change process break address.
Syscode: 0x11
Interface: int brk(long addr);
Semantics: Seebrk(2).

LSEEK: Move file pointer.
Syscode: 0x13
Interface: long lseek(int fd, long offset, int whence);
Semantics: Seelseek(2).

GETPID: Get process identifier.
Syscode: 0x14
Interface: int getpid(void);

Semantics: Seegetpid(2).

GETUID: Get user identifier.
Syscode: 0x18
Interface: int getuid(void);
Semantics: Seegetuid(2).

ACCESS: Determine accessibility of a file.
Syscode: 0x21
Interface: int access(char *fname, int mode);
Semantics: Seeaccess(2).

STAT: Get file status.
Syscode: 0x26
Interface: struct stat

{
short st_dev;
long st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid;
short st_rdev;
int st_size;
int st_atime;
int st_spare1;
int st_mtime;
int st_spare2;
int st_ctime;
int st_spare3;
long st_blksize;
long st_blocks;
long st_gennum;
long st_spare4;

};
int stat(char *fname, struct stat *buf);

Semantics: Seestat(2).

LSTAT: Get file status (and don’t dereference links).
Syscode: 0x28
Interface: int lstat(char *fname, struct stat *buf);
Semantics: Seelstat(2).

DUP: Duplicate a file descriptor.
Syscode: 0x29
Interface: int dup(int fd);
Semantics: Seedup(2).

PIPE: Create an interprocess comm. channel.
Syscode: 0x2a
Interface: int pipe(int fd[2]);
Semantics: Seepipe(2).

GETGID: Get group identifier.
Syscode: 0x2f
Interface: int getgid(void);
Semantics: Seegetgid(2).

IOCTL: Device control interface.
Syscode: 0x36
Interface: int ioctl(int fd, int request, char *arg);
Semantics: Seeioctl(2).

21

FSTAT: Get file descriptor status.
Syscode: 0x3e
Interface: int fstat(int fd, struct stat *buf);
Semantics: Seefstat(2).

GETPAGESIZE: Get page size.
Syscode: 0x40
Interface: int getpagesize(void);
Semantics: Seegetpagesize(2).

GETDTABLESIZE: Get file descriptor table size.
Syscode: 0x59
Interface: int getdtablesize(void);
Semantics: Seegetdtablesize(2).

DUP2: Duplicate a file descriptor.
Syscode: 0x5a
Interface: int dup2(int fd1, int fd2);
Semantics: Seedup2(2).

FCNTL: File control.
Syscode: 0x5c
Interface: int fcntl(int fd, int cmd, int arg);
Semantics: Seefcntl(2).

SELECT: Synchronous I/O multiplexing.
Syscode: 0x5d
Interface: int select (int width, fd_set *readfds, fd_set

*writefds, fd_set *exceptfds, struct timeval
*timeout);

Semantics: Seeselect(2).

GETTIMEOFDAY: Get the date and time.
Syscode: 0x74
Interface: struct timeval {

long tv_sec;
long tv_usec;

};
struct int {

timezone tz_minuteswest;
int tz_dsttime;

};
int gettimeofday(struct timeval *tp,

struct timezone *tzp);
Semantics: Seegettimeofday(2).

WRITEV: Write output, vectored.
Syscode: 0x79
Interface: int writev(int fd, struct iovec *iov, int cnt);
Semantics: Seewritev(2).

UTIMES: Set file times.
Syscode: 0x8a
Interface: int utimes(char *file, struct timeval *tvp);
Semantics: Seeutimes(2).

GETRLIMIT: Get maximum resource consumption.
Syscode: 0x90
Interface: int getrlimit(int res, struct rlimit *rlp);
Semantics: Seegetrlimit(2).

SETRLIMIT: Set maximum resource consumption.

Syscode: 0x91
Interface: int setrlimit(int res, struct rlimit *rlp);
Semantics: Seesetrlimit(2).

