Recent Extensionsto the SimpleScalar Tool Suite

Doug Burger* Todd M. Austin! Stephen W. Kecklet

Abstract The most abstract of the simulators asar{fast and sim-
safe, which are both simply functional architectural simula-

Over the past eight years, the SimpleScalar Tool suite h¥S. They execute the semantics of an instruction set, amd ¢
become the most widely used set of simulation tools in th@us simulate binaries, but have no notion of simulated time
computer architecture research community. The authors ha®nd do not model any underlying hardware. In a sense, they
recently completed an NSF-funded project to extend and i€ instruction-set emulators. The difference betweeiwbe
prove the SimpleScalar tools. In this paper, we describe tf@ thatsim-safe performs various safety checks (e.g., align-
extensions and improvements to the tools, which include tHBeNt on loads) at the cost of some speed, whesieadast
capability to simulate more instruction sets, graphicapmt dispenses with the checks to run as fast as possible.

for performance viewing, and more simulators that model di
ferent types of machines, including embedded systems, IS
specific systems, systems with operating systems, and-mu
processing systems.

he next more complex set of simulators gather microarchi-

2ctural statistics, but still do not model tirper se. The two
most widely used argm-cache andsim-bpred, which use the
instruction-set emulators to generate an on-the-fly ietisn
trace, which is then fed into cache and branch predictionrmod
els, respectively. A common misconception about the Sim-
1 Introduction pleScalar simulators is that they are execution-drivergrwh
in fact all of them are dynamic trace driven. They use the

The SimpleScalar Tools [3] are currently one of the modfStruction-set emulators to generate a trace, which isfee
widely used tool sets in the computer architecture researlfff© various microarchitectural modelers (ranging fromsi
community. First released in 1996, their use has ele cachg models all the way up to fL'JII-bIown'tlmmg models
panded widely, benefiting from the open-source release gf an entire processor). No traces written to disk or reanjfro
the tools [1]. The tools are used for approximately half offisk, as they are always generated on the fly for each simula-
the papers in current-day architecture conferences (&mex t
ple, SimpleScalar was used in 58% of the papers appearingr_i
the 29th International Symposium on Computer Architegture
and have been used to publish well over 500 papers during t
past four years. The tools are free to academic researchersb

on.

|nnally, the sm-outorder simulator provides a detailed tim-
ng model of an out-of-order microprocessor, based on Sohi’
égister Update Unit, or RUU [8]. Due to the difficulty of
uilding out-of-order processor simulators, many resesns
SimpleScalar was never intended as a complete, “out modify this simulator to eyaluatg their idgas. This simottat
the box” software package to be used as-is by researchdfsd00d for uniprocessor simulations, butis less ideal foFm
Rather, it is a simulatiorenvironment, with many features tlprocessor5|mulat|ons, WhICh must.be truly execuhomed.n
useful for constructing simulators. These features inelud® Order the communication operations correctly. The issue
a simulated target debugger, /0 checkpoints for repeatafidth of sm-outorder can be adjusted, as can the issue re-
simulation from any point in a simulated program’s execuStrictions (i.e., in-order vs. out-of-order issue). Thtgs
tion, a pipeline viewer, configuration files, toolchainstedr SiNgle simulator can approximate a range of systems, from a
to the PISA architecturé, a statistics registration and han-Single-issue in-order scalar core to an aggressive oot
dling package, and a command-line argument handling pack-Vide superscalar core.

age. While these tools have been beneficial to the community,

Undoubtedly, one of the most popular features of the toofbiere were many possible. ext_ensions that Would_benefit re-
package is the set of architectural simulators that accompasearchers but that the maintainers of the tools Q|d not have
the tools, which researchers can use and modify to simuld{e resources to add. In 1999, the National Science Foun-
new ideas, so long as those ideas are compatible with at leg&fion funded a grant to the authors of this paper to extend

one of the simulators. The simulators model targets from € utility, functionality, and portability of the Simpleslar
very abstract level to a fairly detailed timing level. tools. The grant came from NSF's CADRE program (CISE

Advanced and Distributed Resources for Experimentation),
1Dept. of EECS, University of Michigan. and it ran from 1999-2003. The grant was split across the
2Dept. of Computer Sciences, The University of Texas at Austi authors’ groups at the University of Michigan and The Uni-

1PISA stands for Portable Instruction Set Architecture ldsely resem- versity of Texas at Austin. The goal was to make a number of
bles MIPS with a few additions.

aAuuiliviio LU UIT LlUUIO Uiat VWuUuUlIU HHIaACT Uicihiinuilc uotciul tu uic v Il adiiival vVIiciwol o
research community. Below, we describe the major additions
to the tools that were funded under this program. Given the quantity of in-flight state in modern processaiis, i
difficult to reason about the sources of bottlenecks in the mi
croarchitecture. This difficulty is most pronounced in an ed
.) ucational setting, when trying to explain the concept ofreve
2 Instruction Set Extensions lapped operations. Consequently, we developed two separat
visualization engines that address this challenge atrdiife
SimpleScalar version 3.0 supported two instruction-smitfr levels.
ends. The first is named PISA (for Portable Instruction Set
Architecture). It is a close derivative of MIPS, with a few-ad 3.1 ss-viz
dressing modes removed, and extended to 64 bits to free sgviz is a high-level microarchitectural pipeline vi-
space for instruction additions. Sim-outorder can model thsualizer, and is available with documentation at
instructions as consuming 32 or 64 bits in memory, to approxww.cs.utexas.edu/users/cart/code/ss-viztgz. ss-viz allows
imate how a conventional RISC ISA would behave while nothe user to view on-line architectural and microarchitesdtu
sacrificing the flexibility in the larger instructions. state as the program runs, as well as dynamically generated
graphs that measure quantities like instructions per ¢ycle
The second supported ISA is the Alpha AXP instructiotache miss rates, etc., as a function of time. We have
set. The advantage to using Alpha is that optimized bingsed this tool in a junior-level undergraduate architestur

ries can be generated via Alpha compilers, and the perfaitass, to further their understanding of the dynamic flow of
mance of simulated Alpha binaries on modified versions Ghicroarchitectural state.

sim-outorder can be compared to actual performance of the
same binaries running on an Alpha workstation. Unfortuz > Graphical Pipeline Viewer

nately, since future processors implementing the Alpha ifrhe other graphical viewer that we developed is GPV, the

struction set have been discontinued, this capability B@5b Gyaphical Pipeline Viewer for SimpleScalar [9]. GPV per-

decreasing in importance. For the investment people haygts users to visualize the performance of programs on arbi-

made in porting and modifying the tool set to be long-livedy-ary pipeline configurations. The tool is based on the Prl/

it is important for the tools to emulate a subset of currentlyaphical programming language, permitting the tools to ru

active instruction §ets. Thus, asapart of this work, we ddde), most popular platforms. GPV can display instruction

two major and active ISAs to the SimpleScalar framework: pipelining, resource usage, and memory access patteras. Re
searchers at University of Michigan have successfully used

2.1 ThePowerPC ISA GPV to optimize cryptographic kernels for the Alpha 21264

One of the major remaining instruction sets, the PowerPmicroarchitecture, and researchers elsewhere have imcorp

ISA is used in many products, from embedded systems to Apated GPV into their computer architecture courses.

ple desktop computers. We have implemented the complete

PowerPC user-level instruction set and released it to exter

nal researchers [7]. Like the other instruction sets, itststa 4 New Simulators

of a definition file that implements the ISA semantics, tools

for unpacking and loading PowerPC binaries, as well as ifhe simulator development features (such as statistibeaea
terfaces to the functional and timing simulators. Since thgnq /0 trace checkpointing), the instruction set frontend
floating-point support (with the condition registers) iper- ang the graphical visualizers are all “support” tools treat f
sive to simulate, we provided for both native, direct ex&ut ijitate custom development of new simulators. However,
when simulating PowerPC binaries on a PowerPC host, ag,ce developing complete timing simulators is prohileitj
well as slower simulation when simulating PowerPC binarieéxpensive for many researchers, and the timing simulagers s

on a different type of architecture. such wide use, it is important to keep them up to date. Conse-
guently, we have augmented the old simulators and provided
2.2 The ARM ISA new simulators and simulation environments, described be-

ARM is extensively used in low-end, embedded systems. Wew.

have added functional simulation for the ARM 7 instruction

set architecture, as well as the Floating Point Acceleratdrl MASE

(FPA) extensions. In addition to the ARM ISA emulation,The first major simulation extension to the tools that we
we have added some timing simulator support to accompadgscribe is MASE, the MicroArchitectural Simulation En-
this ISA. This supportincludes a validated SA-1 pipelineeco gine [6]. MASE is a novel performance modeling infras-
model, which permits researchers to simulate many populaucture for SimpleScalar that addresses a number of defi-
embedded system targets, such at Intel's StrongARM SAiencies in the current detailed performance modeling sim-
1110 processor. We have also included a prototype of Intekdator sm-outorder). The new modeling infrastructure per-
Xscale ARM processor in the distribution. mits arbitrary mispeculation/recovery suitable for asyof

HUVC] opTluiduull rhculialiioiiio. 1l auudiltull, uic 1HTVY olitivlianal 111ivuct ULl TAIoUTTY osutuLiluico 1l 1Hvic ucidll ao Vvl
tion infrastructure accurately models microarchitedto@ as adding new structures not modeled in the original re-
eration through RTL-level (micro)functional simulatiofhis lease [2]. The structures modeled in more detail include the
support permits more accurate modeling of mispeculation adRAM subsystem, which includes DRDRAM and SDRAM
data-dependent optimizations. In addition, this methoglpl models, as well as more detailed simulation of bus traffic
permits accurate modeling of multiprocessor race conuitio and contention. The code also supports an arbitrary topol-
Finally, the new modeling infrastructure incorporates &n e ogy of caches, buses, and memories to be constructed from
ecution checker component that simplifies the validatiash arcommand-line arguments.

debugging of complex microarchitectural mechanisms. This

new environment is already being used successfully by achhe new structures include finite miss status holding regsst

demic researchers. (MSHRs), permitting the user to specify how many misses
may be overlapped at each level of the memory hierarchy. In
4.2 Sim-Alpha addition, these are combining MSHRs; the number of com-

One of the advantages of performance simulators susinas bined requc_asts for a .single cache I?ne is also. user-definable

outorder is that they model the microarchitecture at a level N€ €xtensions also implement a simple multi-level page ta-

low enough to permit exploration of new microarchitecturaP'®. entries for which can be cached. The user can specify

innovations, but at a level high enough that makes it retgtiv Whether caches are virtually or physically indexed or tagge

easy for researchers to extend the simulators. The sirantati @d can have TLB accesses go in parallel with cache accesses

are also relatively fast (tens to hundreds of thousands-of iff Necessary. The code supports hardware traversal of e pa

structions per second), compared to detailed chip-levill, R @Ple upon a TLB miss or page fault.

or circuit simulations. However, modeling at this level doe

introduce some error compared to a simulator that precisedy4 Operating System and Multiprocessor Simulation

models a chip. Many benchmark suites such as SPECCPU2000 spend little
time in the operating system, consequently restrictingiam

For those researchers that wanted a more detailed (but méig to user-level only (as SimpleScalar does) adds litilere

difficult to extend) simulator, we built a simulator (crealy However, to simulate more OS-intensive workloads, such as

called 'sim-alpha’) modeled on an Alpha 21264 process@ommercial transaction processing, web serving, datamase

running in a real workstation (a Compaq DS-10L) [5]. Becesses, and many other multiprocessor workloads, futeays

cause it is modeled on an actual chip, it is possible to quagimulation is necessary to obtain accurate results.
tify the error the simulator incurs on benchmarks compared

to those workloads running on an actual machine. To provide full-system simulation capability using Sim-
pleScalar, we have merged an older version of the IBM Austin
The validation against a real Alpha workstation (a DS-10LResearch Lab’s SimOS full-system simulator with the Pow-
showed that, for a large suite of cache-resident microbencdrPC port of SimpleScalar. This version of SimOS pre-
marks, the simulator was within an average of 2% of the agtates the Mambo simulator described later in this special
tual alpha workstation. For SPEC2000 benchmarks, the ssue. This merged tool enable users to simulate a full-
ror was larger due to memory and TLB effects: an averagsiown operating system (AIX version 4.1.3) running on Sim-
of 6.6% on the SPECINT2000 benchmarks and 21.5% on tmﬂbSCajar timing simulators. We also adapted and merged
SPECFP2000 benchmarks [4]. While the error is quantifiablghe SimpleMP tool, a shared-memory multiprocessor version
the simulator has many more features specific to the 21264 SimpleScalar originally built by Ravi Rajwar at Wiscon-
microarchitecture that make it less easily extensible #wn sin, with SimOS. This tool permits simulation of full-blown
ideas or modeling. However, implementing new ideas in bot§mall-scale multiprocessors (in particular, chip mutiges-
simulators can permit researchers to see if performance bejfrs), including both explicitly parallel (e.g. MPI) and mu
efits from new ideas track across two quite distinct microatithreaded programs, running on an operating system, simu-

chitectures that support the same ISA (using the version piiing I/0, etc. Currently the tool runs only on AIX/PowerPC
sim-outorder with the Alpha ISA). The code is available ahnd Linux/x86 systems.

www.cs.utexas.edu/users/cart/code/al phasim-1.0.tgz.

4.3 Memory Extensions

The original release of the SimpleScalar timing simulators 5 Summary

contained simple cache and TLB models that gave good esti-

mates of the effects of cache and TLB miss latencies. HovimpleScalar has proven to be a boon for many researchers,
ever, the memory hierarchies that could be simulated weparticularly those that do not have the resources or stafpo
fairly rigid, and they did not model much of the lower-level,to develop complex simulation infrastructures internally
underlying detail and complexity found in modern memoraddition to research, many educators are now using it in
systems. coursework.

To compensate, we developed a set of memory extensiofiss our hope that the extensions and improvements destribe

i tlio paptl vwillh YT UotTiul LU Uic Lullhiiuviity. 11T 1TITlituTopd | . vvcavcl, . . ball, .. Y. lvialalliall, Y. illog allu
pace of technological change makes research tools diff@ult T. Austin. Performance analysis using pipeline visuaidat
keep current. However, combining federally-funded effortin Proceedings of the 2001 Inter national Symposium on Per-
with a collaborative, open source model and an easily extefermance Analysis of Systems and Software, June 2001.

sible environment makes it possible for many researchers to

perform widely varying studies from a single code base.

Acknowledgments

First, we gratefully acknowledge the National Science Foun
dation’s support through grant number EIA-9975286. With-
out that support, these extensions and improvements to Sim-
pleScalar would not have been possible. Also, much of the
hard development work was done by our graduate students,
many of them listed in the technical references, whose excel
lent efforts we happily acknowledge. Finally, we thank the
SimpleScalar user base, whose productive use of the tosls ha
made our efforts worthwhile.

References

[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modelindEEE Com-
puter, 35(2), February 2002.

[2] D. Burger, A. Kagi, and M. Hrishikesh. Memory hier-
archy extensions to the simplescalar tool set. Technical Re
port TR-99-25, Department of Computer Sciences, Universit
of Texas at Austin, Austin, TX, December 1999.

[3] D.Burgerand T. Austin. The simplescalar tool set ver-
sion 2.0. Technical Report 1342, Computer Sciences Depart-
ment, University of Wisconsin, Madison, WI, June 1997.

[4] R. Desikan, D. Burger, and S. Keckler. Measuring ex-
perimental error in microprocessor simulation. Rroceed-
ings of the 28th Annual International Symposium on Com-
puter Architecture, pages 266—277, July 2001.

[5] R. Desikan, D. Burger, S. Keckler, and T. Austin. Sim-
alpha: a validated, execution-driven alpha 21264 simulato
Technical Report TR-00-04, Department of Computer Sci-
ences, University of Texas at Austin, Austin, TX, February
2000.

[6] E.Larson, S. Chatterjee, and T. Austin. The mase mi-
croarchitecture simulation environment. Rnoceedings of

the 2001 International Symposium on Performance Analysis

of Systems and Software, June 2001.

[71 K. Sankaralingam, R. Nagarajan, S. Keckler, and
D. Burger. Simplescalar simulation of the powerpc instruc-
tion set architecture. Technical Report TR-01-23, Depanim
of Computer Sciences, University of Texas at Austin, Austin
TX, February 2001.

[8] G. S. Sohi. Instruction issue logic for high-
performance, interruptible, multiple functional unitpplined
computers. |EEE Trans. Comput., 39(3):349-359, March
1990.

