
Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS
Architecture

Karthikeyan Sankaralingam Ramadass Nagarajan Haiming Liu Changkyu Kim
Jaehyuk Huh Doug Burger Stephen W. Keckler Charles R. Moore

The University of Texas at Austin

November 23, 2003

1 Introduction

This paper describes a partitioned architecture that can scale to arbitrarily wide issue, from 4 to 16 to 64-wide
out-of-order issue and beyond, particularly for future wire-dominated technologies. This TRIPS architecture
is based on a new, post-RISC instruction-set architecture paradigm called EDGE, for explicit dataflow graph
execution, first realized in the Grid Processor Architecture [7] family of architectures. Coupled with an
adaptive memory system, this architecture can scale both with increased on-chip wire delays and to larger
on-chip memory capacities than is conventionally possible. In this paper, we discuss how to subdivide these
large TRIPS uniprocessor cores to exploit many types of parallelism, including instruction, thread, and data-
level parallelism. The TRIPS architecture can thus serve as a single solution to many diverse application
domains.

In the last decade, general purpose programmable processors have proliferated into increasingly diverse
application domains, producing distinct markets for desktop, network, server, scientific, graphics, and dig-
ital signal processors. While clearly providing application-specific performance improvements, these pro-
cessors perform poorly on applications outside of their intended domain, primarily because they are tuned
to exploit specific types and granularities of parallelism, and to some extent due to instruction set special-
ization. Emerging applications with heterogeneous computational requirements, such as image recognition
and tracking or video databases, can use multiple domain-specific processors for high performance. Such
heterogeneous systems suffer from two problems: reduced economies of scale compared to a single gen-
eral purpose design and design-time freezing of the processor mix and composition; should the expected
workload composition change at runtime, processors will be overworked or idle.

In the TRIPS approach, a single processor core and memory system is used to support all granularities
of parallelism and workloads, using an architectural capability termed polymorphism. Programs with serial
execution chains use the entire processor core, and when thread-level or data-level parallelism is available, it
is logically partitioned into finer-grained execution units. We show that this partitioning strategy yields high
performance on applications with different granularities of parallelism, whereas the alternative of synthe-
sizing a powerful coarse-grained processor from a collection of fine-grained processors has proven difficult.

1

D−cache

D−cache

Predictor
Control
Block

96−12732−63 64−950−31

(b) TRIPS core

D−cache

I−cache

I−cache

I−cache

I−cache

I−cache

LSQ

LSQ

LSQ

LSQ

Frame 0

(a) Execution node

Operands Frame 63Inst

Control

Router

Frame 1

.

(c) Memory tiles

D−cache

Bank
Reg.

Bank
Reg.

Bank
Reg.

Bank
Reg.

Figure 1: TRIPS architecture overview.

Thus, the industry trend of building larger numbers of less powerful processors on a single die may prove
problematic. While this paper provides an overview of polymorphism in TRIPS, greater detail is presented
in [9].

2 The TRIPS Architecture

The TRIPS architecture, shown in Figure 1, is partitioned and modular in both the processor and memory
systems. A TRIPS processor core is composed of an array of homogeneous execution nodes connected
with an operand network, each containing an integer ALU, an FPU, a lightweight router, and a set of reser-
vation stations which can store an instruction and two operands. Banked instruction caches, data caches,
and register files are placed around the execution array. The back-side of the L1 caches are connected to
secondary memory tiles through the chip-wide two-dimensional interconnection network. The TRIPS team
is implementing a prototype TRIPS chip with two cores and 32x64KB array of memory tiles in a 130nm
ASIC process, scheduled for fabrication in 2005.

The TRIPS architecture is block oriented and builds on prior proposals for block-structured ISAs [2].
Programs are partitioned into large blocks of instructions with a single entry point, no internal loops, and
possibly multiple exit points as found in hyperblocks [5]. Blocks commit atomically and interrupts are
block precise, meaning that they are handled only at block boundaries. The compiler statically schedules
each block of instructions onto the computational engine specifying inter-instruction dependences explicitly
using an EDGE (explicit dataflow graph execution) instruction set. Instructions within a block are executed
in dataflow order, and operands are routed through the operand network from producer to consumer. Block
inputs and outputs are read from and written to the register file, similar to the semantics of a single instruction
in a conventional ISA.

2

3 Polymorphism

The TRIPS architecture contains three types of resources: (1) fixed resources which operate in the same
manner in every mode, like the execution node, (2) specialized resources which are not used in every mode,
such as the branch predictor, and (3) polymorphous resources which are reconfigured for different modes of
execution. Unlike a reconfigurable architecture, a polymorphous architecture alters the behavior of coarse
grain components, rather than building new functions from primitive logic operators. The TRIPS processor
contains four major polymorphous resources. The frame space is composed of a subset of the reservation
stations across all of the execution units, and can be configured to support varying degrees of speculation.
The physical register file banks are configured to hold the state of speculative or non-speculative threads.
The block sequencing control, which handles block completion, deallocation, and assignment of frames
adjusts the degree of speculation depending on the mode of execution. Finally, the memory tiles can be
configured to behave as NUCA style L2 cache banks [4], scratch-pad memory or synchronization buffers
for producer/consumer communication. In addition, the memory tiles closest to each processor present a
special high bandwidth interface that further optimizes their use as stream register files [3].

3.1 D-morph: Instruction-Level Parallelism

The desktop morph (D-morph) uses polymorphism to run single-threaded codes by exploiting instruction-
level parallelism (ILP). In this configuration the polymorphous frame space is treated as a large, distributed,
instruction issue window, holding both non-speculative and speculative instructions from a serial program.
Instructions are executed out-of-order without the need for an associative issue window of a conventional
processor. The TRIPS instruction window is a three-dimensional scheduling region constructed using the
ALU array and the multiple instruction slots (frames) at each ALU. The compiler schedules hyperblocks
into an architectural frame (A-frame), which is a logical subset of this space.

Since the instruction window size is much larger than the average hyperblock size, speculative hyper-
blocks are mapped to empty A-frames. This next-hyperblock prediction is made using a highly tuned tour-
nament exit predictor which predicts the branch likely to exit the hyperblock [9]. Figure 2a depicts the
mapping and simultaneous execution of a non-speculative and a speculative hyperblock that communicate
via the register file. Hyperblocks are partitioned and stored in an interleaved fashion across the different
I-cache banks, thereby providing high-bandwidth instruction fetch. The memory system provides a high-
bandwidth, low-latency data cache, and enforces sequential memory semantics. The secondary memory
system in the D-morph configures the polymorphous memory tiles as a non-uniform cache access (NUCA)
array [4].

3.2 T-morph: Thread-Level Parallelism

The threaded morph (T-morph) provides higher processor utilization by mapping multiple threads of control
onto a single TRIPS core and exploiting thread level parallelism (TLP), in a fashion similar to simultaneous
multithreading [10]. The T-morph differs from the D-morph primarily in the management of the frame
space. The block sequencing control partitions the frame space and assigns a fixed subset to different
threads. Each thread then uses its A-frames for one non-speculative and several speculative blocks. The
polymorphous register file banks are reconfigured to hold the architectural state of multiple threads and

3

(c) S−morph

Frame 0
Frame 1

Frame 9

Super−frame
non−speculative

Y

X

Z

N5

N6

Frame 3
..

.

R1

Reg. File

A−frame 3

(a) D−morph (b) T−morph

non−speculative

speculative

speculative

speculative

A−frame 1

....

....

....

A−frame 0

Frame 0

Frame 1

N4

Frame 2

A−frame 2

N0N1

N2N3

Thread 0

Thread 1

A−frame 0

A−frame 1

A−frame 0

A−frame 1

non−speculative

speculative

non−speculative

speculative

Frame 9

Frame 0
Frame 1

Figure 2: Frame space management.

their non-speculative and speculative blocks. In addition to configuring the polymorphous resources, the T-
morph maintains dedicated per-thread program counters, commit buffers, block control, and global history
shift registers in the exit predictor to reduce thread-induced mispredictions.

3.3 S-morph: Data-Level Parallelism

The streaming morph (S-morph) uses polymorphsim to support applications with data level parallelism
(DLP). DLP applications include many streaming media and scientific applications, and are characterized
by predictable loop-based control flow with large iteration counts, large data sets, regular access patterns,
poor locality but tolerance to memory latency, and high computation intensity with tens to hundreds of
arithmetic operations performed per element loaded from memory. The S-morph was heavily influenced
by the Imagine architecture [3] and uses the Imagine execution model in which a set of stream kernels are
sequenced by a control thread.

Since the control flow of these programs is highly predictable, the S-morph fuses multiple polymorphous
frames to make a single super A-frame. Inner-loops of a streaming application are unrolled to fill the
reservation stations within these super A-frames. To reduce the power and instruction fetch bandwidth
overhead of repeated fetching of the same code block across inner-loop iterations, the S-morph employs
mapping reuse, in which the block sequencing control loads a block into the reservation stations once and
uses it multiple times. The S-morph implements a stream register file (SRF), similar to that of Imagine,
using a subset of the polymorphous memory tiles. Implementing and configuring a memory tile as an SRF
includes turning off tag checks to allow direct data array access, augmenting the cache line replacement state
machine to include DMA-like capabilities (strided and scatter/gather accesses), and allowing burst access
across higher bandwidth channels from the neighboring tiles and the TRIPS core. The remaining memory
tiles are configured as a conventional L2-cache to implement a conventional memory hierarchy for random
memory accesses.

4

bzip2
m

88ksim

parser

M
EAN-INT

art
equake

tom
catv

M
EAN-FP

0

5

10

15

In
st

ru
ct

io
ns

/C
yc

le

Alpha 21264

1 A-frame

4 A-frames

8 A-frames

16 A-frames

Perfect (MEM+BP)

2T
4T 8T

0

2

4

6

8

Sp
ee

du
p

Speedup

convert

dct
fft8

fir16
idea

transform

M
EAN

0

5

10

15

C
om

pu
te

 I
ns

tr
uc

ti
on

s/
C

yc
le

D-morph

S-morph

S-morph ideal

(a) D-morph (b) T-morph (c) S-morph

Figure 3: TRIPS processor performance in different morphs.

4 Performance

Figure 3a shows D-morph performance (measured in IPC) and the effect of speculation depth as the number
of A-frames is increased from 1 to 16. The D-morph consistently achieves high IPCs when compared to con-
ventional processor cores (represented by the Alpha 21264) and to a point, shows benefits from increasing
the speculative depth. Performance saturates at between 8 and 16 A-frames (with 7 or 15 being speculative)
for these benchmarks. Adding frames beyond the saturation point provides no performance improvement
because the frame space is underutilized due to either low hyperblock predictability or a lack of program
ILP.

Figure 3b shows the average speedup of executing two, four, and eight threads concurrently in the T-
morph mode, compared to running them sequentially. Of course, perfect speedup is unattainable due to
instruction fetch, arithmetic, and memory resource conflicts. The results show, adding non-speculative
threads improves performance, saturating at about 4 threads. While each thread runs more slowly than
in isolation, due to resource conflicts and reduced speculation depth (due frame space sharing), overall
throughput improves.

Figure 3c compares the S-morph configuration to the D-morph. DLP codes benefit greatly from the
increased data bandwidth for regular memory accesses that are mapped to the SRF banks, and from the
increased instruction fetch bandwidth provided by mapping reuse. The bars labeled ideal indicate that
performance on several of the benchmarks is limited by memory bandwidth constraints. The TRIPS S-
morph compares favorably to the Tarantula architecture, which consists of special purpose vector cores
integrated with conventional ILP processors [1]. A 32-ALU TRIPS S-morph configuration sustains 15
compute ops/cycle compared to between 10 and 20 for a 32-ALU Tarantula processor.

5 Conclusions and Future Directions

Polymorphous systems such as TRIPS enable a single set of processing and storage elements to be con-
figured for multiple application domains. Unlike prior configurable systems that aggregate small primitive
components into larger processors, TRIPS starts with a large, technology-scalable core that can be logically
subdivided to support ILP, TLP, and DLP. TRIPS implements polymorphism using a small set of mecha-

5

nisms that alter the behavior of the reservation stations and memory tiles. The results show that by using
polymorphism on a common execution substrate, TRIPS can sustain high performance across applications
with different forms of concurrency. Other researchers have proposed and evaluated similar mechanisms for
reconfigurable memories [6]. We have extended our work by examining a greater range of data level parallel
applications and architectures [8]. Regardless of the underlying polymorphous architecture, the design of
the interfaces between the software and the polymorphous hardware present challenges and opportunities to
system designers. We are continuing to explore these design issues in the course of our development of the
TRIPS prototype system.

Acknowledgments
This research is supported by DARPA under contract F33615-01-C-1892, NSF grants EIA-9985991, CCR-9985109,
and CCR-9984336, and grants from the Alfred P. Sloan Foundation, the Peter O’Donnell Foundation, IBM, and the
Intel Research Council.

References
[1] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan, G. Lowney, M. Mattina, and A. Seznec.

Tarantula: A Vector Extension to the Alpha Architecture. In Proceedings ISCA-29, pages 281–292, May 2002.

[2] E. Hao, P. Chang, M. Evers, and Y. Patt. Increasing the Instruction Fetch Rate via Block-structured Instruction Set Architec-
tures. In Proceedings MICRO-29, pages 191–200, December 1996.

[3] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens, B. Towles, and A. Chang. Imagine:
Media processing with streams. IEEE Micro, 21(2):35–46, March/April 2001.

[4] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform Cache Structure for Wire-Delay Dominated On-Chip
Caches. In Proceedings ASPLOS-10, pages 211–222, October 2002.

[5] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective Compiler Support for Predicated Execution
Using the Hyperblock. In Proceedings MICRO-25, pages 45–54, 1992.

[6] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart memories: A modular reconfigurable architecture.
In Proceedings ISCA-27, pages 161–171, June 2000.

[7] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A Design Space Evaluation of Grid Processor Architectures.
In Proceedings MICRO-34, pages 40–51, December 2001.

[8] K. Sankaralingam, S. W. Keckler, W. R. Mark, and D. Burger. Universal Mechanisms for Data-Parallel Architectures. In
Proceedings MICRO-36, Dec. 2003.

[9] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP,
and DLP with the Polymorphous TRIPS Architecture. In Proceedings ISCA-30, pages 422–433, June 2003.

[10] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maximizing On-Chip Parallelism. In Proceedings
ISCA-22, pages 392–403, June 1995.

Author Info
� Karthikeyan Sankaralingam is a PhD student in Computer Sciences at UT-Austin.
� Ramadass Nagarajan is a PhD student in Computer Sciences at UT-Austin.
� Haiming Liu is a PhD student in Computer Sciences at UT-Austin.
� Changkyu Kim is a PhD student in Computer Sciences at UT-Austin.

6

� Jaehyuk Huh is a PhD student in Computer Sciences at UT-Austin.
� Doug Burger is an Assistant Professor of Computer Sciences at UT-Austin. Dr. Burger has a PhD in computer

science from the University of Wisconsin, is an Alfred P. Sloan Foundation fellow and a member of IEEE and
ACM.

� Stephen W. Keckler is an Assistant Professor of Computer Sciences at UT-Austin. Dr. Keckler has a PhD in
computer science from MIT, is an Alfred P. Sloan Foundation fellow and a member of IEEE and ACM.

� Charles R. Moore is a senior research fellow at UT-Austin. Previously, he was the chief engineer on IBM’s
Power4 and PowerPC 601 microprocessors.

Direct questions and comments about this article to Stephen W. Keckler, Department of Computer Sciences, The
University of Texas at Austin, 1 University Station C0500, Austin, TX, 78712; skeckler@cs.utexas.edu.

7

