This paper appears in the 23rd International Symposium on Computer Architecturé 98ty

Memory Bandwidth Limitation

Doug Buger, James R. G

Reprinted by permission of ACM

sof Future Microprocessors

oodman, and Alain Kagi

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706 USA

galileo@cs.wisc.edu - http

Abstract

This paper makes the case that pin bandwidth will be a critical
consideration for futle micoprocessors. & show that many of
the techniques used to tolerat@ging memory latencies do so at
the expense of ineased bandwidthequirrments. Using a decom-
position of execution time, we show that for modewocessors
that employ aggrssive memory latency tolerance techniques,

wasted cycles due to insufficient bandwidth generally exceed thosel-

due to raw memory latencies. Given the importance of maximizing
memory bandwidth, we calculatdfective pin bandwidththen
estimate optimal effective pin bandwidtre Weasw these quan-
tities by determining the amount by which both caches and mini-

mal-traffic caches filter accesses to the lower levels of the memory

.

hierarchy. We see that theris a gap that can exceed twalers of
magnitude between the total memory traffic generated by cache
and the minimal-traffic caches—implying that the potential exists
to increase effective pin bandwidth substantialle decompose
this traffic gap into four factors, and show they contribute quite
differently to traffic eduction for diffeent benchmarks. &/con-
clude that, in the short term, pin bandwidth limitations will make
more complex on-chip caches cost-effective. For example, flexible
caches may allow individual applications to choosenfra range

of caching policies. In the long term, weegict that off-chip
accesses will be so expensive that all system memorgsitleron

one or moe processor chips.

1 Introduction

The growing inability of memory systems to keep up with pro-
cessor requests has significant ramifications for the design of
microprocessors in the next decadechnhological trends have
produced a lae and growing gap between CPU speeds and
DRAM speeds. The number of instructions that the processor can
issue during an access to main memory is alreadg.|&xtrapo-

lating current trends suggests that soon a processor may be able to
issue hundreds or even thousands of instructions while it fetches d

single datum into on-chip memory
Much research has focused on reducing or tolerating these
large memory access latencies. Researchers have proposed mal

techniques for reducing the frequency and impact of cache misses;

These include lockup-free caches [28, 40], cache-conscious loa
scheduling [1], hardware and software prefetching [6, 7, 13, 14,
This work is supported in part by NSF Grant CCR-9207971, an unre-
stricted grant from the Intel Research Council, an unrestricted grant from
the Apple Computer Advancededhnology Group, and equipment dona-
tions from Sun Microsystems.

Copyright 1996 (c) by Association for Computing Machinery (ACM). Per-
mission to copy and distribute this document is hereby granted provided
that this notice is retained on all copies and that copies are not altered.

/lwwes.wisc.edu/~galileo

26, 32], stream bédrs [24, 33], speculative loads and execution
[11, 35], and multithreading [30, 38].

It is our hypothesis that the increasing use and success of
latency-tolerance techniques will expose memory bandwidth, not
raw access latencies, as a more fundamental impediment to higher
performance. Increased latency due to bandwidth constraints will
emepge for four reasons:

Continuing progress in processor design will increase the
issue rate of instructions. These advances include both archi-
tectural innovation (wider issue, speculative execution, etc.)
and circuit advances (fastelenser logic).

To the extent that latency-tolerance techniques are successful,
they will speed up the retirement rate of instructions, thus
requiring more memory operands per unit of time.

Many of the latency-tolerance techniques increase the abso-
lute amount of memory trii€ by fetching more data than are
needed. They also create contention in the memory system.

Packaging and testing costs, along with power and cooling
considerations, will increasingly fatt costs—resulting in
slower or more costlyincreases in défchip bandwidth than

in on-chip processing and memory

The factors enumerated above will render memory band-
width—particularly pin bandwidth—a more critical and expensive
resource than it is todagiven the complex interactions between
memory latency and bandwidth, howevitris difficult to deter-
mine whether memory-related processor stalls are due to raw
memory latency or increased latency from ifisignt bandwidth.
Current metrics (such as average memory access time) do not
address this issue. This paper therefore separates execution time
into three categories: processing time (which includes idle time
caused by lack of instruction-level parallelism [ILP]), memory
latency stall time, and memory bandwidth stall time.

Assuming that a growing percentage of lost cycles are due to
nsufficient pin bandwidth, the performance of future systems will
Increasingly be determined by (i) the rate at which the external
memory system can supply operands, and (ii) hdect¥ely on-
chip memory can retain operands for reuse. By retaining operands,
-chip memory (caches, registers, and other structures) can
ncrease déctive pin bandwidth. By measuring the extent to
hich on-chip memory shields the pins from processor requests,
we can determine how much computational power a given pack-
age can support.

The miss rate provides a good estimate ofitraéduction for
simple caches. Since many techniques can trade increaded traf
for decreased latency (i.e., more cache hits), miss rate is not the
best measure of tiféd reduction for more complex memory hierar-
chies. The use dfaffic ratios[18, 20]—the ratio of trdic below a
cache to the tréit above it—provides a more accurate measure of
how on-chip memories changdegtive of-chip bandwidth.

2.

4.

Improving the trdic ratio increases thefettive of-chip band-
width, improving performance in systems that stall frequently due
to limited pin bandwidth. \& propose a new metric, calladffic
inefficiency which quantifies the opportunity for reduction in the
traffic ratio. We define trdfc inefficiency as the ratio of tri€ gen-
erated by a cache and some optimally-managed merbiy
quantity gives an upper bound on the achievalfecefe band-
width for a given memory size, package, and program. By decom-
posing trafic inefficiency into individual components, we can
identify where the opportunities lie for improvingfesdtive pin
bandwidth through tréit reduction.

A. Latency reduction

Lockup-free caches

Intelligent load scheduling

Hardware prefetching

Software prefetching

Speculative loads

Multithreading

Larger cache blocks

Section2 of this paper both defines our execution time decom-

position and gives a detailed justification for our claim that B. Processor trends fo | f | fe
Iate.ncy-t.olerance techniques wiII. expose pin bandwidth con- Faster clock speed ! : :
straints in future systems. In Secti®nwe present measurements ——

that decompose execution time for an aggressive processor and a Wider-issue ! ? !
range of latency-tolerance techniques—showing that bandwidth Speculative (Multiscalar) ! ? 1
stalls will indeed be significant for such processors. Sedtion Multiprocessors/chip | 1 1
defines trdfc ratio and dctive pin bandwidth. \& then present

measurements of tfef ratios for a range of caches, and compute C. Physical trends S f fg
their efective pin bandwidths. Sectidn defines and measures -

traffic inefficiencies, computes an upper bound ofective pin Better packaging technology | + | ! | !
bandwidth, and uses these results to propose and measure some Larger on-chip memories 1 ! !

cache improvements. Fingliection6 concludes with a descrip-
tion of possible solutions (both short-term and long-term), related
work, and a summary of our main results.

Table 1: Estimated effects on execution divisions

fL=T/T= (T -Tp)/T 2
2 Decomposing program execution time (=TT = (T-T)/T 3)
As the performance gap between processors and main memonr
increases, processors are likely to spend a greater percentage « This characterization of execution time can be converted easily
their time stalled, waiting for operands from memdriie com- into CPI, if that is the metric of interest. These three categories can
plexity of both modern processors and modern memory hierar-be broken down further to isolate individual parts of the system.
chies makes it difcult to identify precisely why a processor is This enables us to estimate more accurately the performance
stalling, or what limits its utilization (or IPC). impact of imperfect components in a complex modern processor—
To understand where the time is spent in a complex progessorthe performance of which cannot be calculated directly from aver-
we divide execution time into three categoripecessor time age memory latency and miss rate.
latency time andbandwidth timé. Processor time is the time in Tablel presents predictions of how the fraction of time lost to
which the processor is either fully utilized, or is only partially uti- pandwidth stalls will change for future machines. In every row of
lized or stalled due to lack of ILRatency time is the number of Tables1A and 1B, we see that the normalized fraction of band-
lost cycles due to untolerated, intrinsic memory latencies. By width stalls is increasing. The technological advances listed in
“intrinsic” we mean memory latencies in a contentionless system; Table1C will mitigate the relative increases of bandwidth-related
latencies that could not be reduced by adding more bandwidth installs. Section8.1 and 2.2 explain the trends that we present in
between levels of the memory hierarcBandwidth time is the TableslA and 1B. Section8.3 and 2.4 describe the physical
number of lost CPU cycles due both to contention in the memory trends listed in ablelC. These latter two subsections describe
system and to insfi¢ient bandwidth between levels of the hierar- why the physical increases irfedftive memory bandwidth will be
chy. This partitioning scheme is superior to using average memoryinsuficient to satisfy the increased bandwidth needs of future pro-
access time, which neither separates raw access latency froncessors.
bandwidth restrictions, nor translates directly into processor per-
formance (e.g., four simultaneous cache misses in a lockup-free 1 | atency-reduction techniques
cache will appear as one cache miss latency to the prockasor
will be counted as four distinct misses when calculating average Improved techniques for reducing and tolerating memory
memory access time). latency can increask, —the percentage of execution time spent
Let T,, T, T be a partitioning of some prograsnéxecution stalled due to institient memory bandwidth. Reduction of mem-
time, T, spent in each of these three categories (processingory latency overhead () aggravates bandwidth requirements for
latency and bandwidth, respectively). L&§ f, f, be these times two reasons. First, many of the techniques that reduce latency-
normalized toT. Let T, be the execution time of the program related stalls increase the total fimbetween main memory and
assuming a perfect memory hierarchy (i.e., every memory accessthe processoiSecond, the reduction ¢f increases the processor
completes in one cycle). L&t be the execution time of the pro- bandwidth—the rate at which the processor consumes and pro-
gram assuming an infinitely-wide path in between each level of theduces operands—by reducing total execution time.

memory hierarchyfy, f,, f; are computed as follows: The combination of lockup-free caches [28, 40] and careful
fo = Tp/T D) scheduling of memory operations that are likely to miss [1, 16] is a

method of hiding memory latencies. Although this technique does

not increase the amount of fiafto main memorylockup-free

1. Our decomposition is similar to that used by Kontothannasis et al. to caches worsen bandwidth stalls by allowing multiple memory

measure cache performance of vector supercomputers [27]. requests to issue—making queueing delays possible in the mem-

(a) Pin count increases (b) Performance increases per pin (c) Performance over pin bandwidth

1000 3.2+ 16+
21164 © R10000
PAB00Q R10000 1.0 SSparc2 © [<]
Harpl 1.3 UIlraSparc8 [o)Ne)
© R10000 ° 0.64 P6 O, N6
- - P6 PAB000 :
500 UltraSparc. €] 68060 Harp1oyitraSparc
Fo 21164 0.5 Ssparc2 0.40 °
bengum ° §Haml o8040 58060
p i ~ 0254
2 - o 0.2 68040 Pentium @ BOéSB ° °
£ 250 e ’ 2
s 25 - 6%060 c R3000 S 0.6+ ° Pentium
ks} 80486 68040 © =3 68030 © c
5 e © ssparc2 9 008+ 68020 © 80486 & 01004 68000 68030 R0 PAB000
2 80386 68030 R3000 s (<] = o 68020 ©
E 1 e, o { 0.084 °
z) 0.03— 80386 S
) [
-~ "68020 680000 = 0,040 80386
80286 0.01] 0.025-]
64— P e
68000 0.016]
- 0.005— 8086
8086 80286 00104 © 80286
4] 8086 ° °
° 6
32 T T T T T T T T T 0.002 T T T T T T T T T 1 0.00 T T T T T T T T T 1
1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997
Year Year Year

Figure 1. Physical microprocessor trends

ory system. Furthermore, the presence of lockup-free caches willbandwidth results primarily from multiple concurrently-running

likely encourage more speculative execution. contexts, but also because of shared-cache interference. The pri-
Both software [6, 8, 26, 32] and hardware [13, 14] prefetching mary barrier to the implementation of single-chip multiprocessors

techniques can increase fiafto main memory They may will not be transistor availability but BEhip memory bandwidth.

prefetch data too earlycausing other references to evict the If one processor loses performance due to limited pin bandwidth,

prefetched data from the cache before their use. They may alsdhen multiple processors on a chip will lose far more performance

evict needed data from the cache before their use, causing an extrt@r the same reason.

cache miss. Stream Hefs [24, 33] prefetch unnecessary data at ~ Finally, throughout the computer industtyiere is an increas-

the end of a stream. They also falsely identify streams, fetchinging software emphasis on visualization, graphics, and multimedia.

unnecessary data. Speculative prefetching techniqgues—such a$hese codes tend to havegardata sets, with much floating-point

lifting loads above conditional branches [35]—increase memory computation. Taditional caches are remarkably ieetive at

traffic whenever the speculation is incorrect. reducing the bandwidth requirements of these types of codes [5].
Multithreading increases processor throughput by switching to The increased use of this type of software may therefore exacer-

a different thread when a long-latency operation occurs bate bandwidth limitations.

[30, 38]. Frequent switching of threads will increase interference . .

in the caches and TLB, howeyerausing an increase in cache 2-3 Physical limits

misses and total tria. Poorer cache performance—resulting from e rate of increase of processor pins has traditionally been

the increased size of the threads’ combined working set—rfiay of ,,ch slower than that of transistor densijithough lage

set some or all of the gains of the latency tolerance. _ increases in pin counts have recently occurred—and significant
Finally, larger block sizes may decrease cache miss rates. Missyreakthroughs in packaging technology undoubtedly lie on the

rate improvement occurs until the coarser granularity of addressporizon—the issues of reliabilitpower and especially cost will

space coverage (i.e., the reduced number of blocks in the cachejrevent pins from sustaining growth in numbers commensurate
overshadows the reduction in misses obtained by fetchiggrlar \yith the growth rate of processor performance.

blocks. Even when Iger blocks reduce the miss rate, howgtrer Figurel shows trends in pin, performance, anobip band-
increased trdic may cause bandwidth stalls that outweigh the \yigth from 1978 to 1997. W compiled this data by hand, from
miss rate Improvements. both the processors’ original manuals and back issud4i ab-
Report. All th - [les. The x-
2.2 Advanced processors ﬁ;%%ﬁcgalewor ree y-axes use log scales. The x-axes use a
Several factors other than latency-reduction techniques will _ Figurelaplots the number of pins per processor from 1978 to

increase the needed bandwidth across the processor moduld997. & see from the dotted line that pin counts are increasing by
boundary These factors include advanced processor design tech-2bout 16% per yeaMore striking is the result in Figufie, which
niques and shifts in characteristic uniprocessor workloads. plots processor performarfcger pin versus time. The raw perfor-

As processors get fastahey consume operands at a higher Mance per pin is also increasing explosivelgspite the rapid
increase in pin count shown in Figura.

rate. Faster processor clocks run programs in a shorter time, ; o .
increasing dfchip bandwidth requirements. Other processor = Fackages and buses are designed to providieisaf of-chip

enhancements (such as widssue processors) also reduce execu- Pandwidth to each generation of processors. Figjarewhich
tion time and increase needed bandwidth. plots the raw performance-to-package bandwidth ratio over time—

shows that performance increases are quickly outstripping the
growth in raw peak package bandwidth. THe800 aberration
results from that processerlack of on-chip caches, necessitating
an uncharacteristically lge package with a high clock rate.
Though feasible today from a cost standpoint, this design strategy

Processors that rely heavily on coarse-grained speculative exe
cution to increase ILP—such as thés@énsin Multiscalar [39]—
increase memory trid whenever they must squash a task after an
incorrect speculation. Multiple distinct execution units in such
processors can execute fdient parts of the instruction stream
simultaneously This execution may reduce locality in shared,
lower-level caches, thus increasing the miss rate, and therefore thd.. Performance here is measured AXWIPS for the 680x0 and early
total trafic. 80x86 processors, and issue width times clock rate for the others. These

The emegence of single-chip multiprocessors would substan- two measures cannot be compared direttlif are siicient to view 20-
tially increase the number of data loaded per cycle. The increasedear trends.

is unlikely to persist very far into the future (as discussed in
Sectior4.3).

Processors to date have succeeded in keeping a balance
between their data requirements and available memory bandwidth.
The cumulative ééct of the trends and limits described in this sec-
tion will make this balance increasingly harder to achieve, necessi-
tating changes in the way memory systems are designed. These

@

(b)

computation

@

processor

ops or bytes

changes will be especially important when we include the cost of
adding suicient bandwidth to future high-performance proces-
sors, since the costs of der packages grow sup@arearly. Cost-
sensitive commodity systems will be particularly sensitive to the
need for packages that cost too much.

The pin interface is not necessarily the only point in the system
where a memory bandwidth bottleneck could arise. Although
bandwidth out of commodity DRAMSs is presently a concern, high-
bandwidth DRAM chips have already appeared on the market
(extended data-out, enhanced, synchronous, and Rambus DRAM
[34]). DRAM banks are thus unlikely to become a long-term per-

formance bottleneck. The memory bus is the other possible bottle-

neck, particularly for bus-based symmetric multiprocessors
(SMPs). Wdening the bus is a viable solution, as is shifting to a
point-to-point network if the bus becomes too great a bottleneck
for future SMPs. W believe that among the processor pins, bus,

and DRAM interface, continued increases in processor pin band-

width will be the hardest to sustain.
2.4 On-chip memory increases

Consider a future processto be designed as a follow-on to a
current processoiSuppose for simplicity that the new processor
will have four times as many gates as the current processor

©)
_/'b/w

1984 87 90 93 96
year

[ops or bytes]/second

1984 87 90 93 96
year

Figure 2. Processing vs. bandwidth changes

Algorithm | Memory | Comp. (C) | Memory traffic (D) C/D
MM O(N?) | O(N?) O(N¥/./9 Jk
Stencil O (N2) O (N2) 0(N2/./9) Jk
FFT O(N) | O(Nlog,N) | O(Nlog,N/log,S) | log,k
Sort O(N) | O(Nlog,N) | O(Nlog,N/log,S) | log,k

Table 2: Application growth rates

advantage of the on-chip memoHolding N constant keeps the
amount of computation constant. If the on-chip memory is
increased, the program generates leshap trafiic, allowing the
program (assuming a reasonahlg¢ to complete in less time. An

Assume that the area ratio between processor and on-chip memorincrease in the on-chip memory by a factor of four would increase

is unchanged. How will the BEhip bandwidth requirements
change for this new chip?

Figure2 shows the two opposingfefts that increasing tech-
nology will have upon the balance betwegn and f,. These
graphs are qualitative and do not represent real data. FAgure

L by two, which would reduce thefafhip trafic by nearly half.
Therefore,f; will not decrease so long as the gap marked by (1)
also increases by a factor of two.

For the future processor with four times as many gates, the pro-
cessing speed must increase only by a factor of two (i.e., the

shows the growing gap between processor bandwidth (words consquare root of the increase in memory size) for the balance

sumed per second) andf-chip bandwidth. This trend increases
fy at the expense df.
Figure2b shows the reduction infefhip trafic that occurs as

on-chip memory size grows per year—enabling greater reuse of

betweenf, and f, to remain unchanged. Historicallprocessor
speedup (even ignoring faster technology) has been greater than
the square root of the transistor count.

Table2 shows such derivations for the following algorithms:

operands. For a given program and input, the amount of computaTMM (tiled matrix multiply), Stencil (an algorithm operating on a

tion will remain constant, but the fedhip trafic will decrease.
This efect produces the oppositefeft of the technology curves
on Figure2a—f, grows at the expense f.

NxN matrix, which repeatedly updates each element with a
weighted sum of neighboring elements), FFT (e&point fast
Fourier transform), and Sort (nger sort). The right-most column

The vertical arrows in the graphs represent the quantity of eachdepicts the change in the ratio of computation to required memory

trend at a given yealf the arrow marked (1) increases faster than
that marked (2), processors will tend to become more memory
bandwidth-bound. Converselyf (2) increases faster than (1),
memory limitations will become less of an issue for a given pro-
gram.

For many algorithms the computation grows faster than do the
memory requirements. For example, the conventional algorithm of
matrix multiply (multiplying twoN x N matrices) has total mem-
ory requirements that grow &s(N2), while computation grows as
O (N3). Intuitively, then, we might expect the processing require-
ments eventually to overwhelm the bandwidth limitations, increas-
ing f, and decreasing, .

We performed an analysis similar to Hong and KangO
complexity analysis [21] to show that thigament is misleading.
Consider the conventional matrix multiplication, using a tiled
algorithm where tiles are of size, the on-chip memory is of size
S, the sides of both matrices axeelements, and « N. Previous
work showed [21, 29] that the tfiaf between the on- andfathip
memories is proportional taN3/L +N2. Assume that the proces-
sor is suficiently fast for the implemented algorithm to take full

traffic for each application, aS (on-chip memory size) increases
by a factor ofk. If this quantity grows slower than the processing
speed asS increases,f, will decline. \& believe that such
improvement in processing power is attainable, at least for several
more generations, and that gap (1) will continue to outpace gap (2)
in Figure2.

3 Measuring execution time decomposition

In this section we show that bandwidth stalls increase as pro-
cessors and memory hierarchies become more aggressive with
latency tolerance. Wmeasure and decompose the execution time
of six machines that have a range of latency-tolerance mechanisms
in the processor and memory hierarchy

3.1 Methodology

Our benchmarks consist of seven from the SPEC92 suite [42]
and seven from the SPEC95 suite [43f ¥élected the bench-
marks based on two factors: whether they provided a reasonable
range of data set sizes and types of computation, and whether their

Benchmarks | Number Data set Inputs SPEC92 SPEC95
SPEC92 refs (M) | sizes (MB) L1 cache 128KB unified 64KB 1, 64 KB D
Compress 21.9 0.41 | 1000000 byte file Direct-mapped
Dnasa2 181.0 0.18 | FFT, MxM=128x64x64 On-chip, 1-cycle access
- - L1/L2 bus 128 bits wide
Eqntott 221.1 1.63 int_pri_3.eqn bus/proc clock: 1/3 bus/proc clock: 1/4
Espresso 22.3 0.04 m p4 only L2 cache 1MB 2MB
Su2cor 163.4 1.53 in.short 4-way set assoc.
Swm 50.6 0.93 [180x180, 50 iter. Off-chip, 30 ns access
Tomcatv 104.2 3.67 | 256x256, 10 iter L2/memory bus — 61‘/‘3'3”5 Wl')de/ U
s/proc clock: s/proc clock:
SPEC95 usp | busfp
Memory 90 ns access
Applu 383.7 32.38 33x33x33 grid, 2 iter. Infinite banks
Hydro2D 263.7 8.71 test data set, 1 iter. . .
_y Table 4: Memory system simulation parameters
Li 471.3 0.12 test.lsp
Perl 1280.8 25.70 jumbl e. pl -
Experiment A | B | C D | E | F
Su2cor 533.8 22.53 test data set _ _ _
Swim 2674 1445 tost dat : Processor in-order issue out-of-order issue
w . : estdata se Branch pred. 8K [16K
Vortex 1180.3 19.87 test data set Cache blocking lockup-free
Table 3: Benchmark trace lengths and inputs L1/L2 blocks | 32/64 | 64/128 32/64
SPEC92 parameters / SPEC95 parameters
simulation times were tractable (or could be made so by reducing | Speed (MHz) 300/400 300/600
input parameters, without skewing the simulation results). RUU slots 16/64 64/128
The three integer SPEC92 programs that we used are Com-| L/S Q entries 8/32 32/64

press, Espresso, and Eqntott. The four floating-point-intensive
SPEC92 codes are Su2c8wm, ©mcaty and Dnasaz2 (two of the
Dnasa7 kernels—the two-dimensional FFT and the 4-way unrolled

matrix multiply). The three integer SPEC95 codes are Li, Per], and Superscalar processor_with a two-level branch predictor and two
Vortex. The four floating-point SPEC95 codes are Applu load/store units. ExperimenBsF assume a processor that uses an

Hydro2d, Swim, and Su2coMe present results for both the out-of-order is_sue mechanism baseql on the Registe_r Update Unit
SPEC92 and SPECO5 versions of Suzand Swm (Swim), since (RUU) [41], with support for speculative loads. Experiménesd

they are diflerent versions with diérent inputs. @ble3 lists the E are identical except thé uses the tagged prefetching scheme
inputs that we used to generate the traces for each benchmark. (@S do€s experimef).

also lists both the number of memory references that we simulated ~Table5 shows how many entries the branch prediction table
(in millions) and the data set sizes for each benchmark. holds, as well as the cache block sizes, processor speed, number of

RUU entries, and the number of entries in the load/store queue. W
assumed more aggressive processor parameters for the SPEC95
runs; they are shown inable5. Finally we assume that multi-
plexed data/address lines are used only on the main memory bus,
that all channels are bidirectional, that all memories return the crit-
ical word first, and that we have an infinitely-deep writdeyuf

Table 5: Processor simulation parameters

We used the SimpleScalar tool set [4] to measure the executio
time of simulated processors that use a MIPS-like instruction set.
SimpleScalar uses execution-driven simulation to measure execu
tion time accuratelyit includes simulation of instruction fetching
and system calls. ®/added a more detailed, multi-level memory
hierarchy simulator that includes bus contentiore Wét the
parameters for the simulated memory systenmainlé4. We made
the memory system slightly more aggressive for the SPEC95 run
by doubling the L2 cache size and splitting the L1 cache into sepa- Figure3 graphs execution time normalized to the processing
rate instruction and data caches. The bus-to-processor clock fretime (T,) of experimeniA, for each benchmark and experiment.
quency ratio is smaller for the SPEC95 runs because we simulaterhe bars are split into processing cycles, raw latency stall cycles,
faster processors for SPEC95—the absolute bus speeds are thghd limited bandwidth stall cycles. The number atop each bar rep-

s3.2 Decomposition results

same or faster for the SPEC95 runs. resents the fractions of the bars that are bandwidth stall cycles.
~ To measuref,, f,, f; (derived in Sectio@), we execute three ExperimentsD andE show reductions ifi, due to the out-of-
simulations for each experimento BbtainT,, we run a simula- order execution engine. The most aggressive out-of-order proces-

tion in which every load and store hits in the L1 cache (one cycle).sor) speeds up some benchmarks (Su2cor92, Swnu@acatv)

We measureT, by simulating a memory hierarchy assuming infi- but not others. The SPEC95 benchmarks show little reduction in

nitely-wide paths between adjacent levels of the hieraféhglly, execution time foF because the less-aggressive procesger (

we measurd by simulating the full memory system. that we used for the SPEC95 runs assumegerarase out-of-
The latency-tolerance techniques we evaluate here are the folorder window (64 RUU entries versus 16 for the SPEC92 runs).

lowing: increased cache line sizes, the use of lockup-free cachesThis lager base window captures much of the available lbd¥-

out-of-order execution with speculative loads, and prefetchimg. W ing little additional ILP for experimerit to capture.

implemented only one prefetching scheme: tagged prefetch [17]. Using lager block sizes has threefasits: increasing both

We assume that our blocking caches can still service hits whenatency and bandwidth stalls (Compress), reducing latency stalls

they are processing a miss. but increasing bandwidth stalls (Su2cor92), or reducing both
Table5 lists the six experiments (callédF) that we ran for (Swm92 and @mcatv). The performance impact correlates

each benchmark. Experimem$<C use an in-order issue, foway directly with the amount of spatial locality that the cache can

2.5

13
: I
E 20 BHos
< - f_B (limited biw stalls)
= 7
S 1.5 1 .30 08 _2 04
é . I 020 '0'102'2 oF . f_L (raw latency stalls)
0] .0001Q0 H I= H
5 - 000201 09 . f_P (compute time)
7} 1.0 []
N -00.0101 0710 .07 10
g ' 20 uf= 6 .6 H 15
S 0.5 [m 15 n
Z]
0.0-
ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
Compress Eqgntott Espresso SuZ2cor Swm Tomcatv
SPEC92 benchmarks
2.4 —
15 .15
: 0. .
£ 2.0 .19.19
pt 12 I I
9 1.6 T
= ,14 10 0 06 2
3 ul 0 01.00 B T i [T4 o
3 1.2 I 07.02 i 18.187 (1R
g = it
3 23
= 0.8+ | -5'5 .05.05.06 16 &
IS 10 []:.13.15 [.21 54
5 g == "
zZ 0.4+ -
0.0 X X
ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
Applu Hydro2d Li Perl Su2cor Swim Vortex
SPEC95 benchmarks
Figure 3. Effect of latency-reduction techniques
Exp. Compress Su2cor92 Tomcatv Applu Hydro2D Perl Swim95 Vortex
Stall fL fg fL fg fL fg fL fg fL fg fL fg fL fe fL fe
A 46.8 32 || 246 26 || 30.0 21|l 109 | 15.0 || 294 | 118 - || 25.2 6.0 || 40.6 | 14.9
F 256 | 31.0 35 | 16.3 51 | 184 4.0 11.0 || 20.6 | 24.8 ||37.0 | 16.0 31| 241 || 56.1 | 16.7

Table 6: Comparing latency and bandwidth stalls for experiments A and F

exploit for each program. Providing a lockup-free cacBe (4 Calculating effective pin bandwidth
changes performance very little for all benchmarks; the small

reductions inf_ are all nearly déet by corresponding increases in Section3 showed that stalls caused by irigignt memory
fg. Lamger reductions irf,_ are visible when the out-of-order core handwidth become significant as processors and memory hierar-
is added) to the non-blocking caches. chies attempt to tolerate memory latencies more aggressively

chip memory plays a crucial role in reducind-ciip trafic [18].

This reduction increases thefegitive pin bandwidth, as seen by
the processorWhen pin bandwidth limits performance, it is
important to quantify how much the on-chip memory increases
effective pin bandwidth by reducing tfigfacross the pins.

The most important point that Figusemakes, howevesup-
ports the thesis of this paper: as the latency-reduction technique
are applied, the bandwidth limitationg, | become more severe,
generally growing lager than the stalls due to raw latendy)(
Table6 shows how the relation betwegnandf, changes when
experimentF is compared to experimeAt The benchmarks we We therefore measure theaffic ratio of a range of caches,
list here are those that are not cache-bound (Espresso, Eqgntott, arwhich allows us to calculatefettive pin bandwidth for a given
Li). In experimentA, f_ is greater tharf; for every benchmark processorHill and Smith proposed using tfiafratios to evaluate
except Applu. The relation between latency and bandwidth stallsthe extent to which a cache reduces bui¢rff0]; we generalize
reverses when we simulate an aggressively latency-tolerant protheir metric to multiple on-chip levels of cache. For a lévelthe
cessorln experiment, f, is greater tham,_for every benchmark memory hierarchywe obtain the data tféf ratio (R,) by dividing
except for \drtex and Perl (and, is still significant for both, at the trafic between levelsandi + 1 (D,) by the trafic between lev-
16.7% and 16% of total execution time, respectively). elsi—1andi (D,_,):

R =D/D,_, 4) reaches 64KB. In contrast to Su2cBwm has roughly the same
. .) . traffic ratio from 16KB to 1MB cache sizes. Swm iterates over
For simple caches with a write-through poligy can be calcu- |arge arrays, with a reference pattern that contains little locality

lated dil’eCtly from the cache miSS- I’ate, the number of issued |Oadfand no small Working sets [36]0mcatv disp'ays similar behavior
and StOI’eS, a.nd the CaChe blOCk size. A Wl’lte-baCk CaChe decouplem generallRi ranges between 0.1 and 1.0 for Caches that are not

the direct correlation between miss rate anditradtio. Miss rate overly lage or small for a given program.

becomes a crude approximation of ficafatios for complicated Since the SPEC92 benchmarks’ data sets are ryg, lrese
memory hierarchies: a lockup-free cache may combine two missesregyits are conservative—many of these programs run out of the
with one response from memopyefetching increases tfiafmore caches and techniques designed to tolerate long latencies have less

than it reduces the miss rate, future instruction sets may explicitly offect.
move data between levels of the memory hierarahy support- The generation of machines that these benchmarks were
ing variable transfer sizes makes iffidifilt to measure cache traf- designed to test did not have on-chip cachegfahan 64KB. W
fic accurately with miss rate alone.) therefore calculated the arithmetic mean of Eyefor all caches

We use the tréit ratio at each level in the hierarchy to calcu- jth sizes greater than or equal to 64KB and less than the data set
late the dictive bandwidth to the next lower level of the hierar- gize of each benchmark. The mean across all benchmarks was
chy. By dividing the bandwidth from level+1 of the memory (51 \while this estimate cannot be applied to an individual pro-

hierarchy byR;, we obtain theeffective bandwidttfrom level gram/cache combination, it is fair to say that for these benchmarks,
i+1. By taking reasonably-sized on-chip caches reduce thictfedm the proces-
B. sor by about half.
= 2 (5)
. MR 4.3 Extrapolating pin bandwidth requirements
1
i=1 With our trafic ratios in hand, we now extrapolate pin growth
wherek is the number of levels of on-chip caches, &g is the and processor performance, to see what sort of packages we will
pin bandwidth for the processor in question, we ObE%W' which likely need a decade hence. Figliee shows the rate of growth of
is the efective pin bandwidth seen by the processor processor pins from 1978 to tod&ye see that the number of pins
) . on processors is increasing at about 16% per year (the dotted line
4.1 Simulation methodology on Figurela plots this function).

. . . . If we conservatively assume a growth rate of 60% in sustained
We used trace-driven simulation to measure memorfctiaf microprocessor performance—which has been less than the

various cache sizes and configurationg. W¥ed QPT to generate :
traces [19]. The traces contained data memory references but n'_growth rate for the past decade [2]—we can estimate future

instructions. QPT handles double-word memory accesses by con"trr]grr]zassezr'giSt;an;jnvé'd:ﬁa:eglrj]'_rcehrre%t;'fétsiggn:gn%;rnata%%tgt otfh?ese
secutively issuing the two adjacent single-word addresses. P ' P

We used the Dinerolll cache simulator [19] to perform our same, we see that in a decade the processor of 2006 will have a

- : . X package with two or three thousand pins. Even with thigelar
(ngéecglgmgrl,?;)ogza -irnhpeutz'r:ﬁgwr?r;;b#:g.d\/\tgecjgmsteb?rg;hmark‘package, the bandwidth requirememgs pinwill be a factor of 25
ratios by running Dinero, and dividing the total fiaby the prod- grel?ter than those of toq[aty be limited bv-ofio bandwidth. at
uct of the loads and stores issued and the load/store sl “T least ?f:?gssizr;b?lzﬁegoexigt (f?)rltr;]](lae roc}é-sosolfof%r(l)ovgl)' » @
traffic” in this case includes write-back tfiafbut not request traf- P . P ;)
fic (i.e., addresses). &\also flush the cache upon program comple- * Industry may manage to build cosfeetive, several-
tion, writing back all dirty data. ¥include these flushed write- thousand-pin packages clocked at several GHz.

; ; « Industry may instead build a cosfesftive package
backs in our trdfc measurements. Our results contain only data with ten thousand pins and clock it between 0.5 and 1

access, not instructions or TLB misses. GHz
4.2 M raffic rati * Improved on-chip trdit ratios increase fctive pin
easued traffic ratios bandwidth more than they do today—reducing the
Table7 shows tréffc ratio measurements for a range of single- need for such huge packages.

level, direct-mapped, 32-byte-block, write-allocate, write-back The third option listed above is the least cosityevaluate the
cache sizes. Wsaw similar results for caches with higher associa- potential for package size reduction—given a fixed quantity of on-
tivities. The “<<<” symbol indicates that the cache size in question chip memory—the next section experimentally measures an upper
is lamer than the benchmasktiata set size. 8\consider this area bound on how much fefctive pin bandwidths may be improved.
of the experiment space to be uninteresting, sikiegll always .) . .
approach 0 when the program runs out of the cache. 5 Improving effective pin bandwidth

WhenR, = 1.0, a cache generates exactly as much totdiaraf
to memory as would exist with no cache. It is well known [20] that
small caches can generate morefitahan a cacheless reference
stream; &ble7 demonstrates this result with 1-4KB caches for
more than half of our benchmarks. If a block is replaced quickly
after its first use—or if there is little spatial locality associated with
the access that caused the miss—the other six or seven word
loaded with the 32-byte block are superflgous. 5.1 Traffic inefficiency

Compress and Su2cor generate mordidrafith even a 64KB
cache than would a cacheless system. Compress repeatedl To evaluate what percentage of the possibléidregduction a
accesses a hash table, so its memory reference stream contains Icache achieves, we measuraffic inefficiency—defined as the
tle spatial locality (a layer block size will consequently waste ratio of trafic produced by the cache in question and thdidraf
bandwidth). Su2cor iterates over severafjéaarrays, several of produced by a perfectly-managed cache.Will call this “perfect
which conflict heavily in its main routine until the cache size memory” anMI'C, for minimal-traffic cache

We have shown that when a processor employs aggressive
latency tolerance, it may spend much time stalled because of lim-
ited memory bandwidth. In Sectidnwe quantified the amount by
which on-chip memory mitigates this performance loss. In this
section, we calculate a rough upper bound éectfe pin band-
width by simulating caches that minimizd-ohip trafic.

Trace 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB | 256KB | 512KB 1MB 2MB
Compress 3.03 1.96 1.76 1.59 1.46 1.29 1.10 0.82 0.43 <<< <<< <<
Dnasa2 3.40 2.87 1.34 0.94 0.73 0.62 0.29 0.05 << << <<< <<<
Egntott 1.04 0.67 0.55 0.47 0.43 0.39 0.34 0.27 0.18 0.11 0.06 <<<
Espresso 1.43 0.68 0.39 0.20 0.08 0.01 << << << << <<< <<<
Su2cor 7.44 7.32 6.88 6.11 4.75 2.99 1.43 0.82 0.61 0.29 0.13 <<<
Swm 5.83 5.41 3.94 1.79 0.63 0.60 0.59 0.58 0.58 0.56 <<< <<<
Tomcatv 2.96 291 2.54 1.48 0.87 0.75 0.74 0.73 0.72 0.71 0.33 0.24

Table 7: Traffic ratios for 32-byte block, direct-mapped caches

The trafic inefficiency for leveli in the memory hierarchys, , and therefore not worth the additional complexity of simulating
is therefore: the Horwitz algorithm. The tr&€ inefficiencies presented in the
D following section are therefore not minimal, but are nevertheless
G = B—C@—hez 1 (6) an aggressive bound.

MTC We assumed write-back caches because, foMI&h) a write-
where D, is the trafic generated by the cache at leyehnd back policy will always generate less frafthan a write-through
Dy1c is the trafic generated by aMTC of the same size and level policy. Theni n policy will make the write bypass the cache if its
as the cache. line will not be read before it is replacede\Wlso assumed a write-

A memory oganization with aG, = 1 is therefore perfectly validate policy [25], in which the cache block is allocated by over-
managed, in terms of memory fiafreduction. Lage values of5, writing it with the store data. This policy will always generate less
indicate a memory ganization that generates much morefizaf traffic than allocate-on-write because both NiC's transfer and
below it than is necessary address blocks are one word.

The trafic inefficiency of a cache allows us to compute an We used QPT and Dinero to measorg,,, for the cache traf-
upper bound on #&ctive pin bandwidth. This upper bound is only fic term of G. We wrote our own two-pass simulatevhich also
valid if the processor model remains unchanged; it is possible toused QPTgenerated traces, to perform thEC simulation and
change the memory reference stream and therefore further reducobtainD, ;.. The trafic measurements for both simulators include
traffic. the same components (e.g., write ficdfas did the trdic ratio

Let OE;, be the upper bound onfedtive pin bandwidth. experiments.

Using trafic ratios and trdic inefficiencies, we can compute this) o o
upper bound as follows: 5.3 Measuring traffic inefficiency

Table8 shows that there is a wide disparity of valuesGor
Byin |‘| G, across the benchmarkseVissumed direct-mapped, 32-byte block
- i=1 @) caches for these experiments. Four of the benchmarks typically
k have G greater than 20 and less than 100 (Compress, Egntott,
|_| R; Espresso, and Su2cor)—even fogkicaches. The other three—
i=1 Dnasa2, Swm, andomcatv—typically havés between 2 and 10.
A simpler expression for this bound is possible using thidraf These three benchmarks are all scientific codes that display little

ratio of theMI'C, but Equatior? uses terms for which we present temporal localitythus the reference stream contains less opportu-

measurements in this paper nity for optimization by a smarter cache. Thg&jump to & of
) .) 124 for Swm with a 1MB cache occurs becauseMh€ (being
5.2 Measuring a minimal-traffic memory fully associative) is able contain the entire data set in the cache.

Conversely conflicts between lge data structures make caches

If we consider only loads from main memorgeasuring an i associativities of less than four (inclusively) require a size of
MTCis straightforward. A cache (discounting stores) generates the, g to contain the entire data set

minimum possible tréit if it has the following characteristics: Overall, these numbers demonstrate that there is a significant

+ full associativity K opportunity to increase fettive pin bandwidth, between one and
* the transfer size is equal o the request-size, two orders of magnitude, by making better use of the on-chip
* it uses an optimal replacement poliend 2 memory We now turn to determining which factors contribute to
* suficiently low-priority loads can bypass the cache. 56 |age gaps. Figurd shows a log-log plot of tréi€ measure-
If we consider only reads, the optimal replacement policy iS ants (in KB) versus cache sizes, for three SPEC92 benchmarks.
Beladysmi n policy [3]. Themi n policy chooses the replacement . brevity we include only Compress, Egntott, and Swm, since

victim from a set (in this case the entire cache) by evicting the y,o a6 somewhat representative of the other benchmarks. The
cache block that the processor will reference furthest in the futuretop six lines in each graph represent 4-ve-associative caches
(or a block that the processor will never reference again). with block sizes from 4B to 128B. The thick dotted line represents

h Them n gg[igy isl not optimal fo(; w.rirt]e-balck'cachzg, siglcek a fully-associativeri n-replacement cache that uses a write-allo-
there is an additional cost associated with replacing a dirty block. -o¢a “\yrite-back policyThe thick solid line represents the write-

Horwitz et al. proposed an algorithm to manage optimal replace- ajigate, write-back'C that we used for all tréi€ inefficiency

ment in the presence of write-backs [22]e Whplemented only — c5;cjations. Lage gaps between a line and MEC line indicate
the m n algorithm, and not the optimal write-conscious Horwitz large trafic inefficiencies.

algorithm. W believe that the disparity between the two is small, There are three factors visible on Figdréhat contribute to

large gaps between cache auC traffic. The first is increased
1. We assume requests of feyte words for all experiments. block size. Compress has little spatial localgince most of its
2. A bypass occurs when a miss has a lower replacement priority than anyaccesses are to a hash table. Any increase in block size causes a
thing else in its set (which is in this case the entire cache). corresponding increase in tiiaf The same éct is visible for

Trace 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB | 256KB | 512KB 1MB 2MB
Compress 25.3 18.4 18.7 19.5 21.9 25.5 29.2 30.7 325 << << <<
Dnasa2 6.2 6.6 6.2 4.7 4.1 4.6 7.0 10.0 <<< << << <<
Eqntott 56.3 38.7 34.5 35.8 49.7 94.4 100.5 94.1 72.7 47.7 28.6 <<
Espresso 18.2 18.8 26.3 40.4 82.2 28.9 << <<< <<< << <<< <<<
Su2cor 14.1 14.5 15.1 16.4 17.2 219 20.1 25.7 40.3 28.7 35.8 <<<
swm 22.7 234 17.2 7.9 2.8 2.7 2.8 3.0 35 5.4 1241 74.8
Tomcatv 6.4 6.6 6.2 3.9 2.3 2.0 2.0 2.0 2.1 2.4 1.6 3.7

Table 8: Traffic inefficiencies for 32-byte block, direct-mapped caches

1077 — (a) Compress 1078 — (b) Eqgntott
1076 — 1077 -
8 10754 8 10764
Q Q
T 10M -] T 1075
[[
1073 107N —
1072 T T T T T T 1 1073
64 256 1K 4K 16K 64K 256K 1M 6
Cache and MTC size (bytes)
1077 —
1076 —
— - ——-—=-— 128Bblocks -
—mm— s 648 blocks 8 10754
—— —— —— —— 32Bblocks g
______ 16B blocks w§ 10M -
"""""" 8B blocks =
—— 4Bhblocks
"""""" MTC with write-allocate 1073+
MTC with write-validate
1072 T T T T T T T T

64 256 1K 4K 16K 64K 256K 1M 4M
Cache and MTC size (bytes)

Figure 4. T otal traffic generated by different cache and MTC sizes

Eqgntott (to a lesser extent), and for Swm when the cache sizes arcolumns list the replacement polisgt associativityblock size (in
smaller than about 32KB. Swm shows spatial locality fogdar bytes), and write policy for each experimente \Weasured the
caches because the extra words igdablocks are used when the traffic effects of block size for both LRU- and n-replacement
block is not quickly replaced—when a small working set fits in the caches (experiments Il and 1V). All experiments (except for Exp2
cache. The second factor is associatjiwipich causes the ige in experiment V) assumed a write-allocate, write-back policy

gap between caches and MEC for Swm at 1MB. The third factor
contributing much to the cachlC traffic gap is the write-vali-
date policy which causes the majority of the gap for Eqgntott.

These factors are not independent. Our complete set of results
showed that improving one factor tends to diminish the magnitude
o . L . . of anotherparticularly if the factors are lge. What is most signif-

In addition to block size, associativignd write-validate, there -4t ahout @ible9 is the lack of any one factor that dominates the
are two factors that enable affC to gen_erate less tfaf than _others, across all benchmarks. The factor that makes tpestar
caches. These factors are cache bypassing and replacement polit.gnsistent contribution to trid reduction, not surprisinglyis
(mi n vs. LRU). o better understand which of these factors are e qyction of block size. Our results do not consider requefitiraf

significant, we isolate and list four of these factorsabl&9. We which increases with smaller block sizes, and thus may be biased
did not isolate cache bypassing as a factor; howdysonet al. in favor of smaller blocks.

recently showed [45] that, for small caches, greater selectivity

about what is cached can significantly reduce memorfictraf Using the mi n replacement policy has surprisingly small
Table9 shows how each factor changgdor one cache size per effect. This is because a better replacement policy benefits only
benchmark. W set all cache sizes to 64KB except for Espresso, to codes that have an intermediate amount of loc&iaghe replace-
which we assigned a cache size of 16KB (because of its small datiments occur infrequently for codes that havdiceht locality—

set). The values in the table show the change ifictia&fficiency reducing the benefits of better replacement policies. Codes that
as each factor is toggledafle10 lists the pairs of experiments have little temporal locality (such as Swm) hardly benefit from a
(Expl and Exp2) run to isolate individual factors. The experiment better replacement policyrhese results show that most bench-

Benchmark Compress Dnasa7 Eqntott Espresso Su2cor Swm Tomcatv
Cache size 64KB 64KB 64KB 16KB 64KB 64KB 64KB
Associativity 1.8 -3.8 0.5 73.0 8.4 0.1 1.6
Replacement 12.0 8.4 31.0 3.9 4.6 0.3 0
Blocksize (cache) 25.0 2.7 47.0 68.0 14.0 0.3 1.3
Blocksize (MTC) 14.0 0.4 37.0 35 5.0 0.3 0.2
Write validate 1.2 1.2 31.0 1.0 1.2 1.3 0.7

Table 9: Inefficiency gap for different optimizations

. . . Another short-term solution increasindestive of-chip band-
Repl. & write policy , assoc., blk. size
width is compression. Researchers have proposed and/or imple-
Factor Expl Exp2 mented schemes to use compression for data [9], addresses [12],
I, Associativity LRU. 1a 328, WA | LRU. fa, 328, WA and code [10]. All of these schemes increagecéfe bandwidth
to memory at the expense of some extra hardware on the CPU (and
II. Replacement LRU, fa, 32B, WA | MIN, fa, 32B, WA at memoryin the case of the data and address compression).
Ill. Blk. size (cache) | LRU, 1a, 32B, WA | LRU, 1a, 4B, WA A more radical technique than compression, which increases
IV. Blk. size (MTC) MIN, fa, 32B, WA MIN, fa, 4B, WA effective of-chip bandwidth, is to begin building computational
V. Write validate MIN, fa, 4B, WA MIN, fa, 4B, WV ability into the memory system. The processor would then be able
- to issue primitives more powerful than simple reads or writes, per-
Table 10: Experimental parameters for T able 9 haps even method invocations with the appropriafenaents. The

memory system would perform the computation locally and return
marks can greatly reduce their total fimfo memory but require the result. The idea of “smart memory” is certainly not,nawwe
different sets of cache parameters per benchmark to do so. may be entering an era when it becomes cdetiife.

The wide variance in performance based on block size—for A large percentage of todaytypical processor chip is already
systems which tolerate latency and are at least partially limited bydevoted to on-chip memaryvhen enough transistors are avail-
insufficient memory bandwidth—indicates that machines of the able, a greater capacity on-chip will be more important than hav-
future will likely have programmable mechanisms to support vari- ing all of the on-chip memory be fast memoBRAMs may
able block sizes. Allowing software-controlled transfer sizes will initially appear on multi-chip modules, but will eventually also be
permit each application to optimize its fiafbased on its refer- ~ incorporated onto the CPU die itself, as new manufacturing pro-
ence patterns—Ige transfers to minimize request overhead if Cesses are developede\are currently evaluating the design space
there is sufcient spatial localityand small transfers in the absence for mixing DRAM and SRAM on-chip, determining the best way
of spatial locality This philosophy can be extended to the other t0 exploit the extremely high bandwidths attainable from on-chip
cache parameters, and may become necessary as good use of JARAM banks.

chip memory becomes essential to sustaining reasonable perfor- Looking further into the future, we envision a point at which
mance. off-chip communication is so expensive that all of the system

memory resides on the processor chip (or module). If a system
6 Future solutionsand summary designer wishes to provide more memory than is available on-

chip, another of these homogenous, processor/memory modules is

Both limited of-chip bandwidth and growing relative memory ~added. Gffchip accesses thus simply become communication with

access latencies have the potential to seriously degrade prograr@nother processoand accesses to remote data have more in com-
performance. Aggressive latency-tolerance techniques must benon with a page fault than with a cache miss. Whether this point is
implemented with discretion, as they have the potential to worsenféached by migrating computational ability into the DRAM sys-
performance if memory bandwidth, not untolerated access laten-tem, or by migrating DRAM onto the processor (or both), the end
cies, is the primary bottleneck for a given program. The potential fesult is the same. Figuseshows an example of such a system, in
to overcompensate for latency tolerance will be particularly acute Which there is no “dumb” main memomnd cache banks are dis-

with future processors that rely heavily on speculation to achieve fributed among the on-chip DRAM bankseWelieve that this is
high performance. how future systems will be designed.

We are currently investigating an execution model for such sys-
tems, for both uniprocessor and multiprocessor workloads. Given
the limited on-chip memorymultiprocessors are clearly the
method of choice for exploiting programs with obvious parallel-
ism. For less-easily parallelized programs, sophisticated hybrid
techniques employing some form of data-parallelism, or possibly
extensions to ESP as proposed for the Massive Memory Machine
&15], might provide competitive performance.

A range of techniques for dealing with the growing expense of
off-chip accesses exist—above and beyond the brute force, expen
sive solution of buying more bandwidth to the memory system.
We have shown that the potential exists to use on-chip memory:.
much more déctively, greatly reducing the number of requests
that must be made fe¢hip. Not surprisinglyno single technique
emepged for making better use of the on-chip memadaityis fact
suggests that future designers should consider on-chip memo
systems that are more flexible, allowing the programmer or com-g 1 Related work
piler to tune the on-chip memory system parameters (such as block
size). A more radical extension to the on-chip memory systems is A large volume of work on caches appears in the literature,
to allow the compiler to manage some data allocation and move-though most has focused on reduction in latemgyoring the
ment. For example, the kinds of analyses performed fectafe memory bandwidth constraints. Smélclassic survey [37] delin-
register allocation might be readily extended to include other vari- eated the fundamental issues concerning caches, including the
ables that are stored in memokife are currently investigating importance of memory bandwidth. Goodman recognized the
both how novel hardware can be controlled by software, and howimportance of a simple memory hierarchy for reducing memory
software might take advantage of this opportunity bandwidth, particularly in a multiprocessor environment [18]. Hill

chip 0 chip 1

Board-level interconnect

|
-]|_
I (I

chip 3

chip 2

sured this bound for a range of programs and caches, showing that
effective pin bandwidth could in theory be increased by up to two
orders of magnitude—through better management of on-chip
memory We decomposed this gap into individual factors, and used
these results to evaluate one and propose several schemes for
improving trafic ratios, thereby mitigating pin bandwidth limita-

T tions. Finally we proposed a number of solutions that range from
the neaterm to the long-term. &/ hypothesize that all system
memory will eventually be coupled with the processor on the die,
enabling levels of performance far beyond what we can achieve
today

Acknowledgments

We thank the many people who gave us insightful comments

on both this work and this paper: Mark Hill, Guri Sohi, David

- Processor logic D SRAM cache . DRAM bank

Wood, Kazuaki Murakami, Alvy Lebeck, Ross Johnson, Mark

Callaghan, and Stefanos Kaxirase \&so thank ddd Austin for

Figure 5. A unified processor/DRAM system

his valuable assistance with the simulation environment. Finally
we thank the anonymous referees for their extremely detailed and

helpful reviews.

and Smith subsequently measured the trafiedoétween miss
ratio and trdfic ratio by varying block and subblock sizes [20].
McNiven and Davidson looked at reducing fimbetween adja-
cent levels of the memory hierarchy [31]. Sugumar and Abraham([1]
developed an &tient method for simulating caches using tfe

policy [44]. More recentlyTyson et alstudied ways to bypass the
cache with infrequently-referenced data, thereby reducing miss
rates [45]. Huang and Shen studied minimal required bandwidths(2]
for current processors [23]. They considered only program-gener-
ated values, howevewithout quantifying actual program address [3]
behavior]

6.2 Summary

This paper has shown that aggressive implementations of
latency-tolerance techniques in future processors will expose
memory bandwidth, particularly pin bandwidth, as a severe perfor-
mance bottleneck. ®@/first surveyed a wide range of these tech-
nigues and qualitatively showed that each one exacerbategg)
bandwidth limitations, either directly or indirectie also quali-
tatively analyzed technology trends, showing that future technol-
ogy is likely to aggravate the bottleneck of the chip boundary
permit quantification of future bandwidth limitations, we decom- [7]
posed execution time into processing cycles, raw memory latency
stall cycles, and limited bandwidth stall cycles. Using this decom-
position, we measured how bandwidth stalls increase, as proces
sors tolerate memory latencies more aggressivElyr our (8l
applications running on our most aggressive processorsaw
that the stall cycles due to bandwidth exceeded latency stall cycles
in all cases but two. Excluding those benchmarks that fit comfort-
ably in the cache, the stall cycles due to bandwidth limitations
ranged from 1% to 31% of the programs’ total execution time.
These measurements have significant implications for the design:
of future processors. They also call into question the validity of
studies that assume a perfect memory system.

Given the increased importance of pin bandwidth as a precious
resource, we introduced the notiorefflective pin bandwidtkthe
pin bandwidth as seen by the processor when the on-chip cache
are considered. @/ usedtraffic ratios to compute déctive pin
bandwidth, and measured these ratios for a range of programs an
cache sizes. Wfound that comparatively & caches eliminated
about half of the processgenerated trét: for our small bench-
marks. V¢ then introduced the notion wéffic inefficiencywhich [12]
places an upper bound on the amount by which caches can reduc
traffic. This bound enabled us to compute the maximal theoretical
effective pin bandwidth for a given cache and workload. méa-

(5]

[9]

[10]

[11]

References

SantoshG. Abraham, RabiA. Sugumar B.R. Rau, and Rajiv
Gupta. Predictability of Load/Store Instruction LatenciesPio-
ceedings of the 26th International Symposium onddichitectue,
pages 139-152, December 1993.

Forest Baskett. Keynote addredsternational Symposium on
Shaed Memory MultippcessingApril 1991.

L. A. Belady A Study of Replacement Algorithms for artdal-
Storage ComputelBM Systems Journab(2):78-101, 1966.

Doug Buger and ©ddM. Austin. Evaluating Future Microproces-
sors: the SimpleScalao®l Set. Echnical Report 1308, Computer
Sciences Department, University ofdtbnsin, Madison, WI, April
1996.

DouglasC. Bumger, Alain Ké&gi, and JameR. Goodman. The
Declining Efectiveness of Dynamic Caching for General-Purpose
Microprocessors. dchnical Report 1261, Computer Sciences
Department, University of Wconsin, Madison, WI, January 1995.
David Callahan, Ken Kennedyand Allan Porterfield. Software
Prefetching. InProceedings of the Fourth Symposium onhKec-
tural Support for Pogramming Languages and Operating Systems
pages 40-52, April 1991.

Tien-Fu Chen and Jean-Loup BaarPerformance Study of Soft-
ware and Hardware Data Prefetching Scheme®rdiceedings of
the 21st Annual International Symposium on Computehifec-
ture, pages 223-232, April 1994.

William Y. Chen, ScotA. Mahlke, Pohu& Chang, and h mei

W. Hwu. Data Access Microarchitectures for Superscalar Proces-
sors with CompileAssisted Data Prefetching. Rroceedings of the
24th International Symposium on Miarchitectue, pages 69-73,
November 1991.

Daniel Citron and Larry Rudolph. Creating aid& Bus Using
Caching Echniques. IfProceedings of the First International Sym-
posium on High-Performance Computechitectue, pages 90-99,
January 1995.

RobertP. Colwell, Roberf. Nix, JohnJ. O’'Donnell, DavidB. Pap-
worth, and Pauk. Rodman. A VLIW Architecture for aréce
Scheduling Compilerin Proceedings of the Second Symposium on
Architectural Support for Rigramming Languages and Operating
Systemspages 180-192, October 1987.

Stefanos Damianakis, Kai Li, and Anne Rogers. An Analysis of a
Combined Hardware-Software Mechanism for Speculative Loads.
Technical Report TR-455-94, Princeton UniversRyinceton, NJ,
April 1994.

M. Farrens and APark. Dynamic Base Register Caching: échi-
nigue for Reducing Address Busidth. Proceedings of the 18th
Annual International Symposium on Computerchitectue,
19(3):128-137, May 1991.

[13]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

John WC. Fu and Janal. Patel. Data Prefetching in Multiproces-
sor \ector Cache Memories. IRroceedings of the 18th Annual
International Symposium on Computerchitectue, pages 5463,
May 1991.

John WC. Fu, JanakK. Patel, and Boh. Janssens. Stride Directed
Prefetching in Scalar Processbir Proceedings of the 25th Interna-
tional Symposium on Mioarchitectue, pages 102-1D, December
1992.

Hector Garcia-Molina, Richardl Lipton, and Jacoboaldes. A
Massive Memory MachindEEE Tansactions on Computere-
33(5):391-399, May 1984.

Kourosh Gharachorloo, Anoop Gupta, and John Hennégding
Memory Latency using Dynamic Scheduling in Shared-Memory
Multiprocessors. IrProceedings of the 19th Annual International
Symposium on Computerdhitectue, pages 22—-33, May 1992.

J.D. Gindele. Bufer Block Prefetching MethodBM Tech. Disclo-
sure Bull, 20(2):696-697, July 1977.

JameR. Goodman. Using Cache Memorp Reduce Processor
Memory Traffic. In Proceedings of the 10th Annual International
Symposium on Computerdhitectue, pages 124-131, June 1983.

Mark D. Hill, JamesR. Larus, AlvinR. Lebeck, MadhusudharalF
luri, and DavidA. Wood. Wisconsin Architectural Researctodl
Set.Computer Achitectue News21(4):8-10, August 1993.

Mark D. Hill and AlanJay Smith. Experimental Evaluation of On-
Chip Microprocessor Cache Memories.Rroceedings of thelth
Annual International Symposium on Computechitectue, pages
158-166, June 1984.

Jia-Wei Hong and HT. Kung. I/O Complexity: the Red-Blue Peb-
ble Game. InProceedings of the 13th Symposium on Theory of
Computing pages 326—333, May 1981.

L. P Horwitz, R.M. Karp, R.E. Miller, and A.Winograd. Index
Register Allocation.Journal of the ACM 13(1):43-61, January
1966.

AndrewS. Huang and Johh Shen. A Limit Study of Memory
Requirements Using alue Reuse Profiles. IRroceedings of the
28th International Symposium on Miarchitectue, pages 71-81,
December 1995.

NormanP. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and Prefetch
Buffers. InProceedings of the 17th Annual International Sympo-
sium on Computer &hitectue, pages 364-373, May 1990.

NormanP. Jouppi. Cache Wite Policies and Performance. Rro-
ceedings of the 20th Annual International Symposium on Computer
Architectue, pages 191-201, May 1993.

AlexanderC. Klaiber and Henr. Levy. An Architecture for Soft-

ware-Controlled Data Prefetching. IRroceedings of the 18th
Annual International Symposium on Computechitectue, pages

43-53, May 1991.

L. I. Kontothanassis, RA. SugumarG.J. Faanes, E. Smith, and
M. L. Scott. Cache Performance iedfor Supercomputers. Rro-
ceedings of Supeomputing '94 pages 255—-264, November 1994.

David Kroft. Lockup-Free Instruction Fetch/Prefetch Cachga®ir
zation. InProceedings of the 8th Annual International Symposium
on Computer Athitectue, pages 81-87, May 1981.

MonicaS. Lam, EdwardE. Rothbeg, and MichaeE. Wolf. The
Cache Performance and Optimizations of Blocked Algorithms. In
Proceedings of the Fourth Symposium oohi&ectural Support for
Programming Languages and Operating Systepages 63-74,
April 1991.

James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A
Multithreading Bchnique Argeting Multiprocessors and dkksta-
tions. InProceedings of the 6th Symposium onhiectural Sup-
port for Pmogramming Languages and Operating Systems
volume6, pages 308-318, October 1994.

Geofrey D. McNiven and Edwar®. Davidson. Analysis for Mem-
ory Referencing Behavior For Design of Local MemoriesPio-
ceedings of the 15th Annual International Symposium on Computer
Architectue, pages 56-63, May 1988.

ToddC. Mowry, MonicaS. Lam, and Anoop Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetching.Rroceedings

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

of the Fifth Symposium on dhitectural Support for Rigramming
Languages and Operating Systempages 62—73, October 1992.
Subbarao Palacharla and IR.Kessler Evaluating Stream Bférs

as a Secondary Cache ReplacementPioceedings of the 21st
Annual International Symposium on Computechitectue, pages
24-33, April 1994.

Betty Prince. Memory in the fast lanBEE Spectrum31(2):38—41,
February 1994.

Anne Rogers and Kai Li. Software Support for Speculative Loads.
In Proceedings of the Fifth Symposium oohiectural Support for
Programming Languages and Operating Systepages 38-50,
October 1992.

Edward Rothbey, JaswindePal Singh, and Anoop Gupta.oriing
Sets, Cache Sizes, and Node Granularity Issues fael3cale
Multiprocessors. IrProceedings of the 20th Annual International
Symposium on Computerdhitectue, pages 14-25, June 1993.
Alan Jay Smith. Cache MemorieGomputing Surveysl4(3):473—
530, September 1982.

BurtonJ. Smith. Architecture and Applications of the HEP Multi-
processor Computer System. Real-Tme Signal Pocessing IV
pages 241-248, 1981.

Guri Sohi, ScotE. Breach, and.N. Vijaykumar Multiscalar Pro-
cessors. IrProceedings of the 22nd Annual International Sympo-
sium on Computer &hitectue, pages 414-425, June 1995.

Guri Sohi and Manoj Franklin. High-Performance Data Memory
Systems for Superscalar ProcessorsPioceedings of the Fourth
Symposium on A&hitectural Support for Rigramming Languages
and Operating Systemgages 53-62, April 1991.

GurindarS. Sohi. Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined ComputedEsEE
Transactions on Computer89(3):349-359, March 1990.

Standard Performance Evaluation CorporatiSREC Newsletter
Fairfax, Mrginia, December 1991.

Standard Performance Evaluation CorporatiSREC Newsletter
Fairfax, Mrginia, September 1995.

RabinA. Sugumar and Santosh Abraham. Hfcient Simulation of
Caches under Optimal Replacement with Applications to Miss
Characterization. IfProceedings of the 1993 ACM SIGMETRICS
Confeence on Measements and Modeling of Computer Systems
pages 24-35, May 1993.

Gary Tyson, Matthew Farrens, John Matthews, and Andrew Plesz-
kun. A New Approach to Cache Managemenftaceedings of the
28th International Symposium on Mierchitectue, pages 93-103,
December 1995.

