
Instruction Scheduling for
Emerging Communication-Exposed Architectures �

Ramadass Nagarajan Doug Burger Kathryn S. McKinley Calvin Lin Stephen W. Keckler

Department of Computer Sciences, University of Texas at Austin

ABSTRACT
Technology trends present new challenges to instruction schedulers
and processor architectures. Although increasing transistor counts
will enable numerous execution units on a single chip, decreasing
wire transmission speeds will cause on-chip latencies to increase to
tens of cycles. Conventional architectures, including static VLIWs
and dynamic superscalars, and their instruction schedulers are not
capable of meeting these challenges. This paper proposes a new
instruction scheduling algorithm for emerging wire-dominated ar-
chitectures that features critical-path instruction selection, place-
ment of instructions to minimize communication distances, and
load balancing across the distributed execution units. We evalu-
ate the algorithm on the Grid Processor Architecture (GPA), which
supports a hybrid execution model that requires static instruction
placement but allows dynamic execution. The combination of this
novel scheduling algorithm with the GPA results in the highest
demonstrated instruction-level parallelism to date, sustaining over
8 instructions per cycle on a 64-wide issue machine.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hardware/ soft-
ware interfaces

General Terms
Design, Performance, Algorithms, Measurements

Keywords
instruction scheduling, ILP

1. INTRODUCTION
�

This work is supported by DARPA grant F33615-01-C-1892, NSF
ITR grant CCR-0085792, NSF CAREER Awards ACI-9984660,
CCR-9984336 and CCR-9985109, two IBM University Partnership
Awards, two Sloan Foundation Fellowships, and a grant from the
Intel Research Council.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submission to PLDI-2003, June, 2003, San Diego, CA.
Copyright 2003 ACM 0-89791-88-6/97/05 ...$5.00.

The two dominant architectural models, VLIW and dynamic super-
scalar, take extreme views on the role of static instruction schedul-
ing. The VLIW model relies on the compiler to schedule indepen-
dent operations to each wide instruction, and it requires guarantees
from the compiler that no dependences will be violated. The dy-
namic superscalar model instead gives the hardware the freedom
to execute any instruction on any appropriate ALU, as long as it
obeys the original program dependences. Thus, the VLIW model
depends entirely on the static scheduler, while the dynamic super-
scalar pushes much of the complexity of scheduling into the hard-
ware.

While instruction scheduling is well-understood in these exist-
ing contexts, the role of instruction schedulers promises to change,
as two important technology trends change the future of micropro-
cessor design. First, poor clock scaling will result in wider-issue
processors. Second, shrinking devices will result in slow on-chip
wires that cause variable multi-cycle on-chip access latencies. Be-
fore discussing the impact of these changes on instruction sched-
ulers, we first describe their implications for the superscalar and
VLIW models.

The trend towards wider-issue machines, or greater numbers of
ALUs, causes problems for both architectural models. Wider-issue
is infeasible for superscalar architectures because of the quadratic
growth in hardware complexity that occurs when the issue width in-
creases. While VLIW hardware does extend to wider issue, VLIW
machines are unable to exploit more ALUs for two reasons. First,
the compiler can seldom find enough parallelism to schedule them
explicitly because of aliases and other static unknowns, and sec-
ond, the machine stalls when any of the instructions in the previous
VLIW instruction are not complete.

The trend towards larger on-chip latencies also affects the two
architectural models. As wires grow smaller with each technology
generation, their delay increases. This trend is causing multicy-
cle latencies to appear throughout the processor, such as between
ALUs and between ALUs and registers, thus challenging the scal-
ability of each execution model. Clustered VLIW schedulers can
model these latencies, but the larger latencies place increased de-
mands on the scheduler, which must try to find additional paral-
lelism to hide them. Wire delays also complicate the task of the su-
perscalar hardware scheduler, and will quickly make it intractable
in hardware.

Thus, technology trends are creating a scheduling problem that is
too complex for either the compiler or the hardware to solve alone.
These trends demand a cooperative approach in which the compiler
exposes parallelism and schedules for locality, and the hardware
tolerates dynamic latencies and exploits additional parallelism at
runtime. While neither the VLIW or dynamic superscalar models
support this type of cooperation, there are many possible design

points between these two extremes. In this paper, we evaluate one
of these design points and study its impact on instruction schedul-
ing.

This paper presents a scheduling algorithm that uses a critical
path node listing, reprioritization after placement, and explicitly
models latencies and parallelism between ALUs. We show that
with a Static Placement, Dynamic Issue (SPDI) execution model,
these scheduling heuristics can greatly reduce the communication-
induced critical execution paths among the ALUs. We show that
our machine and scheduler improve instructions per cycle (IPC) up
to factors of 10 compared with a VLIW and its scheduler, by ex-
ploiting both the schedule and runtime adaptability. Our scheduler
uses extensible architectural model and evaluation functions that
we use to tease apart the effects and interactions of six compiler
heuristics. We also evaluate a variety of interconnection topolo-
gies and latencies for the SPDI processor. For instance, we show
that a tightly packed schedule with more exposed latencies exe-
cutes much faster than a more loosely packed schedule. We explore
the portability of our schedules to fewer numbers of processors to
demonstrate the relatively low performance penalty of binary com-
patibility on this hardware. By finding the right balance between
flexibility for the scheduler and complexity in the hardware, we
sustain significantly higher instruction level parallelism (ILP) than
previously reported in the literature.

The remainder of this paper is organized as follows. Section 2
describes the technology trends that will affect future architecture
and scheduler combinations, along with the related work that ad-
dresses these emerging challenges. Section 3 describes Grid Pro-
cessor Architectures, which we use as a case study to evaluate
schedulers for future SPDI architectures. Section 4 describes our
base top-down greedy scheduling algorithm and the instruction place-
ment optimizations required to reduce distance and latency. Sec-
tion 5 analyzes the interaction between the scheduler and inter-
ALU interconnection network. Section 6 incorporates consider-
ations of different routing latencies and placement constraints into
the scheduler. Finally, Section 7 studies the sensitivity of the sched-
uler’s performance to exact knowledge of the routing latencies, and
proposes a strategy for generating an abstract schedule that is not
bound to a single particular implementation. We summarize and
conclude in Section 8.

2. BUILDING AND SCHEDULING SCAL-
ABLE ARCHITECTURES

In this section, we discuss the role of static instruction schedul-
ing for future scalable architectures. We first describe trends in
architecture. We then describe how out-of-order superscalar pro-
cessors [29, 15] tolerate imprecision in the scheduler, but that their
architectural complexity prevents it from scaling. We then explain
how VLIW [7, 25] and partitioned VLIW processors [16, 23] are
architecturally scalable, but they rely too heavily on perfection in
the scheduler to achieve their promise. Section 3 describes a scal-
able architecture, which benefits from schedules that exploit par-
allelism and minimize latencies between ALUs, but tolerates im-
perfection from the scheduler. We thus hit a sweet spot in the ar-
chitecture and scheduler co-design space that exploits good static
schedules, but mitigates the latencies the compiler cannot predict.

2.1 Technology Trends

Clock Rates: The bulk of microprocessor performance improve-
ments over the past twelve years have come from clock speed in-
creases, at the rate of 40% per year. Clock speeds will continue to

increase, but at a slower rate as microprocessors start to hit tech-
nology limits [27]. Despite much effort from the research com-
munity, the number of instructions executed per cycle on conven-
tional architectures is dropping, not increasing, as a consequence
of the faster clock speeds [1, 24]. This drop requires new archi-
tectural mechanisms, including multiple ALUs that communicate
asynchronously and directly.

Wire Delay: Another consequence of higher clock rates and tech-
nology limits is wire delay. In previous microprocessor genera-
tions, the processor could reach the entire chip in a fraction of a
cycle. However, as wire cross section shrinks, the wires become
slower. As a result, future chips will require up to tens of cycles just
to route a signal across the chip [1, 12]. To achieve high through-
put, the scheduler must consider the latencies between ALUs and
shared resources as a new first order constraint. For example, the
scheduler should try to place dependent instructions on the same
ALU (e.g., 0 cycle latency) or an adjacent ALU (e.g., 1 cycle) since
non-adjacent ALUs will incur more latency (e.g., 2 to 20 cycles).
The microarchitecture will also need to mitigate the effects of non-
uniform delays throughout the processor.

The two current approaches taken to tolerate wire delays are
deeper pipelines, as in the Pentium IV, in which two of the twenty
pipeline stages are used solely for routing signals along wires, and
the clustered Alpha 21264, which maintains two copies of the reg-
ister file, broadcasting results between them, to reduce register file
size and permit partitioning in the processing core. Unfortunately,
partitioning the core further causes large drops in instruction-level
parallelism(ILP) [2, 3, 6].

2.2 Scalable Architecture Design
To sustain performance improvements, designers must build archi-
tectures that achieve high ILP. To motivate our approach, we dis-
cuss the problems of scaling the two major classes of ILP machines:
dynamic superscalar processors, which issue instructions out of or-
der with respect to the compiler schedule; and VLIW architectures,
which obey the strict static schedule dictated by the compiler.

Dynamic Superscalar Processors: Recent papers show that clock
speed increases are forcing superscalar processors to their limit,
since pipelines can be made only so deep before overall perfor-
mance starts to drop [1, 24]. Superscalar architectures scale poorly
to wide-issue machines because of the quadratic growth (with the
issue width) in comparators that check for data dependences, and
bypass networks that route results from ALU outputs to consumer
instructions. Despite previous predictions in the literature, a 4-wide
machine is the widest that has been built to date.

Dynamic superscalar processors select ready instructions and is-
sue them in any order. A wide instruction fetch unit and a large
instruction window are in theory all that are needed to exploit avail-
able ILP. In practice, the scheduler needs to move high and variable
latency instructions as soon as possible in the basic block [14, 19]
so that the architecture can use dynamically discovered ILP to hide
the latencies. Superscalar processors also need the compiler to pro-
duce large basic blocks uninterrupted by control flow, and so far,
even with techniques such as unrolling and inlining compilers have
not delivered. The typical scheduler for a pipelined architecture
uses a greedy approach [10, 22] based on the critical path through
the instruction dependence graph (a DAG). It models fixed instruc-
tion delays, resource constraints, and other hazards, but typically
does not model dynamic events such as cache miss latencies or
branch misprediction [26]. For an n-wide machine, the scheduler
tries to produce a schedule in which n independent instructions is-

sue every cycle [5]. Balanced scheduling [14] improves over classic
scheduling by computing the amount of ILP available in the DAG,
and using it to hide the high latency instructions. One advantage of
a superscalar architecture is that it can compensate if the compiler
does not get the exact order of the instructions right [19].

VLIW: VLIW architectures, conversely, rely on the compiler, not
the hardware, to discover and schedule ILP [7, 9, 13, 17, 25]. The
compiler guarantees that all instruction placed in a VLIW parallel
long instruction word are independent of one another and that the
operands are ready to read upon issue. The classic VLIW scheduler
also takes a greedy approach [8, 9, 17]. It exploits parallelism by
building a ready set where all the instructions in the set can issue in
parallel. It then fills the current long instruction word. If there is a
choice, it selects the instructions on the critical path first. Software
pipelining [17] and similar algorithms focus on loops. It tries to find
a steady-state pattern, across loop iterations, in which it fills all of
the issue slots of the minimum number of VLIW instructions.

Although the hardware complexity scales linearly with issue width,
the problem facing VLIW architectures is that, despite advanced
techniques such as predication [20], trace scheduling [8], and tree-
gion formation [11], it is difficult for the compiler to find enough
instructions to pack into wide instruction words at compile time.
Worse, unpredictable latencies such as cache misses force the en-
tire machine to stall. The hardware thus scales, but VLIW sched-
ulers have proven incapable of finding enough ILP to outperform
superscalar processors.

These problems are thus pushing the two hardware/software ap-
proaches towards each other, and there are a wide range of possible
solutions. We next describe our choice in the middle.

3. GRID PROCESSOR ARCHITECTURES
The Grid Processor is an emerging architecture that can be con-
sidered a hybrid between statically scheduled (VLIW) and dynam-
ically issued (superscalar) architectures [21]. Figure 1 shows the
components of a 4 � 4 grid processor, composed of 16 instruction
execution units connected via a thin operand routing network. The
instruction cache, register file, and data cache are placed around
the perimeter of the ALU array. Each ALU includes an integer
unit, a floating point unit, an operand router, and an instruction
buffer (storage) for multiple instructions and their operands. Un-
like a queue, instructions in these buffers may execute in any order,
but an instruction may not execute until all of its operands arrive.
While the diagram shows the routing network as a 2-dimensional
mesh, the actual topology depends on both hardware and software
constraints.

The grid processor is a static placement, dynamic issue proces-
sor (SPDI) in which a scheduler statically assigns instructions to
ALUs and instruction buffers, but the hardware issues the instruc-
tions in dataflow order. The grid processor compiler uses hyper-
block generation techniques [20] to create large monolithic blocks
of instructions, and then independently schedules each block to the
grid. Once a hyperblock has been mapped to the grid, the hardware
reads its input registers from the register file and injects them into
the grid. Upon arrival at an ALU, these values trigger instructions
to fire, which on completion then distribute their results through the
operand network to other ALUs. Instructions that produce block
outputs write their values back to the register file. The hardware
transmits temporary values that are only live within a block directly
from producer to consumer, without writing them back to the reg-
ister file. This strategy helps decouple register allocation from in-
struction scheduling, but the scheduler may be required to replicate
a reused value and schedule the instructions that distribute it to mul-

D
-C

a
ch

e

Grid Control

Register File

 S

e
co

n
d

a
ry

C
a

ch
e

 I
n

te
rf

a
ce

Router

Input ports

Output ports

Operand

buffers

Instruction

buffers

Integer
FP

I-
C

a
ch

e
Figure 1: Example 4 � 4 Grid Processor Architecture.

tiple consuming instructions. Address computations for load and
store instructions execute within the grid but transmit the addresses
(and data values for stores) to the data cache banks. The cache
banks send the loaded values back into the grid via the operand
network.

Each ALU contains a fixed number of instruction buffer slots.
In the grid processor, the corresponding slot across ALUs are col-
lectively called a frame. Thus a 4 � 4 grid processor with 128 in-
struction buffer entries at each ALU has 128 frames of 16 instruc-
tion each. A subset of contiguous frames constitute an architecture
frame, which is exposed to the compiler for scheduling and place-
ment of a hyperblock. Consequently, dividing 128 frames into 8 ar-
chitecture frames composed of 16 physical frames would allow the
scheduler to map a total of 256 instructions at once to the ALU ar-
ray. The grid processor hardware uses adjacent architecture frames
to speculatively map and execute subsequent hyperblocks concur-
rently with the non-speculatively executing hyperblock. This tech-
nique is very important to good performance, as we illustrate in
Section 6. The number of instructions within a single architec-
ture frame represents the size of the instruction window available
to the static scheduler. The number of instructions spanning the
non-speculative and the speculative frames corresponds to the size
of the dynamic scheduling window. In superscalar processors, this
window is centralized and relatively small (80-100 instructions),
while in the grid processor this window is distributed and can be
quite large (thousands of instructions).

The principal issues for the design of the instruction scheduler
for a SPDI architecture such as the grid processor include the fol-
lowing:

� Physical locality: In the grid processor, the physical dis-
tances between the ALUs, the register file, and the cache
banks represent latency. Maximizing performance of this

architecture requires the scheduler to place instructions to
minimize the communication latencies between dependent
instructions and between instructions and the register file and
cache banks.

� Operand network topology: Maintaining a simple topol-
ogy and fast routing in the operand network is at odds with a
schedule that minimizes routing distance and number of hops
in the network. Designing the routing network and static
scheduler in concert will balance router speed with connec-
tivity that the scheduler can easily exploit.

� Fixed frame space: Since the number of instruction slots
(frames) is fixed, the hardware and software must balance
frame size with the number of speculative frames. Larger
architecture frames may enable a better schedule since the
scheduler has more degrees of freedom in placing instruc-
tions. However, Section 6 shows that more tightly packed
frames increase the number of speculative frames and results
in better performance. Thus, the challenge for the sched-
uler is to create efficient schedules in the smallest number of
frames it can.

4. CRITICAL PATH SCHEDULING
In this section, we describe our scheduling algorithm for the Grid
Processor. Structurally, our algorithm resembles a greedy VLIW
scheduler. It takes as input a group of instructions and a descrip-
tion of the processor model, including communication latencies be-
tween different structures. It outputs an assignment of instructions
to ALUs. We first describe a simple extension of a VLIW sched-
uler, which will serve as our baseline GPA scheduler. We then
augment the algorithm with several heuristics that improve perfor-
mance for a given processor configuration.

4.1 Basic GPA Scheduling Algorithm
A classic VLIW scheduler computes the initial root set of ready
instructions. It chooses an instruction i based on its critical path,
and puts the instruction in a VLIW instruction. The scheduler packs
as many ready instructions into the current VLIW instruction as it
can. After it schedules an instruction i, it adds to the ready set any
of i’s children whose ancestors have already been scheduled. While
a VLIW scheduler assigns instruction to an ALU and a time slot,
a scheduler in the SPDI model assigns each instruction to an ALU
without specifying a time slot. Pictured below is the algorithm of
such a scheduler.

S = top_down_greedy_sort(hyperblock H);
foreach instruction i in sorted list S {
R = find_legal_reservation_stations(i);
if |R| = 0, Frames++, Reschedule();
E = sort_reservation_stations(R);
Slot(i) = prioritize(E);

}

This scheduler first produces an instruction list prioritized by
critical path height. We use static instruction latencies and assume
no cache misses exist when computing the critical path heights. For
the unscheduled instruction i with the highest priority, the sched-
uler computes the set of legal reservation stations R. A reservation
station rs specifies an ALU and one of the slots in the instruction
window associated with the ALU. As we will describe in Section 5,
the exact interconnection topology defines the set of legal reserva-
tion stations. For the most general interconnection framework, the
mesh (see Figure 2(d)), all open slots are legal. Other topologies

restrict this set to only those reservation stations that are reachable
from the locations where the parents of i have been scheduled.

If no legal reservation station is available, the scheduler adds to
the pool of total reservation stations by increasing the number of
frames; it then attempts to reschedule the entire block. If several
reservation stations are available, the scheduler chooses the one that
is closest to all parents. In particular, the selected slot is one that
minimizes the Score:

Score
�
rs ��� max�

p

�
CompleteTime

�
p ��� Distance � rsp 	 rs
��

Here p refers to a parent of i, CompleteTime
�
p � refers to the

expected time at which p will produce its results, and D � rsp 	 rs
 is
the number of communication hops required to route p’s result to
rs. Score

�
rs � is simply the earliest time at which i can issue at rs.

Ties are broken by choosing a slot that is closer to the data caches.
We use this algorithm in Section 5 to evaluate the effect of differ-
ent topological optimizations. We describe a number of additional
heuristics to improve our scheduling decisions in the following sub-
section. We use the mesh topology because it is the most simple,
and our results show that it provides the best performance.

4.2 Scheduler Optimizations
We describe three kinds of optimizations that try to balance the twin
objectives of maximizing parallelism—scheduling independent in-
structions on different ALUs—and minimizing communication—
scheduling consumers physically close to producers.

� Locality-Aware Optimizations: minimize communication la-
tencies along all dataflow paths. In particular, the sched-
uler attempts to schedule load instructions and dependents
of loads closer to data caches. In addition, it attempts to
schedule instructions that produce register outputs closer to
the register files.

� Contention Optimizations: maximize instruction-level paral-
lelism. The scheduler attempts to schedule independent in-
structions on different ALUs.

� Ordering optimizations: expose critical paths in the program.
The scheduler gives priority to all instructions on the critical
path, and it updates critical path information after each step.

The augmented algorithm is as follows:

Frames = ceil (|H|/num_alus);
S = top_down_criticality_sort(hyperblock H);
foreach instruction i in sorted list S {

foreach rs in R {
IssueTime(rs) = ReadyTime(rs)+Contention(rs)
CompleteTime(i,rs) = IssueTime(rs)+Latency(i)
Score(rs) = IssueTime(rs)+Lookahead(i)*weight

}
E = sort_reservation_stations(R);
Slot(i) = prioritize(E);
S = top_down_criticality_sort(H-{i});

}

We first set the number of scheduling frames at the minimum
required number. For example, a block of 150 instructions would
require 3 frames on an 8 � 8 array of ALUs. We then obtain the
initial list of instructions based on the critical path metric. Ac-
cording to this metric, the instructions are sorted by the maximum
depth of any descendant in the dataflow graph. For example, if
there are only two dataflow chains in a block, A B C D,
and E F G, the criticality metric would sort these instructions

(a) GPA−M (b) GPA−MZ (c) GPA−Tbar (d) GPA−Mesh

Figure 2: Topologies exposed to the GPA scheduler.

as A 	 B 	 C 	 D 	 E 	 F 	 G, whereas classical greedy sorters would choose
the order A 	 B 	 E 	 C 	 F 	 D 	 G. The advantage of criticality-based sort-
ing is that every instruction on the critical path will be scheduled
first, minimizing communication latencies along the critical path.

Next, we compute the score for every reservation station rs. We
incorporate all locality- and contention-aware optimizations in this
score. Loads and consumers of loads are placed close to the data
caches by augmenting the dataflow graph with a pseudo memory
instruction and fixing the placement of this instruction. For ex-
ample, a dependence edge in the DFG, A B, where A is a load
instruction, is changed to A M B, where M has a fixed sched-
ule at a position one hop away from the rightmost column of the
grid.

Since the hardware can issue at most one instruction at every
ALU in a given cycle, instructions expected to be ready at the same
time are placed on different nodes. The augmented scheduler per-
forms this function by keeping track of estimated busy times of
each ALU. ReadyTime

�
rs � is the same as the score computed in the

basic algorithm described in Section 4.1. The term Contention
�
rs �

denotes any expected additional delay cycles at the ALU due to
contention.

The greedy algorithm as described thus far computes scores based
only on past history, namely the schedule of prior placed instruc-
tions. However, such an algorithm may perform poorly if instruc-
tions that produce register outputs are scheduled far away from the
register file, because a block cannot be committed until all register
outputs have been committed. We avoid this problem by incorpo-
rating a lookahead factor into the score.

Lookahead
�
i ��� distance to child

candidate row
� candidate row

distance to child

For dataflow chains that lead to a register output, this metric at-
tempts to simultaneously choose slots further away from the regis-
ters for instructions early in the dataflow chain and to choose slots
closer to the registers for instructions later in the dataflow chain.

The algorithm then selects the reservation station with the lowest
score. The remaining unscheduled instructions are re-sorted if any
critical paths have changed, and the whole procedure repeats until
all instructions have been scheduled.

5. EVALUATION OF TOPOLOGICAL OP-
TIMIZATIONS

In an SPDI model, the scheduler places instructions at ALUs (nodes)
based upon the node’s availability and the location of the resources
with which it must communicate. An interconnection network with
rich topology, such as a crossbar, enables the schedule to minimize
the latency due to hops in the network. However, a fully connected
network requires each router to have a multitude of ports, which
reduces router speed. While other restrictions on instruction place-

ment may reduce the number of bits required to encode an instruc-
tion, this section examines the effect of routing topology on sched-
uler’s ability to exploit concurrency.

5.1 Topology and Scheduling Trade-offs
Figure 2 shows the four topologies that we consider. We adapted
the scheduling algorithm previously described for each topology
described below. In every case, the scheduler begins placing in-
structions in the first frame of the upper right-hand node in the
ALU grid, since it is close to both the caches (on the right) and
the register files (on the top of the grid).

GPA-M: The GPA-M interconnect, shown in Figure 2a bears the
most resemblance to a VLIW architecture, in which VLIW instruc-
tions are essentially mapped to rows, with the following instruc-
tion mapped to the succeeding row. In each row, all instructions
belonging to the same frame must be independent and dependent
instructions are placed in lower rows. To simplify the router, each
node is connected to only the three nodes directly below it in the
row (below, left, and right). When a VLIW instruction is mapped
to the bottom row, the following VLIW instruction is mapped to
the top row in the next frame. Express channels made of fat wires
route results from the last row to the top row at high speed. The
schedule for GPA-M is effectively an unrolled VLIW schedule, in
which the VLIW words are converted from the time dimension to
being unrolled along the rows and frames.

The scheduler takes the greedily-sorted list and places the inde-
pendent instructions in the rightmost slot of the earliest packet pos-
sible. The scheduler searches each row in succession to see if all
dependences have been satisfied and if the node is reachable from
its parents. If no nodes are available in any of the rows, the sched-
uler tries to place the instruction in the ensuing frame. To minimize
latency, the scheduler seeks to place dependent instructions in adja-
cent rows and columns. As many frames are allocated as necessary
to schedule the entire hyperblock.

GPA-MZ: The GPA-MZ interconnect, shown in Figure 2b, en-
hances GPA-M by permitting an producing instruction to forward
its result to a consumer mapped to the same ALU. This strategy
allows routing delays between adjacent rows to be eliminated for
many producer-consumer pairs, at the cost of an additional bypass
path in the hardware. In the scheduling algorithm the class of legal
reservation stations are extended to include the node on which an
instruction’s parent resides, as long as that node is reachable from
all of the instruction’s other parents. The earliest reservation station
remains the highest logical row in the schedule. For example, if an
instruction i had parents placed in row 3 and row 4, then the best
position would be a different frame on the same node as the parent
in row 4, assuming it was reachable from the parent in row 3.

To determine the number of frames required for the schedule,
the scheduler sets the initial frame count to be the minimum re-
quired to hold all of the instructions in the hyperblock. For exam-

adpcm

bzip2
com

pr

equake

gzip
m

cf
parser

twolf
vortex

M
EAN

0

5

IP
C

VLIW-L
VLIW-0
GPA-M
GPA-MZ
GPA-TBAR
GPA-PLUS

am
m

p

art
dct

m
88ksim

m
peg2

tom
catv

hydro2d

turb3d

swim
m

grid
M

EAN

0

5

10

15

IP
C

VLIW-L
VLIW-0
GPA-M
GPA-MZ
GPA-TBAR
GPA-PLUS

Figure 3: Performance of a VLIW and a GPA with different routers and schedulers.

ple, scheduling a 133 instruction hyperblock would start with three
frames, which can be used for Z-dimension instruction placement.
If the scheduler is unable to find a legal node to place the instruc-
tion (because of sparse allocation in the highest rows), the number
of allocated frames to the block is incremented, as shown in the
previous algorithm, and the scheduler starts from scratch with the
original list.

GPA-Tbar: The GPA-Tbar topology, shown in Figure 2c, has
the same number of router ports as GPA-MZ (including the Z-
dimension bypass), but instead connects to the nodes right, left,
and down from the producing node. This topology permits depen-
dence chains to be routed horizontally and along the frames before
being routed downward, potentially increasing the utilization of the
array for blocks that have long, narrow DFGs. Since dependent in-
structions can be placed within the same row, the highest row is not
necessarily the best choice. For example, placing a consumer one
hop down from its parent in the next row results in fewer hops than
placing it three hops to the left of its parent. The best reservation
station is obtained using the algorithm described in 4.

GPA-Mesh: The GPA-Mesh topology, shown in Figure 2d, aug-
ments GPA-Tbar with “upward” router link to each node, allowing
each node to send an operand to any of its nearest Manhattan neigh-
bors. This topology is the most flexible of those we evaluate, allow-
ing a consumer to be placed anywhere, regardless of the location
of its parents. The advantages of this organization are that hyper-
blocks can be packed into the minimal number of frames because
the scheduler never fails to find a legal assignment. The routers in
GPA-Mesh require an additional port and are likely to run slightly
slower than GPA-Tbar. The criteria to select a node from the legal
candidate nodes is identical to that in the GPA-Tbar configuration.

5.2 Evaluation Methodology
The execution substrate is an 8x8 array of ALUs, which can also be
treated as a 64-wide VLIW processor. We use the Trimaran com-
piler tool set to parse the application source code and apply aggres-
sive VLIW optimizations. The Trimaran compiler is based on the
Illinois Impact compiler [4]. It produces code in the intermediate
Elcor format, based on the Hewlett-Packard PD [30] instruction set.
In addition to the usual set of classic optimizations, Trimaran in-
corporates many VLIW-specific optimizations such as control flow

profiling, trace scheduling, loop unrolling and loop peeling, soft-
ware pipelining with modulo scheduling, speculative hoisted loads,
and predication with both acyclic scheduling of hyperblocks and
control height reduction.

We wrote a scheduler that converts the Elcor output into VLIW
and GPA code, scheduled for the underlying target architectural
model. For VLIW code, the scheduling pass uses top-down greedy
ordering, placing the most critical instructions first in each 64-
instruction instruction word, eventually either filling the long word
or running out of parallel instructions. In experiments where we
modeled no inter-ALU communication latency, any instruction can
be assigned to any ALU with no penalty. With 0.5 cycle intra-ALU
communication latencies, instructions must be placed to provide
enough time for the instruction’s operands to reach it before the in-
struction word executes. If all nodes sufficiently close to the parent
have already been assigned instructions, the instruction is placed
in a later long instruction word. If an instruction can be mapped
to multiple candidate ALUs, the ALU closest to the parent is cho-
sen. Generating schedules for the hybrid GPA uses the algorithm
described in Section 4.

To compare performance across different execution models, sub-
strates, and schedules, we measured instructions per cycle (IPC)
using a custom detailed, cycle-accurate simulator. This tool mod-
els both VLIW and GPA microarchitectures, including realistic la-
tencies through the processor, and simulates instruction fetching,
branch prediction, the cache hierarchy, contention for ALUs, reg-
ister file accesses, and branch mispredictions. We assumed 64KB
primary caches, and a 2MB level-two cache.

In this study, we use a subset of the SPEC2000 [28] and the Me-
diabench [18] benchmark suite. The Trimaran front end currently
compiles only C benchmarks, so we converted a number of the
SPECFP benchmarks to C, and present results for all of the SPEC
benchmarks that the Trimaran tools compiled successfully.

5.3 Scheduler vs. Topology Results
These experiments use the basic scheduler without the placement
heuristics, which are not applicable to a VLIW model. We add
these to the scheduler in the next section. Figure 3 shows the perfor-
mance of these four instruction placement schemes, broken down
into integer benchmarks on the left-hand graph and floating-point

Base C CR CRA CRAL CRALO RALO
adpcm 1.76 1.70 1.71 1.66 1.84 1.80 1.77
ammp 7.07 7.08 7.24 7.09 7.33 7.32 7.19

art 5.63 5.44 5.64 5.75 5.68 5.96 6.03
bzip2 3.95 3.97 4.01 4.00 4.22 4.24 4.26
compr 1.89 1.92 1.92 1.95 2.01 1.96 2.02

dct 18.57 19.53 19.93 21.11 21.18 20.87 19.95
equake 2.93 3.02 2.95 2.95 2.94 3.18 2.97

gzip 2.38 2.41 2.43 2.43 2.55 2.57 2.68
hydro2d 9.68 8.47 9.22 9.56 9.62 9.47 9.75
m88ksim 7.11 6.96 7.58 7.76 8.30 7.76 7.57

mcf 1.01 1.12 1.12 1.10 1.20 1.21 1.05
mgrid 12.68 11.87 11.91 11.82 17.91 17.94 15.05
mpeg2 5.88 5.91 5.82 6.02 6.26 6.46 6.23
parser 1.56 1.56 1.58 1.58 1.66 1.66 1.69
swim 12.26 21.21 20.24 22.22 19.69 18.74 18.70

tomcatv 15.92 14.38 17.83 18.16 16.83 18.26 18.40
turb3d 12.20 13.07 14.32 15.18 14.89 14.65 14.56
twolf 2.66 2.55 2.56 2.54 2.47 2.70 2.76
vortex 5.97 6.11 5.74 5.73 6.70 6.63 7.06
MEAN 6.90 7.28 7.58 7.81 8.05 8.08 7.88

Table 1: Performance improvements from scheduler optimizations.

benchmarks on the right. The leftmost two bars for each bench-
mark present the results for a 64-wide VLIW machine. VLIW-L
shows the IPC of a realistic VLIW in which the 0.5 cycle per hop
routing delays are exposed to the scheduler. VLIW-0 shows the
IPC of an ideal VLIW in which all inter-ALU communication is
free, essentially exposing all the parallelism that the compiler is
able to find in the DFG. The dark lower parts of the bars show the
IPC when the cache hierarchy is modeled, while the white caps
show the IPC if all memory references hit in the L1 caches. Note,
however, that the VLIW models are all somewhat optimistic as we
assume an infinite register set requiring no spills or restores, and
instantaneous lock-step synchronization across all ALUs. Imple-
menting such lock-step synchronization is not scalable due to the
wiring delays across the distributed array of ALUs.

Both inter-ALU latencies and cache misses each cause approxi-
mately a 50% loss in exposed VLIW parallelism. The ideal VLIW
(no communication latency and no cache misses) achieves nearly
half of the ILP of the GPA-M topology. However, when cache
misses and scheduling latencies are included, the VLIW machine
achieves only one eighth the performance of a Grid Processor with
comparable width on the integer benchmarks, and significantly less
on the floating-point benchmarks.

GPA-MZ actually performs slightly worse than the GPA-M. De-
spite the reduced latency when placing dependent operations on the
same node in different frames, the Z-routing capability causes the
scheduler to concentrate the instructions in the upper-right-hand
nodes. The restrictive GPA-MZ topology prevents dependent in-
structions from being spread to the left hand columns, leading to
poor load balancing.

GPA-Tbar provides a large boost over GPA-MZ, because the hor-
izontal routing channels allows the scheduler to more easily spread
the instructions across the columns. With this routing topology, the
scheduler can minimize the communication along the critical path,
and place less critical dependence chains on longer paths toward
the left of the grid. Furthermore, the scheduler can place a block
with a single long chain of dependent instructions across the en-
tire grid, minimizing the communication latency by first employing
all of the frame slots of a single node before moving horizontally
or vertically to the next adjacent node along a Hamiltonian path.
The T-bar causes a large performance drop in the swim benchmark,
since the scheduler places too many independent instructions on the
same node.

Finally, the results show additional performance gains from the
GPA-Mesh configuration. While upwards routing does not decrease
communication latencies, it does permit a schedule to fit completely
in the minimal number of frames. This capability permits the dens-
est possible mapping of instructions to frames, allowing more spec-
ulative hyperblocks to be mapped onto the grid. These results indi-
cate that the advantages of a richer network topology that provides
the scheduler with more flexibility likely outweighs the disadvan-
tages of more router ports. The GPA-Mesh shows an average of
20% performance improvement over the less flexible, VLIW-like
GPA-M organization.

6. SCHEDULER OPTIMIZATIONS
In this section, we evaluate the scheduler optimizations described
in Section 4 for the GPA-Mesh configuration. Recall that those
optimizations try to better match the static schedules to the actual
latencies experienced by the critical path at run-time.

6.1 Evaluation of Schedule Optimizations
Table 1 shows the performance results of the optimizations in dif-
ferent combinations. The first column, labeled Base, refers to our
baseline GPA scheduler that is similar to a greedy VLIW scheduler.
Successive columns correspond to a scheduler with one or more of
the following additions to baseline scheduler: C = order by criti-
cal path, R = Recompute critical paths after each placement, A =
model contention at each ALU, L = schedule loads and consumers
of loads closer to data caches, and O = use lookahead to schedule
instructions that produce register outputs closer to the register file.

The first set of experiments examine the effect of instruction
priority in the scheduling algorithm by comparing the greedy or-
dering, (Base), the criticality ordering (C), and criticality with re-
computation of the critical path during scheduling (CR). In the ab-
sence of other optimizations, instruction priority is not a significant
factor as greedy out-performs the critical-path order in three bench-
marks, while the critical-path order provides significantly higher
performance on another three, improving performance by nearly
80% in swim. However, recomputing the critical paths improves
criticality ordering, yielding the best performance on 12 of the 19
benchmarks and averaging 9% improvement over baseline and 4%
improvements over the critical-path ordering.

Augmenting the scheduler with a contention model to improve
load balance across the ALUs (CRA) tends to improve performance.

bench adpcm ammp art bzip2 compress dct equake gzip hydro2d m88ksim
Dense IPC 1.80 7.32 5.96 4.24 1.96 20.87 3.18 2.57 9.47 7.76

Avg. frames 1.7 3.0 1.6 1.7 1.1 3.3 1.5 1.9 3.9 1.5
Sparse IPC 1.82 6.71 6.00 4.34 2.11 18.57 2.90 2.70 10.55 7.26
Avg. frames 3.4 6.0 3.2 3.3 2.1 6.6 3.0 3.7 7.9 4.0
Infinite IPC 1.77 6.32 5.26 4.07 2.07 17.44 2.84 2.48 9.84 5.69
Avg. frames 6.6 11.2 7.7 6.6 4.7 9.4 4.5 8.4 10.3 5.5

bench mcf mgrid mpeg2 parser swim tomcatv turb3d twolf vortex mean
Dense IPC 1.21 17.94 6.46 1.66 18.74 18.26 14.65 2.70 6.63 8.07

Avg. frames 1.39 3.95 2.26 1.10 6.19 3.79 3.49 1.64 1.36 2.44
Sparse IPC 1.22 13.45 5.71 1.73 16.99 15.72 12.59 2.81 6.41 7.35
Avg. frames 2.7 7.9 4.5 2.1 11.8 7.6 7.0 3.3 2.7 4.82
Infinite IPC 1.25 6.22 4.61 1.60 19.17 14.83 11.03 2.49 4.57 6.50
Avg. frames 7.6 18.8 12.5 4.7 9.0 8.3 9.5 8.4 6.0 8.39

Table 2: Trade-offs of scheduling for utilization versus communication

Recall that this optimization explicitly attempts to migrate inde-
pendent instructions to different ALUs. While this optimization
is not important for integer programs which exhibit little paral-
lelism, it affects performance significantly on some floating point
benchmarks. Averaged across the entire benchmark suite, this op-
timization improves performance by 2.5% over critical path re-
computation (CR).

Finally we apply the locality-aware optimizations that consider
the placement of load instructions (CRAL) and instructions that
write the register file (CRALO). As seen in the Table 1, optimizing
for loads and consumers of loads consistently provides better per-
formance with large gains on 6 benchmarks, indicating the impor-
tance of such optimizations. Optimizing the placement of instruc-
tions that write the register file, on the other hand, does not have
much affect on performance in the presence of the load placement
optimization.

6.2 Code Density Optimizations
In this section, we evaluate the effect of using different number
of frames to schedule a block. Using the minimum number of
frames allows the scheduler to densely pack the instructions. With
the hardware providing only a finite number of reservation stations
at each ALU, a dense packing enables several speculative blocks
to be mapped and executed, allowing a large window of instruc-
tions to extract instruction level parallelism. Dense schedules also
have the benefit of good instruction memory performance. How-
ever, providing more frames to a block creates more opportunities
to schedule critical path instructions on the same ALU, thus mini-
mizing communication latencies along the critical path.

Table 2 explores this trade-off. The first row shows the IPC
when the scheduler is allowed to use only the minimum number
of frames for each block it schedules. The second line in the same
row shows the average number of frames used by the blocks that
occur during execution. For example, the benchmark equake ex-
hibits an IPC of 3.18, when using dense schedules which utilize
1.5 frames per block on the average. The second row shows the
corresponding results, when the scheduler uses twice the minimum
number of frames, and the last row corresponds to the case, when
the scheduler is free to use as many frames as the length of the
longest dataflow chain.

As can be seen, using dense schedules provides superior perfor-
mance on most benchmarks. On a small set of benchmarks (bzip2,
compress), we notice that performance improves marginally with
sparse schedules. On such benchmarks, we observed low branch
prediction rates, and hence the available reservation stations were
not fully utilized during execution. The sparse schedules benefit-
ted from using those unused reservation stations, minimizing the

communication along the critical path. When we use still sparser
schedules (Infinite), the performance further deteriorates, a fact ex-
acerbated in some floating point benchmarks that are inherently
latency-tolerant.

7. SCHEDULING FOR COMPATIBILITY
A major drawback of traditional VLIW architectures, and SPSI ma-
chines in general, is a lack of object code compatibility across gen-
erations. If issue width of the hardware or the runtimes latencies
used by the compiler change, the binaries must be rescheduled.
Since static issue architectures do not dynamically check instruc-
tion dependencies or change instruction placements, the compiler
must make static assumptions about the topology and latencies to
ensure correct execution.

Conversely, SPDI architectures do not enforce a rigorous static
schedule and still produce correct program execution even if the
dynamic latencies differ from those used at compile time. In this
section, we examine the sensitivity of the performance of an SPDI
machine to exact knowledge of dynamic communication latencies.
Our results show that while the best schedules are usually pro-
duced when the static and dynamic latencies match, the perfor-
mance degradation when they mismatch is typically less than 10%.
We also describe a method of dynamically mapping a schedule cre-
ated for a large SPDI machine onto a machine with fewer ALUs.
We evaluate performance degradations resulting from a mismatch
in issue width and show that a single schedule may run effectively
across machines with different issue widths, requiring no transla-
tion or recompilation.

7.1 Sensitivity to Wire Latencies
We evaluated the sensitivity of the scheduler to specific wire delays
by scheduling for a fixed delay and then simulating that schedule on
an implementation with different delays. We then compared those
to our original results in which scheduler knows the communica-
tion delays precisely. Table 3 shows the performance, measured in
IPC, of programs scheduled for an 8x8 GPA-Mesh configuration,
with two rows for each of four single-hop communication latencies
ranging from 0.5–3 cycles. The top row in each pair is the ab-
solute IPC when each benchmark is scheduled and executed with
matching static and dynamic latencies. The second row shows the
difference in IPC when the program is scheduled for a one-cycle la-
tency but run using the varying latencies. Of course, only one row
is shown for the one cycle hop latency since the static and dynamic
latencies always match.

Negative numbers in ∆IPC indicates that performance degrades
when the static and dynamic latencies mismatch, while positive

scheduled
latencies adpcm ammp art bzip2 compress dct equake gzip hydro2d m88ksim

IPC - 0.5 cycles 1.80 7.32 5.95 4.24 1.96 20.87 3.09 2.57 9.47 7.76
∆IPC (%) 0 0 0.2 0 0 0 2.9 0 0 0

IPC - 1.0 cycle 1.38 5.69 4.92 3.27 1.52 15.35 2.70 1.93 6.91 5.74
IPC - 2.0 cycles 0.93 3.81 3.42 1.95 1.05 10.73 1.94 1.27 4.41 3.56

∆IPC (%) -2.2 -1.8 4.1 9.7 -1.9 -2.1 2.6 -1.6 -3.6 0.6
IPC - 3.0 cycles 0.66 3.02 2.66 1.52 0.75 6.93 1.55 0.84 3.22 2.50

∆IPC (%) -4.5 -10.6 0.4 -0.7 -4 3.3 1.3 2.4 -6.5 0.4
mcf mgrid mpeg2 parser swim tomcatv turb3d twolf vortex mean

IPC - 0.5 cycles 1.22 17.94 6.46 1.66 18.74 18.26 14.65 2.70 6.58 8.06
∆IPC (%) -0.8 0 0 0 X X 0 0 0.8 0.2

IPC - 1.0 cycle 0.94 13.22 4.75 1.3 10.35 12.63 9.20 2.19 5.21 5.7
IPC - 2.0 cycles 0.59 4.58 2.83 1.01 5.65 6.28 5.14 1.53 3.95 3.17

∆IPC (%) 8.5 69.9 5.7 -12.9 3.9 2.2 0 1.9 -2.7 4.2
IPC - 3.0 cycles 0.41 4.94 1.98 0.67 4.54 3.97 3.44 1.14 2.54 2.48

∆IPC (%) 9.8 6.3 3.0 -7.5 -11.2 9.0 2.6 0 7 0

Table 3: Sensitivity of the SPDI schedule to wire dynamic routing latencies.

numbers indicate performance improvements. For example, the
IPC of dct sheduled and run with 2-cycle hop latencies is 10.73.
When it is scheduled for 1-cycle hop latencies and run with 2-
cycle latencies, the IPC drops to 10.5, a loss of 2.1%. The over-
all results show that if the wires are faster than those for which
they were scheduled (0.5 cycles), the performance is virtually the
same. If the wires are slower (2 or 3 cycles per hop), performance
drops by only 2–3%. Some benchmarks, such as bzip2 and mgrid
are extremely sensitive to the schedule and their performance actu-
ally improves when the wires are slower than those assumed by the
scheduler. This somewhat surprising result demonstrates the sensi-
tivity of runtime performance to compile time assumptions of the
hardware, and we are continuing to investigate its causes.

7.2 Sensitivity to Issue Width
SPDI architectures can achieve cross-generation compatibility by
further virtualizing the nodes in the ALU array. Since the GPA-
Mesh topology is completely connected, instructions may be as-
signed anywhere and the schedule will still produce the correct re-
sult. Virtualization is achieved by scheduling the code for a large
array (for example, a 64-wide 8x8 GPA used in this section), which
can then be run on a smaller array by dynamically mapping the
instructions from multiple nodes in the larger virtual array to a sin-
gle node in the smaller physical array. This virtualization strategy
requires that enough frames are available on the physical array to
store all of the instructions from the schedule of the virtual array.
For example, an instruction block consuming 2 frames in an 8x8
array may consist of up to 128 instructions. Mapping this block
onto a 4x4 array would require 8 frames of storage on the smaller
array. The mapping function can be performed entirely in hard-
ware by interpreting the instruction placement addresses, specified
as coordinates in the X, Y, and Z dimensions of the virtual grid,
differently on different size grids. As an example, an address of

� 1,7,1 � representing row 1, column 7, frame 1 on the 8x8 virtual
grid can be mapped to � 0,3,7 � on the 4x4 array by translating the
binary addresses from � 001,111,1 � to � 00,11,111 � .

We evaluated the performance losses incurred by running pro-
grams scheduled for a larger 8x8 array on smaller arrays. Table 4
shows the performance degradation as compared to codes explic-
itly scheduled for the smaller arrays. The rows labeled “IPC” show
the raw instructions per clock when the scheduler knows the ex-
act topology of the grid. The rows labeled ∆IPC show the change
in performance when running the 8x8 schedule on each smaller
grid size indicated. Results show that performance drops an av-
erage of 5% when running an 8x8 schedule on an 8x4 array (8

rows, 4 columns), 17% when running on a 4x4 array, and 22%
when running on a 4x2 array. However, those performance drops
are negligible when compared to the performance gains that can be
achieved on programs with substantial parallelism by migrating to
larger grid dimensions. Thus a compatibility path can be provided
by scheduling all codes for large arrays, initially running them on
small arrays, and achieving performance improvements by incre-
mentally migrating to larger arrays until reaching the grid size for
which the applications were originally scheduled.

8. CONCLUSIONS
Conventional architectures sit at opposite ends of the spectrum with
regard to their demands on the scheduler. While superscalar archi-
tectures can improve some schedules through dynamic scheduling
hardware and can see some benefit from good instruction sched-
ulers, performance is ultimately constrained by the limited instruc-
tion window size. At the other end of the spectrum, VLIW architec-
tures demand that the compiler place every instruction and sched-
ule every latency. Such demands are unrealistic in the face of un-
certain memory latencies and statically uncertain aliases. A hybrid
approach that allows the scheduler to place instructions for good lo-
cality while also allowing the hardware to dynamically execute the
instructions (overlapping instruction latencies and other unknown
latencies) can produce better performance. Such approaches will
become even more important as technology trends make communi-
cation more critical due to increased wire delays.

We have implemented and evaluated a scheduler for such an
emerging architecture. Because the hardware dynamically exe-
cutes the instructions, the scheduler is freed from the burden of
precise scheduling constraints. Instead its job is to expose the
concurrency in the instruction stream and place the instructions to
minimize communication overheads. Our scheduling algorithm is
able to achieve a tightly packed schedule using a minimum number
instruction slots, while still minimizing latency and balancing the
load across the ALUs, thus eliminating hot spots where too many
independent instructions have been placed.

We have evaluated our scheduler on a 64-issue processor and
examined the interplay between the hardware constraints and the
scheduler’s capabilities. We show that the freedom provided by a
mesh interconnect topology allows the scheduler to expose more
concurrency while minimizing the number of hops, resulting in
a ??% performance improvement over more restrictive topologies.
We demonstrate that accounting for distances, not just between
ALUs, but also to the register file and cache banks, is critical for
performance. An algorithm to estimate instruction execution times

grid
dimensions adpcm ammp art bzip2 compress dct equake gzip hydro2d m88ksim
IPC - 8x8 1.80 7.32 5.96 4.24 1.96 20.87 3.18 2.57 9.47 7.76
IPC - 8x4 1.81 6.67 5.77 4.26 1.91 17.81 3.04 2.68 9.46 7.66
IPC - 4x4 1.89 5.88 5.32 4.26 2.11 12.31 2.64 2.62 7.30 6.89
IPC - 4x2 1.71 3.89 4.18 3.48 1.98 6.60 2.00 2.15 4.01 4.80

∆IPC - 8x4 (%) 1.6 -2.4 -6.1 -0.9 7.3 -2.2 -8.55 -0.37 -5.3 -5.1
∆IPC - 4x4 (%) -1.6 -11.2 -5.6 -8.7 -1.4 -18.9 -10.2 -6.5 -11.2 -18.4
∆IPC - 4x2 (%) -7.6 -10.8 -8.9 -17.5 -13.1 -8.0 -18.5 -17.7 -14.9 -27.7

mcf mgrid mpeg2 parser swim tomcatv turb3d twolf vortex mean
IPC - 8x8 1.21 17.94 6.46 1.66 18.74 18.26 14.65 2.70 6.63 8.07
IPC - 8x4 1.21 15.19 5.51 1.68 13.74 14.12 12.73 2.76 6.07 7.05
IPC - 4x4 1.25 8.94 5.18 1.78 9.62 9.11 9.37 2.69 5.57 5.51
IPC - 4x2 1.22 4.80 4.17 1.69 4.06 4.80 5.28 2.43 4.05 3.54

∆IPC - 8x4 (%) 5.7 -14.9 3.0 1.8 -7.4 -0.9 -4.7 -0.7 0.8 -2.1
∆IPC - 4x4 (%) 0.8 -26.8 -6.9 -5.6 -17.7 -10.4 -7.9 -12.0 -10.4 -10.0
∆IPC - 4x2 (%) -9.8 -27.3 -16.3 -14.2 -8.4 -7.7 -12.3 -17.3 -24.2 -14.9

Table 4: Sensitivity to issue width and topology

was necessary to improve load balancing and to help place inde-
pendent instructions on different nodes. Finally, we show that in-
struction criticality is important and that iteratively updating the es-
timated critical path during the instruction placement process pro-
vides a 10% boost in performance over a single priority listing.
Combining the strengths of static scheduling with the advantages
of dynamic issue will be critical to achieve performance in emerg-
ing wire-dominated technologies.

9. REFERENCES
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger.

Clock rate versus IPC: The end of the road for conventional
microarchitectures. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages
248–259, June 2000.

[2] A. Baniasadi and A. Moshovos. Instruction distribution
heuristics for quad-cluster dynamically-scheduled,
superscalar processors. In Proceedings of the 33rd
International Symposium on Microarchitecture, pages
337–347, December 2000.

[3] R. Canal, J. M. Parcerisa, and A. Gonzalez. Dynamic cluster
assignment mechanisms. In Proceedings of the 6th
International Symposium on High-Performance Computer
Architecture, pages 132–142, 2000 January.

[4] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and
W. mei W. Hwu. IMPACT: An architectural framework for
multiple-instruction-issue processors. In Proceedings of the
18th Annual International Symposium on Computer
Architecture, pages 266–275, May 1991.

[5] P. Craig, R. Crowell, M. Liu, B. Noyce, and J. Pieper. The
Gem loop transformer. Digital Technical Journal, 1999.

[6] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The
multicluster architecture: Reducing cycle time through
partitioning. In Proceedings of the 30rd International
Symposium on Microarchitecture, pages 149–159, December
1997.

[7] J. Fisher. Very long instruction word architectures and the
ELI-512. In Proceedings of the Tenth Annual International
Symposium on Computer Architecture, pages 140–150, June
1983.

[8] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Transactions on Computers,
C-30(7):478–490, July 1981.

[9] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau.
Parallel processing: A smart compiler and a dumb machine.
In Proceedings of the SIGPLAN ’84 Symposium on Compiler
Construction, Montreal, Canada, June 1984.

[10] P. B. Gibbons and S. S. Muchnick. Efficient instruction
scheduling for pipelined architecture. In Proceedings of the
SIGPLAN ’86 Symposium on Compiler Construction, pages

11–16, Palo Alto, CA, June 1986.
[11] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling

for wide-issue processors. In Proceedings of the Fourth
International Symposium on High-Performance Computer
Architecture, pages 266–276, 1998.

[12] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos.
High-speed electrical signaling: overview and limitations. In
IEEE Micro, pages 12–24, January 1998.

[13] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and
R. Zahir. Introducing the ia-64 architecture. IEEE Micro,
20(5):12–23, September/October 2000.

[14] D. R. Kerns and S. Eggers. Balanced scheduling: Instruction
scheduling when memory latency is uncertain. In
Proceedings of the SIGPLAN ’93 Conference on
Programming Language Design and Implementation, pages
278–289, Albuquerque, NM, June 1993.

[15] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
19(2):24–36, March 1999.

[16] G. Krishnamurthy, E. D. Granston, and E. J. Stotzer.
Affinity-based cluster assignment for unrolled loops. In
Proceedings of the 2002 ACM International Conference on
Supercomputing, pages 107–116, 2002.

[17] M. Lam. Software pipelining: An effective scheduling
technique for VLIW machines. In Proceedings of the
SIGPLAN ’88 Conference on Programming Language
Design and Implementation, pages 318–328, Atlanta, GA,
June 1988.

[18] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. In International
Symposium on Microarchitecture, pages 330–335, 1997.

[19] G. Lindenmaier, K. S. McKinley, and O. Temam. Load
scheduling with profile information. In A. Bode, T. Ludwig,
and R. Wismüller, editors, Euro-Par 2000 – Parallel
Processing, volume 1900 of Lecture Notes in Computer
Science, pages 223–233, Munich, Germany, Aug. 2000.
Springer-Verlag.

[20] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann.
Effective compiler support for predicated execution using the
hyperblock. In Proceedings of the 25th Annual International
Symposium on Microarchitecture, pages 45–54, June 1992.

[21] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W.
Keckler. A design space evaluation of grid processor
architectures. In Proceedings of the 34th Annual
International Symposium on Microarchitecture, pages
40–51, December 2001.

[22] K. Palem and B. Simons. Scheduling time-critical
instructions on risc machines. In Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 270–280, 1990.

[23] Y. Qian, S. Carr, and P. Sweany. Optimizing loop

performance for clustered vliw architectures. In The 2002
International Conference on Parallel Architectures and
Compilation Techniques, pages 271–280, Charlottesville,
VA, Sept. 2002.

[24] N. Ranganathan and M. Franklin. An empirical study of
decentralized ILP execution models. In 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 272–281, October
1998.

[25] B. Rau. Dynamically scheduled VLIW processors. In
Proceedings of the 26th Annual International Symposium on
Microarchitecture, pages 80–90, December 1993.

[26] J. Ruttenberg, G. R. Gao, A. Stoutchinin, and
W. Lichtenstein. Software pipelining showdown: optimal vs.
heuristic methods in a production compiler. In Proceedings
of the ACM SIGPLAN ’96 conference on Programming
language design and implementation, pages 1–11, 1996.

[27] The national technology roadmap for semiconductors.
Semiconductor Industry Association, 1999.

[28] Standard Performance Evaluation Corporation. SPEC CPU
2000, http://www.spec.org/osg/cpu2000, April 2000.

[29] R. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic unit s. IBM Journal, 11:25–33, January 1967.

[30] V.Kathail, M.Schlansker, and B.R.Rau. Hpl-pd architecture
specification: Version 1.1. Technical Report
HPL-93-80(R.1), Hewlett-Packard Laboratories, February
2000.

