
Balancing Local and Global Parallelism for
Single-Thread Applications in a Composable

Multi-core System

Behnam Robatmili Katherine Coons

Doug Burger

University of Texas at Austin, Computer Science Department

{beroy, coonske, dburger}@cs.utexas.edu

Abstract

One way to improve the performance of a single-
threaded application is to run regions of the code specu-
latively on a multi-core system. In a composable multi-
core system, resources such as the L1 cache, register
file, and instruction window are distributed among the
cores. In such a system, there are many ways to map
instructions to the cores. At one extreme, instructions
in each code region are distributed evenly across all of
the cores, favoring local parallelism within the region,
but also increasing local communication. At the other
extreme, instructions in each region are assigned to a
single core. This strategy minimizes local communica-
tion within the code region, but at the cost of local
parallelism. We propose a hybrid strategy that uses
a compile time critical path analysis to determine the
available concurrency in the region of code. A block
mapper uses this concurrency value to decide the num-
ber of cores to which the region of code should be
mapped. Our results show that this method improves
performance significantly and reduces communication
among cores.

1 Introduction

Balancing concurrency and communication is one of
the fundamental challenges in parallel processing. Ex-
ploiting fine-grained concurrency brings this problem
to the forefront because fine-grained concurrency is of-
ten coupled with fine-grained communication, and it
is more difficult to amortize the overheads of com-
munication at a fine granularity. To balance concur-
rency and communication at a fine granularity a sys-
tem can use both dynamic information, gathered by
the hardware, and static information, gathered by the
compiler. Which method is preferable, hardware or
software, varies with the hardware and the execution
model. Different distributed architectures use differ-

ent breakdowns between hardware and software ap-
proaches.

RAW [20] favors an approach that relies heavily on
the compiler. The RAW compiler schedules instruc-
tions in time to exploit concurrency, and places instruc-
tions on a physical substrate. The TRIPS [16] compiler
forms predicated regions called hyperblocks and places
instructions in each hyperblock on a grid of 16 ALUs,
where they are issued dynamically. Wavescalar [19] is
a dataflow processor that uses static placement of in-
structions on an hierarchical substrate. The compiler
for Multicluster [7] processors partitions instructions
between clusters during register allocation to minimize
remote register accesses. Instructions in each clus-
ter are scheduled dynamically by the hardware. In
Thread-Level Speculation [14], the hardware automat-
ically spawns speculative threads, selected by the com-
piler, on multiple cores. Multicluster superscalar pro-
cessors [21] rely on the hardware to dynamically steer
instructions to different clusters based on the depen-
dencies between instructions. Complexity-Effective Su-
perscalar Processors steer the dependent instructions
into separate FIFO buffers dynamically and only send
the result tags to the heads of the FIFO buffers [15].
The ISA for Instruction Level Distributed Process-
ing [13, 12] supports hierarchical register files consisting
of many general purpose registers and a few accumu-
lator registers. The instruction stream is divided into
short strands of dependent chains. The instructions in
each strand are steered into a processing element asso-
ciated with the accumulator accessed by those instruc-
tions. While the instructions in each cluster are linked
by the the accumulator, the inter-strand dependencies
are passed through the general purpose registers.

We propose a model for mapping blocks of instruc-
tions to a distributed substrate in which the compiler
encodes the local (intra-block) concurrency and an ab-
stract model of local communication in the ISA. Then,
a block mapper chooses how to map that block to the
distributed substrate in a way that minimizes global



Figure 2: Mapping an instruction block to various number of cores

Figure 1: System Components

(inter-block) communication, exploits global concur-
rency, and attempts to accommodate the compiler’s
request for local concurrency. There is a large body
of research on partitioning algorithms for multicluster
processors [4, 7, 6, 3]. There are some similarities be-
tween those works and the work we present in this pa-
per. This work, however, addresses partitioning and
composablity at the same time.

We evaluate different block mapping strategies using
TFlex [10], a composable lightweight processor that ex-
ecutes hyperblocks of instructions atomically on a dis-
tributed substrate. Figure 1 shows the components in
a TFlex system. The TRIPS compiler [18] breaks the
program into fixed-sized blocks of instructions. The
EDGE ISA imposes several restrictions on blocks. The
maximum size of each block is 128 instructions, and
each block can contain up to 32 register reads, 32 regis-
ter writes, and 32 load/store instructions. During com-
pilation, the instruction scheduler assigns an identifier
to each instruction. This 7-bit instruction identifier,
implicitly encoded by that instruction’s position in the
block, determines on which participating core the in-
struction will be placed (depending also on the run-time
mapping policy) and in what order that instruction will
appear in the issue queue. The microarchitecture gives
lower numbers higher issue priority within a single is-
sue window. Figure 2 illustrates how the block mapper
maps a block of instructions to different numbers of
cores in an application running on four cores. In 2(a),

the block mapper selects one core, core 1 in this ex-
ample, on which to map the block. After fetching the
block, the selected core prioritizes instructions in its is-
sue queue based on their instruction identifiers. In 2(b),
instructions are split between two cores selected by the
block mapper, cores 0 and 1 in this example. Finally,
in 2(c), the block mapper maps the instructions to all
participating cores - each core executing 32 of total in-
structions in the block.

We discuss trade-offs between communication and
concurrency, as well as the role of the compiler in each
block mapping strategy.

2 Composable Lightweight Pro-

cessors

To support workloads with differing degrees of paral-
lelism, multi-core systems must adapt the number of
cores [8]. One approach to this problem is to aggregate
a small number of cores to form a larger core capable
of exploiting concurrency at a finer granularity [9, 10].

TFlex is a composable lightweight processor (CLP)
in which all microarchitectural structures, including
the register file, instruction window, predictors, and
L1 caches, are distributed across a set of cores [10].
Distributed protocols implement instruction fetch, ex-
ecute, commit, and misprediction recovery on this dis-
tributed substrate without centralized logic. To run a
program, the OS assigns a set of cores on the substrate
to a program, which are then treated by the program
as a single processor. Figure 3 shows three of many
possible configurations: 3(a) has 32 1-core processors,
3(c) has one 32-core processor, and 3(b) has a mix of
processors composed of different numbers of cores.

When cores are aggregated, the register file, instruc-
tion cache, and data cache, are equally distributed
across all participating cores. Each operation that
needs to access a microarchitectural structure uses a
hash function to determine on which core the structure
to be accessed resides. For example, the low-order bits
of the cache index select the core on which the data
cache bank to be accessed resides, and the low-order
bits of the architectural register number select the core
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(a) 32 2-wide CLP config. (b) 8-processor CLP config. (c) One 64-wide CLP config.

Figure 3: Three CLP configurations [10].

holding that register in its register file [10].

For an application with N participating cores, the
hardware fetches and executes up to N blocks in paral-
lel. Inter-block communication occurs via registers and
memory, which are distributed across the cores based
on reconfigurable hash functions. In this paper, we
study the block mapping strategy, focusing on how the
block mapper can make use of information provided by
the compiler. The abstract concurrency and the core
selection strategies proposed in this paper can easily
be applied to other distributed processors. An EDGE
ISA offers an advantage, however, because the critical-
ity and locality information can be implicitly encoded
via each instruction’s location within the block, with-
out any overhead in terms of code size.

3 Block Mapping Strategies

In this section, we discuss three different block map-
ping strategies for the TFlex composable processor. A
block mapping strategy must balance communication
and concurrency at both the global and the local level.
For example, assigning a block to fewer cores may be
beneficial to limit local communication, but not if doing
so reduces the local concurrency enough to outweigh
the benefit. If sufficient global concurrency is avail-
able, however, then reducing the number of cores may
decrease local communication without any cost in total
concurrency, as the global concurrency can compensate
for the loss of local concurrency. If the associated cost
in global communication is too high, however, then the
benefit may decrease. We evaluate two strategies in
which the number of cores that a block is mapped to
is fixed. These strategies provide all blocks with the
same opportunities and limitations in terms of concur-
rency and communication. Then, we propose a third
mapping strategy in which we allow the block mapper
to vary the number of cores used to execute each block.

3.1 Flat Mapping

With a flat mapping strategy, the block mapper dis-
tributes instructions for every block across all partici-
pating cores using instruction identifiers set by the com-
piler. For example, when running on four cores, the
flat mapping strategy maps all blocks as shown in Fig-
ure 2(c). This approach attempts to exploit as much lo-
cal concurrency as possible, but at the cost of increased
local communication. This strategy relies heavily on
the compiler, and the block mapper’s job is very sim-
ple.

Static Assignment of Instruction IDs: Once the
compiler forms hyperblocks, the instruction scheduler’s
job is to place the instructions within a hyperblock onto
the cores in a way that minimizes communication de-
lays, yet exploits the available concurrency. We use the
spatial path scheduling algorithm designed for EDGE
architectures [5] to assign instruction IDs to instruc-
tions. For each instruction, the best core is the location
at which the placement cost is the lowest. Among all
of the instructions under consideration, the one with
the largest minimum placement cost is the most criti-
cal, and should be placed next. The placement cost is
calculated based on various features of the instruction,
the core under consideration, the data flow graph con-
taining the instruction, and the location of the registers
used in the hyperblock.

3.2 Deep Mapping

With a deep mapping strategy, the block mapper maps
all instructions within a block to a single core. Fig-
ure 2(a) shows an example of the deep mapping strat-
egy on a block when running on four cores. This strat-
egy relies more heavily on the block mapper than on the
compiler. The block mapper can balance global concur-
rency and communication by selecting intelligently to
which core the next block should be mapped.

The deep mapping strategy may increase global com-
munication, because cache banks and registers are dis-
tributed across the cores, while each block executes on
only a single core. By mapping all instructions within



Figure 4: A sample DFG consisting of two hyperblocks mapped
using the flat and deep mapping strategies. Solid and dotted lines
represent local and global communication, respectively.

a block to a single core, the deep mapping strategy lim-
its the local concurrency to the issue width of the core.
Because multiple blocks are mapped onto the grid at
once, however, if sufficient global concurrency is avail-
able, then the total concurrency in the system will not
decrease.

Figure 4 provides a simple example of the flat and
deep mapping strategies for two blocks, B0 and B1,
on a 16-core processor. Symbols a through h represent
the instructions in these blocks. Registers R0, R1, and
R3 are located in cores 0, 1, and 3, respectively. Block
B0 reads registers R0 and R1 and writes register R3.
Block B1 reads register R3, which is produced by B0,
and writes register R0. Block B0 also loads from a
cache bank M located on core 7. The value commu-
nicated between blocks B0 and B1 via register R3 is
an example of global communication, while the value
produced by instruction a and consumed by instruc-
tion b is an example of local communication. With flat
mapping, the instruction scheduler is able to place all
instructions that access registers on the same core as
the corresponding register. With deep mapping, how-
ever, the blocks are mapped to cores dynamically in
a round-robin fashion, so most register accesses go to
remote cores.

3.3 Adaptive Mapping

The flat and deep mapping strategies both suffer from
the fact that the block mapper maps all blocks within
a given application to the same number of cores, C.
With the flat mapping strategy, C = N , where N is
the number of cores participating in executing the ap-
plication. With deep mapping, C = 1. As a result,
the flat mapping strategy may under-utilize cores or
cause excessive communication overheads if the block
contains little concurrency, and the deep mapping strat-
egy may fail to take advantage of local concurrency if
the block contains large amounts of concurrency. A
mapping strategy that can select a different number of

cores for each hyperblock based on its communication
patterns and available concurrency may be desirable.

We propose a block mapping strategy that adaptively
selects the number of cores for each block. The com-
piler encodes the available concurrency in the block
header, and supplies information about local communi-
cation by assigning instruction IDs to the instructions
in the block. At runtime, the block mapper dynami-
cally selects a set of cores for the block based on the
local concurrency value provided by the compiler. For
example, when running on four cores, the block mapper
may choose to map each block to one, two or four cores
(see Figure 2).

The algorithm for choosing which cores to map the
next block to is round-robin, but modified to account
for blocks that request varying numbers of cores. If
there is not enough room in the instruction window for
the next block, then instruction fetch will be stalled
until there is sufficient space available. More sophisti-
cated algorithms for dynamic mapping are possible, but
might make the hardware implementation impractical.
Round-robin strategies may be desirable because they
can be implemented in a distributed fashion without
any centralized components.

Calculating local concurrency: The instruction
scheduler computes the critical path length through the
block and uses it to compute the local concurrency in
the block:

Concurrency = BlockInstructionCount
CriticalPathLength

where, BlockInstructionCount and CriticalPathLength
are the total number of instructions in the block and the
length of the critical path through the block in cycles,
respectively. This metric gives an estimate of the IPC
available inside the block. For example, if a block has a
long and narrow chain of dependent instructions, then
the concurrency value may be smaller than one.

At runtime, the block mapper chooses the cores
needed for each block as follows:

C = 2⌈log2
⌈Concurrency

IssueW idth
⌉⌉

where, IssueWidth is the issue width of each core in the
system. The block mapper uses this number of cores
to map the block if enough resources are available.

4 Results

We added support for these three mapping strategies
to the validated TFlex simulator [10]. The microar-
chitectural parameters of each single core TFlex in our
simulation are shown in Figure 1. We also modified
the instruction scheduler for TFlex [5] to incorporate
local concurrency information into the block header.”
We test each mapping strategy on the EEMBC [1] and
SPEC [2] benchmarks. We use 29 EEMBC benchmarks
with an iteration count of one hundred thousand. In ad-
dition, we use 9 intereger and 10 floating point SPEC



Parameter Configuration

Instruction Supply Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency)
with speculative updates; Num. entries: Local: 64(L1) + 128(L2), Global: 512, Choice: 512, RAS: 16, CTB:
16, BTB: 128, Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and one FP) or
single issue.

Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 44-entry LSQ bank;
4MB decoupled S-NUCA L2 cache [11] (8-way set-associative, LRU-replacement); L2-hit latency varies from
5 cycles to 27 cycles depending on memory address; average (unloaded) main memory latency is 150 cycles.

Simulation Execution-driven simulator validated to be within 7% of real system measurement

Table 1: Single Core TFlex Microarchitecture Parameters [10]

benchmarks with the reference (large) dataset simu-
lated with single simpoints [17].

4.1 Performance

Figures 5 and 6 show performance using the flat, deep,
and adaptive mapping strategies for the EEMBC and
SPEC benchmarks normalized to the performance of
that benchmark on a single dual-issue core. We vary
the number of cores allocated to the application from 1
to 32 cores. We also vary the issue width of the cores,
using issue widths of one and two.

Figure 5: Average speedups over single core for EEMBC bench-
marks varying the number of cores and the issue widths of the
cores.

The EEMBC benchmarks reach their maximum per-
formance when running on 16 cores using different map-
ping strategies but observe a significant slowdown with
32 cores. High operand network latency and insuffi-
cient branch prediction accuracy are responsible for this
slowdown. With 32 cores, 31 blocks execute specula-
tively, and with low branch prediction accuracy, many
of these blocks will be flushed. Programs with higher
branch prediction accuracy will be better able to take
advantage of 32 cores, because they are better able to
use global concurrency to keep the 32 cores busy when
sufficient local concurrency is not available. The SPEC
integer benchmarks also perform worse with 32 cores
than 16 cores. The performance of the SPEC float-

Figure 6: Average speedups over single core for SPEC bench-
marks varying the number of cores and the issue widths of the
cores.

ing point benchmarks improves when running with 32
cores, however, which is probably due to high branch
prediction accuracy for the SPEC floating point bench-
marks.

With dual-issue cores, the adaptive mapping strategy
outperforms the other two strategies in all cases except
the two-core case, in which the flat mapping strategy
performs slightly better. With single-issue cores, the
performance of the flat mapping strategy changes very
little while both the deep and adaptive mapping strate-
gies perform significantly worse. This drop in perfor-



mance is more pronounced when using the deep map-
ping strategy because with a single-issue core, the deep
mapping strategy is unable to exploit any local paral-
lelism. While the deep mapping strategy loses perfor-
mance when we move to single-issue cores, the adap-
tive mapping strategy is able to compensate for the
loss in local parallelism by using more cores, as shown
in Table 2, which indicates the percentage of executed
blocks that use each number of cores with the adap-
tive mapping strategy for EEMBC benchmarks. With
dual-issue cores, the adaptive mapping strategy maps
more than 60% of blocks to only one core. When using
single-issue cores, half as many blocks are mapped to
a single core, and more than half of the blocks use two
or four cores.

1-core 2-core 4-core larger

Single-Issue 63.6% 28.4% 6.5% 1.4%

Dual-Issue 29.9% 34.8% 26.9% 8.1%

Table 2: Average percentage of executed blocks with a spe-

cific recommended number of cores for EEMBC benchmarks

running with single and double dual cores.

Figures 7 and 8 show the speedup achieved using the
adaptive and deep mapping strategies normalized to
the flat mapping strategy for individual EEMBC and
SPEC benchmarks on 16 dual-issue cores.

For most programs the deep and adaptive mapping
strategies outperform the flat mapping strategy. For
some EEMBC programs, however, the flat mapping
strategy is better. In fft00, for example, the inner-most
block of the kernel reads eight registers from different
banks and has four parallel high-latency multiply in-
structions. The deep mapping strategy suffers from
high global communication and is also unable to extract
the local parallelism within that block. With adaptive
mapping, the block mapper chooses to map that block
to two cores. This mapping allows the processor to
extract some of the local concurrency available.

Figure 9 indicates the percentage of executed blocks
that use each number of cores with the adaptive map-
ping strategy for the SPEC benchmarks. With dual-
issue cores, as shown in the top graph in the figure, the
adaptive mapping strategy maps about 40% of blocks
to two or four cores. For the SPEC integer benchmarks,
the mapper maps 20% of the blocks to more than one
core when using dual-issue cores, which indicates less
concurrency within the blocks compared to the SPEC
floating point benchmarks. When using single-issue
cores, as shown in the bottom graph in Figure 9, half
as many blocks are mapped to more than one core, and
more than half of the blocks use two or four cores.

Some SPEC benchmarks including ammp, equake,
sixtrack, and vpr, show significant speedups when using
the deep and adaptive mapping strategies. We suspect

this is because the most critical blocks in these appli-
cations have very little local concurrency available. For
instance, the benchmark with the largest speedup using
the deep and adaptive mapping strategies is equake, and
the adaptive strategy for equake chooses to place 98%
of dynamically executed blocks on a single core. This
indicates that the instruction scheduler is able to find
very little local concurrency in the most critical blocks
of this benchmark, so a flat mapping strategy incurs ex-
tra local communication overheads without any benefit
in local concurrency.

For most SPEC benchmarks, the adaptive mapping
strategy performs better than the deep mapping strat-
egy. The bzip2 benchmark achieves the largest speedup
using adaptive mapping, about 15%. For this bench-
mark, the block mapper chooses to map about 50% of
blocks to four cores. This mapping suggests that there
is a high amount of local concurrency available in this
benchmark, and the adaptive mapping strategy is able
to exploit this concurrency.

Figure 10 includes the performance of individual
SPEC benchmarks when running on single-issue cores
using the flat, deep, and adaptive strategies. For most
benchmarks, the deep strategy performs worse than the
flat strategy. The adaptive strategy outperforms both
the deep and and the flat strategy in most cases.

These results suggest that the adaptive mapping
strategy reduces the local communication significantly,
and can extract both global and local parallelism. This
strategy, however, suffers from global communication
penalties due to dynamic block placement. We are
looking at ways to reduce the global communication
in this strategy for future work.

4.2 Communication Overhead

We measured the communication overhead for each
mapping strategy by counting the number of communi-
cation hops necessary for each register access, memory
access, and operand bypass.

Figure 11 shows the average communication over-
head for each block mapping strategy for the SPEC
benchmarks running on 16 dual-issue cores. These re-
sults are normalized to the total hop count when us-
ing the flat mapping strategy. Using flat mapping,
70% of communication is the result of operand trans-
fer and distributed protocols among the cores. With
the deep and adaptive mapping this value becomes 9%
and 12%, respectively. Memory accesses cause almost
the same amount of traffic for all three mapping strate-
gies, but the overhead of register accesses is reduced
for flat mapping. The static instruction scheduling al-
gorithm considers the location of registers on the grid
when calculating the placement cost for each instruc-
tion for flat mapping, thus minimizing register latency.



Figure 7: Speedup over the flat mapping strategy for the EEMBC benchmarks with 16 dual-issue cores.

Figure 8: Speedup over the flat mapping strategy for the SPEC benchmarks with 16 dual-issue cores.

Figure 9: Percent of blocks mapped to a certain number of cores by the block mapper for SPEC benchmarks running with 16 dual-issue
(top) and single-issue (bottom) cores.



Figure 10: Speedup over the flat mapping strategy for the SPEC benchmarks with 16 single-issue cores.

We are looking at ways to reduce the global communi-
cation in this strategy for future work.

Figure 11: Communication overhead in terms of hop count for
the SPEC benchmarks running on 16 dual-issue cores.

5 Conclusions

Future distributed processors must use a combination
of hardware and software techniques to achieve high
concurrency for different workloads while reducing the
communication overhead. The adaptive block mapping
strategy, proposed in this paper, uses abstract concur-
rency information provided by the compiler to balance
the locality and criticality of instructions in each block.
In addition to this information, the block mapper con-
siders the hardware characteristics to choose appropri-
ate number of cores to map each block. While achiev-
ing high performance, this method causes relative low
communication over across th on-chip network.
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