
Address Translation and Storage Management

for Persistent Object Stores

by

Sheetal Vinod Kakkad, B.E., M.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1997

Copyright

by

Sheetal Vinod Kakkad

1997

Address Translation and Storage Management

for Persistent Object Stores

Approved by
Dissertation Committee:

To my wife Raji,

for always being there

when it mattered the most

Acknowledgments

Getting a Ph.D. is incredibly hard, and I could not have done it without the help and support of

many people. First and foremost, I would like to thank my advisor, Paul Wilson, who originally

encouraged me to transfer from the master's program to the doctoral program. Over the last

six years, I have learned many lessons|both academic and otherwise|from Paul as he helped

me steer towards the right problems and issues. I would also like to thank all the members of

my dissertation committee, particularly Don Batory, who has always been a source of constant

encouragement and has helped with remmoving many administrative obstacles in my life as a

graduate student.

I would like to thank the past and present members of OOPS research group, in par-

ticular Mark Johnstone and Scott Kaplan, who have directly or indirectly contributed to the

work presented in this dissertation. I have also been fortunate to have Vivek Singhal and Je�

Thomas as close friends who have helped me in many di�erent ways, including providing moral

support when everything seemed too hard.

Over the years, several sta� members in the Department of Computer Sciences have

made life easier for me. In particular, Fletcher Mattox, the best systems administrator I have

known, who has more than once gone out of his way to help me resolve the problem at hand

so that I could continue making progress, and Gloria Ramirez, the most helpful and friendly

graduate secretary that any lost student could ask for|thank you both for everything that

you have done.

A special acknowledgment goes to Motorola for the �nancial support over the last

year, and especially to my colleagues at the Somerset Design Center in Austin for being very

understanding and patient with me as dissertation requirements conicted with my work duties

at times.

To my parents and in-laws, to my brother Darpan, and to Mona, Neela, Lakshmi and

Bala|thank you for the trust and faith in my abilities, and for not giving up on me. I am deeply

grateful to Geri for the love and positive energy that she showed, even when everything seemed

so hard|thanks from the bottom of my heart! Thanks also to all my friends, particularly

Sanjay and Rema, Aarthi, and Dave and Maria, for supporting my ambitions and always

believing that I could achieve my goals.

v

Finally, I owe an immense debt of gratitude to Raji, my wife and my best friend, for

her unedgling love and support over the last few years. She has put up with all my erratic

and seemingly-crazy behavior, and has always been there when I needed a friendly shoulder or

a warm hug. This dissertation would not have been possible without her e�orts, and I dedicate

it to her for the courage and calmness that she has shown through the years.

Sheetal Vinod Kakkad

The University of Texas at Austin

December 1997

vi

Address Translation and Storage Management

for Persistent Object Stores

Publication No.

Sheetal Vinod Kakkad, Ph.D.

The University of Texas at Austin, 1997

Supervisor: Paul R. Wilson

A common problem in software engineering is e�ciently saving the state of application data

structures to non-volatile storage between program executions. If this is accomplished using

normal �le systems, the programmer is forced to explicitly save the data to �les as a stream

of uninterpreted bytes, thereby losing both pointer semantics and object identity. A better

approach is to use persistent object storage, a natural extension to virtual memory that allows

heap data to be saved automatically to disk while maintaining the topology of data structures

without any explicit programmer intervention.

If persistent object stores are to replace the functionality of normal �le systems, they

must be able to address large volumes of data e�ciently on standard hardware. High-

performance address translation techniques are necessary and important for supporting large

address spaces on stock hardware. We present pointer swizzling at page fault time (PS@PFT),

a coarse-grained address translation scheme suitable for this purpose, and demonstrate it by

building a persistent storage system for C++ called the Texas Persistent Store. We also

discuss alternative approaches for portably incorporating �ne-grained address translation in

Texas for situations where coarse-grained swizzling alone is insu�cient. As part of the perfor-

mance results, we present a detailed analysis of various components of a coarse-grained address

translation technique, including a comparison with overall I/O costs.

Pointer swizzling requires run-time knowledge of in-memory object layouts to locate

pointers in objects. We have developed and implemented Run-Time Type Description (RTTD)

for this purpose; our implementation strategy is portable because it is based on a novel use

of compiler-generated debugging information for extracting the necessary type description.

RTTD is also useful for other applications such as data structure browsing, and advanced

pro�ling and tracing.

vii

Another part of this research is a study of the interaction between systems similar to

PS@PFT and operating systems, particularly regarding virtual memory management issues.

We suggest areas where operating system implementations can be made more open to improve

their performance and extensibility. Finally, we briey discuss storage management issues,

speci�cally log-structured storage, disk prefetching, and compressed in-memory storage, and

provide directions for future research in this area.

viii

Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1 Introduction 1

1.1 Scope of the Dissertation : 2

1.1.1 Our Thesis : 3

1.1.2 Motivation : 3

1.1.3 Cost of Orthogonal Persistence : 4

1.1.4 Overview : 4

1.1.5 Contributions : 5

1.2 Advanced Issues : 8

1.3 Organization of the Dissertation : 8

Chapter 2 Design Issues for Persistence 11

2.1 Introduction : 11

2.2 Background : 11

2.2.1 Persistence : 12

2.2.2 Types of Persistence : 12

2.2.3 Our Approach : 13

2.3 Address Translation Taxonomies : 14

2.3.1 Eager vs. Lazy Swizzling : 14

2.3.2 Node Marking vs. Edge Marking Schemes : : : : : : : : : : : : : : : : : 15

2.3.3 General Classi�cation for Persistence : 16

2.4 Granularity Choices for Persistence : 17

2.4.1 Address Translation : 17

2.4.2 Address Mapping : 18

2.4.3 Data Fetching : 18

2.4.4 Data Caching : 19

2.4.5 Checkpointing : 19

2.5 Fine-grained Address Translation : 20

ix

2.5.1 Basic Costs : 20

2.5.2 Object Replacement : 21

2.5.3 Discussion : 22

2.6 Survey of Related Work : 24

2.6.1 Persistent Programming Languages : 24

2.6.2 External Libraries : 27

2.6.3 Other Approaches : 30

2.7 Conclusions : 32

Chapter 3 Pointer Swizzling at Page Fault Time 33

3.1 Introduction : 33

3.2 Motivation : 34

3.3 Algorithm Description : 35

3.4 The Mistaken-Dirty-Pages \Problem" : 39

3.4.1 What it is : 39

3.4.2 Is it a Bug or a Feature? : 40

3.4.3 Observations : 41

3.4.4 Discussion : 42

3.5 Handling Large Objects : 43

3.6 Avoiding Address Space Exhaustion : 44

3.6.1 Smaller Page Sizes : 44

3.6.2 Address Space Reuse : 45

3.6.3 Fine-grained and Mixed-granularity Translation : : : : : : : : : : : : : : 46

3.7 Sharing and Compatibility : 46

3.7.1 Data Formats for Sharing across Machines : : : : : : : : : : : : : : : : : 47

3.7.2 Linking to Existing Code : 48

3.7.3 Interfacing with Languages and Compilers : : : : : : : : : : : : : : : : : 48

3.8 Fine-grained and Mixed-granularity Translation : : : : : : : : : : : : : : : : : : 49

3.8.1 Smart Pointers : 49

3.8.2 Fine-grained Address Translation : 50

3.8.3 Mixed-granularity Address Translation : : : : : : : : : : : : : : : : : : : 52

3.9 Conclusions : 53

Chapter 4 Design and Implementation of the Texas Persistent Store 54

4.1 Introduction : 54

4.2 Goals and Features : 55

4.3 Basic Design : 56

4.4 Implementation Details : 57

4.4.1 Heap Management : 57

4.4.2 Caching : 60

4.4.3 Virtual Memory Abstraction Layer : 61

4.4.4 Run-Time Type Description : 61

4.4.5 Handling Virtual Function Table Pointers : : : : : : : : : : : : : : : : : 62

4.4.6 Disk Storage Management : 62

x

4.5 Conclusions : 64

Chapter 5 Performance of the Texas Persistent Store 66

5.1 Introduction : 66

5.2 Experimental Design : 67

5.2.1 Benchmarks : 67

5.2.2 Methodology : 69

5.2.3 Hardware and Operating Systems : 74

5.3 Instruction-Count Pro�ling Results : 75

5.4 Performance on Linux : 76

5.4.1 Large Database Results : 77

5.4.2 Small Database Results : 84

5.4.3 Analysis : 90

5.5 Performance on Solaris : 91

5.5.1 Large Database Results : 91

5.5.2 Small Database Results : 95

5.5.3 Large Database Results Using Raw I/O : : : : : : : : : : : : : : : : : : 99

5.5.4 Small Database Results Using Raw I/O : : : : : : : : : : : : : : : : : : 101

5.5.5 Large Database Results with Bigger Memory Size : : : : : : : : : : : : : 103

5.5.6 Analysis : 106

5.6 Comparison of Address Translation Granularities : : : : : : : : : : : : : : : : : 107

5.7 Discussion : 109

5.7.1 Basic Argument : 110

5.7.2 Impact of Operating System Implementations : : : : : : : : : : : : : : : 110

5.7.3 Indirect Costs of Pointer Swizzling : 111

5.8 Benchmarking Limitations : 111

5.8.1 Synthetic Benchmarks : 112

5.8.2 Common Problems with the OO1 and OO7 Benchmarks : : : : : : : : : 113

5.8.3 Summary : 116

5.9 Conclusions : 116

Chapter 6 Run-Time Type Description 118

6.1 Introduction : 118

6.2 RTTD Issues : 120

6.2.1 Motivation : 120

6.2.2 RTTD vs. RTTI : 121

6.2.3 Type Descriptor Records : 121

6.2.4 Preprocessors vs. Debugging Information : : : : : : : : : : : : : : : : : : 121

6.2.5 Adapting to Future Compiler Support : : : : : : : : : : : : : : : : : : : 123

6.3 RTTD Generation and Manipulation : 124

6.3.1 Generating Type Descriptor Records : 125

6.3.2 Associating Type Descriptor Records with Objects : : : : : : : : : : : : 125

6.3.3 Compilation and Linkage Model : 126

6.3.4 RTTD Across Multiple Compilation Units : : : : : : : : : : : : : : : : : 128

xi

6.4 RTTD for C++ : 129

6.4.1 Overview : 129

6.4.2 Implementation Details : 131

6.4.3 Handling Multiple Compilation Units : 135

6.4.4 Using Type Names for Added Flexibility : : : : : : : : : : : : : : : : : : 135

6.4.5 Complications and Enhancements : 138

6.5 Storage Model : 141

6.5.1 Hierarchical Format : 141

6.5.2 Flat Format : 142

6.6 Performance Characteristics : 144

6.6.1 Compile-Time Costs : 144

6.6.2 Run-Time Costs : 146

6.6.3 Making Decoding Costs Negligible : 146

6.7 Current Status and Future Work : 147

6.8 Related Work : 148

6.9 Conclusions : 149

Chapter 7 Interactions with Operating Systems 151

7.1 Introduction : 151

7.1.1 Background: Virtual Memory : 151

7.1.2 Basic Terminology : 152

7.2 Virtual Memory Allocation : 152

7.2.1 Storage Space vs. Address Space Allocation : : : : : : : : : : : : : : : : 153

7.2.2 Virtual Memory Primitives : 153

7.2.3 Performance of Virtual Memory Primitives : : : : : : : : : : : : : : : : : 156

7.3 Issues in Swap Space Allocation : 166

7.3.1 PS@PFT and Swap Space Allocation : 166

7.3.2 Survey of Existing Implementations : 167

7.3.3 Discussion : 169

7.4 Pointer Swizzling and Virtual Memory Management : : : : : : : : : : : : : : : : 170

7.4.1 Control over Memory Management : 170

7.4.2 Discussion : 174

7.5 Other Operating System Features : 175

7.5.1 Exception Handling : 175

7.5.2 Virtual Memory Page Size and Sub-page Protections : : : : : : : : : : : 177

7.5.3 Support for Raw I/O : 178

7.6 Conclusions : 179

Chapter 8 Future Work 181

8.1 Introduction : 181

8.2 Storage Management : 181

8.2.1 Log-structured Storage System : 181

8.2.2 Adaptive Prefetching : 182

8.2.3 Compressed In-memory Storage : 184

xii

8.3 Advanced Issues : 185

Chapter 9 Conclusions 186

9.1 Address Translation : 186

9.2 Granularity Choices for Persistence : 187

9.3 Run-Time Type Description : 187

9.4 Operating System Interactions : 188

9.5 Storage Management Issues : 188

9.6 Final Words : 189

Appendix A Hierarchical Type Graph 190

Bibliography 193

Vita 203

xiii

List of Tables

5.1 Estimated instruction counts : 75

7.1 Cost of handling an access-protection violation : : : : : : : : : : : : : : : : : : : 177

xiv

List of Figures

2.1 Node marking and edge marking schemes : 15

2.2 Node marking using proxy objects : 16

3.1 Bootstrap state for swizzling : 36

3.2 Incremental faulting and swizzling : 37

3.3 Incremental faulting and swizzling (cont'd.) : 38

3.4 \Wavefront" of address space reservation : 39

4.1 Basic design of Texas : 56

4.2 Logging mechanism : 63

5.1 Timer placements for run-time measurements : : : : : : : : : : : : : : : : : : : 70

5.2 Times for all traversals, large database (Linux) : : : : : : : : : : : : : : : : : : 78

5.3 Times for all traversals, large database, log scale (Linux) : : : : : : : : : : : : : 78

5.4 Times for traversals 1 through 3, large database (Linux) : : : : : : : : : : : : : 79

5.5 Times for traversals 4 through 9, large database (Linux) : : : : : : : : : : : : : 79

5.6 Times for traversals 7 through 15, large database (Linux) : : : : : : : : : : : : : 80

5.7 Times for traversals 16 through 25, large database (Linux) : : : : : : : : : : : : 80

5.8 Times for traversals 24 through 36, large database (Linux) : : : : : : : : : : : : 81

5.9 Times for traversals 35 through 45, large database (Linux) : : : : : : : : : : : : 81

5.10 Page faults for all traversals, large database (Linux) : : : : : : : : : : : : : : : : 82

5.11 Overhead as percentage of I/O time, large database (Linux) : : : : : : : : : : : 83

5.12 Overhead as percentage of total time, large database (Linux) : : : : : : : : : : : 84

5.13 Times for all traversals, small database, log scale (Linux) : : : : : : : : : : : : : 85

5.14 Times for traversals 1 through 5, small database (Linux) : : : : : : : : : : : : : 85

5.15 Times for traversals 3 through 9, small database (Linux) : : : : : : : : : : : : : 86

5.16 Times for traversals 8 through 36, small database (Linux) : : : : : : : : : : : : 86

5.17 Times for traversals 30 through 45, small database (Linux) : : : : : : : : : : : : 87

5.18 Page faults for all traversals, small database (Linux) : : : : : : : : : : : : : : : 88

5.19 Overhead as percentage of I/O time, small database (Linux) : : : : : : : : : : : 89

5.20 Overhead as percentage of total time, small database (Linux) : : : : : : : : : : 90

5.21 Times for all traversals, large database (Solaris) : : : : : : : : : : : : : : : : : : 92

5.22 Page faults for all traversals, large database (Solaris) : : : : : : : : : : : : : : : 93

5.23 Benchmark-only time for all traversals, large database (Solaris) : : : : : : : : : 93

xv

5.24 Overhead as percentage of I/O time, large database (Solaris) : : : : : : : : : : : 94

5.25 Overhead as percentage of total time, large database (Solaris) : : : : : : : : : : 95

5.26 Times for all traversals, small database, log scale (Solaris) : : : : : : : : : : : : 96

5.27 Page faults for all traversals, small database (Solaris) : : : : : : : : : : : : : : : 97

5.28 Overhead as percentage of I/O time, small database (Solaris) : : : : : : : : : : 98

5.29 Overhead as percentage of total time, small database (Solaris) : : : : : : : : : : 98

5.30 Times for all traversals, large database, raw I/O (Solaris) : : : : : : : : : : : : : 99

5.31 Page faults for all traversals, large database, raw I/O (Solaris) : : : : : : : : : : 100

5.32 Benchmark-only time for all traversals, large database, raw I/O (Solaris) : : : : 100

5.33 Times for all traversals, small database, raw I/O, log scale (Solaris) : : : : : : : 101

5.34 Overhead as percentage of I/O time, small database, raw I/O (Solaris) : : : : : 102

5.35 Overhead as percentage of total time, small database, raw I/O (Solaris) : : : : : 103

5.36 Times for all traversals, large database (Solaris, large memory) : : : : : : : : : : 104

5.37 Overhead as percentage of I/O time, large database (Solaris, large memory) : : 105

5.38 Overhead as percentage of total time, large database (Solaris, large memory) : : 105

5.39 CPU time for translation granularities, large database (Solaris, SPARC ELC) : 108

5.40 CPU time for translation granularities, small database (Solaris, SPARC ELC) : 109

6.1 Compilation and linkage process : 127

6.2 Type graph : 142

6.3 Flat format type descriptor records (simple) : 144

6.4 Flat format type descriptor records (complex) : : : : : : : : : : : : : : : : : : : 145

7.1 Address space of a process : 155

7.2 Performance of virtual memory primitives (Linux) : : : : : : : : : : : : : : : : : 159

7.3 Performance of virtual memory primitives, zoom (Linux) : : : : : : : : : : : : : 159

7.4 Performance of virtual memory primitives (Solaris) : : : : : : : : : : : : : : : : 160

7.5 Performance of virtual memory primitives, zoom (Solaris) : : : : : : : : : : : : 160

7.6 Pages swizzled/reserved during all traversals, large database (Solaris) : : : : : : 162

7.7 CPU times for all traversals using mmap, large database (Solaris) : : : : : : : : : 163

7.8 CPU times for all traversals using mmap, large database, zoom (Solaris) : : : : : 163

7.9 CPU times for all traversals using sbrk, large database (Solaris) : : : : : : : : : 164

7.10 CPU times for all traversals using sbrk, large database, zoom (Solaris) : : : : : 164

A.1 Full hierarchical type graph : 192

xvi

Chapter 1

Introduction

It is often desirable to support a virtual address space that is larger than what can be speci�ed

directly by the word size of the available hardware. Applications such as persistent object stores

(e.g., [ABC+83a, SKW92, DSZ90, AM92]), operating systems with a single shared address

space (e.g., [CLLBH92]), distributed shared memories (e.g., [Li86]), etc. can bene�t from

large address spaces. For example, persistent object stores provide sharable, recoverable heap

storage to eliminate the use of �les for most purposes, operating systems with single shared

address spaces provide a common addressing model for all processes on one or more machines,

and distributed shared memory models provide a single address space for applications that

span multiple machines.

All these systems typically emphasize simpli�ed programming by preserving pointer

semantics in data structures. In other words, they inherently support the notion of object

identity by maintaining the programmer's default view of data, which is a heap of objects

interconnected by pointers. Object identity is de�ned as the property by virtue of which

an object can be uniquely identi�ed among a collection of objects, such that any two object

references can be compared to determine whether they identify the same object. By this

de�nition, an object identi�er is never reused, even after the object is deleted. A detailed

study of various forms of object identity is available in [KC86].

It is often necessary to send data from one host to another, or to save application data

structures to stable storage so that they can be either operated on later (possibly by other

applications) or used for recovering the application state in case of a crash. In systems that do

not support large shared address spaces, it is usually necessary to write routines that atten

data structures into a low-level linear bytestream and manually reconstruct them later. In

general, this procedure tends to be tedious and error-prone because programmer intervention

and coding is required for the appropriate data structure conversions. In addition, the linear

representations bypass type systems, lose all pointer semantics and object identity, and leave

the burden of maintaining data structure consistency up to the programmer.

Persistent objects have the ability to outlive the execution of the program that creates

them; in contrast, transient objects disappear with the termination of the program in which

they were created. A persistent object store is a repository for persistent objects; it is typi-

cally used to allow programmers to save complex pointer-linked data structures directly and

automatically to non-volatile storage, without requiring additional code or further intervention

1

to convert between representations. A persistent object store strongly supports the notion of

object identity because all type information, as well as the topology of the data structures,

is preserved when objects are saved to stable storage, allowing each object to be uniquely

identi�ed.

In this dissertation, we propose and implement a persistent storage mechanism based

on a coarse-grained address translation technique that exploits existing virtual memory hard-

ware and operating system facilities to achieve high performance and increased portability.

The basic idea is to load (one or more) pages from the persistent storage into memory on

demand, and \�x up" (i.e., translate) all persistent pointers into local hardware-supported

virtual memory pointers, guaranteeing that a running program will never see any untranslated

pointer values. Once the data has been loaded into memory and various pointers have been

translated, there is absolutely no overhead for future accesses to that data. Any referents

corresponding to newly-translated pointers that are not in memory are marked as such using

the operating system's virtual memory protection facilities; any attempt to access protected

data will raise an exception that is handled by loading the data from the persistent store and

translating pointers as necessary.

An address translation mechanism such as ours has several advantages over other tra-

ditional approaches, in terms of both performance and portability. As we will show in later

chapters of the dissertation, the performance overhead of our system is zero when the applica-

tion is operating on data that has already been loaded into memory and there is no faulting.

For other situations, that is, when new data is being loaded into memory from the persistent

store, the overhead of our system is very low, usually between 1 and 5 percent of the overall run

time. We will show that this is much smaller than the I/O costs incurred for loading the data

into memory. There are also some indirect costs of our approach because of an inadvertent

interaction with the underlying virtual memory system; these costs, however, can be avoided

by improving the operating system implementations to provide a better memory management

interface. Regarding improved portability, our persistent storage system is compatible with

standard o�-the-shelf compilers and has been ported to a variety of modern operating systems

such as SunOS, Solaris, Linux, Mach, Ultrix, OS/2, etc. It should also be relatively easy to

port to other modern operating systems such as Windows NT.

1.1 Scope of the Dissertation

This dissertation is about high-performance address translation techniques for implementing

orthogonal persistence. Orthogonal persistent systems require that any arbitrary object can

be made persistent without regard to its type. That is, persistence is a storage class of an

object, and is orthogonal to its type. Our basic approach relies on the use of coarse-grained

address translation for performance and portability reasons. In order to support this claim,

we analyze the various costs of both coarse-grained and �ne-grained techniques and present a

cost model which shows that page-wise address translation can be implemented e�ciently and

can achieve good performance on standard hardware.

2

1.1.1 Our Thesis

Address translation is the most important issue that must be considered when implementing

orthogonal persistence. Once this has been resolved e�ectively, all other related issues can

be resolved independently without a�ecting address translation. Our thesis can be stated as

follows:

High-performance address translation for orthogonal persistence can be e�ectively

realized through coarse-grained translation schemes. Pointer swizzling at page fault

time is one such coarse-grained scheme that can be implemented e�ciently on stock

hardware by exploiting the existing virtual memory hardware and protection facil-

ities o�ered by most modern operating systems, without requiring special system

privileges.

Since pointer swizzling at page fault time uses only standard capabilities of an operating

system, it is easily ported to other modern operating systems which also support the same

functionality. The basic approach exploits user-level virtual memory protection facilities to

avoid (more expensive) software checks for pointer formats, and works with standard o�-the-

shelf compilers.

1.1.2 Motivation

There are a variety of factors that motivate the need for a exible and e�cient persistence

mechanism. Many applications operate on large amounts of data represented using complex

data structures. Before such an application terminates execution, the data in volatile memory

must be saved to stable storage for future use. A persistent storage system is designed to save

and restore data reliably, e�ciently and automatically, and is therefore preferable to an ad hoc

mechanism implemented by the application itself. The underlying persistent object store must

be able to support large volumes of data, essentially acting as an eventual replacement for the

normal �le system.

However, it is important to realize that for most applications, a persistent programming

language is still a programming language, and raw speed of computation is usually very impor-

tant. In fact, orthogonally persistent programming languages (and object-oriented database

systems) are largely motivated by a combination of performance and expressiveness consider-

ations relative to traditional database systems. They are intended for use in applications with

rich heap-allocated data structures and e�cient algorithms to manipulate those data structures.

Where traditional database systems are designed largely to optimize I/O for I/O-intensive ap-

plications, persistent programming languages allow programmers to optimize computation for

CPU-intensive applications such as CAD tools and simulation programs. Although it is desir-

able for such programs to be able to transparently traverse pointers through large amounts of

disk-resident data, the majority of their execution time is usually spent operating on persistent

data previously loaded into memory.

Furthermore, many such applications usually also operate extensively on transient data.

Typically, a large majority of these transient objects constitute temporary data that die fairly

\young" [Wil97, WJNB95]. Thus the total execution costs in a CPU-intensive application

3

are dominated by operations on transient objects and in-memory persistent objects. A high-

performance persistent system should allow these operations to be executed as fast as possible,

while imposing minimal overheads on the overall performance.

Thus there is a need for an address translation mechanism that incurs extremely low

overheads during CPU-bound operations, low overheads during I/O-bound operations, and no

overhead for operations on transient data. Ideally, the mechanism should also work with the

best available high-performance compilers without requiring any signi�cant changes or special

support from these compilers.

1.1.3 Cost of Orthogonal Persistence

The cost of using orthogonal persistence in an application can be divided into two major

components: the cost incurred when accessing data on disk, and the cost incurred when not

referencing any data on disk (i.e., when not using persistence). The former is the normally-

expected cost associated with loading persistent data from secondary storage into memory. The

latter, however, represents costs incurred while performing normal CPU-bound operations on

data that is already in memory. This is important because although reducing I/O cost is

bene�cial for most CPU-intensive applications, maintaining computation performance almost

always has higher priority. In general, we de�ne the cost of orthogonal persistence as the

\cost" of making the distinction between transient and persistent data access transparent to

the programmer, that is, it is the cost incurred when not using the persistence mechanism.

Traditional �ne-grained address translation mechanisms implemented by persistent pro-

gramming languages incur signi�cant overhead and have fundamental performance limitations

for normal CPU-intensive applications. Such schemes typically incur continual overhead for

checking pointer formats|even if a pointer references in-memory data, a validity check is

still necessary before it can be dereferenced because compiled code does not \know" that the

pointer is already in an appropriate format.1 Furthermore, these techniques require sophisti-

cated custom compilers to generate additional code for checking and translating pointer values

as necessary. This can be a major downside of such approaches because there are few resources

to extensively develop, distribute, and support custom compilers. In fact, the cost of using

compilers with poor code generation is typically higher than the cost of address translation

itself, defeating the original purpose of building a high-performance implementation. Even if

resources were available for compiler development, the continual costs of validity checks make

the approach less attractive.

1.1.4 Overview

Pointer swizzling at page fault time satis�es all of the requirements outlined earlier for a high-

performance address translation scheme. It incurs zero overhead during normal CPU-bound

operations on data that has already been loaded into memory, and a small overhead|roughly

1 to 5 percent depending on the underlying hardware and operating system|when data is

1It is possible to use compiler optimizations (similar to the Self system [Cha92]) to infer information about
the data and reduce the excessive checking overhead. However, such optimizations are fairly hard to implement
because of inherent distinctions between object types and object residency.

4

being faulted into virtual memory from persistent storage on disk. This technique does incur a

small space overhead for storing meta-data that is necessary for facilitating address translation,

but this is very small compared to the amount of persistent data that can be supported. We

expect that the overheads incurred when loading data from disk will be reduced further as

CPU speeds improve faster relative to disk speeds.

Pointer swizzling at page fault time also works with existing high-performance o�-

the-shelf compilers without requiring any additional support from these compilers. This is

possible because the approach does not require extending the language syntax or relying on

the run-time system for implementing necessary checks and translation. In addition, the basic

approach is portable to di�erent operating systems because it requires only minimal support

from the underlying virtual memory system.

We can also support a larger (e.g., 64-bit or more) address space on a 32-bit machine

using pointer swizzling at page fault time as a general-purpose address reconciliation layer.

At the same time, it still has advantages on hardware where address reconciliation may not

be necessary. In such cases, it can be used for sharing data across multiple machines with

di�erent native formats. Persistent data can be maintained in a common data format that is

independent of the hardware word size of the di�erent machines operating on that data, and

can be translated into appropriate local addresses as necessary.

The key idea behind our approach is a novel layering of mechanisms. We rely on the op-

erating system and the compiler to do their \jobs" mostly as usual, but strategically intervene

at appropriate points for mapping one level of abstraction onto another with techniques such as

non-traditional use of virtual memory hardware (in particular, the translation lookaside bu�er,

or the TLB) and extraction of object layout information from compiler-generated debugging

information. We believe that approaching the problem at the right level of abstraction helps

in resolving various issues independent of each other.

As part of this dissertation, we have implemented coarse-grained address translation

using pointer swizzling at page fault time to provide an e�cient persistence mechanism for

C++. In doing so, we have essentially implemented a form of reection [KdRB91]2 for C++

via a \back door" because the language itself does not provide builtin support for it.3 Although

our approach is simple and elegant, there are still some complexities|albeit hidden from the

average user|in the implementation, due to a lack of language features. The mechanism can

be made more general, and easier to implement, with improved language support for reection.

1.1.5 Contributions

This dissertation makes several useful contributions:

� a novel address translation technique that is mostly independent of the underlying op-

erating system implementation, and can be implemented e�ciently on stock hardware;

2Reection can be loosely de�ned as the ability to manipulate or change the internal behavior of a system
without actually modifying its implementation (i.e., from the \outside").

3C++ does provide some support for reection, most notably via the operator overloading capability for
normal classes. However, it falls short of complete support because builtin types (including pointers) are
treated di�erently than user-de�ned classes.

5

� a new classi�cation scheme based on granularity of several important design choices for

implementing orthogonal persistence;

� a detailed performance analysis of various components of a coarse-grained address trans-

lation mechanism;

� notion of run-time type description for providing implementation-level information about

object layouts at run time;

� a persistent storage system for C++;

� a technique for dynamically resolving C++ method dispatch tables (virtual function

tables) in applications against those in persistent storage; and �nally,

� an analysis of interactions with operating system implementations and recommendations

for improving these implementations to provide better support for system extensions such

as persistence, garbage collection, etc.

Novel Address Translation Technique

Pointer swizzling at page fault time is a novel address translation mechanism that exploits

existing virtual memory hardware and operating system features to e�ciently implement or-

thogonal persistence. The approach is highly portable because it uses only standard features

provided by modern operating system, and is also compatible with existing high-performance

compilers for languages such as C and C++. Pointer swizzling at page fault time is classi�ed

as a coarse-grained address translation technique because the granularity of translation is a

virtual memory page.

New Classi�cation Scheme

Various researchers have put forth di�erent taxonomies for address translation approaches

based on di�erences in the pointer swizzling techniques used [Mos92, KK95, MS95, Whi94].

Unfortunately, some of these classi�cations are unclear, and sometimes even contradictory to

each other. Instead of attempting to clarify these taxonomies, we present a new classi�cation

scheme using several design choices that we consider important for implementing orthogonal

persistence. The classi�cation is presented in terms of the granularity of design choices because

we believe that granularity selection is the fundamental issue for implementing persistence.

Performance Analysis

We present detailed performance analysis for various components of a coarse-grained address

translation technique, and evaluate the overhead of page-wise address translation against the

I/O costs incurred during benchmark operation. As part of the performance results, we also

describe our benchmarking philosophy which contends that standard database benchmarks do

not accurately model real-world applications, and are not very exible or con�gurable. As

such, these benchmarks are appropriate only for controlled use in measuring performance of

individual components of a persistence mechanism and deriving qualitative conclusions about

the system rather than for comparative analysis across multiple systems.

6

Run-Time Type Description

All address translation techniques require knowledge about the structural layouts of data

objects in-memory at run time. This is necessary in order to locate and translate all addresses

(pointer �elds) in each object that is loaded into memory. We introduce the term Run-Time

Type Description (RTTD) to describe such implementation-level type information about data

objects that is made available to the address translation mechanism at run time. Since C++

is not sophisticated enough to provide builtin support for RTTD, we have implemented our

own RTTD mechanism for C++ using compiler-generated debugging information.

A Persistent Storage System for C++

We have implemented the pointer swizzling at page fault time scheme in the Texas persistent

storage system to provide persistence for C++. Texas has been ported to several modern

operating systems and is highly suitable as a prototype framework for further research. The

system comprises of less than 10,000 lines of C++ source, and the design is modularized

such that the code for distinct functionalities (for example, address translation mechanism

or operating system interaction) has been separated into individual modules. The system is

available via anonymous ftp in source form under the GNU Library General Public License.

A Technique for Dynamically Resolving C++ Method Dispatch Tables

C++ implements dynamic binding by using virtual functions [Lip91], and pointers to these

functions are stored in virtual function tables (VFTs). When an object of a particular class is

instantiated, a pointer to the corresponding VFT is (automatically) inserted in that object|

dynamic method dispatch is implemented by indexing into the virtual function table of the

object on which the method is originally invoked. Unfortunately, unlike data pointers, the

VFT pointer in the object points into the code segment, and is therefore tightly coupled with

the application. Further, the actual value of the pointer usually varies across applications (or

even di�erent versions of the same application). This is obviously a problem for persistent

objects which are not related to any speci�c application. Therefore we dynamically resolve

VFT pointers specially by \unswizzling" them into special token values that can later be

identi�ed and \swizzled" into actual values valid in the current application. In e�ect, this is

equivalent to an extremely simpli�ed dynamic linker that resolves VFT pointers in persistent

objects against the appropriate values in the current application. Further details about the

exact mechanism are described in Chapter 4.

Analysis of Operating System Interactions

Finally, we describe various issues that are related to the interaction of low-level systems (e.g.,

persistent stores and garbage collectors) with the underlying operating system implementa-

tions. We present an analysis of di�erent aspects of virtual memory management and provide

recommendations for changes in operating system implementations to improve their coupling

with low-level system extensions, and contribute towards making them more portable. We

7

also discuss a few other relevant operating system features such as virtual memory protection,

fault handling, etc.

1.2 Advanced Issues

In addition to the various contributions described above, there are many other advanced issues

that are beyond the scope of this dissertation and are therefore not addressed here. Some of

these issues are:

� schema evolution: Currently, there is no support for schema evolution in Texas, although

this is independent of address translation and can be implemented on top if necessary.

Of course, language support for reective techniques would be very helpful in such an

implementation;

� security: We also do not address security issues for access to data in the persistent object

store, but it is easy to imagine an implementation along the lines of protection domains

in Opal [CLLBH92] or \areas" as in ObjectStore [LLOW91], or just Unix-style owner

and group privileges (also supported by Opal); and

� distribution and fault tolerance: These issues need to be carefully designed and ar-

chitected, and must be implemented to interface well with the basic address transla-

tion mechanism. However, it is not an impossible task|we are aware of at least one

project where the Texas persistent store has been ported to a Fujitsu AP1000 multicom-

puter [BS96].

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 describes several important design issues for implementing an orthogonal

persistence mechanism. We present a new classi�cation scheme for persistence mechanisms

that is based on the granularity choices for di�erent issues, namely, address translation, address

mapping, data fetching, data caching, and checkpointing. For any persistent system, each issue

can be resolved at a granularity that is independent of the granularity choice for any other

issue. In addition, we also discuss the granularity choices that we have made for each design

issue in our implementation of the pointer swizzling at page fault time mechanism in the Texas

persistent store.

Chapter 3 contains a detailed description of the pointer swizzling at page fault mecha-

nism. We describe the basic algorithm as well as discuss various related issues such as address

space management, and sharing and compatibility with existing systems and code. Although

our coarse-grained approach works well for most cases, there are situations where the lack

of locality of reference in an application's data structures requires a less coarse-grained ap-

proach for address translation. To this end, we discuss �ne-grained and mixed-granularity

address translation techniques that can also be portably implemented along with the basic

coarse-grained technique. We present a competitive argument that pointer swizzling at page

8

fault time incurs zero overhead when the data is already loaded into memory (CPU-bound

operations) and a very small overhead during the loading of data from the persistent storage

(I/O-bound operations).

Chapter 4 describes the design and implementation of the Texas persistent store, an

e�cient persistent storage system for C++ that uses the pointer swizzling at page fault time

mechanism as a key component for high-performance address translation. We describe the

basic design and implementation of Texas; the implementation details also include information

about virtual memory and �le system abstraction layers designed to make interactions with the

underlying operating system easy to implement. It should be noted that although Texas relies

on virtual memory caching, it is simply an implementation choice that is completely orthogonal

to the address translation mechanism. We intend for Texas to be used as a research platform

for further studies in issues related to e�cient orthogonal persistence implementation. In the

current context, we use it for gathering detailed performance results of the pointer swizzling

at page fault time technique.

Chapter 5 presents detailed results for the performance of Texas and pointer swizzling

at page fault time using the OO1 database benchmark traversal operations. The performance

results presented in this chapter empirically validate our basic competitive argument for pointer

swizzling at page fault time. We have measured the performance on Linux and Solaris, two

of the most popular operating systems, and show that the total overhead of Texas is usually

between 1 and 5 percent for most situations on both platforms. In addition to the empirical re-

sults, we also describe our philosophy for benchmarking; speci�cally, we argue that some of the

widely-used standard benchmarks are inappropriate for quantitative performance comparison

across di�erent persistent systems, and are acceptable only for controlled measurements and

qualitative analysis of a single system. These benchmarks do not represent real applications

which are most likely to take advantage of a persistent storage system. We believe that such

applications typically have sophisticated data structures and perform signi�cant CPU-bound

computations over these data structures, unlike the benchmarks which do not o�er rich data

structures and include minimal computation behavior.

Chapter 6 tackles the issue of providing implementation-level information for types

at run time. We call this Run-Time Type Description (RTTD) to distinguish it from the

recently-introduced Run-Time Type Identi�cation (RTTI) feature for C++. RTTD constitutes

information about types and in-memory layouts of data objects, and is necessary for the correct

operation of pointer swizzling at page fault time. In contrast, RTTI supports only language-

level information such as run-time type equivalence checks, which is obviously insu�cient

for object layout information. RTTD may also be useful for other systems such as garbage

collectors, advanced pro�ling and tracing tools, etc. which also bene�t from detailed object

layout information. We describe our basic strategy which uses compiler-generated debugging

information instead of special-purpose preprocessors, and present arguments about why our

approach is preferable. The chapter also presents details about our RTTD implementation for

C++ which is currently used for Texas and a real-time garbage collector. We also describe

expected performance characteristics of our approach based on some preliminary measurements

and show that the additional overhead is negligible compared to the typical compilation and

linkage costs.

9

Chapter 7 is devoted to a discussion of various issues that are important for portability

and interaction with various operating system implementations. It also suggests directions for

improving operating system implementations to make it easy for integrating low-level system

extensions such as persistence mechanisms, garbage collectors, etc. We are mainly interested

in interaction with the virtual memory system because pointer swizzling at page fault time is

primarily dependent on existing virtual memory hardware and protection facilities supported

by the operating system. An important point that is highlighted during the discussion is that

unlike some other systems, pointer swizzling at page fault time does not require advanced

capabilities from the operating system although it is designed to exploit such capabilities, if

they exist, for improved performance. We also briey describe other operating system features,

particularly virtual memory protection violation handling, that can be improved for overall

performance gains.

Chapter 8 contains a brief sketch of some future research directions that appear promis-

ing for further study of high-performance address translation techniques and other extensions

to the Texas persistent storage system. Many of these issues are related to the development of

a competitive storage management technique for e�cient checkpointing and stable storage ca-

pabilities. We also reiterate the advanced issues (mentioned above) that are beyond the scope

of the current discussion. Finally, we summarize our �ndings and conclude in Chapter 9.

10

Chapter 2

Design Issues for Persistence

2.1 Introduction

In this chapter, we provide a general background for persistence, including a description of

di�erent types of persistence that are commonly implemented by various persistent systems.

Our approach is designed to implement orthogonal persistence which provides the cleanest

implementation model by separating the persistence property of an object from its type.

We also briey describe some existing taxonomies for address translation mechanisms,

and show that they are unclear for general usage. Instead, we choose to use the granularity of

an operation as the metric for classifying di�erent persistence mechanisms. We identify a set

of basic design issues that must be considered when implementing a persistent system, and

de�ne the classi�cation in terms of granularity choices for these design issues. We argue that

this classi�cation is better than the existing taxonomies which are primarily concerned only

with the issue of address translation.

Another interesting part of this chapter is a brief discussion on �ne-grained address

translation and how it measures up to a coarse-grained mechanism such as ours. As we will

show, �ne-grained translation schemes incur some basic costs that are inherent to their general

implementations. We believe that �ne-grained approaches should be avoided except in those

cases where other features such as locking, consistency, etc. are also being implemented at a

�ner granularity. Finally, we provide a background survey of some other research in persistence

that is most relevant to the current discussion.

2.2 Background

File systems have traditionally been used to save data both for temporary storage between pro-

gram executions and for general long-term storage. Unfortunately, �le systems have e�ciency

drawbacks, because there are two parallel memory hierarchies (disk and RAM1 in both), and

data must be moved between them. Often there are situations where the same data exists in

both memory caches, and in both disk areas; this is a poor use of resources. Also, a �le system's

normal view of data is a \stream of bytes" with no associated structure or type information,

1In this dissertation, we use the terms RAM and main memory interchangeably for referring to the physical
memory in a computer system.

11

while the in-memory representation of data structures is in terms of pointer-linked objects.

This creates a fundamental impedance mismatch [CM84] between the two representations.

Persistent systems are designed to solve this impedance mismatch between volatile and

non-volatile storage, and to alleviate the e�ciency problems associated with �le systems. In

this section, we provide a general background on persistence, including descriptions of various

types of persistence, before briey discussing our approach which is designed to implement

persistence for C++ and other high-level languages.

2.2.1 Persistence

All data created and manipulated by normal applications are usually transient in nature be-

cause their lifetime is bounded by the execution of the process in which they were created. In

contrast, persistent data can outlive the execution of the process that creates them. Persistent

object stores are repositories used for storing arbitrarily complex persistent data structures

while maintaining pointer semantics just as in virtual memory. In essence, a persistent object

store can be viewed as a long-lived virtual memory that persists after applications complete

execution, and which can be accessed by the same (or di�erent) applications when they are

run again in the future.

2.2.2 Types of Persistence

We classify persistence implementation mechanisms into di�erent kinds based on the type of

persistence supported by each speci�c approach. In general, persistence can be broadly divided

into three kinds:

� class-based persistence,

� orthogonal persistence, and

� reachability-based persistence.

The simplest persistence mechanism incorporated in many applications relies on class-

based persistence. The basic idea requires that any type or class which may be instantiated

to create persistent objects must inherit from a top-level abstract \persistence" class. This

special class de�nes the interface for saving and restoring data from a persistent object store.

Each derived class that inherits from the top-level class is required to implement the speci�ed

interface (possibly via serialization methods) to save and restore objects of that particular

derived class. This is obviously cumbersome for the programmer who must carry the burden

of implementing the persistence mechanism, making the whole process extremely tedious and

highly error-prone. Another problem with this approach is that it promotes code duplication in

the usual case. Any type that may potentially be used to create persistent objects requires two

de�nitions|one for normal transient objects and the other (derived from the special abstract

class) for persistent objects. As a result, transient and persistent objects of the same \logical"

(application) type are now not equivalent in terms of the \physical" (actual) type, and code

that operates on one kind of object cannot operate on the other. One obvious solution is to

make the derived class multiply inherit from both the actual type and the abstract class but

12

this is likely to add a slew of other problems related to the use of multiple inheritance. Also,

this approach does not work for builtin types because their de�nitions cannot be changed

easily in most languages.

Unlike class-based persistence, orthogonal persistence [ABC+83a, AM95] decouples the

lifetime of an object from its type. In other words, persistence is viewed as a storage class2

rather than as a property of the object type. The name derives from the requirement that

the type of an object must be independent of (that is, orthogonal to) its storage class. In

other words, persistence is a property of individual objects, not of their classes (or types), and

any object can be made persistent regardless of its type. Since persistence is decoupled from

the type system, this approach supports a clean implementation model that is transparent

to the application programmer who does not need to make any major modi�cations to the

application code to use the persistence mechanism.

Finally, reachability-based persistence [ABC+83a, ACCM83] is a general form of orthog-

onal persistence. The basic principle of this approach requires that all objects reachable from

a well-de�ned persistent root (or roots) automatically become persistent. As with orthogonal

persistence, the type of an object is not relevant when making it persistent based on the reach-

ability property. The implementation ease for this approach depends on the support available

from the programming language. In general, we believe that orthogonal persistence (and its

derivatives such as reachability-based persistence) are preferable to class-based persistence or

other ad hoc mechanisms.

2.2.3 Our Approach

Historically, implementations of persistence mechanisms have been slow due to at least two

di�erent cost factors. One of them is a direct (and fairly signi�cant) cost of actions such as

checking pointer formats, maintaining bookkeeping information, etc. in software. The other

is an indirect cost related to the use of specialized compilers for implementing persistence

through language extensions. Typically, there has been a lack of resources for extensive de-

velopment of these specialized compilers and as a result, code generated by such compilers

is often several times slower than that generated by most widely-available, high-performance

optimizing compilers. In addition, we believe that fundamentally slow approaches used for

implementing traditional address translation techniques are another potential source of per-

formance problems. For example, some pointer-wise translation techniques require that the

format of a pointer be checked every time it is dereferenced, even if it is a transient pointer.

We solve both these problems by designing a novel implementation strategy that is

compatible with code generated by existing o�-the-shelf compilers without requiring any special

modi�cations or sacri�cing optimization opportunities. We also reduce our overheads to a

minimum by e�ectively using existing hardware to check for pointer formats, thereby avoiding

software checks which are usually more expensive. This has an overall e�ect of removing major

obstacles in the acceptance of general-purpose languages for persistent applications because of

its performance and compatibility with both stock hardware and existing compilers.

2A storage class describes how an object is stored. For example, the storage class of an automatic variable
in C or C++ corresponds to the stack because the space for the object is typically allocated on the data stack,
and its lifetime is bounded by the scope in which it was allocated.

13

Although our approach is focused on implementing mainly orthogonal persistence (for

languages such as C and C++), it is designed to be compatible with reachability-based per-

sistence. However, the current implementation of Texas does not support reachability-based

persistence. The primary obstacle in implementing this is the lack of language support for

identifying type information for arbitrary data on both the stack and the transient heap. This

is essentially the same problem as the one faced by garbage collectors for languages such as

C or C++. We believe that it is straightforward to use solutions that are similar to those

applicable in the other domain3 but we have not yet done so. We are aware of at least one

project that is using pointer swizzling at page fault time techniques and extending Texas to

implement reachability-based persistence for C++ and Modula-3 [HN97].

2.3 Address Translation Taxonomies

Persistence has been an active research area for over a decade and several researchers have

put forth taxonomies for pointer swizzling techniques [Mos92, KK95, MS95, Whi94]. In this

section, we describe important details about each of these taxonomies and highlights various

similarities and di�erences among them. In addition, we also provide motivation for a general

classi�cation of persistent systems based on granularity issues.

2.3.1 Eager vs. Lazy Swizzling

Moss [Mos92] describes one of the �rst studies of di�erent address translation approaches and

the associated terminology developed for classifying these techniques. The primary classi�-

cation is in terms of \eager" and \lazy" swizzling based on when the address translation is

performed. Typically, eager swizzling schemes swizzle an entire collection of objects together,

where the size of the collection is somehow bounded. In other words, the need for checking

pointer formats, and the associated overhead, is avoided by performing aggressive swizzling.

In contrast, lazy swizzling schemes follow an incremental approach by using dynamic checks

for unswizzled objects. That is, there is no predetermined or bounded collection of objects

that must be swizzled together. Instead, the execution dynamically locates and swizzles new

objects depending on the access patterns of the application.

Other researchers (Kemper and Kossman [KK95], and McAuli�e and Solomon [MS95])

have also used classi�cations along similar lines in their own studies. However, we consider

this classi�cation to be ambiguous for general use because it does not clearly identify the fun-

damental issue|the granularity of address translation|that is important in this context. For

example, consider pointer swizzling at page fault time using this classi�cation. By de�nition,

we swizzle all pointers in a virtual memory page as it is loaded into memory and applications

are never allowed to \see" any untranslated pointers. As such, there is no need to explicitly

check the format of a pointer before using it4 and therefore, pointer swizzling at page fault

time is an eager swizzling scheme. On the other hand, the basic approach is incremental in

3Typically, conservative garbage collectors operate by scanning the stack and treating any value that appears
to be a pointer as a pointer.

4The format checking is actually done implicitly by hardware based on the use of virtual memory access-
protections.

14

nature because swizzling is performed one page at a time and only on demand, making it a

lazy swizzling scheme as per the original de�nition.

In general, a scheme that is \lazy" at one granularity is likely to be \eager" at another

granularity. For example, a page-wise swizzling mechanism is lazy at the granularity of pages

because it only swizzles one page at a time. However, the same scheme would be considered an

eager swizzling scheme at the granularity of objects because it swizzles multiple objects|an

entire page's worth|at one time. Therefore, the fundamental issue is the granularity at which

address translation is performed.

2.3.2 Node Marking vs. Edge Marking Schemes

In addition to eager and lazy swizzling, Moss also describes another classi�cation based on the

strategy used for distinguishing between resident and non-resident data in the case of \lazy"

swizzling (i.e., the incremental approach). The persistent heap and various data structures are

viewed as a directed graph, where data objects represent nodes and pointers between objects

represent edges that connect the nodes. Given this view, the address translation mechanisms

are then classi�ed as either node marking or edge marking schemes.

A

CB

D E

A

F

B

E

Node marking Edge Marking

F Marked
node

Marked
edge

Persistent
pointer

Boundary

Transient
pointer

C

D

F

F Non-resident
node

F

F Resident
node

Figure 2.1: Node marking and edge marking schemes

Figure 2.1 pictorially shows the basic technique for both node marking and edge mark-

ing schemes. As the name suggests, edge marking schemes mark edges of the graph|the

pointers between objects|to indicate whether they have been translated into local format

and reference resident objects, or not. In contrast, node marking schemes guarantee that all

references in resident objects are always translated and the graph nodes are marked as resi-

dent or non-resident. In other words, edges are guaranteed to be valid local references but the

referents may be non-resident.

Figure 2.2 shows a classic implementation of a node marking scheme; non-resident

nodes are \marked" as such by using proxy objects, that is, pseudo-objects that stand in for

non-resident persistent objects and contain their corresponding persistent identi�ers. When

an object is loaded from the database, all references contained in that object must be swizzled

as per the de�nition of node marking|pointers to resident objects are swizzled normally

15

A

C

F

B

D

E

(a)

Persistent
pointer

Boundary

Transient
pointer

A

C

F

B

D

E

(b)

F Non-resident
node

Proxy
object

F Resident
node

Figure 2.2: Node marking using proxy objects

while pointers to non-resident objects are swizzled into references to proxy objects. When

the application follows a reference to a proxy, the system loads the referent (F in the �gure)

from the database and updates the proxy to reference the newly-resident object (Figure 2.2b).

Alternatively, the proxy may be bypassed by overwriting the (old) reference to it with a pointer

to the newly-resident object; if there are no other references to it, the proxy may (eventually) be

reclaimed by the system. Note, however, that the compiled code must still check for presence

of the proxy object on every pointer dereference because any general pointer may reference

a proxy object. This adds continual checking overhead, even if all pointers directly reference

data objects without any intervening proxy objects.

Pointer swizzling at page fault time is essentially a node marking scheme because

swizzled pointers always correspond to valid virtual memory addresses while the referents

are distinguished on the basis of residency. However, it di�ers in an important way from

the classic scheme|we do not use explicit pseudo-objects for non-resident nodes. Instead,

access-protected virtual address space pages act as proxy objects. The biggest advantage of

this approach is that there is no need to reclaim proxy objects (because none exist) as the

application progresses and more data is loaded from the database; consequently, there are no

indirections that must be dealt with by compiled code, and continual checks are not necessary.

2.3.3 General Classi�cation for Persistence

We have shown that existing classi�cations describe address translation techniques which con-

stitute only one of several design issues that must be considered when implementing persis-

tence. We have identi�ed a set of �ve design issues that we believe are fundamental to e�cient

implementation of any persistence mechanism. We contend that a speci�c combination of

these issues can be used to characterize a particular persistence implementation. In e�ect, we

are proposing a classi�cation scheme based on granularity of fundamental design issues.

As described earlier, a classi�cation based on eager and lazy swizzling is likely to be

16

ambiguous because it does not attack the problem at the right level of abstraction. Instead,

we notice that the real issue in the lazy vs. eager swizzling distinction is the size of the unit

of storage for which address translation is performed. This can range from as small as a single

reference (as in Moss' so-called \pure lazy swizzling" approach) to a virtual memory page

(as in pointer swizzling at page fault time), or even as large as an entire database (as in the

so-called \pure eager swizzling" approach in Moss' terminology).

Based on this observation, we believe that it is better to consider address translation

(and other design issues) from the perspective of a granularity choice rather than as an ad hoc

classi�cation based on confusing translation semantics. In fact, the ambiguity described above

arises because the classi�cations either do not clearly identify the granularity choices or un-

necessarily adhere to a single predetermined granularity.

We believe that addressing all design issues in terms of granularity choices enables a

uniform process for identifying the consequence of each design issue on the performance and

exibility of the resulting persistence mechanism. This is preferable to ambiguous classi�-

cations such as eager and lazy swizzling because any scheme is both \eager" and \lazy" at

di�erent granularities.

2.4 Granularity Choices for Persistence

Address translation is only one of several issues that must be resolved when implementing an

orthogonally persistent system. We have identi�ed a set of �ve design issues that are relevant

to the implementation of any persistence mechanism. Each of these issues can be resolved

by making a speci�c granularity choice that is independent of the choice for any other issue.

The combination of granularity choices for all issues can be used to characterize a persistent

system.

The speci�c design issues that we describe in this section are the granularities of address

translation, address mapping, data fetching, data caching and checkpointing. We de�ne and

discuss each issue in detail and also present the rationale behind the granularity choices for

these issues in our implementation of orthogonal persistence in the Texas persistent storage

system.

To a �rst approximation, the basic unit for all granularity choices in Texas is a virtual

memory page because pointer swizzling at page fault time relies heavily on virtual memory

facilities, especially to trigger data transfer and address translation. The choice of a virtual

memory page as the basic granularity unit allows us to exploit conventional virtual memories,

and avoid expensive run-time software checks in compiled code, by taking advantage of user-

level memory protection facilities of most modern operating systems. However, sometimes it

is necessary to change the granularity choice for a particular issue to accommodate the special

needs of unusual situations. As we will explain below, these issues can be addressed at a

di�erent granularity in a way that integrates gracefully into the general framework of Texas.

2.4.1 Address Translation

The granularity of address translation is the smallest unit of storage within which all pointers

are translated from persistent (long) format to virtual memory (short) format. In general, the

17

spectrum of possible values can range from a single pointer to an entire page or more.

The granularity of address translation in Texas is typically a virtual memory page for

coarse-grained translation implemented via pointer swizzling at page fault time. The rationale

for this choice is the advantages o�ered by the use of virtual memory pages in terms of overall

e�ciency because we can use the virtual memory hardware to check residency of the referents.

In addition, we also rely on the application's spatial locality of reference to amortize the costs

of handling protection faults and swizzling entire pages.

As we will describe in Chapter 3, it is also possible to implement a �ne-grained address

translation mechanism for special situations where the coarse-grained approaches are unsuit-

able because of poor locality of reference in the application. Since Texas is designed to perform

�ne-grained translation on individual pointers, the granularity of address translation in those

cases would be a single pointer.

2.4.2 Address Mapping

A related choice is the granularity of address mapping, which is de�ned as the smallest unit

of addressed data (from the persistent store) that can be mapped independently to an area of

virtual address space.

To a �rst approximation, this is a virtual memory page in Texas because any page of

persistent data can be mapped into an arbitrary page of the virtual address space of a process.

A major bene�t of page-wise mapping is the savings in table sizes; we only need to maintain

tables that contain mappings from persistent to virtual addresses and vice versa on a page-wise

basis, rather than (much larger) tables for recording the locations of individual objects. This

reduces both the space and time costs of maintaining the address translation information.

The granularity of address mapping is bigger than a page in the case of large (multi-

page) objects. When a pointer to (or into) a large object is swizzled, virtual address space

must be reserved for all pages that the large object overlaps. This reservation of multiple pages

is necessary to ensure that normal indexing and pointer arithmetic works as expected within

objects that cross page boundaries. The granularity of address mapping is then equivalent to

the number of pages occupied by the large object.

2.4.3 Data Fetching

As the name suggests, the granularity of data fetching is the smallest unit of storage that

is loaded from the persistent store into virtual memory. As with the other two granularities

presented above, we use a virtual memory page for this purpose in the current implementation

of Texas. However, the primary motivation for making this choice was simplicity and ease of

implementation, and the fact that this correlated well with the default granularity choices for

some of the other design issues in our implementation.

It is possible to change the granularity of fetching without a�ecting any of the other

granularity choices. In essence, we can implement our own prefetching to preload data from

the persistent store. As we will discuss in Chapter 7, this may actually be desirable for

some applications when using raw unbu�ered I/O instead of normal �le I/O. Raw I/O is

typically used to bypass the �le system cache in order to avoid the double caching problem

18

(see Chapter 7) but in doing so, we also lose the bene�t of �le system readahead (prefetching)

mechanism. Depending on the access characteristics of the application and the dataset size,

the overall cost of I/O can be reduced by prefetching several (consecutive) pages instead of a

single faulted-on page. Thus the granularity of data fetching is closely tied to the exact I/O

strategy selected in the implementation.

2.4.4 Data Caching

The granularity of data caching is de�ned as the smallest unit of storage that is cached in

virtual memory. For Texas, the granularity of caching is a single virtual memory page because

it relies exclusively on the virtual memory system for caching persistent data.

As we will describe in Chapter 4, a persistent page is usually cached in a virtual memory

page as far as Texas is concerned. The underlying virtual memory system determines whether

the page actually resides in main memory or on disk (i.e., swap space) without any intervention

from Texas. This is quite di�erent from some other persistent storage systems which directly

manage physical memory and control the mapping of persistent data into main memory. In

general, Texas moves data between a persistent store and the virtual memory without regard

to the distinction between virtual pages in main memory and on disk.

It is, of course, possible to change this behavior such that Texas directly manages

RAM (i.e., physical memory). However, we believe that this is unnecessary (and may even be

undesirable) for most applications|the fact that Texas behaves like any normal application

with respect to virtual memory replacement may be bene�cial for most purposes because it

prevents any particular application from monopolizing system resources (physical memory in

this case). As we will discuss in Chapter 7, additional control over memory management is

possible depending on the support available from the underlying operating system.

2.4.5 Checkpointing

Finally, we consider the granularity of checkpointing which is de�ned as the smallest unit of

storage that is written to non-volatile media for the purpose of saving recovery information to

protect against failures and crashes.

Similar to the address translation strategy, Texas uses virtual memory protections to

detect pages that are modi�ed by the application between checkpoints. Therefore, the default

unit of checkpointing in the usual case is a virtual memory page. Texas employs a simple

logging scheme to support checkpointing and recovery. At checkpoint time, modi�ed pages are

written to a log on stable storage before the actual database is updated.5

The granularity of checkpointing can be re�ned by the use of sub-page logging. The

approach relies on a page \di�ng" technique that we originally proposed in [SKW92], and also

briey describe it again in Chapter 4 of this dissertation. The basic idea is to save clean versions

of pages before they are modi�ed by the application; the original (clean) and modi�ed (dirty)

versions of a page can then be compared to detect the exact sub-page areas that are actually

updated by the application and only those \di�s" are logged to stable storage. This technique

can be used to reduce the amount of I/O at checkpoint time, subject to the application's

5Chapter 4 provides further details for checkpointing and recovery support in Texas.

19

locality characteristics. The granularity of checkpointing in this case is equivalent to the size

of the \di�s" which are the units of storage saved to stable storage.6

Another enhancement to the checkpointing mechanism is to maintain the log in a

compressed format. As the checkpoint-related data is streamed to disk, we intervene to perform

some inline compression using specialized algorithms tuned to heap data. Further research has

been initiated in this area [WKB97a, WKB97b] and preliminary results indicate that the I/O

cost can be reduced by at least a factor of two (based on a 2-to-1 compression ratio). Further

reduction in costs is possible with improved compression algorithms and adaptive techniques.

2.5 Fine-grained Address Translation

It is obvious from the foregoing discussion on granularity choices that pointer swizzling at page

fault time is inherently a coarse-grained address translation mechanism. There are several

factors that motivated us to develop and implement a coarse-grained mechanism over a �ne-

grained approach. Obviously, the primary motivation is related to the fact that we wanted to

exploit existing hardware to avoid expensive software checks. However, we believe that there

are also some other factors against �ne-grained address translation. In this section, we present

a discussion on �ne-grained address translation techniques and why we believe that they are

not practical for high-performance implementations in terms of e�ciency and complexity.

Overall, �ne-grained address translation techniques are likely to incur various hidden

costs that have not been measured and quanti�ed in previous research. In general, we have

found that most current �ne-grained schemes appear to be slower than pointer swizzling at

page fault time in terms of the basic address translation performance.

2.5.1 Basic Costs

Fine-grained address translation techniques usually incur some inherent costs due to their basic

implementation strategy. These costs can be divided into the usual time and space components,

as well as the less tangible components related to implementation complexity. We believe that

these costs are likely to be on the order of tens of percent, even in well-engineered systems

with custom compilers and �ne-tuned run-time systems. Some of the typical costs incurred in

a �ne-grained approach are as follows:

� A major component of the total cost can be attributed to pointer validity checks. These

checks can include both swizzling checks and residency checks. A swizzling check is used

to verify whether a reference is swizzled (i.e., translated into valid local format or not7

while a residency check veri�es whether the referent is resident and accessible. These

two checks, while conceptually independent of each other, are typically combined in

implementations of �ne-grained schemes.

� Another important component of the overall cost is related to the implementation of a

custom object replacement policy, which is typically required because physical memory

6The basic \di�ng" technique has been implemented in the context of QuickStore [Whi94]; preliminary
results are encouraging, although more investigation is required.

7For example, all swizzled pointers in Texas must contain valid virtual memory address values.

20

is directly managed by the mechanism that implements persistence. This cost is usually

directly proportional to the rate of execution since it requires a read barrier8 implemen-

tation approach. This cost component is discussed further in the next subsection.

� As resident objects are evicted from memory (during the course of replacement), a pro-

portional cost is usually incurred in invalidating references to the evicted objects; this is

necessary for maintaining referential integrity by avoiding \dangling pointers." This cost

is also directly proportional to both the rate of execution and the locality characteristics

of the application.

� By de�nition, �ne-grained translation techniques permit references to be in di�erent

formats during application execution. This requires that pointers be checked to ensure

that they are in the right format before they can be used, even for simple equality

checks. It may also be necessary to check transient pointers depending on the underlying

implementation strategy. As such, there is a continual pointer format checking cost that

is also dependent on the rate of execution and pointer use.

� Finally, it is possible to incur other costs that exist mainly because of unusually con-

strained object and/or pointer representations used by the system. For example, access-

ing an object through an indirection via a proxy object is likely to require additional

instructions. Another example is the increased complexity required for handling lan-

guages features such as interior pointers.9

Note that all cost factors described above do not necessarily contribute to the overall perfor-

mance penalty in every �ne-grained address translation mechanism. However, the basic costs

are usually present in some form in most systems.

2.5.2 Object Replacement

Fine-grained address translation schemes typically require that the persistence mechanism

directly manage physical memory because persistent data are usually loaded into memory

on a per-object basis.10 Therefore, it is usually necessary to implement a custom object

replacement policy as part of the persistence mechanism. This a�ects not only the overall cost

but also the implementation complexity.

As part of the replacement policy, a read barrier is typically implemented for every

object that resides in memory. The usual action for a read barrier is to set one bit per object

for maintaining recency information about object references to aid the object replacement

policy. The read barrier may be implemented in software by preceding each object read with a

call to the routine that sets the special bit for that object. Compiled code then contains extra

instructions|usually inserted by the compiler|to implement the read barrier. (Alternatively,

8The term read barrier is borrowed from garbage collection research [Wil97], and is used to denote a trigger
that is activated on every read operation. A corresponding term, write barrier, is used to denote triggers that
are activated for every write operation.

9Interior pointers point inside the bodies (i.e., middle parts) of objects rather than at their heads.
10The data are usually read from the persistent store into a bu�er in terms of pages for minimizing I/O

overhead. However, only the objects required are copied from the bu�er into memory.

21

it may be implemented with specialized hardware checks and/or microcoded routines.) The

read barrier is typically expensive on stock hardware because, in the usual case, all read

requests must be intercepted and recorded. It is known that one in about ten instructions is

a pointer store (i.e., a write into a pointer) in Lisp systems that support compilation. Since

read actions are more common than write actions, we estimate that between 5 and 20 percent

of total instructions in an application usually correspond to a read from a pointer. The exact

number obviously varies by application, and more importantly, by the source language; for

example, it is likely to be higher in heap-oriented languages such as Java. It may be possible

to use data ow analysis during compilation such that the read barrier can be optimized away

for some object references; such analysis is, however, hard to implement.

The object replacement policy also interferes with general swizzling, especially if an edge

marking technique is being used. In such cases, the object cannot be evicted from memory

without �rst invalidating all edges that reference it. This obviously requires knowledge about

all references to the object being evicted. Kemper and Kossman [KK95] solved this by using a

per-object data structure known as a Reverse Reference List (RRL) to maintain a set of back-

pointers to all objects that reference a given object. McAuli�e and Solomon [MS95] use a

di�erent data structure, called the swizzle table, which is a �xed-size hash table that maintains

a list of all swizzled pointers in the system. Both these approaches are generally not favorable

because they increase the storage requirements (essentially doubling the number of pointers

at the minimum) and the implementation complexity.

2.5.3 Discussion

One of the problems in evaluating di�erent �ne-grained translation mechanisms is the lack of

good measurements of system costs and other related costs in these implementations. The

few measurements that do exist correspond to interpreted systems (except the E system) and

usually underestimate the costs for a high-performance language implementation. For example,

a 30% overhead in a slow (interpreted) implementation may be acceptable for that system,

but will certainly be unacceptable as a 300% overhead when the implementation is sped up

by a factor of ten.

Another cost factor for �ne-grained techniques that has generally been overlooked is the

cost of maintaining mapping tables for translating between the persistent and local pointer

formats. Since �ne-grained schemes typically translate one pointer at a time, the mapping

tables must contain one entry per pointer. This is likely to signi�cantly increase the size of

the mapping table, making it harder to manipulate e�ciently.

We believe that the E system [RC89, SCD90] is probably the fastest �ne-grained scheme

that is comparable to a coarse-grained address translation scheme; however, it still falls short in

terms of performance. Based on the results presented in [Whi94], E is about 48% slower than

transient C/C++ for the hot traversals of the OO1 database benchmark [Cat91, CS92].11

This is a fairly signi�cant overhead considering that the overhead of our system is zero for

hot traversals and much smaller (less than 5%) otherwise. Even with generous estimates for

performance improvements (say, double the performance), the costs might be reduced to only

11The hot traversals are ideal for this purpose because they represent operations on data that have already
been faulted into memory, avoiding performance impacts related to di�erences in loading patterns, etc.

22

20% of total costs incurred for a transient application. This number is still quite high for

general acceptance in mainstream applications.

We believe that there are several reasons why it is likely to be quite di�cult to drasti-

cally reduce the overheads of �ne-grained techniques. Some of these are:

� Several of the basic costs (outlined above) for a �ne-grained translation scheme cannot

be changed or reduced easily. For example, the pointer validity and format checks, which

are an integral part of �ne-grained address translation, cannot be optimized away.

� There is a general performance penalty (maintaining and searching large hash tables for

mapping information, etc.) that is typically independent of the checking cost itself. As

mapping tables get larger, it will be more expensive to probe and update them, especially

because locality e�ects enter the overall picture.12

� Fancy data ow analysis and code generation techniques are required from the compiler to

optimize some of the costs associated with the read barrier used in the implementation.

Furthermore, such extra optimizations will probably cause unwanted code bloat (e.g.,

excessive loop unrolling).

� Although the residency property can be treated as a type so that Self-style optimiza-

tions [Cha92] can be applied to eliminate residency checking, it is not quite easy to do so

because unlike types, residency can changes across procedure calls depending on the dy-

namic run-time state. In e�ect, residency check elimination is fundamentally a non-local

problem that depends on complex analysis of control ow and data ow.

� It is necessary to check residency of an object at least once before it is used. Thus

if many di�erent unique objects are referenced by the application, the cost of initial

residency checking must still be incurred. For example, an application may traverse a

list containing several thousand objects. Unless the compiler can abstract the access over

the entire collection, full residency checking cost will be incurred for every list element.

Based on these arguments, we believe that �ne-grained translation techniques are not as at-

tractive for high-performance implementations of persistence mechanisms.

Taking the other side of the argument, however, it can certainly be said that �ne-

grained mechanisms have their advantages. A primary one is the potential savings in I/O

because most traditional �ne-grained schemes fetch data only as necessary. There are at least

two other bene�ts over coarse-grained approaches:

� �ne-grained schemes can support reclustering of objects within pages, and

� the checks required for �ne-grained address translation may also be able to support other

�ne-grained features (such as locking, transactions, etc.) at little extra cost.

In principle, �ne-grained schemes can recluster data over short intervals of time compared to

coarse-grained schemes. However, clustering algorithms are themselves an interesting topic

12Hash tables are known to have extremely poor locality because, by their very nature, they \scatter" related
data in di�erent buckets.

23

for research, and further studies are necessary for conclusive proof. We also make another

observation that �ne-grained techniques are attractive for unusually-sophisticated systems,

e.g., those supporting �ne-grained concurrent transactions. This becomes further attractive if

the �ne-grained checking is supported in hardware (as in the early Lisp machines).

2.6 Survey of Related Work

Persistence has been an active research area since the early eighties and various approaches

have been proposed and developed for implementing di�erent types of persistence. These

approaches range from special languages (or language extensions) with builtin support for

persistence to general-purpose languages that support persistence with the help of some kind of

external mechanism. In this section, we survey several representative persistence mechanisms

with respect to our proposed classi�cation based on di�erent granularity choices.

2.6.1 Persistent Programming Languages

We start by looking at approaches that incorporate persistence as part of the programming

language implementation. Some of the important ones that we describe below are PS-algol,

Napier88, LOOM, E and PS-Smalltalk. PS-algol and Napier88 are among the �rst persistent

languages that implemented �ne-grained orthogonal persistence. While E and PS-Smalltalk

are implemented by extending existing popular non-persistent languages (C++ and Smalltalk

respectively), LOOM is actually a virtual memory system for Smalltalk that implements per-

sistence as a side e�ect of providing large virtual memory. We briey describe the salient

features of each language implementation and how it relates to our own approach. We focus

exclusively on advanced languages that support object-oriented data models, and do not dis-

cuss database programming languages (e.g., Pascal/R, RIGEL, etc.) that extend relational

programming techniques because the former are more relevant to our research.

PS-algol

PS-algol [ACC82, ABC+83a, ABC+83b] was the �rst truly persistent programming language,

and has contributed much to the study and development of e�cient persistent systems. The

notion of orthogonal persistence was pioneered in the implementation of PS-algol, which sup-

ports full reachability-based orthogonal persistence.

PS-algol is built by adding functional extensions on top of S-algol, a high-level algol

used for teaching at the University of St. Andrews. The basic goal was to implement per-

sistence in a transparent manner, such that there is a minimal impact on existing code and

programming styles. Therefore, the language syntax was left unchanged and the run-time sys-

tem was modi�ed to recognize and support a collection of procedures (e.g., opening or closing

databases, committing or aborting transactions, etc.) that embodied the persistence facilities.

Pointers and references in PS-algol are dynamically typed, and therefore full type check-

ing is usually necessary at run time. An explicit residency check is piggy-backed onto the type

check made by the run-time system to ensure that the referent is either resident, or can be lo-

cated and loaded from the database. Persistent references are implemented as object identi�ers

24

(OIDs), and the granularity of address translation is individual pointers. The granularities of

address mapping and data fetching is individual objects which are loaded from the database

into the heap by the run-time system.

Napier88

Napier88 [MBC+89] is the successor to PS-algol; while PS-algol uses dynamic typing, Napier88

attempts to use strong typing in most cases. There are some special situations where run-time

dynamic type checking is necessary because the type cannot be determined statically.

The basic implementation strategy is in terms of environments which are treated as

�rst-class objects. An environment is an encapsulation of variables and their storage bindings.

All expressions are evaluated in the context of some speci�c environment, using the information

encapsulated in that environment. Persistence is implemented via a top-level environment that

associates persistent objects to their corresponding values in the persistent store.

As in PS-algol, Napier88 implements reachability-based persistence, using the run-time

type information that is available for all variables in the corresponding environment. The

various granularity choices for persistence are also same as before, that is, individual objects

are loaded from the database on demand when OIDs that reference non-resident objects are

traversed by the application.

LOOM

LOOM [KK83, Kae86], or Large Object-Oriented Memory, is a virtual memory system that was

designed to support large address spaces for early Smalltalk-80 implementations on machines

with 16-bit hardware word size. Persistent references are stored as 32-bit OIDs and translated

into 16-bit OIDs when persistent objects are fetched from disk; these 16-bit OIDs are used to

index into a resident object table that holds references to actual object locations in memory.

LOOM attempts to provide transparent persistence; once objects are loaded into mem-

ory, they contain only 16-bit �elds, just as in a non-persistent Smalltalk-80 implementation.13

When all objects of the working set have been loaded into memory, LOOM behaves similarly

to a normal Smalltalk-80 implementation because there is no distinction between transient

objects and resident persistent objects.

An obvious question is how the system maintains references to non-resident objects in

16-bit �elds of resident objects. LOOM accomplishes this by using one of two mechanisms,

namely leaves and lambdas. A leaf is a proxy for a persistent object on disk; it is, however,

resident and occupies an entry in the object table. In other words, leaf objects are used as proxy

objects to implement node marking. Each leaf contains the 32-bit OID of the corresponding

non-resident object so that it can be found easily when the reference to the leaf is traversed.

On the other hand, a lambda is a 16-bit OID with a special value 0 (zero) that is distinct from

all other values for 16-bit OIDs. This is equivalent to an edge marking approach because the

references are tagged as invalid. As such, there is no need for a proxy object or an entry in the

object table corresponding to a lambda. The lambda mechanism does not maintain the 32-bit

13This is very similar to the invariant maintained by pointer swizzling at page fault time such that all objects
loaded into memory contain only hardware-supported virtual addresses.

25

OID of the original object|in order to load the object corresponding to a lambda value in

the current object, the system must �rst read the current object from disk, locate the 32-bit

value for the non-resident object corresponding to the lambda and then load that object from

disk, overwriting the lambda with the newly-generated 16-bit OID into the object table.

The interpreter implements explicit checks for references to non-resident objects via

either leaves or lambdas, and triggers loading as necessary using di�erent mechanisms de-

pending on whether a leaf or a lambda is being processed. This is termed as object faulting,

drawing a similarity to paged virtual memory systems. The granularity of address translation

is individual object references and the granularities of address mapping and data caching is

individual objects. Finally, it should be noted that LOOM does not provide support for trans-

actions or for saving recovery data in case of a crash/failure because it was primarily designed

to implement a virtual memory system, not a persistence storage system.

The E Programming Language

The E programming language [RC89, SCD90] was developed at University of Wisconsin as a

persistent extension to C++. Persistence is implemented by adding special database types such

that only objects of these types can persist. This is a necessary but not su�cient condition for

persistence. In order to persist, an object must be of one of the database types, and must be

allocated specially in persistent heap. This approach breaks the orthogonal persistence model

because persistent objects are tied to a special type (and associated type hierarchy).

The basic strategy in E is implemented by extending gcc, the GNU C compiler, to

support database types and to generate special residency checks for triggering address transla-

tion and object faulting as necessary. In addition, the E Persistent Virtual Machine (EPVM),

an interpreter, is used for accessing persistent objects. The code generated by the compiler

invokes the interpreter to load persistent objects and translate pointers as necessary.

The Exodus Storage Manager (ESM) [Car89] is used as the object storage management

layer in the language implementation. Each persistent pointer is represented by a 12-byte OID

in the storage manager, and is swizzled to the word size of the local hardware. The �rst

implementation of the interpreter, EPVM 1.0, interfaced with ESM to explicitly manage client

bu�er pool by pinning and unpinning physical memory pages as necessary. A new architecture,

EPVM 2.0, has since been implemented to improve performance by copying data into virtual

memory while translating OIDs into virtual memory addresses, and then unpinning the original

page from the memory [WD92]. Copying into virtual memory can be done in terms of either

individual objects or entire pages containing those objects. Applications manipulate data

directly in virtual memory and no further overhead is incurred in OID translation, while

pinning is only required during copying.

The granularity choice for address translation is in terms of individual pointers, based

on the compiler-generated residency checking code that is inserted at appropriate points in the

code. Address mapping and data caching is handled by the storage manager which explicitly

manages the client bu�er pool. In the case of EPVM 2.0, the granularity of caching varies

depending on whether individual objects or entire pages were copied from the bu�er pool into

virtual memory. The granularity of checkpointing is in terms of individual objects because the

system updates them in the database from their corresponding copies in virtual memory.

26

PS-Smalltalk

PS-Smalltalk [Hos95] is also designed to implement persistence for Smalltalk. The basic ar-

chitecture of the system is similar to the EPVM 2.0 object caching architecture [WD92] but

the underlying storage manager is Mneme [Mos92]. Objects are copied from the Mneme bu�er

pool into virtual memory on demand, translating Mneme OIDs into virtual memory address

values. Mneme implements reachability-based persistence, as well as garbage collection for all

objects reachable from a persistent root. The basic mechanism relies on user-supplied callback

routines to �nd object references contained in other objects. In essence, this pushes o� the

type description responsibility on the programmer who must supply the callback routines.

The system uses node marking for supporting object faulting. The implementation

uses fault blocks which are proxy objects for non-resident objects that hold the corresponding

persistent addresses.14 All object references corresponding to non-resident objects are con-

verted into valid virtual memory addresses of corresponding fault blocks, while maintaining

the invariant required by node marking. Note that this is very similar to pointer swizzling at

page fault time which e�ectively uses protected virtual memory pages as fault blocks.

Address translation is done only when object faults are generated, that is, the ap-

plication attempts to dereference a pointer to a fault block. The actual object is loaded into

memory from the bu�er pool, swizzled as necessary (including generation of references to other

fault blocks), and is then made available to the application. The fault block, now called an in-

direct block, contains the actual memory reference to the object. The extra level of indirection

through indirect blocks is periodically cleaned up by a garbage collector.

Method invocation in Smalltalk is usually done by sending a message whose receiver is

the object on which the method must be invoked. Given this approach, the residency checks

can usually be piggy-backed onto normal message sends which can check whether the intended

receiver is resident and load it if necessary. Recall that data are copied into virtual memory

on demand and address translation is done automatically as objects are loaded into memory.

The granularity of address translation, therefore, is an individual object. The granularity of

caching is a single object as far as the data copied from the bu�er pool into virtual memory

are concerned. Mneme itself uses segments (or collections of objects) for fetching data from

stable storage into the bu�er pool.

2.6.2 External Libraries

Apart from implementing persistence as part of the run-time system of a persistent program-

ming language, it is also possible to support persistence through external mechanisms such as

class libraries or shared object modules, without actually modifying the language implemen-

tation. These approaches are typically designed and implemented to exploit existing features

of a general-purpose language (and operating systems) to achieve their goals.

In this section, we describe three such approaches, each of which implements persis-

tence for C++. Although it is not an absolute requirement to use virtual memory protection

facilities to implement persistence outside the language's run-time system, all three approaches

described here are similar to Texas in that respect.

14Note the similarity between PS-Smalltalk's fault blocks and LOOM's leaf objects.

27

Vaughan and Dearle's Hybrid Approach

Vaughan and Dearle [VD92] have developed a scheme that is similar to ours because it also

utilizes virtual memory protections for residency checking, but di�ers in the way the actual

swizzling is performed. Unlike our approach where the pointers are always swizzled directly

into valid virtual memory addresses, their scheme performs swizzling in an \incremental"

fashion as described below.

When a newly-loaded pointer is being considered for swizzling, the �rst step is to check

the residency of the referent. If the referent has already been loaded into memory, the pointer

is translated into the corresponding virtual address. However, if the referent is not resident,

the pointer is translated into a reference to an object table entry that contains the 32-bit OID

of the non-resident object. This is referred to as \partial" swizzling because more actions

are required before the referent can be accessed via that pointer. The object table entry is

access-protected so that any attempt to dereference the pointer will trigger another protection

fault. This fault is handled by locating the object on disk using the information from the

object table entry,15 loading it into memory and translating the partially-swizzled pointer into

a valid virtual memory address corresponding to the new object location.

The primary goal of this approach is to reduce consumption of virtual memory (i.e.,

swap space) by avoiding allocation of backing storage for objects that are never accessed

by the application. This is accomplished by only partially swizzling pointers until they are

actually used, at which time full swizzling is completed by allocating memory for the referent

and translating the pointer appropriately. Although this is the right idea in principle, we

believe that the implementation strategy has been adversely a�ected because the authors

misunderstood our approach. As we will discuss in Chapter 3, we reserve only virtual address

space, not actual memory or swap space, for pages that are not yet accessed by the application.

Unfortunately, modern operating systems do not always provide such exible control over

memory management. We defer further discussion on this issue until Chapter 7 where we

describe interactions with operating systems.

There are also several other problems associated with an incremental swizzling ap-

proach. Since pointers are swizzled in two steps, the system must handle pointers in two

di�erent formats, partially-swizzled and fully-swizzled. This is similar to the pointer format

checking problem in �ne-grained address translation mechanisms. The basic scheme is also

unlikely to work with standard operating systems and o�-the-shelf compilers|when a partially-

swizzled pointer is dereferenced and is fully swizzled into the �nal virtual memory address of

the actual object, it is necessary to overwrite the (old) partially-swizzled pointer value with the

(new) fully-swizzled pointer value. The fault handler must therefore actually update the saved

machine state, which may not be allowed without special system-level privileges.16 Overall,

we believe that there is no extra bene�t to this scheme, while there is an added overhead of

handling partially-swizzled pointers.

15Once again, note the similarity between protected object table entries and fault blocks in PS-Smalltalk or
leaves in LOOM.

16Pointer swizzling at page fault time does not have this problem because we alway translate pointers into
valid virtual addresses, which do not need to be changed.

28

ObjectStore

ObjectStore [LLOW91] is a commercial system that also uses pointer swizzling at page fault

time as the primary address translation mechanism to implement persistence for C++. Al-

though both Texas and ObjectStore use the same underlying address translation mechanisms,

each was developed independently without any inuence from the other, and the two systems

di�er in several ways.

While Texas is designed to provide simple persistence for C++ with a small run-time

code footprint, ObjectStore is a full-edged object-oriented database system. Texas is designed

to be compatible with existing o�-the-shelf compilers and uses compiler-generated debugging

information from object �les to extract type and object layout information (Chapter 6). In

contrast, ObjectStore uses a special preprocessor to extract the same information from the

application source code. Chapter 6 also enumerates several reasons why we chose to use

debugging information over a special-purpose preprocessor.

The most signi�cant di�erence between the two systems is the strategy for performing

pointer swizzling. ObjectStore is designed to avoid swizzling as far as possible by attempting

to map a page to the same virtual address as it was the last time it was mapped into memory. If

this can be done successfully for referents of all pointers on the page, no swizzling is necessary.

In order to implement this strategy, however, additional information regarding previous map-

pings must be maintained for each persistent page so that it can be consulted before mapping

the page into memory. Furthermore, after a page has been mapped into memory, it must be

scanned to ensure that all pointers are either swizzled correctly, or that their referents can be

mapped into the same location as the last time. In addition, since the application can modify

arbitrary data on a page, a similar scanning is necessary (only for dirty pages) at checkpoint

time to regenerate the mapping information for referents of all pointers on that page.

We believe that avoiding swizzling by mapping pages at the same locations is simply

an \optimization" to the basic pointer swizzling mechanism. It is not clear whether this

optimization provides any signi�cant performance improvement because our measurements

(presented in Chapter 5) indicate that the major component of the overall cost is usually

the I/O cost, while the actual cost of translating the pointer is much smaller in comparison.

Any small advantages are usually negated by the cost of maintaining additional mapping

information for each page of the persistent store. It would be relatively easy to incorporate a

similar optimization in Texas; however, we have not done it so far because it does not appear

to provide any major bene�ts.

QuickStore

QuickStore [WD94, Whi94] is a research system that is very similar to ObjectStore in terms of

its implementation strategy. QuickStore also uses pointer swizzling at page fault time approach

for address translation, and like ObjectStore, it maintains additional mapping information to

avoid swizzling as far as possible. An interesting di�erence, however, is the use of Exodus

as the storage manager. As in the implementation of E, this allows the system to directly

manage physical memory and the client bu�er pool by explicitly moving data between the two

hierarchies.

29

In the area of checkpointing for saving recovery information, QuickStore uses a page

\di�ng" technique similar to the idea that we �rst proposed in [SKW92]. The results pre-

sented in [Whi94] indicate that such \di�ng" should perform well depending on the locality

characteristics of the application. This observation is in line with our original projections of

expected performance characteristics. However, further study is necessary in this area, along

with research on storage management techniques for persistent object stores.

2.6.3 Other Approaches

In addition to the various systems described above, many other approaches for supporting

persistence have been designed and implemented by various researchers. Below, we provide a

brief overview of some of the more interesting systems.

Recoverable-Persistent Virtual Memory

The Recoverable-Persistent Virtual Memory (RPVM) system [CS93, CRRS93] promotes the

extension of virtual memory to support a Recoverable-Persistent Update (RPU) model for

realizing a wide range of recovery services. Although the model essentially supports a mecha-

nism for implementing persistence, the primary focus is on ensuring that the state of virtual

memory can be recovered. As such, RPVM is not a classic persistence mechanism and there

is no explicit pointer swizzling or address translation in the system. Instead, the database is

memory-mapped into the virtual address space using a Mach-equivalent of mmap.

The RPU model de�nes mechanisms that control the propagation of virtual memory

pages to stable storage. In particular, the system allows ush locks to be placed on virtual

memory pages. A ush-locked page is pinned in virtual memory and cannot be propagated

to the database.17 The model also de�nes page-ush before rules that specify a partial order

between two pages for propagation to the database. Page-ush policies are de�ned per database

to guarantee that each database is in a recoverable-persistent state.

RPVM is implemented by modifying the Mach 3.0 kernel to incorporate support for

page-ush policies. Speci�cally, user processes can add and remove both ush locks and page-

ush before rules to specify the appropriate policies for a given database. The granularity of

address translation is not applicable because no swizzling is performed, while granularities of

address mapping and data fetching correspond to the entire database which is mapped into

memory in a single step.

Cricket

Cricket [SZ90] uses the memory management primitives supported by Mach to implement

a single-level persistent object store. The primary strategy relies on Mach external pager

facilities [You89] to locate and load the persistent data from the disk into memory. Cricket

also supports transparent concurrency control and recovery facilities.

The basic architecture is distributed, with a centralized server that is the primary

interface of clients for accessing the persistent object store on disk. The clients communicate

17Note that pages are pinned in virtual memory, not physical memory; a ush-locked page can be paged out
to swap space if necessary.

30

with the Cricket server via an RPC interface. The server, which acts as an external pager,

treats the persistent store as a memory object18 and maps it directly into the client's virtual

address space. The client can then access persistent data as if it were in virtual memory.

Cricket does not implement any kind of pointer swizzling mechanism. Instead, it al-

ways maps the database at the same range of virtual addresses such that all references are

automatically validated. This also means that the size of the database is restricted by the

maximum address space supported by the operating system. The granularity of address trans-

lation is obviously not applicable in this case, and the granularities of address mapping and

data fetching correspond to the entire database.

Dali

Dali [JLR+94] is a storage manager optimized for main memory databases, that is, situations

where the persistent store resides in memory. It does not perform any address translation, and

uses memory mapping techniques to map database �les into the virtual address space of a user

process. A collection of database �les forms a single database (i.e., a persistent object store).

Persistent references are maintained through the use of database pointers. These are

typically represented by using a �le identi�er (for example, the full path to a database �le) and

an o�set into that �le. The system also supports indirect references through the use of object

identi�ers, also known as ItemIDs. Address translation is typically done in a �ne-grained

manner as each database pointer is dereferenced. The virtual address is calculated by adding

the o�set to the base address where the corresponding database �le has been mapped,

The granularity of address translation is typically a single pointer because of the use of

special database pointers. The granularity of address mapping is on the order of a database

�le, since the entire �le is usually mapped into memory. Checkpointing and crash recovery

is implemented using either physical (data) logging or operation logging. The granularity of

checkpointing in the usual case is in terms of predetermined checkpointing units (or chunks)

as de�ned by the system.

P3L

P3L, developed by Suzuki et al. [SKT94], is a persistent variant of the C language. The

system introduces and describes the notion of reservation and residency in the context of object

faulting. The term reservation refers to the action of reserving a local identi�er corresponding

to a persistent identi�er in preparation for an upcoming load of the referent into memory while

the term residency refers to the state of the referent, including information on whether the

data has been loaded from the persistent store. The latter is similar to residency checks that

are part of the pointer validity tests for most �ne-grained address translation mechanisms.

P3L has been implemented by modifying the GNU C compiler to generate additional

code at appropriate points in code. Address translation is performed at the granularity of

objects|references to non-resident objects are translated into special surrogate values (similar

to LOOM's lambda). The compiler automatically inserts extra instructions for reservation

18Mach supports the abstraction of memory objects to allow external memory management in user-level
processes.

31

checking and incremental translation. The Exodus Storage Manager is used for underlying

persistent storage, although a speci�c storage manager is not dictated by any design choice of

the system.

[SKT94] presents a performance comparison between the software-only approach of

P3L and several other systems, including pointer swizzling at page fault time, using the OO1

database benchmark. The results show that coarse-grained address translation is generally su-

perior to other approaches in almost all situations. The only variation where P3L outperforms

pointer swizzling at page fault time is a non-standard benchmark traversal where all locality

in the data structures has been eliminated arti�cially. This result, however, is not surprising

because coarse-grained address translation techniques implicitly rely on locality of reference

to amortize the higher costs of faulting and swizzling entire pages.

2.7 Conclusions

The primary goal of this chapter was to identify the basic design issues that are important

when implementing a persistence mechanism. As part of this exercise, we provided a basic

de�nition of persistence and described the di�erent types of persistence that are popularly

used and implemented in current systems. We believe that orthogonal persistence is the right

approach, and our system is designed to be compatible with this approach.

We have found that existing classi�cations are primarily concerned with address trans-

lation mechanisms only, and do not approach the problem at the right level of abstraction. We

believe that the fundamental issue is the granularity at which address translation is performed.

As such, we have developed a new classi�cation scheme for persistent systems that is based on

granularity choices for the basic design issues, and described where our approach �ts into the

overall hierarchy. Identifying the fundamental design issues for implementing persistence is

important and useful for understanding their impact on overall performance and exibility of

persistent systems. By using granularity as the main factor, we have provided a general classi-

�cation mechanism that is not constrained or unclear. We believe that the �ve issues identi�ed

in this chapter form a core set of fundamental design issues for implementing persistence.

Our scheme is primarily a coarse-grained address translation mechanism, with few

special situations where it can be changed to �ner granularity. The coarse granularity allows

us to exploit existing hardware and reduce total overheads while maintaining compatibility

with existing compilers and operating systems. On the other hand, �ne-grained schemes incur

some basic costs that make them inherently slower overall, except in a few cases that also

require �ne-grained control over other mechanisms such as transactions, locking, etc.

Finally, we have provided a survey of related work in the area of persistence imple-

mentation in a variety of systems. We broadly divided this into two groups based on whether

the persistence facilities are provided as part of the language implementation. Persistent pro-

gramming languages such as PS-algol, E, etc. fall into the �rst category that contains special

persistent languages. The other category includes mechanisms that are implemented outside

the language (usually as a object code library), and take advantage of existing features of the

language, compiler and operating system to do their job.

32

Chapter 3

Pointer Swizzling at Page Fault Time

3.1 Introduction

Persistent object stores are designed to manipulate large volumes of data by implementing vir-

tual address spaces that are larger than hardware-supported address spaces. Early schemes for

supporting large virtual addresses on normal hardware (e.g., LOOM [KK83, Kae86], E [WD92],

etc.) have typically incurred signi�cant overhead due to their use of traditional �ne-grained

address translation techniques.

There are at least two basic approaches that are commonly used for implementing

large address spaces in software. One is to use an object table and indirect all object references

through the object table by translating object identi�ers into table o�sets as objects are loaded

into memory. Untranslated object identi�ers can be marked as such and translated lazily (as

necessary). The second approach is called pointer swizzling|rather than using indirect refer-

ences through an object table, object identi�ers are converted into actual hardware-supported

addresses (that is, virtual memory pointers) in an incremental fashion.

In this chapter, we describe our approach which is a variation on the basic pointer

swizzling mechanism. Conventional pointer swizzling schemes perform the translation only

when the running program tries to use a particular persistent pointer. As part of the translation

process, the object is loaded into virtual memory if it is not already present. Unfortunately,

translating individual pointers may involve checking each pointer at each use to determine if

it is a valid address, thereby increasing the overhead. Alternatively, it is possible to swizzle

pointers in an object the �rst time the object is referenced [Mos92]. However, this approach

also requires that pointers are checked before each use to ensure that they are swizzled as

necessary.

We would like to avoid these extra costs, so that programs that do not access persistent

data do not pay the cost of checking, and programs that do access persistent objects multiple

times do not incur additional costs at every access. Ideally, we would like this scheme to

operate e�ciently on standard hardware without requiring any special-purpose hardware such

as that of the MUSHROOM project [WWH87].

Our approach, called pointer swizzling at page fault time (PS@PFT), is to load pages

into virtual memory on demand, swizzling persistent pointers into normal hardware-supported

virtual memory addresses at page fault time. Pointer swizzling at page fault time is a novel

33

address translation mechanism that relies on standard virtual memory hardware to check

whether referents are already in memory and to trigger swizzling as necessary. The scheme

swizzles entire pages at a time, translating all pointers into corresponding virtual addresses;

no extra hardware is required and there is no continual checking overhead because swizzled

pointers can be dereferenced at normal memory speeds. Our strategy is based on exploiting

locality of access by amortizing the cost of swizzling over multiple accesses to the same data.

In addition, we also take advantage of the fact that I/O costs are typically much higher than

swizzling costs so that swizzling an entire page as it is faulted in does not add signi�cant

overhead compared to the I/O costs for loading the page from disk.

The remainder of this chapter is organized as follows. We start by discussing the

motivation behind designing a page-wise address translation scheme (Section 3.2). Next, we

describe the basic algorithm (Section 3.3) and briey discuss indirect costs of pointer swizzling

(Section 3.4). Other related details such as handling of large objects (Section 3.5), address

space exhaustion (Section 3.6), and issues regarding sharing and compatibility of pointer swiz-

zling at page fault time (Section 3.7) are also described. Finally, we discuss �ne-grained and

mixed-granularity address translation schemes in Section 3.8 before concluding in Section 3.9.

3.2 Motivation

Pointer swizzling at page fault time is inherently a page-wise address translation scheme. Our

decision to implement a coarse-grained scheme was motivated by several factors.

A potential advantage of �ne-grained (pointer-wise or object-wise) address translation

is the savings in I/O costs because typically only the data required by the application is

loaded in. Since today's disks have high latencies, the argument about savings in I/O is

truly applicable only when data is fetched from a remote host via a fast network instead of a

local disk. However, if the application has good locality and accesses most objects on a page,

the advantage of �ne-grained loading and swizzling is quickly lost. Furthermore, although

experimental network protocols have achieved surprisingly good performance [TL93, vEBB95],

most widely available current networks are still an order of magnitude (or more) slower, further

reducing potential bene�ts of �ne-grained schemes.

In addition to the I/O cost, the cost of maintaining meta-data for address translation

is also likely to a�ect the performance of a �ne-grained scheme. Speci�cally, the table used to

hold the mappings between persistent and virtual addresses is likely to get signi�cantly large.

While page-wise swizzling requires only one entry per page in the mapping table, �ne-grained

swizzling will require one entry per object (or more likely, per pointer) thereby increasing the

table size.

A larger table size a�ects the cost of the actual address translation; each time a per-

sistent pointer is swizzled, the mapping table must be probed to check if a mapping already

exists, and a new one is created if necessary. Research in garbage collection techniques has

shown that typically 75-80% of the pointers in an application are likely to be unique [Wil97].

This means that the mapping table lookup will also fail as often. As table sizes increase, the

cost of probing (and inserting new mappings) also tends to increase, adding to the overall

costs of translation. In general, the table size and access characteristics coupled with addi-

34

tional overhead associated with the translation itself can impact the overall performance of

�ne-grained schemes.

If most objects on a page are referenced by the application, �ne-grained schemes end

up mapping and swizzling all those objects eventually, creating several entries in the table.

In contrast, pointer swizzling at page fault time will create a single entry for the entire page

and swizzle all objects as the page is loaded into memory. Fine-grained schemes are therefore

preferable if the application references less than n% of the objects on the page, where n is

some threshold whose exact value depends on factors such as object size, average number of

pointers in objects (and pages), mapping table implementation, etc.

Compared to object-wise (or pointer-wise) address translation schemes, a page-wise

approach allows additional exibility in the usual case. We can exploit the existing virtual

memory hardware and memory protection mechanism o�ered by most modern operating sys-

tems. This makes our scheme compatible with stock hardware and o�-the-shelf compilers,

without requiring any special features or support from the operating system.

We believe swizzling at page fault time to be especially attractive because it scales

well to systems with large main memories. As memories get larger, the average number

of instructions executed between page faults goes up; this should make the cost of pointer

swizzling proportionally smaller. Conventional pointer swizzling schemes usually do not have

this property, because their checking and translation overheads are tied directly to the rate of

program execution.

3.3 Algorithm Description

Pointer swizzling at page fault time is a coarse-grained address translation scheme because

we load and translate entire pages at a time. This is di�erent from other schemes with �ner

granularity that load and swizzle either entire objects or individual pointers only. The basic

approach is incremental because pages are faulted into virtual memory only as required by

the application and address translation is done for an entire page when it is loaded from the

persistent store (on disk). Address translation involves translating pointers from persistent

(long) format into actual hardware-supported virtual memory address (short) format.

Any incremental faulting scheme must somehow detect references to objects in persis-

tent memory,1 so that they can be loaded into virtual memory before being operated on. We

choose to use existing virtual memory hardware and page-wise access-protection capability of

the operating system for this purpose. This avoids continual overhead in software and works

well with modern operating systems on standard hardware.

Our scheme relocates objects into virtual memory somewhat sooner than a straightfor-

ward (software-only) pointer swizzling scheme because we load an entire page when any object

on that page is accessed. This allows us to preserve one essential invariant|the application

is never allowed to \see" any pointers into the persistent address space. Pages containing

persistent pointers are access-protected so that when the application attempts to access such

a page, a trap handler is invoked to relocate the whole page from the persistent store into vir-

tual memory. The trap handler also translates all persistent pointers in the page into transient

1Recall that these residency checks are part of the general pointer validity checks described in Chapter 2.

35

pointers, reserving address space for their referents as needed. The page is then unprotected

and the application may continue without further interruptions for accesses to objects on that

same page.

Virtual
Memory

Persistent
Store

C

D

B F

E

A

A’

A’

A’

A

Persistent
Store Page

Virtual
Memory Page

Reserved
VM Page

Entry
Pointer

Entry
Pointer

Figure 3.1: Bootstrap state for swizzling

Figures 3.1 through 3.3 illustrate the pointer swizzling at page fault time mechanism.

When an application is given access to the persistent store, it can request pointers to one or a

few special persistent roots that can be retrieved by name. These roots act as entry pointers

into the data stored in the persistent store. When a rooted object is requested by name, the

�rst step is to relocate the page(s) that are referenced by the entry pointers. This allows the

entry pointers to be translated into hardware-supported virtual address format so that the

application can begin execution. Figure 3.1 shows this bootstrap state of our system. Note,

however, that we do not actually relocate the page (page A in the �gure); instead, we simply

reserve and access-protect a page of virtual address space (page A0 in the �gure) without

loading the data from the persistent store. The virtual memory address of the object is then

returned as the entry pointer to the application.

As the application attempts to dereference a pointer into an access-protected page

(page A0 in our example), an access-protection violation is generated. We provide a handler

that intercepts this violation, locates the corresponding page (page A in our example) in

the persistent store, and loads it into memory at the predetermined (reserved) location A0.

Next, we convert all pointers from persistent address format into virtual address format to

maintain the aforementioned invariant. However, for all pointers to be swizzled correctly,

their corresponding virtual memory address values must be known. Since all referents may

36

Virtual
Memory

Persistent
Store

C

D

B F

E

A

C’

B’

A’

A’

A’

A

Persistent
Store Page

Virtual
Memory Page

Reserved
VM Page

Entry
Pointer

Entry
Pointer

Figure 3.2: Incremental faulting and swizzling

not already be in memory, the system may need to reserve and access-protect other pages

of the virtual address space (pages B0 and C 0 in Figure 3.2). After this has been completed

successfully, we are done with actions for swizzling and control is returned to the application.

As shown in Figure 3.3, the same process repeats whenever a pointer into an access-

protected page is traversed by the application. The swizzling mechanism ensures that if there

exists a mapping for a given page, a new one is not created. In our example, as the application

traverses a pointer in page C 0 causing it to be loaded from the persistent store and swizzled,

the address space for page B does not need to reserved again. Instead, pointers in page C 0 are

swizzled appropriately to point into page B0. Of course, address space for any other page(s)

not already reserved (page E in our example) must be allocated and access-protected as usual.

Our approach is analogous to that of Appel, Ellis and Li's incremental copying garbage

collection scheme [AEL88] which, in turn, is a variation incremental copying scheme described

by Baker [Bak78, Bak91]. However, unlike the Appel-Ellis-Li model which incrementally relo-

cates objects from from-space to to-space, our scheme relocates pages of objects from persistent

memory to transient memory. This reduces the size of tables required to hold mappings be-

tween persistent and transient addresses|only the page numbers (addresses) must be recorded,

not individual objects. It also meshes well with page faulting mechanisms; caching pages is

more attractive than faulting objects when memories are not very small [Sta82, Wil91, WD92].

The technique reserves virtual address space \one step ahead" of the access pattern of

the application, essentially forming a read barrier in a page-wise \wavefront" that is extended

just past the pages that are already referenced by the application. This is shown pictorially

37

Virtual
Memory

Persistent
Store

C

D

B F

E

A

C’

B’

E’

A’

A’

A’

A

Persistent
Store Page

Virtual
Memory Page

Reserved
VM Page

Entry
Pointer

Entry
Pointer

Figure 3.3: Incremental faulting and swizzling (cont'd.)

in Figure 3.4. The wavefront formed by the access-protected pages allows us to maintain

the invariant that the application can never reference any persistent (unswizzled) pointers.

Pages that are already referenced by the application only contain hardware-supported virtual

addresses, although some of these may point into protected pages. However, we are guaranteed

that if any pointer into a protected page is dereferenced, the resulting fault will be intercepted

and handled by our fault handler. The page then becomes part of the group of pages that have

been referenced by the application and the wavefront is extended to include newly-protected

pages created as a result of the swizzling. This mechanism ensures that the application never

references pages with unswizzled pointers.

Since the application only encounters pointers in virtual address format, pointers can

be dereferenced in the normal way, that is, in a single machine instruction with no extra

overhead except at page faults. We exploit locality of reference in an application similar to

how normal virtual memory systems operate. We also take advantage of the fact that there

is a huge disparity between CPU speeds and disk speeds|by swizzling pages when they are

faulted in from disk, we do not add signi�cant overhead to the faulting cost. In addition, if

an application exhibits the usual locality of reference, we do not incur any additional cost for

further accesses to a swizzled page, thus avoiding a lot of the overhead typically encountered

by pointer-wise or object-wise swizzling.

It should be emphasized that we only consume virtual address space, not virtual mem-

ory (that is, swap space) for untranslated (reserved and access-protected) pages. However,

38

A

B

H

I

F

K

M

D

C

J

E

G

L

Swizzled
(loaded)
Pages

Reserved
(unloaded)
Pages

N

Persistent
Store
Pages

Figure 3.4: \Wavefront" of address space reservation

for some pathological cases which have data structures with high fanout,2 this approach may

still consume address space quickly. In Section 3.6, we discuss the problem of address space

exhaustion and describe several di�erent ways to solve it while still maintaining compatibility

with our basic swizzling mechanism.

3.4 The Mistaken-Dirty-Pages \Problem"

Pointer swizzling at page fault time e�ectively uses the virtual memory hardware, instead

of the more expensive software-only approaches, for residency checking. Chapter 5 presents

performance results which show that the basic costs of this approach are very small compared

to the I/O costs. Unfortunately, there is an inadvertent interaction with the virtual memory

system on operating systems that do not support an advanced memory management interface,

leading to some indirect costs related to pointer swizzling. In this section, we describe the

basic issue, and make some important observations which indicate that these costs are not

a fundamental problem with our approach to address translation. We also briey describe

possible solutions, deferring detailed discussion until Chapter 7.

3.4.1 What it is

When a page is loaded from the persistent store into virtual memory, all pointer �elds in that

page are swizzled into corresponding virtual memory addresses. Typically, these actions occur

after the page has been loaded into memory but before the application has actually used any

2We de�ne fanout as the number of pointer �elds (i.e., \outgoing" pointers) in a given object.

39

data from that page. Thus the page is \clean" from the application's perspective because

it has not actually modi�ed any data on that page. However, the virtual memory system

considers the page to be \dirty" because the act of swizzling has modi�ed the page, even if

the application itself may never do so. Unfortunately, in the usual case, the virtual memory

system cannot automatically distinguish between modi�cations done by our system for pointer

swizzling and those done by the application. We call this the mistaken-dirty-pages problem

because pages that are clean from the application's point of view are \mistakenly" marked as

dirty by the virtual memory system.

Note that the mistaken-dirty pages are not really an issue unless the application exhibits

paging behavior. When a page must be evicted from main memory, the virtual memory system

has two choices. If the page is clean (i.e., there exists an unmodi�ed copy on disk), then it

can simply be discarded. On the other hand, if the page is marked dirty, it must �rst be paged

out (i.e., written to the backing store) before it can be discarded. In the current scenario, it

is obvious that the mistaken-dirty pages must be paged out by the virtual memory system

before they can be evicted from memory.

Under certain conditions, the page-outs for mistaken-dirty pages may be considered

unnecessary because the corresponding data already exists in the persistent store, albeit in an

unswizzled form. Instead, the memory can be reclaimed simply by discarding the data and

removing the virtual-to-physical mapping for the page. The virtual address space for the page

must still be retained (and reprotected) so that future accesses to the page will be intercepted

by the normal swizzling mechanism and will cause data to be reloaded from the persistent

store. In essence, we are \paging" from the persistent store rather than from local swap space.

Narasayya et al. [NNM+96] originally raised the issue about swizzled pages that are

erroneously marked as dirty by the virtual memory system and the corresponding page-outs

that are unnecessary if paging from the persistent store. They classi�ed it as the virtual

memory overhead of pointer swizzling resulting from the cost of additional actions necessary

for pages that are mistakenly considered dirty by the virtual memory system.

3.4.2 Is it a Bug or a Feature?

Although the issue with mistaken-dirty pages appears to be a major problem at �rst glance,

we argue that there are other factors related to the general con�guration that contribute to

the ultimate classi�cation of this issue as a problem or as expected behavior. We consider

three di�erent con�gurations in this context:

1. In a traditional relational database-style setup, there are one or more dedicated database

servers, typically con�gured with large amounts of main memory. If the persistent store

is maintained on such well-equipped servers, the mistaken-dirty pages are indeed a prob-

lem because the server-side caching mechanism|designed explicitly for such use|is not

being exploited.

2. Another con�guration is where the persistent store is on local storage, that is, there are

no servers or networks involved. In this case too, the mistaken-dirty pages are undesirable

because it is unnecessary to have two copies|one in the persistent store and the other

in the backing store|of a clean page.

40

3. Finally, the third con�guration is where the persistent store is maintained on a remote,

centralized �le server that is explicitly designated for �le service, and normal applications

are not allowed to page o� that server. This is an important kind of situation for which

the current implementation of our persistent object store is designed as described below

in our observations on client caching.

3.4.3 Observations

We have argued that the \problem" with mistaken-dirty pages is not always a problem depend-

ing on the con�guration as well as application usage patterns. We now make some important

observations about the basic issues; these observations indicate that, (1) the problem is not

as bad as it seems at �rst glance, (2) it is not a fundamental shortcoming of the pointer swiz-

zling approach, and (3) the default behavior is often the intended behavior for most normal

applications that use our mechanism to incorporate basic persistence.

Onetime Costs. The �rst observation is to note that the costs related to unnecessary page-

outs and mistaken-dirty pages are not continual costs; rather, they are only onetime costs

for every such page. That is, a swizzled page is considered dirty by the virtual memory only

the �rst time it is loaded from the persistent store and swizzled. If it is referenced again after

having been paged out once locally, the virtual memory system will load it in from the swap

space and no swizzling would be necessary. As such, the page is now marked clean and will

not need to be paged out before it can be evicted. In other words, the page has e�ectively

been \cleaned" by the virtual memory system because it was paged out once.

E�ect of Locality and Paging. The mistaken-dirty-pages problem is strongly tied to the

locality characteristics and paging behavior of the application. If there is no paging during

application execution, there is obviously no additional overhead because the virtual memory

system does not need to evict any pages. The mistaken-dirty pages are harmless in this case,

and will be reclaimed by the operating system at the end of program execution. The other end

of the spectrum is when the working set of an application is much larger than the available main

memory. In this case, we expect the overall performance to be dominated by heavy paging

behavior, and the onetime cost of page-outs due to mistaken-dirty pages will only be a small

fraction of the overall paging costs. Finally, the middle of the spectrum is characterized by light

to moderate paging; this is the least favorable for pointer swizzling because the unnecessary

page-outs are likely to be a larger fraction of the overall paging costs depending on the access

characteristics of the application and the working set size. Further research, including detailed

studies using actual applications, is necessary for quantifying these costs in general.

Client Caching. The �nal observation is about the importance of client caching in the basic

run-time environment. One can imagine a situation where it is cheaper to page o� the local

swap space instead of using the persistent store. For example, if the persistent store resides on

a centralized �le server across a (slow) network, the costs of local paging may o�set the costs

of loading a page from the persistent store and swizzling it. Furthermore, it is possible that

centralized �le servers are con�gured to prohibit general paging. Thus in situations where local

41

paging is preferred over paging from the persistent store, page-outs due to the mistaken-dirty

pages are typically not an issue because those pages would have been written to local swap

space regardless of whether they were swizzled or not.

We have designed a persistent object store, the Texas Persistent Store (Chapter 4),

to incorporate persistence in normal applications, not just database-style applications. As

stated earlier, in a traditional database context, there are dedicated servers with large amounts

of main memory for improved performance from server-side caching. However, in a normal

computing environment, the con�gurations are often very di�erent. Texas is implemented as

a library archive; it provides an interface to allow applications to manipulate persistent object

stores that may be stored remotely (e.g., on an NFS �le server).

File servers are commonly centrally administered to provide reliable �le service, not

to act as servers that provide backing storage for virtual memory on clients. In fact, in

many environments, paging o� a central �le server is not allowed.3 If Texas were to avoid

the mistaken-dirty-pages problem by evicting pages to the persistent store, and the persistent

store were NFS-mounted from a central server, this would amount to paging o� the server.

Thus the current approach of client-side local caching is the right one in many situations. If

Texas were to do otherwise by default, applications would unintentionally violate server usage

policies (and possibly a�ect general network performance) simply by linking against the Texas

library.4 Of course, if the persistent store is stored locally or if the user has a right to use a

dedicated server, client-side caching is not the best approach.

3.4.4 Discussion

It is obvious that the mistaken-dirty-pages problem and the associated page-outs are de�-

nitely a source of additional overhead for some con�gurations, a�ecting overall performance

depending on factors such as memory size, locality characteristics, etc. It must be emphasized,

however, that these are not fundamental costs of the pointer swizzling at page fault time tech-

nique. Instead, we classify these costs as indirect costs because pointer swizzling is indirectly

responsible for them due to its interactions with the virtual memory system. Depending on

operating system features that are available, the mistaken-dirty-pages problem can be solved

in several ways. We briey sketch some of these here; Chapter 7 contains further discussion

about interactions between pointer swizzling and virtual memory management. Of these solu-

tions, the most desirable ones usually require features that are currently not available on most

production operating systems. However, the most portable solutions require only the ability

to mount a new �le system that is designed to manage the paging for the persistent store.

An obvious solution is to not do pointer swizzling at all, following an approach similar

to the one used by systems that directly map the entire persistent store in memory [SZ90].

However, this usually limits the amount of persistent data that can be accessed at one time.

More importantly, it a�ects portability because the same mappings and virtual address ranges

cannot be used across di�erent operating systems. A slightly better alternative is to use an

approach similar to the one used in ObjectStore [LLOW91] and QuickStore [WD94]; speci�-

3Our own environment is an example of this situation.
4Systems administrators typically tend to frown upon software that arbitrarily changes the application

paging behavior and adversely a�ects general performance in networked environments.

42

cally, this approach swizzles a page only if it cannot be mapped at the old address. However,

this approach still has limitations in the general case, and does not resolve the basic problem.

Narasayya et al. [NNM+96] suggest a special system call to clear the dirty status

bit of a page. While this is a good idea, it can be generalized to implement an extended

primitive that can communicate a variety of information from an application to the virtual

memory system. An even better approach is to modify operating systems to support external

memory management mechanisms. Operating systems that support such models already exist

(e.g., Mach [BKLL93], and L3/L4 microkernels [Lie95]) and can be exploited. For example,

Mach supports external pagers which can be used as pointer swizzling servers to swizzle pages

before loading them into memory so that they appear clean to the virtual memory system.

Another solution that does not require external memory management support or other

kernel modi�cations is based on exploiting the virtual �le system (VFS) and vnode interface

provided by most operating systems [Vah96]. Using this interface, a special \�le system"

can be implemented to handle the paging for a given persistent store; this �le system can

be designed to handle the pointer swizzling mechanism such that the virtual memory system

only receives clean, swizzled pages thereby avoiding the mistaken-dirty-pages problem. We

elaborate on this solution further in Chapter 7.

Ultimately, the righteous solution is to improve operating system implementations to

provide a better separation of concerns between components such as address mapping and

virtual memory management. Further discussion about this and other related issues is deferred

until Chapter 7.

3.5 Handling Large Objects

The description of the basic algorithm for pointer swizzling at page fault time implicitly as-

sumed that objects were smaller than a virtual memory page, and one or more objects �t

on a single page. A potential problem in our scheme is the need to ensure that if an object

crosses page boundaries in the persistent store, the corresponding pages must be adjacent in

the transient virtual memory as well. If an object straddling a page boundary is not relocated

as a contiguous object, indexing to access its �elds will not work properly.5 We resolve the

problem of large objects by handling them slightly di�erently; as many pages as necessary to �t

the large object are reserved when any page of the object is faulted on the �rst time, but only

the page that was accessed is loaded into memory. In other words, address space is reserved

for the entire object, but only parts of the object that are referenced by the application are

faulted in. Lazy copying of data is particularly helpful here|although address space must be

reserved for the whole object, there need not actually be any physical memory (RAM or disk)

used for unreferenced pages.

To support incremental copying/faulting of large objects, the language implementation

must support operations for locating object boundaries and maintaining mapping tables to

track pages that belong to large objects. These requirements are similar to those of garbage

collected systems that must perform page-wise (or \card-wise") operations [AEL88, WM89]

5An example of such an object would be a large array which spans multiple pages, even though the size of
each individual element may be smaller than a page.

43

within the heap. There is no major di�culty supporting such operations e�ciently for lan-

guages like Lisp or ML; slightly conservative versions of these schemes will work well for

languages with derived pointers and (limited) pointer arithmetic, in much the same way that

conservative garbage collectors operate with languages like C or C++ [BW88]. The main mod-

i�cations are to the allocation and deallocation routines, which must provide headers and/or

groupings and/or alignment restrictions to allow objects to be identi�ed.

Large objects still pose a potential problem for our system in terms of exhaustion of

virtual address space. If a page is touched and it holds pointers to several large (multi-page)

objects, address space must be reserved for all of those objects' pages, even if they are never

touched. Programs that deal with many large objects may therefore bene�t from a larger

hardware address space by decreasing the frequency of address space reuse. While we think

that this is unlikely to be a serious problem for most applications on most machines, it is still

worth considering. As discussed in Section 3.7, it is possible to integrate machines that require

large hardware addresses with those that do not, for sharing of most data between them.

3.6 Avoiding Address Space Exhaustion

A potential problem with the basic scheme is that the transient memory could �ll up with

relocated pages that are used for a while, and then not used again for a long time. These

pages could �ll up the virtual memory, causing excessive paging. This is actually not much

of a problem because the process of swizzling is nearly orthogonal to issues of levels in the

storage hierarchy|an inactive page can still be paged out to backing store as in normal virtual

memory. It may be paged to swap space temporarily, or it may be unswizzled and evicted

back to the persistent store.

The real problem, then, is not the exhaustion of hardware memory, but the exhaustion

of the hardware-supported virtual address space. As mentioned in previous sections, this is not

just a problem for programs that actually reference millions of pages, because touching one

page may cause reservation of several pages of the address space. In the worst case, a page

contains nothing but pointers may be referenced, causing reservation of as many pages as there

are pointers|in our current system, about 500 times as many pages may be reserved as are

actually touched. While this is unlikely for most programs, it is conceivable and in fact rather

near-fetched|pages holding multi-way index tree nodes may approximate the worst case.

To avoid exhausting the virtual address space, we have three strategies. The �rst is

to have smaller pages or to reduce the e�ective page size, and slow the rate of address space

use. Since this strategy may not be entirely e�ective, we have also devised an algorithm for

reclaiming virtual address space incrementally and reusing it. Finally, we also describe ways

to implement �ne-grained and mixed-granularity schemes which may be useful in situations

where the programmer has more control over the data structures.

3.6.1 Smaller Page Sizes

Since rate of address space consumption is directly proportional to number of objects and

pointers in a page, it is obvious that smaller page sizes would favor our scheme by reducing

44

the number of pointer that are swizzled. There are many ways in which page sizes can be

reduced; we discuss some of these below.

We can reduce the e�ective page size by only using part of each virtual page when

allocating objects with large numbers of pointers. For example, if we only use one fourth of

each 4KB page, we reduce the fanout by a factor of four. A naive implementation of this

strategy would be very wasteful, however, so it is desirable to avoid using actual RAM and

disk storage sparsely. A better strategy is to only use a fraction of each virtual page, but

arrange the fragments in a complementary pattern so that several virtual pages can share a

physical (RAM or disk) page. For example, suppose we wanted to implement 1KB fragments

of 4KB pages; we could map four virtual pages to a single physical page, and use a di�erent

quarter of each virtual page for data. While the physical page as a whole would have four

aliases (virtual page numbers), the non-overlapping pattern of allocation would ensure that no

object (or cache block) was actually aliased.

This solution is not entirely satisfactory for two reasons. First, it does not deal with

large objects very well. Second, it wastes little or no physical storage, but decreases the

e�ectiveness of translation lookaside bu�ers|each partially-used virtual page requires its own

virtual-to-physical page mapping in the virtual memory system. While it defers the exhaustion

of the address space in the sense of delaying the discovery and swizzling of pointers, it actually

increases total address space usage (in the long run) by decreasing the usable size of each

virtual page.

If the hardware and/or operating system provide a facility for sub-page protections,

it would be possible to fault in full pages but only swizzle partial pages, thus reducing the

amount of new address space reserved. Using sub-page protection produces the same e�ect as

smaller page sizes in terms of address translation; the whole page must still be loaded in the

�rst time it is faulted on. We defer further discussion of this issue until Chapter 7.

3.6.2 Address Space Reuse

An easy approach for dealing with the exhaustion of the address space is simply to occasionally

evict all pages from virtual memory, throw away the existing mappings, and then begin faulting

pages in again.6 Pages that are no longer in use will not be faulted in again, but the current

working set will be restored quickly. Once the new mappings have been built, pages (of address

space) from the old mappings that are not present in the new mappings can be reused.

Unfortunately, this method incurs unnecessary and bursty tra�c between the transient

memory and the persistent store when mappings are rebuilt because the working set is faulted

out and immediately faulted back in. To avoid this, we take advantage of the fact that address

translation and data caching are essentially orthogonal. We do not really have to write data out

to reclaim the corresponding pages of the virtual address space. Evicting pages from virtual

memory is easy; clean pages can simply be discarded, and dirty pages can be unswizzled and

written back to the persistent store.

6Note that we cannot just evict a page from the virtual address space, because we do not keep track of
pointer assignments|any page that is in the virtual address space must be assumed to have pointers into it
from other pages in the address space. Therefore, we cannot reuse that page until we rebuild the mappings|we
have to �rst traverse the graph of pointers and rebuild the mappings to �nd out which pages are reclaimable.

45

Rather than actually writing everything out, we can simply invalidate and incrementally

rebuild the virtual memory mappings. That is, we \pretend" to write out all of the data, but

we leave it cached locally, and just access-protect the pages. We can then incrementally fault

on them to build a new set of mappings. If a page is faulted on and it is still in local storage

(RAM or disk), so much the better|its pointers can simply be reswizzled according to the

current mappings, in much the same way as when the page was originally faulted in. The

\obsolete" mappings could be consulted, and could even be re-used in many cases. (If a page

is not dirty since it was faulted into transient memory, then it can contains no pointers into

pages that it did not previously contain pointers into.)

Reclamation of pages can begin after the application has run a while, to recreate or

revalidate all the mappings of its current working set. Candidates for reclamation are pages

that have not been referenced since the mass invalidation, and which are not directly reachable

from pages that have been. The reclamation policy should probably favor evicting pages that

are only directly reachable from pages that have not been touched for a long time. To increase

e�ciency in systems where page faults are expensive, the virtual memory system's recency

information might be consulted (if accessible via the operating system), and the most recently-

touched pages could be assumed to be part of the current working set. These pages would have

their addresses recomputed or revalidated immediately (rather than being access-protected)

to avoid most of the urry of access-protection faults immediately after the mass invalidation.

Note that address space reuse is not implemented in our system yet|we currently have

no applications requiring it, but expect to in the future.

3.6.3 Fine-grained and Mixed-granularity Translation

The last strategy for dealing with address space exhaustion is to use �ne-grained (pointer-wise)

address translation mechanism for speci�c data structures that have high fanout. A mixed-

granularity scheme (that is, coarse-grained address translation by default, and �ne-grained

address translation for selected data structures) should provide most of the bene�t without

much additional overhead.

We have implemented �ne-grained address translation by using the C++ smart pointer

idiom [Str87, Ede92b]. Smart pointers allow implementation of pointer-wise address translation

that behaves well with the standard page-wise pointer swizzling scheme without requiring

additional hardware support. Further details about mixed-granularity address translation are

discussed in Section 3.8.

3.7 Sharing and Compatibility

Pointer swizzling at page fault time can be used as a general purpose reconciliation layer

between distinct systems at little performance cost. For example, it can be used to support

data formats that allow sharing of data between machines with 32-bit and 64-bit addressing. Of

course, applications that truly require a huge at address space (for example, applications that

need at array indexing into multi-gigabyte arrays) cannot be executed on 32-bit machines.

Sharing pages across nodes in a distributed system would not be costly; in a straight-

forward scheme, pointers could be unswizzled on transmission and re-swizzled according to the

46

prevailing mappings on the receiving machine. This cost would probably be small relative to

the basic trapping and messaging costs in a shared virtual memory. Also, the costs of pointer

swizzling could be optimized away in those cases where it is not needed. In a network of 64-bit

machines where a larger address space is unnecessary, pages could be permanently assigned to

the same virtual addresses on all nodes. Data could then be shared in a \preswizzled" format,

with no translation costs whatsoever.

Pointer swizzling at page fault time has a signi�cant advantage in that it can serve as

a reconciliation layer to resolve conicts between di�erent address spaces in a heterogeneous

network containing machines with di�erent hardware word sizes. Even in a world of purely 64-

bit hardware, this is very desirable. For example, consider the case of merging two local-area

networks, each with its own at shared address space (a la [CLLBH92]). Pointer swizzling can

be used to resolve conicts between address spaces without an agonizing renaming process|by

its very nature, pointer swizzling at page fault time allows di�erent machines (or sub-nets) to

map the same data to di�erent local virtual addresses. Therefore, it requires no clairvoyance

on the part of system administrators to ensure that conicts do not arise between systems

that might eventually be merged, e.g., when an organization is restructured or one company

acquires another.

Finally, another remaining concern is the complexity added by having the memory

system rely on ability to locate pointer �elds within heap data. We believe this to be a very

small cost; as discussed in Chapter 4, our interface to C++ does not require modifying the

compiler at all. True \higher-level" languages (e.g., Smalltalk, Ei�el, Modula-3) would be even

easier to interface with the memory system.

3.7.1 Data Formats for Sharing across Machines

For compatibility across di�erent machines, it may be desirable to have a single data format

that can be used, irrespective of the address word size of the machine operating on the data.

This is particularly attractive for a shared persistent store or a distributed virtual memory.

It is easy to accomplish this by using pointer swizzling to adjust pointer sizes. When pages

are transferred from one machine to another, it is only necessary to translate the pointers in

a page into the native format of the receiving machine.

Pointer swizzling only requires that it be easy to �nd the pointers in a page, and that

it be easy to convert a large persistent pointer into the hardware-supported format. This is

done by translating the high order bits (page number) to the shorter bit pattern of the virtual

page number, and adjusting the low-order bits that represent the o�set within the page. The

simplest way to ensure this is to have the persistent data format be the same as the transient

format, so that the o�set part of a pointer does not change at all. This can be done for multiple

pointer sizes by simply leaving enough room for the largest hardware-supported pointer size,

whether it is needed on all machines or not. So a 64-bit pointer �eld can be used on 64-bit

machines, and also on 32-bit machines|but only half of the �eld is used for transient pointers

on 32-bit machines. The other half of the �eld goes to waste, but this space cost is relatively

small, especially for languages such as C/C++ because most �elds are not pointers.

This is similar to the approach used in the Commandos [MG89] operating system,

where object identi�ers are used on disk, but are swizzled to actual pointers when data is

47

loaded into memory. However, Commandos does not use page-wise swizzling and incurs high

overhead in checking for unswizzled pointers. Using object identi�ers rather than persistent

addresses also makes translations more expensive.

3.7.2 Linking to Existing Code

Because pointer swizzling at page fault time requires no changes to objects' data formats

or the code that manipulates them, it allows swizzled and unswizzled objects to be used

freely in the same programs, with only a few restrictions on how they may interact. As

discussed in Chapter 2, we use pointer swizzling at page fault time to implement orthogonal

persistence [AM95].

The orthogonal persistence model allows both transient and persistent objects to be

treated in exactly the same way. This allows existing code, typically object code libraries, to

be linked with an application without requiring any recompilation, as long as these libraries do

not need to create persistent objects. Also, transient objects may hold pointers to persistent

objects, and vice versa, as long as they follow a few simple rules. As persistent objects are saved

to the store, all references to transient objects from those persistent object become \stale,"

and the system must ensure that such references are cleared before the persistent object can

be accessed again.

3.7.3 Interfacing with Languages and Compilers

While pointer swizzling at page fault time is obviously applicable to languages like Lisp and

Smalltalk that use tagged pointers, it can also be used for strongly-typed languages such as

Modula-3, ML, and (with slight restrictions) C or C++. The main restriction for C and C++

is the avoidance of untagged unions with pointers in the variant part. Untagged unions anyway

are not very attractive in C++ because of its object-oriented features. The success of conser-

vative garbage collectors shows that most C/C++ programs require little or no modi�cation

to meet the necessary constraints.

Unfortunately, conservative pointer identi�cation|as done for conservative garbage

collectors [BW88]|is not su�cient for pointer swizzling. Instead, precise information about

object layouts is necessary at run time to accurately locate and swizzle pointers. Thus there is

a need for a mechanism that facilitates run-time type description (RTTD) rather than simple

run-time type identi�cation (RTTI), the latter being designed more towards supporting queries

about language-level information. Chapter 6 describes the design of our RTTD mechanism in

further detail, along with a description of our implementation for C++. We use the debugging

information in object �les to extract the necessary object layouts. This allows us to interface

with existing compilers since the format of debugging information is typically independent of

both the source language and the compiler.

We have implemented pointer swizzling at page fault time for C++ in the Texas Per-

sistent Store (Chapter 4) using existing o�-the-shelf compilers. We use RTTD in conjunction

with allocator modi�cations to maintain information about object layouts and swizzle pointers

in heap-allocated persistent data structures.

48

3.8 Fine-grained and Mixed-granularity Translation

Pointer swizzling at page fault time usually provides good performance for most applications

with good locality of reference. However, certain applications that exhibit poor locality of

reference, especially those with large sparsely-accessed index data structures, may not produce

best results with such coarse-grained translation mechanisms. Applications that access big

multi-way index trees are a good example; usually, such applications sparsely access the index

tree, that is, only a few paths are followed down the tree from the root. If the tree nodes are

large in size and have a high fanout, the �rst access to a node will cause all those pointers to

be swizzled, and possibly reserve several pages of virtual address space|most of this swizzling

is probably unnecessary since only a few pointers will be dereferenced.

The solution is to provide a �ne-grained address translation mechanism which translates

pointers individually, instead of doing it a page at a time. Unlike the coarse-grained mechanism

where the swizzling was triggered by an access-protection violation, the translation of a pointer

may be triggered by one of two events|either when it is \found"7 or when it is dereferenced.

There are many ways of implementing a �ne-grained (pointer-wise) address translation

mechanism. We have selected an implementation strategy that remains consistent with our

goals of maintaining portability and compatibility with existing o�-the-shelf compilers, by us-

ing the C++ smart pointer abstraction [Str87, Ede92b]. In this section, we �rst briey explain

the smart pointers abstraction and then describe how we use smart pointers for implementing

�ne-grained translation in Texas. Finally, we discuss how both �ne-grained and coarse-grained

schemes can coexist in a single application to create a mixed-granularity environment.

3.8.1 Smart Pointers

A smart pointer is a special C++ parameterized class such that instances of this class behave

like regular pointers. Smart pointers support all standard pointer operations such as derefer-

ence, cast, indexing etc. However, since they are implemented as C++ classes with overloaded

operators to support these pointer operations, it is possible to execute arbitrary code as part

of any such operation. A smart pointer class declaration is typically of the following form:

template <class T> class Ptr

{

public:

Ptr (T *p = NULL); // constructor

~Ptr (); // destructor

T& operator * (); // dereference via `*'

T *operator -> (); // dereference via `->'

operator T * (); // cast operator (cast to `T *')

...

};

Given the above declaration of a smart pointer class, we can then use it as follows:

7A pointer is \found" when its location becomes known. This is similar to the notion of \swizzling upon
discovery" as described in [WD92].

49

class Node; // assume previously defined

Node *node_p; // regular pointer to Node object

Ptr<Node> node_sp; // smart pointer to Node object

...

node_p->some_method(); // invoke method via regular pointer

node_sp->some_method(); // invoke method via smart pointer

It is obvious from the above code fragment that the declaration of a smart pointer is di�erent

from that of a regular pointer, but the usage is identical.

Note that we have only shown some of the operators in the declaration of the smart

pointer above. Also, we avoid describing the private data members of the smart pointer because

the interface is much more important than the internal representation. In other words, it is only

necessary to ensure that a smart pointer instance will support all standard pointer operations;

it does not matter how the class is structured as long as the interface is implemented correctly.

In fact, as will be clear from our discussion about variations in �ne-grained address translation

mechanisms, the smart pointer will need to be implemented di�erently for di�erent situations

and implementation choices.

Smart pointers were originally used in garbage collectors to implement write barri-

ers [Wil92, Wil97] so that pointer updates by the application (also called the mutator) can be

tracked easily, allowing the garbage collector to do its job. However, smart pointers are also

suitable for implementing address translation for persistence; the overloaded pointer derefer-

ence operations (via the *" and \->" operators) can be implemented to translate persistent

pointers into transient pointers as necessary.

Smart pointers were designed with the goal of transparently replacing regular pointers

(except for declarations), and providing additional exibility because arbitrary code can be exe-

cuted for every pointer operation. In essence, it is an attempt to introduce reection [KdRB91]

into C++ for builtin data types (i.e., pointers).8 However, as described in [Ede92b], it is impos-

sible to truly replace the functionality of regular pointers in a completely transparent fashion.

Part of the problem stems from some of the inconsistencies in the language de�nition and

the implementation dependence. Thus we do not advocate smart pointers for arbitrary usage

across the board, but they are useful in certain situations.

3.8.2 Fine-grained Address Translation

We are interested in building a �ne-grained address translation mechanism using smart point-

ers. The idea is to swizzle individual pointers, instead of entire pages at a time, to reduce the

consumption of virtual address space for sparsely-accessed data structures with high fanout.

By using smart pointers, the programmer can easily choose the data structures that are swiz-

zled on a per-pointer basis, without requiring any inherent changes in the implementation of

the basic swizzling mechanism.

Note that although the pointers are swizzled individually, the granularity of data trans-

fer is still units of pages, not individual objects, to avoid excessive I/O costs. Below we describe

8C++ already provides limited reective capabilities in the form of operator overloading for user-de�ned
types and classes.

50

at least two possible ways to handle �ne-grained address translation, and discuss why we choose

one over the other.

Fine-grained Swizzling

A straightforward way of implementing �ne-grained address translation is to cache the trans-

lated address value in the pointer �eld itself; we call this �ne-grained swizzling, because the

pointer value is cached after being translated.9 We chose not to follow this approach because

of a few problems with the basic technique.

First, �ne-grained swizzling incurs checking overhead for every pointer dereference; the

�rst dereference will check and swizzle the pointer, while future dereferences will only check

(and �nd) that the swizzled virtual address is already available and can be used directly.

A more signi�cant problem is presented by equality checks|when two smart pointers are

compared, the comparison can only be made after ensuring that both the pointers are in the

same representation, that is, either both are persistent addresses or both are virtual addresses.

In the worst-case scenario, the pointers will be in di�erent representations, and one of them

will have to be swizzled before the equality check can complete. Thus a simple equality check,

on average, can become more expensive than desired.

One obvious solution is to make the pointer �eld large enough to store both the persis-

tent and virtual address values as implemented in E [RC89, SCD90]. In the current context,

the smart pointer internal representation could be extended such that it can hold both the

pointer �elds. This technique avoids the overhead on equality checks which can be carried

out by simply comparing persistent addresses, without regard to swizzling or existence of the

corresponding virtual address.

Unfortunately, a more serious problem with �ne-grained swizzling is presented by its

peculiar interaction with checkpointing. When a persistent pointer is swizzled, the virtual

address must be cached in the pointer �eld (either E-style or otherwise), that is, we must

modify the pointer. However, since virtual memory protections are also used to detect updates

initiated by the application for checkpointing purposes, updating a smart pointer to cache

the swizzled address will clash with this approach, generating \false positives" for updates

and causing unnecessary checkpointing. We could, of course, work around this problem by

�rst resetting the permission (i.e., the virtual memory protection) on the page, swizzling (and

caching) the pointer, and then restoring the protection on the page. However, this solution is

very slow on average, since it requires kernel intervention to change page protections and most

modern operating systems are not optimized for such actions.

Translations at Each Use

As described above, a simple �ne-grained swizzling mechanism is likely to have some unusual

interactions with the operating system and the underlying virtual memory system, thus re-

ducing its attractiveness. However, we can slightly modify the basic technique and overcome

most of the disadvantages without losing any of the bene�ts.

9The term \swizzling" implies that the translated address is cached|as opposed to discarded|after use.

51

The idea is to implement smart pointers that are translated on every use and avoid

any caching of the translated value. In other words, these smart pointers hold only the persis-

tent addresses, and must be translated every time they are dereferenced because the virtual

addresses are not cached. Equality checks do not incur any additional overhead because the

pointer �elds are always in the same representation, that is, they hold only persistent addresses,

which can be compared directly.

Pointer dereferences also do not incur any additional checking overhead. The cost

of translating at each use does not add a very large overhead to the overall cost, and is

usually amortized over other \work" done by the application, that is, the application may

dereference a smart pointer and then do some computations with the resulting target object

before dereferencing another smart pointer.

The advantage of this approach is that since the translated address values are never

cached, the pointer �elds do not need to be modi�ed, and all unwanted interactions with

checkpointing and the virtual memory system are avoided. However, this approach is still

unsuitable as a general-purpose swizzling mechanism compared to the costs incurred by pointer

swizzling at page fault time.

3.8.3 Mixed-granularity Address Translation

It is possible to implement a mixed-granularity address translation scheme that consists of

both coarse-grained pointer swizzling and �ne-grained address translation. The interaction of

swizzling with data structures such as B-trees can be handled without compiler intervention

through the use of smart pointer abstraction. The details of a �ne-grained address translation

scheme are hidden by the abstraction, thus making the approach partially reective.

In a system con�gured with only �ne-grained address translation, we would not need to

examine (and swizzle) any objects at page fault time, because we know that all data pointers

are smart pointers that will be translated at each use. In other words, virtual memory access

protections are not required to trigger the transfer of data (and pointer swizzling), since all

pointer operations will be through user-de�ned code (via smart pointers). If access protections

are never used, no access-protection violations will be generated by the application.

A fully �ne-grained approach may, however, introduce a strange interaction with virtual

function table (VFT) pointers in C++. Virtual functions are used for dynamic dispatch in

C++; they are implemented by incorporating a VFT pointer �eld, that points to a table of

virtual functions, in the object. A VFT pointer is inherently a pointer �eld, and thus it needs

to be swizzled like other pointer �elds in the object. However, the di�erence is that it is

a pointer into the code segment (instead of the data segment) and is also compiler-de�ned,

which means that its representation cannot be changed by the user; in other words, we cannot

implement it via a smart pointer. Without using virtual memory access protections, it would

be impossible to detect use of the VFT pointer without special compiler-generated code. We

now have conict with the default behavior of �ne-grained address translation that needs to be

resolved somehow. In general, using a mixed-granularity approach, with �ne-grained address

translation used only for speci�c data structures will solve the problem with VFT pointers.

52

3.9 Conclusions

We have presented a novel address translation technique for supporting large address spaces

on stock hardware, using only standard compilers and operating system features. Our page-

wise approach is designed to take advantage of the fact that most applications exhibit spatial

and temporal locality; we exploit this locality of reference in much the same way as a normal

virtual memory, gaining many desirable performance characteristics, especially given the trend

toward larger main memories. Swizzling at page fault time does not add signi�cant overhead

because CPU speeds are much higher compared to disk speeds.

The implementation uses conventional virtual memory hardware and the operating

system's memory protection facilities to check residency of persistent data and trigger address

translations as necessary. This avoids the need for any software checks which are likely to be

more expensive in general. There is, however, a one-time indirect cost associated with pointer

swizzling due to its interaction with the underlying virtual memory system. Fortunately, this

is not a fundamental limitation of the technique itself, but rather an external overhead due

to lack of interaction with the operating system, and can be resolved with operating system

support.

Pointer swizzling at page fault time is highly portable because it uses only standard

features supported by most modern operating systems. Furthermore, continual checking of

pointer format is unnecessary once a persistent address has been translated into a hardware-

supported address format because the translated value is cached locally. Thus data access

proceeds at full memory speeds after the initial faulting and swizzling is completed. The

approach is also compatible with existing o�-the-shelf compilers because no special code gen-

eration is necessary to incorporate the address translation mechanism. The basic technique

is a coarse-grained scheme because the default unit of translation is a virtual memory page.

However, for situations where coarse-grained address translation is not appropriate (e.g., data

structures with poor locality characteristics), we have developed portable �ne-grained and

mixed-granularity address translation schemes.

We believe that pointer swizzling at page fault time has a wide variety of applications.

As described in the next chapter, it can be used to provide a portable and e�cient persistence

mechanism for mainstream languages such as C and C++, in essence providing support for

64-bit (or larger) address spaces on standard 32-bit hardware. In general, it is also suitable as

a reconciliation layer between otherwise-incompatible system components and abstractions.

53

Chapter 4

Design and Implementation of the

Texas Persistent Store

4.1 Introduction

Texas is a persistent storage system for C++, providing high performance while emphasizing

simplicity, modularity and portability. A key component of the design is the use of pointer

swizzling at page fault time as the default address translation technique for implementing

persistence and large address spaces on standard hardware. In this chapter, we describe the

basic design and complete implementation details of the Texas persistent store.

Texas is designed to support orthogonal persistence as its underlying persistence model.

Our scheme is also compatible with reachability-based persistence, which can be implemented

on top of our approach. Orthogonal persistence allows Texas to support standard o�-the-shelf

C++ compilers which emit code in the usual way, without having to distinguish between

transient and persistent objects. Using standard compilers also provides the added bene�t of

e�ciency and compatibility.

The current implementation o�ers simple checkpointing capabilities and basic logging

mechanisms for storage management and data recovery. As described later in the chapter,

these modules are independent of other parts of the system and can be replaced with better

algorithms as necessary. Currently, the implementation allows a persistent store to be saved

either as a regular �le in the �le system or directly to a raw disk partition. A �le system ab-

straction layer has been designed to allow advanced storage management and logging strategies

to change the underlying implementation transparently. Similarly, we have also implemented

a virtual memory abstraction layer to simplify portability to di�erent operating systems.

As discussed earlier, pointer swizzling at page fault time can be used to e�ciently

support very large address spaces on standard hardware. We intend for Texas' addressing

scheme to be extensible and scalable to networked systems where a single address space is

used across many machines with large amounts of data apiece.1

1Despite the fact that we actually live in a hilly area, the name \Texas" is intended to suggest a large, at
space.

54

4.2 Goals and Features

Texas has been designed with several speci�c goals and features in mind:

� Portability Texas is compatible with o�-the-shelf C++ compilers and standard operat-

ing systems. It requires only a minimal support from the operating system for virtual

memory protection and access-protection violation handling capabilities. Most modern

operating systems provide these features. In addition, Texas does not require any spe-

cial system privileges; any user can link Texas with their application without superuser

intervention.

� Transparency Texas allows an application to access both transient and persistent objects

in the same way without distinguishing between them. In other words, persistent objects

can be manipulated by the same code that manipulates transient objects because per-

sistent objects \seem" to reside in virtual memory. Thus if the client code does not need

to distinguish between transient and persistent objects, it is not forced to do so. The

types of persistent and corresponding transient objects are \same," unlike other systems

where persistence is implemented by deriving from a top-level \persistence" class and

adhering to a speci�c interface for reading and writing objects.

� E�ciency In most cases, access to persistent objects is as fast as access to transient

objects. The only overhead associated with persistent object access is the initial cost of

translating persistent pointers into swizzled pointers when a page is brought into virtual

memory. All future accesses to a persistent object in memory occur at full memory speed

without any additional checks. In addition, no overhead is imposed on access to transient

objects.

� Robustness Texas uses simple logging techniques to provide checkpointing and crash

recovery facilities. The system is also designed to be compatible with advanced storage

management and logging facilities for achieving improved performance and exibility.

� Scalability Repeated touches to a page incur no extra overhead in address translation,

that is, once a page has been swizzled, it is unprotected so that all future accesses cause

no further access-protection violations. In addition, the costs incurred at page fault time

should decrease as memory sizes increase and thus the number of instructions between

faults increases.

� Compatibility The implementation is designed to be compatible with existing code li-

braries which can manipulate both persistent and transient objects alike. Recompilation

is necessary only if the library needs to create persistent objects. Moreover, the user

interface is simple so that minimal source code modi�cations are necessary for an ap-

plication to take full advantage of Texas' persistent storage and recovery facilities. The

address translation scheme can also reconcile data formats for sharing data between

heterogeneous machines and/or merging distinct address spaces.

� Modularity Texas is composed of a set of largely orthogonal modules, with address trans-

lation, caching and checkpointing handled in nearly disjoint code. The system also

55

contains abstractions for operating system interaction with respect to virtual memory

and �le system facilities. This has made development simpler, and facilitates easier

experimentation and enhancements.

� Pay-as-you-go Costs Pointer swizzling costs are incurred only by programs that use the

feature, rather than by all programs. This parallels the usual policy of C++ language

implementations|you only pay for features that you use.

4.3 Basic Design

The driving requirement for the basic design is to maintain simplicity and modularity in the

system. To achieve this, Texas is divided into several modules, each designated with a speci�c

responsibility. However, note that several of the algorithms and their implementations are

straightforward, and could easily be replaced with modules that are better suited to speci�c

applications. For example, although Texas currently supports only C++, it could easily be

adapted for use with other languages by replacing some of the language-speci�c modules.

Application

Language
Interface

Memory
Manager

Mapping and
Swizzling Module

Storage and
Recovery Manager

Compiler

Type Descriptor
Generator

Language
Dependent

Language
Independent

Compile
Time

Run
Time

de
bu

gg
in

g
in

fo
rm

at
io

n

type descriptors

binary code

open pstore
close pstore
checkpoint

malloc/new
free/delete

memory
allocation

get
heap
page

find
objects
in page

I/O and file
recovery

manipulate
pstore

Figure 4.1: Basic design of Texas

56

Figure 4.1 shows the main modules of the system and their interactions. It is obvious

that only the language interface and the memory manager are language-dependent because

they need to interact with the actual data objects in the application. In contrast, the caching

and storage/recovery management are done in terms of uninterpreted blocks of data. Currently,

we have implemented a language interface only for C++, but it would be trivial to extend it

to C by making minimal changes, especially because the memory manager would not require

any further modi�cations.

Although the mapping and pointer swizzling module is independent of any speci�c

language, it still needs to interact with the memory manager to locate data objects in memory.

In addition, it also needs information about layouts of these objects at run time to locate

and swizzle pointers. This kind of run-time type description (RTTD) is captured at compile

time and provided to the swizzling mechanism at run time via type descriptor records. Our

implementation of the type descriptor generator is based on the use of debugging information,

which is typically language-independent. Complete details about RTTD and our case study

implementation for C++ are discussed in Chapter 6.

It should be noted that the various modules shown in Figure 4.1 are designed to be

orthogonal to each other. For example, the swizzling and mapping manager does not interact

with the storage and recovery manager except as speci�ed by the latter's published interface.

This orthogonality allows easy replacement of speci�c modules without a�ecting other modules

or the rest of the system.

4.4 Implementation Details

We have implemented Texas as a C++ library; client applications can be linked with this

library so that they can create and manipulate persistent objects using Texas' persistence

mechanism. Texas is relatively small in terms of implementation|the code size is less than

10,000 lines of C++ and the run-time footprint is only about 100KB, making it suitable for

applications that must operate with small memory constraints. The code has been ported to a

variety of operating systems (SunOS, Solaris, Linux, Mach, Ultrix, and OS/2), and ports should

be possible to other modern operating systems such as Windows NT. Texas also works with

the GNU g++ compiler (for all Unix-like platforms), Sun C++ compiler (for SunOS/Solaris

only) and the IBM VisualAge compiler (for OS/2).

In the remainder of this section, we describe implementation details about various

components of the system and how they implement the features mentioned in Section 4.2.

Note, however, that several of the algorithms are straightforward, and could easily be replaced

with other similar algorithms that are better suited to speci�c applications. Although Texas is

currently implemented for C++, it can be modi�ed to adapt to other languages by replacing

the user interface (for languages such as C) and other modules such as the heap management

and run-time type description (for languages that are not similar to C/C++).

4.4.1 Heap Management

Texas allows applications to access multiple persistent stores, each with its own heap; in

addition, applications may also create transient objects on a normal transient heap. A naive

57

memory manager would create separate heap areas for persistent and transient objects. Each

persistent heap would start at some (di�erent) arbitrary address, and each heap would grow

and shrink independently. Obviously, this design requires an ad hoc static partitioning of a

process' virtual address space, which may not be possible (or desirable) on di�erent platforms.

Our memory manager avoids statically partitioning the address space and the unnecessary

restrictions on the number of pages used for any particular heap.

To avoid static partitioning limitations, our memory manager manages heap space as

non-contiguous sets of pages. A given page holds objects belonging to exactly one heap, but

pages belonging to several heaps may be interleaved in any order in memory. Large objects

that do not �t on a single page are allocated on contiguous pages to allow normal indexing

and pointer arithmetic to work as expected; each of such pages is agged as being part of a

large object to ensure correct swizzling behavior.

Like any heap allocation system, the Texas memory manager maintains data structures

that record free heap space. Because transient and persistent objects cannot reside on the same

page, separate free lists are maintained for each heap. The free lists for persistent heaps are

themselves stored as data structures in the appropriate persistent store, so that free space

within partially-�lled persistent pages can be (re)allocated during subsequent program runs.

Currently, Texas uses a segregated storage allocation policy for memory allocation

of both transient and persistent objects. We describe the basic algorithm for this memory

manager and discuss abstractions that can be used to plug in an arbitrary memory manager

instead of the segregated storage allocation model.

Algorithm Description

As the name implies, a segregated storage allocator segregates the allocation of objects based

on some speci�c criteria. In our current implementation, objects are segregated on the basis

of their size. A given virtual memory page is split into uniformly-sized chunks, each of which

holds a single object. Since it is possible to have an arbitrarily large number of unique object

sizes, the allocator maps di�erent sizes into a limited number of size classes to allow easy

memory management. A size class is de�ned simply as a representation of a small range of

object sizes; objects are allocated in free chunks of memory large enough to hold the actual

objects, but possibly with some wasted space if there is not an exact �t. Using this approach,

an object of a given size is allocated in the page containing chunks that correspond to that

object's size class.

A typical scheme is to use size classes that are powers of 2 (for example, 2, 4, 8, and

so on). We compute the size class for a given object size by �nding a number n such that the

value 2n is the closest power of 2 that is higher than the object size. In other words, the size

class is derived by rounding up the object size to the closest value that is a power of 2 and

then computing the log (base 2) of that value. It is obvious that this approach will generate

chunk sizes of 1 byte, 2 bytes, 4 bytes, 8 bytes, 16 bytes, 32 bytes, and so on2 corresponding

to a powers-of-2 (2n) series starting at n = 0.

2Note that very small chunk sizes (for example, 1 to 2 bytes) may not be suitable for actual allocation due
to memory alignment constraints and storage requirements for allocator meta-data.

58

The above scheme works fairly well and is quite easy to implement in practice. Un-

fortunately, it is also subject to potentially severe external fragmentation [RK68] because no

attempt is made to split or coalesce blocks in order to satisfy requests for other size classes.

However, there is a tradeo� between expected internal fragmentation and external fragmenta-

tion. As the spacing between chunk sizes gets large, a larger number of di�erent object sizes

fall into each size class, allowing space for some sizes to be reused for others. On the other

hand, using a powers-of-2 series is also likely to generate larger internal fragmentation as size

classes get bigger because more space is potentially wasted. To reduce some of the fragmenta-

tion e�ects, we use two interspersed series for chunk sizes|the normal powers-of-2 (2n) series

starting at n = 0 and a powers-of-2-times-3 (2n�1 �3) series starting at n = 1. The resulting

chunk sizes (in bytes) would then be 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, and so on, producing twice

as many chunk sizes compared to the typical approach, allowing some �ner granularity control

over object allocation.

The free list for each heap is actually structured as a vector of separate free lists, one for

each di�erent size class. When an object must be allocated and the free list for the appropriate

size class is empty, new storage is allocated from the operating system to that heap, and is

immediately divided into uniform-sized chunks (corresponding to the required size class) that

are linked onto the free list. No special handling is required to allocate large objects because

the size classes for the larger object sizes will automatically ensure that multiple pages are

allocated as necessary.

Splitting each page into uniform-sized chunks makes object identi�cation extremely

easy. We only need to examine the header of the �rst object in the page; its size class|and

thus the size class of all the objects on the page|can be determined from the header. The

alignment of objects' headers follows trivially. A special exception is the case of objects that

are too large to �t on a single page. Instead of recording the actual size class for such pages,

each page is marked as being part of a large object and object boundaries are stored in a

special table so that their starting addresses (and type descriptors) can be found.

Allocator Abstraction Layer

Our allocator expends little e�ort attempting to coalesce (or split) free blocks into larger (or

smaller) blocks although such coalescing and splitting could potentially a�ect locality and

fragmentation. Simple segregated storage allocator can be made quite fast in the usual case,

especially when objects of a given size are repeatedly freed and reallocated over short periods

of time. Since the policy does not coalesce or split free blocks, almost no work is done when

an object is freed, and subsequent allocations of the same size can be quickly satis�ed by

removing that block from its free list.

In general, segregated storage policies are known to be prone to higher fragmenta-

tion [Joh97]. However, we still chose to implement a memory manager based on this policy

primarily because study of memory allocation policies is not our research focus, and because we

only needed a fast implementation of a simple allocation policy. A desirable approach would

be to de�ne an allocator abstraction layer that speci�es the basic functionality required by

Texas from a memory allocation policy. Given such a layer, it would be possible to replace the

underlying allocator simply by \plugging in" implementation of a di�erent policy that adheres

59

to the interface of the abstraction layer.

Since Texas uses a virtual memory page for most of the granularities of persistence

(Chapter 2), the allocator must ensure that a given page belongs to a single heap only. In

addition, the allocator must provide a mechanism to store the type information (Chapter 6)

for every persistent object allocated.3 The memory manager requires that the allocator be

able to locate this type information for an object using a pointer to (or to interior of) the

object. Finally, given some virtual memory page, it must be possible to �nd all objects that

exist on that page.

Given the above abstractions, it would be easy to use an arbitrary policy (such as �rst-

�t or best-�t) for memory allocation in Texas as long as the implementation of policy provides

the appropriate functionality dictated by the abstraction layer.

4.4.2 Caching

Pointer swizzling at page fault time implements address translation on top of an abstraction

of a conventional virtual memory; we exploit this fact to use the underlying virtual memory as

a caching mechanism. Once a page has been loaded into virtual memory from the persistent

store, it may be paged out and paged back in again as necessary without intervention from

the swizzling mechanism. That is, pages containing swizzled pointers may be paged in and

out independently of the transfer of pages between virtual memory and persistent store.

Texas does not explicitly manage physical memory; instead it relies on virtual memory

to do the caching in the usual way. While Texas does take advantage of the protection features

provided by a modern virtual memory system, it does not look beneath the virtual memory

abstraction per se|that is, it does not distinguish between pages cached in main memory

(RAM) and in the backing store (on disk).

This approach is appropriate for many applications such as typical CAD databases,

or for simply replacing conventional �les in normal applications. Paging swizzled data locally

avoids unnecessary communication with the persistent store, and also avoids the (much smaller)

cost of unswizzling and reswizzling pages. In other applications, it might be preferable to page

directly from the persistent store. This would avoid redundant storage of pages in both the

persistent store and the local disk's swap space. It would also reduce the possibility of dirty

pages being paged out to backing store, only to be subsequently paged back in so that they can

be written to the persistent store.4 Naturally, evicting pages directly back to the persistent

store would be especially appropriate for diskless clients.

Texas could easily be modi�ed to evict pages back to the persistent store, given control

over page-outs. One approach for achieving this is to use something similar to Mach's external

pager facility [BKLL93], but it would make the system somewhat more complex and less

portable. We will discuss this issue in detail in Chapter 7.

It is also possible to implement the persistent store as a normal �le in the �le system

(see Section 4.4.6). When using the virtual memory system for caching, it is important to

avoid caching the persistent storage �le in the �le system cache. Once a page has been loaded

3The current implementation uses a hidden header �eld in the allocator meta-data.
4We believe this problem can also be addressed satisfactorily by writing dirty pages back to the persistent

store early, in e�ect \cleaning" them, as we will describe in Section 4.4.6.

60

from the persistent store into the virtual memory, it is implicitly cached, and caching the same

page in a �le system bu�er is a waste of resources. Thus the persistent storage �le should be

stored in an uncached area of disk to avoid this double caching.

4.4.3 Virtual Memory Abstraction Layer

We have implemented all virtual memory interactions through an intermediate abstraction

layer, allowing us to abstract away the virtual memory facilities required by the system without

getting involved in the low-level details of how these facilities are implemented on di�erent

operating systems. This has greatly helped with the e�ort required to port Texas to multiple

operating systems, as well as to experiment with di�erent virtual memory primitives on a

single operating system.

Texas requires minimal interactions with the underlying virtual memory system. The

basic operations required by Texas are supported by most modern operating systems and are

as follows:

� ability to allocate a page of virtual address space,

� ability to set and unset memory access protections (no access, read-only or read-write)

on a virtual memory page,

� generation of a prede�ned signal for an application's access-protection violations, and

� ability to specify user-de�ned signal handlers to catch signals generated due to access-

protection violations.

The abstraction layer de�nes interfaces that allow Texas to communicate with the underlying

virtual memory system without becoming involved with the actual implementation details.

Chapter 7 contains a detailed discussion on various interactions of Texas and pointer swizzling

at page fault time with the underlying operating system.

4.4.4 Run-Time Type Description

By de�nition, pointer swizzling needs to know the exact locations of pointer �elds within

various persistent objects that are being swizzled. Traditionally, other run-time support sys-

tems such as garbage collectors tend to use a conservative approach such that any value that

appears to be a pointer is assumed to be a pointer. Unfortunately, this is not su�cient for

pointer swizzling techniques; precise information about pointer locations is required in order

to function (i.e., swizzle pointers) correctly.

To solve this problem, it is necessary to have access to implementation-level information,

such as object layouts, at run time so that pointer �elds can be identi�ed accurately. The

recently-introduced C++ Run-Time Type Identi�cation (RTTI) facility is not su�cient for

this because it only provides language-level information. Thus we have introduced a notion of

Run-Time Type Description (RTTD) facility which is designed with speci�c goals for providing

implementation-level information at run time. Chapter 6 provides the description of our RTTD

approach, including details about the C++ implementation used for Texas.

61

4.4.5 Handling Virtual Function Table Pointers

The most common implementation used for dynamic binding in C++ is via virtual func-

tions [Lip91]. To minimize performance impacts of dynamic binding, virtual functions are

implemented via virtual function tables (VFTs). There is one VFT for every class that has at

least one virtual function, and a pointer to the appropriate VFT is stored in every object that

is instantiated for a class with virtual functions.

This implementation only adds a few instructions of overhead (typically, an index into

the table and a load) for every virtual function invocation. However, it poses a challenge for

pointer swizzling schemes, because VFT pointers usually reference executable code5 unlike

normal data pointers and therefore cannot be swizzled (or unswizzled) as usual.

We have modi�ed our normal swizzling algorithm to adapt to virtual function table

pointers. The basic idea is to convert a VFT pointer into a pointer to a string representing the

\name" of the corresponding table in the executable. Conceptually, this string is implemented

via a persistent object such that the converted VFT pointer will be handled automatically

by the normal swizzling mechanism. In practice, we implement this by converting the VFT

pointer into a index into a persistent table that contains names of all VFTs in the executable.

The actual conversion is done by performing a lookup in a table that maps VFT addresses to

names and vice-versa. Swizzling a VFT pointer is the reverse process; we use the VFT name

to look up the corresponding address in the current executable and replace the index with the

actual address.

4.4.6 Disk Storage Management

Texas allows a persistent store to be implemented either as a normal �le in the standard �le

system or as a raw disk partition that is not explicitly managed by the �le system. We have

implemented an abstraction layer that contains standard �le operations such as open, read,

write, etc. for interacting with the underlying storage management module. This abstraction

layer makes porting to di�erent �le systems (with di�erent interfaces) relatively easy. For

example, an interface to a raw disk partition can easily be implemented through the abstraction

layer such that the higher level code is completely unaware of the actual details.

In the remainder of this section, we briey discuss some issues regarding storage man-

agement in Texas. Chapter 8 provides further details into important issues related to storage

management for persistent object stores in general.

Checkpointing and Recovery

With a persistent store, the distinction between a conventional heap and �les is lost, and ex-

plicit checkpointing must take the place of \saving changes to a �le." Texas, like any other

useful persistent store, supports checkpointing and recovery. As with pointer swizzling, we

use virtual memory access protections to determine which pages are modi�ed by the applica-

tion and save those pages to the persistent store; the actual checkpointing is triggered by a

programmer-controlled language-level interface.

5Typically, VFT pointers reference virtual function tables corresponding to a speci�c executable.

62

Texas is most conducive to both no-undo/redo and undo/no-redo logging strategies

as described in [HR83]. Our current implementation uses a two-phase, write-ahead logging

mechanism to provide atomic checkpoints. We implement the no-undo/redo strategy as shown

in Figure 4.2.

Persistent
Store

Log

Virtual
Memory

A B

H

C G

EF

D

Phase 1 Phase 2

Recovery
Phase

A B

H

C G

EF

D

A B

H

C G

EF

D P

Q
R U S

T

Figure 4.2: Logging mechanism

The basic idea is to ensure that \dirty" (modi�ed) copies of pages are safely stored in

the log before the persistent store is updated. When the application requests a checkpoint

action, all modi�ed pages since the last checkpoint are �rst saved to the log (Phase 1) before

the persistent store is modi�ed (Phase 2); a crash during the second phase would leave the

store in an inconsistent state but we have su�cient information in the log to redo the updates

to the persistent store (Recovery Phase) to a consistent state by undoing the (partial) changes.

A crash during the recovery phase only requires repeating that phase until it succeeds. Thus

the recovery process is idempotent, that is, repeated writes due to retries will produce the same

end result.

The same write-ahead logging mechanism can also be used to implement a undo/no-

redo strategy. Unlike no-undo/redo, the basic idea is to retain \clean" (unmodi�ed) copies

of pages modi�ed by the application. These copies are stored in a log \o� to the side" every

time the application attempts to update pages that have never been modi�ed before. In this

strategy, Phase 1 ensures that all unmodi�ed pages are saved to to the log before Phase 2 is

started; a crash during the second phase would leave the persistent store in an inconsistent

state, but we have su�cient information in the log to undo the updates to the persistent store.

As before, the recovery phase is guaranteed to be idempotent, ensuring against any further

crashes during recovery actions.

63

Sub-page Logging

Coarse-grained page-wise pointer swizzling is attractive in most cases because it is designed to

exploit spatial locality. However, for very short transactions or transactions with poor locality

characteristics, page-wise checkpointing is likely to be ine�cient because it will save too much

unmodi�ed data|for example, a single write to a page during a transaction will cause the

entire page to be written to disk with page-wise checkpointing.

While our system is designed primarily for applications with relatively long transac-

tions, such as typical CAD applications, we would like to provide support for small transactions

as well. Sub-page logging (as we originally proposed in [SKW92]) is attractive for short trans-

actions because we can checkpoint areas of memory that are smaller than pages. Rather than

writing out entire dirty pages, we write out only those parts of a page that have actually

changed by \di�ng" against a clean copy of the page. In e�ect, we are trading CPU cycles

against disk I/O costs by expending CPU cycles to reduce the amount of data to be written.

This is advantageous because of the huge disparity between CPU and disk speeds.

Log-structured Storage System

Instead of re�ning our simple write-ahead logging scheme, we can replace both the log and the

persistent storage �le with a log-structured storage system (LSS) that supports checkpointing

and recovery both directly and e�ciently. An LSS is essentially the lower levels of a log-

structured �le system [RO91]; and manipulates a single large uncached �le (typically, a raw

Unix disk partition).

In a log-structured store, the entire disk (or �le) is used as a log, and the log itself acts

as the �nal repository of data pages. Blocks do not have a single \home" location on disk.

Instead, logical blocks can migrate such that the \current" version of a block is simply the last

one written to the log. The blocks used for indexing information are also treated similarly. All

changes to a �le are committed when the top-level indexing information is updated to point

to new versions of modi�ed blocks.

4.5 Conclusions

We have presented the design and implementation of Texas, our persistent storage system

for C++ that uses pointer swizzling at page fault time as the primary address translation

mechanism to support large address spaces on standard hardware. We enumerated some of

the main goals and features of Texas that we strived for while designing and implementing

the system. Our basic design philosophy was to ensure that the system was divided into

independent modules which interacted with each other using only the published interfaces.

We have described some of the important details corresponding to our implementation

of Texas. Among these, we discussed issues in heap management and caching, and the abstrac-

tion layers that we implemented for interacting with the memory allocator and the underlying

virtual memory system. The implementation of such abstraction layers is in line with the

general design philosophy which dictates use of orthogonal modules that are easily replaceable

with other similar modules that implement the same published interface. It should be noted

64

that these issues, particularly the virtual memory caching, are simply implementation choices

and, as such, are independent of the address translation strategy.

We also discussed various factors related to the �le system interaction and permanent

storage management. Speci�cally, we described logging techniques for implementing simple

checkpointing and recovery facilities in Texas. Although the current implementation incor-

porates only simple write-ahead logging, advanced mechanisms such as sub-page logging are

also feasible and certainly not impossible to implement. However, we have not implemented

advanced storage management techniques in detail because our focus is on high-performance

address translation schemes. We briey discuss issues in storage management and also present

some future research directions in Chapter 8.

Although the implementation of Texas is only about 10,000 lines of C++ code, the sys-

tem is fairly robust and has been used in real applications|both commercial and otherwise|

for providing fast and inexpensive persistence for C++. We have ported the basic system to

several di�erent avors of Unix, as well as to a non-Unix system (OS/2), and believe that it

can be easily ported to other modern operating systems with few technical obstacles.

65

Chapter 5

Performance of the

Texas Persistent Store

5.1 Introduction

The previous chapters have presented the entire theory behind pointer swizzling at page fault

time and address translation in the Texas persistent store. We have noted that the overhead

of Texas is likely to be very small compared to the I/O costs when data is being loaded

into memory from the persistent store, and zero when the data has already been loaded into

memory and there is no further faulting. In this chapter, we discuss various issues regarding

the performance of Texas and pointer swizzling at page fault time, and present results that

support our original assertions about the performance. We use the standard OO1 database

benchmark [Cat91] with some minor variations as the workload for most of our performance

measurements.

Note that the OO1 benchmark is a synthetic benchmark designed speci�cally with the

purpose of measuring the performance of object-oriented database systems and persistence

facilities. However, OO1 and other similar benchmarks are not necessarily suitable for quanti-

tative comparisons across di�erent systems because they have not been validated against real

applications in the domain represented by the benchmark. Instead, the results should be inter-

preted as qualitative results about quantitative performance of real applications. Speci�cally,

it is important to always remember that although the results are obtained empirically, they

are ultimately derived from a synthetic benchmark and are only as good as the mapping of

benchmark behavior onto real applications. Further discussion on benchmarking limitations

is available in Section 5.8.

Although OO1 is a crude benchmark and does not strongly correspond to a real appli-

cation, we use it for most of our performance measurements for several reasons. First, OO1 is

simple for measuring raw performance of pointer traversals (which is what we are interested in)

and is fairly amenable to modi�cations for di�erent address translation granularities. Use of a

synthetic benchmark (as opposed to a real application) is appropriate in this situation because

our performance is very good in some cases (i.e., zero overhead when there is no faulting)

and dependent on the rate of faulting (usually minimal overhead compared to I/O costs) for

other cases. As such, crude benchmarking is the most practical way to measure performance

66

of di�erent components of our system because it is easy to separate our costs from those of

the underlying benchmark; this is usually more di�cult with a real application. Of course, as

cautioned earlier, we must be careful to interpret the results in qualitative terms only.

The rest of the chapter is organized as follows. Section 5.2 presents the experimental

design used for gathering the actual results, which are presented in Sections 5.3 through 5.6

followed by a discussion in Section 5.7. As part of the overall performance results, we present

data for benchmark runs on two popular operating systems|Linux (Section 5.4) and Solaris

(Section 5.5)|to highlight the impact of operating system implementation on the overall per-

formance. In Section 5.8, we discuss some issues related to limitations in benchmarking, focus-

ing mainly on the OO1 and OO7 database benchmarks. Finally, we present some concluding

remarks in Section 5.9.

5.2 Experimental Design

We are most interested in measuring the overall performance of pointer swizzling at page fault

time as implemented in Texas and the speci�c overheads of the various subcomponents of the

system. In addition, we are also interested in studying the impact of variations in the basic

scheme (for example, changing the address translation granularity) on the general performance.

In this section, we describe the experimental design and methodology followed for gathering

our experimental results.

We �rst briey examine di�erent benchmarks that are available and discuss the reasons

that motivated our choice of the OO1 benchmark, which is then described in further detail.

We also describe the experimental methodology that we used for the performance analysis

and measurements, including issues about I/O strategies (raw I/O vs. �le system I/O) and

precise timing requirements. Finally, we describe the hardware and operating systems used

for gathering our results.

5.2.1 Benchmarks

One of the most popular object database benchmarks that has become the de facto stan-

dard is the OO1 (Object Operations One) benchmark [CS92]. OO1 was also one of the �rst

widely-used database benchmarks, followed by others such the HyperModel [ABM+90] and

OO7 [CDN93] benchmarks.

The OO7 benchmark is designed as a successor to the OO1 benchmark, and supports

some advanced data structures and complex operations over these structures to represent a

hypothetical CAD application. We used OO1 for all our performance measurements because

of several fundamental reasons. OO1 is simple for what we are most interested in measuring|

the raw performance of pointer traversals|to calculate the basic overhead of a coarse-grained

address translation mechanism. However, the results obtained from this benchmark should be

interpreted carefully. For the pointer traversal performance, we use the traversal results as

qualitative indicators of quantitative performance of real applications.

We believe that the OO1 and OO7 benchmarks are unsuitable for performance mea-

surements of orthogonally persistent systems in general; this is further discussed in Section 5.8.

67

The rest of this section describes the OO1 benchmark, the primary workload used to measure

the performance of various subcomponents of pointer swizzling at page fault time and Texas.

OO1 Benchmark Database

The OO1 benchmark database is made up of a set of part objects (representing parts in a

hypothetical engineering database application) interconnected to each other. The benchmark

speci�es two database sizes based on the number of parts stored in the database|a small

database containing 20,000 parts and a large database containing 200,000 parts. The rationale

behind specifying two database sizes is to allow performance measurements of a system when

the entire database is small enough to �t into main memory and compare it with situations

where the database is larger than the available memory.

The parts are indexed by unique part numbers associated with each part.1 Each part is

\connected" via a direct link to exactly three other parts, chosen partially randomly to produce

some locality of reference. In particular, 90% of the connections are to \nearby" 1% of parts

where \nearness" is de�ned in terms of part numbers, that is, a given part is considered to be

\near" other parts if those parts have part numbers that are numerically close to the number

of this part. The remaining 10% of the connections are to (uniformly) randomly-chosen parts.

The direct connections are also referred to as forward connections. In addition to these,

each part also maintains a set of reverse connections containing pointers to other parts that

have forward connections to this part. The forward connections are implemented through

direct pointers to part objects. Each part has a �xed-size array of pointers that represent

forward connections because the number of forward connections is �xed (i.e., three) by the

benchmark speci�cation. In addition, each part also has a few other data �elds (integers and

strings) that are used during the benchmark operations.

OO1 Benchmark Operations

The OO1 benchmark suite comprises of several di�erent types of operations, rather than just

a single test. These operations are broadly classi�ed into three types:

� Lookup Locate a predetermined number of randomly-chosen parts by using the parts

index and invoke an empty procedure on each part;

� Traversal Perform a depth-�rst traversal of all connected parts starting from a randomly-

chosen part and traversing up to seven levels deep for a total of 3280 parts (including

possible duplicates), and invoke an empty procedure on each visited part; and

� Insertion Allocate and insert new parts into the database using the same criteria that

were used for making the forward connections.

The OO1 operations are designed to represent various phases of an engineering database

application. For example, the Lookup operation can be used to measure the performance of in-

dexed object retrieval in a database system. In contrast, the Traversal operation concentrates

1The benchmark speci�cation does not de�ne a data structure that must be used for the index; we used a
B+ tree for all our experiments.

68

on raw performance of pointer traversals, which is what we are interested in for measuring

the performance of pointer swizzling at page fault time. The Insertion operation is suit-

able for measuring performance of checkpointing and updates because it actually modi�es the

database on disk. Another approach for this is a variation on the traversal operation described

in [WD92]; the basic idea is similar to the traversal except that, in addition to invoking an

empty procedure on visited parts, it also allows for updates with some predetermined proba-

bility. However, it is not clear whether this variation makes for a good benchmark because it is

tightly coupled to the (randomized) interconnections and is likely to cause scattered updates

across the entire database with poor locality of reference. We believe that this approach should

be used with caution because it makes page-wise checkpointing look unnecessarily bad, while

making page-wise \di�ng" [SKW92, Whi94] look unrealistically attractive.

Although the randomized interconnection scheme exhibits some locality (that is, 90%

of connections are close by), it has disastrous e�ects on locality of simple algorithms operating

over the data because, on average, every tenth pointer traversal accesses a randomly-chosen

part that is not close. The OO1 designers were aware of this, at least to some degree; they

specify that traversals must be executed ten times, each starting at a di�erent \root" part.

The �rst traversal is for a \cold cache" when none of the database is cached in memory, and

the subsequent traversals are for a cache that is getting \warmer." In addition, ten traversals

must also be executed for a \hot cache" which already contains the data to be traversed. (This

is accomplished by starting the hot traversals at the same root as the last warm traversal,

essentially repeating the last warm traversal exactly, and guaranteeing that all visited parts

are already in memory.)

5.2.2 Methodology

We use the OO1 benchmark traversal operation for all our performance measurements. Each

traversal set contains a total of 45 traversals split as follows: the �rst traversal is the cold

traversal (when no data is cached in memory), the next 34 are warm traversals (as more and

more data is cached in memory) and �nally the last 10 are hot traversals (when all data is

cached in memory). Note that this is di�erent from the standard benchmark speci�cation

which contains only 20 traversals (split as 1 cold, 9 warm, and 10 hot traversals). However,

we chose to run more warm traversals because we believe that 9 traversals are not su�cient

to provide meaningful results, especially for the large database case. As we will describe in

Section 5.8, OO1 (and other benchmarks) are not necessarily good indicators of general appli-

cation behavior, and are unsuitable for quantitative comparisons between di�erent systems.

We use a random number generator to ensure that each warm traversal selects a new

\root" part as the initial starting point, thus visiting a mostly-di�erent set of parts in each

traversal. (Of course, some warm traversals are likely to visit parts that have already been

visited in a previous traversal because of the randomized interconnections in the data struc-

tures.) We run the entire traversal set (45 traversals) multiple times interspersed with a \chill"

program that \cools" the memory between runs to ensure that cold traversals are truly cold.2

Then, we average over all runs after discarding outliers to obtain the �nal performance results.

2The program allocates as much data as the available memory size, writes everything to a �le on disk and
then reads it back in, clearing both memory and �le system bu�ers in the process.

69

The remainder of this section describes the methodology used to measure the basic

performance of our system, and to study various granularities of address translation and their

impact on the overall performance of a pointer swizzling system. We also discuss some issues

related to precise timing before presenting the empirical results starting with Section 5.6.

Basic Performance Measurements

For basic performance analysis, we are primarily interested in measuring the overhead of

pointer swizzling at page fault time during various phases of the benchmark execution. We

can accomplish this by placing timers at various strategic points in the code and using the

measurements from these timers to accurately identify the costs of di�erent components of the

system. The basic timers setup is pictorially depicted in Figure 5.1.

I/O

Swizzling+I/O

FaultHandler+Swizzling+I/O

Total Time

fault handler

access a protected page

load and swizzle page
load page from pstore

protection

start traversal

return from
handler

fault

end traversal

Figure 5.1: Timer placements for run-time measurements

The �gure shows an imaginary time line for a single traversal. The total time for a

traversal, including any faulting and swizzling that may have been necessary, is measured by

starting a timer at the beginning of the traversal, and stopping it at the end. It is possible

that the benchmark will access objects on protected pages during the traversal, and an access-

protection violation (also called a protection fault) will be generated for the �rst access to

every protected page. The pointer swizzling module of Texas services each fault by loading

and swizzling the corresponding page from the database. For calculating the time spent in

di�erent parts of the system during one traversal, we record the time for various events that

occur during the faulting and swizzling of each page. As shown in the �gure, we use individual

timers to measure the time for reading a page from disk (\I/O"), the total time for reading

a page and swizzling it (\Swizzling+I/O") and the total time for handling a single protection

fault at the user-level including swizzling and I/O (\FaultHandler+Swizzling+I/O"). Summing

the timer values over the entire traversal gives us the total time for each component of the

70

system during that traversal. Using simple arithmetic subtraction, we can then calculate the

time spent only in pointer swizzling and the corresponding overhead compared to I/O and

benchmark costs.

The only time component that we cannot accurately measure using this approach is

the time taken by the kernel itself to service a fault, that is, the time from the point when the

fault is generated until our fault handler gains control (shown as a jagged edge in Figure 5.1).

Similarly, the return from the fault handler also cannot be timed, although it is likely to be

minor (equivalent to a function call return). We estimate these values by measuring them

using a stand-alone test program that generates a few thousand protection faults in a tight

loop. We measure the total time for the entire loop and divide by the number of faults to get

the average time required by the kernel to service a fault, transfer control to a user-level fault

handler, and return from the handler. We believe that this estimation is acceptable because

we are likely to get an underestimate (a lower bound) on the cost due to caching e�ects.3

Further details about general exception handling performance of modern operating systems

are discussed in Chapter 7.

OO1 Benchmark Traversal Characteristics

The basic OO1 traversal set (comprised of 45 traversals described earlier) can be broadly

divided into three phases. The overhead of our system typically varies for each phase depending

on the behavior and access patterns of the benchmark during that phase. Each phase may

also be thought of as representing applications that exhibit behavior similar to that particular

phase. The three phases can be characterized as follows:

� The hot traversals correspond to a situation where there is no I/O activity and the

benchmark is operating on data that has already been faulted into memory. This is

similar to CPU-intensive applications that �rst load a �xed amount of data into memory

and then operate exclusively on that data throughout their execution; such applications

typically want a simple persistence mechanism for their data without being forced to

\roll their own" through ad hoc techniques. Pointer swizzling at page fault time imposes

absolutely no overhead for such applications because no new data is faulted in and all

existing pointers have already been swizzled for the major part of their execution.

� The cold traversal and the �rst few warm traversals typically represent the other end of

the spectrum. Since most of the data accessed by the benchmark during these traversals

has to be fetched from disk, this phase is characterized by a lot of faulting and I/O

requests as the traversal references parts that have never been seen before. This phase

corresponds to applications that are largely I/O-intensive, and do not have an equivalent

amount of computation. For such applications, our overheads are much smaller than the

cost of I/O, which usually dominates the overall performance.

� Finally, the third phase is characterized by moderate I/O and faulting behavior inter-

spersed with general computation, representing the middle ground between the other

3Since faults are generated in a tight loop in the test program, the kernel code and data structures for
fault handling are likely to be cached (possibly in the second-level cache) after the �rst iteration. However, an
actual application is unlikely to bene�t from such caching with normal faulting behavior.

71

two phases. Most applications generally end up in this phase only after going through

an I/O-intensive phase for loading large amounts of data. The overhead of our system

for this phase is likely to vary signi�cantly depending on the application behavior and

faulting patterns.

As we present the performance results in the following sections, we will show that the empirical

data supports this overall classi�cation of the benchmark traversal set.

File I/O vs. Raw I/O

On most operating systems, under normal circumstances, reads and writes to a regular �le go

through the kernel (for example, using the seg map driver on SVR4 systems [Vah96]). When

a read system call is invoked, data is �rst read from the �le into kernel space and then copied

into user space (into a user-speci�ed bu�er). In addition, operating systems also implement

a sequential readahead mechanism (akin to simple lookahead prefetching) to read more data

than requested, at every disk seek, for minimizing the overall I/O costs. The prefetched data

is stored in a �le system cache and transferred to user space if the application requests that

data before it is evicted from memory.

The �le system readahead and caching works favorably for most normal applications

that read and write data from the disk. For our purposes, however, it is obviously ine�cient

because our access patterns are unsuitable for such caching. Speci�cally, we know that the

data will be cached in virtual memory, causing unnecessary double caching (that is, caching

in both user space and kernel space). This is particularly undesirable because the �le system

cache also competes for the available physical memory, reducing the e�ective RAM available

for virtual memory caching.

One solution for avoiding �le system caching is to use a raw device which provides a

direct interface to a raw partition on disk without involving the �le system. Each read or write

from the raw device causes an actual I/O operation, and data is copied directly into the user

space. This avoids double caching and the �le system reads only as much data as requested

(i.e., no prefetching). Such I/O is usually known as raw I/O to distinguish it from �le I/O

done via a normal �le system.

Currently, Linux does not provide any user-level support for raw I/O,4 and hence we

use a normal �le (on a local disk attached to the test machine) for storing the benchmark

databases. The e�ects of �le system caching and readahead are typically more evident in

the small database results because the database �ts easily in the available RAM, and the

readahead pays o� because almost the entire database is accessed during the traversal set. For

large database results, we found that Linux is aggressive with �le system bu�er management,

reducing any adverse e�ects on virtual memory caching and overall performance.

The situation is quite di�erent for the experiments on Solaris. Unlike Linux, Solaris

does support I/O to a raw device, allowing us to avoid the unwanted caching and readahead.

In Section 5.5, we present results on Solaris corresponding to the use of both �le I/O and raw

I/O for loading data from the database, and highlight some important di�erences between the

two strategies.

4We believe that this feature is under development as of this writing.

72

Address Translation Granularities

In addition to the performance overheads, we are also interested in comparing various address

translation granularities described in Chapter 3. The standard pointer swizzling at page fault

time strategy corresponds to a coarse-grained address translation approach where all pointers

in a page are swizzled when the page is loaded into memory regardless of whether they will be

accessed by the application. A pure �ne-grained scheme falls at the other end of the spectrum,

and can be realized by using smart pointers instead of normal (language-de�ned) pointers for

all persistent data structures. This scheme performs pointer-wise address translation, trans-

lating persistent pointers into virtual memory addresses every time the persistent pointers are

dereferenced. Between the two extremes is a mixed-granularity address translation approach

which uses a combination of smart pointers and normal pointers in the persistent data struc-

tures to have a mix of both coarse-grained and �ne-grained address translation granularities.

We modi�ed the data structures used in the basic traversal of OO1 benchmark to

implement the above three di�erent address translation granularities. As might be expected,

the pure coarse-grained and �ne-grained approaches were implemented by using all normal

pointers and all smart pointers respectively in the benchmark data structures. We implemented

the mixed-granularity approach by modifying only the parts index structure to use smart

pointers while maintaining normal pointers for the rest of the data. We believe that a B+

tree (the data structure used to implement the parts index) is appropriate for such conversion

because it is a sparsely-accessed data structure with high fanout, typical access characteristics

and topological properties of data structures suitable for �ne-grained address translation.

Precise Timing

For all experiments described so far, we need a highly precise timing mechanism to accurately

measure the overheads of our system in di�erent situations. Furthermore, as we will show

through the empirical results, some of the overheads in our system are extremely small, thus

placing an additional requirement for high resolution on the timers. Unfortunately, commonly

available timers on most modern operating systems have a poor resolution, sometimes on the

order of several milliseconds.

Most modern operating systems provide various system calls that can be used to mea-

sure either CPU time or real (\wall-clock") time for some event in the application. CPU time

is the time actually spent in processor execution, while real time is the total wall-clock time

for the event, including time spent in I/O waits, paging, context switches, etc. The CPU time

is further split into user and system components corresponding to the time spent executing

on the processor in user mode and kernel mode respectively. Typically, the best resolution of

real-time timers on most modern operating systems, without any special hardware support,

is on the order of microseconds. The resolution tends to be even lower for CPU-time timers

because of the added overhead in maintaining appropriate data structures and tracking kernel

boundary crossings during execution. For example, the resolution of a CPU timer on a 200MHz

Intel Pentium Pro processor running Solaris 2.5 is approximately ten milliseconds; this is very

coarse considering the fact that the processor can execute about two million instructions in

that time frame. Even a one millisecond resolution is equivalent to the time required to execute

73

approximately 200,000 instructions.

Obviously, these resolutions are too coarse for our purposes given the low overheads of

our system (especially when compared to I/O costs). Fortunately, platforms that are compat-

ible with the Intel Pentium architecture contain special hardware that allows high resolution

timing measurements at the granularity of processor clock cycles. The basic idea exploits a

64-bit register in the Pentium architecture; this register counts the number of processor clock

cycles since the last reboot, thus providing a true �ne-grained mechanism for precise timing.

There is an instruction (rdtsc, mnemonic for \read time stamp counter") that can be used

to read the current value stored in the register. Using this counter register and the associated

instruction, it is relatively easy to build a timer that can be used for precise measurements

of various low-overhead events in terms of clock cycles.5 A (relatively minor) downside of

using such cycle timers is that they can be used to measure only real time without additional

support from the operating system for measuring CPU time at the same granularity. In order

to minimize the e�ects of arbitrary swings in real-time measurements due to transient events,

we run the benchmark suite multiple times on unloaded machines and average the results after

discarding signi�cant outliers.

We also experimented with Solaris high-resolution time via the gethrtime system call.

This timer also measures real time with typical resolution in microseconds; the actual resolu-

tion, however, depends on the underlying hardware. For the platforms that we used (described

next), this resolution was between one and two microseconds. Since the gethrtime call is o�-

cially supported for arbitrary hardware, it is obviously more portable than the clock-cycle timer

described above, which is usable only on Pentium-compatible processors. However, since the

cycle timer provides a much better granularity, we use it for all our experiments that were run

on Pentium-based platforms, and only use the CPU time measurements for address translation

granularity comparisons that were run on SPARC-based platforms.

5.2.3 Hardware and Operating Systems

We ran the various benchmark operations on both Linux and Solaris platforms to gain insight

in the behavior of two of the most popular and widely-used operating systems. Although we

were able to derive the same qualitative conclusions for both operating systems, we found some

interesting di�erences between them, as well as potential for both to be improved.

For both operating systems, we used identical hardware setup (except for di�erences

in component manufacturers, which are not relevant for our study). Each test machine was

equipped with a 200MHz Intel Pentium Pro processor (with a 256KB L2 cache) and 32MB

of EDO RAM. The operating system versions used were Linux 2.0.0, (the current major

stable release of Linux)6 and Solaris 2.5 (the current major release of Solaris). (During the

course of gathering our results, we also used some SPARC-based platforms for performance

measurements on Solaris. We found that the results (not presented here) correlated well with

those on the Pentium-based platform, and as such were useful as a good sanity check.)

5We use a modi�ed version of a timer originally developed by Mark Johnstone. Other approaches, such as
preprocessor macros and inline procedures containing assembly code to access the special register, have also
been suggested on various Usenet newsgroups devoted to Linux.

6As of this writing, the current minor stable release is version 2.0.30.

74

In addition to the standard Solaris measurements, we also needed access to a Solaris

platform with main memory that was big enough to completely �t the large database in RAM.

As we will describe later, this setup was needed to validate a theory about speci�c behavior of

Solaris for workloads involving databases bigger than available memory size. For this purpose,

we used the same test machine after upgrading its memory to 64MB, which was su�ciently

large for our purposes.

Finally, for the comparison between di�erent address translation granularities, it is

necessary to measure CPU time for each variation because the costs typically di�er only in

terms of CPU execution. However, since our overheads are relatively small, and because most

CPU-time timers have a coarse granularity, it is di�cult to accurately measure CPU time

on most modern processors. Instead, we used an older 33MHz SPARCstation ELC for these

experiments; the processor on this machine is slow enough to o�set the coarse granularity of

the CPU-time timer. We believe that such controlled use of an older (and slower) processor is

acceptable here because the results are reported relative to each other, that is, the performance

is compared to other variations that are also executed on the same processor.

5.3 Instruction-Count Pro�ling Results

As part of the overall results, we �rst present an analysis of instruction-count pro�ling for

various key components of the pointer swizzling at page fault time mechanism as implemented

in Texas. We used QPT [BL92]|an instruction-count pro�ling tool|for this purpose and

measured the costs of swizzling a single pointer and swizzling an entire page. QPT is similar

to the Unix pro�ling tool gprof with one important distinction. Unlike gprof, which reports

results in terms of absolute time per procedure, QPT is capable of calculating the number

of instructions for each procedure by analyzing and instrumenting basic blocks in executable

code. This is very useful for pure overhead measurements because the output of QPT is in

terms of number of instructions for each procedure, an absolute result that is independent of

other procedures in the application. In contrast, gprof is more suitable for general pro�ling

and comparative analysis because it highlights \problem areas" that are most likely to bene�t

from optimization compared to other parts of the application.

feature instructions

translate a single pointer 40

decode a type descriptor record 130

swizzle a page (with normal decoding) 12,000

swizzle a page (with optimized decoding) 8,000

Table 5.1: Estimated instruction counts

Table 5.1 shows the cost of several important components of our system. The most

basic result is the cost of translating the value of a single pointer which is approximately

40 instructions. The bulk of this cost is attributed to the hash table lookup based on the

address value in the pointer �eld being translated. Note that this estimate is for an untuned

hash table implementation that does not use highly-optimized data structures and algorithms.

75

With further optimizations, it should be possible to reduce the translation cost by half the

current amount.

Note that the cost of translating a single pointer is measured in isolation, and excludes

costs for all other actions that may be necessary during swizzling but are not directly related

to the actual translation itself. For example, if the swizzled value references a new page that

has not been seen before, we must reserve a page by allocating virtual address space from the

operating system and access-protecting the new space. Although this is necessary for ensuring

that swizzling works correctly over the course of the application, it is not directly involved

with the translation of a single pointer, and is therefore excluded from our measurements.

Another important cost to be accounted for during pointer swizzling is the cost of de-

coding a single type descriptor record7 for locating various pointer �elds in the object described

by the record. On average, for the OO1 benchmark, each type descriptor record contains in-

formation about four data pointers and one virtual function table (VFT) pointer, and the cost

of decoding such a type descriptor record is approximately 130 instructions.

Apart from measuring costs of speci�c routines in isolation, it is equally important to

measure the costs at a higher level of abstraction so that we can study the e�ect of swizzling on

the overall performance. For this purpose, we measured the number of instructions required

for swizzling an entire page, including the costs of all supporting actions such as reserving

new pages of address space, decoding type descriptor records, etc. As shown in the table,

approximately 12,000 instructions are necessary on average to swizzle a page during the OO1

traversal operation.

This cost can be reduced by optimizing the decoding of type descriptor records. Using

the size of type descriptor record objects, we calculate that there are about 30 such objects

on any given virtual memory page. Thus the cost of decoding type descriptor records on one

page is approximately 3,900 instructions, or about one-third the total cost of swizzling an

entire page. In Chapter 6, we describe an optimization that can reduce the cost of decoding

a type descriptor record to a single procedure call, thereby reducing the per-page swizzling

cost to approximately 8,000 instructions. On today's commonly available processors rated at

200 million instructions per second (or more), this is equivalent to one-twentieth of a millisec-

ond (or less). Obviously, this is very insigni�cant compared to typical I/O costs incurred by

an application for fetching data from disk.

5.4 Performance on Linux

The hot traversals for both small and large database experiments on Linux correspond to the

�rst (CPU-intensive) phase of the traversal set described earlier. In general, the large database

is better suited for the second (I/O-intensive) phase; since the database is relatively big, even

later warm traversals reference at least one or more pages that have not been seen before,

thus keeping up the I/O activity. On the other hand, the small database results typically

highlight the third phase, because most of the database is loaded into memory within the �rst

few traversals due to both benchmark locality characteristics and �le system readahead.

7Type descriptor records are objects used to maintain run-time type information (Chapter 6).

76

We �rst present detailed results for the large database, followed by a corresponding

set of results for the small database. As mentioned above, each of these highlights di�erent

characteristics of the access patterns and corresponding behavior from Texas. The set of results

for each database size are further split into three parts comprising the raw performance data,

a measure of real I/O activity8 during the traversal set, and lastly the overhead of Texas and

pointer swizzling as a percentage of both I/O time and total benchmark time. We end the

section with a brief analysis of the basic results for the two database sizes.

5.4.1 Large Database Results

We start with the raw performance numbers of OO1 forward traversals over the large database.

The database, which contains 200,000 parts, is approximately 43MB in size, roughly one-third

more than the available RAM on the test machine.

Basic Performance

Figure 5.2 shows the overall run time of the entire traversal set (45 traversals) on the large

database. The same data is also plotted on a log scale in Figure 5.3 for additional detail during

later traversals. These �gures (and all other �gures for performance results) contain multiple

plots, each corresponding to a di�erent component of the system. The total time per traversal

(labeled as \Total" in the �gures) is the most obvious measure. In addition to this, the �gures

also include the costs for di�erent components plotted in a cumulative manner starting with the

I/O cost. In particular, the plots labeled as \I/O," \S+I/O" (short for \Swizzling+I/O") and

\FH+S+I/O" (short for \FaultHandler+Swizzling+I/O") correspond to measurements from

the timers placed at various strategic points in the code (see Figure 5.1). We also generate

a plot that includes the estimated time required by the operating system for trapping pro-

tection faults, labeled as \F+FH+S+I/O" (short for \Fault+FaultHandler+Swizzling+I/O").

Alternatively, this plot can also be labeled as \Texas+I/O" because the sum of the three com-

ponents other than I/O (\Fault+FaultHandler+Swizzling") is e�ectively the total overhead of

Texas and pointer swizzling at page fault time.

8We use the term real I/O to indicate that actual disk I/O (including a disk seek) was performed for an
I/O request that could not be satis�ed from a cache.

77

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.2: Times for all traversals, large database (Linux)

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.3: Times for all traversals, large database, log scale (Linux)

The individual plots for the di�erent components are not discernible from Figure 5.2,

but I/O time is the largest component for the cold and warm traversals, while the Texas

overhead for the same is comparatively very small. This observation is supported by the fact

that the lines for various plots are very close to each other even on a log scale (see Figure 5.3).

The low overhead of pointer swizzling at page fault time is further evident from results

78

presented in Figures 5.4{5.8 which show the closeups of all cold and warm traversals (i.e.,

traversals 1 through 35). Finally, Figure 5.9 shows the overall performance for the ten hot

traversals (i.e., traversals 36 through 45); as expected, there are absolutely no I/O costs and

the Texas overhead for these traversals is zero.

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

2.2e+09

2.4e+09

1 2 3

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.4: Times for traversals 1 through 3, large database (Linux)

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

4 5 6 7 8 9

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.5: Times for traversals 4 through 9, large database (Linux)

79

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

5.5e+08

7 8 9 10 11 12 13 14 15

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.6: Times for traversals 7 through 15, large database (Linux)

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

16 17 18 19 20 21 22 23 24 25

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.7: Times for traversals 16 through 25, large database (Linux)

80

0

1e+07

2e+07

3e+07

4e+07

5e+07

24 26 28 30 32 34 36

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.8: Times for traversals 24 through 36, large database (Linux)

0

1e+06

2e+06

3e+06

4e+06

5e+06

36 38 40 42 44

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.9: Times for traversals 35 through 45, large database (Linux)

From Figures 5.4{5.8 above, we note that the I/O cost dominates for all traversals

while the overhead of Texas is comparatively minimal. (Recall that the Texas overhead is

essentially the di�erence between plots labeled \F+FH+S+I/O" and \I/O.") In fact, for most

of the later traversals, it is hard to distinguish individual plots corresponding to I/O and other

components of Texas from the various �gures.

81

Measuring Real I/O Activity

Based on the above results, it is obvious that the OO1 benchmark traversals on the large

database exhibit the characteristics of an I/O-intensive application during the �rst 35 traver-

sals. We speculated earlier that this behavior occurs because the database is large enough

such that the randomized interconnections cause new pages to be referenced (and faulted

upon) even during the later warm traversals. An obvious way to con�rm this hypothesis is by

measuring the number of real I/O requests during each traversal for the entire traversal set.

Note that this is di�erent from the number of reads issued by Texas (for loading pages from

the database into memory) since not all those read requests translate into real I/O due to �le

system caching and readahead.

Unfortunately, most operating systems do not provide a convenient way to precisely

measure real I/O activity. However, we can count the number of major page faults incurred

during each traversal to get a good approximation. This is reasonable because a major page

fault is any kernel fault that requires a real disk I/O to be serviced. In other words, the kernel

has to wait for an I/O request to be satis�ed by actually reading from (or writing to) disk,

rather than via a �le system cache. Major page faults are a good indicator of real I/O activity

because all reads and writes through the �le system are implemented via internal kernel page

faults for most modern Unix variants [Vah96].

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

ag
es

Traversal Number

major page faults
Texas read requests

Figure 5.10: Page faults for all traversals, large database (Linux)

Figure 5.10 presents this measure along with the number of reads issued by Texas for

all traversals. Note that there is a one-to-one correspondence between the number of reads

issued by Texas, the number of protection faults and the number of pages swizzled; this is

because, for each fault on a protected page, Texas �rst issues a read request to load that page

82

from the persistent store and then swizzles it.9 It is obvious that the number of new pages

read into memory gradually decreases as the cache gets warmer. The real I/O activity also

decreases proportionately, although it never reaches zero during the warm traversals.10

Percentage Overheads

Based on the results presented so far, we can conclude that the direct overhead of pointer

swizzling at page fault time (and Texas) is minimal in the presence of I/O, and zero when

there is no I/O. Figure 5.11 shows the empirical data that supports this conclusion for large

database traversals.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
I/

O
 T

im
e

Traversal Number

S
FH+S

F+FH+S

Figure 5.11: Overhead as percentage of I/O time, large database (Linux)

We plot the costs for various components of the pointer swizzling mechanism as a

percentage of I/O time for each traversal. The plot labeled \F+FH+S" represents the total

overhead of pointer swizzling at page fault time (as implemented in Texas). It is clear from

the �gure that the average overhead is only around 1.5% of I/O cost while the maximum is

just under 2.5%. This is obviously very small compared to the overall I/O costs incurred when

running the application.11

9As such, we use the three phrases, that is, number of protection faults, number of reads issued, and number
of pages swizzled, interchangeably depending on the context of the usage.

10The number of major faults is always higher than the number of reads issued by Texas in the �gure.
This may seem unusual, but it is actually okay because major page faults also include I/O for other faulting
behavior, such as that required by the memory replacement policy.

11Note that this does not include the indirect cost of pointer swizzling related to unnecessary page-outs of
mistaken-dirty pages, although it is not an issue in the current experiment because there is no paging, even
though we are using the large database.

83

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
T

ot
al

 T
im

e

Traversal Number

Texas
I/O

Figure 5.12: Overhead as percentage of total time, large database (Linux)

Another interesting metric is the overhead of Texas as a percentage of the total run

time of the actual benchmark traversal, including any I/O that may have been necessary for

that traversal but excluding the costs of Texas itself. This measure gives us an approximation

of the overhead that would be imposed on an ordinarily non-persistent application that is

modi�ed to use Texas as a persistence layer. Figure 5.12 plots this metric for all traversals on

the large database. In addition, the �gure also plots I/O time as a percentage of total time

for each traversal to determine the fraction of benchmark time typically spent in I/O (i.e., the

I/O \overhead"). Once again, we note that the Texas overhead is very low (around 2%) for all

cold and warm traversals, reinforcing our earlier conclusions about the performance of pointer

swizzling at page fault time. In comparison, I/O cost makes up the majority of the benchmark

run time (e.g., 90% or more for 31 out of 35 traversals). As expected, both overheads drop to

zero for the hot traversals which, by de�nition, do not cause any faulting or swizzling.

5.4.2 Small Database Results

The results for the large database have unequivocally shown that pointer swizzling at page

fault time techniques do not impose a major overhead on the run time of an application in the

presence of I/O activity. We now present results for OO1 benchmark traversals on the small

database which highlights some important situations. The database contains 20,000 objects

and is small enough (one-tenth the size of the large database, or about 4MB) to easily �t into

the main memory. The basic conclusions about performance of Texas are still valid, but there

are a few quantitative variations related to interactions between locality characteristics and

the operating system.

84

Basic Performance

Figures 5.13{5.17 present the performance of the entire traversal set on the small database.

Figure 5.13 shows overall run time of the entire traversal set (45 traversals) on a log scale, and

the rest are closeups (on a linear scale) of di�erent traversals.

10000

100000

1e+06

1e+07

1e+08

1e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.13: Times for all traversals, small database, log scale (Linux)

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

0 1 2 3 4 5

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.14: Times for traversals 1 through 5, small database (Linux)

85

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3 4 5 6 7 8 9

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.15: Times for traversals 3 through 9, small database (Linux)

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

10 15 20 25 30 35

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.16: Times for traversals 8 through 36, small database (Linux)

86

0

200000

400000

600000

800000

1e+06

30 32 34 36 38 40 42 44

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.17: Times for traversals 30 through 45, small database (Linux)

Consider Figure 5.13, which plots the performance results of various components for all

traversals, and compare with the corresponding plot for the large database (Figure 5.3). The

major di�erences between the two sets of plots are partly due to the size of the database and

poor locality in the benchmark traversals, as well as their interaction with �le system caching

and readahead mechanism of the operating system. However, although the overall plots look

very di�erent for traversals on the small database, the overall structure still conforms to the

three phases described earlier, and can be divided it into three qualitative regions as follows:

� I/O-intensive region consisting of the cold traversal and �rst few warm traversals (i.e.,

left end of Figure 5.13 up to and including traversal 7, as well as Figures 5.14 and 5.15),

where the Texas overhead is obviously small compared to the I/O cost, which typically

dominates the overall run time;

� CPU-intensive region consisting of the hot traversals (i.e., right end of Figure 5.13,

traversals 36 through 45, as well as Figure 5.17), where Texas overheads are zero and

there is no I/O; and

� mixed-behavior region consisting of rest of the warm traversals (i.e., middle part of Fig-

ure 5.13, traversals 8 through 35, and Figure 5.16), which is a little complicated because

the overheads vary signi�cantly with number of faults and I/O requests per traversal.

The �rst two regions obviously support the conclusions drawn from the large database

results, and are not discussed further here. Instead, we focus on the third (mixed-behavior)

region which corresponds to the phase that exhibits moderate I/O and faulting activity inter-

spersed with computation. The unusual behavior in this region is related to the fact that the

entire database is small enough to �t into memory and most of it is loaded into memory (or

87

prefetched into a �le system cache) within the �rst few traversals because of poor locality in

the randomized interconnections. As a result, most warm traversals do not pay the cost of real

I/O (i.e., disk seeks) since their requests are likely to be satis�ed from the �le system cache.

From Figure 5.13 (and also Figure 5.16), we note that for six traversals (speci�cally

traversals 10, 14, 21, 22, 27 and 30) in the mixed-behavior region, the I/O cost is fairly

high (between one and three million clock cycles) while the Texas overhead is very small in

comparison. This is because the I/O requests for these traversals cannot be satis�ed from the

�le system cache and require real I/O activity. In contrast, sixteen other traversals (speci�cally

traversals 8, 9, 11 through 13, 15 through 20, 25, 26, 28, 29 and 33) intermixed with the

six mentioned above incur I/O cost of only about 15,000 cycles, which is equivalent to 75

microseconds on the test machine with a 200MHz clock rate. Given the fact that typical disk

latencies are on the order of milliseconds, it is impossible that this number represents the cost

of a real I/O request. Instead, it is likely that the requests were satis�ed from a (�le system)

cache without ever involving any moving parts while paying only for software costs. For these

traversals, the Texas overhead appears to be signi�cant (about 45,000 clock cycles) since it

is not masked by I/O costs. This is not a problem during actual execution because overall

performance is typically swamped by the cost of real I/O requests for all other traversals.

Measuring Real I/O Activity

In the foregoing discussion, we have argued that seven traversals in the I/O-intensive region

and only six traversals (out of twenty-two that have non-zero I/O costs) in the mixed-behavior

region have some real I/O activity. We can con�rm this hypothesis by measuring the number

of real I/O requests using the major page faults described earlier. Figure 5.18 presents this

measure along with the number of reads issued by Texas for the entire traversal set.

1

10

100

1000

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

ag
es

Traversal Number

major page faults
Texas read requests

Figure 5.18: Page faults for all traversals, small database (Linux)

88

Note that while the two plots are visually similar, they do not coincide with each other.

That is, the number of real I/O requests is not exactly the same as the number of pages read

by Texas due to the operating system readahead mechanism. By correlating the number of

real I/O requests (from the �gure) with the overhead results in Figure 5.13, we con�rm that

real I/O activity indeed corresponds to higher I/O costs in overall performance. Conversely,

there are no major page faults (i.e., no real I/O) for traversals that exhibit low I/O costs.

Percentage Overheads

Finally, we plot the Texas overhead both as a percentage of I/O time and as a percentage

of total benchmark time for each traversal in the traversal set. These plots are shown in

Figures 5.19 and 5.20 respectively. The latter also plots the fraction of total benchmark time

spent in I/O for each traversal. (The corresponding plots for large database were shown in

Figures 5.11 and 5.12 respectively.)

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
I/

O
 T

im
e

Traversal Number

S
FH+S

F+FH+S

Figure 5.19: Overhead as percentage of I/O time, small database (Linux)

89

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
T

ot
al

 T
im

e

Traversal Number

Texas
I/O

Figure 5.20: Overhead as percentage of total time, small database (Linux)

It may be startling at �rst to see that the overhead of Texas is around 300% of I/O

cost for several warm traversals in Figure 5.19. However, on closer inspection, we note that

these traversals are the same as the sixteen traversals for which there is no real I/O activity as

per Figure 5.18. As before, correlating the two �gures clearly shows that the Texas overhead

is small in the presence of real I/O activity, exactly the same conclusion that was derived from

the large database results. In terms of actual numbers, from Figure 5.20, we conclude that

Texas overhead is around 2-4% of real I/O costs. Finally, we note that although the small

database traversals do not always have real I/O activity because of �le system caching and

readahead, when present, real I/O tends to dominate the overall run time of the benchmark,

usually by accounting for 60-80% (or more) of the total time.

5.4.3 Analysis

We have broadly divided the OO1 benchmark traversal results into three qualitative regions,

each representing applications with a di�erent mix of I/O and computation phases, and dis-

cussed our overhead under various situations. The results for both small and large databases

have shown that the overhead of Texas and pointer swizzling at page fault time is minimal

in the presence of real I/O, and zero when there is no I/O. Furthermore, although the Texas

overhead seems outrageously high in the absence of real I/O (especially for the small database),

the overall performance during actual execution is not a�ected much because the I/O activity,

when it does occur, tends to swamp the rest of the costs. In fact, we calculated the cumulative

overhead of Texas as a percentage of total benchmark time (including I/O) over all cold and

warm traversals, and found it to be only about 2% for the small database and slightly more

than 1.5% for the large database. Both these numbers are obviously very small compared to

the other costs incurred by the benchmark.

90

The performance results presented for Linux correspond to the use of normal �le I/O

for loading data from the benchmark database. As described earlier, this means that the

operating system usually prefetches more data than requested during a read to minimize

overall I/O costs; the prefetched data is stored in a �le system cache and is used to satisfy

future I/O requests wherever possible. We have clearly seen the e�ects of this action in the

small database results, where the mixed-behavior region contains traversals with I/O costs

that are too small to be real I/O.

It is possible to avoid the operating system readahead and caching by using a raw

device, instead of a normal �le in the �le system, for storing the database. Although Linux

currently does not support this feature, the heuristics used by the operating system to balance

the �le system and virtual memory caches seem favorable for our usage patterns because the

performance results do not appear to be adversely a�ected. (As we will see next, the Solaris

bu�er management policies do not work as favorably for our usage patterns.)

5.5 Performance on Solaris

We ran the same performance experiments using the OO1 benchmark on Solaris to compare and

contrast the results with those obtained on Linux. We have found that the basic conclusions

derived from the Linux results are still valid for Solaris, although there are a few quantitative

variations in the raw data for the latter. In this section, we present the performance results

obtained on Solaris, and briey discuss the factors responsible for the various di�erences and

their impact on the benchmark measurement.

An important di�erence here is that, unlike Linux, Solaris supports a raw I/O mech-

anism allowing us to measure the performance of the system in the absence of �le system

caching and readahead. We present results corresponding to the use of both �le I/O and raw

I/O,12 and highlight important di�erences between the two strategies.

5.5.1 Large Database Results

Following the earlier format, we �rst present the results obtained for benchmark traversals on

the large database. As before, we split the results into three parts: the raw performance data,

a measure of real I/O activity, and the overhead of Texas as a percentage of both I/O time

and total benchmark time.

Basic Performance

Figure 5.21 shows the overall run time of the entire traversal set (45 traversals) on Solaris.

As before, we plot the cumulative costs of di�erent components, starting with the I/O time.

Comparing the results to the corresponding plots for Linux (Figure 5.2), we note that the

overall cost of various components is qualitatively similar to that on Linux, that is, both sets

of plots have similar features.

12Unless otherwise speci�ed, all results presented are for normal �le I/O.

91

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.21: Times for all traversals, large database (Solaris)

One obvious di�erence between Solaris and Linux results is that the total benchmark

time on Solaris exhibits unusual spiky behavior for most of the warm traversals. This particular

plot represents the total time measured for the entire traversal, including costs of I/O and all

pointer swizzling components (see Figure 5.1). It is obvious from the �gure that the time for the

traversal component of the benchmark (measured by subtracting cost of all other components

from the total time) is quite high, varying from two to four times larger than the rest of the

costs. This is unusual because the traversal component itself is not CPU-intensive and is not

expected to add a big overhead to the overall execution time.

We believe that the unusually high total time for each traversal is actually due to

excessive virtual memory paging because the database is much larger than the available main

memory and is accessed with poor locality. Based on the randomized interconnections, on

average, every tenth pointer visits a randomly-chosen part that is not nearby (and has not been

referenced before), causing more data to be faulted in and swizzled. The interaction between

these access characteristics and the operating system's bu�er management policies indirectly

leads to paging because there is insu�cient memory available for the virtual memory system;

as a result, the benchmark execution spends much time waiting during paging. Since our cycle

timer can measure only real (wall-clock) time, the time spent in waiting for I/O during paging

is \mistakenly" billed to the traversal component.

Measuring Real I/O Activity

We can con�rm our observation about paging by measuring the real I/O requests for each

traversal and comparing with the number of read requests issued by Texas. As with Linux

results, the number of major page faults is ideal for getting an approximation of the real I/O

activity. Figure 5.22 shows this result, along with the number of reads issued by Texas, for all

92

45 traversals. Also, in Figure 5.23, we plot the time billed only to the traversal component,

that is, the total time for the entire traversal less the cumulative time for all other components

including I/O.13

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

ag
es

Traversal Number

major page faults
Texas read requests

Figure 5.22: Page faults for all traversals, large database (Solaris)

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Figure 5.23: Benchmark-only time for all traversals, large database (Solaris)

13Note that both �gures plot their respective data on a log scale.

93

The �rst thing to notice from Figure 5.22 is that the number of page faults remains

relatively high throughout the cold and warm traversals rather than gradually decreasing as the

cache gets warmer. This is quite di�erent from the downward trend of the number of pages read

(and swizzled) by Texas as the cache gets warmer. We also contrast this with the corresponding

plots for Linux in Figure 5.10. However, an even more interesting observation is that the plots

corresponding to major page faults and to the benchmark-only time exhibit identical visual

characteristics for all warm traversals starting after traversal 5. This observation strongly

supports our theory about the high traversal time (in Figure 5.21) being due to excessive

paging. The number of page faults indicates heavy paging behavior over the benchmark

interval, and the visual \tracking" of features between the benchmark-only time and the page

faults con�rms that overall run time is directly a�ected by paging.

Percentage Overheads

We also plot Texas overhead as a percentage of I/O cost for each traversal; this is shown in

Figure 5.24. As expected, the overhead of di�erent components is very small compared to the

I/O cost. There are, however, a few unusual features in the plot. In particular, the overhead

of user-level and kernel fault handling (plots labeled \FH+S" and \F+FH+S" respectively)

varies signi�cantly for later warm traversals (traversals 26 through 35, except 33) although

the overhead of swizzling itself (plot labeled \S") remains low and stable. The reasons for this

behavior are unclear, especially because the user-level fault handler has only a few actions and

cannot account for such large fraction of I/O. As described in detail later (Section 5.5.6), we

believe that this is likely due to interaction between paging and our approach of measuring

the overheads with di�erent timers.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
I/

O
 T

im
e

Traversal Number

S
FH+S

F+FH+S

Figure 5.24: Overhead as percentage of I/O time, large database (Solaris)

94

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
T

ot
al

 T
im

e

Traversal Number

Texas
I/O

Figure 5.25: Overhead as percentage of total time, large database (Solaris)

Finally, Figure 5.25 shows the overhead of Texas overhead as a percentage of the total

benchmark time for all traversals. In the same �gure, we also plot the I/O costs as a percentage

of the total benchmark time. It is obvious that the I/O time typically makes up a signi�cant

portion of the total benchmark run time (especially for the early traversals), and using pointer

swizzling at page fault time is relatively inexpensive. Note that I/O costs percentage in this

case reduces faster compared to corresponding results on Linux (Figure 5.25) because of the

much higher total benchmark time due to paging.

5.5.2 Small Database Results

We have seen that the large database results on Solaris are qualitatively similar to the cor-

responding results on Linux, although there are a few unusual quantitative variations in the

raw data. Nevertheless, the overall performance results support the conclusions derived so far

about the low overhead of Texas and pointer swizzling at page fault time. We now present the

small database traversal results on Solaris, and show that the basic conclusions are valid even

for the small database.

Basic Performance

We start by presenting the performance of the entire traversal set on the small database; this

is shown on a log scale in Figure 5.26. Not surprisingly, this looks very similar to the small

database results on Linux (presented in Figure 5.13), modulo a few minor details. These

variations are due to the di�erences in the operating system readahead policy and its imple-

mentation on both operating systems.

95

10000

100000

1e+06

1e+07

1e+08

1e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.26: Times for all traversals, small database, log scale (Solaris)

Most of the arguments presented for the corresponding results on Linux are also appli-

cable here. As before, we can divide the plot into three qualitative regions, each with di�erent

I/O and faulting characteristics. Unlike the Linux results, the mixed-behavior region in the

current data contains only four traversals (speci�cally traversals 14, 16, 27, and 30) that appear

to exhibit real I/O activity.

Measuring Real I/O Activity

Figure 5.27 shows the number of reads issued by Texas and the corresponding number of major

page faults (i.e., real I/O requests) for all traversals. Compare this with the corresponding plot

for Linux (Figure 5.18), and we can draw the same conclusions as before regarding performance

of Texas in the presence of real I/O. That is, we can con�rm that higher I/O costs (Figure 5.26)

are directly related to real I/O activity (as represented by major page faults). Similarly,

traversals with low I/O costs correspond to those with no real I/O activity.

96

1

10

100

1000

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

ag
es

Traversal Number

major page faults
Texas read requests

Figure 5.27: Page faults for all traversals, small database (Solaris)

Percentage Overheads

Finally, for completeness, we present results for the Texas overhead plotted both as a percent-

age of I/O costs and as a percentage of the total benchmark time for the whole traversal set.

These plots are shown in Figures 5.28 and 5.29 respectively. The latter also includes a plot of

I/O time as a percentage of the total benchmark time for all traversals. The corresponding

results for Linux were presented in Figures 5.19 and 5.20 respectively.

97

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
I/

O
 T

im
e

Traversal Number

S
FH+S

F+FH+S

Figure 5.28: Overhead as percentage of I/O time, small database (Solaris)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
T

ot
al

 T
im

e

Traversal Number

Texas
I/O

Figure 5.29: Overhead as percentage of total time, small database (Solaris)

Once again, we note that the Texas overhead is consistently more than 100% for all

traversals that do not have real I/O associated with them, very small for traversals that have

real I/O, and zero for all others when there is no I/O. Although the pointer swizzling overhead

seems too high for speci�c traversals, the overall execution is not a�ected proportionately

because it is usually swamped by real I/O activity for all other traversals. As before, we

98

calculated the cumulative overhead of Texas as a percentage of total benchmark time (including

I/O) over all cold and warm traversals, and found it to be only about 5%. Although this

is higher than the corresponding overhead measured for Linux (around 2%), it is still very

reasonable compared to overheads for some individual traversals (measured at 100% or more).

5.5.3 Large Database Results Using Raw I/O

The large database results presented earlier correspond to the use of �le I/O for loading data

from the database. Obviously, this includes the e�ects of the �le system caching and readahead

mechanism of the operating system. We also ran the OO1 benchmark traversal using raw I/O

for loading data into memory. This was achieved by storing the database on a raw disk

partition that did not have any associated �le system. We present a subset of the results for

these experiments and briey discuss some di�erences compared to the results for �le I/O.

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.30: Times for all traversals, large database, raw I/O (Solaris)

Figure 5.30 shows the overall run time for the entire traversal set on the large database

using raw I/O; the corresponding plot for �le I/O was shown in Figure 5.21. From the �gure,

we see that the overhead of various components of the system is still small compared to I/O

costs. Note that the total traversal time for most warm traversals is unusually high and, as

before, this can be attributed to paging behavior. However, unlike the earlier results (when

using �le I/O), paging behavior does not start until traversal 9 when using raw I/O.

Figure 5.31 plots the number of major page faults for the entire traversal set. It is

obvious from the �gure that there are no major page faults before traversal 9, indicating that

paging does not start until then. We also plot the time billed only to the benchmark traversal

component in Figure 5.32.

99

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

ag
es

Traversal Number

major page faults
Texas read requests

Figure 5.31: Page faults for all traversals, large database, raw I/O (Solaris)

100000

1e+06

1e+07

1e+08

1e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Figure 5.32: Benchmark-only time for all traversals, large database, raw I/O (Solaris)

As before, we match the number of page faults from Figure 5.31 with the benchmark-

only time in Figure 5.32 for all traversals. As might be expected, we �nd a strong correlation

between the two such that the run time is directly proportional to the number of page faults

incurred starting at traversal 9.

100

Comparing File I/O and Raw I/O Results

In general, the performance results when using raw I/O correspond to the basic results when

using normal �le I/O, with some interesting di�erences in the paging behavior. However, apart

from this obvious di�erence, there are a couple of other issues that should also be highlighted.

First, if we compare the total run-time when using �le I/O (Figure 5.21) and when

using raw I/O (Figure 5.30), we notice that it is a little lower in the latter case for the �rst

few (about 8) traversals. This is because the former involves additional I/O attributed to �le

system readahead, thus increasing the overall run time. Another interesting di�erence is the

number of pages involved in the paging behavior for each I/O strategy. When using �le I/O,

the page faults plot (Figure 5.22) indicates that about 600 pages were involved in paging (at

traversal 5) gradually reducing to about 200 by the last warm traversal. In contrast, when

using raw I/O, this number always remains between 100 and 200 for all warm traversals. This

is because the readahead mechanism in the �le I/O case prefetches many additional pages

during earlier traversals and stabilizes as the cache gets warmer. The extra pages involved in

I/O also increase the total benchmark run time for �le I/O.

5.5.4 Small Database Results Using Raw I/O

Since the benchmark traversals have a poor locality of reference, the �le system caching and

readahead mechanism of the operating system cause most of the small database to be either

loaded (or prefetched into �le system bu�ers) from disk within the �rst few traversals. As

described earlier, �le system caching can be avoided by using raw I/O for loading data from

the database. We now present results for the OO1 benchmark traversals on the small database

using raw I/O for all database access.

100000

1e+06

1e+07

1e+08

1e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.33: Times for all traversals, small database, raw I/O, log scale (Solaris)

101

Following the format used so far, we present the overall performance results for the

entire traversal set; this is shown on a log scale in Figure 5.33. We notice several di�erences

between this �gure and the corresponding results for normal �le I/O in Figure 5.26. The part

of the results that is interesting for this comparison is the mixed-behavior region (among the

three qualitative regions described earlier) that comprises of traversals 8 through 35. Most

notably, the I/O time for all traversals (with the exception of traversal 9) in this region is

between one and six million clock cycles, that is, between 5 and 30 milliseconds,14 compared

to a very low number of 45,000 clock cycles observed earlier. The higher I/O time for the raw

I/O con�guration is more in line with the expectation of real I/O activity for each traversal.

By enforcing real I/O for each traversal, we have essentially transformed the small

database traversal benchmark into an I/O-intensive benchmark, much like the large database

traversals. Therefore, the performance results presented in Figure 5.33 are qualitatively similar

to the large database results; the Texas overhead in both situations is minor compared to

the I/O costs incurred during each traversal in the traversal set. Of course, in the current

con�guration, we do not see the paging behavior that normally occurs during traversals on the

large database because the small database easily �ts into memory.

In order to get a qualitative approximation of the various overheads of pointer swizzling

at page fault time, we plot the overhead of each individual component as a percentage of I/O

time for all traversals in the entire traversal set; the corresponding results are plotted in a

cumulative fashion in Figure 5.34. We also plot the overhead of Texas as a percentage of total

benchmark time in Figure 5.35. As before, this �gure includes the fraction of total benchmark

time spent in I/O, that is, the I/O \overhead," for the purpose of comparison.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
I/

O
 T

im
e

Traversal Number

S
FH+S

F+FH+S

Figure 5.34: Overhead as percentage of I/O time, small database, raw I/O (Solaris)

14The I/O time for traversal 9 is about half as much as the lowest I/O time for any other traversal, although
it is still on the order of milliseconds. It is possible that this is because the request is satis�ed from a \cache"
(e.g., track bu�er) on the disk itself.

102

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
T

ot
al

 T
im

e

Traversal Number

Texas
I/O

Figure 5.35: Overhead as percentage of total time, small database, raw I/O (Solaris)

From the above �gures, we can conclude that the Texas overhead is a very small fraction

of the I/O cost, usually about 3-5% on average while the maximum is about 8% (excluding

traversal 9). Although the average overhead is more than that on Linux, it is not outrageously

high enough to signi�cantly a�ect the overall performance. In comparison, the I/O cost is a

major fraction of the benchmark run time and more or less dominates all other costs. The

cumulative overhead of Texas (calculated separately) as a percentage of total benchmark time

(including I/O) over all cold and warm traversals is about 3%. This is slightly less than the

5% overhead reported for normal �le I/O-based traversals because raw I/O is a little more

expensive due to the cost of extra disk seeks.

5.5.5 Large Database Results with Bigger Memory Size

In both �le I/O-based and raw I/O-based results for the large database presented above, the

total benchmark run time has shown some unusual behavior (marked by spikes in the plots).

Even after avoiding the e�ects of caching and readahead by using raw I/O, we were able

to delay the spiky behavior by only a few traversals. We have speculated that this is due

to excessive paging that occurs because the database is larger than the memory size and is

typically accessed with poor locality of reference. To verify this hypothesis, we upgraded the

memory in the test machine from 32MB to 64MB, and reran the benchmark traversal with

the new con�guration.15 Since the new memory size is big enough to easily �t the entire large

database, we do not expect any paging; instead, the general behavior should be very similar

to the small database results.

15Although we used raw I/O for the new con�guration, using �le I/O should be acceptable because 64MB
is large enough to avoid unwanted contention between �le system and virtual memory caches.

103

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

0 5 10 15 20 25 30 35 40 45

C
lo

ck
 C

yc
le

s
pe

r
T

ra
ve

rs
al

Traversal Number

Total
I/O

S+I/O
FH+S+I/O

F+FH+S+I/O

Figure 5.36: Times for all traversals, large database (Solaris, large memory)

Figure 5.36 presents the results for large database traversals on the new (large memory)

con�guration. There are at least two important features that should be noted here. First, as

expected, the unusually high run time is no longer present and we can safely conclude that there

is indeed no paging. An even more interesting observation, however, is the strong similarity

between this �gure and the large database results for Linux presented in Figure 5.2. The

similarity is especially interesting because the Linux results correspond to the use of �le I/O

for database access while the Solaris results are for raw I/O.

We also plot the overhead of Texas both as a percentage of I/O time and as a percentage

of total benchmark time. Figure 5.37 shows the overheads of di�erent components of Texas

as percentage of I/O time for each traversal. It is obvious that the overhead of Texas (the

plot labeled \F+FH+S") is a small percentage of I/O time, about 2.5% on average, for most

warm traversals on the large database when there is little or no paging because the database

�ts into memory.

104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
I/

O
 T

im
e

Traversal Number

S
FH+S

F+FH+S

Figure 5.37: Overhead as percentage of I/O time, large database (Solaris, large memory)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Pe
rc

en
ta

ge
 o

f
T

ot
al

 T
im

e

Traversal Number

Texas
I/O

Figure 5.38: Overhead as percentage of total time, large database (Solaris, large memory)

Finally, Figure 5.38 shows the overhead of Texas as a percentage of total benchmark

time. We note that the overhead is much smaller compared to the fraction of total time spent

in I/O. Once again, note the remarkable similarity between these results and the corresponding

Linux results (in Figure 5.12). In terms of raw numbers, the Texas overhead is slightly higher

on Solaris (around 2.5%) than on Linux (around 1.5%).

105

5.5.6 Analysis

For the performance measurements on Solaris, we ran the benchmark for two database sizes

using both �le I/O and raw I/O, and presented the corresponding results for each database

size. In general, the results con�rm our basic assertion that the overhead added by Texas is

relatively small compared to typical I/O costs incurred for loading the data into memory.

Analysis of Large Database Results

The results for both I/O strategies con�rm our assertion that Texas overhead is relatively

small compared to I/O costs. There are, however, a few quantitative variations that seem

unusual. For example, the plot in Figure 5.24 shows that the actual swizzling overhead itself

is relatively small for all warm traversals, but there are a few unexpected spikes in the fault

handling (both user-level and kernel-level) costs. We believe that these are actually transient

e�ects, possibly due to paging, rather than a reection on the faulting overhead.

There are several reasons that led us to this conclusion. First, we have observed that

these spikes \shift" to other traversals for di�erent runs of the same experiment with no

discernible pattern in the variation, except that they mostly occur in the later warm traversals.

In addition, the height of the spikes also varied for di�erent runs, further indicating that the

overhead is transient in nature. Finally, based on the number of pages swizzled for each

traversal (Figure 5.22), we know that there are only a few (usually less than ten) protection

faults in the later warm traversals and it is not possible to have such large overheads for

handling just a few faults. Instead, we believe that the measurements are a�ected by spurious

e�ects of paging behavior and therefore incorrectly billed to faulting.

We have also shown that the e�ects of paging behavior disappear as we move to a

bigger memory size and the database �ts into memory. In general, the performance of Texas

on Solaris (using raw I/O with larger memory to avoid paging) is very similar to that on Linux

(using �le I/O with smaller memory). This is further indication that bu�er management on

Linux is more aggressive than on Solaris.

Raw I/O vs. File I/O

The main di�erence between raw I/O and �le I/O strategies is the �le system caching and

readahead that is implicitly performed by the underlying operating system in the latter case.

We can bypass this behavior simply by storing the data in a raw disk partition and using

raw I/O for all data access. Turning o� �le system caching is usually a good idea for most

applications running under Texas because the problem of double caching is avoided.16 However,

as illustrated below, it may or may not be bene�cial to turn o� caching depending on the

application characteristics.

For example, consider the small database results for both �le I/O and raw I/O cases

(Figures 5.26 and 5.33 respectively), and compare the absolute I/O costs for the initial I/O-

intensive region (traversals 1 through 7) for both sets of results. Speci�cally, I/O times for

traversals that use �le I/O are uniformly lower than those that use raw I/O. This is because

16Of course, if client-side (local) caching is important (e.g., multiple distinct runs of one or more applications
on the same input data), then �le system caching may be bene�cial.

106

every I/O request in the latter case results in an actual disk I/O request and therefore incurs

the cost of extra disk seeks. In contrast, since normal �le I/O prefetches data during real disk

I/O, it avoids the cost of extra disk seeks corresponding to prefetched pages for which the

readahead pays o� sooner.

Now consider the absolute I/O times for large database results using the two di�erent

I/O strategies (Figures 5.21 and 5.30). In this case, the I/O times for raw I/O-based traversals

are lower than those for �le I/O after the �rst two traversals. This is because the �le system

prefetches are not paying o� soon enough and the competition between �le system cache and

virtual memory cache reduces the e�ective memory size causing paging behavior which, in

turn, increases the number of I/O requests, quickly wiping out any advantages gained due to

prefetching.

As such, turning o� the readahead mechanism may have unexpected e�ects on the

performance of various applications depending on their access characteristics and the amount

of data accessed. It may be bene�cial to perform readahead for many applications because

their access characteristics are favorable to prefetching and can e�ectively avoid the extra

disk seeks. However, others may do well to not pay the cost of readahead because they are

unlikely to bene�t from it. Unfortunately, most operating systems currently do not provide

independent user-level control over readahead and �le system caching other than support for

raw I/O. Of course, we can implement our own prefetching, and possibly \preswizzling," using

only raw I/O. This avoids unnecessary interference between �le system and virtual memory

caches, and a�ords more control over the readahead mechanism.

5.6 Comparison of Address Translation Granularities

The results presented so far have concentrated on the overall performance of pointer swizzling

at page fault time, a coarse-grained address translation mechanism. We now present results

of the OO1 benchmark traversals corresponding to di�erent address translation granularities

for the data structures used during the traversals. Recall that we use the smart pointer idiom

(Chapter 3) for implementing �ne-grained and mixed-granularity address translation without

requiring any additional support from the compiler or the operating system.

In particular, we are interested in the three di�erent address translation granularities,

namely coarse-grained, mixed-granularity and �ne-grained strategies, that were described in

Chapter 3. The following table describes the types of pointers used for each granularity and

the corresponding key for the performance results plots.

Granularity Type(s) of pointers Key

coarse-grained All \raw" (language-supported) pointers all-raw

mixed-granularity \Smart" pointers for index, raw otherwise smart-index

�ne-grained All smart pointers all-smart

Unlike the performance results presented in Sections 5.4 and 5.5, when presenting

results for address translation granularities, it is important to use CPU time rather than real

time because the di�erence in performance is primarily due to di�erences in faulting and

swizzling, and allocating address space for reserved pages. Unfortunately, as discussed in

107

Section 5.2.2, CPU-time timers on most operating systems have a very coarse granularity,

and it would be impossible to measure any reasonable di�erences in the performance due to

a change in the address translation granularity because our overheads are very small. Hence

we use an older (and slower) SPARCstation ELC, which is slow enough to o�set the coarse

granularity of the timers.

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45

C
PU

 T
im

e
pe

r
T

ra
ve

rs
al

 (
in

 m
ill

is
ec

on
ds

)

Traversal Number

all-raw
smart-index

all-smart

Figure 5.39: CPU time for translation granularities, large database (Solaris, SPARC ELC)

Figure 5.39 presents the CPU time for all traversals in an entire traversal set run on

a large database. As expected, the cost for coarse-grained address translation (the \all-raw"

case) is the highest for the �rst 15 or so traversals. This is not unusual because the coarse-

grained address translation scheme swizzles all pointers in the faulted-on pages and reserves

many pages that may never be used by the application. This is exacerbated by the poor

locality of reference in the benchmark traversals because many pages of the database are

accessed during the initial traversals, causing a large number of pages to be reserved. The

number of new pages swizzled decreases as the cache warms up, and we see the corresponding

reduction in the CPU time.

We also note that the cost for �ne-grained address translation (the \all-smart" case) is

the lowest for the �rst 15 traversals. Again, this is expected because the address translation

scheme does not swizzle any pointers in a page when it is faulted in because they are all smart

pointers that must be translated at every use. Finally, the CPU time for mixed-granularity

address translation (the \smart-index" case) falls between the other two cases for the �rst

15 traversals. This is also reasonable because only the parts index structure contains smart

pointers, and each traversal uses this index only once (to select the root part for the traversal).

This cost is only slightly less than the \all-raw" case because our B+ tree implementation

generated a tree that was only three levels deep, reducing the number of smart pointers that

had to be translated for each traversal.

108

Now consider the hot traversals. The �rst thing to note is that the CPU time for the

\all-smart" case is higher than that for the other two cases. This is because smart pointers

impose a continual overhead for each pointer dereference, that is, the cost is incurred even if the

target object is resident. In contrast, the \all-raw" case has zero overhead for hot traversals.

(We expect the \smart-index" results to be identical to the \all-raw" results because there

is no index lookup during hot traversals, and no smart pointers need to be translated. We

attribute the small di�erence between the hot results in these two cases to caching e�ects.)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35 40 45

C
PU

 T
im

e
pe

r
T

ra
ve

rs
al

 (
in

 m
ill

is
ec

on
ds

)

Traversal Number

all-raw
smart-index

all-smart

Figure 5.40: CPU time for translation granularities, small database (Solaris, SPARC ELC)

Figure 5.40 shows the corresponding results for the small database. In this case, only

the �rst few (3 or 4) traversals contain faulting and swizzling. Once again, a phenomenon

similar to the one in large database results can be seen in the current results. In particular,

the CPU time is highest for the �rst few traversals of the \all-raw" case and lowest for the

\all-smart" case. However, for the hot traversals, the two granularities swap their positions;

the \all-smart" case is more expensive because of the continual translation overhead, while the

\all-raw" and \smart-index" results are identical for hot traversals because no index pointers

are dereferenced.

5.7 Discussion

We have presented results for the performance of pointer swizzling at page fault time as

implemented in the Texas persistent store. We used the standard OO1 benchmark traversals

for measuring the cost of various components of our system, and compared them with I/O costs.

We measured the performance of benchmark traversals for both small and large database sizes.

All results were presented for benchmark runs on two popular operating systems, Linux and

109

Solaris. For Solaris, we also presented results using raw I/O (instead of �le I/O) for database

access to study the e�ects of �le system caching and readahead on the overall performance.

We have seen that the empirical results are qualitatively similar across Linux and So-

laris, but there are some quantitative variations in the raw data depending on the combination

of speci�c experiment and the operating system. However, these variations are not signi�cant

overall and do not a�ect the results adversely. In this section, we present our basic argument

for the performance of Texas, and discuss the impact of operating system implementations.

5.7.1 Basic Argument

We have shown that pointer swizzling at page fault time imposes absolutely no overhead if the

data has already been loaded into memory, and minimal overhead when faulting (i.e., in the

presence of I/O activity). The basic idea exploits locality of reference in the application to

amortize the cost of swizzling at page fault time. Since processors are much faster than disks,

the cost of swizzling entire pages at fault time is very small compared to the I/O costs. By

using existing virtual memory hardware, we do not incur any other overheads for compiler or

operating system support.

The various results presented earlier correspond to the benchmark database stored on

a local disk. However, the database may be stored in the main memory of a remote host,

and faulted in over a fast network without involving any disk access. An example of this is a

distributed system where the data is stored on a centralized data server and fetched over the

network by di�erent clients. Since networks are much faster than disks, network I/O costs are

likely to be much smaller than disk I/O costs. As a result, the overheads of pointer swizzling

at page fault time cannot \hide" as well in the I/O costs. However, there are at least two

counterarguments for this. First, very fast networks are still in the experimental research state,

and are not likely to be widely available in the very near future, and second, as fast networks

become ubiquitous, we expect corresponding improvement both in hardware and operating

systems, which will combine to reduce our overheads as well.

5.7.2 Impact of Operating System Implementations

We have run the same benchmark experiments on both Linux and Solaris, using identical

underlying hardware setup. Although the overall results conformed in qualitative terms, there

were some unusual quantitative variations, especially for Solaris. In particular, Linux appears

to be more aggressive than Solaris in terms of the kernel memory usage. Although both test

machines had the same amount of RAM (i.e., 32MB), the amount of main memory available

to user applications on Solaris was a few megabytes less than that on Linux (approximately

27MB vs. 30MB). Normally, such a minor di�erence should not have any signi�cant impact

on the overall performance. However, for the large database results, the split happens to be

\just right" in terms of total data faulted into memory from the database. As a result, we

see some paging behavior on Solaris, while the few extra megabytes of memory (combined

with aggressive bu�er management) is su�cient to avoid any unnecessary paging on Linux.

Of course, depending on its bu�er management algorithms, the Solaris performance may be

suboptimal even with a slightly larger memory size.

110

Another interesting di�erence between Solaris and Linux is the cost of handling a

protection fault. Speci�cally, we focus on the time taken from the point when a protected

page is accessed by an application till the point where a user-level fault handler gains control.

We found that this number is several times larger on Solaris than on Linux. The higher

faulting cost obviously a�ects the performance of Texas, especially during the cold and early

warm traversals where many protection faults are generated (and handled). Further details

about exception handling, including some measurements on fault handling costs, are provided

in Chapter 7.

5.7.3 Indirect Costs of Pointer Swizzling

We do not separately measure or account for the indirect cost of swizzling in our perfor-

mance measurements. There are at least two reasons for this. First, benchmark traversals

for small and large database sizes correspond to situations with no paging and heavy paging

respectively.17 Recall that the indirect costs of pointer swizzling are not a major issue in either

of these two situations. Another important reason is that the indirect costs are a�ected heavily

by the locality characteristics of the application. As is obvious from some of the performance

results presented so far, the OO1 benchmark exhibits extremely poor locality characteristics

in its data structures, and consequently the traversal operations. As such, any measurements

of indirect costs using the OO1 benchmark are likely to be arti�cially skewed and not very

useful for drawing any meaningful conclusions.

5.8 Benchmarking Limitations

Over the last few years, several new systems for implementing persistence and full-edged

object-oriented database capabilities have been proposed, implemented, and studied by aca-

demic research groups and commercial database vendors. During this period, several bench-

marks have also been developed for measuring the performance of these new systems. Of

these, the OO1 [CS92] and OO7 [CDN93] benchmarks have become the most popular, and

have been used widely for measuring the performance of various systems in isolation, as well

as for comparing two or more systems.

The canonical application domain for object-oriented databases (OODBs) is the Com-

puter Aided Design (CAD) domain. We posit that the OO1 and OO7 benchmarks are not

representative of typical applications in the CAD domain. As such, the results from these

benchmarks are not necessarily indicative of typical CAD application behavior. In this sec-

tion, we discuss some issues about benchmarking methodology, and present our views on the

limitations of synthetic benchmarks, particularly the OO1 and OO7 benchmarks. We are espe-

cially interested in their use as object database benchmarks, and as benchmarks for measuring

orthogonally persistent systems. As discussed in the rest of this section, we believe that the

benchmarks are unsuitable for both these roles.

17Actually, large database results for Linux appear to correspond to the no paging situation.

111

5.8.1 Synthetic Benchmarks

Most performance measurements and analysis of persistent object systems (and OODB sys-

tems) have been done using synthetic benchmarks in lieu of using real applications. There are

two reasons for this: �rst, there are few large, realistic applications that exercise all persistence

mechanisms of the underlying system and of those that exist, few are available for general use;

and second, it is typically extremely hard to adapt a large piece of code to any given persistence

mechanism without having a detailed understanding of the application.

Synthetic benchmarks, however, provide a useful solution to these problems. Usually,

the benchmarks are much smaller than any real applications and are (hopefully) designed to be

ported to di�erent systems without requiring large modi�cations. The underlying assumption

is that the benchmarks are designed to model behavior of real applications and as such the

results from the benchmark studies can be extrapolated for a wide variety of applications.

However, this is not always true, and results from synthetic benchmarks must be interpreted

with extreme caution.

Often, the synthetic benchmarks reect their designers' intuitions about program be-

havior, and these intuitions may not be exactly right. Worse, the benchmarks may implicitly

incorporate unrealistic assumptions about underlying common analytic models. The appar-

ently \empirical" nature of these \experimental" results is likely to lull people into relying on

the results more than appropriate. A benchmark may resemble real applications in certain

ways that are relevant to certain aspects of system design, but in other ways, synthetic bench-

marks indicate very little about the behavior of real applications. Even when a benchmark

has been validated with respect to certain issues, it may be quite inappropriate for any other

purpose for which it has not been validated.

This is not to say that synthetic benchmarks are never useful. In fact, synthetic bench-

marks often have the advantage that they can be varied systematically by using a few pa-

rameters, which allows for experimentation with a range of possible behaviors. Of course,

the results should be interpreted cautiously to ensure that the conclusions drawn from those

results are valid for real application behaviors.

The OO1 and OO7 Benchmarks. The OO1 benchmark [CS92] was one of the �rst widely-

used benchmarks for performance measurements of OODBs, designed to model applications

in the engineering CAD domain. The benchmark database schema is very simple and is based

on a network of biased random interconnections of part objects, which are manipulated using

some simple benchmark operations. The OO7 benchmark [CDN93] was developed at the

University of Wisconsin as a successor to the OO1 benchmark. While the benchmark retains

the CAD application model, the data structures are enhanced to add much more hierarchy

and additional complexity is incorporated for tuning various benchmark parameters. OO7

has been widely used by OODB developers to measure the performance of their systems, and

by researchers to benchmark and compare performance of various persistence mechanisms.

However, to the best of our knowledge, OO7 has not been validated against real applications

from the CAD domain to ensure that it indeed represents a realistic workload. We believe

that OO7 is not representative of typical CAD applications; other researchers [TNL95] have

also reached similar conclusions.

112

5.8.2 Common Problems with the OO1 and OO7 Benchmarks

We are primarily interested in the behavior of the OO1 and OO7 benchmarks, speci�cally for

performance measurements in an orthogonally persistent systems such as ours. In particular,

we believe that these benchmarks typically measure the overall I/O performance instead of

measuring the costs of address translation and orthogonal persistence, which is our primary

focus.18 This is obviously a problem because OODBs and persistent programming languages

are usually intended to be used for CPU-intensive applications. For applications that exhibit

I/O-intensive behavior, it may be preferable to use traditional relational databases which are

optimized to improve I/O performance.

For the purpose of this discussion, we de�ne two terms, normal program behavior and

database program behavior, to categorize behaviors of di�erent applications. Normal program

behavior denotes typical CPU-intensive applications that spend most of their execution time

performing some computation, and use the persistence mechanism only to save their �nal

results. For such applications, a majority of objects need not to be saved to stable storage be-

cause they constitute transient data that does not live for very long [Wil97, WJNB95, Joh97].

In such situations, execution costs are dominated by operations over transient data; the per-

sistence mechanism must not interfere with these operations, making them as fast as possible.

In contrast, database program behavior denotes applications that are usually I/O-intensive and

do not perform signi�cant computation during their execution. Traditional relational database

systems are better suited for stable storage management in such applications. Most OODB sys-

tems and persistent programming languages are (and should be) targeted towards applications

that exhibit normal program behavior, enabling the persistence technology to be incorporated

into normal applications that operate primarily on in-memory data.

Below, we discuss several common problems that we have identi�ed with both the

benchmarks; although we focus mostly on the OO1 benchmark, many of the same issues are

applicable to the OO7 benchmark also. While the following is not meant to be an exhaustive

compilation of the problems, we believe these issues are the most important especially in the

context of a coarse-grained persistent system.

Separation of I/O Costs

The benchmarks do not specify any way to separate I/O costs from other costs, including those

that are necessitated by architectural choices in the implementation of the persistent system.

For example, if a particular system aggressively prefetches data, the majority of the persistent

store will be loaded into memory during early traversals, and the later warm traversals will

be closer to hot traversals. In contrast, if the system prefetches little or not at all, the warm

traversals are comparatively \cooler." Thus the results for warm traversals mostly represent

the loading and caching costs, rather than the overhead of the persistence mechanism itself.

That is, they are a measure of the \warmth" of warm traversals rather than fundamental costs

of the architecture.

18Recall that the costs of orthogonal persistence include the costs incurred when not using the persistence
facilities|for example, when accessing transient data or persistent data that has already been loaded into
memory.

113

The designers of OO7 appear to have recognized this issue, and specify only \cold" and

\hot" performance measurements. On the other hand, OO1 requires that results be reported

only for cold and warm performance, omitting the hot performance measurements. This

is a problem because the hot performance essentially represents the baseline and, without

this information, it is not possible to judge the performance of a given persistent system,

regardless of how well caching is working. This is particularly important for our approach

which incurs absolutely no overhead during hot traversals when accessing both in-memory

persistent pointers and transient pointers. As a result, our hot performance is equal to the

best-case performance in a fully-transient con�guration. In other words, the cost of orthogonal

persistence is zero in our system.19 However, this is not evident unless the hot performance is

also reported as part of the benchmark results.

Locality of Reference

Another issue with these benchmarks is regarding the locality of reference. Although the

randomized interconnection scheme in OO1 exhibits some locality|90% of the connections

are local|it actually has disastrous e�ects on locality of simple algorithms operating over the

data. On average, every tenth pointer references a randomly-chosen object. Because of this, the

OO1 benchmark has extraordinarily poor locality of reference. The cold and hot performance

represents two extremes of behavior|very bad locality and very good locality|which can be

used to roughly assess the overall performance of a system under two very di�erent kinds of

use. Unfortunately, there is no guidance in terms of the \expected" mix of these behaviors.

The unusually poor locality may not matter for some purposes, but may be crucial for

other purposes. For example, �ne-grained systems incur several instructions of overhead at

every pointer dereference (and perhaps at every pointer comparison), while the coarse-grained

schemes (such as ours) incur thousands of instructions of overhead only at page faults, and zero

otherwise. If the frequency of pointer traversals is several orders of magnitude higher than the

frequency of page faults, coarse-grained techniques will obviously be more e�cient. This is

almost always true for most normal applications, which achieve good CPU utilization, usually

greater than 50%. (Recall that, on a modern processor, a program that incurs a fault every

million instructions is probably paging heavily.) For object databases, this is less clear. Most

relational databases are designed for applications that tend to be I/O-intensive, but object-

oriented databases are likely to be used for CPU-intensive tasks such as CAD applications. The

lack of locality in OO1 raises questions regarding its appropriateness as a general benchmark

for arbitrary systems.

The only other useful information in the graph of part objects is the connectivity, which

is based on a biased random distribution of interconnections. This ensures that there will be

a strong correlation between the static structure of the graph and the dynamic locality of the

benchmark traversals. Furthermore, it means that the locality characteristics are likely to be

consistent, especially with respect to relative heat of links. If an object or link is hot during

one traversal, it is very likely to be hot during any other traversal that encounters it at all.

While the OO7 benchmark was designed to support better locality characteristics, it is

19This is unlike other (�ne-grained) systems that usually incur costs at every pointer dereference, including
both in-memory persistent pointers and transient pointers.

114

not clear whether this goal has been achieved. We are not aware of any studies that measures

this factor; the closest appears to be one by Tiwary et al. [TNL95], and their conclusions

indicate that OO7 is unsuitable as a generic CAD workload. Our own preliminary analysis

of OO7 (not presented in this dissertation) has shown that the OO7 database connectivity

exhibits poor locality of reference characteristics.

Computation Behavior

Both OO1 and OO7 benchmarks specify minimal computation behavior when a persistent

object is visited during a benchmark operations (e.g., a traversal). In OO1, as each new

object is visited, an empty procedure is invoked on that object to represent the \computation"

performed by a real application. The direct e�ect of this is that the benchmark operations

are data- or I/O-intensive rather than CPU-intensive. This is not representative of most real

applications, which usually do much more \work" on their data compared to just invoking an

empty procedure. OO7 assumes a uniform workload behavior, which is unrealistic because

real application usually exhibits di�erent phases during a single execution.

The I/O-intensive nature of benchmark traversals makes coarse-grained address trans-

lation techniques look unnecessarily bad because their basic premise|locality of reference in

data access and page faults interspersed with long periods of computation|is violated. In ad-

dition, each persistent pointer is dereferenced only once during a traversal. This is unrealistic

for CAD applications; for example, Tiwary et al. [TNL95] found that OO7 reused pointers20

about 100 times less frequently than their CAD visualization application. Furthermore, no

transient pointer traversal is included in both benchmarks. This unfairly a�ects the results for

a coarse-grained address translation scheme which relies on high pointer reuse for overall per-

formance bene�ts over a �ne-grained scheme, that adds overhead to every pointer dereference,

regardless of whether it is a persistent or a transient pointer.

Data Structures and Algorithms

Another point against the benchmarks is their failure to exactly specify data structures and

algorithms that must be used for the benchmark schema and during various benchmark op-

erations. For example, the original OO1 speci�cation does not specify the exact structure of

the parts index. Similarly, the OO7 benchmark does not specify the kinds of containers (e.g.,

sets, bags, lists, etc.) that must be used for various collections of objects in the benchmark

schema. This is quite undesirable, especially for comparison across di�erent systems, because

performance di�erences between these systems can be signi�cantly a�ected due to �ne-tuning

of speci�c data structures. The benchmarks also do not specify transient data structures,

although they are required for the benchmark operations.

In a similar vein, both OO1 and OO7 benchmarks do not specify some important

algorithms that may a�ect the connectivity of the graph and the corresponding traversals.

For example, the default implementations use the standard pseudo-random number genera-

tor available in the underlying operating system. The algorithm for pseudo-random number

20A pointer is said to be reused when an application traverses (or dereferences) it more than once.

115

generation is likely to vary between di�erent operating systems, or even between di�erent ver-

sions of the same operating system. The random number generator is an integral piece of the

OO1 benchmark|the initial connections when building the original connectivity graph and

the root part for each traversal are selected randomly|and di�erences in its implementation

may signi�cantly a�ect the performance of a system.

5.8.3 Summary

We have presented some common problems with OO1 and OO7, two of the most popular

database benchmarks used for studying the performance of various OODB systems and persis-

tent object stores. We believe that these benchmarks are unsuitable for performance measure-

ments of orthogonal persistent systems and as general object database benchmarks. There is

also some independent evidence that these benchmarks do not emulate the characteristics and

behavior of CAD applications, which typically represent the kind of applications that exploit

OODB systems.

With both OO1 and OO7 benchmarks, we have identi�ed several issues| especially

poor locality characteristics and lack of computation behavior|that are not representative of

normal application behavior. In general, we believe that these benchmarks are not designed

to measure address translation costs which is what we are most interested in; instead, they

mostly measure the cost of loading and caching persistent data. Furthermore, because of the

randomization in the data, it is unclear whether the results are at all meaningful; most real

applications exhibit both locality of reference and distinctive phase behavior.

Finally, we believe that OO1 and OO7 are also not suitable for studying other issues

such as clustering. Since the characteristics of both benchmarks are fairly random, there is

little opportunity for a sophisticated clustering scheme to exploit the same regularities that

it might successfully exploit for real applications. Furthermore, the interconnections between

database structures (at least in OO7) also discourage static clustering. Of course, the e�ects

of clustering, etc. on the overall performance is beyond the scope of this dissertation.

5.9 Conclusions

The various performance results presented in this chapter have supported our basic argument

that pointer swizzling at page fault time has zero costs when there is no faulting from the

persistent store. The major cost of the system is incurred when a page is loaded into memory

and the pointers are swizzled into virtual memory addresses. Even then, the overhead is small

compared to the I/O costs incurred for fetching the page from disk. The basic idea takes

advantage of the locality of reference in the application access patterns such that the higher

per-page costs of swizzling at page fault time are o�set by avoiding unnecessary overhead

during all subsequent accesses to the same object.

As networks get faster, it is likely that the persistent stores will be stored in the main

memory of a remote data server rather than on a local disk of the client host. This reduces the

places where we can \hide" our overheads, and has a potential to make coarse-grained address

translation look unattractive. However, we believe that this will not be a major issue because

116

we expect signi�cant improvements in processor speeds, as well as operating systems, that will

e�ectively reduce the swizzling overheads as well.

We also experimented with di�erent granularities of address translation for studying

the general applicability of these granularities. We found that mixed-granularity schemes may

be appropriate in some cases, speci�cally for data structures that have a high fanout and are

only accessed sparsely. An example of such a data structure is the parts index used in the OO1

benchmark. For such structures, it may be preferable to use pointer-wise address translation

to reduce the rate of address space consumption. Depending on the application characteristics,

a mixed-granularity approach might work well in such situations.

In the process of measuring performance of the pointer swizzling at page fault time

mechanism and its di�erent components, we have also learned some interesting lessons about

operating system implementations. For example, the cost of handling protection faults on

Solaris is several times higher than that on Linux, even when using identical hardware. The

exact reasons for this slowdown are not clear but it does a�ect the performance of Texas, espe-

cially during the �rst few traversals. In addition, we also found that the bu�er managements

on both operating systems played an important roles in overall results. The aggressive bu�er

management under Linux frees up a few extra megabytes which appears to be just su�cient

to avoid unnecessary paging activity during the actual traversals.

117

Chapter 6

Run-Time Type Description

6.1 Introduction

Access to information about data object layouts at run time is necessary for clean and e�-

cient implementation of various families of run-time support software. Texas (Chapter 4) and

other persistent object stores [ABC+83a, AM95, LLOW91, WD94] that use pointer swizzling

techniques such as pointer swizzling at page fault time need to know the locations of pointers

in data objects at run time in order to �nd and manipulate these pointers correctly. Similarly,

precise garbage collectors [WJ93] also use this information to locate pointers in objects for

tracing the reachability graph and reclaiming garbage.1 Other applications that bene�t from

the knowledge of low-level layout information are:

� data structure browsing,

� data structure pickling,

� data format conversion for sharing between machines with opposite endianness,

� parameter marshaling for distributed communication (including remote procedure calls),

� advanced foreign function call interfaces for e�cient cross-language data sharing, and

� advanced pro�ling, tracing and debugging.

The ability to support run-time type queries about data objects is available for some

high-level languages such as Smalltalk [GR89], CLU [LAB+81] and Modula-3 [Nel91]. The

term Run-Time Type Identi�cation (RTTI) [SL92] has been used to represent language-level

semantics and the ability to support operations that allow the application to ask whether a

given type is a subtype of some other type. Recently, the C++ standard has added RTTI

to support operations such as \downcasts" without circumventing the type system. Unfortu-

nately, the standard RTTI information is insu�cient for our purposes since it does not describe

1Traditional garbage collectors for languages such as C++ have been conservative [BW88]. That is, any
data value which \looks" like a pointer is treated as such while tracing the reachability graph. In contrast,
precise garbage collectors, which are typically used for real-time applications, cannot be conservative because
they need exact pointer information to honor the necessary correctness and performance guarantees.

118

the implementation-level information necessary for run-time support systems. We introduce

the term Run-Time Type Description (RTTD) to denote low-level object layout descriptions

and other implementation-dependent information made available at run time.

In this chapter, we describe a portable, general purpose, high-performance mechanism

for generating and manipulating RTTD; this mechanism is designed to be applicable to various

high-level programming languages and is compatible with conventional compilers. The funda-

mental idea is to use compiler-generated debugging information to extract the implementation-

level information necessary for RTTD. We believe that this is the most portable approach for a

variety of applications and argue that compiler-generated debugging information is preferable

to the use of preprocessors because preprocessors are hard to use, develop, maintain, often

incompatible with other preprocessors, and not portable.

A Note on \Portability." We use the term \portable" at two levels: the portability of

our approach, and the portability of our implementation. Our approach relies heavily on

the compiler providing object layout information in its debugging output. It is reasonable to

expect any modern compiler that supports debugging will provide this information. Hence, our

approach works with standard compilers and operating systems. The other level of portability

is related to the implementation of our system. We do not mean that our system is portable in

the \compile out-of-the-box and run" sense, but rather that it is relatively easy to port because

the implementation does not rely on any unusual compiler or operating system features. In

other words, our system is less portable than an ANSI C program, but much more portable

than (say) a \portable" compiler or operating system.

Scope of this Approach. We focus mainly on dynamically-allocated objects because we

interact with the allocator to locate and record the type information with the object; this is

su�cient for most applications. Extensions to handle statically-allocated instances are possible

(using link information from the object �les), but are beyond the scope of this dissertation.

Stack-allocated objects may pose greater di�culties, and are also a topic for future work. The

use of debugging information is su�cient for most purposes, but some may require further en-

hancements if the compiler-generated debugging information does not contain all the required

low-level information.

Current Status and Availability. We have implemented this system for multiple platforms

by leveraging code from the GNU debugger, gdb, and the source is publicly available under

the GNU General Public License (GPL)2 at ftp://ftp.cs.utexas.edu/pub/garbage/texas.

We are currently using this system in Texas (Chapter 4) and a real-time garbage collector for

C++ [WJ93]. The system has been tested under several avors of Unix (SunOS, Solaris,

Ultrix, Linux, etc.) with the GNU C++ compiler and under OS/2 with IBM VisualAge

compiler (previously known as CSet compiler).

2Because our code does not link with the application code, the application does not fall under the scope of
the GPL. In addition, the output (i.e., the type information embodied by type descriptor records) generated by
the system is not covered by GPL either. Thus our system can be (and is) used with commercial applications
without royalty or licensing restrictions.

119

Structure of the Chapter. The remainder of the chapter is organized as follows. Sec-

tion 6.2 provides an introduction to RTTD and motivation for its need and use. It also

discusses other techniques for generating RTTD, including preprocessors, and compares them

to our approach of using debugging information. Section 6.3 discusses details of RTTD genera-

tion and manipulation, including the overall steps necessary for providing RTTD in a high-level

language. We provide a detailed description of a case study implementation for C++ in Sec-

tion 6.4, followed by a description of our storage model (Section 6.5) and a sketch of expected

performance characteristics (Section 6.6). Sections 6.7 and 6.8 describe current status and

some related research, and �nally we conclude in Section 6.9.

6.2 RTTD Issues

This section discusses some fundamental issues concerning RTTD and provides motivation

behind the design of a general-purpose mechanism to provide implementation-level type in-

formation. In addition, we introduce our approach of using debugging information for RTTD

generation, and compare it with a seemingly obvious (but problematic) scheme of using special-

purpose preprocessors.

We believe that preprocessors are not suitable for RTTD generation because of a fun-

damental \impedance mismatch"|preprocessors operate at the language-level (for example,

parsing language constructs) whereas we are primarily interested in the implementation-level

semantics (for example, exact locations of pointers in objects). Because a preprocessor is not

an integral part of a compiler, it can only infer the compiler's actions based on the informa-

tion available at the language level (that is, in the source code). In contrast, using debugging

information allows us to \ask" the compiler about its exact behavior that is relevant for our

purposes.

6.2.1 Motivation

The primary motivation for a portable RTTD mechanism is to support the development of

e�cient, powerful language extensions for use with o�-the-shelf high-performance conventional

compilers for languages such as C, C++ and Ada. O�-the-shelf compilers typically do not

directly support low-level object layout information required to implement such extensions

well. In addition, we want to ensure that RTTD can be used with any language whose compiler

provides the necessary debugging information. Other goals of the design are to achieve:

� e�ciency, by performing all complex steps at compile time and minimizing run-time

space and time overheads,

� ease of use, by requiring minimal changes to the source programs,

� elegance, by providing graceful integration at appropriate steps in the usual compilation

and linkage process, and

� portability, by relying on standard compilers and debugging information formats.

120

6.2.2 RTTD vs. RTTI

The current C++ draft standard [WC96] describes a proposal for Run-Time Type Identi�-

cation (RTTI) as part of the language. Similar features are also available in other languages

such as Java. Typically, the information provided by the RTTI mechanism is useful only for

language-level semantics such as run-time type equivalence checks and \safe downcasts." In

contrast, RTTD is designed to provide implementation-level information such as the actual

in-memory layout of data objects, including sub-objects as well as the layout dictated by the

inheritance hierarchy.

As described in the C++ standard, the language implementation must provide a class

called type info; objects of this class are used (at run time) to represent type information

about application types. An object of this class is returned as a result of applying a typeid

expression on an application data object. The only operations permitted on an object of type

type info are equality checks to compare with other objects of the same type, and a name

function that returns a null-terminated string containing a unique implementation-de�ned

value which represents the name of the corresponding type.

Compared to the RTTI schemes, the RTTD mechanism described here is signi�cantly

more powerful and allows an application to \ask" various questions about the object layout.

For example, it is possible to query the types or o�sets of all �elds, or explicitly determine

locations of pointer �elds, in an object at run time. In general, RTTD is not equivalent to

RTTI as speci�ed for C++ and Java because. unlike the latter, it provides extensive low-

level information required for applications such as persistent stores, precise garbage collectors,

schema evolution mechanisms, etc.

6.2.3 Type Descriptor Records

Type descriptor records form an integral part of RTTD and are used to represent object layout

descriptions at run time. We generate a type descriptor record corresponding to each type for

which RTTD is desired; this record contains the low-level layout information for all objects

of that type. Section 6.5 provides further details about the di�erent formats used for storing

type information in the type descriptor records.

6.2.4 Preprocessors vs. Debugging Information

We consider two main approaches for generating type descriptor records:

1. using special-purpose preprocessors, and

2. using debugging information.

We will argue for the second approach. Other possible techniques include requiring signi�cant

programmer intervention,3 extending language syntax or using custom compilers. We believe

that these methods are unsuitable because they are expensive, inexible and place unnecessary

demands on the programmer. For example, building a high-quality compiler is a complex task,

3In practice, as described in Section 6.4, we do require a minor amount of programmer intervention for our
C++ implementation.

121

and is not always worth the e�ort for implementing one or a few features. In addition, porting

and maintaining such a compiler on various platforms is likely to be prohibitively expensive.

Using Preprocessors

An obvious technique for building type descriptor records is to provide a preprocessor that

parses the source and extracts the necessary information. At �rst glance, allowing portable

source-to-source translation using a preprocessor seems to be a simple and e�ective solution for

RTTD. However, we believe that it is not the right approach for several reasons.4 Preprocessors

are typically:

� hard to use: Simple preprocessors do not provide a clean syntax or complete syntactic

error-checking; errors are reported inconsistently and may confuse the programmer;

� hard to develop: Sophisticated preprocessors that gracefully extend the language syntax

and do exhaustive syntactic error-checking and reporting must duplicate a signi�cant

amount of the work done by the compiler. In e�ect, they become precompilers rather than

just preprocessors. As compilers evolve, it is di�cult to keep preprocessors consistent

with them;

� hard to maintain: Many languages, such as C++, are still undergoing standardization.

This makes preprocessors hard to maintain because unrelated changes to the syntax of

the language still require modi�cations of the preprocessor to parse these changes;

� usually incompatible with other preprocessors: Relying on preprocessors leads to a trend

of providing a speci�c preprocessor for solving each problem. This eventually results in

a sequence or a pipeline of preprocessors that are usually incompatible|each is confused

by the constructs understood by later preprocessors in the series. This problem is exacer-

bated for \nested constructs" which require repeated applications of a preprocessor such

that no speci�c order of preprocessor invocation is acceptable. In general, constructs

implemented by di�erent preprocessors in a sequence do not interact properly; and

� not portable: Preprocessors are compiler-dependent with respect to several issues:

{ compiler-speci�c language extensions. Some compilers may extend the language

with additional keywords and syntactic variations;

{ structural alignment and padding. Di�erent compilers and operating systems may

impose di�erent alignment and padding restrictions on objects;

{ component order. Some languages, such as C++, do not specify the placement

order of �elds within objects; and

{ hidden �elds. Some language features may require implementation-de�ned �elds

that are generally not exposed at the source code level.5

4We believe that these arguments against preprocessors are valid not only for RTTD, but also for most
other purposes.

5One example is the usual implementation of virtual functions in C++ using virtual function table pointers
inserted by the compiler.

122

In general, preprocessors reduce exibility and we do not advocate their use, both for RTTD

generation and other situations. In contrast, our approach is similar to a postprocessor in that

we rely on actual information generated by the compiler itself, rather than inferring it from

an examination of the source code.

Using Debugging Information

Most compilers can emit debugging information that includes a description of the layout of the

types used in the application so that a source-level debugger can be used to examine the data

structures while running the program. The debugging information is included in the object

�les when the application source is compiled using the (compiler-speci�c) debug option. It

is possible to extract this information and format it into type descriptor records to provide

RTTD. This approach requires minimal compiler cooperation, that is, only to the extent of

existing capabilities of most modern compilers, and has major advantages over other solutions:

� it is mostly independent of the source language used, because the format of debugging

information for a speci�c platform does not typically depend on the details of the source

language, and

� it is mostly compiler-independent; the only compiler cooperation required is that the

debugging information be generated in one of the standard formats.

Finally, it should be noted that our method does not impose a space or time penalty on

the production version of the application because the debugging information can be \stripped"

from the object �les once the type descriptor records have been generated.6 Alternatively, the

application may be recompiled without debugging and with additional optimization.7 Thus

our approach is usable with compilers that prohibit or reduce optimization when producing

debugging information. We are unaware of any compilers that change the layout of heap-

allocated objects based on the presence or absence of debugging information, or the level of

optimization used during compilation. In general, compilers should not do this anyway because

it complicates normal library linkage; if libraries linked into the applications are compiled with

di�erent optimizations, the �nal result can be disastrous if object layout varied with degree

of optimization. This situation is exacerbated by mechanisms such as persistence where the

objects stored in a persistent store may suddenly have di�erent layouts than expected because

the application that is accessing these objects is compiled with di�erent optimization than the

one that created the objects.

6.2.5 Adapting to Future Compiler Support

Some compilers may eventually provide some form of implementation-level type information.

Currently there are no standards for the format or methods by which such information will be

made available, and we do not expect standardized, full-featured low-level type information

to be available soon. However, when this information does become available, code may be

6Of course, the type descriptor records need to be stored somewhere, but that cost is negligible compared
to the cost of retaining debugging information.

7This recompilation can easily be automated using standard make�les.

123

written to transform such non-standard information into our type descriptor records. Such a

technique will require neither a preprocessor nor the debugging information. We hope that

standards and programming interfaces for implementation-level type information will emerge,

making it trivial to write such \adaptor" code.

6.3 RTTD Generation and Manipulation

The basic goal of RTTD is to provide a mechanism to obtain the low-level object layout

information given the address of an object. Before accomplishing this, the following two

problems must be solved:

� constructing type descriptor records that describe the layouts of objects of various types,

and

� associating these type descriptor records with actual instances of appropriate types at

run time.

The type descriptor records are stored in a table indexed by type names. To generate

these records from the debugging information, the application source is �rst compiled with

compiler-speci�c debug ag. Next, the resulting debugging information in the object code is

parsed to extract the layout information which is then formatted into type descriptor records.

Type descriptor generation can easily be accomplished at compile time as an additional action

after each object �le has been generated from a corresponding source �le.

The second problem is more challenging because we need a mechanism to identify

concrete types8 being instantiated at each allocation site, use this information to look up the

corresponding type descriptor record and associate it with the newly-allocated instance. Unfor-

tunately, conventional languages do not provide any direct support for associating compile-time

information with run-time instances. For languages such as C that do not have parameterized

or nested types, concrete types can easily be identi�ed from the source. For others, such as

C++ and Ada, that provide more complex type systems, a sophisticated approach is necessary

and it may involve some minor system dependencies.

Once these problems have been solved, a mapping from an object to its type descriptor

record can be made available at run time. We accomplish this by providing a two-step mapping:

from an object to its type identi�er, and from the type identi�er to the type descriptor record.

While conceptually a single mapping is su�cient for most uses of RTTD, we chose a two-step

mapping for added implementation exibility and e�ciency. (As we explain later, the extra

level of indirection is inexpensive, and is useful for linking separately-compiled modules.)

The type identi�er (or typeid, for short) is a token that uniquely represents a concrete

type in the application. Note that any representation may be used for the type identi�er as

long as it provides a key that uniquely identi�es the associated type descriptor record. In

our current implementation, a type identi�er is simply an integer o�set into a table of type

descriptor records. A unique type identi�er also allows us to eliminate duplicate type descriptor

records across separately-compiled modules, as described in Section 6.3.4.

8A concrete type is any basic type such as integer or character, an aggregate type or the instantiation of
a parameterized type; a concrete type is instantiated to create an actual instance.

124

6.3.1 Generating Type Descriptor Records

The basic approach for generating type descriptor records is to parse the debugging information

from object �les and build a table that maps type names of concrete types to corresponding ob-

ject layout information embodied by the type descriptor records.9 This table is made available

to the running programs via an application program interface (API).

Although the debugging information format varies from platform to platform (i.e.,

across di�erent operating systems), there are a few representative formats that can be trans-

lated into a common type descriptor record format. Our implementation of the type descriptor

generator is divided into two parts: a platform-speci�c part to extract debugging information

from object �les, and a platform-independent part to build the type descriptor records from the

extracted debugging information. To further generalize the implementation of the platform-

speci�c part on di�erent avors of Unix systems, we have leveraged code from the GNU

debugger, gdb, to parse and extract debugging information from various object �les formats

understood by gdb. However, it is not di�cult to implement this functionality directly; a ver-

sion for OS/2 and IBM VisualAge compiler has also been implemented using a 2000-line C++

module instead of gdb code.10 Using gdb for the platform-speci�c part of the implementation

makes our type descriptor generator highly portable to other systems as gdb is enhanced to

understand a variety of debugging information formats on di�erent systems.

A note about reliability of debugging information is perhaps in order here. The cor-

rectness of code generated by a compiler is obviously much more critical than the correctness

of debugging information, and sometimes compilers are released with incomplete or broken

debugging support. This is a possible problem with our approach. Fortunately, our system

relies on only a subset of the standard debugging information|the layout information|which

is much more reliable than other debugging information such as the mapping between line

numbers and program counter, or between variables and registers. Occasionally, some version

of a compiler may be \broken" in a relevant way, and in such cases, a di�erent version must

be used to work around the problem.11

6.3.2 Associating Type Descriptor Records with Objects

As mentioned earlier, associating type descriptor records with actual objects is somewhat more

di�cult than generation them. We divide this problem into two smaller parts, each of which

can be solved individually:

� identify concrete types at allocation sites, and

� record the type descriptor record with the instance.

Recall that the table of type descriptor records generated at compile time maps type names

to corresponding object layout information. Hence, we can locate type descriptor records

9Type descriptor records are actually linked together into a data structure that represents the type graph
of the application.

10In retrospect, this module is more general than necessary, and could probably be half as long. Future
ports should be easier because we can reuse code from this module as well as avoid the excessive generality.

11For example, a few of the many releases of the GNU C++ compiler have a�ected our system, but it has
not been a serious problem in general.

125

corresponding to concrete types by using their (unique) type names. The type information is

passed to the allocator, which performs a table lookup and retrieves the corresponding type

descriptor record to be recorded with the instance.

Type identi�cation using type names may be tricky for some languages, because the

necessary information is not directly available at an allocation site. For a language like C,

it is easy to capture the type name at an allocation site by implementing the allocator call

as a preprocessor macro that takes the type name as an argument and converts it into a

string representation. This is acceptable because the language does not provide an advanced

type system and actual type names are directly available at allocation sites. However, for

languages such as C++ and Ada, this is not a viable solution because the type name is

not directly available at allocation sites such that macro expansion occurs \too early" in the

overall compilation process|before parameterized and nested types have been resolved to

unique concrete types|to capture the type name.

Instead, we determine concrete types after the code has been compiled and types at

allocation sites have been resolved to concrete types. This approach requires a mechanism

for backpatching the allocation sites. That is, we must plug in a concrete type identi�er at

each allocation site after it has been compiled and the concrete types have been resolved. As

we describe in detail later, this backpatching can easily be implemented by adding an extra

level of indirection and leveraging linker name resolution. We introduce special backpatching

variables that hold type identi�ers for each type, and reference these variables at corresponding

allocation sites. After the application has been compiled, we can generate code to initialize

these variables appropriately|the linker resolves references to the variables in the normal way,

and their initialized values will be available at the allocation sites.

Finally, our allocator simply stores the type identi�er in a hidden header for the object.

Most allocators already attach a header to every object for bookkeeping data, and we can

augment that data to include the type information for RTTD. In addition, the allocator must

also support mapping from pointers to (or to the interior of) an object to the header of

the object. This is especially necessary for C and C++ because pointers may not point to

beginnings of objects, due to pointer arithmetic or the standard implementation of multiple

inheritance that implicitly uses pointers to sub-objects.

6.3.3 Compilation and Linkage Model

We gracefully integrate the generation of type descriptor records and their association with

actual instances at appropriate steps in the normal compilation and linkage process. This

allows us to build type descriptor records when corresponding debugging information is avail-

able, generate code to create and initialize backpatching variables to hold type information,

and link object modules together along with the initialization code and libraries for manipu-

lating type descriptor records. We describe the overall compilation and linkage process below,

speci�cally noting the steps required for integration of RTTD.

Source code for an application is typically divided across multiple �les. The application

executable is built using a compile-and-link model|source �les are usually compiled individ-

ually to generate corresponding object �les (compile phase), which are then linked together

to create a single executable for the application (link phase). We have designed the RTTD

126

generation mechanism to use a similar model; the type descriptor generator extracts type

information from individual object �les to build corresponding mapping tables (\tdcompile"

phase), which are then merged to produce a single table corresponding to the application

executable (\tdlink" phase).12

o2tdesc

foo.cc

link

tnamemap

tdlink

CC

foo.o

foo.td

foo.tni

tnames.cctnames.o

app.exeapp.td

o2tdesc

bar.cc

CC

bar.o

bar.td

bar.tni

CC

Figure 6.1: Compilation and linkage process

Figure 6.1 shows the overall compilation and linkage process. The basic steps involved

in RTTD generation for a particular application are as follows:

1. Compile source �les with the debugging option enabled and generate object �les (stan-

dard compile phase).

2. Generate type descriptor records from debugging information in each object �le (\td-

compile" phase).

This is done by a stand-alone program, o2tdesc, supplied with our system.

3. Merge type descriptor records from multiple modules to be linked, into a single table of

type descriptor records for the application and eliminate duplicates (\tdlink" phase).

12We use the terms tdcompile and tdlink to denote the two phases of type descriptor records generation, and
to distinguish them from the standard compile and link phases.

127

This is done by another utility, tdlink, also provided with our system.

4. Generate auxiliary object �le containing initializations of all backpatching variables that

are used to hold information about concrete types.

First, an auxiliary source �le containing the initialization code is generated by a stand-

alone utility, tnamemap. This source �le is then compiled with the same compiler that

was used to compile the application source �les. (Section 6.4 provides full details about

the backpatching variables while describing the case study implementation for C++.)

5. Link all object �les (including the one from the previous step) with a support library for

accessing type descriptor records, to generate the �nal application executable (standard

link phase).

It should be noted that our \tdcompile" phase follows the standard compile phase

because we use object �les to generate the type descriptor records. In contrast, the \tdlink"

phase precedes the standard link phase because it generates auxiliary source code which must

then be compiled and linked into the �nal executable.

The above steps can be easily automated by using straightforward make�les. Since most

large applications already use make�les to automate the standard compile and link phases, it

is easy to extend this by providing additional targets and actions for RTTD generation.

6.3.4 RTTD Across Multiple Compilation Units

For languages such as C or C++, each compilation unit usually refers to an object �le that

is typically generated from a distinct source �le. Several compilation units are put together

to generate a single application executable. As can be seen from Figure 6.1, our compilation

and linkage model has been designed to be conducive for supporting RTTD across multiple

compilation units. The type descriptor records are generated for each compilation unit, and

then linked together into a single set of type descriptor records for the entire application. This

allows us to regenerate type descriptor records selectively based on compilation units that are

modi�ed. If make�les are used to regenerate object �les when source �les change, a simple

modi�cation of the make�le will also cause new type descriptor records to be generated when

a new object �le is created.

The use of backpatching variables for type identi�ers is also favorable for providing

RTTD across multiple compilation units. Usually, the type descriptor generator only has local

knowledge about type information in the object �le being processed in the current execution.

It is not possible to assign unique type identi�ers to types during a particular execution with-

out maintaining some global knowledge about type information from all object �les processed

earlier. However, since type identi�ers are stored in backpatching variables that are initialized

separately after the standard compile phase, it is relatively trivial to assign unique type iden-

ti�ers to types; the tnamemap utility, which generates the initialization code, can ensure that

each type is assigned a unique type identi�er value.

The compilation and linkage model also facilitates elimination of duplicates. Because

the same types may be used in di�erent modules of an application, type information may be

duplicated across various object �les, and hence across mapping tables generated from these

128

�les. The tdlink utility performs duplicate elimination when it merges type descriptor records

from multiple modules into a single table for the application. Duplicate elimination can be

done based either on name equivalence or on structural equivalence. As the names imply, name

equivalence considers two entities (types) to be equivalent if both have the same name, while

structural equivalence uses the structure of the entities to compare them.

6.4 RTTD for C++

Section 6.3 discussed the high-level issues involved in generating and manipulating RTTD for

any conventional source language, while avoiding an elaborate discussion of some language-

speci�c issues such as the implementation of backpatching variables. In this section, we de-

scribe our case study implementation of RTTD for C++. We currently use this implementation

in the Texas Persistent Store and a real-time garbage collector for C++ [WJ93].

As described earlier, type descriptor generation relies on the existence of debugging

information in object �les, and as such, does not directly depend on the source language. In

contrast, associating type descriptor records with appropriate instances requires modi�cation of

allocation sites, and is obviously language-dependent because it involves the language interface.

Below, we �rst provide a high-level overview of the whole system in Section 6.4.1 before

describing the implementation details in Section 6.4.2. We also discuss issues about handling

multiple compilation units (Section 6.4.3) and the use of types names for added exibility in

some applications (Section 6.4.4). Finally, we briey discuss some possible complications and

and enhancements in Section 6.4.5.

6.4.1 Overview

Our approach exploits some common features of C++, while minimizing dependencies on any

speci�c compiler implementation. Our goal is to provide a language interface that requires

minimal changes to existing source in order to facilitate ease of use; most of the complex

processing is performed behind the curtains while providing a simple front-end to the user.

Recall that the basic strategy is to provide a mechanism to associate type descriptor

records with the corresponding objects when they are instantiated; this can be accomplished by

modifying the allocation site to make type identi�ers available to the allocator, which in turn

stores them with the newly created object. For C++ implementation, the main mechanism for

modifying the allocation site and the underlying allocator is to change the C++ new operator;13

we overload14 the operator to expect the type identi�er as an additional argument and store it

in the header of the object. In addition, we also provide a macro interface which encapsulates

the (slightly awkward) syntax of the overloaded new operator.

For languages such as C, where concrete type information is directly available at the

allocation site, a literal type identi�er may be passed to the allocator. However, because

C++ supports nested and parameterized types, information about the concrete type being

instantiated is not always available directly at the source level, and hence a literal type identi�er

13C++ provides a new operator to dynamically allocate objects in an application's memory.
14C++ allows a programmer to overload a function or an operator by providing di�erent implementation

with the same name, as long as the function signatures can be used to distinguish the implementations.

129

cannot be passed to the allocator. The type information usually becomes available only after

the source has been compiled and the compiler has resolved the concrete type at each allocation

site. Hence we need a mechanism to backpatch the overloaded new operator call-sites to provide

the appropriate type identi�er value after compilation. However, we also want to avoid object

code modi�cation for this purpose. Therefore, we implement backpatching by introducing an

extra level of indirection, and leveraging the compiler's own type processing and the linker's

natural name resolution as follows. We use (and reference) special backpatching variables,

rather than literals, for the type identi�ers at each allocation site; when the source is compiled,

the compiler generates unde�ned references to these variables in the object code. Once the

appropriate concrete type information has been extracted from the object code using the

type descriptor generator, we generate auxiliary source code to initialize the variables to their

appropriate type identi�er values. This initialization code is then compiled and linked with

the application object code, and the linker resolves the unde�ned references appropriately. In

e�ect, this achieves the desired backpatching without requiring object code modi�cation.

Note that each backpatching variable holds the type identi�er for only a single type

because each allocation site can instantiate only one type at any given time. In other words,

there is a one-to-one mapping between a type and the corresponding backpatching variable.

This observation allows us to have one backpatching variable for each type, rather than one

for each allocation site; if the same type is instantiated at another allocation site, the same

variable can be used at that allocation site without introducing any errors.

A simple approach for providing backpatching variables|which does not work in the

general case|is to ensure that each type instantiated has a special class variable15 which plays

the role of the backpatching variable. However, this approach cannot handle builtin types (for

example, int, float, etc.) in C++ because the language allows de�nition of class variables

only for aggregate types. In addition, it requires modi�cation of user-de�ned types (to add

the class variable) which would burden the application programmer.

However, we can get essentially the same e�ect by modifying the solution slightly. We

ensure that, for each unique type instantiated, there exists a wrapper class that contains the

above-mentioned class variable; we can then use the variable in the wrapper class to hold

the type identi�er of the corresponding instantiated type. In order to maintain the one-to-one

mapping between the instantiated type and the corresponding class variable, the wrapper class

is parameterized such that a unique wrapper class is created for each type instantiated by the

overloaded new operator. In e�ect, we have added a one-to-one mapping between a wrapper

class and the associated type.

Use of a wrapper class provides several bene�ts for RTTD:

� It allows easy and automatic creation of class variables for non-aggregate types.

Since a separate class is used to hold the class variable, this approach works for builtin

types and does not require modi�cation of user-de�ned types.

� It allows easy generation of references to class variables in the overloaded new operator.

The macro interface can simply refer to the class variable in the wrapper class using the

member reference operator (::), and the compiler automatically resolves the reference.

15A variable associated with a class, rather than instances of the class, is known as a class variable.

130

The instantiation of the parameterized wrapper class (to create a concrete wrapper class)

occurs at compile time, and the run-time reference to the class variable of the wrapper

class is fast.

� It ensures that debugging information is generated by the compiler for all types allocated

via the overloaded new operator.

C++ compilers may sometime optimize away the generation of debugging information

for prede�ned types or types which may not be used in certain ways. Use of the wrapper

class forces the inclusion of the type information of the instantiated type with that of

the wrapper class.

� It allows easy identi�cation of types for which type descriptor records need to be generated.

Since a new concrete wrapper class is instantiated for each \interesting" type (i.e., a type

for which RTTD is desired, because it was instantiated via the overloaded new operator),

the type descriptor generator can use this information to generate type descriptor records

only for selected types.

(Readers familiar with advanced object-oriented languages and �rst-class classes may recognize

that a wrapper class for a given type acts as a class metaobject, holding information about

instances of that type.)

Note that while the parameterized wrapper class is instantiated for each \interesting"

type to create a concrete wrapper class, the resulting concrete wrapper class does not need

to be instantiated to create unnecessary instances. Since the backpatching variable is a class

variable, it is not associated with any speci�c instances and can directly be referenced using

the class name.

6.4.2 Implementation Details

The previous section provided a general overview of the approach used to implement the

RTTD mechanism for C++. This section describes the important components of the actual

implementation based on operator new overloading and our macro interface to the overloaded

new operator.

We �rst describe some background information about C++ new operator and how

it is overloaded, before moving on to explain how we use it to associate type identi�ers to

appropriate objects at run time.

The C++ new Operator

The normal behavior of the new operator may be described as conceptually two distinct steps,

even if code generated by a particular compiler may not explicitly distinguish between them:

1. a compiler-de�ned operator new() function is called to obtain storage for the object,

and

2. the constructor for the type is called to initialize the object appropriately.

131

It is important to note the distinction between new operator and operator new() function

in the above description. The new operator calls both the operator new() function and the

constructor for a type.16

C++ allows a programmer to overload the new operator for providing additional argu-

ments to the operator new() function. Note that overloading the new operator is di�erent

from other C++ operator overloading, in that the entire behavior of this operator is not

rede�ned|only the �rst step above is overloaded while the constructor for the type is still

invoked as in the normal behavior. Although this is referred to as \overloading the new op-

erator" in C++ terminology, we are actually overloading only the operator new() function,

without changing the constructor-invocation semantics of the new operator.17

Overloading the new Operator for RTTD

Recall that we need to associate a type identi�er with each object that is allocated by the

application. We achieve this by storing the type identi�er as part of the bookkeeping infor-

mation (maintained by the allocator) for the object so that the corresponding type descriptor

record can later be referenced. We overload the new operator (actually the operator new()

function) and use the so-called placement syntax18 to pass the type identi�er as an additional

argument to the underlying allocator which can then store it with the appropriate bookkeeping

information. Thus the syntax of the new operator call is as follows:

X *obj = new (<typeid>) X (<constructor arguments>);

The constructor arguments are optional depending on whether a default constructor19 is pro-

vided for type X. The expression \<typeid>" is a reference to the backpatching variable that

will contain the corresponding type identi�er value at run time.

Macro Interface for Overloaded new Operator

It would be burdensome to require programmers to remember the exact syntax required for

the overloaded new operator, including the reference to the backpatching variable. Instead,

we de�ne a C preprocessor macro that encapsulates the syntax of the overloaded new operator

call to provide a simple interface to the programmer. As will be evident from later sections,

the scheme for generating a reference to the backpatching variable can result in a complicated

syntax which may be awkward to use. The purpose of the macro interface is to make the entire

mechanism of providing the type identi�er transparent to the programmer. An additional

bene�t of using a macro is that it allows us to modify the underlying implementation for

providing the type identi�er without requiring modi�cations to existing application source.

The normal syntax for calling the new operator is:

16In the remainder of the chapter, we use the phrase \new operator" to refer to the operator and \operator
new()" to refer to the storage allocation function.

17An excellent discussion about the new operator and semantics of overloading can be found in [Lip91].
18This term was originally used to provide \placement" information for the object as an additional argument

to the underlying allocator. It is now a misnomer because the same syntax can be used to pass any additional
arguments to the allocator.

19A constructor that takes no arguments is called a default constructor in C++, and is automatically gen-
erated for a class if no other constructors have been declared for that class.

132

X *obj = new X (<constructor arguments>);

Note that the constructor arguments are optional, and the number of such arguments is not

predetermined. As shown earlier, the corresponding syntax for calling the new operator using

placement arguments is:

X *obj = new (<typeid>) X (<constructor arguments>);

The expression \<typeid>" corresponds to the placement arguments to the new operator,

and in the current description, it is a shorthand for an actual expression (reference to the

backpatching variable) which evaluates to the type identi�er value for type X at run time. In

general, the number of placement arguments is not restricted but it must be predetermined

for de�ning the overloaded new operator.

We provide a macro, rttd new, that encapsulates the unusual placement syntax. The

de�nition is of the form:

#define rttd_new(type) new (<typeid>) type

where the expression \typeid" is derived in some way from the type argument provided to

the macro. Using this de�nition, the syntax for calling our macro is:

X *obj = rttd_new (X) (<constructor arguments>);

Note that this is similar to, but not quite the same as, the syntax for a call to the standard

new operator without any placement arguments. Speci�cally, an \extra" set of parentheses is

required around the type name. This is necessary because the C/C++ macro preprocessor

semantics are very weak; there is no support for macros with variable number of arguments,

or for arguments not enclosed in parentheses. In our de�nition, the macro expects only one

argument, the type name, and the (variable number of) constructor arguments are not part of

the macro de�nition.

Note that the macro de�nition matches only the initial \rttd new (X)" part of the

statement. If the constructor arguments are provided (as in our example above) after the

prede�ned part, the macro will not a�ect them; they will be in the \right place" after macro

expansion and will function as expected. If the constructor of type X does not require any

parameters, the user may either provide an empty set of parentheses, or not provide anything

at all, in place of \(<constructor arguments>)" in the above example. The macro de�nition

handles these cases correctly without additional user intervention. In e�ect, we simulate a

macro with variable number of arguments for the trivial case where these arguments are not

transformed or processed in any way during the macro expansion; the macro is de�ned such

that it only recognizes the �rst argument (the type) and after macro expansion, the call

resembles the placement syntax call. (Also, note that no special processing is required from

the C preprocessor for this de�nition, and the scheme works correctly regardless of whether

constructor arguments are provided.)

The Wrapper Class

We use the C++ template facility to implement a parameterized wrapper class that is auto-

matically instantiated once for every unique type used in calling the rttd new macro to create

133

a corresponding unique concrete wrapper class.20 The template wrapper class de�nition has

the following form:

template <class T> class TypeDescriptorWrapper

{

private:

T *wrappee;

public:

static int typeid;

...

};

For every type X instantiated using the rttd newmacro, a corresponding concrete wrapper class

TypeDescriptorWrapper<X> is created by instantiating the template TypeDescriptorWrapper

with X. The class member typeid is used to hold the type identi�er of X at run time, and the

data member wrappee may be used to selectively generate type descriptor records for only

those types for which RTTD is desired, that is, those instantiated via the macro.

We associate the typeid with the class TypeDescriptorWrapper<X> itself rather than

instances of the class because there is always a one-to-one mapping between type X and corre-

sponding wrapper class TypeDescriptorWrapper<X>. We use static data members to imple-

ment typeids because they represent the C++ mechanism for implementing class variables.

As mentioned earlier, the concrete wrapper class itself is not instantiated because we only

access its static data member, and no other normal instance variables..21

Based on the above parameterized wrapper class de�nition, a simpli�ed version of the

rttd new macro de�nition, using static data member from the appropriate concrete wrapper

class for accessing the typeid, is as follows:

#define rttd_new(type) \

new (TypeDescriptorWrapper<type>::typeid) type

The reference to TypeDescriptorWrapper<type> in the macro expansion automatically in-

stantiates the template TypeDescriptorWrapper for that type without any user intervention,

and the one-to-one mapping between type X and type TypeDescriptorWrapper<X> guarantees

that the static data member will always hold the type identi�er for the correct type X.

Finally, we have to ensure that static data members are de�ned and initialized correctly.

This is necessary because static data members in C++ are considered to be only declared,

not de�ned, when they are speci�ed in the class de�nition. As described in Section 6.3.3, we

generate an auxiliary source �le containing these de�nitions and initializations. This �le is

then compiled and linked in with the application object code. For each type X, we generate a

line of the following form in the auxiliary source �le:

int TypeDescriptorWrapper<X>::typeid = <typeid for X>;

20In C++, when we instantiate a template by providing actual arguments (type or value arguments) for the
template arguments, a concrete type is created from the parameterized (template) type.

21As might be expected of class variables, static data members in C++ can be accessed without referring to
any speci�c instance.

134

The expression \<typeid for X>" represents the actual type identi�er value for type X. The

use of a wrapper class to explicitly identify types for which RTTD is desired (Section 6.4.1)

can be used in a similar way to generate the appropriate initializations.

6.4.3 Handling Multiple Compilation Units

When multiple sets of type descriptor records from di�erent compilation units are merged

together to generate a single set corresponding to the application, we need to perform duplicate

elimination to avoid making the �nal table too large. In our C++ implementation, we use

name equivalence for this purpose. We do not need to use structural equivalence because

standard linkers for C/C++ consider types with the same name in distinct object �les to be

the same type.22 In other words, when the object �les are linked together to generate a single

executable, the linker resolves references to types using their names rather than their structure.

Each execution of the type descriptor generator creates a mapping table that maps type

name tokens to type descriptor records. At link time, a single mapping table is generated after

eliminating duplicates using type name tokens as keys. The type identi�er for a speci�c type is

then given by the index of the corresponding type descriptor record in the �nal mapping table,

and the static data member initializations can be generated by performing a table lookup and

replacing the expression \<typeid of X>" above with the actual type identi�er value.

Note that any value can be used for a type name token as long as it uniquely identi�es

the same type across all compilation units. In the current implementation, we use fully quali�ed

type names23 because they exhibit the exact property required for the tokens. We made this

choice because it is easy to access fully quali�ed type names and they also provide added

exibility for applications such as persistence as described in the next section.

6.4.4 Using Type Names for Added Flexibility

Conceptually, fully quali�ed type names can be used as type identi�ers, instead of using

integer values. However, because string manipulation is slow, we use integer type identi�ers as

an optimization. Initially, we use the fully quali�ed type name to look up the type descriptor

record in the type descriptor mapping table. However, once we have performed the lookup,

the integer index of the type descriptor record is cached as the type identi�er thereby avoiding

expensive table lookup when the type is instantiated again. Thus we pay the cost of string

manipulation only the �rst time a type is instantiated using rttd new; all future instantiations

(anywhere in the application) will use the cached type identi�er value. As described later in

this section, the wrapper class is an ideal candidate for caching the type identi�er due to its

one-to-one correspondence with the wrapped type. In addition, integer type identi�ers also

allow us to quickly look up the corresponding type descriptor record by simple array indexing.

Fully quali�ed type names are also useful for our persistent object storage system be-

cause they provide a robust mechanism to resolve type information between a single persistent

22Note that C++ type names do include some structural information about the way classes are composed
because of scoping and name mangling.

23In C++, the fully quali�ed name of a type is the string representation of the name after all template
instantiations, if any, have been performed, and nested class and namespace scope information has been
completely resolved.

135

store and multiple applications. The primary goal is to ensure that when an application ac-

cesses objects from a persistent store, the types of these objects from the application's point

of view are the same as those from the persistent store's point of view.

Type descriptor records corresponding to types in a persistent store are saved in a

mapping table similar to the one generated for an application. Depending on the locations of

type descriptor records (for a given type) in both mapping tables, the integer type identi�er

value from the application side (we call this the transient typeid) is likely to be di�erent than

the type identi�er value from the persistent store side (that is, the persistent typeid). Thus

we cannot perform type equivalence test between types in the persistent store and types in the

application based solely on the value of type identi�ers. Instead, fully quali�ed names of types

are a better choice because they will be same in both tables since they are independent of

locations of the type descriptor records. In general, unlike standard C/C++ linkers, we must

consider types to be identical only if they have both the same name and the same structure.

We cannot rely only on name equivalence like standard linkers because a persistent store may

be manipulated by many applications which may potentially use same names for types with

di�erent structures and semantics. Deferring the type identi�er lookup and caching until run

time, as described above, allows us the exibility to use fully quali�ed type names to search

both mapping tables (i.e., name equivalence), locate the appropriate type descriptor records,

and compare them (i.e., structural equivalence) to resolve types between an application and a

persistent store.

Unlike an application's type descriptor records table that is built by the type descriptor

generator, the table for a persistent store is built incrementally as objects of di�erent types are

allocated in that persistent store. First, we use the fully quali�ed type name at an allocation

site to look up the corresponding persistent typeid. If no such typeid is found, we then look

up the corresponding transient typeid and copy the relevant information to the mapping table

for the persistent store, thereby creating a new persistent typeid. On the other hand, if a

persistent typeid is found in the initial lookup, it is stored with the object, after performing

type equivalence tests as described above.

Generating Fully Quali�ed Type Names

It is important to devise a general-purpose scheme to generate fully quali�ed types names for

using them as described above. An obvious approach|which does not work in the general

case|might be to simply use the string representation of the type name at the time of instan-

tiation. The idea is based on the use of standard C preprocessor \stringi�cation" operator in

the de�nition of the rttd new macro to capture the fully quali�ed type name during macro

expansion. This solution works for languages like C that do not support parameterized types,

and hence the fully quali�ed name of the type is trivially available in the source. However,

because of parameterized and nested types, stringi�cation is not a general solution for C++;

macro expansion and stringi�cation happen during the preprocessing stage before the compiler

has instantiated templates and resolved scoping, whereas the fully quali�ed type names must

be generated after the templates have been instantiated and the scoping has been resolved. In

other words, preprocessor stringi�cation is \too early" in the overall compilation process to

extract fully quali�ed type names.

136

Instead, we choose to use the type descriptor generator itself to generate fully quali�ed

type names; since it is already a general-purpose tool for building type descriptor records

indexed by fully quali�ed type names, we can provide a natural extension to save fully quali�ed

type names as part of this process. Recall that the type descriptor generator relies on debugging

information extracted from object �les that are created after the compiler has instantiated

templates and resolved all scoping. Therefore, all type names encountered in the debugging

information will be fully quali�ed.

As described in Section 6.4.1, the type descriptor generator selectively generates type

descriptor records only for \interesting" types for which RTTD is desired. We extend this

model to selectively generate a separate table containing the fully quali�ed names of these

types. This is trivial because we are already using the fully quali�ed concrete wrapper class

names to �nd the \interesting" types; we can simply discard the wrapper-speci�c part of the

name to obtain the fully quali�ed name of the instantiated type. Now, in a manner similar to

duplicate elimination and merging of mapping tables for all object �les (Section 6.4.3), we can

generate a single table of fully quali�ed type names for all types in the application for which

RTTD is desired. (This table is saved in a �le whose name is su�xed with .tni as shown in

Figure 6.1.)

Accessing Fully Quali�ed Type Names

Once the fully quali�ed type names have been generated from object �les, we can make them

available to the application at run time using static data members similar to the ones used

for type identi�ers. We extend the template wrapper class to contain an additional static

data member typename that holds the fully quali�ed name of the type. The de�nition of the

rttd new macro is updated such that the type name is now passed as an additional argument,

along with the typeid, to the overloaded new operator:

#define rttd_new(type) \

new (TypeDescriptorWrapper<type>::typename, \

TypeDescriptorWrapper<type>::typeid) \

type

The change in the de�nition of the macro does not a�ect the programmer interface in any

way.24 Consider the following code fragment (same as the earlier example) used to allocate an

object of type X:

X *obj = rttd_new (X) (<constructor arguments>);

Using the new macro de�nition, the above code fragment would now be expanded by the C

preprocessor as follows:

X *obj = new (TypeDescriptorWrapper<X>::typename,

TypeDescriptorWrapper<X>::typeid)

X (<constructor arguments>);

24Recall that one of the motivations for providing the macro interface was to allow us freedom in changing
the underlying mechanism without a�ecting existing user source code.

137

As with the typeid, we have to ensure that static data members for type names are

initialized correctly. Since we have already generated a single table of type names for all

\interesting" types in the application (saved in a .tni �le), it is trivial to generate appropriate

de�nitions and initializations of the corresponding static data members in the auxiliary source

�le using this information. For each type X, we now generate the following initialization code:

int TypeDescriptorWrapper<X>::typeid = <typeid for X>;

char *TypeDescriptorWrapper<X>::typename = "X";

The expression \<typeid for X>" may be replaced by the index of the corresponding type

descriptor record in the �nal mapping table. However, there is no added cost to defer the table

lookup for initializing the typeid until run time and, as described earlier in this section, it

provides bene�ts for some applications such as persistence. For such cases, the typeid data

member is initialized with an invalid value (e.g., -1) to signal the run-time environment to

perform the appropriate table lookup.

6.4.5 Complications and Enhancements

The implementation described above is a fairly portable and robust mechanism for generating

and manipulating type descriptor records in C++ applications. However, given the complexity

of the language, it is almost impossible to provide a completely elegant interface to the low-

level features. Below we sketch some of the complications related to our implementation and

also describe possible enhancements.

Forcing Generation of Debugging Information

Some compilers may optimize away the generation of debugging information for a given type

based on whether that type is instantiated to create any actual objects and whether those

objects are used later. This may be especially problematic for the template wrapper class,

TypeDescriptorWrapper, which is used only to generate concrete types that are themselves

never instantiated to create any actual objects.

Our solution to this problem is as follows. We \fool" the compiler into thinking that

we may instantiate the concrete wrapper class at run time|though we never actually do|by

modifying the de�nition of the rttd new macro. We include an expression that conditionally

instantiates the concrete wrapper class to create an object and calls a dummy method on that

object:

#define rttd_new(type) \

new (TypeDescriptorWrapper<type>::typename, \

TypeDescriptorWrapper<type>::typeid, \

(dummy_test_condition \

? (new TypeDescriptorWrapper<type>)->nop() \

: 0)) type

Using the above de�nition, the code fragment from the earlier example would now be expanded

as follows:

138

X *obj = new (TypeDescriptorWrapper<X>::typename,

TypeDescriptorWrapper<X>::typeid,

(dummy_test_condition

? (new TypeDescriptorWrapper<X>)->nop()

: 0)) X (<constructor arguments>);

The last expression in the macro expansion fools the compiler into thinking that the concrete

wrapper class TypeDescriptorWrapper<X> may be instantiated to create an actual object,

and a method (nop) would be invoked on that object. We ensure that the dummy condition

used in the expression will always be false at run time, so that we do not actually create

unnecessary objects. However, the compiler cannot predict the outcome of the condition at

compile time, and cannot optimize away the instantiation. A simple way to ensure this is by

using the value of a global variable as the condition and initializing this variable to false in

a separate compilation unit. This forces the compiler to generate debugging information for

the concrete wrapper class, and consequently we can generate a type descriptor record for the

appropriate type in the application (type X in our example).25

Interaction with Template Repository Mechanisms

Complex template handling schemes, such as template repository mechanisms, may be another

source of problems. In template repository implementations, actual code generation for the

template methods is typically deferred until link phase. The linker automatically detects

missing template instances, generates them as necessary and invokes the compiler for each of

them. The purpose of this mechanism is to ensure that only a single copy of template code

is instantiated and included in the �nal executable, thus avoiding code bloat and duplication.

With such implementations, we need a way to generate type descriptor records after the

templates are instantiated and compiled but before the �nal linking is done.

One possible solution is to have the template repository mechanisms provide \hooks"

so that additional actions (such as calls to the type descriptor generator) may be inserted when

the template code is instantiated and compiled into object code. However, we are not aware of

any template repository mechanisms that currently provide such a capability. Another possible

solution is to have the compiler generate the debugging information normally in the object �les

where the templates are used and only defer instantiation of code for the template methods

until link time.

In general, we propose that there be some type of a published \contract" between a

compiler and a debugger regarding contents of the debugging information. If the compiler

follows some pre-speci�ed guidelines for debugging information generation and contents, tools

such as the type descriptor generator can be implemented portably based on those guidelines.

25Note that we pass the value of the expression (which should always be zero) as an additional argument to
the overloaded new operator. This additional argument is present only as a harmless side e�ect of our solution
and is ignored by the overloaded new operator.

139

Handling Nested Types and Classes

Nested types26 in C++ pose a special di�culty for generating the auxiliary source �le that con-

tains the de�nitions and initializations of the class variables used for backpatching. Consider

the following de�nition and initialization in an auxiliary source �le:

char *TypeDescriptorWrapper<X>::typename = "X";

The language requires that the auxiliary �le must have a forward declaration (or the actual

de�nition) for type X before it can be used in the de�nition and initialization as shown above.

This is necessary so that the compiler recognizes the name as a valid type, and does not

generate an error. Typically, a forward declaration is su�cient if information about the size,

structure or behavior of the type is not required. A full de�nition may always be provided in

lieu of (or in addition to) the forward declaration but it is not always necessary.

For the auxiliary initialization �le, a forward declaration is usually su�cient because

the type is not instantiated or used in any other fashion. Unfortunately, C++ does not allow

forward declarations for nested types. As a result, we cannot generate the de�nitions and

initializations of backpatching variables for nested types without some user intervention to

provide the de�nition of the nested types. Currently, our system requires some programmer

cooperation to solve this problem; the programmer must provide a list of header �les that

contain the de�nitions of the nested types. These �les will be included in the auxiliary source

�le (and no forward declarations will be generated) so that the compiler can recognize names

as valid type names when used in the de�nition and initialization.

The right solution, however, for this problem is to modify the language semantics to

allow the forward declarations of nested types in the same way as for non-nested types. We

believe that C++ can provide such a mechanism without any signi�cant impact on the rest of

the language de�nition.

Handling Virtual Function Tables

For some applications such as persistence, we need to treat C++ virtual function table pointers

specially.27 Unlike normal data pointers in an application, the virtual function table pointers

point into code representing the executable program. That is, these pointers point into the

load image of an executable, not into the data heap.

For data that may be operated on by multiple programs (or by recompiled versions of

the same program), we need a symbolic representation of virtual function table pointer values.

We achieve this by translating these pointer values (unswizzling) into indexes into a table of

name strings when the data are saved, and later translating the indexes back (swizzling) into

addresses of the corresponding virtual function tables of the new process that reloads the data.

26We use the term nested types to refer to both classes and non-aggregate types that may be nested within
other classes.

27A virtual function represents the C++ mechanism for implementing dynamic method dispatch (run-time
polymorphism). Each instance of a class that de�nes one or more virtual functions contains a virtual function
table pointer, which is a pointer to a table of function pointers generated automatically by the compiler.

140

6.5 Storage Model

As described earlier, the low-level type information extracted from the application object and

executable �les is maintained in type descriptor records. Various utilities that need access to

this type information manipulate the type descriptor records by loading them from disk into

memory and \decoding" them at run time.

Depending on the application requirements, type information can be stored in one of

two formats. By default, type descriptor records are generated and maintained in a hierarchical

format that resembles a type graph containing complex or aggregate types as interior nodes and

basic types as leaf nodes. It is possible to convert the hierarchical format into a at format

based on the speci�c requirements of the application. In the remainder of this section, we

describe each of these formats in detail as well as our motivation for developing such formats.

Although we will focus primarily on the formats used for in-core storage, the basic discussion

also applies to disk storage. Further, the choice of in-core storage format also directly a�ects

performance characteristics at run time (as discussed in Section 6.6).

6.5.1 Hierarchical Format

As the name implies, the hierarchical format maintains type information in a hierarchy of types

implemented essentially as a type graph. Basic types are represented as leaf nodes in the graph,

and are composed together to form aggregate types which form the interior nodes. Hierarchies

are typically created by language semantics such as containment (one object contained inside

another) or inheritance relationships (from the object-oriented programming domain). As

such, a representation that maintains the notion of hierarchies maps well into the natural type

structures enforced by the language.

We describe the hierarchical format by using a simple example. Consider the following

two type de�nitions from some user application:28

struct Pet
{
 short tag;
 char *name;
};

struct Owner
{
 char *name;
 void *userdef;
 short numpets;
 Pet pets[2];
};

The type descriptor records generated for the above de�nitions can be conceptually

represented as a type graph shown in Figure 6.2. Each node in the type graph essentially

represents a type descriptor record for a speci�c type; the leaf nodes represent type descriptors

for basic builtin types such as short and char while the interior nodes represent complex

or aggregate types. Each node has two labels|the top label is the name of the actual data

structures used by the type descriptor generator, and the lower label is the name of the type

that is being represented. Directed edges indicate that the source node (i.e., the node where

the edges originate) represents an aggregate type and the destination nodes (i.e., nodes where

28For the sake of simplicity, we use C syntax here but the basic idea is applicable to C++ or other languages
with aggregate types.

141

TDStructType

Pet

TDBuiltinType

short

TDPointerType

char*

TDStructType

Owner

TDPointerType

void*

TDArrayType

Pet[]

TDBuiltinType

char

TDBuiltinType

void

tag name

numpets

name
userdef pets

Figure 6.2: Type graph

the edges terminate) represent the types of �elds of the aggregate type. The actual names of

the �elds are given as edge labels. Note that pointers and arrays are also treated as complex

types composed of other types (char and Pet, respectively, in our example); we use undirected

(and unlabeled) edges in the graph to denote this type composition.

Note that the type graph shown in Figure 6.2 is highly simpli�ed on purpose to allow

easier explanation of the basic concepts. Speci�cally, we have excluded information such as

type sizes, �eld o�sets, etc. that is obviously necessary to fully describe the type structure. The

actual data structures used to represent the hierarchical type graph are indeed more complex

and contain all necessary information to fully describe the types at run time; see Appendix A

for a detailed description of these structures.

6.5.2 Flat Format

It is evident from the foregoing discussion that the hierarchical type descriptor format contains

all possible information about a given type in the application, and is therefore necessarily

complex. This complexity is justi�able because of the need to maintain generality for a variety

of possible uses. However, depending on speci�c application requirements, only a subset of

the information maintained in the hierarchical format may be interesting. For example, when

implementing pointer swizzling at page fault time, we are primarily interested in locating

only pointer �elds within objects, disregarding all other information about the various types.

It is possible to decode the hierarchical type descriptor records to obtain only the required

information while ignoring the rest. However, in the interest of run-time performance, it may

be preferable to transform the hierarchical format into a at format up front, thus reducing

the decoding e�ort required at run time. In essence, compile-time complexity and cost (i.e.,

format conversion) is traded for run-time e�ciency and performance (i.e., faster decoding).

For pointer swizzling at page fault time, we convert the hierarchical format into a at

142

format that essentially contains a list of �eld o�sets (corresponding to pointer �elds) within

the objects. The actual data structure, however, is slightly more complex; it consists of two

parts, a �xed part and a variable part. The latter is necessary to support a commonly-used

memory model in many C/C++ programs|by default, the language does not check for bounds

violations, and hence it is possible to allocate a chunk larger than the size of the object and

use the additional memory (at the end of the object) as an extension to the object. This

technique is typically used to allocate an \inline" array within an object such that the array is

\growable."29 In terms of implementation, the array is usually declared as the last component

of the object and dynamic allocation is used to allocate (or reallocate) a chunk of memory for

the object; any excess memory past the (language-de�ned) end of the object can be used as if

it was a part of the array, thereby changing (extending) its size. Although this heuristic is not

de�ned in the o�cial language speci�cation, we support it because many programs actually

rely upon this behavior. Note that this heuristic can be realized only by repeating some �xed

sub-structure, that is, the structure of at least one element of the array must be known.

A at format type descriptor record contains a �xed part, a variable part and an integer

that maintains the statically-declared size of the inline array. Each part contains a pointer to an

array of integers that represents the pointer o�set values within the object. In addition, there

are two integers used to maintain the count of entries in the array and the compiler-determined

size corresponding to the part. Although the two parts are identical in structure, the semantics

of each are quite di�erent; the �xed part maintains information about all components of the

type that cannot change in size at run time, while the variable part maintains information

about only one element of the repeated sub-structure of the object. That is, the variable part

maintain information about a single element of the inline array, irrespective of the original

(statically-declared) size which is maintained separately.

Recall the type de�nitions provided as part of the example in the previous section. The

at type descriptor record and in-memory object layout for type Pet are shown in Figure 6.3.

The type does not contain any variable-sized arrays, and hence only the �xed part of the type

descriptor record is applicable. It shows that the object is 8 bytes in size, and contains only

one pointer at o�set 4.30 This information matches with the in-memory layout of a sample

object also shown in the �gure. Note that the 2-byte \padding" is automatically added by the

compiler to maintain alignment constraints.

Now consider the type Owner from our example. This type has a variable-sized array

(pets) and hence will contain valid information in both �xed and variable parts as shown in

Figure 6.4. The information in the �xed part is similar to that described above and can be

matched with the in-memory object layout also shown in the �gure. We are more interested in

the variable part; as can be seen, the information in the variable part for type Owner is identical

to the information in the �xed part for type Pet. This corresponds to the de�nition of variable

parts, which requires them to contain information about a single element of the repeated sub-

structure (type Pet in our example). Finally, note the last �eld in the type descriptor record

which maintains the statically-declared size of the array. This �eld is necessary in situations

29An array is said to be \inline" if it is contained within the object; such arrays are typically �xed in size
because the size of the containing object is �xed (and determined) at compile time.

30We assume that word size is 4 bytes, size of short integers is half-word and usual alignment constraints
requiring word-size �elds to be aligned on word-size boundaries.

143

size = 8

numflds = 1

fields =

size = 0

numflds = 8

fields = NULL

varcount = 0

type = PTR offset = 4

struct Pet
{
 short tag;
 char *name;
};

0 21 3 4 65 7

tag <pad> name

Type Definition

Flat Type Descriptor Record

Object Layout in Memory

byte
offset

fixed
part

variable
part

Figure 6.3: Flat format type descriptor records (simple)

where objects of type Owner are themselves used in a variable part of some other object; in

such cases, layout rules dictate that the pets array in owners cannot be variable-sized and

must be decoded using the statically-declared array size.

6.6 Performance Characteristics

The performance of our RTTD mechanism can be measured in terms of space and time costs

of the system. We divide each of these costs into a compile-time component and a run-time

component based on \when" the cost is incurred. Below we describe these costs in detail and

sketch the performance characteristics of our system based on some preliminary results.

6.6.1 Compile-Time Costs

As the name suggests, the compile-time component includes costs that are incurred during

\compilation," that is, before the application is actually executed.31 The compile-time com-

ponent of the time cost is typically the time required to run the type descriptor generator over

the application object �le(s) to generate type descriptor records. The space required to store

these type descriptor records (typically on disk) constitutes the corresponding compile-time

component of the space cost.

As long as compile-time cost components are within \reasonable" limits, they are usu-

ally less important than the corresponding run-time cost components. An obvious comparison

point for establishing reasonable limits is the corresponding costs for compiling and linking the

application itself. That is, the RTTD compile-time costs should be comparable to the cost of

31We use the term \compilation" loosely to indicate all steps other than running the application. For
example, compiling and linking the application, as well as generating the type descriptor records from the
object �les, are examples of actions that belong to the compilation phase.

144

size = 12

numflds = 2

fields =

size = 8

numflds = 1

fields =

varcount = 2

type = PTR offset = 0

8 109 11 12 1413 15

numpets
<pad>name

Type Definition

Flat Type Descriptor Record

Object Layout in Memory

byte
offset

fixed
part

variable
part

struct Owner
{
 char *name;
 void *userdef;
 short numpets;
 Pet pets[2];
};

type = PTR offset = 4

type = PTR offset = 4

0 21 3 4 65 7 16 1817 19 20 2221 23 24 2625 27

userdef pets

Figure 6.4: Flat format type descriptor records (complex)

compiling individual application object �les and linking them together to build the executable.

In practice, we have found that our costs are signi�cantly less than the actual compilation and

linking costs, in terms of both space and time costs.

We measured the costs of building the OO1 benchmark both with and without including

the type descriptor generation actions (i.e., the steps shown in Figure 6.1). We found that

the normal compilation and linking time for the benchmark took roughly 9 seconds of wall-

clock time on a 200MHz Pentium Pro processor running Linux 2.0.x. When type descriptor

generation was included in the overall build process, the total time went up to approximately

12 seconds, an increase of 33%. The type descriptor generation actions included ten runs

of o2tdesc and one run each of tnamemap, tdlink and tdfgen. The ten runs of o2tdesc

examined and generated hierarchical type graph for about 1700 types, although only 20 types

(those that were instantiated persistently) were eventually saved to disk. After linking and

duplication elimination through tdlink, there were a total of eight types for which type

information was saved (both in hierarchical and at formats).

In terms of space costs, the benchmark executable �le was approximately 500KB when

debugging information was preserved, and 150KB after recompiling with ags that speci�ed

no debugging and additional optimization. In contrast, the �nal at format type descriptor

records only required roughly 3KB of storage, or 2% of the executable size. Of course, during

the actual generation process over multiple object �les, the maximum storage requirement was

higher (about 20KB) but it amounted to only 4% of the size of the executable with debugging

information included (as it must be for type descriptor generation). It should be emphasized

that we report the storage cost as a percentage of executable size only as a comparison point;

in general, the number of type descriptor records and their space requirements will be di-

rectly proportional to the number (and corresponding sizes) of types for which run-time type

description is desired.

145

In general, we can conclude that our system does not impose any signi�cant overhead

at compile time, both for generating and storing type descriptor records, for an arbitrary user

application.

6.6.2 Run-Time Costs

By de�nition, run-time costs are incurred when the application is actually executed. The run-

time component of the time cost usually includes the time to load the type descriptor records

into memory as well as the time to access information stored in these type descriptor records.

The actual memory usage of the data structures that maintain the type descriptor records in

memory is part of the run-time component of the space cost.

With respect to the time cost, the initial loading of type descriptors is considered to

be part of the startup costs and is relatively minor compared to other startup costs such as

dynamically linking and loading libraries, handling shared objects, etc. The cost of actually

decoding the in-memory type descriptor records is the most important cost at run time. The

approach used to access information from the type descriptor records is very dependent on the

data structures used to represent these records in memory. Section 6.5 described the various

formats used to store type information.

We estimate the cost for an aggregate type while temporarily ignoring the variable part

in the interest of simplicity. Recall that a �xed part (Figures 6.3 and 6.4) contains two inte-

gers and a pointer to an array of integers (i.e., �eld o�sets). Thus, for a type with n pointer

�elds, the approximate storage cost for the �xed part would be ((2 � sizeof(integer) + 1 �

sizeof(pointer)) + (n � sizeof(integer))) bytes. Taking the variable part into consideration

makes the cost estimation a little trickier. Recall that the variable part is used to maintain in-

formation about a single element of the repeated sub-structure; thus, the overhead of including

the variable part in the type descriptor record (for the top-level aggregate type) is equivalent

to the cost of the �xed part for one element.

6.6.3 Making Decoding Costs Negligible

For pointer swizzling at page fault time, we use at type descriptor records described earlier to

maintain information about the locations of pointer �elds within various objects. Due to the

nature and structure of the at representation, the decoding is highly optimized by allowing

direct access to the pointer �elds based on the o�sets recorded in �xed parts. Decoding variable

parts is only slightly more complex because it requires iterating over the relevant portion of

the object using the type information in the variable part during each iteration; this iterating

itself does not add any signi�cant overhead compared to the cost of the actual decoding.

Although this decoding mechanism is relatively fast, it still adds a few tens of instruc-

tions per object to the overall run-time costs of using type descriptor records. In an e�ort to

further minimize the costs, we have developed an approach that reduces the decoding costs

to negligible levels (on the order of cost of a procedure call). The basic idea can be explained

with the following analogy. If type descriptor records are viewed as \bytecodes," then the run-

time decoding process can be thought of as \bytecode interpretation." Bytecodes can usually

be compiled into native (binary) code allowing execution at full speed without requiring any

146

run-time interpretation. Similarly, as described below, we can \compile" the type descriptor

records such that the generated code does not require any run-time decoding.

As described in Section 6.3.3, we generate auxiliary source containing initializations

of backpatching variables. In a similar vein, when hierarchical type descriptor records are

being converted into at format, we generate code for a procedure corresponding to each

type. This procedure embodies the run-time decoding of type descriptor records|for each

�eld of interest, we generate an invocation of a \callback" function that will be responsible for

handling the speci�c actions for that �eld. The auxiliary code containing these procedures is

then compiled and linked into the application, along with the other initialization code. When

the type information for an object is required at run time, the top-level procedure for that

object's type is invoked instead of actually decoding the corresponding type descriptor record.

Note that the end result is still the same as decoding the type descriptor record at run time,

but instead of run-time interpretation we have \compiled the type descriptor record" thereby

reducing the decoding costs to a single procedure call.

Type descriptor record \compilation" is compatible with variable-sized object even

though the actual size of such objects is not known until run time. The \compilation" process

is the same as that described above for the �xed part of the type descriptor record. The

variable part is also easily handled. By de�nition, the variable part of the type descriptor

record describes a single element of the variable-sized array and hence we simply generate

a loop around the callback function invocations corresponding to the \compiled" variable

part; the loop termination condition is based on actual run-time object size guaranteeing

correct behavior. Again, this approach does not add any more overhead compared to run-time

decoding of the type descriptor record.

There is one minor disadvantage of using type descriptor record \compilation" as de-

scribed above. The basic approach works well as long as entire objects are manipulated,

starting at the beginning of each object. However, it is not suitable for objects that must be

partially processed (e.g., large objects) because of the static ordering imposed on the callback

function invocations. In such situations, the basic approach must be augmented to allow addi-

tional control over the callback functions. Of course, a simple workaround is to just fall back

to run-time decoding of the type descriptor records. For pointer swizzling at page fault time,

because the basic swizzling unit is one page, the problem is likely to arise only for large objects

that cross page boundaries; all objects smaller than a page are always swizzled in entirety.

6.7 Current Status and Future Work

We have implemented the type descriptor generator and other mechanisms as described in

this chapter. We use these in our Texas Persistent Store (Chapter 4) and a real-time garbage

collector for C++ [WJ93]. Currently, we have two versions of the type descriptor generator

available: one for most modern Unix systems and the other for OS/2, the only di�erence

between the two being the platform-speci�c code to parse the debugging information.

Since the debugging information format on di�erent Unix systems varies signi�cantly,

we have leveraged code from the GNU debugger, gdb, to extract the debugging information.

This approach is portable because gdb understands several di�erent kinds of object �le formats

147

and debugging information formats for various architectures and compilers. Using gdb for

the platform-speci�c operations makes the type descriptor generator instantly portable to all

architectures supported by gdb. Our code uses standard gdb routines to parse the debugging

information for all types used in the application into in-memory data structures; these data

structures are then transformed into type descriptor records.

Note that it is not necessary to always use gdb for this purpose; it is feasible to im-

plement platform-speci�c code that extracts the debugging information directly from object

�les. This approach has been used for adapting our type descriptor generator for OS/2 and

IBM VisualAge compiler.32 Of course, if the compiler already provides low-level object layout

information in some form, \adaptor" code can be written to transform the compiler-speci�c

information into type descriptor records.

Our code modules for implementations based on using debugging information are rel-

atively small. For example, the new code that we added for the gdb-based type descriptor

generator is only around 600 executable lines33 of C++. Similarly, the OS/2 version is ap-

proximately 2000 executable lines of C++. The source code for both versions is publicly

available (under GNU GPL) at ftp://ftp.cs.utexas.edu/pub/garbage/texas.

Our system has been designed to be easily portable to other compilers and platforms.

The only major e�ort required for porting is providing the platform-speci�c code to parse the

debugging information in object �les. We intend for the system to be ported to a variety of

PC-based operating systems and compilers. We believe that this should be relatively easy

because most PC-based compilers can usually generate debugging information in more than

one format; by choosing a few representative formats and providing speci�c code to parse those

formats, it should be possible to support multiple compilers.

6.8 Related Work

Several other techniques have been proposed and implemented for providing RTTD. However,

most of these techniques are either speci�c to a source language or incur signi�cant additional

run-time overheads, and do not provide an e�cient, general-purpose mechanism to generate

and manipulate RTTD.

Two other systems similar to ours have been developed, to our knowledge, both in-

dependently; unfortunately, no published descriptions exist for either. Marc Shapiro and his

collaborators at INRIA have developed a type description facility, also using code from gdb.34

It also appears that Object Design, Inc. (ODI) developed a similar facility for its Object-

Store persistent object storage system for C++, but details on this proprietary system are not

available. (ODI also provides a preprocessor supporting other extensions of C++.)

Other researchers have proposed using special-purpose preprocessors and precompilers

in conjunction with user intervention to provide support for RTTD. Edelson [Ede92a] pro-

poses using a precompiler to automatically augment a C++ source program with additional

RTTD information for garbage collection. The underlying idea is based on using smart point-

32Thanks to Tom Porcaro of IBM{Austin for implementing the platform-speci�c part for OS/2.
33The count excludes blank lines, comments and source lines that do not get compiled into executable code.
34Marc Shapiro, personal communication, May 1996.

148

ers [Ede92b] which are class objects that emulate normal (raw) pointers. The precompiler

performs two tasks that are necessary for safe garbage collection for C++, namely �nding the

root set35 and accurately identifying internal pointers within objects. Because the system uses

smart pointers to identify roots, the �rst task of the precompiler is to parse the source code

and de�ne appropriate smart pointer classes to be used (instead of raw pointers) for the root

set. The second task of the precompiler is to parse the type de�nitions and emit a member

function for each garbage-collected type to identify the internal pointers within that type.

Detlefs [Det92] describes a modi�ed scheme that is also based on smart pointers. This

scheme extends the smart pointer de�nition further and constrains the programmer to use

this interface for all garbage-collected objects. The extended smart pointer de�nition provides

additional actions to be performed when standard pointer operations are invoked on the smart

pointer objects. Garbage collection can then be implemented using this extended functionality

of smart pointers.

Both these schemes require placing additional restrictions on the user and incur addi-

tional run-time overheads for manipulating smart pointers. In addition, Edelson's precompiler

is quite similar to a preprocessor because it needs to parse type de�nitions from the source

code, and hence is susceptible to the same problems we described earlier for preprocessors.

Interrante and Linton [IL90] proposed a Dossier class as a standard interface for run-

time type information in C++. A (preprocessor-style) dossier generator is used to create

Dossier objects from the source code. Interrante and Linton propose that the language be

extended to automatically generate a virtual function for each class to access the appropriate

dossier object. If this feature is not provided as part of the language, programmers can provide

the information manually for each class. As before, this scheme requires a preprocessor and is

also closely dependent on C++ language implementation features (that is, virtual functions).

6.9 Conclusions

We have introduced the term Run-Time Type Description (RTTD) to denote availability of

low-level object layout information at run time in contrast to Run-Time Type Identi�cation

(RTTI) which is used to access language-level information at run time. We have also described

a portable, general-purpose mechanism for generating and manipulating RTTD for high-level

languages such as C, C++ and Ada which do not provide this information as a language feature.

Our approach does not require special compiler cooperation and allows the programmer to use

o�-the-shelf high-performance conventional compilers.

We have presented type descriptor records for representing the low-level layout infor-

mation at run time. We have developed a novel approach to build type descriptor records by

using the debugging information generated by modern compilers. Since debugging informa-

tion format typically does not depend on a speci�c source language or compiler, our approach

works for combinations of di�erent languages and normal compilers.

We have implemented a type descriptor generator for C++ to illustrate the issues in-

volved in providing RTTD for a speci�c language. For Unix systems, we have leveraged code

35An application must maintain entry pointers into various data structures; these pointers are known as
roots and collectively referred to as the root set.

149

from the GNU debugger, gdb, to provide the platform-speci�c part of the type descriptor

generator. This approach is portable because gdb understands several di�erent debugging in-

formation formats on various architectures. A version of the type descriptor generator for OS/2

(and VisualAge compiler), which uses non-gdb code for parsing the debugging information, is

also available.

We described the storage model and various formats used to store type descriptor

records in memory at run time. Depending on the application requirements, it is possible to

convert full-edged (hierarchical) type descriptor records into a simpler, at format to allow

for faster decoding. We have also presented an approach that can be used to e�ectively reduce

the run-time decoding costs to zero. Preliminary performance results of our untuned imple-

mentation have shown that both compile-time and run-time costs of the RTTD mechanism

are not excessive.

In general, we believe that a facility for accessing implementation-level type information

at run time is useful, and possibly quite necessary, for a variety of utility system extensions.

The RTTD mechanism as described in this chapter provides a framework for implementing

run-time type description for a variety of high-level languages that do not o�er it as a standard,

builtin language feature. We believe that our approach of using the debugging information is

highly portable and is preferable to other techniques because it does not depend on knowledge

of the source language or speci�c compilers.

150

Chapter 7

Interactions with Operating Systems

7.1 Introduction

It is evident from earlier discussion that Texas interacts strongly with low-level features pro-

vided by the operating system. Most of this interaction stems from the use of virtual memory

protection and access-protection violation handling for implementing coarse-grained address

translation. In addition to Texas, there are many other useful system-level extensions and

libraries (for example, garbage collectors [AEL88, Wil97], distributed shared virtual memory

systems [Li86, LH89], virtual memory tracing and compression facilities [WKBK97, WKB97a],

advanced pro�ling, etc.) that closely interact with the operating system.

We believe that operating system implementors should take interactions of such low-

level systems and libraries into consideration when designing new systems. That is, a modern

operating system should provide su�cient \hooks" to allow various extensions to be imple-

mented e�ciently outside the kernel but still be able to exploit the low-level features. This

would greatly improve the portability of such systems while maintaining their general high

performance characteristics.

In this chapter, we discuss several areas of operating system interactions that are im-

portant for e�ciently implementing system-level extensions. Although this discussion is based

mostly on our experience with implementing pointer swizzling at page fault time in Texas, the

same issues should also be applicable to other systems mentioned earlier. We are primarily

interested in interactions with the virtual memory system, that is, memory allocation, protec-

tion, and replacement. Most operating systems allow some degree of exibility in this area,

but further control is desirable and achievable. We also briey describe other related issues

such as e�cient handling of access-protection violations that are generated by attempts to

access protected memory. Although we focus mostly on Unix-like operating systems, the basic

ideas are also applicable to other modern operating systems.

7.1.1 Background: Virtual Memory

Virtual memory [Den70, KELS82] was originally designed simply to manage two distinct levels

of memory hierarchies|main memory and secondary storage|while giving the applications an

illusion of a single level of storage that is larger than the size of the available physical memory.

151

Today, however, virtual memory is essential for smooth operation of computer hardware and

software. Modern operating systems provide various primitives that allow application programs

to interact with (and exploit) the virtual memory system; such interactions can range from a

simple allocation (and deallocation) model to advanced interfaces such as shared memory [Li86,

LH89] and memory inheritance as supported by Mach [BKLL93].

In the absence of a virtual memory system, if an application program outgrew the size

of available memory, it was the programmer's responsibility to manually split the code into

overlays that had to be explicitly controlled. In contrast, a virtual memory system provides

seamless program execution by automatically handling data transfer between main memory

and secondary storage as necessary without involving the programmer.

7.1.2 Basic Terminology

Virtual memory is typically implemented by allowing each process to have its own virtual

address space that is distinct from all other processes. Pages of the virtual address space are

mapped into the physical address space (i.e., main memory) as an application accesses data

on those pages. The application is allowed to access data only via virtual addresses, and is

never made aware of the actual physical location of the data in main memory. This makes the

pages easily relocatable depending on the availability of the physical memory. It is the job of

the operating system's memory manager to maintain current mappings between virtual and

physical addresses and automatically translate between the two as necessary.

The collection of pages accessed \together" (i.e., at roughly the same time) by an

application is usually called the working set. As the application continues execution through

di�erent phases, its working set changes because some pages are no longer accessed and new

pages, not referenced before, are accessed. In order to maximize main memory utilization,

the memory manager implements a page replacement policy for pages in main memory. As the

name suggests, old pages that are no longer in use are removed from main memory and replaced

with newer pages. This is usually accomplished as follows. Each page of virtual address space

referenced by an application typically has a corresponding page of backing store associated

with it; the backing store, which may be assigned lazily (i.e., only when necessary), is where

the page is actually stored when it is replaced from main memory. A special disk partition,

called swap space or paging space, is usually con�gured on secondary storage to serve as the

backing store although it is certainly possible to use a conventional �le or the main memory

(or even secondary storage) of a remote host on the network for this purpose. The process of

transferring data between memory and backing store to maximize the memory utilization is

often known as paging (or remote paging, if the backing store is on a di�erent host).

7.2 Virtual Memory Allocation

The fundamental principle behind virtual memory allocation is to allow applications to allocate

more memory than is physically available on the machine. Theoretically, it is possible to

allocate as much virtual memory as is addressable by the hardware word size. In practice,

however, this varies based on the operating system implementation and is usually limited by

the maximum secondary storage con�gured as swap space on the system.

152

We use the phrase virtual memory allocation quite loosely throughout this chapter. The

usual connotation refers to allocation of both the virtual address space and the corresponding

backing store. However, we are also interested in allocation of only the address space without

having any physical memory associated with it; we highlight the distinction as necessary in

the rest of the chapter.

This section discusses various issues related to virtual memory allocation, including

the di�erences between storage space and address space allocation, and various primitives

that are available for this purpose. Speci�cally, we describe standard Unix primitives for

virtual memory allocation and their overall performance characteristics for two major operating

systems, Linux and Solaris. Section 7.3 contains further details about these primitives and

swap space allocation.

7.2.1 Storage Space vs. Address Space Allocation

Although the distinction is typically not exposed to normal users, we believe that it is very

important for system implementors to distinguish between allocation of virtual storage space

and allocation of virtual address space. This distinction is very relevant to pointer swizzling

at page fault time, and possibly also to other low-level system algorithms that bene�t from

additional control over virtual memory mechanisms.

We de�ne virtual storage space allocation as allocation of both the virtual address space

and the corresponding backing store for that address space. In contrast, virtual address space

allocation simply allocates the address space, but does not actually assign any backing store for

that chunk of address space. Later, if the allocated space needs to be used by the application,

a page of backing store is allocated and assigned (either by the operating system or by the

application itself) before the address space can be referenced. Alternatively, a lazy approach

is to \reserve" a page of backing store but not actually allocate it until the page is ready to

be written out; an even lazier approach is to wait until the page is ready to be evicted.

Although pointer swizzling at page fault time functions correctly with either address

space or storage space allocation strategies, the former is preferable for pages that are reserved

(access-protected) during the normal course of operation. This is because many reserved pages

may never be referenced by the application, thus not requiring any data to be loaded into those

pages|allocating backing storage for such pages would obviously be wasteful because it will

never be used. In contrast, virtual address space allocation strategy works well with our basic

swizzling mechanism. Pages that are referenced by the application cause our protection fault

handler to be invoked; the handler then assigns backing store for the faulted-on page and loads

the data from the persistent store before returning control back to the application. Using this

approach, backing storage is assigned only for pages that are actually used by the application.

7.2.2 Virtual Memory Primitives

We are primarily interested in low-level primitives (for example, the sbrk primitive available

on various Unix systems) that are used to allocate virtual memory from the operating systems.

We are not interested in high-level standard library routines such as malloc or free which

represent an implementation of some allocation policy (such as �rst-�t or best-�t [WJNB95])

153

on top of the low-level primitives. Of course, the exibility and features of the underlying

virtual memory primitives are likely to guide the implementation choices of these high-level

allocation mechanisms.

Most modern Unix avors provide two standard primitives, sbrk and mmap, for virtual

memory allocation. Historically, most Unix variants have always supported sbrk in some

form or other, while mmap is a newer feature that originally existed in 4.2BSD but has since

appeared in other variants within the last decade [GMS87]. All currently popular avors of

Unix for workstations and PCs now support mmap, albeit with minor di�erences in the interface.

The exact behavior of the primitives may be slightly di�erent across variants, but the basic

functionality remains the same.1

Although we classify both sbrk and mmap in the same class of primitives for the purposes

of the current discussion, their interface and implementation details vary signi�cantly compared

to each other. We briey describe each of them below before comparing the two with respect to

their exibility and features. Note that the rest of this section focuses primarily on primitives

provided in Unix-based operating systems, but the basic ideas are also applicable to virtual

memory primitives in other modern operating systems such as Windows NT and OS/2.

The sbrk Primitive

Most high-level allocation mechanisms commonly use sbrk as the underlying virtual memory

primitive because it provides a simple mechanism to extend the data region of an application.

The interface is very simple|the caller requests allocation in number of bytes; the request is

then satis�ed by allocating as many bytes as necessary using normal swap space as the backing

store for the allocated address space.

Figure 7.1 shows the classic view of a process' virtual address space. It is typically

divided into four regions (sometimes also called segments2), namely text, data, heap, and stack.

The text region maintains the code segment of the process and the data segment contains

both the initialized and uninitialized data for the process. The heap segment represents the

dynamically-allocated data; as shown in the �gure, it starts beyond the data segment and

grows \upwards" in address space (i.e., increasing address values). In contrast, the stack

segment usually starts at a high address and grows \downwards."

The last-allocated position in address space is always represented by the break point,

also shown in the �gure. The sbrk actions are very closely related to the notion of this break

point. As more memory is dynamically allocated from the operating system using sbrk, the

break point is moved appropriately to maintain the invariant as per its de�nition. Note that

the break point moves monotonically upwards in address space as more memory is allocated

from the operating system.

1This is typical of general Unix programming where one has to deal with minor but tedious incompatibilities
across di�erent variants. The usual approach is to use preprocessor directives (e.g., #ifdef, etc.) to customize
the application source for each variant.

2It should be emphasized that a segment in this context refers to a mapping between a process' address
space and the backing store, and not to segmented addressing.

154

Text

Data

Heap

Stack

low address

high address

Unallocated

break

(for e.g.0xffffffff)

(for e.g.0x0)

V
irt

ua
l A

dd
re

ss
 S

pa
ce

Region

Figure 7.1: Address space of a process

The mmap Primitive

Unlike sbrk, mmap is more exible and provides several additional features. The basic interface

allows applications to \map" a �le (or parts of a �le) into the virtual address space such that

the �le itself acts as backing store for that address space. The data, if any, from the �le

is made available directly in the corresponding virtual address space without requiring any

explicit I/O requests on the �le. When the �le is eventually unmapped from memory, in the

usual case, any modi�ed data in the virtual memory is automatically updated in the �le. In

addition to this mapping facility, mmap also o�ers other features such as memory protection

(a la mprotect), mapping the �le copy-on-write, etc. These features, although useful, are not

immediately relevant to the current discussion and are ignored for the moment.

Some operating systems (for example, Linux and AIX) provide additional features that

allow applications to map anonymous regions instead of �les. An anonymous region is usually

just a chunk of normal swap space that is used as backing store instead of a �le in the �le

system.3 Use of anonymous regions allows essentially the same semantics as sbrk, but with

the additional capabilities of mmap.

Note that mmap actions are not directly related to the break point shown in Figure 7.1.4

Instead, mmap can be used to map a �le (almost) anywhere in the heap segment of the address

space. There are two ways of selecting the address range for the mapping. By default, the

operating system selects the address range using its own heuristics and the existing mappings.

3The term \anonymous" is used because the backing store (i.e., swap space) cannot be referenced through
a �le, and hence does not have a \name."

4For some systems, sbrk may actually be implemented in terms of mmap in the kernel, but this fact is not
generally apparent or exposed to the user.

155

In addition, most implementation also allow the programmer to override the default and ex-

plicitly specify the exact address range for the mapping (typically by using the MAP FIXED

option with mmap). However, the call may fail if the speci�ed address is \unsuitable" for some

reason (for example, if it is not page-aligned). The use of this option is usually discouraged

because it results in unportable code. In general, it is preferable to let the operating system

select the address range in order to avoid conicts with other allocated data. However, the

facility is provided for applications that may require (and bene�t from) explicit user selection

of the address range.

Comparing sbrk and mmap

It is obvious from the above discussion that sbrk provides a simple functionality and interface,

and mmap can provide the same semantics while o�ering additional capabilities. We believe

that mmap is preferable in general because it also provides additional control over the allocated

memory. Such control is desirable for many systems (especially, pointer swizzling at page fault

time) that interact extensively with the operating system.

Most operating systems also provide a primitive, munmap, that complements the func-

tionality of mmap|the purpose of this primitive is to \unmap" the memory previously mapped

by mmap. In other words, it breaks the association between the backing store (which can be

either a �le or an anonymous region) and the speci�ed range of virtual address space. If the

backing store is represented by an anonymous region, then munmap is an excellent way to re-

claim unused swap space from the application and return it to the operating system. There is

no similar primitive corresponding to sbrk, that is, there is no convenient way to reclaim swap

space corresponding to memory allocated using sbrk until the application �nishes execution.

Although we prefer mmap over sbrk, we are not necessarily advocating that a persistent

store be mapped directly into virtual memory. In fact, it may not be advisable to do this

because the persistent store may either be stored in compressed storage or cached across a

network, making it unsuitable for direct mapping via mmap. Instead, we favor mmap only for

allocating virtual address space with better control over backing storage.

7.2.3 Performance of Virtual Memory Primitives

So far, we have discussed the di�erences between sbrk and mmap in terms their functionality

and the exibility a�orded by di�erent features of each primitive. We now describe results

based on experiments that we conducted for measuring the performance of each primitive.

Since both primitives allocate address space from the operating system, every call to

either primitive causes control to cross kernel boundary, which in turn causes the execution

to switch from normal user mode to a privileged mode. This is obviously more expensive

than non-kernel calls that operate only in unprivileged mode. One solution to reduce the

performance penalty is to amortize the cost of multiple calls by batching several requests into

a single large request. Such batching can be implemented by using simple application-level

bu�ering as described below.

The application maintains a batch of (contiguous) virtual address space pages in a batch

156

bu�er of predetermined size (the batch size).5 The batch bu�er is empty on startup; the �rst

allocation request invokes the chosen primitive to allocate as many pages of address space as

the selected batch size, and the batch bu�er is now full. The original request is then satis�ed

by removing one (or more) pages from the batch bu�er, and control returns to the application.

As future allocation requests arrive, we �rst check whether there are enough pages available

in the batch bu�er. If so, the request can be satis�ed from the batch bu�er and there is no

need to switch into kernel mode. However, if the request cannot be satis�ed from the batch

bu�er, or if the batch bu�er is empty, the full cost of invoking the primitive is incurred.

The choice of batch size involves a tradeo� between space and time costs. The larger

the batch size used, more memory is \preallocated" as part of the batch bu�er even though

the application may not use it all. On the other hand, the smaller the batch size, more

frequent is the need to cross kernel boundary and switch execution modes, a�ecting the overall

performance. We studied various choices for the batch size and found that relatively small

batch sizes (e.g., 4 to 8 pages) provide signi�cant bene�ts over no batching, and a moderate

batch size (e.g., 32 or 64) usually provides almost all the bene�t of batching, approaching

diminishing returns for larger sizes. Below, we present the experimental design and results in

further detail.

Experimental Design

We used two benchmark suites for measuring overall performance of the virtual memory prim-

itives and the e�ect of batching. One of these is a set of microbenchmarks designed speci�cally

to measure the absolute performance of the primitives with several di�erent batch sizes (rang-

ing from 0 through 128). The other comprises of standard OO1 benchmark forward traversal

operations that were also used extensively to measure the performance of Texas (Chapter 5).

We use the results from the microbenchmarks to select a set of \interesting" batch sizes for

the OO1 benchmark traversal operation experiments.

The microbenchmarks are relatively simple, designed to only measure the performance

of the primitives in isolation. Each run of the benchmark repeatedly calls the speci�c primitive

under consideration in a tight loop, measures the time for the entire loop, and �nally divides

the total time by the number of iterations to obtain the average time per invocation of the

primitive. Although each iteration of the loop always requests only a single page of virtual

address space, for batch sizes greater than one, we implemented the batching mechanism

described earlier to group multiple small requests into a single large one. We iterate for a total

of 5000 times, and record the time using a clock cycle timer to get an accurate measurement.6

Each microbenchmark is run multiple times, such that the batch size is one larger than in the

previous run, starting at 1 (i.e., no batching) up to a maximum of 128.

Using the results from the microbenchmarks, we select a set of four \interesting" batch

sizes (speci�cally, 1, 4, 16 and 64) for each of the two primitives, for a total of eight possible

5Note that we bu�er the address space allocation itself, (i.e., only the virtual addresses), not the actual
contents of virtual memory, as it would be in traditional bu�ering techniques.

6Although the batching a�ects mostly system time only (by reducing the kernel boundary crossings), we
use a real-time cycle timer because its resolution is signi�cantly better than any CPU-time timer. We expect
real time to be a very close approximation of CPU time in this case because the microbenchmarks do not incur
any system- or user-level overhead other than the primitives.

157

combinations for allocating virtual address space during the OO1 benchmark traversal oper-

ation. For each of these combinations, we generated a unique version of Texas that uses the

speci�c primitive and batch size for allocating new address space. Each version is then linked

with the same benchmark code, giving us a suite of eight benchmark traversal operations. As

before, we ran the benchmark for both the small and large databases, and measured the time

for each traversal.

We use the same hardware (a 200MHz Intel Pentium Pro processor with 32MB RAM)

and operating systems (Linux 2.x and Solaris 2.5) that were used for Texas performance

measurements (Chapter 5). We �rst present the results from our microbenchmarks before

presenting the results from the OO1 benchmark traversals using the representative set of

batch sizes.

Experimental Results: Microbenchmarks

In addition to the plots for the sbrk and mmap primitives (labeled accordingly), the microbench-

marks results also include a third plot labeled fixedmmap. This corresponds to a variant of

the mmap primitive that allows a programmer to explicitly specify the address range to be

used for the mapping via the MAP FIXED option. Note that we provide the performance results

for �xed-map variant of mmap only for the sake of comparison. The use of this variant is not

practical because it places additional restrictions on the application and results in unportable

code. Speci�cally, there is no portable way to determine a \safe" address range across di�erent

operating systems, or even for the same operating system on di�erent platforms, and hence

the use of MAP FIXED is usually discouraged.

Figure 7.2 shows the overall performance of both primitives (and the �xed-map variant).

The Y-axis represents the average cost (in clock cycles) of calling the primitive for di�erent

batch sizes enumerated along the X-axis. Note that even relatively small batch sizes (e.g.,

between four and eight) reduce the average per-call cost by a factor of 4 to 10. As expected,

the cost decreases as the batch size is further increased, exponentially reaching a point of

diminishing returns. Zooming in on the lower part of the curves (Figure 7.3), we notice that

the costs of both primitives are similar, thus making mmap preferable to sbrk because of its

added exibility.

158

0

500

1000

1500

2000

2500

0 16 32 48 64 80 96 112 128

C
lo

ck
 C

yc
le

s

Batch size

sbrk
mmap

fixedmmap

Figure 7.2: Performance of virtual memory primitives (Linux)

0

50

100

150

200

250

300

0 16 32 48 64 80 96 112 128

C
lo

ck
 C

yc
le

s

Batch size

sbrk
mmap

fixedmmap

Figure 7.3: Performance of virtual memory primitives, zoom (Linux)

Next, we present the same results for Solaris, and note some surprisingly unusual be-

havior for both primitives. Figure 7.4 shows the overall performance for all di�erent batch

sizes. The �rst thing to notice from the �gure is that, with no batching, mmap is extremely

expensive on Solaris; the overall cost is approximately 20 times that of either sbrk or the

�xed-map variant of mmap. However, a batch size as small as four is su�cient to reduce this

159

high cost to within a factor of two of the cost of sbrk without batching. These results, when

compared to the Linux results (Figure 7.2), also clearly show that Solaris is uniformly slower

as far as pure performance of the virtual memory primitives is concerned. We believe that this

is probably due to some gross ine�ciency in the kernel implementation that should not be too

di�cult to overcome.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 16 32 48 64 80 96 112 128

C
lo

ck
 C

yc
le

s

Batch size

sbrk
mmap

fixedmmap

Figure 7.4: Performance of virtual memory primitives (Solaris)

0

500

1000

1500

2000

2500

3000

0 16 32 48 64 80 96 112 128

C
lo

ck
 C

yc
le

s

Batch size

sbrk
mmap

fixedmmap

Figure 7.5: Performance of virtual memory primitives, zoom (Solaris)

160

As before, we zoom in on the lower part of the curves (Figure 7.5). However, unlike

the Linux results (Figure 7.3), we notice some unusual behavior in the plot corresponding to

the performance of sbrk. In particular, at batch sizes 9 and 17, there are sudden jumps in the

average cost per call of the primitive, forming \sawtooth-like" shapes in the plot. This is quite

an unusual feature, and we believe that it is closely related to either an internal data structure

or a particular algorithm used in the implementation of the primitive. Given access to kernel

sources or other related implementation details, it should be relatively easy to con�rm this

hypothesis.

Finally, there is one more useful piece of information that can be derived from the

results. Speci�cally, we notice that both variants of mmap eventually converge to approximately

the same average cost per call at a moderately large batch size. This is quite reassuring because

it indicates that normal mmap usage can have a performance that is equivalent to the faster

�xed-map variant which is not suitable for practical use. At the same time, sbrk continues to

be about twice as expensive as mmap, even with a batch size as large as 128. We believe that

these observations further justify our position that mmap should be selected as the primitive of

choice for virtual memory allocation.

Experimental Results: OO1 Benchmark Traversal Operations

The microbenchmarks results have clearly shown that batching multiple allocation requests

together provides a signi�cant improvement in the overall performance of the virtual memory

primitives. In this section, we present the results for the OO1 benchmark forward traversal

operations using batched variants of the two primitives for address space allocation. In partic-

ular, we present the results for traversal on the large database on Solaris using four di�erent

batch sizes for each primitive.

Before showing the actual traversal results, we briey revisit some characteristics of

the OO1 benchmark that must be kept in mind when comparing performance of the virtual

memory primitives and their batched variants. Recall that, on average, every tenth pointer

in the benchmark database references an arbitrary part object because of the randomized

interconnections. This causes many pages of address space to be reserved during the initial

traversals as a lot of new data is loaded into memory and swizzled. However, as the execution

progresses into later warm traversals, we �nd that pages corresponding to most newly-swizzled

pointers have already been either reserved or loaded into memory during an earlier traversal

and no further action is necessary. Hence, most of the new address space reservation happens

only during the �rst few traversals when pointers into new pages (not seen before) are swizzled.

Figure 7.6 plots the number of pages swizzled and number of pages reserved for each

traversal of a traversal set run on the large database. It is clear from this �gure that new

pages are swizzled throughout the entire set of warm traversals but most of the address space

reservation indeed occurs only within the �rst 15 traversals. As such, these early traversals

are obviously the most relevant for performance comparison of the virtual memory primitives

and their batched variants.

161

1

10

100

1000

10000

0 5 10 15 20 25 30 35

N
um

be
r

of
 P

ag
es

Traversal Number

reserved
swizzled

Figure 7.6: Pages swizzled/reserved during all traversals, large database (Solaris)

Given this background, we now present the traversal results for each of the primitives.

In the various �gures below, the X-axis represents di�erent traversals (i.e., cold, warm and hot

iterations) of a single traversal set and the Y-axis represents the CPU time7 (in milliseconds)

for each traversal. We plot CPU time instead of total real time because the batching a�ects

mostly system time (and to a minor extent, user time) since it primarily reduces the number

of switches between user and kernel mode. Unfortunately, most operating systems do not

provide a high-resolution timer for measuring CPU time; typical resolutions are on the order

of several milliseconds, which is very coarse for our purposes since most of the overheads are

fairly small. This is not as severe as it seems at �rst because we are mostly interested only in

the initial traversals which contain a lot of swizzling and new address space reservation such

that the cumulative times are large enough and therefore less likely to be a�ected by the coarse

granularity of the timers.8

Figure 7.7 shows the CPU time for all traversals of the OO1 benchmark forward traver-

sal set for the large database, using mmap with di�erent batch sizes for allocating virtual address

space during swizzling. It is obvious that mmap with no batching is very expensive, and even a

batch size as small as 4 improves the performance by a factor of six (or more). This observation

is in line with earlier results obtained from the microbenchmarks (Figure 7.4).

7We refer to the sum of user and system time as the CPU time.
8Note that using real time, as we did for the microbenchmarks, is not su�cient in this situation because

the traversal contains computation and I/O components that interfere with performance measurements of only
the primitives.

162

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

C
PU

 T
im

e
(i

n
se

co
nd

s)

Traversal Number

no batching
batch size = 4
batch size = 16
batch size = 64

Figure 7.7: CPU times for all traversals using mmap, large database (Solaris)

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45

C
PU

 T
im

e
(i

n
se

co
nd

s)

Traversal Number

no batching
batch size = 4
batch size = 16
batch size = 64

Figure 7.8: CPU times for all traversals using mmap, large database, zoom (Solaris)

Zooming in on the lower part of the curves (Figure 7.8) con�rms that increasing the

batch size reduces the overall cost as expected, eventually reaching diminishing returns. Again,

recall that the �rst 10 to 15 traversals are the most relevant for new address space reservation

and meaningful comparison of performance improvements due to batching.

163

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45

C
PU

 T
im

e
(i

n
se

co
nd

s)

Traversal Number

no batching
batch size = 4
batch size = 16
batch size = 64

Figure 7.9: CPU times for all traversals using sbrk, large database (Solaris)

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45

C
PU

 T
im

e
(i

n
se

co
nd

s)

Traversal Number

no batching
batch size = 4
batch size = 16
batch size = 64

Figure 7.10: CPU times for all traversals using sbrk, large database, zoom (Solaris)

Figures 7.9 and 7.10 show the corresponding traversal results using sbrk instead of mmap

for allocating the virtual address space for reserved pages. As before, we note that sbrk without

any batching is more expensive than when any batching|even as small as four pages|is

used. Again, this corresponds to the results obtained from the corresponding microbenchmarks

(Figure 7.4). However, the performance improvement for sbrk is only between a factor of 2

164

and 4, smaller than the absolute numbers for mmap. However, this is not surprising because

we know from the microbenchmarks results that the performance of mmap without batching

is extremely bad compared to that of sbrk. This is also evident from the plots labeled \no-

batch" in Figures 7.7 and 7.9|at least for the �rst ten traversals|where the mmap version is

consistently more expensive than the sbrk version by a factor of 3 (or more).

The results for traversals on the small database are not reported here because of two

reasons. First, they do not show any interesting behavior that is not already obvious from

the results presented for the large database and second, only the �rst four traversals on the

small database are relevant for performance comparisons (i.e., only those traversals had new

address space reservation actions) making it harder to measure any signi�cant performance

improvements. In the same vein, we do not present any Linux results either, because they

showed similar overall behavior with one important distinction. The Linux results for both

sbrk and mmap did not show as large a di�erence as the results obtained on Solaris; instead,

the results were mostly similar for both primitives. Of course, this is also in line with the

conclusions derived from the microbenchmarks results presented earlier.

Discussion

The empirical results presented above clearly show that the bene�t of batching multiple small

requests into a single larger request is measurable performance improvement over using indi-

vidual requests. Further, we notice that batch sizes do not have to be very large to be e�ective.

Speci�cally, a batch size of 16 pages usually provides most of the bene�t, while a batch size of

64 provides almost all the bene�t of batching and quickly approaches the point of diminishing

returns for larger sizes beyond 64.

The cost of batching is the amount of memory \wasted" due to preallocation when the

application uses only part of (or none of) the preallocated memory. With a typical virtual

memory page size of 4KB on current systems, batching would preallocate anywhere between

64KB (16 pages) and 256KB (64 pages) of backing store. These numbers are much smaller

compared to today's typical main memory sizes of 16MB to 64MB (or more), and swap space

sizes that range in hundreds of megabytes. Thus we conclude that batching is useful and can

provide substantial performance improvements without equivalent increases in the overall cost.

Note that some high-level allocation library routines (e.g., malloc, free, etc.) may already

be using a variation of the batching technique described above. However, in general, it would

be useful to provide some batching directly through the virtual memory primitives themselves

because their implementation is more tightly coupled with the operating system.

Another interesting conclusion that can be derived from the empirical results is re-

garding the performance of Solaris. We have seen that the virtual memory primitives under

Solaris are several times slower than those under Linux, on identical hardware setups. It can

be argued that this is not a fair comparison because Solaris implements a layered VM ar-

chitecture [GMS87] which a�ords cleaner abstractions and better portability, but also has an

impact on the overall performance. However, we believe that even after allowing for layering

and abstractions, Solaris is likely to be slower than Linux (which has also been ported to

several di�erent architectures) by a factor of at least two. We have also found that user-level

protection fault handling is another area where Solaris performance is worse than expected.

165

7.3 Issues in Swap Space Allocation

As described earlier, we actively distinguish between allocation of virtual address space and

allocation of virtual storage space for a given application based on whether backing store is

associated with the allocated address space. Most user applications do not know (or care)

about this distinction because their typical use always requires swap space to be allocated.

However, the basic nature of pointer swizzling at page fault time warrants additional control

over virtual memory allocation, and lazy allocation of backing store.

A naive approach would allocate swap space as soon as a page of address space is

allocated, irrespective of whether the application has referenced the page or has any data on

the page; we call this eager allocation of swap space. In contrast, a smarter approach would

recognize that it is unnecessary to save a page to backing store as long as the page has not been

referenced by the application. Based on this heuristic, swap space allocation can be deferred

until the page has been referenced (read or written); this is called lazy allocation. A potential

problem with lazy allocation is that it may cause resources (in this case, the swap space) to be

\overcommitted." Applications may fail if they attempt to access all of the allocated memory

and su�cient swap space is not available to provide the required backing storage.

In this section, we discuss how the additional control over backing storage allocation

is bene�cial for our purposes (speci�cally for pointer swizzling at page fault time), and useful

in general for other low-level algorithms which interact with the virtual memory system. We

also describe how existing implementations of virtual memory primitives on various modern

operating systems handle allocation of swap space. Finally, we end with suggestions for some

possible improvements that would be useful for various applications.

7.3.1 PS@PFT and Swap Space Allocation

As described in Chapter 3, we use virtual memory protection techniques to access-protect

the address space corresponding to reserved pages.9 The memory protection ensures that an

application cannot attempt to use data from these pages without causing an access-protection

violation. This violation is �elded by our handler which then locates and loads the correspond-

ing data from the persistent store. Thus we are guaranteed that reserved pages can never be

used by the application without our handler receiving a noti�cation of such access.

It follows that when pages are reserved during the course of swizzling, it is not necessary

to allocate any backing store for those pages. That is, we need to allocate only virtual address

space for reserved pages, without consuming any real memory or swap space for those (unused)

pages. Since we are guaranteed that the fault handler will always gain control before any

attempt to access data from a protected page, we can arrange to have the necessary backing

store assigned at that time. One easy way to associate backing store with the faulted-on page

is to mmap an anonymous region to that page.

Lazy allocation of swap space is particularly useful for pointer swizzling at page fault

time because coarse-grained swizzling can be done without worrying about wasted swap space

for unused pages. Virtual address space is still consumed for all reserved pages; however,

9Recall that reserved pages are those pages that are referenced from swizzled pages, and are used as
\placeholders" because the data has not been loaded yet from the persistent store.

166

address space is a less scarce resource compared to swap space. Furthermore, if the swap

space is allocated lazily using mmap (or similar), we can potentially reclaim it using munmap

(or similar) for pages that are no longer in use by the application. Of course, if swap space is

reclaimed, the address space must still be retained because it may be referenced from anywhere

in the application data structures. We reprotect such address space to guard against (and to

get noti�cation of) future attempts to access the data in that space.

7.3.2 Survey of Existing Implementations

A wide variety of Unix-like operating systems are currently available in the market. Each of

these implements standard virtual memory primitives that provide the basic functionality as

described earlier, but with minor variations compared to others. Following is a brief survey

of implementations of the virtual memory primitives with respect to swap space allocation on

some popular modern operating systems.

SunOS 4.1.x, Solaris 2.x and Ultrix 4.2

The virtual memory primitives on each of these operating systems allocate swap space lazily.

However, although the actual allocation is done only when required, swap space is \reserved"

eagerly. That is, for every page of address space allocated, the operating system \sets aside"

corresponding swap space but does not actually generate the physical-to-virtual mapping entry

in the page table.

This eager reservation of swap space is designed to avoid the problem of overcommit-

ment associated with lazy allocation of swap space. By reserving swap space at the same time

when the page is allocated, the operating system guarantees that there will always be su�cient

swap space for all allocated pages. However, for our purposes, the overall e�ect is the same as

that of eager swap space allocation, that is, we still \waste" swap space for pages that are not

used by the application.

Solaris 2.5 de�nes a new option, MAP NORESERVE, that can be speci�ed when using

mmap. As the name suggests, this ag lets the application indicate to the operating system

that no swap space should be reserved (or allocated) for the newly-mapped address range, and

that the application will be responsible for ensuring that adequate backing storage is available

when the address space is accessed. This is exactly what we would like to have for e�ciently

implementing our coarse-grained pointer swizzling mechanism. It would be useful to also have

such control when sbrk is used for situations where mmap cannot be used.

AIX 3.2 and AIX 4.1

By default, swap space is allocated lazily, that is, only when the application actually uses (reads

from or writes to) the page. However, unlike any of the systems above, users are allowed to

dynamically modify this behavior to cause early allocation of swap space for speci�c sessions.

This is done by setting a user environment variable, PSALLOC, to a special value, early.

All applications executed after this environment variable has been set will default to eager

allocation of swap space.

167

In addition, there exists a special signal SIGDANGER that is sent to all running processes

when the available swap space falls below a certain threshold. This signal is designed to allow

graceful handling of swap space exhaustion as far as possible; if processes ignore the signal, the

operating system will eventually kill one or more processes to avoid a complete \meltdown."

It is certainly debatable whether having such a signal and arbitrarily killing processes

is a good design decision in general. We believe that having a mechanism that allows process

noti�cation for controlling memory usage is a useful idea in principle. Unfortunately, there

are no good heuristics for selecting processes that are amenable to termination. For example,

the current heuristic selects processes with the largest memory allocation. At �rst glance,

this seems reasonable because getting rid of the largest processes should provide the biggest

bene�t. However, it is also possible that these large processes are the most critical or long-

running processes and terminating them e�ectively wastes the CPU utilization that has already

been devoted to their execution.

We believe that it is extremely di�cult to �nd a process selection strategy that would

be acceptable in all situations. Of course, it would be very helpful if programmers were better

educated about the existence and behavior of SIGDANGER so that more applications will be

implemented to gracefully handle the signal, thereby reducing the need for drastic actions

from the operating system.

Finally, there is one minor quirk of AIX that should be highlighted. The operating

system divides the 32-bit process address space into sixteen segments, each of which is 256MB

in size.10 Every application is then classi�ed as supporting either a small allocation model

or a large allocation model. By default, all applications fall into the former category which

restricts maximum virtual address space allocation to a single segment. It is possible to build

applications that support the large allocation model by providing a special option to the linker,

increasing the upper limit of address space allocation to 2GB (i.e., 8 segments).

OS/2 Warp

The default swap space allocation model is eager allocation. As with AIX, it is possible to

explicitly control this behavior to achieve lazy allocation. However, the operating system

supports the lazy allocation model on a per-request basis, that is, it is possible to select lazy

allocation by using a special ag during an allocation request. This selection is in e�ect only

for that particular allocation request. Note that this is quite di�erent from AIX where the

environment variable a�ects allocation requests in all applications that are executed after the

variable is set.

Linux 2.x

Linux appears to be the most unusual regarding its swap space allocation model compared to

all other operating systems described above. The default model is completely lazy allocation|

unlike a normal lazy allocation scheme where swap space is allocated when the page is refer-

enced for the �rst time, Linux defers allocation of swap space even further by waiting until

10This is unlike classic segmented addressing because applications are not aware of segments and use direct
virtual addresses, but the operating system internally uses segment register addressing to locate the data in
the larger (52-bit) hardware-supported address space.

168

the page is ready to be swapped out. In essence, swap space is treated as an \extension" to

main memory rather than its backing store. This approach allows con�gurations without any

swap space as long as all running processes consume less than the total available main memory.

Note that Linux provides no mechanisms to \turn o�" the lazy allocation model.

7.3.3 Discussion

It is evident from the above discussion that there are no standard heuristics for swap space

allocation|each operating system implements the virtual memory primitives di�erently and

provides its own variant on the mechanism for con�guring lazy or eager allocation of swap

space. We believe that the lazy allocation model is preferable in general, as long as appli-

cations are aware of|and are willing to handle|situations where possible overcommitment

of backing store could occur. An ideal situation would have the default as lazy allocation

with an application-con�gurable option for switching to eager allocation. With such a setup,

applications that truly need eager allocation can ensure that backing storage is allocated along

with the address space.

Using Unmapped Address Space

In addition to the inherent lazy allocation supported by sbrk and mmap implementations, an-

other possible way to achieve the same e�ect would be through the use of unmapped address

space, that is, virtual address space that has never been mapped and consequently has no

corresponding entries in the page table. With this approach, applications can use unmapped

address space (instead of access-protected address space) and handle unmapped memory vi-

olations (instead of access-protection violations) to detect accesses to the \protected" region.

The main advantage of this approach is that it supports true lazy allocation since the address

space is not even mapped until it is accessed.

A naive implementation of the above scheme would simply select a range of addresses

when reserving address space without ever involving the operating system in the selection

process. At �rst glance, this seems reasonable because, by de�nition, address ranges that are

not known to the operating system are unmapped. However, there are at least two obvious

problems with this approach:

1. Other modules of the application may be allocating memory in cooperation with the

operating system; it is possible that the operating system may accidentally select address

ranges that clash with the \reserved" addresses because it did not know that those ranges

were already \in use."

2. There is no portable way to determine \safe" address ranges across multiple operating

systems, or even for a single operating system across di�erent hardware platforms or

kernel versions, such that these ranges do not clash with the normal allocation. (This is

the same problem as the one that we face when using the MAP FIXED option of mmap.)

The basic solution is to disallow the operating system from adding new mappings into our

\reserved" area. For example, if we let the operating system map a �le or a dynamically linked

(possibly shared) library into memory, it may select an address range that either partially

169

overlaps or completely clobbers the pages that we have already reserved as part of the pointer

swizzling process. This is potentially even more serious problem for simple mmap'ed persistent

storage systems that do not use pointer swizzling because the actual persistent object store is

very tightly coupled to speci�c virtual address ranges where it must be mapped.

It is clear that, in order to solve these problems e�ectively, the operating system must

be involved in the address space reservation process. One approach for this might be to provide

a new virtual memory primitive, say mreserve, that can be used to \inform" the operating

system that a certain address range is now \in use" by the application but no backing store

needs to be allocated as yet. Alternatively, the primitive can be designed to \ask" the operating

system for an unmapped address range on behalf of the application. The implementation of this

primitive can be made very fast, in part because of the minimal actions required to implement

the simple functionality. A fast primitive would also reduce the overhead of reserving address

space during swizzling; currently, either sbrk or mmap must be used for this purpose; this

adversely impacts the overall performance of the system.11

7.4 Pointer Swizzling and Virtual Memory Management

Pointer swizzling at page fault time uses existing virtual memory hardware and protection

facilities supported by the operating system to detect references to non-resident object and to

trigger loading and swizzling of pages containing these objects. Once a page has been faulted

in from the persistent store, it is cached in the virtual memory and no distinction is made

between the page in memory and on secondary storage. In other words, the virtual memory

system is free to move swizzled pages between main memory and swap space without a�ecting

the normal operation of Texas. This is unlike some other systems which enforce that some or

all pages corresponding to persistent memory must be \pinned" in RAM.

In general, pointer swizzling at page fault time is independent of page replacement

policies of the underlying virtual memory system. Of course, if necessary, it can exploit any

additional control that may be o�ered by the operating system (a la Mach-style external

pagers). By default, however, Texas \plays nice" with other applications running on the

system because it does not impose any special considerations on the virtual memory system.

In this section, we discuss various issues related to interactions between the virtual

memory system and pointer swizzling at page fault time in the context of control over memory

management. We �rst revisit the mistaken-dirty-pages problem (described earlier in Chap-

ter 3) which arises due to the extremely loose coupling between pointer swizzling at page

fault time and the virtual memory system. Using this example, we describe the possible spec-

trum of interactions between an application and the virtual memory system, and provide some

directions for additional application-level control over memory management, including paging.

7.4.1 Control over Memory Management

Recall that the mistaken-dirty-pages problem arises because the virtual memory system cannot

distinguish between modi�cations by Texas (for pointer swizzling) and those by the application

11The batching mechanism is one simple way to amortize the cost of crossing kernel boundaries.

170

itself. As a result, pages are \erroneously" marked dirty by the virtual memory system and

paged out if necessary. The basic resolution for the problem lies in providing mechanisms that

allow additional interactions between the virtual memory system and the application regarding

the latter's access characteristics and status of its pages. A general solution might allow

applications to have complete control over the virtual memory management of the operating

system. However, it is not necessary to have such extensive control|a simpler virtual �le

system interface can be exploited for this purpose at the expense of some operating system-

speci�c implementation.

It is possible to imagine a spectrum of di�erent levels of interaction between an appli-

cation and the virtual memory system, ranging from simple (i.e., no interaction) to complete

application control over various virtual memory management policies. The default situation

falls at one end of the spectrum where the application does not exert any control over the

virtual memory system and therefore cooperates with other applications. At the other end of

the spectrum is the situation where an application has full control over the virtual memory

system, including the replacement policy and mechanism. In this case, the application has

special privileges compared to other applications on the system whose performance can be

adversely a�ected by the actions of the privileged application. For example, if one application

pins some pages in RAM, the memory available to other applications is e�ectively reduced,

possibly causing extra paging activity. In general, any situation where resources are exclusively

assigned to a single privileged process will adversely a�ect other less-privileged processes.

Finally, between the two extremes, there are a variety of levels that a�ord di�erent

degrees of interaction with the virtual memory system. We briey describe some of these

approaches and discuss how they can be applied to solve the mistaken-dirty-pages problem.

Special-purpose Virtual Memory Primitive(s)

Narasayya et al. [NNM+96], who originally identi�ed the mistaken-dirty-pages problem, pro-

pose a special system call that allows the application to clear the dirty status bit of a page. The

idea is to use this system call for pages that have not been modi�ed by the application; later,

if these pages need to be evicted from memory, they can simply be discarded without any un-

necessary page-outs. The corresponding virtual address space must also be reprotected so that

future references to that space will be intercepted by the normal fault handling mechanism.

This solution can be generalized to provide new special-purpose primitive(s) that can be

used by an application to communicate various types of information to the underlying virtual

memory system. Using such primitives, the paging policy for mistaken-dirty pages can easily

be con�gured as either local paging or remote paging (i.e., from the persistent store) depending

on the current application-speci�c conditions, and the virtual memory system behavior can be

controlled accordingly.

Some operating systems such as Solaris 2.x and AIX 4.x already support a primitive,

madvise, that is essentially a simpler version of a full-edged primitive for communicating

with the virtual memory system. Currently, madvise can only be used for memory that has

been mmap'ed, and supports a limited amount of information that can be communicated. It

is possible to extend the functionality of madvise and generalize it for arbitrary pages in the

address space.

171

External Memory Management

We envision an external memory managementmechanism that allows user-level code to control

various memory management operations such as paging, address mapping, etc. Some operating

systems such as Mach [BKLL93], Choices [Rus91], and Chorus [ARG89] already provide some

form of external memory management.

Mach allows user-level tasks to act as external pagers that fully control the use of

memory within the process address space. A pager may control all or part of the address

space and multiple pagers can coexist, each managing a di�erent part of the address space.

External pagers also handle the page-in and page-out requests generated by the kernel, and

are free to save and restore data using any arbitrary mechanism. Mach also provides default

pagers (also called internal pagers), which are used if no external pagers are con�gured.

An external page-in facility can be combined with our pointer swizzling mechanism to

create an intermediate \loading and swizzling module" that executes as a separate thread and

handles all requests to load data from the persistent store. It is the job of this module to

locate the page, swizzle it and then load it into memory. Since pages are modi�ed before being

loaded into memory, the virtual memory system cannot erroneously consider a page dirty due

to swizzling only. This provides a general solution that allows pointer swizzling at page fault

time to coexist with the virtual memory system.

Using a Virtual File System

Although a builtin, operating system-supported external page-in facility can be used as a

dedicated swizzling module, a similar mechanism can be implemented by exploiting the virtual

�le system (VFS) interface provided by most modern operating systems, at the expense of

requiring some system-speci�c implementation and superuser privileges for mounting a new

�le system. In essence, we can implement a simpli�ed external pager-like facility through a

virtual �le system.

The basic idea is to implement a simple, special-purpose \�le system" that manages

only two speci�c �les. One of these acts as the backing store for data that is loaded into

the heap from the persistent store, and the other is a pseudo-�le that is actually used to

communicate information from the application to the special �le system. We use the term �le

system module for code that implements the actual �le system mechanism by interacting with

the VFS interface. In contrast, the term �le system instance corresponds to a unique set of

the two special �les managed by a �le system module. We have only one �le system module

that must be loaded and/or mounted specially into the kernel as a new virtual �le system;

however, we can have multiple �le system instances, one for each persistent store manipulated

by an application. In other words, we have a one-to-one mapping between persistent stores and

�le system instances that \manage" them. Apart from managing the paging for a particular

persistent store, each �le system instance also acts as the \swizzling server" for that persistent

store, swizzling the data as necessary and maintaining the information required for mapping

between persistent and virtual addresses.

When an application opens a persistent store, the �rst step is to mmap a page of virtual

address space to the special backing storage �le, without actually loading any data from the

172

persistent store.12 By de�nition, this page corresponds to the �rst page of the persistent store,

and the persistent store entry pointers can be swizzled into corresponding virtual addresses on

this page. As with the current implementation, this concludes the bootstrap phase.

As the application attempts to dereference the entry pointer(s), a normal virtual mem-

ory (kernel) fault is generated because the data for the �rst page is not yet available.13 The

virtual memory system transfers control to our special �le system for loading the data into

memory. The �le system then locates and loads the page from the actual persistent store

(stored in a regular �le system), swizzles it appropriately while maintaining the necessary

mappings between persistent and virtual addresses, and then provides the swizzled page to

the virtual memory system, which then �nishes handling the virtual memory fault by making

the data available to the application. Notice that the page is delivered to the virtual mem-

ory system after it has been swizzled, ensuring that it will be considered clean by the virtual

memory system. Any other pages that need to be reserved during swizzling can be handled by

mapping address space to the special backing storage �le and making corresponding entries in

the mapping table.

When the virtual memory system needs to evict pages as part of the page replacement

policy, it can simply discard the clean (but swizzled) pages without any further intervention

from our �le system. If the application references this page again, a new kernel fault is gener-

ated which is handled as before, by loading the page from the persistent store and swizzling it

within the special �le system. On the other hand, if pages that are actually modi�ed by the

application (the truly-dirty pages, as opposed to the mistaken-dirty pages) need to be evicted,

they will be paged out to our �le system, which can write them to local swap space (as with

normal virtual memory paging). Alternatively, depending on the checkpointing and logging

mechanism, the truly-dirty pages may be written directly to the log, which may be uni�ed

with the persistent store itself if a log-structured storage system is being used.

Notice that we avoid the mistaken-dirty pages problem completely by providing swiz-

zled pages to the virtual memory system. By implementing our own \�le system" to handle the

backing storage for a persistent store, we are able to intervene at the right level of abstraction

(similar to an external pager) without requiring extensive modi�cations to the operating sys-

tem. Referring back to system architecture shown in Figure 4.1 (Chapter 4), we have e�ectively

migrated the swizzling and mapping module into a separate entity|the special �le system. Of

course, the type descriptor information must still be communicated to the swizzling module

as before, requiring some additional communication|handled using the pseudo-�le|between

the application and the special �le system.

Another bene�t of this approach is that user-level fault handling is no longer required

for implementing pointer swizzling at page fault time. Instead, we manage the loading and

swizzling entirely using normal kernel-level faults generated by the virtual memory system.

Even pages that are actually modi�ed by the application can be distinguished easily because

only the truly-dirty pages will be paged out to our �le system, while the clean pages will directly

be discarded by the virtual memory system. Finally, this approach avoids the traditional

12This is very similar to the current bootstrapping mechanism. One optimization may be to use batching
as currently implemented|we mmap multiple pages of address space at a time rather than individual pages on
demand.

13This is very similar to normal kernel-level faults for loading data from �les mapped into memory.

173

database system strategy of \wiring down" a chunk of RAM and managing it explicitly. This

is similar to our current faulting and swizzling approach, where Texas \plays nice" with other

applications in terms of virtual memory management.

The approach works across most modern operating systems; we can achieve a high

degree of portability by ensuring that all actions are in terms of a well-known �le interface

(i.e., reads and writes to �les). Some operating system-speci�c implementation will still be

required for interacting with the virtual �le system interface which is likely to be speci�c to

each operating system. Another issue is the need for superuser privileges to mount the special

\�le system" appropriately such that the kernel recognizes it as a valid module. However,

this is necessary only to mount the single �le system module; running a normal application

(that implicitly interacts with �le system instances) does not require any special privileges. We

believe that these minor disadvantages are acceptable costs for the portability and performance

bene�ts gained by avoiding the mistaken-dirty-pages problem.

7.4.2 Discussion

Address mapping and virtual memory management are two separate issues that should be man-

aged separately. Unfortunately, most current operating systems combine these two together in

their implementations, leading to unexpected interactions with low-level mechanisms such as

pointer swizzling at page fault time and compressed virtual memory. The mistaken-dirty-pages

problem, and the associated additional page-outs that follow, provide an excellent example of

such unexpected (and unnecessary) interactions. The right solution is to improve operating

system implementations to provide better separation of concerns and additional control to

the programmer. Some modern operating systems provide an extended memory management

model that separates the fundamental issues and allows programmers to externally control the

behavior of various operating system components.

We have seen from the earlier discussion that there are many issues that must be re-

solved in order to provide a exible mechanism that user-level applications can interact with

and control. An approach that implements the basic operating system functionality in a micro-

kernel core and layers the rest on top via external modules is probably the best way to handle

such interactions. We envision a exible external memory management mechanism, similar to

Mach-style external paging, for supporting additional user-level control over operating system

functionalities.

Besides the actual mechanics of page-ins and page-outs, paging policy is another impor-

tant aspect of virtual memory paging. The paging policy is used by the virtual memory system

to select which pages should be replaced and when they should be replaced. Although Mach

supports user-level pagers for handling the mechanics of the actual paging itself, control over

paging policy is still retained by the operating system and external pagers typically cannot

a�ect any policy decisions.

There is a wide spectrum of applicability corresponding to di�erent levels of control

over the virtual memory system's behavior. For most applications, having control over only

the paging mechanism is likely to be su�cient; for others, it may not even be necessary to

have any control. In contrast, for some special-purpose applications, a full custom replacement

policy and complete control will probably be a signi�cant win over any of the default policies.

174

Therefore, it is important to approach and resolve a problem at the right level of abstraction

to achieve the cleanest solution. For example, it is easy to solve the mistaken-dirty-pages

problem simply by using Mach-style external pagers without requiring complete control over

(and arbitrarily changing) the replacement policies of the virtual memory system or diving too

deep into low-level implementation issues.

There are, of course, a few disadvantages of allowing user-level control over operating

system functionalities. Speci�cally, the overall performance may be signi�cantly a�ected if the

user-level code makes \bad" decisions. However, the bene�ts appear to outweigh the potential

performance problems. An ideal setup would provide su�cient \hooks" into various operating

systems facilities along with default processing so that applications that truly need additional

control (and are aware of the consequences) can indeed do so relatively easily. Of course, there

must still be centralized control for certain critical issues to ensure fairness.

7.5 Other Operating System Features

Most of our discussion until this point has concentrated on issues related to the virtual memory

system and how existing features can be exploited for e�ciently and portably implementing

coarse-grained address translation. In this section, we briey discuss other operating system

features that are useful for implementation of low-level system extensions. In particular, we

discuss the need for e�cient and exible exception handling as well as issues in selection of

virtual memory page sizes and extended page protection facilities. Finally, we also briey

discuss raw I/O which allows unbu�ered access to block devices for applications with special

I/O characteristics.

7.5.1 Exception Handling

We use the term exception for any kind of fault (or signal) that occurs during program ex-

ecution. These exceptions may be classi�ed into two types, asynchronous and synchronous.

Asynchronous exceptions may be generated due to external events that are not under an appli-

cation's control|for example, when the user types Ctrl-C (for interactive programs) or some

preset alarm goes o�. On the other hand, synchronous exceptions are triggered by events

that are directly related to the execution of the program|for example, when a divide-by-zero

operation is performed.

Historically, exception handling has been used to permit graceful handling of serious

error conditions that are encountered during application execution. For example, an interactive

application may choose to handle user interrupts14 by releasing all resources and terminating

cleanly with a useful error code. Similarly, a oating point exception, typically generated

because of a divide-by-zero operation, can be handled such that a helpful error message is

printed before execution is terminated.

Since the usual response to an exception is termination of execution, most operating

system implementations do not consider e�ciency to be an important factor in exception han-

dling. However, current day usage of exception handling has advanced signi�cantly beyond the

14Most Unix system generate the SIGINT signal when the user types Ctrl-C.

175

simple \graceful error handling" usage model. An obvious example is our pointer swizzling at

page fault time technique, which uses virtual memory access-protection violations to avoid the

software overhead of checking pointer formats. Examples of other applications include garbage

collectors, distributed shared virtual memory systems, and compressed virtual memory. With

a wide variety of \non-traditional" uses for exceptions [AL91], it is becoming increasingly nec-

essary that operating system implementors recognize the need for e�cient exception handling

and improve their implementations appropriately.

Experimental Design

We have measured the performance of access-protection violation handling on both Solaris

and Linux using our clock cycle timer. Speci�cally, we measured the time elapsed between

the point where a signal is raised (as the application attempts to access a protected page)

and the point where the user-level protection fault handler gains control of execution. This

approximates the overhead imposed by the operating system for servicing an exception and

transferring control to the user-speci�ed handler.

For this purpose, we use a microbenchmark that is set up as follows. We attempt

to access a single page that is access-protected, generating an appropriate signal (SIGSEGV)

which is then handled by a a user-level signal handler. However, the handler simply incre-

ments a counter (originally initialized to zero) and returns without changing the protections

on the page. When the faulting instruction is restarted, it immediately generates another

signal because the page is still access-protected and the same sequence of events occurs again.

Eventually when the counter reaches a prede�ned maximum (5000 in our microbenchmark),

the fault handler unprotects the faulted-on page and returns, allowing the application to suc-

cessfully complete the original access without generating any further signals. We measure the

total time for the entire sequence (starting from the �rst attempt to access the protected page,

until the page is actually unprotected) and divide by the total number of faults to obtain the

time taken by the operating system for servicing a single fault.

Note that this approach really gives us a lower bound on the operating system cost for

handling a single access-protection violation because of the loop-like nature of the microbench-

mark. That is, a large number of faults are generated in quick succession, much like iterations

of a loop, and we are likely to see e�ects of caching; in particular, the relevant kernel data

structures and fault handling code may be cached in a second-level cache after the �rst fault.

However, an application which is not generating protection faults heavily is unlikely to bene�t

from such caching and consequently may incur higher overhead per fault.

Experimental Results

We ran our microbenchmark on both Linux and Solaris systems, using identical underlying

hardware (a 200MHz Intel Pentium Pro processor with 32MB RAM) as before for both systems.

Table 7.1 shows the actual cost for each operating system. The results clearly show that

exception handling on Linux is several times faster than on Solaris. Both SunOS 4.x and

Solaris 2.x implement a layered VM architecture [GMS87] that is substantially di�erent from

the 4.3BSD memory management architecture. In particular, it is more modular and requires

176

Operating system Cost (in cycles)

Linux 2.0.x 2,500

Solaris 2.5.1 17,500

Table 7.1: Cost of handling an access-protection violation

many function calls, sometimes indirected via a function table lookup. This will obviously

impact the overall performance, and indeed Chen et al. [CBL90] have shown that layering

of components adds a 20% overhead to fault handling. However, the empirical results that

we have obtained indicate a slowdown factor of six, de�nitely much larger than what can be

accounted by the extra 20% penalty.

Discussion

Other researchers have also recognized the problem with slow exception handling on various

operating systems. Thekkath and Levy [TL94] contend that it is easier to improve perfor-

mance of handling synchronous exceptions than it is for asynchronous exceptions because the

information needed for servicing the former is already available in the user space of the pro-

cess. They describe both hardware (architectural changes) and software approaches (kernel

changes) for this purpose and present encouraging results for their software approach. Imple-

mented by modifying the DEC Ultrix 4.2A kernel, their approach requires only 8 microseconds

for handling a null exception compared to 80 microseconds taken by the unmodi�ed kernel.

Another great example of fast exception handling mechanism is the L3 (and subse-

quently, L4) microkernel [Lie95, Lie96]; the full cost of a kernel call in the L3 microkernel

is between 123 and 180 cycles [Lie93], or less than one microsecond on a modern 200MHz

processor. This is an extremely impressive result, given that our best performance on Linux

is more than an order of magnitude slower. Anderson et al. [ALBL91] have discussed the

interaction between hardware architecture and operating systems, including virtual memory

and fault handling.

7.5.2 Virtual Memory Page Size and Sub-page Protections

Pointer swizzling at page fault time generally bene�ts from the use of a smaller page size

because it reduces the amount of swizzling that is required at page faults. In addition, the

address space consumption rate is also reduced as fewer pointers are swizzled for every page

loaded from disk.

In general, virtual memory page size plays an important role in the implementation and

performance of systems that exploit virtual memory features to implement new abstractions.

Unfortunately, opposing forces are usually at work when a page size needs to be selected [HP96].

On one hand, larger sizes are preferable from the perspective of reducing hardware costs|page

tables and Translation Lookaside Bu�ers (TLBs) can be made smaller|and for improving e�-

ciency of data transfer between memory and secondary storage because larger units of transfer

reduce the e�ect of latency. On the other hand, smaller sizes provide additional exibility in

terms of allocation and memory protection, and for reducing internal fragmentation.

177

One possible approach for resolving the page size selection conict is to choose a size

that provides a balance between the opposing forces without considering pointer swizzling at

page fault time (or other systems), and then support operations|mainly page protections and

signal handling|at a sub-page granularity for those systems that bene�t from smaller page

sizes. This approach is likely to have minimal impact on the normal operation of a virtual

memory system because page sizes are selected based only on the relevant trade-o�s. At the

same time, it works well for coarse-grained address translation; with sub-page protections,

only parts of reserved pages are swizzled, e�ectively providing the same bene�t as if the pages

were smaller.

We believe that with a little hardware support, operating systems should be able to

provide sub-page protection facilities relatively easily. In fact, the ARM600 processor provides

such support [SW91] facilitating the easy implementation of sub-page protections in the Apple

Newton. The 801 prototype RISC machine also incorporated support for protections at the

sub-page granularity [CM88]. Finally, Thekkath and Levy [TL94] have shown that a little

kernel support can be used to emulate sub-page protections in a simple manner at a higher

level of abstraction.

7.5.3 Support for Raw I/O

In any computer system, disk I/O is usually much slower compared to the performance of

other components, most notably the CPU. Typical disk latencies are on the order of �ve

to ten milliseconds, which is several orders of magnitude slower than main memory speeds.

Therefore, it is advisable to minimize the number of disk I/O operations to avoid a major

impact on general performance. Most Unix systems implement this by providing �le system

caching (sometimes also known as the bu�er cache). As with any cache, the basic idea is

to store recently accessed disk blocks in fast storage speculating that the same data will be

read again soon. Most operating systems also implement a readahead mechanism to prefetch

additional data into the cache with the hope that expensive disk seeks can be avoided if the

prefetched data is accessed soon.

Traditional Unix implementations have typically used a �xed-size, independent area of

memory specially designated for the bu�er cache. However, most modern systems integrate the

bu�er cache with the virtual memory system and dynamically control the fraction of memory

assigned to each component. When a read is issued, the kernel �rst maps the speci�ed part

of the �le into its own (protected) address space, faults the data in, and then copies it to

the user-speci�ed bu�er. The procedure for handling a write follows a similar model, also

performing an extra copy from user space to kernel space.

However, for specialized application with well-understood (but possibly unusual) I/O

behavior, the extra copy from/to the bu�er cache may adversely a�ect the performance both

in time and space. For example, database-style applications that transfer large amounts of

data to and from disk are likely to bene�t from bypassing the bu�er cache because they usually

implement their own caching mechanisms. In the case of Texas, the data is fetched only once

from the disk and is subsequently cached in virtual memory. A bu�er cache is undesirable

in this situation because it will compete with the virtual memory system for real memory,

e�ectively reducing the memory available to the application.

178

Most Unix systems provide a facility called raw I/O (or direct I/O) that allows un-

bu�ered access to a block device, avoiding the extra copy because the data is faulted in

directly into user space. The interface is still the same (normal read and write system calls),

although the requests must be made to the appropriate character device corresponding to the

block device;15 the kernel internally handles the requests di�erently. Another alternative for

eliminating the extra copy is to use mmap instead of standard �le system read/write inter-

face; this is, however, less attractive for two reasons: mmap is not as portable, and it presents

semantics that are di�erent from the read and write system calls.

As operating system implementations become more open, it would be extremely useful

to have application-con�gurable disk I/O characteristics. In particular, applications should

be able to perform either normal, bu�ered I/O or direct I/O for arbitrary �les in the normal

�le system based on their speci�c �le access characteristics and semantics. It appears that

various operating system implementations are indeed moving in that direction. For example,

Irix (from Silicon Graphics, Inc.) supports a special ag (O DIRECT) that can be speci�ed when

opening a �le (via the open system call) to notify the operating system that direct I/O must

be used for reading and writing that �le. Similarly, the new Solaris 2.6 release supports a new

library routine, directio, that can be used to dynamically switch access characteristics for

the speci�ed �le. Alternatively, the operating system also allows a �le system to be mounted

such that I/O to all �les in that �le system will be direct.16

7.6 Conclusions

In this chapter, we have described various aspects of operating system interactions that are

relevant when implementing low-level system extensions such as distributed shared virtual

memory and pointer swizzling at page fault time. Since our system relies heavily on virtual

memory hardware, our discussion is primarily focused on interaction with the virtual memory

system, but we also briey discussed some other useful features of the operating system.

We have shown that sbrk and mmap, the two virtual memory primitives most commonly

used for allocation, di�er signi�cantly in terms of their features and interface, and overall per-

formance. The exibility of mmap with respect to additional control over swap space allocation

and reclamation is likely to provide a major bene�t over sbrk. As such, we believe that mmap

should be used as the basic primitive for implementing high-level allocation policies.

We also discussed issues regarding external memory management and control over

virtual memory paging as related to pointer swizzling at page fault time. In this context,

we described various levels of interactions with the virtual memory system that are possible

depending on the capability of the underlying operating system kernel. It should be emphasized

again that although pointer swizzling at page fault time can exploit additional support from

the virtual memory system, it is not a requirement for normal and correct operation in general.

Other than virtual memory system interactions, we also briey described some related

issues in operating system development. The most important of these is the support for

15For example, on Solaris, the name /dev/dsk/c0d0s7 represents a block device, so the corresponding raw
device would be named /dev/rdsk/c0d0s7.

16Gavin Maltby, personal communication, July 1997.

179

e�cient exception handling. We have measured exception handling costs on both Linux and

Solaris and shown that although the latter is slower by a factor of about six, it has potential

to be improved. We believe that fast microkernel implementations are likely to be the winners

in this category. Another important issue is the support for virtual memory protections and

extensions to allow protections at the sub-page granularity. The latter would be useful for

various systems that rely on virtual memory facilities and would bene�t from smaller page

sizes. Finally, we make a case for providing additional control to the programmer with respect

to �le I/O and ability to bypass �le system caching.

In conclusion, operating system implementations should be more open and reective,

allowing \responsible" user-level applications to control some of the key features to suit their

needs. In other words, operating systems should provide the basic building blocks that can be

assembled together by user-level facilities to implement useful and extensible systems e�ciently.

Overall, it would be bene�cial if the operating systems had more separation of concerns,

thereby allowing systems (such as ours) to approach and solve problems at the right level

of abstraction, without getting distracted by tedious (and irrelevant) implementation issues.

There is evidence that other researchers also have similar goals for improving operating system

implementations [KLM+93].

180

Chapter 8

Future Work

8.1 Introduction

The previous chapters have described the design and implementation of Texas, our portable

persistent storage mechanism based on high-performance coarse-grained address translation

using pointer swizzling at page fault time. Although Texas is an actual system that has been

used in both commercial and non-commercial systems, we also intend for it to be used as a

research testbed for exploring various avenues in address translation and advanced storage

management issues. In this chapter, we describe some of these research directions, concentrat-

ing mainly on storage management and briey discussing other related extensions to Texas.

8.2 Storage Management

The current design of Texas is exible in terms of the implementation of underlying storage

management. We have implemented an abstraction layer that can be used to implement

di�erent kinds of storage mechanisms without disturbing any of the other functionality. In

the current implementation, the storage mechanism is designed such that the persistent store

can be saved either to a regular �le in the �le system or to a raw disk partition. It is possible

to implement a log-structured storage system that simpli�es the checkpointing and recovery

mechanism, while improving exibility and performance.

We are also interested in studying prefetching and compressed in-memory storage as

two issues important to storage management. Prefetching can be viewed as a way to improve

I/O performance by reducing the time spent in waiting for I/O to complete. In contrast,

compressed in-memory storage is a way to avoid I/O by attempting to keep more data in

memory. Finally, we also discuss adaptive techniques for both prefetching and compressed

in-memory storage.

8.2.1 Log-structured Storage System

As described in Chapter 4, Texas currently implements a simple checkpointing and recovery

mechanism. We can replace the simple logging mechanism with a more exible log-structured

storage system that supports additional functionality.

181

A log-structured storage system (LSS) is essentially the lower levels of a log-structured

�le system [RO91]. The storage system typically manages a single raw disk partition, although

a normal �le could be used instead. We choose not to implement an entire �le system because

the complexity is not needed for simple persistent storage management. Instead, only the stor-

age functionality is implemented at the lowest layer and the upper layers may build additional

facilities such as �les and directories, access permissions, etc. any way they choose.

In a log-structured storage system, the entire disk (or �le) being managed is used as

a log, and the log itself acts as the �nal repository of data pages (i.e., the persistent store).

In other words, there are no separate entities corresponding to the persistent store and the

log that is used for checkpointing. By de�nition, blocks (i.e., pages) in a log-structured store

do not have a single, �xed \home" location on disk. Instead, logical blocks in the system are

allowed to \migrate" by simply writing a new version of the block at some di�erent location

on the (managed) disk; the \current" version of the block is the last one written to the log.

Since blocks do not have a �xed location, changes to a �le are committed by updating the

index structures to point to the new data.

It is easy to see how a log-structured storage system can be used to maintain the

persistent data and support the necessary checkpointing. In fact, since multiple versions

of data can exist on disk, we can save multiple checkpoints and support rollback to older

checkpoints. Given the \write anywhere" strategy of log-structured systems, writes can also be

clustered such that related data are stored consecutively on disk, improving the read latency

and bandwidth for future access. Our original paper on Texas [SKW92] describes further

details about the log-structured storage system, including a description of its data structures.

8.2.2 Adaptive Prefetching

Modern computer memory systems are hierarchical, being composed of several levels of mem-

ory [HP96]. The lower levels (e.g., magnetic disks and tapes) are inexpensive and therefore

large but slow, while the higher levels (e.g., RAM and caches) are expensive but small and fast.

As memory systems become more hierarchical by growing \downward" to become persistent

object stores, it becomes increasingly important to make good decisions about which data

should be in fast memory at any given time. The most commonly used policy in current sys-

tems is demand prefetching combined with an approximation of LRU replacement. Demand

prefetches are those that occur only in conjunction with demand fetches, that is, real page

faults.

There are several choices to be made when selecting a prefetching policy. One is the

policy of which pages to prefetch, while another is how many pages to prefetch, and yet another

is how long prefetched pages are retained in memory if they are not immediately referenced

by the program. The most common prefetching rule is one-block lookahead|when a page (or

block) is faulted on, the next consecutive page is prefetched. For example, if page number 237

is faulted on, page number 238 is brought into memory as well. One-block lookahead is an

attractive policy because it is easy to implement; consecutively-numbered pages are usually

consecutive on disk, and can be brought into memory without an additional seek.

182

Whether to Prefetch: The \fool-me-once" Rule

We believe Horspool and Huberman's work on prefetching [HH87] to be among the most

interesting, though not for the reasons they intended. They experimented with a variation of

one-block lookahead that was designed to be easy to simulate e�ciently. Our interpretation of

their data, however, is that they inadvertently simulated an adaptive prefetching policy, which

is more interesting than what they were actually attempting to approximate.

Horspool and Huberman modi�ed one-block lookahead to preserve the inclusion prop-

erty; this property allows simulation of many memory sizes in one pass through a trace.

Inclusion is a well-known property of LRU replacement [MGST70]|it guarantees that pages

in a memory of a given size are always a subset of pages that would be in a memory of any

larger size, and therefore the misses for a given memory are a subset of the misses for any

smaller size. For e�cient simulation, a single queue of pages can be maintained as a trace is

analyzed, as though memory were arbitrarily large. This queue shows the recency ordering of

all pages that have been touched, independent of any actual memory size.

LRU inclusion means that moving a page to the head of the queue will be interpreted

as a hit for a particular memory size (as well as for all larger sizes), and a miss for smaller

memories. Horspool and Huberman's innovation is to devise a prefetching scheme, similar

to conventional one-block lookahead, while preserving the inclusion property. Their policy

reorders pages in the queue in ways that are independent of any particular memory size.

These reordering will be interpreted as prefetches for some sizes of memory, but as reordering

of in-memory pages for larger sizes of memory. The particular ordering rule they use is this:

pages that are actually touched are always brought to the head of the queue, as though it were

an LRU queue; the next (lookahead) page in memory is also brought to the head of the queue,

if and only if it was nearer the head of the queue than the page that was actually touched.

Details of the scheme can be found in [HH87].

Horspool and Huberman were surprised to �nd that their algorithm actually outper-

formed conventional one-block lookahead. We believe that in preserving the demand prefetch

policy, Horspool and Huberman inadvertently simulated an adaptive prefetching policy, which

approximates what we call the \fool-me-once" rule|if a page is prefetched but not referenced

by the application, it is not prefetched the next time.

Unfortunately, the details of Horspool and Huberman's algorithms introduce unex-

pected anomalous properties [WKM94]. In particular, their policies are not properly timescale

relative|events occurring on a timescale that should only matter to some sizes of memory

adversely a�ect replacement decisions for memories of very di�erent sizes. As we describe

in [WKM94], slight changes to the algorithms can restore timescale relativity and make them

much better-behaved.

What to Prefetch

Horspool and Huberman's policy decides whether to prefetch based on previous observations of

reference behavior. It is equally interesting what to prefetch. One possibility is to dynamically

reorganize small pages within larger units of disk transfer. As a program accesses di�erent

pages, the ordering of those accesses can be recorded. When the pages are (eventually) paged

183

out, they can be written to disk in a new order that reects the recent access ordering. If

future access orderings are correlated with past orderings, then this enables a very convenient

form of prefetching.

In the mid-1970's, Baer and Sager [BS76] simulated a prefetching policy that relied on

reorganizing pages on disk using the order of initial accesses by the program. Unfortunately,

their results were disappointing; even though preliminary measures of locality indicated that

previous page fault orderings were a good indicator of subsequent access patterns, the policy

they actually simulated was unsuccessful, and did not improve performance. We believe that

this negative result was due to subtle and interacting aws in the design of their experiment,

and that their data are actually quite encouraging when properly interpreted.

For example, Baer and Sager's reorganization policy used the LRU queue ordering of

pages to determine the order in which pages were written out. One problem with this policy is

that the LRU ordering is the order of last reference to the pages in question, not the page fault

ordering that originally brought the pages in. While these two grouping principles are probably

strongly correlated, they are not identical. We believe that further research and analysis in

this area is necessary, and is likely to yield interesting results.

8.2.3 Compressed In-memory Storage

Current trends in hardware con�gurations indicate that there is a huge gap in performance|

about �ve orders of magnitude|between main memory latencies and disk latencies. A cost

e�ective approach to bridge this gap is to introduce a new level into the memory hierar-

chy. Compressed in-memory storage uses part of main memory as a cache for compressed

pages [Wil90, WLM91, Wil91, AL91, Dou93]; this divides the main memory into partitions

for uncompressed pages and compressed pages. The use of compressed in-memory storage

can improve overall system performance because \paging" from the compression cache may be

faster than paging from disk.

The performance of this scheme depends on the relative costs of processor cycles and

disk transfers, and on the e�ciency of the compression algorithm. Consider the fact that

currently it is reasonable to expect machines that can execute over 200 million instructions per

second on average and have disks with 8 millisecond latencies. This means that in the time it

takes to perform a single disk operation, the processor can execute over 1.6 million instructions.

Therefore, as long as each 1.6 million instructions of compression and uncompression saves one

disk seek, it is worthwhile to use the compression cache. As disk speeds lag further and further

behind processor speeds, compressed in-memory storage becomes increasingly attractive.

Novel Compression Techniques

We avoid the common trap of adapting text-oriented compression algorithm to compress in-

memory data. Instead, we aim towards using domain-speci�c compression algorithms for heap

data to take advantage of the knowledge about the data representation in memory.

In-memory data typically show di�erent kinds of regularities than character data from

�les. This is due to the demands of computer architectures, which favor word-sized �elds

aligned on word and double-word boundaries. Therefore, we use words as the basic unit of

184

matching, re�ned by discriminating between high-order bits (which are mostly stable) and

low-order bits (which are more likely to di�er). This is quite e�ective for both integers and

pointers; integers are likely to be small and similar to other small integers, while pointers are

likely to be similar to nearby pointers. We can also tailor our techniques to compress oating

point data which usually show regularities in the exponent and high order bits of the mantissa.

Discussion

Preliminary experiments have shown a compression factor between two and three, and a time

cost of only one-third of a millisecond to compress a 4KB page on a 200MHz Pentium Pro

processor running Linux. While more re�ned experiments and a wider selection of test pro-

grams are required, we believe that the early results are very promising. We expect to reduce

the time cost by another factor of two based on more �ne-tuning of the basic implementation.

Furthermore, our virtual memory trace-gathering tool [WKBK97] can also be extended to

gather compressibility information on the y, and our simulators can be modi�ed to evaluate

adaptive compressed paging techniques based on information from the traces.

It should be noted that unlike other compression-based memory management schemes,

our primary goal is not to increase the available disk storage, but to increase system through-

put by reducing the average memory latency and increasing e�ective performance. Our system

should also give bene�ts similar to those of �le-compression schemes [CG91, BJLM92]. Fur-

ther research is currently underway and detailed results will be presented in an upcoming

paper [WKB97a].

8.3 Advanced Issues

In Chapter 1, we briey mentioned some advanced issues that are beyond the scope of this

dissertation. Speci�cally, we discussed issues related to distribution, concurrency control and

fault tolerance, schema evolution, and security.

It should be emphasized that none of these issues are fundamentally in conict with

the basic pointer swizzling at page fault time technique and the implementation of orthogonal

persistence in Texas. In fact, some of these have been resolved speci�cally in the context of

Texas, as well as in other related systems. Of particular interest is the issue of distribution and

concurrency control. Our current implementation of Texas does not support either of these;

however, we are aware of at least one system, MC-Texas [BS96], implemented on a Fujitsu

AP1000 multicomputer as a precursor to developing a reference architecture for distributed

persistence. Blackburn and Stanton report encouraging results regarding the overall scalability

of Texas, modulo a couple of situations related to false sharing of implementation meta-data

that should be relatively easy to resolve.

As persistent storage becomes more popular, data security will also become increasingly

important because persistent data must be protected against unauthorized access. Previous

work has been done in this area and various solutions are possible (e.g., protection domains in

Opal [CLLBH92] and areas in ObjectStore [LLOW91]).

185

Chapter 9

Conclusions

Coarse-grained address translation techniques have been disregarded in the past as a viable

alternative to traditional �ne-grained address translation techniques for building e�cient per-

sistence mechanisms in general-purpose languages. An overall goal of this dissertation was to

\set the record straight" regarding the performance and exibility of coarse-grained translation

techniques and their potential as high-performance address translation mechanisms.

As part of this research, we have implemented Texas, a high-performance persistence

storage system for C++ that uses pointer swizzling at page fault time, a coarse-grained address

translation technique. In the foregoing chapters, we described various aspects of building such

systems to provide e�cient orthogonal persistence in general-purpose languages. In particular,

we discussed pros and cons of di�erent address translation approaches, presented a new clas-

si�cation scheme for persistent systems based on granularity issues, introduced the concept of

run-time type description (RTTD) for accessing implementation-level type information at run

time, and discussed lessons that we learned in interacting with operating systems. We also

provided research directions in storage management for persistent object stores, including a

log-structured storage strategy and compressed in-memory storage.

9.1 Address Translation

We have shown that a coarse-grained approach to address translation does not necessarily

constrain the performance requirements for most applications that incorporate orthogonal

persistence. By exploiting the virtual memory facilities of modern operating systems and ex-

isting virtual memory hardware on modern computers, we have implemented a coarse-grained

address translation scheme that runs on stock hardware and has minimum overheads in the

usual case. We rely on locality of reference (usually exhibited by most applications) to amor-

tize the cost of translating an entire page over repeated accesses to that page (which incur no

further overhead).

We have empirically validated our competitive argument for coarse-grained swizzling

techniques by using controlled measurements with existing benchmarks. Speci�cally, we have

demonstrated that the direct cost of our approach is zero for normal CPU-bound operations

that manipulate in-memory data, and very small (between 1 and 5 percent) for I/O-bound

operations when the data is being loaded into memory from stable storage. In general, the

186

address translation costs are much smaller than the corresponding I/O costs incurred during

loading the data itself. We expect these overheads to decrease even further because CPU

speeds typically improve faster than I/O speeds.

While the direct costs of pointer swizzling at page fault time are minimal, there are

some indirect costs related to unexpected interactions with the virtual memory system leading

to unnecessary page-outs of swizzled pages. Although not directly related to pointer swiz-

zling, these costs may a�ect the total performance of an application because of extra paging

and therefore must be accounted for in the overall measurements. Fortunately, the costs are

bounded and also incurred only once per swizzled page. There are also several ways to avoid the

problem altogether if the operating system provides additional virtual memory management

support (e.g., external pagers in Mach).

9.2 Granularity Choices for Persistence

We have identi�ed a set of design issues that we believe are fundamental to the implementation

of any persistent system. The choice of granularity for each design issue forms a classi�cation

scheme for any persistence implementation. The design issues that we have identi�ed are the

granularities of address translation, address mapping, data fetching, data caching and check-

pointing. We believe that using a combination of granularity choices for these design issues

provides a better classi�cation mechanism than the existing ad hoc taxonomies.

We have chosen the basic unit for all granularity choices in Texas to be a virtual memory

page. This is because pointer swizzling at page fault time is a page-wise translation scheme and

the implementation relies heavily on the virtual memory facilities of the underlying operating

system. However, if necessary, it is possible to temporarily change the granularity to a �ner

level|for example, we implement pointer-wise address translation for situations where pure

coarse-grained approach will not provide the best bene�t.

9.3 Run-Time Type Description

Another important contribution of this dissertation is the notion of Run-Time Type Descrip-

tion (RTTD) for making implementation-level type information accessible at run time. It is

useful to have such detailed information about layouts of data objects in memory at run time

for a variety of applications. For example, in addition to its applicability to address translation

and persistence, detailed run-time object layout information is also useful for applications such

as garbage collection, advanced tracing and pro�ling, etc. The RTTD mechanism presented

here is designed to generate the layout information at compile time and make it available to

the application at run time.

We have shown that the RTTD mechanism can be implemented portably by using

compiler-generated debugging information as the basis for extracting the necessary information

for RTTD. We chose to use debugging information over the seemingly more obvious approach

based on using special-purpose preprocessors for reasons of portability and compatibility|our

approach is portable across multiple compilers and operating systems, and is compatible with

di�erent source languages because the debugging information format is usually independent of

187

these factors. Our case study implementation for C++, based on the GNU debugger, is fully

operational and is currently used in Texas and a real-time garbage collector for C++.

9.4 Operating System Interactions

During the course of implementing and porting pointer swizzling at page fault time and the

Texas persistent store to di�erent operating systems, we have learned several interesting lessons

about interacting with di�erent operating systems and the subtle di�erences in their related

features. Most of this interaction has been concentrated in the areas of virtual memory man-

agement and protection fault handling, the two most important features relevant to the im-

plementation of Texas.

We discussed several aspects of interactions with virtual memory systems. Among

these, we presented a comparison of virtual memory allocation primitives and their perfor-

mance characteristics on Linux and Solaris, described a study of heuristics for swap space

allocation on di�erent operating systems, and discussed advanced facilities for external mem-

ory management and additional control over paging a la Mach. For protection fault handling,

we found signi�cant room for performance improvements in terms of operating system support

for e�cient exception handling.

As part of our analysis, we presented some suggestions that we believe are important

for improving operating system implementations, and consequently their interactions with

systems such as Texas. In general, we argue for implementations that are more \open" and

\reective," and which provide basic building blocks that can be assembled by higher-level

user facilities to tailor the system to their speci�c needs. We believe that microkernel-based

approaches, with additional layering of functionality on top, are likely to provide some of the

performance characteristics that are desirable for general usage.

9.5 Storage Management Issues

Most of the discussion in this dissertation has concentrated on the implementation of a high-

performance address translation mechanism. However, issues related to storage management

for persistent object stores are also important when implementing persistence. In our current

implementation of Texas, we have incorporated a simple no-undo/redo write-ahead logging

strategy to provide simple checkpointing and crash recovery support. We discussed alternative

approaches ranging from simple page \di�ng" and sub-page logging techniques to advanced

log-structured storage management for the entire persistent store.

We also described other issues related to storage management, speci�cally adaptive

prefetching and compressed in-memory storage. The former is designed to improve the perfor-

mance of I/O while the latter attempts to minimize the amount of I/O necessary. Compressed

in-memory storage can be used for increasing the e�ective memory size by using part of main

memory to store compressed pages. Preliminary results have shown promise, and further

research is currently underway.

188

9.6 Final Words

Orthogonal persistence is becoming increasingly important as applications get more sophisti-

cated and manipulate complex, heap-allocated data structures. In this dissertation, we have

shown that the problem of addressing large amounts of data on standard hardware and oper-

ating systems can be resolved e�ectively using coarse-grained address translation techniques,

without compromising on issues of performance, portability and compatibility. By this, we

hope to enable wider acceptance of persistence as a useful and important feature in general-

purpose programming languages.

189

Appendix A

Hierarchical Type Graph

Chapter 6 (Section 6.5) described the storage model (i.e., both hierarchical and at formats)

for type descriptor records in our RTTD implementation. In discussing the hierarchical format,

we simpli�ed the structure of the type graph for ease of explanation of the basic concepts. The

actual data structures maintained by the type descriptor are much more complex and contain

all the necessary information to fully describe the various types at run time. Below we describe

the full hierarchical graph data structures in further detail.

Recall that we used the following sample type de�nitions in Chapter 6 to describe the

storage model:

struct Pet
{
 short tag;
 char *name;
};

struct Owner
{
 char *name;
 void *userdef;
 short numpets;
 Pet pets[2];
};

Figure A.1 shows the structure of the full hierarchical type graph representing these

two type de�nitions. Compare this with the simpli�ed structure shown in Figure 6.2 and it is

obvious that the actual data structures store much more information about the types.

Each application type is classi�ed as either a simple type (e.g., basic builtin type such

as short and char) or a complex type (e.g., pointer or aggregate type), and is represented by

a unique type descriptor record in the hierarchical type graph. Each type descriptor record

object is instantiated from a special RTTD type1 that represents a speci�c application type.

The RTTD type names follow a simple convention|each name has three parts: predetermined

pre�x (`TD") and su�x (\Type"), and a middle component that depends on the application

type. Thus RTTD type TDStructType would be instantiated to generate a type descriptor

record that maintains information about a struct (or class) in an application. Using this nam-

ing convention, we note that boxes labeled TDStructType, TDBuiltinType, TDPointerType

and TDArrayType in Figure A.1 represent the type of various type descriptor records in the

hierarchical type graph. (By the same token, boxes labeled TDField are not type descriptor

1We use the phrase \RTTD type" to distinguish types de�ned in our system (i.e., types of various type
descriptor record objects) from types in the application, which are represented by the type descriptor records.

190

records, but just auxiliary data structures used by TDStructType as described later.)

Each type descriptor record must maintain a set of information that is common across

all application types; this corresponds to the �rst four sub-components of each type descriptor

record shown in the �gure. In terms of implementation, this is accomplished by ensuring

that all RTTD types inherit from a single superclass that has the common information. This

information includes the size of the application type in bits (the size �eld) and information

about inheritance hierarchy in the application type structure (the numprnts and prnts �elds

which track information about \parents" of an application type). In addition, since pointer

types are also considered to be complex types in our system, each type descriptor record

maintains a reference to another type descriptor record that represents a pointer type of the

application type represented by this type descriptor record (the ptrtype �eld). For example,

the type descriptor record that represents type char will reference another type descriptor

record that represents type char*; the latter, in turn, may reference yet another type descriptor

record that represents type char**, and so on.

In addition to the common information, each RTTD type contains additional informa-

tion depending on the requirements for the application type that must be represented. For

example, type TDBuiltinType maintains a tag whose (predetermined) enumerated values de-

scribe the speci�c builtin type being represented, while types TDPointerType and TDArrayType

contain a pointer to another type descriptor record that represents either the pointed-to type

(for TDPointerType) or the array-of type (for TDArrayType). In contrast, type TDStructType

has several additional �elds which are necessary for fully representing an aggregate type. Apart

from its name, we also need to maintain information about each �eld of an aggregate type;

this is done via an auxiliary type TDField that can maintain information about the name and

size of a �eld (in bits), a reference to the type descriptor record that represents the type of

the �eld, and the o�set of the �eld in the overall aggregate type. Note that it is necessary to

maintain both size and o�set for each �eld (rather than deriving the o�set from the size of the

previous �eld) because the compiler may insert padding between �elds to comply with speci�c

layout and alignment requirements of the language and/or the operating system.

In summary, we have described the details of a type descriptor record structure, and

the various interconnections that make up the full hierarchical type graph created by the type

descriptor generator. It is obvious that, in addition to a common set of information that is

necessary for describing any application type, each RTTD type must also maintain additional

information that is speci�cally geared towards representing a particular application type, and

may be arbitrarily complex. Finally, we have briey described the structure and behavior of

several important RTTD types which represent type structures (builtin type, pointers, arrays

and aggregate types) that are common in most applications.

191

ptrtype = NULL

size = 64

numprnts = 0

prnts = NULL

name = “Pet”

numflds = 2

fields =

size = 16

name = “tag”

type =

offset = 0

size = 32

name = “name”

type =

offset = 32

ptrtype = NULL

size = 16

numprnts = 0

prnts = NULL

tag = TDSHORT

ptrtype = NULL

size = 32

numprnts = 0

prnts = NULL

type =
ptrtype =

size = 8

numprnts = 0

prnts = NULL

tag = TDCHAR

TDStructType
TDField

TDBuiltinType

TDBuiltinType

TDPointerType

TDField

ptrtype = NULL

size = 224

numprnts = 0

prnts = NULL

name = “Owner”

numflds = 4

fields =

TDStructType

size = 32

name = “name”

type =

offset = 0

size = 32

name = “userdef”

type =

offset = 32

TDField

TDField

ptrtype = NULL

size = 32

numprnts = 0

prnts = NULL

type =
ptrtype =

size = -1

numprnts = 0

prnts = NULL

tag = TDVOID

size = 16

name = “numpets”

type =

offset = 64

TDField

size = 128

name = “pets”

type =

offset = 96

TDField

ptrtype = NULL

size = 128

numprnts = 0

prnts = NULL

type =

TDArrayType

TDBuiltinType

TDPointerType

Figure A.1: Full hierarchical type graph

192

Bibliography

[ABC+83a] Malcolm P. Atkinson, Peter J. Bailey, Ken J. Chisholm, W. Paul Cockshott, and

Ron Morrison. An Approach to Persistent Programming. Computer Journal,

26(4):360{365, December 1983.

[ABC+83b] Malcolm P. Atkinson, Peter J. Bailey, Ken J. Chisholm, W. Paul Cockshott, and

Ron Morrison. PS-Algol: A Language for Persistent Programming. In Proceedings

of the 10th Australian National Computer Conference, pages 70{79, Melbourne,

Australia, 1983.

[ABM+90] T. Lougenia Anderson, Arne J. Berre, Moira Mallison, Harry T. Porter, and

Bruce Schneider. The HyperModel Benchmark. In Proceedings of the International

Conference on Extending Database Technology, pages 317{331, Venice, Italy, 1990.

[ACC82] Malcolm P. Atkinson, Ken J. Chisholm, and W. Paul Cockshott. PS-Algol: An

Algol with a Persistent Heap. ACM SIGPLAN Notices, 17(7):24{31, July 1982.

[ACCM83] Malcolm P. Atkinson, Ken J. Chisholm, W. Paul Cockshott, and Richard Mar-

shall. Algorithms for a Persistent Heap. Software Practice and Experience,

13(3):259{272, March 1983.

[AEL88] Andrew W. Appel, John R. Ellis, and Kai Li. Real-Time Concurrent Garbage

Collection on Stock Multiprocessors. In Proceedings of the 1988 SIGPLAN Con-

ference on Programming Language Design and Implementation, pages 11{20, At-

lanta, Georgia, June 1988. ACM Press.

[AL91] Andrew W. Appel and Kai Li. Virtual Memory Primitives For User Programs.

In Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS IV) [ASP91], pages 96{107.

[ALBL91] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. La-

zowska. The Interaction of Architecture and Operating Systems Design. In Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS IV) [ASP91], pages 108{120.

[AM92] Antonio Albano and Ron Morrison, editors. Fifth International Workshop on

Persistent Object Systems, San Miniato, Italy, September 1992. Springer-Verlag.

[AM95] Malcolm P. Atkinson and Ron Morrison. Orthogonally Persistent Object Systems.

VLDB Journal, 4(3), 1995.

193

[ARG89] Vadim Abrossimov, Marc Rozier, and Michel Gien. Virtual Memory Manage-

ment in Chorus. In Proceedings of Workshop on Progress in Distributed Operat-

ing Systems and Distributed Systems Management, Berlin, Germany, April 1989.

Springer-Verlag. Also Chorus systemes TR CS/TR-89-30.

[ASP91] Fourth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS IV), Santa Clara, California, April 1991.

[Bak78] Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer. Com-

munications of the ACM, 21(4):280{294, April 1978.

[Bak91] Henry G. Baker, Jr. The Treadmill: Real-Time Garbage Collection without

Motion Sickness. In OOPSLA '91 Workshop on Garbage Collection in Object-

Oriented Systems, October 1991. Position paper. Also appears as ACM SIGPLAN

Notices 27(3):66{70, March 1992.

[BC92] Yves Bekkers and Jacques Cohen, editors. International Workshop on Memory

Management, number 637 in Lecture Notes in Computer Science, St. Malo, France,

September 1992. Springer-Verlag.

[BJLM92] Michael Burrows, Charles Jerian, Butler Lampson, and Timothy Mann. On-

line Data Compression in a Log-structured File System. In Fifth International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS V), pages 2{9, Boston, Massachusetts, September 1992.

[BKLL93] Joseph Boykin, David Kirschen, Alan Langerman, and Susan LoVerso. Program-

ming under Mach. Addison-Wesley, Reading, Massachusetts, 1993.

[BL92] Thomas Ball and Jim Larus. Optimal Pro�ling and Tracing of Programs. In

Conference Record of the Nineteenth Annual ACM Symposium on Principles of

Programming Languages, pages 59{70. ACM Press, January 1992.

[BS76] Jean-Loup Baer and Gary R. Sager. Dynamic Improvement of Locality in Virtual

Memory Systems. IEEE Transactions on Software Engineering, SE-2(1):54{62,

March 1976.

[BS96] Stephen M. Blackburn and Robin B. Stanton. Multicomputer Object Stores: The

Multicomputer Texas Experiment. In Scott Nettles and Richard Connor, editors,

Seventh International Workshop on Persistent Object Systems, Cape May, New

Jersey, May 1996. Morgan Kaufmann.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage Collection in an Uncooperative

Environment. Software Practice and Experience, 18(9):807{820, September 1988.

[Car89] Michael J. Carey. The EXODUS Extensible DBMS Project: An Overview.

In Stanley B. Zdonik and David Maier, editors, Readings in Object-Oriented

Databases. Morgan Kaufmann, 1989.

194

[Cat91] R. G. G. Cattell. An Engineering Database Benchmark. In Jim Gray, editor, The

Benchmark Handbook for Database and Transaction Processing Systems, pages

247{281. Morgan Kaufmann, 1991.

[CBL90] Danny Chen, Ronald E. Barkley, and T. Paul Lee. Insuring Improved VM Per-

formance: Some No-Fault Policies. In Proceedings of the USENIX Winter 1990

Technical Conference, pages 11{22, Berkeley, California, January 1990. USENIX

Association.

[CDN93] Michael J. Carey, David J. DeWitt, and Je�rey F. Naughton. The OO7 Bench-

mark. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 12{21, Washington DC., June 1993. ACM Press.

[CG91] Vincent Cate and Thomas Gross. Combining the Concepts of Compression and

Caching for a Two-Level File System. In Fourth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS

IV) [ASP91], pages 200{209.

[Cha92] Craig Chambers. The Design and Implementation of the SELF Compiler, an

Optimizing Compiler for an Object-Oriented Programming Language. PhD thesis,

Stanford University, March 1992.

[CLLBH92] Je�rey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche Baker-Harvey.

Lightweight Shared Objects in a 64-bit Operating System. In Andreas Paepcke,

editor, Conference on Object Oriented Programming Systems, Languages and Ap-

plications (OOPSLA '92), pages 397{413, Vancouver, British Columbia, October

1992. ACM Press. Published as ACM SIGPLAN Notices 27(10), October 1992.

[CM84] George P. Copeland and David Maier. Making Smalltalk a Database System.

In Proceedings of the ACM SIGMOD International Conference on Management

of Data, pages 316{325, Boston, Massachusetts, June 1984. ACM Press. ACM

SIGMOD Record 14(2).

[CM88] Albert Chang and Mark F. Mergen. 801 Storage: Architecture and Programming.

ACM Transactions on Computer Systems, 6(1):28{50, February 1988.

[CRRS93] Khien-Mien Chew, Jyothy Reddy, Theodore H. Romer, and Abraham Silber-

schatz. Kernel Support for Recoverable-Persistent Virtual Memory. In Proceedings

of the 3rd Symposium on Mach, pages 215{234, Santa Fe, New Mexico, April 1993.

USENIX Association.

[CS92] Rick G. G. Cattell and J. Skeen. Object Operations Benchmark. ACM Transac-

tions on Database Systems, 17(1):1{31, March 1992.

[CS93] Khien-Mien Chew and Abraham Silberschatz. The Recoverable-Persistent Virtual

Memory Paradigm. Technical Report TR{93{08, The University of Texas at

Austin, Austin, Texas, March 1993. Available at ftp://ftp.cs.utexas.edu/

pub/techreports/tr93-08.ps.Z.

195

[Den70] Peter J. Denning. Virtual Memory. ACM Computing Surveys, 2(3):153{189,

September 1970.

[Det92] David L. Detlefs. Garbage Collection and Run-Time Typing as a C++ Library.

In USENIX C++ Conference [USE92].

[Dou93] Fred Douglis. The Compression Cache: Using On-line Compression to Extend

Physical Memory. In Proceedings of 1993 Winter USENIX Conference, pages

519{529, San Diego, California, January 1993.

[DSZ90] Alan Dearle, Gail M. Shaw, and Stanley B. Zdonik, editors. Implementing Per-

sistent Object Bases: Principles and Practice (Proceedings of the Fourth In-

ternational Workshop on Persistent Object Systems), Martha's Vineyard, Mas-

sachusetts, September 1990. Morgan Kaufmann.

[Ede92a] Daniel R. Edelson. Precompiling C++ for Garbage Collection. In Bekkers and

Cohen [BC92].

[Ede92b] Daniel Ross Edelson. Smart Pointers: They're Smart, But They're Not Pointers.

In USENIX C++ Conference [USE92], pages 1{19. Technical Report UCSC-

CRL-92-27, University of California at Santa Cruz, Baskin Center for Computer

Engineering and Information Sciences, June 1992.

[GMS87] Robert A. Gingell, Joseph P. Moran, and William A. Shannon. Virtual Memory

Architecture for SunOS. In USENIX Summer 1987 Technical Conference, pages

81{94, Phoenix, Arizona, June 1987. USENIX Association.

[GR89] Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-Wesley,

Reading, Massachusetts, 1989.

[HH87] R. Nigel Horspool and Ronald M. Huberman. Analysis and Development of De-

mand Prepaging Policies. Journal of Systems and Software, 7:183{194, 1987.

[HN97] Antony L. Hosking and Aria P. Novianto. Mostly-copying Reachability-based

Orthogonal Persistence for C, C++ and Other Intransigents. In OOPSLA '97

Workshop on Memory Management and Garbage Collection, October 1997.

[Hos95] Antony L. Hosking. Lightweight Support for Fine-Grained Persistence on Stock

Hardware. PhD thesis, University of Massachussetts at Amherst, Amherst, Mas-

sachussetts, February 1995.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Addison-Wesley, Reading, Massachusetts, 1996. 2nd Edition.

[HR83] Theo Haerder and Andreas Reuter. Principles of Transaction-Oriented Database

Recovery. ACM Computing Surveys, 15(4):287{317, December 1983.

[IL90] John A. Interrante and Mark A. Linton. Run-Time Access to Type Informa-

tion in C++. In USENIX C++ Conference, Berkeley, California, 1990. USENIX

Association.

196

[JLR+94] Hosagrahar V. Jagadish, Daniel Lieuwen, Rajeev Rastogi, Avi Silberschatz, and

S. Sudarshan. Dali: A High Performance Main Memory Storage Manager. In

Twentieth International Conference on Very Large Data Bases, Santiago, Chile,

1994.

[Joh97] Mark S. Johnstone. Non-Moving Memory Allocation and Real-Time Garbage Col-

lection. PhD thesis, The University of Texas at Austin, Austin. Texas, December

1997.

[Kae86] Ted Kaehler. Virtual Memory on a Narrow Machine for an Object-Oriented Lan-

guage. In Conference on Object Oriented Programming Systems, Languages and

Applications (OOPSLA '86) Proceedings [OOP86].

[KC86] Setrag N. Khosha�an and George P. Copeland. Object Identity. In Conference

on Object Oriented Programming Systems, Languages and Applications (OOPSLA

'86) Proceedings [OOP86], pages 406{416.

[KdRB91] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaob-

ject Protocol. MIT Press, Cambridge, Massachusetts, 1991.

[KELS82] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-level

Storage System. In D. P. Siewiorek, C. G. Bell, and A. Newell, editors, Computer

Structures: Principles and Examples, pages 135{148. McGraw-Hill, New York,

NY, 1982. Originally appeared in IRE Transactions EC-11:(2), 223{235, April

1962.

[KK83] Ted Kaehler and Glenn Krasner. LOOM|Large Object-Oriented Memory for

Smalltalk-80 Systems. In Glenn Krasner, editor, Smalltalk-80: Bits of History,

Words of Advice, pages 251{271. Addison-Wesley, 1983.

[KK95] Alfons Kemper and Donald Kossmann. Adaptable Pointer Swizzling Strategies

in Object Bases: Design, Realization, and Quantitative Analysis. VLDB Journal,

4(3):519{566, July 1995.

[KLM+93] Gregor Kiczales, John Lamping, Chris Maeda, David Keppel, and Dylan Mc-

Namee. The Need for Customizable Operating Systems. Proceedings of the Fourth

Workshop on Workstation Operating Systems (WWOS-IV), October 1993.

[LAB+81] Barbara Liskov, Russell Atkinson, Toby Bloom, J. Eliot B. Moss, J. Craig Schaf-

fert, Robert Scheier, and Alan Snyder. CLU Reference Manual. Number 114 in

Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1981.

[LH89] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems.

ACM Transactions on Computer Systems, 7(4):321{359, November 1989.

[Li86] Kai Li. Shared Virtual Memory on Loosely-Coupled Processors. PhD thesis, Yale

University, New Haven, Connecticut, 1986.

197

[Lie93] Jochen Liedtke. Improved IPC by Kernel Design. In Proceedings of the Fourteenth

Symposium on Operating Systems Principles, pages 175{188, Asheville, North

Carolina, December 1993. ACM Press. Published as Operating Systems Review

27(5).

[Lie95] Jochen Liedtke. On Microkernel Construction. In Proceedings of the Fifteenth

Symposium on Operating Systems Principles, pages 237{250, Copper Mountain

Resort, Colorado, December 1995. ACM Press.

[Lie96] Jochen Liedtke. Toward Real Microkernels. Communications of the ACM,

39(9):70{77, September 1996.

[Lip91] Stanley B. Lippman. C++ Primer. Addison-Wesley, Reading, Massachusetts,

1991. 2nd Edition.

[LLOW91] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The Object-

Store Database System. Communications of the ACM, 34(10):50{63, October

1991.

[MBC+89] Ron. Morrison, Alfred L. Brown, Ray Carrick, Richard Connor, Alan Dearle, and

Malcolm P. Atkinson. The Napier Type System. In J. Rosenberg and D. Koch,

editors, Third International Workshop on Persistent Object Systems, pages 3{18,

Newcastle, Australia, September 1989. Springer-Verlag.

[MG89] Jose Alves Marques and Paulo Guedes. Extending the Operating System to

Support an Object-Oriented Environment. In Conference on Object Oriented

Programming Systems, Languages and Applications (OOPSLA '89) Proceedings

[OOP89], pages 113{122.

[MGST70] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques

for Storage Hierarchies. IBM Systems Journal, 9:78{117, 1970.

[Mos92] J. Eliot B. Moss. Working with Persistent Objects: To Swizzle or Not to Swiz-

zle? IEEE Transactions on Software Engineering, 18(8):657{673, August 1992.

Also available as Technical Report 90{38, University of Massachusetts, Amherst,

Massachusetts, May 1990.

[MS95] Mark L. McAuli�e and Marvin H. Solomon. A Trace-Based Simulation of Pointer

Swizzling Techniques. In Proceedings of the International Conference on Database

Engineering, pages 52{61, Taipei, Taiwan, March 1995. IEEE.

[Nel91] Greg Nelson, editor. Systems Programming in Modula-3. Prentice-Hall, Engle-

wood Cli�s, New Jersey, 1991.

[NNM+96] Vivek R. Narasayya, Tze Sing Eugene Ng, Dylan McNamee, Ashutosh Tiwary,

and Henry M. Levy. Reducing the Virtual Memory Overhead of Swizzling. In Pro-

ceedings of the FifthInternational Workshop on Object Orientation in Operating

Systems, Seattle, Washington, October 1996. IEEE Press.

198

[OOP86] Conference on Object Oriented Programming Systems, Languages and Applica-

tions (OOPSLA '86) Proceedings. ACM Press, October 1986. Published as ACM

SIGPLAN Notices 21(11), November 1986.

[OOP89] Conference on Object Oriented Programming Systems, Languages and Applica-

tions (OOPSLA '89) Proceedings, New Orleans, Louisiana, 1989. ACM Press.

[RC89] Joel E. Richardson and Michael J. Carey. Persistence in the E Language: Is-

sues and Implementation. Software Practice and Experience, 19(12):1115{1150,

December 1989.

[RK68] Brian Randell and C. J. Kuehner. Dynamic Storage Allocation Systems. Com-

munications of the ACM, 12(7):297{306, May 1968.

[RO91] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation

of a Log-Structured File System. In Proceedings of the Thirteenth Symposium

on Operating Systems Principles, pages 1{15, Paci�c Grove, California, October

1991. ACM Press. Published as Operating Systems Review 25(5).

[Rus91] V. F. Russo. An Object-Oriented Operating System. PhD thesis, University of

Illinois at Urbana-Champaign, Champaign-Urbana, Illinois, January 1991.

[SCD90] Daniel T. Schuh, Michael J. Carey, and David J. DeWitt. Persistence in E

Revisited|Implementation Experiences. In Dearle et al. [DSZ90].

[SKT94] Shinji Suzuki, Masaru Kitsuregawa, and Mikio Takagi. An E�cient Pointer Swiz-

zling Method for Navigation Intensive Applications. In Antonio Albano and Ron

Morrison, editors, Sixth International Workshop on Persistent Object Systems,

pages 79{95, Tarascon, France, September 1994. Springer-Verlag.

[SKW92] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: An E�cient,

Portable Persistent Store. In Albano and Morrison [AM92], pages 11{33.

[SL92] Bjarne Stroustrup and Dmitry Lenkov. Run-time Type Identi�cation for C++

(revised). In USENIX C++ Conference [USE92].

[Sta82] James William Stamos. A Large Object-Oriented Virtual Memory: Grouping

Strategies, Measurements, and Performance. Technical Report SCG-82-2, Xerox

Palo Alto Research Center, Palo Alto, California, May 1982.

[Str87] Bjarne Stroustrup. The Evolution of C++, 1985 to 1987. In USENIX C++

Workshop, pages 1{22. USENIX Association, 1987.

[SW91] Walter R. Smith and Robert V. Welland. A Model for Address-Oriented Software

and Hardware. In Proceedings of the 25th Hawaii International Conference on

System Sciences. IEEE, January 1991.

[SZ90] Eugene Shekita and Michael Zwilling. Cricket: A Mapped, Persistent Object

Store. In Dearle et al. [DSZ90], pages 89{102.

199

[TL93] Chandramohan A. Thekkath and Henry M. Levy. Limits to Low-Latency Com-

muniation on High-Speed Network. ACM Transactions on Computer Systems,

11(2):179{203, May 1993.

[TL94] Chandramohan A. Thekkath and Henry M. Levy. Hardware and Software Support

for E�cient Exception Handling. In Sixth International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS VI),

pages 110{119, San Jose, California, October 1994.

[TNL95] Ashutosh Tiwary, Vivek R. Narasayya, and Henry M. Levy. Evaluation of OO7 as

a System and an Application Benchmark. In OOPSLA '95 Workshop on Object

Database Behavior, Benchmarks and Performance, Austin, Texas, October 1995.

[USE92] USENIX Association. USENIX C++ Conference, Portland, Oregon, August 1992.

[Vah96] Uresh Vahalia. Unix Internals: The New Frontiers. Prentice-Hall, Upper Saddle

River, New Jersey, 1996.

[VD92] Francis Vaughan and Alan Dearle. Supporting Large Persistent Stores Using

Conventional Hardware. In Albano and Morrison [AM92].

[vEBB95] Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-Latency Commu-

nication over ATM Networks using Active Messages. IEEE Micro, 15(1):46{53,

February 1995.

[WC96] ISO WG21 and ANSI X3J16 Committee. Working Paper for Draft Proposed

International Standard for Information Systems|Programming Language C++,

December 1996. Document numbers WG21/N1043 (ISO) and X3J16/96-0225

(ANSI). Current public draft available at http://www.cygnus.com/misc/wp/.

[WD92] Seth J. White and David J. Dewitt. A Performance Study of Alternative Object

Faulting and Pointer Swizzling Strategies. In 18th International Conference on

Very Large Data Bases, Vancouver, British Columbia, October 1992. Morgan

Kaufmann.

[WD94] Seth J. White and David J. Dewitt. QuickStore: A High Performance Mapped

Object Store. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 395{406, Minneapolis, Minnesota, May 1994. ACM

Press.

[Whi94] Seth J. White. Pointer Swizzling Techniques for Object-Oriented Database Sys-

tems. PhD thesis, University of Wisconsin|Madison, Madison, Wisonsin, 1994.

[Wil90] Paul R. Wilson. Some Issues and Strategies in Heap Management and Mem-

ory Hierarchies. In OOPSLA/ECOOP '90 Workshop on Garbage Collection in

Object-Oriented Systems, October 1990. Also appears in ACM SIGPLAN Notices

23(3):45{52, March 1991.

200

[Wil91] Paul R. Wilson. Operating System Support for Small Objects. In International

Workshop on Object Orientation in Operating Systems, pages 80{86, Palo Alto,

California, October 1991. IEEE Press.

[Wil92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Bekkers and

Cohen [BC92], pages 1{42.

[Wil97] Paul R. Wilson. Garbage Collection. ACM Computing Surveys, 1997. Expanded

version of [Wil92]. Draft available at ftp://ftp.cs.utexas.edu/pub/garbage/

bigsurv.ps. In revision, to appear.

[WJ93] Paul R. Wilson and Mark S. Johnstone. Truly Real-Time Non-Copying Garbage

Collection. In OOPSLA '93 Workshop on Memory Management and Garbage Col-

lection, December 1993. Available at ftp://ftp.cs.utexas.edu/pub/garbage/

GC93.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic

Storage Allocation: A Survey and Critical Review. In 1995 International Work-

shop on Memory Management, Kinross, Scotland, UK, 1995. Springer Verlag

LNCS.

[WKB97a] Paul R. Wilson, Scott F. Kaplan, and V. B. Balayogahan. Compressed Paging.

In preparation, 1997.

[WKB97b] Paul R. Wilson, Scott F. Kaplan, and V. B. Balayogahan. Current Research in

Compressed Virtual Memory. In preparation, 1997.

[WKBK97] Paul R. Wilson, Scott F. Kaplan, V. B. Balayogahan, and Sheetal V. Kakkad.

Virtual Memory Reference Tracing Using User-Level Access Protections. In prepa-

ration, 1997.

[WKM94] Paul R. Wilson, Sheetal V. Kakkad, and Shubhendu S. Mukherjee. Anomalies

and Adaptation in the Analysis and Development of Prepaging Policies. Journal

of Systems and Software, 27:147{153, November 1994.

[WLM91] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. E�ective Static-Graph

Reorganization to Improve Locality in Garbage-Collected Systems. In Proceedings

of the 1991 SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 177{191, Toronto, Ontario, June 1991. ACM Press. Published

as ACM SIGPLAN Notices 26(6), June 1992.

[WM89] Paul R. Wilson and Thomas G. Moher. Design of the Opportunistic Garbage

Collector. In Conference on Object Oriented Programming Systems, Languages

and Applications (OOPSLA '89) Proceedings [OOP89], pages 23{35.

[WWH87] Ifor W. Williams, Mario I. Wolczko, and Trevor P. Hopkins. Dynamic Grouping in

an Object-Oriented Virtual Memory Hierarchy. In European Conference on Object

Oriented Programming, pages 87{96, Paris, France, June 1987. Springer-Verlag.

201

[You89] Michael W. Young. Exporting a User Interface to Memory Management from a

Communication-Oriented Operating System. PhD thesis, Carnegie Mellon Uni-

versity, Pittsburgh, Pennsylvania, November 1989. Also available as Technical

Report CMU-CS-89-202.

202

Vita

Sheetal Vinod Kakkad was born in Rajkot (Gujarat), India on June 16, 1968, the son of

Jayashree Kakkad and Vinod Kakkad. After completing his work at Rajkumar College, Rajkot,

in 1985, he entered the University of Bombay, Bombay, India. He received the degree of

Bachelor of Engineering from the University of Bombay in July 1989. During the next two

years, he was employed as a lecturer at the R. A. Institute of Technology, New Bombay and

as a software engineer at Citicorp Overseas Software Limited, Bombay. In August 1991, he

entered the Graduate School of The University of Texas at Austin. He received the degree of

Master of Science in Computer Sciences in May 1994.

Permanent Address: 10306 Morado Cove #157, Austin, Texas 78759

This dissertation was typeset with LATEX2"
2 by the author.

2LATEX2" is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the
American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das,
Department of Computer Sciences, The University of Texas at Austin.

203

